* config/c4x/c4x.h (INITIALIZE_TRAMPOLINE): Replace 'tramp' with 'TRAMP' in
[official-gcc.git] / gcc / combine.c
blob5a1f89bd83da7b53d3d62ab503a4582073032555
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
94 /* Number of attempts to combine instructions in this function. */
96 static int combine_attempts;
98 /* Number of attempts that got as far as substitution in this function. */
100 static int combine_merges;
102 /* Number of instructions combined with added SETs in this function. */
104 static int combine_extras;
106 /* Number of instructions combined in this function. */
108 static int combine_successes;
110 /* Totals over entire compilation. */
112 static int total_attempts, total_merges, total_extras, total_successes;
115 /* Vector mapping INSN_UIDs to cuids.
116 The cuids are like uids but increase monotonically always.
117 Combine always uses cuids so that it can compare them.
118 But actually renumbering the uids, which we used to do,
119 proves to be a bad idea because it makes it hard to compare
120 the dumps produced by earlier passes with those from later passes. */
122 static int *uid_cuid;
123 static int max_uid_cuid;
125 /* Get the cuid of an insn. */
127 #define INSN_CUID(INSN) \
128 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
130 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
131 BITS_PER_WORD would invoke undefined behavior. Work around it. */
133 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
134 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
136 #define nonzero_bits(X, M) \
137 cached_nonzero_bits (X, M, NULL_RTX, VOIDmode, 0)
139 #define num_sign_bit_copies(X, M) \
140 cached_num_sign_bit_copies (X, M, NULL_RTX, VOIDmode, 0)
142 /* Maximum register number, which is the size of the tables below. */
144 static unsigned int combine_max_regno;
146 struct reg_stat {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, te bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
242 static struct reg_stat *reg_stat;
244 /* Record the cuid of the last insn that invalidated memory
245 (anything that writes memory, and subroutine calls, but not pushes). */
247 static int mem_last_set;
249 /* Record the cuid of the last CALL_INSN
250 so we can tell whether a potential combination crosses any calls. */
252 static int last_call_cuid;
254 /* When `subst' is called, this is the insn that is being modified
255 (by combining in a previous insn). The PATTERN of this insn
256 is still the old pattern partially modified and it should not be
257 looked at, but this may be used to examine the successors of the insn
258 to judge whether a simplification is valid. */
260 static rtx subst_insn;
262 /* This is the lowest CUID that `subst' is currently dealing with.
263 get_last_value will not return a value if the register was set at or
264 after this CUID. If not for this mechanism, we could get confused if
265 I2 or I1 in try_combine were an insn that used the old value of a register
266 to obtain a new value. In that case, we might erroneously get the
267 new value of the register when we wanted the old one. */
269 static int subst_low_cuid;
271 /* This contains any hard registers that are used in newpat; reg_dead_at_p
272 must consider all these registers to be always live. */
274 static HARD_REG_SET newpat_used_regs;
276 /* This is an insn to which a LOG_LINKS entry has been added. If this
277 insn is the earlier than I2 or I3, combine should rescan starting at
278 that location. */
280 static rtx added_links_insn;
282 /* Basic block in which we are performing combines. */
283 static basic_block this_basic_block;
285 /* A bitmap indicating which blocks had registers go dead at entry.
286 After combine, we'll need to re-do global life analysis with
287 those blocks as starting points. */
288 static sbitmap refresh_blocks;
290 /* Incremented for each label. */
292 static int label_tick;
294 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
295 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
297 static enum machine_mode nonzero_bits_mode;
299 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
300 be safely used. It is zero while computing them and after combine has
301 completed. This former test prevents propagating values based on
302 previously set values, which can be incorrect if a variable is modified
303 in a loop. */
305 static int nonzero_sign_valid;
308 /* Record one modification to rtl structure
309 to be undone by storing old_contents into *where.
310 is_int is 1 if the contents are an int. */
312 struct undo
314 struct undo *next;
315 int is_int;
316 union {rtx r; int i;} old_contents;
317 union {rtx *r; int *i;} where;
320 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
321 num_undo says how many are currently recorded.
323 other_insn is nonzero if we have modified some other insn in the process
324 of working on subst_insn. It must be verified too. */
326 struct undobuf
328 struct undo *undos;
329 struct undo *frees;
330 rtx other_insn;
333 static struct undobuf undobuf;
335 /* Number of times the pseudo being substituted for
336 was found and replaced. */
338 static int n_occurrences;
340 static void do_SUBST (rtx *, rtx);
341 static void do_SUBST_INT (int *, int);
342 static void init_reg_last (void);
343 static void setup_incoming_promotions (void);
344 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
345 static int cant_combine_insn_p (rtx);
346 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
347 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
348 static int contains_muldiv (rtx);
349 static rtx try_combine (rtx, rtx, rtx, int *);
350 static void undo_all (void);
351 static void undo_commit (void);
352 static rtx *find_split_point (rtx *, rtx);
353 static rtx subst (rtx, rtx, rtx, int, int);
354 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
355 static rtx simplify_if_then_else (rtx);
356 static rtx simplify_set (rtx);
357 static rtx simplify_logical (rtx);
358 static rtx expand_compound_operation (rtx);
359 static rtx expand_field_assignment (rtx);
360 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
361 rtx, unsigned HOST_WIDE_INT, int, int, int);
362 static rtx extract_left_shift (rtx, int);
363 static rtx make_compound_operation (rtx, enum rtx_code);
364 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
365 unsigned HOST_WIDE_INT *);
366 static rtx force_to_mode (rtx, enum machine_mode,
367 unsigned HOST_WIDE_INT, rtx, int);
368 static rtx if_then_else_cond (rtx, rtx *, rtx *);
369 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
370 static int rtx_equal_for_field_assignment_p (rtx, rtx);
371 static rtx make_field_assignment (rtx);
372 static rtx apply_distributive_law (rtx);
373 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
374 unsigned HOST_WIDE_INT);
375 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
376 rtx, enum machine_mode,
377 unsigned HOST_WIDE_INT);
378 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
379 enum machine_mode,
380 unsigned HOST_WIDE_INT);
381 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
382 enum machine_mode,
383 unsigned int);
384 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
385 enum machine_mode, unsigned int);
386 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
387 HOST_WIDE_INT, enum machine_mode, int *);
388 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
389 int);
390 static int recog_for_combine (rtx *, rtx, rtx *);
391 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
392 static rtx gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
393 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
394 static void update_table_tick (rtx);
395 static void record_value_for_reg (rtx, rtx, rtx);
396 static void check_promoted_subreg (rtx, rtx);
397 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
398 static void record_dead_and_set_regs (rtx);
399 static int get_last_value_validate (rtx *, rtx, int, int);
400 static rtx get_last_value (rtx);
401 static int use_crosses_set_p (rtx, int);
402 static void reg_dead_at_p_1 (rtx, rtx, void *);
403 static int reg_dead_at_p (rtx, rtx);
404 static void move_deaths (rtx, rtx, int, rtx, rtx *);
405 static int reg_bitfield_target_p (rtx, rtx);
406 static void distribute_notes (rtx, rtx, rtx, rtx);
407 static void distribute_links (rtx);
408 static void mark_used_regs_combine (rtx);
409 static int insn_cuid (rtx);
410 static void record_promoted_value (rtx, rtx);
411 static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
412 static enum rtx_code combine_reversed_comparison_code (rtx);
413 static int unmentioned_reg_p_1 (rtx *, void *);
414 static bool unmentioned_reg_p (rtx, rtx);
416 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
417 insn. The substitution can be undone by undo_all. If INTO is already
418 set to NEWVAL, do not record this change. Because computing NEWVAL might
419 also call SUBST, we have to compute it before we put anything into
420 the undo table. */
422 static void
423 do_SUBST (rtx *into, rtx newval)
425 struct undo *buf;
426 rtx oldval = *into;
428 if (oldval == newval)
429 return;
431 /* We'd like to catch as many invalid transformations here as
432 possible. Unfortunately, there are way too many mode changes
433 that are perfectly valid, so we'd waste too much effort for
434 little gain doing the checks here. Focus on catching invalid
435 transformations involving integer constants. */
436 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
437 && GET_CODE (newval) == CONST_INT)
439 /* Sanity check that we're replacing oldval with a CONST_INT
440 that is a valid sign-extension for the original mode. */
441 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
442 GET_MODE (oldval)))
443 abort ();
445 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
446 CONST_INT is not valid, because after the replacement, the
447 original mode would be gone. Unfortunately, we can't tell
448 when do_SUBST is called to replace the operand thereof, so we
449 perform this test on oldval instead, checking whether an
450 invalid replacement took place before we got here. */
451 if ((GET_CODE (oldval) == SUBREG
452 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
453 || (GET_CODE (oldval) == ZERO_EXTEND
454 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
455 abort ();
458 if (undobuf.frees)
459 buf = undobuf.frees, undobuf.frees = buf->next;
460 else
461 buf = xmalloc (sizeof (struct undo));
463 buf->is_int = 0;
464 buf->where.r = into;
465 buf->old_contents.r = oldval;
466 *into = newval;
468 buf->next = undobuf.undos, undobuf.undos = buf;
471 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
473 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
474 for the value of a HOST_WIDE_INT value (including CONST_INT) is
475 not safe. */
477 static void
478 do_SUBST_INT (int *into, int newval)
480 struct undo *buf;
481 int oldval = *into;
483 if (oldval == newval)
484 return;
486 if (undobuf.frees)
487 buf = undobuf.frees, undobuf.frees = buf->next;
488 else
489 buf = xmalloc (sizeof (struct undo));
491 buf->is_int = 1;
492 buf->where.i = into;
493 buf->old_contents.i = oldval;
494 *into = newval;
496 buf->next = undobuf.undos, undobuf.undos = buf;
499 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
501 /* Main entry point for combiner. F is the first insn of the function.
502 NREGS is the first unused pseudo-reg number.
504 Return nonzero if the combiner has turned an indirect jump
505 instruction into a direct jump. */
507 combine_instructions (rtx f, unsigned int nregs)
509 rtx insn, next;
510 #ifdef HAVE_cc0
511 rtx prev;
512 #endif
513 int i;
514 rtx links, nextlinks;
516 int new_direct_jump_p = 0;
518 combine_attempts = 0;
519 combine_merges = 0;
520 combine_extras = 0;
521 combine_successes = 0;
523 combine_max_regno = nregs;
525 /* It is not safe to use ordinary gen_lowpart in combine.
526 See comments in gen_lowpart_for_combine. */
527 gen_lowpart = gen_lowpart_for_combine;
529 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
531 init_recog_no_volatile ();
533 /* Compute maximum uid value so uid_cuid can be allocated. */
535 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
536 if (INSN_UID (insn) > i)
537 i = INSN_UID (insn);
539 uid_cuid = xmalloc ((i + 1) * sizeof (int));
540 max_uid_cuid = i;
542 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
544 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
545 problems when, for example, we have j <<= 1 in a loop. */
547 nonzero_sign_valid = 0;
549 /* Compute the mapping from uids to cuids.
550 Cuids are numbers assigned to insns, like uids,
551 except that cuids increase monotonically through the code.
553 Scan all SETs and see if we can deduce anything about what
554 bits are known to be zero for some registers and how many copies
555 of the sign bit are known to exist for those registers.
557 Also set any known values so that we can use it while searching
558 for what bits are known to be set. */
560 label_tick = 1;
562 setup_incoming_promotions ();
564 refresh_blocks = sbitmap_alloc (last_basic_block);
565 sbitmap_zero (refresh_blocks);
567 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
569 uid_cuid[INSN_UID (insn)] = ++i;
570 subst_low_cuid = i;
571 subst_insn = insn;
573 if (INSN_P (insn))
575 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
576 NULL);
577 record_dead_and_set_regs (insn);
579 #ifdef AUTO_INC_DEC
580 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
581 if (REG_NOTE_KIND (links) == REG_INC)
582 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
583 NULL);
584 #endif
587 if (GET_CODE (insn) == CODE_LABEL)
588 label_tick++;
591 nonzero_sign_valid = 1;
593 /* Now scan all the insns in forward order. */
595 label_tick = 1;
596 last_call_cuid = 0;
597 mem_last_set = 0;
598 init_reg_last ();
599 setup_incoming_promotions ();
601 FOR_EACH_BB (this_basic_block)
603 for (insn = BB_HEAD (this_basic_block);
604 insn != NEXT_INSN (BB_END (this_basic_block));
605 insn = next ? next : NEXT_INSN (insn))
607 next = 0;
609 if (GET_CODE (insn) == CODE_LABEL)
610 label_tick++;
612 else if (INSN_P (insn))
614 /* See if we know about function return values before this
615 insn based upon SUBREG flags. */
616 check_promoted_subreg (insn, PATTERN (insn));
618 /* Try this insn with each insn it links back to. */
620 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
621 if ((next = try_combine (insn, XEXP (links, 0),
622 NULL_RTX, &new_direct_jump_p)) != 0)
623 goto retry;
625 /* Try each sequence of three linked insns ending with this one. */
627 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
629 rtx link = XEXP (links, 0);
631 /* If the linked insn has been replaced by a note, then there
632 is no point in pursuing this chain any further. */
633 if (GET_CODE (link) == NOTE)
634 continue;
636 for (nextlinks = LOG_LINKS (link);
637 nextlinks;
638 nextlinks = XEXP (nextlinks, 1))
639 if ((next = try_combine (insn, link,
640 XEXP (nextlinks, 0),
641 &new_direct_jump_p)) != 0)
642 goto retry;
645 #ifdef HAVE_cc0
646 /* Try to combine a jump insn that uses CC0
647 with a preceding insn that sets CC0, and maybe with its
648 logical predecessor as well.
649 This is how we make decrement-and-branch insns.
650 We need this special code because data flow connections
651 via CC0 do not get entered in LOG_LINKS. */
653 if (GET_CODE (insn) == JUMP_INSN
654 && (prev = prev_nonnote_insn (insn)) != 0
655 && GET_CODE (prev) == INSN
656 && sets_cc0_p (PATTERN (prev)))
658 if ((next = try_combine (insn, prev,
659 NULL_RTX, &new_direct_jump_p)) != 0)
660 goto retry;
662 for (nextlinks = LOG_LINKS (prev); nextlinks;
663 nextlinks = XEXP (nextlinks, 1))
664 if ((next = try_combine (insn, prev,
665 XEXP (nextlinks, 0),
666 &new_direct_jump_p)) != 0)
667 goto retry;
670 /* Do the same for an insn that explicitly references CC0. */
671 if (GET_CODE (insn) == INSN
672 && (prev = prev_nonnote_insn (insn)) != 0
673 && GET_CODE (prev) == INSN
674 && sets_cc0_p (PATTERN (prev))
675 && GET_CODE (PATTERN (insn)) == SET
676 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
678 if ((next = try_combine (insn, prev,
679 NULL_RTX, &new_direct_jump_p)) != 0)
680 goto retry;
682 for (nextlinks = LOG_LINKS (prev); nextlinks;
683 nextlinks = XEXP (nextlinks, 1))
684 if ((next = try_combine (insn, prev,
685 XEXP (nextlinks, 0),
686 &new_direct_jump_p)) != 0)
687 goto retry;
690 /* Finally, see if any of the insns that this insn links to
691 explicitly references CC0. If so, try this insn, that insn,
692 and its predecessor if it sets CC0. */
693 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
694 if (GET_CODE (XEXP (links, 0)) == INSN
695 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
696 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
697 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
698 && GET_CODE (prev) == INSN
699 && sets_cc0_p (PATTERN (prev))
700 && (next = try_combine (insn, XEXP (links, 0),
701 prev, &new_direct_jump_p)) != 0)
702 goto retry;
703 #endif
705 /* Try combining an insn with two different insns whose results it
706 uses. */
707 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
708 for (nextlinks = XEXP (links, 1); nextlinks;
709 nextlinks = XEXP (nextlinks, 1))
710 if ((next = try_combine (insn, XEXP (links, 0),
711 XEXP (nextlinks, 0),
712 &new_direct_jump_p)) != 0)
713 goto retry;
715 /* Try this insn with each REG_EQUAL note it links back to. */
716 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
718 rtx set, note;
719 rtx temp = XEXP (links, 0);
720 if ((set = single_set (temp)) != 0
721 && (note = find_reg_equal_equiv_note (temp)) != 0
722 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
723 /* Avoid using a register that may already been marked
724 dead by an earlier instruction. */
725 && ! unmentioned_reg_p (XEXP (note, 0), SET_SRC (set)))
727 /* Temporarily replace the set's source with the
728 contents of the REG_EQUAL note. The insn will
729 be deleted or recognized by try_combine. */
730 rtx orig = SET_SRC (set);
731 SET_SRC (set) = XEXP (note, 0);
732 next = try_combine (insn, temp, NULL_RTX,
733 &new_direct_jump_p);
734 if (next)
735 goto retry;
736 SET_SRC (set) = orig;
740 if (GET_CODE (insn) != NOTE)
741 record_dead_and_set_regs (insn);
743 retry:
748 clear_bb_flags ();
750 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
751 BASIC_BLOCK (i)->flags |= BB_DIRTY);
752 new_direct_jump_p |= purge_all_dead_edges (0);
753 delete_noop_moves ();
755 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
756 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
757 | PROP_KILL_DEAD_CODE);
759 /* Clean up. */
760 sbitmap_free (refresh_blocks);
761 free (reg_stat);
762 free (uid_cuid);
765 struct undo *undo, *next;
766 for (undo = undobuf.frees; undo; undo = next)
768 next = undo->next;
769 free (undo);
771 undobuf.frees = 0;
774 total_attempts += combine_attempts;
775 total_merges += combine_merges;
776 total_extras += combine_extras;
777 total_successes += combine_successes;
779 nonzero_sign_valid = 0;
780 gen_lowpart = gen_lowpart_general;
782 /* Make recognizer allow volatile MEMs again. */
783 init_recog ();
785 return new_direct_jump_p;
788 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
790 static void
791 init_reg_last (void)
793 unsigned int i;
794 for (i = 0; i < combine_max_regno; i++)
795 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
798 /* Set up any promoted values for incoming argument registers. */
800 static void
801 setup_incoming_promotions (void)
803 unsigned int regno;
804 rtx reg;
805 enum machine_mode mode;
806 int unsignedp;
807 rtx first = get_insns ();
809 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
811 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
812 /* Check whether this register can hold an incoming pointer
813 argument. FUNCTION_ARG_REGNO_P tests outgoing register
814 numbers, so translate if necessary due to register windows. */
815 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
816 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
818 record_value_for_reg
819 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
820 : SIGN_EXTEND),
821 GET_MODE (reg),
822 gen_rtx_CLOBBER (mode, const0_rtx)));
827 /* Called via note_stores. If X is a pseudo that is narrower than
828 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
830 If we are setting only a portion of X and we can't figure out what
831 portion, assume all bits will be used since we don't know what will
832 be happening.
834 Similarly, set how many bits of X are known to be copies of the sign bit
835 at all locations in the function. This is the smallest number implied
836 by any set of X. */
838 static void
839 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
840 void *data ATTRIBUTE_UNUSED)
842 unsigned int num;
844 if (GET_CODE (x) == REG
845 && REGNO (x) >= FIRST_PSEUDO_REGISTER
846 /* If this register is undefined at the start of the file, we can't
847 say what its contents were. */
848 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
849 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
851 if (set == 0 || GET_CODE (set) == CLOBBER)
853 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
854 reg_stat[REGNO (x)].sign_bit_copies = 1;
855 return;
858 /* If this is a complex assignment, see if we can convert it into a
859 simple assignment. */
860 set = expand_field_assignment (set);
862 /* If this is a simple assignment, or we have a paradoxical SUBREG,
863 set what we know about X. */
865 if (SET_DEST (set) == x
866 || (GET_CODE (SET_DEST (set)) == SUBREG
867 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
868 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
869 && SUBREG_REG (SET_DEST (set)) == x))
871 rtx src = SET_SRC (set);
873 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
874 /* If X is narrower than a word and SRC is a non-negative
875 constant that would appear negative in the mode of X,
876 sign-extend it for use in reg_stat[].nonzero_bits because some
877 machines (maybe most) will actually do the sign-extension
878 and this is the conservative approach.
880 ??? For 2.5, try to tighten up the MD files in this regard
881 instead of this kludge. */
883 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
884 && GET_CODE (src) == CONST_INT
885 && INTVAL (src) > 0
886 && 0 != (INTVAL (src)
887 & ((HOST_WIDE_INT) 1
888 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
889 src = GEN_INT (INTVAL (src)
890 | ((HOST_WIDE_INT) (-1)
891 << GET_MODE_BITSIZE (GET_MODE (x))));
892 #endif
894 /* Don't call nonzero_bits if it cannot change anything. */
895 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
896 reg_stat[REGNO (x)].nonzero_bits
897 |= nonzero_bits (src, nonzero_bits_mode);
898 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
899 if (reg_stat[REGNO (x)].sign_bit_copies == 0
900 || reg_stat[REGNO (x)].sign_bit_copies > num)
901 reg_stat[REGNO (x)].sign_bit_copies = num;
903 else
905 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
906 reg_stat[REGNO (x)].sign_bit_copies = 1;
911 /* See if INSN can be combined into I3. PRED and SUCC are optionally
912 insns that were previously combined into I3 or that will be combined
913 into the merger of INSN and I3.
915 Return 0 if the combination is not allowed for any reason.
917 If the combination is allowed, *PDEST will be set to the single
918 destination of INSN and *PSRC to the single source, and this function
919 will return 1. */
921 static int
922 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
923 rtx *pdest, rtx *psrc)
925 int i;
926 rtx set = 0, src, dest;
927 rtx p;
928 #ifdef AUTO_INC_DEC
929 rtx link;
930 #endif
931 int all_adjacent = (succ ? (next_active_insn (insn) == succ
932 && next_active_insn (succ) == i3)
933 : next_active_insn (insn) == i3);
935 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
936 or a PARALLEL consisting of such a SET and CLOBBERs.
938 If INSN has CLOBBER parallel parts, ignore them for our processing.
939 By definition, these happen during the execution of the insn. When it
940 is merged with another insn, all bets are off. If they are, in fact,
941 needed and aren't also supplied in I3, they may be added by
942 recog_for_combine. Otherwise, it won't match.
944 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
945 note.
947 Get the source and destination of INSN. If more than one, can't
948 combine. */
950 if (GET_CODE (PATTERN (insn)) == SET)
951 set = PATTERN (insn);
952 else if (GET_CODE (PATTERN (insn)) == PARALLEL
953 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
955 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
957 rtx elt = XVECEXP (PATTERN (insn), 0, i);
958 rtx note;
960 switch (GET_CODE (elt))
962 /* This is important to combine floating point insns
963 for the SH4 port. */
964 case USE:
965 /* Combining an isolated USE doesn't make sense.
966 We depend here on combinable_i3pat to reject them. */
967 /* The code below this loop only verifies that the inputs of
968 the SET in INSN do not change. We call reg_set_between_p
969 to verify that the REG in the USE does not change between
970 I3 and INSN.
971 If the USE in INSN was for a pseudo register, the matching
972 insn pattern will likely match any register; combining this
973 with any other USE would only be safe if we knew that the
974 used registers have identical values, or if there was
975 something to tell them apart, e.g. different modes. For
976 now, we forgo such complicated tests and simply disallow
977 combining of USES of pseudo registers with any other USE. */
978 if (GET_CODE (XEXP (elt, 0)) == REG
979 && GET_CODE (PATTERN (i3)) == PARALLEL)
981 rtx i3pat = PATTERN (i3);
982 int i = XVECLEN (i3pat, 0) - 1;
983 unsigned int regno = REGNO (XEXP (elt, 0));
987 rtx i3elt = XVECEXP (i3pat, 0, i);
989 if (GET_CODE (i3elt) == USE
990 && GET_CODE (XEXP (i3elt, 0)) == REG
991 && (REGNO (XEXP (i3elt, 0)) == regno
992 ? reg_set_between_p (XEXP (elt, 0),
993 PREV_INSN (insn), i3)
994 : regno >= FIRST_PSEUDO_REGISTER))
995 return 0;
997 while (--i >= 0);
999 break;
1001 /* We can ignore CLOBBERs. */
1002 case CLOBBER:
1003 break;
1005 case SET:
1006 /* Ignore SETs whose result isn't used but not those that
1007 have side-effects. */
1008 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1009 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1010 || INTVAL (XEXP (note, 0)) <= 0)
1011 && ! side_effects_p (elt))
1012 break;
1014 /* If we have already found a SET, this is a second one and
1015 so we cannot combine with this insn. */
1016 if (set)
1017 return 0;
1019 set = elt;
1020 break;
1022 default:
1023 /* Anything else means we can't combine. */
1024 return 0;
1028 if (set == 0
1029 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1030 so don't do anything with it. */
1031 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1032 return 0;
1034 else
1035 return 0;
1037 if (set == 0)
1038 return 0;
1040 set = expand_field_assignment (set);
1041 src = SET_SRC (set), dest = SET_DEST (set);
1043 /* Don't eliminate a store in the stack pointer. */
1044 if (dest == stack_pointer_rtx
1045 /* Don't combine with an insn that sets a register to itself if it has
1046 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1047 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1048 /* Can't merge an ASM_OPERANDS. */
1049 || GET_CODE (src) == ASM_OPERANDS
1050 /* Can't merge a function call. */
1051 || GET_CODE (src) == CALL
1052 /* Don't eliminate a function call argument. */
1053 || (GET_CODE (i3) == CALL_INSN
1054 && (find_reg_fusage (i3, USE, dest)
1055 || (GET_CODE (dest) == REG
1056 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1057 && global_regs[REGNO (dest)])))
1058 /* Don't substitute into an incremented register. */
1059 || FIND_REG_INC_NOTE (i3, dest)
1060 || (succ && FIND_REG_INC_NOTE (succ, dest))
1061 #if 0
1062 /* Don't combine the end of a libcall into anything. */
1063 /* ??? This gives worse code, and appears to be unnecessary, since no
1064 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1065 use REG_RETVAL notes for noconflict blocks, but other code here
1066 makes sure that those insns don't disappear. */
1067 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1068 #endif
1069 /* Make sure that DEST is not used after SUCC but before I3. */
1070 || (succ && ! all_adjacent
1071 && reg_used_between_p (dest, succ, i3))
1072 /* Make sure that the value that is to be substituted for the register
1073 does not use any registers whose values alter in between. However,
1074 If the insns are adjacent, a use can't cross a set even though we
1075 think it might (this can happen for a sequence of insns each setting
1076 the same destination; last_set of that register might point to
1077 a NOTE). If INSN has a REG_EQUIV note, the register is always
1078 equivalent to the memory so the substitution is valid even if there
1079 are intervening stores. Also, don't move a volatile asm or
1080 UNSPEC_VOLATILE across any other insns. */
1081 || (! all_adjacent
1082 && (((GET_CODE (src) != MEM
1083 || ! find_reg_note (insn, REG_EQUIV, src))
1084 && use_crosses_set_p (src, INSN_CUID (insn)))
1085 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1086 || GET_CODE (src) == UNSPEC_VOLATILE))
1087 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1088 better register allocation by not doing the combine. */
1089 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1090 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1091 /* Don't combine across a CALL_INSN, because that would possibly
1092 change whether the life span of some REGs crosses calls or not,
1093 and it is a pain to update that information.
1094 Exception: if source is a constant, moving it later can't hurt.
1095 Accept that special case, because it helps -fforce-addr a lot. */
1096 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1097 return 0;
1099 /* DEST must either be a REG or CC0. */
1100 if (GET_CODE (dest) == REG)
1102 /* If register alignment is being enforced for multi-word items in all
1103 cases except for parameters, it is possible to have a register copy
1104 insn referencing a hard register that is not allowed to contain the
1105 mode being copied and which would not be valid as an operand of most
1106 insns. Eliminate this problem by not combining with such an insn.
1108 Also, on some machines we don't want to extend the life of a hard
1109 register. */
1111 if (GET_CODE (src) == REG
1112 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1113 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1114 /* Don't extend the life of a hard register unless it is
1115 user variable (if we have few registers) or it can't
1116 fit into the desired register (meaning something special
1117 is going on).
1118 Also avoid substituting a return register into I3, because
1119 reload can't handle a conflict with constraints of other
1120 inputs. */
1121 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1122 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1123 return 0;
1125 else if (GET_CODE (dest) != CC0)
1126 return 0;
1128 /* Don't substitute for a register intended as a clobberable operand.
1129 Similarly, don't substitute an expression containing a register that
1130 will be clobbered in I3. */
1131 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1132 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1133 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1134 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1135 src)
1136 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1137 return 0;
1139 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1140 or not), reject, unless nothing volatile comes between it and I3 */
1142 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1144 /* Make sure succ doesn't contain a volatile reference. */
1145 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1146 return 0;
1148 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1149 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1150 return 0;
1153 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1154 to be an explicit register variable, and was chosen for a reason. */
1156 if (GET_CODE (src) == ASM_OPERANDS
1157 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1158 return 0;
1160 /* If there are any volatile insns between INSN and I3, reject, because
1161 they might affect machine state. */
1163 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1164 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1165 return 0;
1167 /* If INSN or I2 contains an autoincrement or autodecrement,
1168 make sure that register is not used between there and I3,
1169 and not already used in I3 either.
1170 Also insist that I3 not be a jump; if it were one
1171 and the incremented register were spilled, we would lose. */
1173 #ifdef AUTO_INC_DEC
1174 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1175 if (REG_NOTE_KIND (link) == REG_INC
1176 && (GET_CODE (i3) == JUMP_INSN
1177 || reg_used_between_p (XEXP (link, 0), insn, i3)
1178 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1179 return 0;
1180 #endif
1182 #ifdef HAVE_cc0
1183 /* Don't combine an insn that follows a CC0-setting insn.
1184 An insn that uses CC0 must not be separated from the one that sets it.
1185 We do, however, allow I2 to follow a CC0-setting insn if that insn
1186 is passed as I1; in that case it will be deleted also.
1187 We also allow combining in this case if all the insns are adjacent
1188 because that would leave the two CC0 insns adjacent as well.
1189 It would be more logical to test whether CC0 occurs inside I1 or I2,
1190 but that would be much slower, and this ought to be equivalent. */
1192 p = prev_nonnote_insn (insn);
1193 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1194 && ! all_adjacent)
1195 return 0;
1196 #endif
1198 /* If we get here, we have passed all the tests and the combination is
1199 to be allowed. */
1201 *pdest = dest;
1202 *psrc = src;
1204 return 1;
1207 /* LOC is the location within I3 that contains its pattern or the component
1208 of a PARALLEL of the pattern. We validate that it is valid for combining.
1210 One problem is if I3 modifies its output, as opposed to replacing it
1211 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1212 so would produce an insn that is not equivalent to the original insns.
1214 Consider:
1216 (set (reg:DI 101) (reg:DI 100))
1217 (set (subreg:SI (reg:DI 101) 0) <foo>)
1219 This is NOT equivalent to:
1221 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1222 (set (reg:DI 101) (reg:DI 100))])
1224 Not only does this modify 100 (in which case it might still be valid
1225 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1227 We can also run into a problem if I2 sets a register that I1
1228 uses and I1 gets directly substituted into I3 (not via I2). In that
1229 case, we would be getting the wrong value of I2DEST into I3, so we
1230 must reject the combination. This case occurs when I2 and I1 both
1231 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1232 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1233 of a SET must prevent combination from occurring.
1235 Before doing the above check, we first try to expand a field assignment
1236 into a set of logical operations.
1238 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1239 we place a register that is both set and used within I3. If more than one
1240 such register is detected, we fail.
1242 Return 1 if the combination is valid, zero otherwise. */
1244 static int
1245 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1246 int i1_not_in_src, rtx *pi3dest_killed)
1248 rtx x = *loc;
1250 if (GET_CODE (x) == SET)
1252 rtx set = x ;
1253 rtx dest = SET_DEST (set);
1254 rtx src = SET_SRC (set);
1255 rtx inner_dest = dest;
1257 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1258 || GET_CODE (inner_dest) == SUBREG
1259 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1260 inner_dest = XEXP (inner_dest, 0);
1262 /* Check for the case where I3 modifies its output, as discussed
1263 above. We don't want to prevent pseudos from being combined
1264 into the address of a MEM, so only prevent the combination if
1265 i1 or i2 set the same MEM. */
1266 if ((inner_dest != dest &&
1267 (GET_CODE (inner_dest) != MEM
1268 || rtx_equal_p (i2dest, inner_dest)
1269 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1270 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1271 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1273 /* This is the same test done in can_combine_p except we can't test
1274 all_adjacent; we don't have to, since this instruction will stay
1275 in place, thus we are not considering increasing the lifetime of
1276 INNER_DEST.
1278 Also, if this insn sets a function argument, combining it with
1279 something that might need a spill could clobber a previous
1280 function argument; the all_adjacent test in can_combine_p also
1281 checks this; here, we do a more specific test for this case. */
1283 || (GET_CODE (inner_dest) == REG
1284 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1285 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1286 GET_MODE (inner_dest))))
1287 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1288 return 0;
1290 /* If DEST is used in I3, it is being killed in this insn,
1291 so record that for later.
1292 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1293 STACK_POINTER_REGNUM, since these are always considered to be
1294 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1295 if (pi3dest_killed && GET_CODE (dest) == REG
1296 && reg_referenced_p (dest, PATTERN (i3))
1297 && REGNO (dest) != FRAME_POINTER_REGNUM
1298 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1299 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1300 #endif
1301 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1302 && (REGNO (dest) != ARG_POINTER_REGNUM
1303 || ! fixed_regs [REGNO (dest)])
1304 #endif
1305 && REGNO (dest) != STACK_POINTER_REGNUM)
1307 if (*pi3dest_killed)
1308 return 0;
1310 *pi3dest_killed = dest;
1314 else if (GET_CODE (x) == PARALLEL)
1316 int i;
1318 for (i = 0; i < XVECLEN (x, 0); i++)
1319 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1320 i1_not_in_src, pi3dest_killed))
1321 return 0;
1324 return 1;
1327 /* Return 1 if X is an arithmetic expression that contains a multiplication
1328 and division. We don't count multiplications by powers of two here. */
1330 static int
1331 contains_muldiv (rtx x)
1333 switch (GET_CODE (x))
1335 case MOD: case DIV: case UMOD: case UDIV:
1336 return 1;
1338 case MULT:
1339 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1340 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1341 default:
1342 if (BINARY_P (x))
1343 return contains_muldiv (XEXP (x, 0))
1344 || contains_muldiv (XEXP (x, 1));
1346 if (UNARY_P (x))
1347 return contains_muldiv (XEXP (x, 0));
1349 return 0;
1353 /* Determine whether INSN can be used in a combination. Return nonzero if
1354 not. This is used in try_combine to detect early some cases where we
1355 can't perform combinations. */
1357 static int
1358 cant_combine_insn_p (rtx insn)
1360 rtx set;
1361 rtx src, dest;
1363 /* If this isn't really an insn, we can't do anything.
1364 This can occur when flow deletes an insn that it has merged into an
1365 auto-increment address. */
1366 if (! INSN_P (insn))
1367 return 1;
1369 /* Never combine loads and stores involving hard regs that are likely
1370 to be spilled. The register allocator can usually handle such
1371 reg-reg moves by tying. If we allow the combiner to make
1372 substitutions of likely-spilled regs, we may abort in reload.
1373 As an exception, we allow combinations involving fixed regs; these are
1374 not available to the register allocator so there's no risk involved. */
1376 set = single_set (insn);
1377 if (! set)
1378 return 0;
1379 src = SET_SRC (set);
1380 dest = SET_DEST (set);
1381 if (GET_CODE (src) == SUBREG)
1382 src = SUBREG_REG (src);
1383 if (GET_CODE (dest) == SUBREG)
1384 dest = SUBREG_REG (dest);
1385 if (REG_P (src) && REG_P (dest)
1386 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1387 && ! fixed_regs[REGNO (src)]
1388 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1389 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1390 && ! fixed_regs[REGNO (dest)]
1391 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1392 return 1;
1394 return 0;
1397 /* Adjust INSN after we made a change to its destination.
1399 Changing the destination can invalidate notes that say something about
1400 the results of the insn and a LOG_LINK pointing to the insn. */
1402 static void
1403 adjust_for_new_dest (rtx insn)
1405 rtx *loc;
1407 /* For notes, be conservative and simply remove them. */
1408 loc = &REG_NOTES (insn);
1409 while (*loc)
1411 enum reg_note kind = REG_NOTE_KIND (*loc);
1412 if (kind == REG_EQUAL || kind == REG_EQUIV)
1413 *loc = XEXP (*loc, 1);
1414 else
1415 loc = &XEXP (*loc, 1);
1418 /* The new insn will have a destination that was previously the destination
1419 of an insn just above it. Call distribute_links to make a LOG_LINK from
1420 the next use of that destination. */
1421 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1424 /* Try to combine the insns I1 and I2 into I3.
1425 Here I1 and I2 appear earlier than I3.
1426 I1 can be zero; then we combine just I2 into I3.
1428 If we are combining three insns and the resulting insn is not recognized,
1429 try splitting it into two insns. If that happens, I2 and I3 are retained
1430 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1431 are pseudo-deleted.
1433 Return 0 if the combination does not work. Then nothing is changed.
1434 If we did the combination, return the insn at which combine should
1435 resume scanning.
1437 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1438 new direct jump instruction. */
1440 static rtx
1441 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1443 /* New patterns for I3 and I2, respectively. */
1444 rtx newpat, newi2pat = 0;
1445 int substed_i2 = 0, substed_i1 = 0;
1446 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1447 int added_sets_1, added_sets_2;
1448 /* Total number of SETs to put into I3. */
1449 int total_sets;
1450 /* Nonzero if I2's body now appears in I3. */
1451 int i2_is_used;
1452 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1453 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1454 /* Contains I3 if the destination of I3 is used in its source, which means
1455 that the old life of I3 is being killed. If that usage is placed into
1456 I2 and not in I3, a REG_DEAD note must be made. */
1457 rtx i3dest_killed = 0;
1458 /* SET_DEST and SET_SRC of I2 and I1. */
1459 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1460 /* PATTERN (I2), or a copy of it in certain cases. */
1461 rtx i2pat;
1462 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1463 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1464 int i1_feeds_i3 = 0;
1465 /* Notes that must be added to REG_NOTES in I3 and I2. */
1466 rtx new_i3_notes, new_i2_notes;
1467 /* Notes that we substituted I3 into I2 instead of the normal case. */
1468 int i3_subst_into_i2 = 0;
1469 /* Notes that I1, I2 or I3 is a MULT operation. */
1470 int have_mult = 0;
1472 int maxreg;
1473 rtx temp;
1474 rtx link;
1475 int i;
1477 /* Exit early if one of the insns involved can't be used for
1478 combinations. */
1479 if (cant_combine_insn_p (i3)
1480 || cant_combine_insn_p (i2)
1481 || (i1 && cant_combine_insn_p (i1))
1482 /* We also can't do anything if I3 has a
1483 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1484 libcall. */
1485 #if 0
1486 /* ??? This gives worse code, and appears to be unnecessary, since no
1487 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1488 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1489 #endif
1491 return 0;
1493 combine_attempts++;
1494 undobuf.other_insn = 0;
1496 /* Reset the hard register usage information. */
1497 CLEAR_HARD_REG_SET (newpat_used_regs);
1499 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1500 code below, set I1 to be the earlier of the two insns. */
1501 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1502 temp = i1, i1 = i2, i2 = temp;
1504 added_links_insn = 0;
1506 /* First check for one important special-case that the code below will
1507 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1508 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1509 we may be able to replace that destination with the destination of I3.
1510 This occurs in the common code where we compute both a quotient and
1511 remainder into a structure, in which case we want to do the computation
1512 directly into the structure to avoid register-register copies.
1514 Note that this case handles both multiple sets in I2 and also
1515 cases where I2 has a number of CLOBBER or PARALLELs.
1517 We make very conservative checks below and only try to handle the
1518 most common cases of this. For example, we only handle the case
1519 where I2 and I3 are adjacent to avoid making difficult register
1520 usage tests. */
1522 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1523 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1524 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1525 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1526 && GET_CODE (PATTERN (i2)) == PARALLEL
1527 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1528 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1529 below would need to check what is inside (and reg_overlap_mentioned_p
1530 doesn't support those codes anyway). Don't allow those destinations;
1531 the resulting insn isn't likely to be recognized anyway. */
1532 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1533 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1534 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1535 SET_DEST (PATTERN (i3)))
1536 && next_real_insn (i2) == i3)
1538 rtx p2 = PATTERN (i2);
1540 /* Make sure that the destination of I3,
1541 which we are going to substitute into one output of I2,
1542 is not used within another output of I2. We must avoid making this:
1543 (parallel [(set (mem (reg 69)) ...)
1544 (set (reg 69) ...)])
1545 which is not well-defined as to order of actions.
1546 (Besides, reload can't handle output reloads for this.)
1548 The problem can also happen if the dest of I3 is a memory ref,
1549 if another dest in I2 is an indirect memory ref. */
1550 for (i = 0; i < XVECLEN (p2, 0); i++)
1551 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1552 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1553 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1554 SET_DEST (XVECEXP (p2, 0, i))))
1555 break;
1557 if (i == XVECLEN (p2, 0))
1558 for (i = 0; i < XVECLEN (p2, 0); i++)
1559 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1560 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1561 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1563 combine_merges++;
1565 subst_insn = i3;
1566 subst_low_cuid = INSN_CUID (i2);
1568 added_sets_2 = added_sets_1 = 0;
1569 i2dest = SET_SRC (PATTERN (i3));
1571 /* Replace the dest in I2 with our dest and make the resulting
1572 insn the new pattern for I3. Then skip to where we
1573 validate the pattern. Everything was set up above. */
1574 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1575 SET_DEST (PATTERN (i3)));
1577 newpat = p2;
1578 i3_subst_into_i2 = 1;
1579 goto validate_replacement;
1583 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1584 one of those words to another constant, merge them by making a new
1585 constant. */
1586 if (i1 == 0
1587 && (temp = single_set (i2)) != 0
1588 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1589 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1590 && GET_CODE (SET_DEST (temp)) == REG
1591 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1592 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1593 && GET_CODE (PATTERN (i3)) == SET
1594 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1595 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1596 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1597 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1598 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1600 HOST_WIDE_INT lo, hi;
1602 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1603 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1604 else
1606 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1607 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1610 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1612 /* We don't handle the case of the target word being wider
1613 than a host wide int. */
1614 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1615 abort ();
1617 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1618 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1619 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1621 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1622 hi = INTVAL (SET_SRC (PATTERN (i3)));
1623 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1625 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1626 >> (HOST_BITS_PER_WIDE_INT - 1));
1628 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1629 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1630 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1631 (INTVAL (SET_SRC (PATTERN (i3)))));
1632 if (hi == sign)
1633 hi = lo < 0 ? -1 : 0;
1635 else
1636 /* We don't handle the case of the higher word not fitting
1637 entirely in either hi or lo. */
1638 abort ();
1640 combine_merges++;
1641 subst_insn = i3;
1642 subst_low_cuid = INSN_CUID (i2);
1643 added_sets_2 = added_sets_1 = 0;
1644 i2dest = SET_DEST (temp);
1646 SUBST (SET_SRC (temp),
1647 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1649 newpat = PATTERN (i2);
1650 goto validate_replacement;
1653 #ifndef HAVE_cc0
1654 /* If we have no I1 and I2 looks like:
1655 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1656 (set Y OP)])
1657 make up a dummy I1 that is
1658 (set Y OP)
1659 and change I2 to be
1660 (set (reg:CC X) (compare:CC Y (const_int 0)))
1662 (We can ignore any trailing CLOBBERs.)
1664 This undoes a previous combination and allows us to match a branch-and-
1665 decrement insn. */
1667 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1668 && XVECLEN (PATTERN (i2), 0) >= 2
1669 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1670 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1671 == MODE_CC)
1672 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1673 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1674 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1675 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1676 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1677 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1679 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1680 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1681 break;
1683 if (i == 1)
1685 /* We make I1 with the same INSN_UID as I2. This gives it
1686 the same INSN_CUID for value tracking. Our fake I1 will
1687 never appear in the insn stream so giving it the same INSN_UID
1688 as I2 will not cause a problem. */
1690 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1691 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1692 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1693 NULL_RTX);
1695 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1696 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1697 SET_DEST (PATTERN (i1)));
1700 #endif
1702 /* Verify that I2 and I1 are valid for combining. */
1703 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1704 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1706 undo_all ();
1707 return 0;
1710 /* Record whether I2DEST is used in I2SRC and similarly for the other
1711 cases. Knowing this will help in register status updating below. */
1712 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1713 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1714 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1716 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1717 in I2SRC. */
1718 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1720 /* Ensure that I3's pattern can be the destination of combines. */
1721 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1722 i1 && i2dest_in_i1src && i1_feeds_i3,
1723 &i3dest_killed))
1725 undo_all ();
1726 return 0;
1729 /* See if any of the insns is a MULT operation. Unless one is, we will
1730 reject a combination that is, since it must be slower. Be conservative
1731 here. */
1732 if (GET_CODE (i2src) == MULT
1733 || (i1 != 0 && GET_CODE (i1src) == MULT)
1734 || (GET_CODE (PATTERN (i3)) == SET
1735 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1736 have_mult = 1;
1738 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1739 We used to do this EXCEPT in one case: I3 has a post-inc in an
1740 output operand. However, that exception can give rise to insns like
1741 mov r3,(r3)+
1742 which is a famous insn on the PDP-11 where the value of r3 used as the
1743 source was model-dependent. Avoid this sort of thing. */
1745 #if 0
1746 if (!(GET_CODE (PATTERN (i3)) == SET
1747 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1748 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1749 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1750 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1751 /* It's not the exception. */
1752 #endif
1753 #ifdef AUTO_INC_DEC
1754 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1755 if (REG_NOTE_KIND (link) == REG_INC
1756 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1757 || (i1 != 0
1758 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1760 undo_all ();
1761 return 0;
1763 #endif
1765 /* See if the SETs in I1 or I2 need to be kept around in the merged
1766 instruction: whenever the value set there is still needed past I3.
1767 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1769 For the SET in I1, we have two cases: If I1 and I2 independently
1770 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1771 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1772 in I1 needs to be kept around unless I1DEST dies or is set in either
1773 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1774 I1DEST. If so, we know I1 feeds into I2. */
1776 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1778 added_sets_1
1779 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1780 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1782 /* If the set in I2 needs to be kept around, we must make a copy of
1783 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1784 PATTERN (I2), we are only substituting for the original I1DEST, not into
1785 an already-substituted copy. This also prevents making self-referential
1786 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1787 I2DEST. */
1789 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1790 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1791 : PATTERN (i2));
1793 if (added_sets_2)
1794 i2pat = copy_rtx (i2pat);
1796 combine_merges++;
1798 /* Substitute in the latest insn for the regs set by the earlier ones. */
1800 maxreg = max_reg_num ();
1802 subst_insn = i3;
1804 /* It is possible that the source of I2 or I1 may be performing an
1805 unneeded operation, such as a ZERO_EXTEND of something that is known
1806 to have the high part zero. Handle that case by letting subst look at
1807 the innermost one of them.
1809 Another way to do this would be to have a function that tries to
1810 simplify a single insn instead of merging two or more insns. We don't
1811 do this because of the potential of infinite loops and because
1812 of the potential extra memory required. However, doing it the way
1813 we are is a bit of a kludge and doesn't catch all cases.
1815 But only do this if -fexpensive-optimizations since it slows things down
1816 and doesn't usually win. */
1818 if (flag_expensive_optimizations)
1820 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1821 if (i1)
1823 subst_low_cuid = INSN_CUID (i1);
1824 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1826 else
1828 subst_low_cuid = INSN_CUID (i2);
1829 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1833 #ifndef HAVE_cc0
1834 /* Many machines that don't use CC0 have insns that can both perform an
1835 arithmetic operation and set the condition code. These operations will
1836 be represented as a PARALLEL with the first element of the vector
1837 being a COMPARE of an arithmetic operation with the constant zero.
1838 The second element of the vector will set some pseudo to the result
1839 of the same arithmetic operation. If we simplify the COMPARE, we won't
1840 match such a pattern and so will generate an extra insn. Here we test
1841 for this case, where both the comparison and the operation result are
1842 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1843 I2SRC. Later we will make the PARALLEL that contains I2. */
1845 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1846 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1847 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1848 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1850 #ifdef SELECT_CC_MODE
1851 rtx *cc_use;
1852 enum machine_mode compare_mode;
1853 #endif
1855 newpat = PATTERN (i3);
1856 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1858 i2_is_used = 1;
1860 #ifdef SELECT_CC_MODE
1861 /* See if a COMPARE with the operand we substituted in should be done
1862 with the mode that is currently being used. If not, do the same
1863 processing we do in `subst' for a SET; namely, if the destination
1864 is used only once, try to replace it with a register of the proper
1865 mode and also replace the COMPARE. */
1866 if (undobuf.other_insn == 0
1867 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1868 &undobuf.other_insn))
1869 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1870 i2src, const0_rtx))
1871 != GET_MODE (SET_DEST (newpat))))
1873 unsigned int regno = REGNO (SET_DEST (newpat));
1874 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1876 if (regno < FIRST_PSEUDO_REGISTER
1877 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1878 && ! REG_USERVAR_P (SET_DEST (newpat))))
1880 if (regno >= FIRST_PSEUDO_REGISTER)
1881 SUBST (regno_reg_rtx[regno], new_dest);
1883 SUBST (SET_DEST (newpat), new_dest);
1884 SUBST (XEXP (*cc_use, 0), new_dest);
1885 SUBST (SET_SRC (newpat),
1886 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1888 else
1889 undobuf.other_insn = 0;
1891 #endif
1893 else
1894 #endif
1896 n_occurrences = 0; /* `subst' counts here */
1898 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1899 need to make a unique copy of I2SRC each time we substitute it
1900 to avoid self-referential rtl. */
1902 subst_low_cuid = INSN_CUID (i2);
1903 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1904 ! i1_feeds_i3 && i1dest_in_i1src);
1905 substed_i2 = 1;
1907 /* Record whether i2's body now appears within i3's body. */
1908 i2_is_used = n_occurrences;
1911 /* If we already got a failure, don't try to do more. Otherwise,
1912 try to substitute in I1 if we have it. */
1914 if (i1 && GET_CODE (newpat) != CLOBBER)
1916 /* Before we can do this substitution, we must redo the test done
1917 above (see detailed comments there) that ensures that I1DEST
1918 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1920 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1921 0, (rtx*) 0))
1923 undo_all ();
1924 return 0;
1927 n_occurrences = 0;
1928 subst_low_cuid = INSN_CUID (i1);
1929 newpat = subst (newpat, i1dest, i1src, 0, 0);
1930 substed_i1 = 1;
1933 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1934 to count all the ways that I2SRC and I1SRC can be used. */
1935 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1936 && i2_is_used + added_sets_2 > 1)
1937 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1938 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1939 > 1))
1940 /* Fail if we tried to make a new register (we used to abort, but there's
1941 really no reason to). */
1942 || max_reg_num () != maxreg
1943 /* Fail if we couldn't do something and have a CLOBBER. */
1944 || GET_CODE (newpat) == CLOBBER
1945 /* Fail if this new pattern is a MULT and we didn't have one before
1946 at the outer level. */
1947 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1948 && ! have_mult))
1950 undo_all ();
1951 return 0;
1954 /* If the actions of the earlier insns must be kept
1955 in addition to substituting them into the latest one,
1956 we must make a new PARALLEL for the latest insn
1957 to hold additional the SETs. */
1959 if (added_sets_1 || added_sets_2)
1961 combine_extras++;
1963 if (GET_CODE (newpat) == PARALLEL)
1965 rtvec old = XVEC (newpat, 0);
1966 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
1967 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1968 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
1969 sizeof (old->elem[0]) * old->num_elem);
1971 else
1973 rtx old = newpat;
1974 total_sets = 1 + added_sets_1 + added_sets_2;
1975 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1976 XVECEXP (newpat, 0, 0) = old;
1979 if (added_sets_1)
1980 XVECEXP (newpat, 0, --total_sets)
1981 = (GET_CODE (PATTERN (i1)) == PARALLEL
1982 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
1984 if (added_sets_2)
1986 /* If there is no I1, use I2's body as is. We used to also not do
1987 the subst call below if I2 was substituted into I3,
1988 but that could lose a simplification. */
1989 if (i1 == 0)
1990 XVECEXP (newpat, 0, --total_sets) = i2pat;
1991 else
1992 /* See comment where i2pat is assigned. */
1993 XVECEXP (newpat, 0, --total_sets)
1994 = subst (i2pat, i1dest, i1src, 0, 0);
1998 /* We come here when we are replacing a destination in I2 with the
1999 destination of I3. */
2000 validate_replacement:
2002 /* Note which hard regs this insn has as inputs. */
2003 mark_used_regs_combine (newpat);
2005 /* Is the result of combination a valid instruction? */
2006 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2008 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2009 the second SET's destination is a register that is unused and isn't
2010 marked as an instruction that might trap in an EH region. In that case,
2011 we just need the first SET. This can occur when simplifying a divmod
2012 insn. We *must* test for this case here because the code below that
2013 splits two independent SETs doesn't handle this case correctly when it
2014 updates the register status.
2016 It's pointless doing this if we originally had two sets, one from
2017 i3, and one from i2. Combining then splitting the parallel results
2018 in the original i2 again plus an invalid insn (which we delete).
2019 The net effect is only to move instructions around, which makes
2020 debug info less accurate.
2022 Also check the case where the first SET's destination is unused.
2023 That would not cause incorrect code, but does cause an unneeded
2024 insn to remain. */
2026 if (insn_code_number < 0
2027 && !(added_sets_2 && i1 == 0)
2028 && GET_CODE (newpat) == PARALLEL
2029 && XVECLEN (newpat, 0) == 2
2030 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2031 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2032 && asm_noperands (newpat) < 0)
2034 rtx set0 = XVECEXP (newpat, 0, 0);
2035 rtx set1 = XVECEXP (newpat, 0, 1);
2036 rtx note;
2038 if (((GET_CODE (SET_DEST (set1)) == REG
2039 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2040 || (GET_CODE (SET_DEST (set1)) == SUBREG
2041 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2042 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2043 || INTVAL (XEXP (note, 0)) <= 0)
2044 && ! side_effects_p (SET_SRC (set1)))
2046 newpat = set0;
2047 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2050 else if (((GET_CODE (SET_DEST (set0)) == REG
2051 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2052 || (GET_CODE (SET_DEST (set0)) == SUBREG
2053 && find_reg_note (i3, REG_UNUSED,
2054 SUBREG_REG (SET_DEST (set0)))))
2055 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2056 || INTVAL (XEXP (note, 0)) <= 0)
2057 && ! side_effects_p (SET_SRC (set0)))
2059 newpat = set1;
2060 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2062 if (insn_code_number >= 0)
2064 /* If we will be able to accept this, we have made a
2065 change to the destination of I3. This requires us to
2066 do a few adjustments. */
2068 PATTERN (i3) = newpat;
2069 adjust_for_new_dest (i3);
2074 /* If we were combining three insns and the result is a simple SET
2075 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2076 insns. There are two ways to do this. It can be split using a
2077 machine-specific method (like when you have an addition of a large
2078 constant) or by combine in the function find_split_point. */
2080 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2081 && asm_noperands (newpat) < 0)
2083 rtx m_split, *split;
2084 rtx ni2dest = i2dest;
2086 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2087 use I2DEST as a scratch register will help. In the latter case,
2088 convert I2DEST to the mode of the source of NEWPAT if we can. */
2090 m_split = split_insns (newpat, i3);
2092 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2093 inputs of NEWPAT. */
2095 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2096 possible to try that as a scratch reg. This would require adding
2097 more code to make it work though. */
2099 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2101 /* If I2DEST is a hard register or the only use of a pseudo,
2102 we can change its mode. */
2103 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2104 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2105 && GET_CODE (i2dest) == REG
2106 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2107 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2108 && ! REG_USERVAR_P (i2dest))))
2109 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2110 REGNO (i2dest));
2112 m_split = split_insns (gen_rtx_PARALLEL
2113 (VOIDmode,
2114 gen_rtvec (2, newpat,
2115 gen_rtx_CLOBBER (VOIDmode,
2116 ni2dest))),
2117 i3);
2118 /* If the split with the mode-changed register didn't work, try
2119 the original register. */
2120 if (! m_split && ni2dest != i2dest)
2122 ni2dest = i2dest;
2123 m_split = split_insns (gen_rtx_PARALLEL
2124 (VOIDmode,
2125 gen_rtvec (2, newpat,
2126 gen_rtx_CLOBBER (VOIDmode,
2127 i2dest))),
2128 i3);
2132 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2134 m_split = PATTERN (m_split);
2135 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2136 if (insn_code_number >= 0)
2137 newpat = m_split;
2139 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2140 && (next_real_insn (i2) == i3
2141 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2143 rtx i2set, i3set;
2144 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2145 newi2pat = PATTERN (m_split);
2147 i3set = single_set (NEXT_INSN (m_split));
2148 i2set = single_set (m_split);
2150 /* In case we changed the mode of I2DEST, replace it in the
2151 pseudo-register table here. We can't do it above in case this
2152 code doesn't get executed and we do a split the other way. */
2154 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2155 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2157 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2159 /* If I2 or I3 has multiple SETs, we won't know how to track
2160 register status, so don't use these insns. If I2's destination
2161 is used between I2 and I3, we also can't use these insns. */
2163 if (i2_code_number >= 0 && i2set && i3set
2164 && (next_real_insn (i2) == i3
2165 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2166 insn_code_number = recog_for_combine (&newi3pat, i3,
2167 &new_i3_notes);
2168 if (insn_code_number >= 0)
2169 newpat = newi3pat;
2171 /* It is possible that both insns now set the destination of I3.
2172 If so, we must show an extra use of it. */
2174 if (insn_code_number >= 0)
2176 rtx new_i3_dest = SET_DEST (i3set);
2177 rtx new_i2_dest = SET_DEST (i2set);
2179 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2180 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2181 || GET_CODE (new_i3_dest) == SUBREG)
2182 new_i3_dest = XEXP (new_i3_dest, 0);
2184 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2185 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2186 || GET_CODE (new_i2_dest) == SUBREG)
2187 new_i2_dest = XEXP (new_i2_dest, 0);
2189 if (GET_CODE (new_i3_dest) == REG
2190 && GET_CODE (new_i2_dest) == REG
2191 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2192 REG_N_SETS (REGNO (new_i2_dest))++;
2196 /* If we can split it and use I2DEST, go ahead and see if that
2197 helps things be recognized. Verify that none of the registers
2198 are set between I2 and I3. */
2199 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2200 #ifdef HAVE_cc0
2201 && GET_CODE (i2dest) == REG
2202 #endif
2203 /* We need I2DEST in the proper mode. If it is a hard register
2204 or the only use of a pseudo, we can change its mode. */
2205 && (GET_MODE (*split) == GET_MODE (i2dest)
2206 || GET_MODE (*split) == VOIDmode
2207 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2208 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2209 && ! REG_USERVAR_P (i2dest)))
2210 && (next_real_insn (i2) == i3
2211 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2212 /* We can't overwrite I2DEST if its value is still used by
2213 NEWPAT. */
2214 && ! reg_referenced_p (i2dest, newpat))
2216 rtx newdest = i2dest;
2217 enum rtx_code split_code = GET_CODE (*split);
2218 enum machine_mode split_mode = GET_MODE (*split);
2220 /* Get NEWDEST as a register in the proper mode. We have already
2221 validated that we can do this. */
2222 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2224 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2226 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2227 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2230 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2231 an ASHIFT. This can occur if it was inside a PLUS and hence
2232 appeared to be a memory address. This is a kludge. */
2233 if (split_code == MULT
2234 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2235 && INTVAL (XEXP (*split, 1)) > 0
2236 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2238 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2239 XEXP (*split, 0), GEN_INT (i)));
2240 /* Update split_code because we may not have a multiply
2241 anymore. */
2242 split_code = GET_CODE (*split);
2245 #ifdef INSN_SCHEDULING
2246 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2247 be written as a ZERO_EXTEND. */
2248 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2250 #ifdef LOAD_EXTEND_OP
2251 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2252 what it really is. */
2253 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2254 == SIGN_EXTEND)
2255 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2256 SUBREG_REG (*split)));
2257 else
2258 #endif
2259 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2260 SUBREG_REG (*split)));
2262 #endif
2264 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2265 SUBST (*split, newdest);
2266 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2268 /* If the split point was a MULT and we didn't have one before,
2269 don't use one now. */
2270 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2271 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2275 /* Check for a case where we loaded from memory in a narrow mode and
2276 then sign extended it, but we need both registers. In that case,
2277 we have a PARALLEL with both loads from the same memory location.
2278 We can split this into a load from memory followed by a register-register
2279 copy. This saves at least one insn, more if register allocation can
2280 eliminate the copy.
2282 We cannot do this if the destination of the first assignment is a
2283 condition code register or cc0. We eliminate this case by making sure
2284 the SET_DEST and SET_SRC have the same mode.
2286 We cannot do this if the destination of the second assignment is
2287 a register that we have already assumed is zero-extended. Similarly
2288 for a SUBREG of such a register. */
2290 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2291 && GET_CODE (newpat) == PARALLEL
2292 && XVECLEN (newpat, 0) == 2
2293 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2294 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2295 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2296 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2297 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2298 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2299 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2300 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2301 INSN_CUID (i2))
2302 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2303 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2304 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2305 (GET_CODE (temp) == REG
2306 && reg_stat[REGNO (temp)].nonzero_bits != 0
2307 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2308 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2309 && (reg_stat[REGNO (temp)].nonzero_bits
2310 != GET_MODE_MASK (word_mode))))
2311 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2312 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2313 (GET_CODE (temp) == REG
2314 && reg_stat[REGNO (temp)].nonzero_bits != 0
2315 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2316 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2317 && (reg_stat[REGNO (temp)].nonzero_bits
2318 != GET_MODE_MASK (word_mode)))))
2319 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2320 SET_SRC (XVECEXP (newpat, 0, 1)))
2321 && ! find_reg_note (i3, REG_UNUSED,
2322 SET_DEST (XVECEXP (newpat, 0, 0))))
2324 rtx ni2dest;
2326 newi2pat = XVECEXP (newpat, 0, 0);
2327 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2328 newpat = XVECEXP (newpat, 0, 1);
2329 SUBST (SET_SRC (newpat),
2330 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2331 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2333 if (i2_code_number >= 0)
2334 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2336 if (insn_code_number >= 0)
2338 rtx insn;
2339 rtx link;
2341 /* If we will be able to accept this, we have made a change to the
2342 destination of I3. This requires us to do a few adjustments. */
2343 PATTERN (i3) = newpat;
2344 adjust_for_new_dest (i3);
2346 /* I3 now uses what used to be its destination and which is
2347 now I2's destination. That means we need a LOG_LINK from
2348 I3 to I2. But we used to have one, so we still will.
2350 However, some later insn might be using I2's dest and have
2351 a LOG_LINK pointing at I3. We must remove this link.
2352 The simplest way to remove the link is to point it at I1,
2353 which we know will be a NOTE. */
2355 for (insn = NEXT_INSN (i3);
2356 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2357 || insn != BB_HEAD (this_basic_block->next_bb));
2358 insn = NEXT_INSN (insn))
2360 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2362 for (link = LOG_LINKS (insn); link;
2363 link = XEXP (link, 1))
2364 if (XEXP (link, 0) == i3)
2365 XEXP (link, 0) = i1;
2367 break;
2373 /* Similarly, check for a case where we have a PARALLEL of two independent
2374 SETs but we started with three insns. In this case, we can do the sets
2375 as two separate insns. This case occurs when some SET allows two
2376 other insns to combine, but the destination of that SET is still live. */
2378 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2379 && GET_CODE (newpat) == PARALLEL
2380 && XVECLEN (newpat, 0) == 2
2381 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2382 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2383 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2384 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2385 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2386 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2387 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2388 INSN_CUID (i2))
2389 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2390 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2391 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2392 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2393 XVECEXP (newpat, 0, 0))
2394 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2395 XVECEXP (newpat, 0, 1))
2396 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2397 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2399 /* Normally, it doesn't matter which of the two is done first,
2400 but it does if one references cc0. In that case, it has to
2401 be first. */
2402 #ifdef HAVE_cc0
2403 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2405 newi2pat = XVECEXP (newpat, 0, 0);
2406 newpat = XVECEXP (newpat, 0, 1);
2408 else
2409 #endif
2411 newi2pat = XVECEXP (newpat, 0, 1);
2412 newpat = XVECEXP (newpat, 0, 0);
2415 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2417 if (i2_code_number >= 0)
2418 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2421 /* If it still isn't recognized, fail and change things back the way they
2422 were. */
2423 if ((insn_code_number < 0
2424 /* Is the result a reasonable ASM_OPERANDS? */
2425 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2427 undo_all ();
2428 return 0;
2431 /* If we had to change another insn, make sure it is valid also. */
2432 if (undobuf.other_insn)
2434 rtx other_pat = PATTERN (undobuf.other_insn);
2435 rtx new_other_notes;
2436 rtx note, next;
2438 CLEAR_HARD_REG_SET (newpat_used_regs);
2440 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2441 &new_other_notes);
2443 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2445 undo_all ();
2446 return 0;
2449 PATTERN (undobuf.other_insn) = other_pat;
2451 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2452 are still valid. Then add any non-duplicate notes added by
2453 recog_for_combine. */
2454 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2456 next = XEXP (note, 1);
2458 if (REG_NOTE_KIND (note) == REG_UNUSED
2459 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2461 if (GET_CODE (XEXP (note, 0)) == REG)
2462 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2464 remove_note (undobuf.other_insn, note);
2468 for (note = new_other_notes; note; note = XEXP (note, 1))
2469 if (GET_CODE (XEXP (note, 0)) == REG)
2470 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2472 distribute_notes (new_other_notes, undobuf.other_insn,
2473 undobuf.other_insn, NULL_RTX);
2475 #ifdef HAVE_cc0
2476 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2477 they are adjacent to each other or not. */
2479 rtx p = prev_nonnote_insn (i3);
2480 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2481 && sets_cc0_p (newi2pat))
2483 undo_all ();
2484 return 0;
2487 #endif
2489 /* We now know that we can do this combination. Merge the insns and
2490 update the status of registers and LOG_LINKS. */
2493 rtx i3notes, i2notes, i1notes = 0;
2494 rtx i3links, i2links, i1links = 0;
2495 rtx midnotes = 0;
2496 unsigned int regno;
2498 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2499 clear them. */
2500 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2501 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2502 if (i1)
2503 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2505 /* Ensure that we do not have something that should not be shared but
2506 occurs multiple times in the new insns. Check this by first
2507 resetting all the `used' flags and then copying anything is shared. */
2509 reset_used_flags (i3notes);
2510 reset_used_flags (i2notes);
2511 reset_used_flags (i1notes);
2512 reset_used_flags (newpat);
2513 reset_used_flags (newi2pat);
2514 if (undobuf.other_insn)
2515 reset_used_flags (PATTERN (undobuf.other_insn));
2517 i3notes = copy_rtx_if_shared (i3notes);
2518 i2notes = copy_rtx_if_shared (i2notes);
2519 i1notes = copy_rtx_if_shared (i1notes);
2520 newpat = copy_rtx_if_shared (newpat);
2521 newi2pat = copy_rtx_if_shared (newi2pat);
2522 if (undobuf.other_insn)
2523 reset_used_flags (PATTERN (undobuf.other_insn));
2525 INSN_CODE (i3) = insn_code_number;
2526 PATTERN (i3) = newpat;
2528 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2530 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2532 reset_used_flags (call_usage);
2533 call_usage = copy_rtx (call_usage);
2535 if (substed_i2)
2536 replace_rtx (call_usage, i2dest, i2src);
2538 if (substed_i1)
2539 replace_rtx (call_usage, i1dest, i1src);
2541 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2544 if (undobuf.other_insn)
2545 INSN_CODE (undobuf.other_insn) = other_code_number;
2547 /* We had one special case above where I2 had more than one set and
2548 we replaced a destination of one of those sets with the destination
2549 of I3. In that case, we have to update LOG_LINKS of insns later
2550 in this basic block. Note that this (expensive) case is rare.
2552 Also, in this case, we must pretend that all REG_NOTEs for I2
2553 actually came from I3, so that REG_UNUSED notes from I2 will be
2554 properly handled. */
2556 if (i3_subst_into_i2)
2558 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2559 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2560 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2561 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2562 && ! find_reg_note (i2, REG_UNUSED,
2563 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2564 for (temp = NEXT_INSN (i2);
2565 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2566 || BB_HEAD (this_basic_block) != temp);
2567 temp = NEXT_INSN (temp))
2568 if (temp != i3 && INSN_P (temp))
2569 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2570 if (XEXP (link, 0) == i2)
2571 XEXP (link, 0) = i3;
2573 if (i3notes)
2575 rtx link = i3notes;
2576 while (XEXP (link, 1))
2577 link = XEXP (link, 1);
2578 XEXP (link, 1) = i2notes;
2580 else
2581 i3notes = i2notes;
2582 i2notes = 0;
2585 LOG_LINKS (i3) = 0;
2586 REG_NOTES (i3) = 0;
2587 LOG_LINKS (i2) = 0;
2588 REG_NOTES (i2) = 0;
2590 if (newi2pat)
2592 INSN_CODE (i2) = i2_code_number;
2593 PATTERN (i2) = newi2pat;
2595 else
2597 PUT_CODE (i2, NOTE);
2598 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2599 NOTE_SOURCE_FILE (i2) = 0;
2602 if (i1)
2604 LOG_LINKS (i1) = 0;
2605 REG_NOTES (i1) = 0;
2606 PUT_CODE (i1, NOTE);
2607 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2608 NOTE_SOURCE_FILE (i1) = 0;
2611 /* Get death notes for everything that is now used in either I3 or
2612 I2 and used to die in a previous insn. If we built two new
2613 patterns, move from I1 to I2 then I2 to I3 so that we get the
2614 proper movement on registers that I2 modifies. */
2616 if (newi2pat)
2618 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2619 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2621 else
2622 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2623 i3, &midnotes);
2625 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2626 if (i3notes)
2627 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2628 if (i2notes)
2629 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2630 if (i1notes)
2631 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2632 if (midnotes)
2633 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2635 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2636 know these are REG_UNUSED and want them to go to the desired insn,
2637 so we always pass it as i3. We have not counted the notes in
2638 reg_n_deaths yet, so we need to do so now. */
2640 if (newi2pat && new_i2_notes)
2642 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2643 if (GET_CODE (XEXP (temp, 0)) == REG)
2644 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2646 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2649 if (new_i3_notes)
2651 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2652 if (GET_CODE (XEXP (temp, 0)) == REG)
2653 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2655 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2658 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2659 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2660 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2661 in that case, it might delete I2. Similarly for I2 and I1.
2662 Show an additional death due to the REG_DEAD note we make here. If
2663 we discard it in distribute_notes, we will decrement it again. */
2665 if (i3dest_killed)
2667 if (GET_CODE (i3dest_killed) == REG)
2668 REG_N_DEATHS (REGNO (i3dest_killed))++;
2670 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2671 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2672 NULL_RTX),
2673 NULL_RTX, i2, NULL_RTX);
2674 else
2675 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2676 NULL_RTX),
2677 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2680 if (i2dest_in_i2src)
2682 if (GET_CODE (i2dest) == REG)
2683 REG_N_DEATHS (REGNO (i2dest))++;
2685 if (newi2pat && reg_set_p (i2dest, newi2pat))
2686 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2687 NULL_RTX, i2, NULL_RTX);
2688 else
2689 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2690 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2693 if (i1dest_in_i1src)
2695 if (GET_CODE (i1dest) == REG)
2696 REG_N_DEATHS (REGNO (i1dest))++;
2698 if (newi2pat && reg_set_p (i1dest, newi2pat))
2699 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2700 NULL_RTX, i2, NULL_RTX);
2701 else
2702 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2703 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2706 distribute_links (i3links);
2707 distribute_links (i2links);
2708 distribute_links (i1links);
2710 if (GET_CODE (i2dest) == REG)
2712 rtx link;
2713 rtx i2_insn = 0, i2_val = 0, set;
2715 /* The insn that used to set this register doesn't exist, and
2716 this life of the register may not exist either. See if one of
2717 I3's links points to an insn that sets I2DEST. If it does,
2718 that is now the last known value for I2DEST. If we don't update
2719 this and I2 set the register to a value that depended on its old
2720 contents, we will get confused. If this insn is used, thing
2721 will be set correctly in combine_instructions. */
2723 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2724 if ((set = single_set (XEXP (link, 0))) != 0
2725 && rtx_equal_p (i2dest, SET_DEST (set)))
2726 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2728 record_value_for_reg (i2dest, i2_insn, i2_val);
2730 /* If the reg formerly set in I2 died only once and that was in I3,
2731 zero its use count so it won't make `reload' do any work. */
2732 if (! added_sets_2
2733 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2734 && ! i2dest_in_i2src)
2736 regno = REGNO (i2dest);
2737 REG_N_SETS (regno)--;
2741 if (i1 && GET_CODE (i1dest) == REG)
2743 rtx link;
2744 rtx i1_insn = 0, i1_val = 0, set;
2746 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2747 if ((set = single_set (XEXP (link, 0))) != 0
2748 && rtx_equal_p (i1dest, SET_DEST (set)))
2749 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2751 record_value_for_reg (i1dest, i1_insn, i1_val);
2753 regno = REGNO (i1dest);
2754 if (! added_sets_1 && ! i1dest_in_i1src)
2755 REG_N_SETS (regno)--;
2758 /* Update reg_stat[].nonzero_bits et al for any changes that may have
2759 been made to this insn. The order of
2760 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
2761 can affect nonzero_bits of newpat */
2762 if (newi2pat)
2763 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2764 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2766 /* Set new_direct_jump_p if a new return or simple jump instruction
2767 has been created.
2769 If I3 is now an unconditional jump, ensure that it has a
2770 BARRIER following it since it may have initially been a
2771 conditional jump. It may also be the last nonnote insn. */
2773 if (returnjump_p (i3) || any_uncondjump_p (i3))
2775 *new_direct_jump_p = 1;
2776 mark_jump_label (PATTERN (i3), i3, 0);
2778 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2779 || GET_CODE (temp) != BARRIER)
2780 emit_barrier_after (i3);
2783 if (undobuf.other_insn != NULL_RTX
2784 && (returnjump_p (undobuf.other_insn)
2785 || any_uncondjump_p (undobuf.other_insn)))
2787 *new_direct_jump_p = 1;
2789 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2790 || GET_CODE (temp) != BARRIER)
2791 emit_barrier_after (undobuf.other_insn);
2794 /* An NOOP jump does not need barrier, but it does need cleaning up
2795 of CFG. */
2796 if (GET_CODE (newpat) == SET
2797 && SET_SRC (newpat) == pc_rtx
2798 && SET_DEST (newpat) == pc_rtx)
2799 *new_direct_jump_p = 1;
2802 combine_successes++;
2803 undo_commit ();
2805 if (added_links_insn
2806 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2807 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2808 return added_links_insn;
2809 else
2810 return newi2pat ? i2 : i3;
2813 /* Undo all the modifications recorded in undobuf. */
2815 static void
2816 undo_all (void)
2818 struct undo *undo, *next;
2820 for (undo = undobuf.undos; undo; undo = next)
2822 next = undo->next;
2823 if (undo->is_int)
2824 *undo->where.i = undo->old_contents.i;
2825 else
2826 *undo->where.r = undo->old_contents.r;
2828 undo->next = undobuf.frees;
2829 undobuf.frees = undo;
2832 undobuf.undos = 0;
2835 /* We've committed to accepting the changes we made. Move all
2836 of the undos to the free list. */
2838 static void
2839 undo_commit (void)
2841 struct undo *undo, *next;
2843 for (undo = undobuf.undos; undo; undo = next)
2845 next = undo->next;
2846 undo->next = undobuf.frees;
2847 undobuf.frees = undo;
2849 undobuf.undos = 0;
2853 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2854 where we have an arithmetic expression and return that point. LOC will
2855 be inside INSN.
2857 try_combine will call this function to see if an insn can be split into
2858 two insns. */
2860 static rtx *
2861 find_split_point (rtx *loc, rtx insn)
2863 rtx x = *loc;
2864 enum rtx_code code = GET_CODE (x);
2865 rtx *split;
2866 unsigned HOST_WIDE_INT len = 0;
2867 HOST_WIDE_INT pos = 0;
2868 int unsignedp = 0;
2869 rtx inner = NULL_RTX;
2871 /* First special-case some codes. */
2872 switch (code)
2874 case SUBREG:
2875 #ifdef INSN_SCHEDULING
2876 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2877 point. */
2878 if (GET_CODE (SUBREG_REG (x)) == MEM)
2879 return loc;
2880 #endif
2881 return find_split_point (&SUBREG_REG (x), insn);
2883 case MEM:
2884 #ifdef HAVE_lo_sum
2885 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2886 using LO_SUM and HIGH. */
2887 if (GET_CODE (XEXP (x, 0)) == CONST
2888 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2890 SUBST (XEXP (x, 0),
2891 gen_rtx_LO_SUM (Pmode,
2892 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2893 XEXP (x, 0)));
2894 return &XEXP (XEXP (x, 0), 0);
2896 #endif
2898 /* If we have a PLUS whose second operand is a constant and the
2899 address is not valid, perhaps will can split it up using
2900 the machine-specific way to split large constants. We use
2901 the first pseudo-reg (one of the virtual regs) as a placeholder;
2902 it will not remain in the result. */
2903 if (GET_CODE (XEXP (x, 0)) == PLUS
2904 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2905 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2907 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2908 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2909 subst_insn);
2911 /* This should have produced two insns, each of which sets our
2912 placeholder. If the source of the second is a valid address,
2913 we can make put both sources together and make a split point
2914 in the middle. */
2916 if (seq
2917 && NEXT_INSN (seq) != NULL_RTX
2918 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
2919 && GET_CODE (seq) == INSN
2920 && GET_CODE (PATTERN (seq)) == SET
2921 && SET_DEST (PATTERN (seq)) == reg
2922 && ! reg_mentioned_p (reg,
2923 SET_SRC (PATTERN (seq)))
2924 && GET_CODE (NEXT_INSN (seq)) == INSN
2925 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
2926 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
2927 && memory_address_p (GET_MODE (x),
2928 SET_SRC (PATTERN (NEXT_INSN (seq)))))
2930 rtx src1 = SET_SRC (PATTERN (seq));
2931 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
2933 /* Replace the placeholder in SRC2 with SRC1. If we can
2934 find where in SRC2 it was placed, that can become our
2935 split point and we can replace this address with SRC2.
2936 Just try two obvious places. */
2938 src2 = replace_rtx (src2, reg, src1);
2939 split = 0;
2940 if (XEXP (src2, 0) == src1)
2941 split = &XEXP (src2, 0);
2942 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2943 && XEXP (XEXP (src2, 0), 0) == src1)
2944 split = &XEXP (XEXP (src2, 0), 0);
2946 if (split)
2948 SUBST (XEXP (x, 0), src2);
2949 return split;
2953 /* If that didn't work, perhaps the first operand is complex and
2954 needs to be computed separately, so make a split point there.
2955 This will occur on machines that just support REG + CONST
2956 and have a constant moved through some previous computation. */
2958 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
2959 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2960 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
2961 return &XEXP (XEXP (x, 0), 0);
2963 break;
2965 case SET:
2966 #ifdef HAVE_cc0
2967 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2968 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2969 we need to put the operand into a register. So split at that
2970 point. */
2972 if (SET_DEST (x) == cc0_rtx
2973 && GET_CODE (SET_SRC (x)) != COMPARE
2974 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2975 && !OBJECT_P (SET_SRC (x))
2976 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2977 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
2978 return &SET_SRC (x);
2979 #endif
2981 /* See if we can split SET_SRC as it stands. */
2982 split = find_split_point (&SET_SRC (x), insn);
2983 if (split && split != &SET_SRC (x))
2984 return split;
2986 /* See if we can split SET_DEST as it stands. */
2987 split = find_split_point (&SET_DEST (x), insn);
2988 if (split && split != &SET_DEST (x))
2989 return split;
2991 /* See if this is a bitfield assignment with everything constant. If
2992 so, this is an IOR of an AND, so split it into that. */
2993 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2994 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2995 <= HOST_BITS_PER_WIDE_INT)
2996 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2997 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2998 && GET_CODE (SET_SRC (x)) == CONST_INT
2999 && ((INTVAL (XEXP (SET_DEST (x), 1))
3000 + INTVAL (XEXP (SET_DEST (x), 2)))
3001 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3002 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3004 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3005 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3006 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3007 rtx dest = XEXP (SET_DEST (x), 0);
3008 enum machine_mode mode = GET_MODE (dest);
3009 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3011 if (BITS_BIG_ENDIAN)
3012 pos = GET_MODE_BITSIZE (mode) - len - pos;
3014 if (src == mask)
3015 SUBST (SET_SRC (x),
3016 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3017 else
3018 SUBST (SET_SRC (x),
3019 gen_binary (IOR, mode,
3020 gen_binary (AND, mode, dest,
3021 gen_int_mode (~(mask << pos),
3022 mode)),
3023 GEN_INT (src << pos)));
3025 SUBST (SET_DEST (x), dest);
3027 split = find_split_point (&SET_SRC (x), insn);
3028 if (split && split != &SET_SRC (x))
3029 return split;
3032 /* Otherwise, see if this is an operation that we can split into two.
3033 If so, try to split that. */
3034 code = GET_CODE (SET_SRC (x));
3036 switch (code)
3038 case AND:
3039 /* If we are AND'ing with a large constant that is only a single
3040 bit and the result is only being used in a context where we
3041 need to know if it is zero or nonzero, replace it with a bit
3042 extraction. This will avoid the large constant, which might
3043 have taken more than one insn to make. If the constant were
3044 not a valid argument to the AND but took only one insn to make,
3045 this is no worse, but if it took more than one insn, it will
3046 be better. */
3048 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3049 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3050 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3051 && GET_CODE (SET_DEST (x)) == REG
3052 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3053 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3054 && XEXP (*split, 0) == SET_DEST (x)
3055 && XEXP (*split, 1) == const0_rtx)
3057 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3058 XEXP (SET_SRC (x), 0),
3059 pos, NULL_RTX, 1, 1, 0, 0);
3060 if (extraction != 0)
3062 SUBST (SET_SRC (x), extraction);
3063 return find_split_point (loc, insn);
3066 break;
3068 case NE:
3069 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3070 is known to be on, this can be converted into a NEG of a shift. */
3071 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3072 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3073 && 1 <= (pos = exact_log2
3074 (nonzero_bits (XEXP (SET_SRC (x), 0),
3075 GET_MODE (XEXP (SET_SRC (x), 0))))))
3077 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3079 SUBST (SET_SRC (x),
3080 gen_rtx_NEG (mode,
3081 gen_rtx_LSHIFTRT (mode,
3082 XEXP (SET_SRC (x), 0),
3083 GEN_INT (pos))));
3085 split = find_split_point (&SET_SRC (x), insn);
3086 if (split && split != &SET_SRC (x))
3087 return split;
3089 break;
3091 case SIGN_EXTEND:
3092 inner = XEXP (SET_SRC (x), 0);
3094 /* We can't optimize if either mode is a partial integer
3095 mode as we don't know how many bits are significant
3096 in those modes. */
3097 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3098 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3099 break;
3101 pos = 0;
3102 len = GET_MODE_BITSIZE (GET_MODE (inner));
3103 unsignedp = 0;
3104 break;
3106 case SIGN_EXTRACT:
3107 case ZERO_EXTRACT:
3108 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3109 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3111 inner = XEXP (SET_SRC (x), 0);
3112 len = INTVAL (XEXP (SET_SRC (x), 1));
3113 pos = INTVAL (XEXP (SET_SRC (x), 2));
3115 if (BITS_BIG_ENDIAN)
3116 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3117 unsignedp = (code == ZERO_EXTRACT);
3119 break;
3121 default:
3122 break;
3125 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3127 enum machine_mode mode = GET_MODE (SET_SRC (x));
3129 /* For unsigned, we have a choice of a shift followed by an
3130 AND or two shifts. Use two shifts for field sizes where the
3131 constant might be too large. We assume here that we can
3132 always at least get 8-bit constants in an AND insn, which is
3133 true for every current RISC. */
3135 if (unsignedp && len <= 8)
3137 SUBST (SET_SRC (x),
3138 gen_rtx_AND (mode,
3139 gen_rtx_LSHIFTRT
3140 (mode, gen_lowpart (mode, inner),
3141 GEN_INT (pos)),
3142 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3144 split = find_split_point (&SET_SRC (x), insn);
3145 if (split && split != &SET_SRC (x))
3146 return split;
3148 else
3150 SUBST (SET_SRC (x),
3151 gen_rtx_fmt_ee
3152 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3153 gen_rtx_ASHIFT (mode,
3154 gen_lowpart (mode, inner),
3155 GEN_INT (GET_MODE_BITSIZE (mode)
3156 - len - pos)),
3157 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3159 split = find_split_point (&SET_SRC (x), insn);
3160 if (split && split != &SET_SRC (x))
3161 return split;
3165 /* See if this is a simple operation with a constant as the second
3166 operand. It might be that this constant is out of range and hence
3167 could be used as a split point. */
3168 if (BINARY_P (SET_SRC (x))
3169 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3170 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3171 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3172 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3173 return &XEXP (SET_SRC (x), 1);
3175 /* Finally, see if this is a simple operation with its first operand
3176 not in a register. The operation might require this operand in a
3177 register, so return it as a split point. We can always do this
3178 because if the first operand were another operation, we would have
3179 already found it as a split point. */
3180 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3181 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3182 return &XEXP (SET_SRC (x), 0);
3184 return 0;
3186 case AND:
3187 case IOR:
3188 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3189 it is better to write this as (not (ior A B)) so we can split it.
3190 Similarly for IOR. */
3191 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3193 SUBST (*loc,
3194 gen_rtx_NOT (GET_MODE (x),
3195 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3196 GET_MODE (x),
3197 XEXP (XEXP (x, 0), 0),
3198 XEXP (XEXP (x, 1), 0))));
3199 return find_split_point (loc, insn);
3202 /* Many RISC machines have a large set of logical insns. If the
3203 second operand is a NOT, put it first so we will try to split the
3204 other operand first. */
3205 if (GET_CODE (XEXP (x, 1)) == NOT)
3207 rtx tem = XEXP (x, 0);
3208 SUBST (XEXP (x, 0), XEXP (x, 1));
3209 SUBST (XEXP (x, 1), tem);
3211 break;
3213 default:
3214 break;
3217 /* Otherwise, select our actions depending on our rtx class. */
3218 switch (GET_RTX_CLASS (code))
3220 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3221 case RTX_TERNARY:
3222 split = find_split_point (&XEXP (x, 2), insn);
3223 if (split)
3224 return split;
3225 /* ... fall through ... */
3226 case RTX_BIN_ARITH:
3227 case RTX_COMM_ARITH:
3228 case RTX_COMPARE:
3229 case RTX_COMM_COMPARE:
3230 split = find_split_point (&XEXP (x, 1), insn);
3231 if (split)
3232 return split;
3233 /* ... fall through ... */
3234 case RTX_UNARY:
3235 /* Some machines have (and (shift ...) ...) insns. If X is not
3236 an AND, but XEXP (X, 0) is, use it as our split point. */
3237 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3238 return &XEXP (x, 0);
3240 split = find_split_point (&XEXP (x, 0), insn);
3241 if (split)
3242 return split;
3243 return loc;
3245 default:
3246 /* Otherwise, we don't have a split point. */
3247 return 0;
3251 /* Throughout X, replace FROM with TO, and return the result.
3252 The result is TO if X is FROM;
3253 otherwise the result is X, but its contents may have been modified.
3254 If they were modified, a record was made in undobuf so that
3255 undo_all will (among other things) return X to its original state.
3257 If the number of changes necessary is too much to record to undo,
3258 the excess changes are not made, so the result is invalid.
3259 The changes already made can still be undone.
3260 undobuf.num_undo is incremented for such changes, so by testing that
3261 the caller can tell whether the result is valid.
3263 `n_occurrences' is incremented each time FROM is replaced.
3265 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3267 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3268 by copying if `n_occurrences' is nonzero. */
3270 static rtx
3271 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3273 enum rtx_code code = GET_CODE (x);
3274 enum machine_mode op0_mode = VOIDmode;
3275 const char *fmt;
3276 int len, i;
3277 rtx new;
3279 /* Two expressions are equal if they are identical copies of a shared
3280 RTX or if they are both registers with the same register number
3281 and mode. */
3283 #define COMBINE_RTX_EQUAL_P(X,Y) \
3284 ((X) == (Y) \
3285 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3286 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3288 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3290 n_occurrences++;
3291 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3294 /* If X and FROM are the same register but different modes, they will
3295 not have been seen as equal above. However, flow.c will make a
3296 LOG_LINKS entry for that case. If we do nothing, we will try to
3297 rerecognize our original insn and, when it succeeds, we will
3298 delete the feeding insn, which is incorrect.
3300 So force this insn not to match in this (rare) case. */
3301 if (! in_dest && code == REG && GET_CODE (from) == REG
3302 && REGNO (x) == REGNO (from))
3303 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3305 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3306 of which may contain things that can be combined. */
3307 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3308 return x;
3310 /* It is possible to have a subexpression appear twice in the insn.
3311 Suppose that FROM is a register that appears within TO.
3312 Then, after that subexpression has been scanned once by `subst',
3313 the second time it is scanned, TO may be found. If we were
3314 to scan TO here, we would find FROM within it and create a
3315 self-referent rtl structure which is completely wrong. */
3316 if (COMBINE_RTX_EQUAL_P (x, to))
3317 return to;
3319 /* Parallel asm_operands need special attention because all of the
3320 inputs are shared across the arms. Furthermore, unsharing the
3321 rtl results in recognition failures. Failure to handle this case
3322 specially can result in circular rtl.
3324 Solve this by doing a normal pass across the first entry of the
3325 parallel, and only processing the SET_DESTs of the subsequent
3326 entries. Ug. */
3328 if (code == PARALLEL
3329 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3330 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3332 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3334 /* If this substitution failed, this whole thing fails. */
3335 if (GET_CODE (new) == CLOBBER
3336 && XEXP (new, 0) == const0_rtx)
3337 return new;
3339 SUBST (XVECEXP (x, 0, 0), new);
3341 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3343 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3345 if (GET_CODE (dest) != REG
3346 && GET_CODE (dest) != CC0
3347 && GET_CODE (dest) != PC)
3349 new = subst (dest, from, to, 0, unique_copy);
3351 /* If this substitution failed, this whole thing fails. */
3352 if (GET_CODE (new) == CLOBBER
3353 && XEXP (new, 0) == const0_rtx)
3354 return new;
3356 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3360 else
3362 len = GET_RTX_LENGTH (code);
3363 fmt = GET_RTX_FORMAT (code);
3365 /* We don't need to process a SET_DEST that is a register, CC0,
3366 or PC, so set up to skip this common case. All other cases
3367 where we want to suppress replacing something inside a
3368 SET_SRC are handled via the IN_DEST operand. */
3369 if (code == SET
3370 && (GET_CODE (SET_DEST (x)) == REG
3371 || GET_CODE (SET_DEST (x)) == CC0
3372 || GET_CODE (SET_DEST (x)) == PC))
3373 fmt = "ie";
3375 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3376 constant. */
3377 if (fmt[0] == 'e')
3378 op0_mode = GET_MODE (XEXP (x, 0));
3380 for (i = 0; i < len; i++)
3382 if (fmt[i] == 'E')
3384 int j;
3385 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3387 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3389 new = (unique_copy && n_occurrences
3390 ? copy_rtx (to) : to);
3391 n_occurrences++;
3393 else
3395 new = subst (XVECEXP (x, i, j), from, to, 0,
3396 unique_copy);
3398 /* If this substitution failed, this whole thing
3399 fails. */
3400 if (GET_CODE (new) == CLOBBER
3401 && XEXP (new, 0) == const0_rtx)
3402 return new;
3405 SUBST (XVECEXP (x, i, j), new);
3408 else if (fmt[i] == 'e')
3410 /* If this is a register being set, ignore it. */
3411 new = XEXP (x, i);
3412 if (in_dest
3413 && (code == SUBREG || code == STRICT_LOW_PART
3414 || code == ZERO_EXTRACT)
3415 && i == 0
3416 && GET_CODE (new) == REG)
3419 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3421 /* In general, don't install a subreg involving two
3422 modes not tieable. It can worsen register
3423 allocation, and can even make invalid reload
3424 insns, since the reg inside may need to be copied
3425 from in the outside mode, and that may be invalid
3426 if it is an fp reg copied in integer mode.
3428 We allow two exceptions to this: It is valid if
3429 it is inside another SUBREG and the mode of that
3430 SUBREG and the mode of the inside of TO is
3431 tieable and it is valid if X is a SET that copies
3432 FROM to CC0. */
3434 if (GET_CODE (to) == SUBREG
3435 && ! MODES_TIEABLE_P (GET_MODE (to),
3436 GET_MODE (SUBREG_REG (to)))
3437 && ! (code == SUBREG
3438 && MODES_TIEABLE_P (GET_MODE (x),
3439 GET_MODE (SUBREG_REG (to))))
3440 #ifdef HAVE_cc0
3441 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3442 #endif
3444 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3446 #ifdef CANNOT_CHANGE_MODE_CLASS
3447 if (code == SUBREG
3448 && GET_CODE (to) == REG
3449 && REGNO (to) < FIRST_PSEUDO_REGISTER
3450 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3451 GET_MODE (to),
3452 GET_MODE (x)))
3453 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3454 #endif
3456 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3457 n_occurrences++;
3459 else
3460 /* If we are in a SET_DEST, suppress most cases unless we
3461 have gone inside a MEM, in which case we want to
3462 simplify the address. We assume here that things that
3463 are actually part of the destination have their inner
3464 parts in the first expression. This is true for SUBREG,
3465 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3466 things aside from REG and MEM that should appear in a
3467 SET_DEST. */
3468 new = subst (XEXP (x, i), from, to,
3469 (((in_dest
3470 && (code == SUBREG || code == STRICT_LOW_PART
3471 || code == ZERO_EXTRACT))
3472 || code == SET)
3473 && i == 0), unique_copy);
3475 /* If we found that we will have to reject this combination,
3476 indicate that by returning the CLOBBER ourselves, rather than
3477 an expression containing it. This will speed things up as
3478 well as prevent accidents where two CLOBBERs are considered
3479 to be equal, thus producing an incorrect simplification. */
3481 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3482 return new;
3484 if (GET_CODE (x) == SUBREG
3485 && (GET_CODE (new) == CONST_INT
3486 || GET_CODE (new) == CONST_DOUBLE))
3488 enum machine_mode mode = GET_MODE (x);
3490 x = simplify_subreg (GET_MODE (x), new,
3491 GET_MODE (SUBREG_REG (x)),
3492 SUBREG_BYTE (x));
3493 if (! x)
3494 x = gen_rtx_CLOBBER (mode, const0_rtx);
3496 else if (GET_CODE (new) == CONST_INT
3497 && GET_CODE (x) == ZERO_EXTEND)
3499 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3500 new, GET_MODE (XEXP (x, 0)));
3501 if (! x)
3502 abort ();
3504 else
3505 SUBST (XEXP (x, i), new);
3510 /* Try to simplify X. If the simplification changed the code, it is likely
3511 that further simplification will help, so loop, but limit the number
3512 of repetitions that will be performed. */
3514 for (i = 0; i < 4; i++)
3516 /* If X is sufficiently simple, don't bother trying to do anything
3517 with it. */
3518 if (code != CONST_INT && code != REG && code != CLOBBER)
3519 x = combine_simplify_rtx (x, op0_mode, in_dest);
3521 if (GET_CODE (x) == code)
3522 break;
3524 code = GET_CODE (x);
3526 /* We no longer know the original mode of operand 0 since we
3527 have changed the form of X) */
3528 op0_mode = VOIDmode;
3531 return x;
3534 /* Simplify X, a piece of RTL. We just operate on the expression at the
3535 outer level; call `subst' to simplify recursively. Return the new
3536 expression.
3538 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3539 if we are inside a SET_DEST. */
3541 static rtx
3542 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3544 enum rtx_code code = GET_CODE (x);
3545 enum machine_mode mode = GET_MODE (x);
3546 rtx temp;
3547 rtx reversed;
3548 int i;
3550 /* If this is a commutative operation, put a constant last and a complex
3551 expression first. We don't need to do this for comparisons here. */
3552 if (COMMUTATIVE_ARITH_P (x)
3553 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3555 temp = XEXP (x, 0);
3556 SUBST (XEXP (x, 0), XEXP (x, 1));
3557 SUBST (XEXP (x, 1), temp);
3560 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3561 sign extension of a PLUS with a constant, reverse the order of the sign
3562 extension and the addition. Note that this not the same as the original
3563 code, but overflow is undefined for signed values. Also note that the
3564 PLUS will have been partially moved "inside" the sign-extension, so that
3565 the first operand of X will really look like:
3566 (ashiftrt (plus (ashift A C4) C5) C4).
3567 We convert this to
3568 (plus (ashiftrt (ashift A C4) C2) C4)
3569 and replace the first operand of X with that expression. Later parts
3570 of this function may simplify the expression further.
3572 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3573 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3574 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3576 We do this to simplify address expressions. */
3578 if ((code == PLUS || code == MINUS || code == MULT)
3579 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3580 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3581 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3582 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3583 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3584 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3585 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3586 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3587 XEXP (XEXP (XEXP (x, 0), 0), 1),
3588 XEXP (XEXP (x, 0), 1))) != 0)
3590 rtx new
3591 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3592 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3593 INTVAL (XEXP (XEXP (x, 0), 1)));
3595 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3596 INTVAL (XEXP (XEXP (x, 0), 1)));
3598 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3601 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3602 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3603 things. Check for cases where both arms are testing the same
3604 condition.
3606 Don't do anything if all operands are very simple. */
3608 if ((BINARY_P (x)
3609 && ((!OBJECT_P (XEXP (x, 0))
3610 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3611 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3612 || (!OBJECT_P (XEXP (x, 1))
3613 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3614 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3615 || (UNARY_P (x)
3616 && (!OBJECT_P (XEXP (x, 0))
3617 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3618 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3620 rtx cond, true_rtx, false_rtx;
3622 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3623 if (cond != 0
3624 /* If everything is a comparison, what we have is highly unlikely
3625 to be simpler, so don't use it. */
3626 && ! (COMPARISON_P (x)
3627 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3629 rtx cop1 = const0_rtx;
3630 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3632 if (cond_code == NE && COMPARISON_P (cond))
3633 return x;
3635 /* Simplify the alternative arms; this may collapse the true and
3636 false arms to store-flag values. Be careful to use copy_rtx
3637 here since true_rtx or false_rtx might share RTL with x as a
3638 result of the if_then_else_cond call above. */
3639 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3640 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3642 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3643 is unlikely to be simpler. */
3644 if (general_operand (true_rtx, VOIDmode)
3645 && general_operand (false_rtx, VOIDmode))
3647 enum rtx_code reversed;
3649 /* Restarting if we generate a store-flag expression will cause
3650 us to loop. Just drop through in this case. */
3652 /* If the result values are STORE_FLAG_VALUE and zero, we can
3653 just make the comparison operation. */
3654 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3655 x = gen_binary (cond_code, mode, cond, cop1);
3656 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3657 && ((reversed = reversed_comparison_code_parts
3658 (cond_code, cond, cop1, NULL))
3659 != UNKNOWN))
3660 x = gen_binary (reversed, mode, cond, cop1);
3662 /* Likewise, we can make the negate of a comparison operation
3663 if the result values are - STORE_FLAG_VALUE and zero. */
3664 else if (GET_CODE (true_rtx) == CONST_INT
3665 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3666 && false_rtx == const0_rtx)
3667 x = simplify_gen_unary (NEG, mode,
3668 gen_binary (cond_code, mode, cond,
3669 cop1),
3670 mode);
3671 else if (GET_CODE (false_rtx) == CONST_INT
3672 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3673 && true_rtx == const0_rtx
3674 && ((reversed = reversed_comparison_code_parts
3675 (cond_code, cond, cop1, NULL))
3676 != UNKNOWN))
3677 x = simplify_gen_unary (NEG, mode,
3678 gen_binary (reversed, mode,
3679 cond, cop1),
3680 mode);
3681 else
3682 return gen_rtx_IF_THEN_ELSE (mode,
3683 gen_binary (cond_code, VOIDmode,
3684 cond, cop1),
3685 true_rtx, false_rtx);
3687 code = GET_CODE (x);
3688 op0_mode = VOIDmode;
3693 /* Try to fold this expression in case we have constants that weren't
3694 present before. */
3695 temp = 0;
3696 switch (GET_RTX_CLASS (code))
3698 case RTX_UNARY:
3699 if (op0_mode == VOIDmode)
3700 op0_mode = GET_MODE (XEXP (x, 0));
3701 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3702 break;
3703 case RTX_COMPARE:
3704 case RTX_COMM_COMPARE:
3706 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3707 if (cmp_mode == VOIDmode)
3709 cmp_mode = GET_MODE (XEXP (x, 1));
3710 if (cmp_mode == VOIDmode)
3711 cmp_mode = op0_mode;
3713 temp = simplify_relational_operation (code, mode, cmp_mode,
3714 XEXP (x, 0), XEXP (x, 1));
3716 break;
3717 case RTX_COMM_ARITH:
3718 case RTX_BIN_ARITH:
3719 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3720 break;
3721 case RTX_BITFIELD_OPS:
3722 case RTX_TERNARY:
3723 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3724 XEXP (x, 1), XEXP (x, 2));
3725 break;
3726 default:
3727 break;
3730 if (temp)
3732 x = temp;
3733 code = GET_CODE (temp);
3734 op0_mode = VOIDmode;
3735 mode = GET_MODE (temp);
3738 /* First see if we can apply the inverse distributive law. */
3739 if (code == PLUS || code == MINUS
3740 || code == AND || code == IOR || code == XOR)
3742 x = apply_distributive_law (x);
3743 code = GET_CODE (x);
3744 op0_mode = VOIDmode;
3747 /* If CODE is an associative operation not otherwise handled, see if we
3748 can associate some operands. This can win if they are constants or
3749 if they are logically related (i.e. (a & b) & a). */
3750 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3751 || code == AND || code == IOR || code == XOR
3752 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3753 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3754 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3756 if (GET_CODE (XEXP (x, 0)) == code)
3758 rtx other = XEXP (XEXP (x, 0), 0);
3759 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3760 rtx inner_op1 = XEXP (x, 1);
3761 rtx inner;
3763 /* Make sure we pass the constant operand if any as the second
3764 one if this is a commutative operation. */
3765 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
3767 rtx tem = inner_op0;
3768 inner_op0 = inner_op1;
3769 inner_op1 = tem;
3771 inner = simplify_binary_operation (code == MINUS ? PLUS
3772 : code == DIV ? MULT
3773 : code,
3774 mode, inner_op0, inner_op1);
3776 /* For commutative operations, try the other pair if that one
3777 didn't simplify. */
3778 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
3780 other = XEXP (XEXP (x, 0), 1);
3781 inner = simplify_binary_operation (code, mode,
3782 XEXP (XEXP (x, 0), 0),
3783 XEXP (x, 1));
3786 if (inner)
3787 return gen_binary (code, mode, other, inner);
3791 /* A little bit of algebraic simplification here. */
3792 switch (code)
3794 case MEM:
3795 /* Ensure that our address has any ASHIFTs converted to MULT in case
3796 address-recognizing predicates are called later. */
3797 temp = make_compound_operation (XEXP (x, 0), MEM);
3798 SUBST (XEXP (x, 0), temp);
3799 break;
3801 case SUBREG:
3802 if (op0_mode == VOIDmode)
3803 op0_mode = GET_MODE (SUBREG_REG (x));
3805 /* See if this can be moved to simplify_subreg. */
3806 if (CONSTANT_P (SUBREG_REG (x))
3807 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3808 /* Don't call gen_lowpart if the inner mode
3809 is VOIDmode and we cannot simplify it, as SUBREG without
3810 inner mode is invalid. */
3811 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3812 || gen_lowpart_common (mode, SUBREG_REG (x))))
3813 return gen_lowpart (mode, SUBREG_REG (x));
3815 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3816 break;
3818 rtx temp;
3819 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3820 SUBREG_BYTE (x));
3821 if (temp)
3822 return temp;
3825 /* Don't change the mode of the MEM if that would change the meaning
3826 of the address. */
3827 if (GET_CODE (SUBREG_REG (x)) == MEM
3828 && (MEM_VOLATILE_P (SUBREG_REG (x))
3829 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3830 return gen_rtx_CLOBBER (mode, const0_rtx);
3832 /* Note that we cannot do any narrowing for non-constants since
3833 we might have been counting on using the fact that some bits were
3834 zero. We now do this in the SET. */
3836 break;
3838 case NOT:
3839 if (GET_CODE (XEXP (x, 0)) == SUBREG
3840 && subreg_lowpart_p (XEXP (x, 0))
3841 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3842 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3843 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3844 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3846 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3848 x = gen_rtx_ROTATE (inner_mode,
3849 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3850 inner_mode),
3851 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3852 return gen_lowpart (mode, x);
3855 /* Apply De Morgan's laws to reduce number of patterns for machines
3856 with negating logical insns (and-not, nand, etc.). If result has
3857 only one NOT, put it first, since that is how the patterns are
3858 coded. */
3860 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3862 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3863 enum machine_mode op_mode;
3865 op_mode = GET_MODE (in1);
3866 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3868 op_mode = GET_MODE (in2);
3869 if (op_mode == VOIDmode)
3870 op_mode = mode;
3871 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3873 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3875 rtx tem = in2;
3876 in2 = in1; in1 = tem;
3879 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3880 mode, in1, in2);
3882 break;
3884 case NEG:
3885 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3886 if (GET_CODE (XEXP (x, 0)) == XOR
3887 && XEXP (XEXP (x, 0), 1) == const1_rtx
3888 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3889 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3891 temp = expand_compound_operation (XEXP (x, 0));
3893 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3894 replaced by (lshiftrt X C). This will convert
3895 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3897 if (GET_CODE (temp) == ASHIFTRT
3898 && GET_CODE (XEXP (temp, 1)) == CONST_INT
3899 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
3900 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
3901 INTVAL (XEXP (temp, 1)));
3903 /* If X has only a single bit that might be nonzero, say, bit I, convert
3904 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
3905 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
3906 (sign_extract X 1 Y). But only do this if TEMP isn't a register
3907 or a SUBREG of one since we'd be making the expression more
3908 complex if it was just a register. */
3910 if (GET_CODE (temp) != REG
3911 && ! (GET_CODE (temp) == SUBREG
3912 && GET_CODE (SUBREG_REG (temp)) == REG)
3913 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
3915 rtx temp1 = simplify_shift_const
3916 (NULL_RTX, ASHIFTRT, mode,
3917 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
3918 GET_MODE_BITSIZE (mode) - 1 - i),
3919 GET_MODE_BITSIZE (mode) - 1 - i);
3921 /* If all we did was surround TEMP with the two shifts, we
3922 haven't improved anything, so don't use it. Otherwise,
3923 we are better off with TEMP1. */
3924 if (GET_CODE (temp1) != ASHIFTRT
3925 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
3926 || XEXP (XEXP (temp1, 0), 0) != temp)
3927 return temp1;
3929 break;
3931 case TRUNCATE:
3932 /* We can't handle truncation to a partial integer mode here
3933 because we don't know the real bitsize of the partial
3934 integer mode. */
3935 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
3936 break;
3938 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3939 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3940 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
3941 SUBST (XEXP (x, 0),
3942 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
3943 GET_MODE_MASK (mode), NULL_RTX, 0));
3945 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
3946 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
3947 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
3948 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
3949 return XEXP (XEXP (x, 0), 0);
3951 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
3952 (OP:SI foo:SI) if OP is NEG or ABS. */
3953 if ((GET_CODE (XEXP (x, 0)) == ABS
3954 || GET_CODE (XEXP (x, 0)) == NEG)
3955 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
3956 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
3957 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
3958 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
3959 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
3961 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
3962 (truncate:SI x). */
3963 if (GET_CODE (XEXP (x, 0)) == SUBREG
3964 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
3965 && subreg_lowpart_p (XEXP (x, 0)))
3966 return SUBREG_REG (XEXP (x, 0));
3968 /* If we know that the value is already truncated, we can
3969 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
3970 is nonzero for the corresponding modes. But don't do this
3971 for an (LSHIFTRT (MULT ...)) since this will cause problems
3972 with the umulXi3_highpart patterns. */
3973 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3974 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
3975 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
3976 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
3977 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
3978 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
3979 return gen_lowpart (mode, XEXP (x, 0));
3981 /* A truncate of a comparison can be replaced with a subreg if
3982 STORE_FLAG_VALUE permits. This is like the previous test,
3983 but it works even if the comparison is done in a mode larger
3984 than HOST_BITS_PER_WIDE_INT. */
3985 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3986 && COMPARISON_P (XEXP (x, 0))
3987 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
3988 return gen_lowpart (mode, XEXP (x, 0));
3990 /* Similarly, a truncate of a register whose value is a
3991 comparison can be replaced with a subreg if STORE_FLAG_VALUE
3992 permits. */
3993 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3994 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
3995 && (temp = get_last_value (XEXP (x, 0)))
3996 && COMPARISON_P (temp))
3997 return gen_lowpart (mode, XEXP (x, 0));
3999 break;
4001 case FLOAT_TRUNCATE:
4002 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4003 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4004 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4005 return XEXP (XEXP (x, 0), 0);
4007 /* (float_truncate:SF (float_truncate:DF foo:XF))
4008 = (float_truncate:SF foo:XF).
4009 This may eliminate double rounding, so it is unsafe.
4011 (float_truncate:SF (float_extend:XF foo:DF))
4012 = (float_truncate:SF foo:DF).
4014 (float_truncate:DF (float_extend:XF foo:SF))
4015 = (float_extend:SF foo:DF). */
4016 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4017 && flag_unsafe_math_optimizations)
4018 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4019 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4020 0)))
4021 > GET_MODE_SIZE (mode)
4022 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4023 mode,
4024 XEXP (XEXP (x, 0), 0), mode);
4026 /* (float_truncate (float x)) is (float x) */
4027 if (GET_CODE (XEXP (x, 0)) == FLOAT
4028 && (flag_unsafe_math_optimizations
4029 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4030 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4031 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4032 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4033 return simplify_gen_unary (FLOAT, mode,
4034 XEXP (XEXP (x, 0), 0),
4035 GET_MODE (XEXP (XEXP (x, 0), 0)));
4037 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4038 (OP:SF foo:SF) if OP is NEG or ABS. */
4039 if ((GET_CODE (XEXP (x, 0)) == ABS
4040 || GET_CODE (XEXP (x, 0)) == NEG)
4041 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4042 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4043 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4044 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4046 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4047 is (float_truncate:SF x). */
4048 if (GET_CODE (XEXP (x, 0)) == SUBREG
4049 && subreg_lowpart_p (XEXP (x, 0))
4050 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4051 return SUBREG_REG (XEXP (x, 0));
4052 break;
4053 case FLOAT_EXTEND:
4054 /* (float_extend (float_extend x)) is (float_extend x)
4056 (float_extend (float x)) is (float x) assuming that double
4057 rounding can't happen.
4059 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4060 || (GET_CODE (XEXP (x, 0)) == FLOAT
4061 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4062 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4063 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4064 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4065 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4066 XEXP (XEXP (x, 0), 0),
4067 GET_MODE (XEXP (XEXP (x, 0), 0)));
4069 break;
4070 #ifdef HAVE_cc0
4071 case COMPARE:
4072 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4073 using cc0, in which case we want to leave it as a COMPARE
4074 so we can distinguish it from a register-register-copy. */
4075 if (XEXP (x, 1) == const0_rtx)
4076 return XEXP (x, 0);
4078 /* x - 0 is the same as x unless x's mode has signed zeros and
4079 allows rounding towards -infinity. Under those conditions,
4080 0 - 0 is -0. */
4081 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4082 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4083 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4084 return XEXP (x, 0);
4085 break;
4086 #endif
4088 case CONST:
4089 /* (const (const X)) can become (const X). Do it this way rather than
4090 returning the inner CONST since CONST can be shared with a
4091 REG_EQUAL note. */
4092 if (GET_CODE (XEXP (x, 0)) == CONST)
4093 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4094 break;
4096 #ifdef HAVE_lo_sum
4097 case LO_SUM:
4098 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4099 can add in an offset. find_split_point will split this address up
4100 again if it doesn't match. */
4101 if (GET_CODE (XEXP (x, 0)) == HIGH
4102 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4103 return XEXP (x, 1);
4104 break;
4105 #endif
4107 case PLUS:
4108 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4110 if (GET_CODE (XEXP (x, 0)) == MULT
4111 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4113 rtx in1, in2;
4115 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4116 in2 = XEXP (XEXP (x, 0), 1);
4117 return gen_binary (MINUS, mode, XEXP (x, 1),
4118 gen_binary (MULT, mode, in1, in2));
4121 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4122 outermost. That's because that's the way indexed addresses are
4123 supposed to appear. This code used to check many more cases, but
4124 they are now checked elsewhere. */
4125 if (GET_CODE (XEXP (x, 0)) == PLUS
4126 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4127 return gen_binary (PLUS, mode,
4128 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4129 XEXP (x, 1)),
4130 XEXP (XEXP (x, 0), 1));
4132 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4133 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4134 bit-field and can be replaced by either a sign_extend or a
4135 sign_extract. The `and' may be a zero_extend and the two
4136 <c>, -<c> constants may be reversed. */
4137 if (GET_CODE (XEXP (x, 0)) == XOR
4138 && GET_CODE (XEXP (x, 1)) == CONST_INT
4139 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4140 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4141 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4142 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4143 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4144 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4145 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4146 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4147 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4148 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4149 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4150 == (unsigned int) i + 1))))
4151 return simplify_shift_const
4152 (NULL_RTX, ASHIFTRT, mode,
4153 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4154 XEXP (XEXP (XEXP (x, 0), 0), 0),
4155 GET_MODE_BITSIZE (mode) - (i + 1)),
4156 GET_MODE_BITSIZE (mode) - (i + 1));
4158 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4159 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4160 is 1. This produces better code than the alternative immediately
4161 below. */
4162 if (COMPARISON_P (XEXP (x, 0))
4163 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4164 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4165 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4166 XEXP (XEXP (x, 0), 0),
4167 XEXP (XEXP (x, 0), 1))))
4168 return
4169 simplify_gen_unary (NEG, mode, reversed, mode);
4171 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4172 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4173 the bitsize of the mode - 1. This allows simplification of
4174 "a = (b & 8) == 0;" */
4175 if (XEXP (x, 1) == constm1_rtx
4176 && GET_CODE (XEXP (x, 0)) != REG
4177 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4178 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4179 && nonzero_bits (XEXP (x, 0), mode) == 1)
4180 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4181 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4182 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4183 GET_MODE_BITSIZE (mode) - 1),
4184 GET_MODE_BITSIZE (mode) - 1);
4186 /* If we are adding two things that have no bits in common, convert
4187 the addition into an IOR. This will often be further simplified,
4188 for example in cases like ((a & 1) + (a & 2)), which can
4189 become a & 3. */
4191 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4192 && (nonzero_bits (XEXP (x, 0), mode)
4193 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4195 /* Try to simplify the expression further. */
4196 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4197 temp = combine_simplify_rtx (tor, mode, in_dest);
4199 /* If we could, great. If not, do not go ahead with the IOR
4200 replacement, since PLUS appears in many special purpose
4201 address arithmetic instructions. */
4202 if (GET_CODE (temp) != CLOBBER && temp != tor)
4203 return temp;
4205 break;
4207 case MINUS:
4208 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4209 by reversing the comparison code if valid. */
4210 if (STORE_FLAG_VALUE == 1
4211 && XEXP (x, 0) == const1_rtx
4212 && COMPARISON_P (XEXP (x, 1))
4213 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4214 XEXP (XEXP (x, 1), 0),
4215 XEXP (XEXP (x, 1), 1))))
4216 return reversed;
4218 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4219 (and <foo> (const_int pow2-1)) */
4220 if (GET_CODE (XEXP (x, 1)) == AND
4221 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4222 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4223 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4224 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4225 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4227 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4229 if (GET_CODE (XEXP (x, 1)) == MULT
4230 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4232 rtx in1, in2;
4234 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4235 in2 = XEXP (XEXP (x, 1), 1);
4236 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4237 XEXP (x, 0));
4240 /* Canonicalize (minus (neg A) (mult B C)) to
4241 (minus (mult (neg B) C) A). */
4242 if (GET_CODE (XEXP (x, 1)) == MULT
4243 && GET_CODE (XEXP (x, 0)) == NEG)
4245 rtx in1, in2;
4247 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4248 in2 = XEXP (XEXP (x, 1), 1);
4249 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4250 XEXP (XEXP (x, 0), 0));
4253 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4254 integers. */
4255 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4256 return gen_binary (MINUS, mode,
4257 gen_binary (MINUS, mode, XEXP (x, 0),
4258 XEXP (XEXP (x, 1), 0)),
4259 XEXP (XEXP (x, 1), 1));
4260 break;
4262 case MULT:
4263 /* If we have (mult (plus A B) C), apply the distributive law and then
4264 the inverse distributive law to see if things simplify. This
4265 occurs mostly in addresses, often when unrolling loops. */
4267 if (GET_CODE (XEXP (x, 0)) == PLUS)
4269 x = apply_distributive_law
4270 (gen_binary (PLUS, mode,
4271 gen_binary (MULT, mode,
4272 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4273 gen_binary (MULT, mode,
4274 XEXP (XEXP (x, 0), 1),
4275 copy_rtx (XEXP (x, 1)))));
4277 if (GET_CODE (x) != MULT)
4278 return x;
4280 /* Try simplify a*(b/c) as (a*b)/c. */
4281 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4282 && GET_CODE (XEXP (x, 0)) == DIV)
4284 rtx tem = simplify_binary_operation (MULT, mode,
4285 XEXP (XEXP (x, 0), 0),
4286 XEXP (x, 1));
4287 if (tem)
4288 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4290 break;
4292 case UDIV:
4293 /* If this is a divide by a power of two, treat it as a shift if
4294 its first operand is a shift. */
4295 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4296 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4297 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4298 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4299 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4300 || GET_CODE (XEXP (x, 0)) == ROTATE
4301 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4302 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4303 break;
4305 case EQ: case NE:
4306 case GT: case GTU: case GE: case GEU:
4307 case LT: case LTU: case LE: case LEU:
4308 case UNEQ: case LTGT:
4309 case UNGT: case UNGE:
4310 case UNLT: case UNLE:
4311 case UNORDERED: case ORDERED:
4312 /* If the first operand is a condition code, we can't do anything
4313 with it. */
4314 if (GET_CODE (XEXP (x, 0)) == COMPARE
4315 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4316 && ! CC0_P (XEXP (x, 0))))
4318 rtx op0 = XEXP (x, 0);
4319 rtx op1 = XEXP (x, 1);
4320 enum rtx_code new_code;
4322 if (GET_CODE (op0) == COMPARE)
4323 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4325 /* Simplify our comparison, if possible. */
4326 new_code = simplify_comparison (code, &op0, &op1);
4328 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4329 if only the low-order bit is possibly nonzero in X (such as when
4330 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4331 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4332 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4333 (plus X 1).
4335 Remove any ZERO_EXTRACT we made when thinking this was a
4336 comparison. It may now be simpler to use, e.g., an AND. If a
4337 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4338 the call to make_compound_operation in the SET case. */
4340 if (STORE_FLAG_VALUE == 1
4341 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4342 && op1 == const0_rtx
4343 && mode == GET_MODE (op0)
4344 && nonzero_bits (op0, mode) == 1)
4345 return gen_lowpart (mode,
4346 expand_compound_operation (op0));
4348 else if (STORE_FLAG_VALUE == 1
4349 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4350 && op1 == const0_rtx
4351 && mode == GET_MODE (op0)
4352 && (num_sign_bit_copies (op0, mode)
4353 == GET_MODE_BITSIZE (mode)))
4355 op0 = expand_compound_operation (op0);
4356 return simplify_gen_unary (NEG, mode,
4357 gen_lowpart (mode, op0),
4358 mode);
4361 else if (STORE_FLAG_VALUE == 1
4362 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4363 && op1 == const0_rtx
4364 && mode == GET_MODE (op0)
4365 && nonzero_bits (op0, mode) == 1)
4367 op0 = expand_compound_operation (op0);
4368 return gen_binary (XOR, mode,
4369 gen_lowpart (mode, op0),
4370 const1_rtx);
4373 else if (STORE_FLAG_VALUE == 1
4374 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4375 && op1 == const0_rtx
4376 && mode == GET_MODE (op0)
4377 && (num_sign_bit_copies (op0, mode)
4378 == GET_MODE_BITSIZE (mode)))
4380 op0 = expand_compound_operation (op0);
4381 return plus_constant (gen_lowpart (mode, op0), 1);
4384 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4385 those above. */
4386 if (STORE_FLAG_VALUE == -1
4387 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4388 && op1 == const0_rtx
4389 && (num_sign_bit_copies (op0, mode)
4390 == GET_MODE_BITSIZE (mode)))
4391 return gen_lowpart (mode,
4392 expand_compound_operation (op0));
4394 else if (STORE_FLAG_VALUE == -1
4395 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4396 && op1 == const0_rtx
4397 && mode == GET_MODE (op0)
4398 && nonzero_bits (op0, mode) == 1)
4400 op0 = expand_compound_operation (op0);
4401 return simplify_gen_unary (NEG, mode,
4402 gen_lowpart (mode, op0),
4403 mode);
4406 else if (STORE_FLAG_VALUE == -1
4407 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4408 && op1 == const0_rtx
4409 && mode == GET_MODE (op0)
4410 && (num_sign_bit_copies (op0, mode)
4411 == GET_MODE_BITSIZE (mode)))
4413 op0 = expand_compound_operation (op0);
4414 return simplify_gen_unary (NOT, mode,
4415 gen_lowpart (mode, op0),
4416 mode);
4419 /* If X is 0/1, (eq X 0) is X-1. */
4420 else if (STORE_FLAG_VALUE == -1
4421 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4422 && op1 == const0_rtx
4423 && mode == GET_MODE (op0)
4424 && nonzero_bits (op0, mode) == 1)
4426 op0 = expand_compound_operation (op0);
4427 return plus_constant (gen_lowpart (mode, op0), -1);
4430 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4431 one bit that might be nonzero, we can convert (ne x 0) to
4432 (ashift x c) where C puts the bit in the sign bit. Remove any
4433 AND with STORE_FLAG_VALUE when we are done, since we are only
4434 going to test the sign bit. */
4435 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4436 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4437 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4438 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4439 && op1 == const0_rtx
4440 && mode == GET_MODE (op0)
4441 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4443 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4444 expand_compound_operation (op0),
4445 GET_MODE_BITSIZE (mode) - 1 - i);
4446 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4447 return XEXP (x, 0);
4448 else
4449 return x;
4452 /* If the code changed, return a whole new comparison. */
4453 if (new_code != code)
4454 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4456 /* Otherwise, keep this operation, but maybe change its operands.
4457 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4458 SUBST (XEXP (x, 0), op0);
4459 SUBST (XEXP (x, 1), op1);
4461 break;
4463 case IF_THEN_ELSE:
4464 return simplify_if_then_else (x);
4466 case ZERO_EXTRACT:
4467 case SIGN_EXTRACT:
4468 case ZERO_EXTEND:
4469 case SIGN_EXTEND:
4470 /* If we are processing SET_DEST, we are done. */
4471 if (in_dest)
4472 return x;
4474 return expand_compound_operation (x);
4476 case SET:
4477 return simplify_set (x);
4479 case AND:
4480 case IOR:
4481 case XOR:
4482 return simplify_logical (x);
4484 case ABS:
4485 /* (abs (neg <foo>)) -> (abs <foo>) */
4486 if (GET_CODE (XEXP (x, 0)) == NEG)
4487 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4489 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4490 do nothing. */
4491 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4492 break;
4494 /* If operand is something known to be positive, ignore the ABS. */
4495 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4496 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4497 <= HOST_BITS_PER_WIDE_INT)
4498 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4499 & ((HOST_WIDE_INT) 1
4500 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4501 == 0)))
4502 return XEXP (x, 0);
4504 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4505 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4506 return gen_rtx_NEG (mode, XEXP (x, 0));
4508 break;
4510 case FFS:
4511 /* (ffs (*_extend <X>)) = (ffs <X>) */
4512 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4513 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4514 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4515 break;
4517 case POPCOUNT:
4518 case PARITY:
4519 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4520 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4521 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4522 break;
4524 case FLOAT:
4525 /* (float (sign_extend <X>)) = (float <X>). */
4526 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4527 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4528 break;
4530 case ASHIFT:
4531 case LSHIFTRT:
4532 case ASHIFTRT:
4533 case ROTATE:
4534 case ROTATERT:
4535 /* If this is a shift by a constant amount, simplify it. */
4536 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4537 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4538 INTVAL (XEXP (x, 1)));
4540 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4541 SUBST (XEXP (x, 1),
4542 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4543 ((HOST_WIDE_INT) 1
4544 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4545 - 1,
4546 NULL_RTX, 0));
4547 break;
4549 case VEC_SELECT:
4551 rtx op0 = XEXP (x, 0);
4552 rtx op1 = XEXP (x, 1);
4553 int len;
4555 if (GET_CODE (op1) != PARALLEL)
4556 abort ();
4557 len = XVECLEN (op1, 0);
4558 if (len == 1
4559 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4560 && GET_CODE (op0) == VEC_CONCAT)
4562 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4564 /* Try to find the element in the VEC_CONCAT. */
4565 for (;;)
4567 if (GET_MODE (op0) == GET_MODE (x))
4568 return op0;
4569 if (GET_CODE (op0) == VEC_CONCAT)
4571 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4572 if (op0_size < offset)
4573 op0 = XEXP (op0, 0);
4574 else
4576 offset -= op0_size;
4577 op0 = XEXP (op0, 1);
4580 else
4581 break;
4586 break;
4588 default:
4589 break;
4592 return x;
4595 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4597 static rtx
4598 simplify_if_then_else (rtx x)
4600 enum machine_mode mode = GET_MODE (x);
4601 rtx cond = XEXP (x, 0);
4602 rtx true_rtx = XEXP (x, 1);
4603 rtx false_rtx = XEXP (x, 2);
4604 enum rtx_code true_code = GET_CODE (cond);
4605 int comparison_p = COMPARISON_P (cond);
4606 rtx temp;
4607 int i;
4608 enum rtx_code false_code;
4609 rtx reversed;
4611 /* Simplify storing of the truth value. */
4612 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4613 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4615 /* Also when the truth value has to be reversed. */
4616 if (comparison_p
4617 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4618 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4619 XEXP (cond, 1))))
4620 return reversed;
4622 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4623 in it is being compared against certain values. Get the true and false
4624 comparisons and see if that says anything about the value of each arm. */
4626 if (comparison_p
4627 && ((false_code = combine_reversed_comparison_code (cond))
4628 != UNKNOWN)
4629 && GET_CODE (XEXP (cond, 0)) == REG)
4631 HOST_WIDE_INT nzb;
4632 rtx from = XEXP (cond, 0);
4633 rtx true_val = XEXP (cond, 1);
4634 rtx false_val = true_val;
4635 int swapped = 0;
4637 /* If FALSE_CODE is EQ, swap the codes and arms. */
4639 if (false_code == EQ)
4641 swapped = 1, true_code = EQ, false_code = NE;
4642 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4645 /* If we are comparing against zero and the expression being tested has
4646 only a single bit that might be nonzero, that is its value when it is
4647 not equal to zero. Similarly if it is known to be -1 or 0. */
4649 if (true_code == EQ && true_val == const0_rtx
4650 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4651 false_code = EQ, false_val = GEN_INT (nzb);
4652 else if (true_code == EQ && true_val == const0_rtx
4653 && (num_sign_bit_copies (from, GET_MODE (from))
4654 == GET_MODE_BITSIZE (GET_MODE (from))))
4655 false_code = EQ, false_val = constm1_rtx;
4657 /* Now simplify an arm if we know the value of the register in the
4658 branch and it is used in the arm. Be careful due to the potential
4659 of locally-shared RTL. */
4661 if (reg_mentioned_p (from, true_rtx))
4662 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4663 from, true_val),
4664 pc_rtx, pc_rtx, 0, 0);
4665 if (reg_mentioned_p (from, false_rtx))
4666 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4667 from, false_val),
4668 pc_rtx, pc_rtx, 0, 0);
4670 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4671 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4673 true_rtx = XEXP (x, 1);
4674 false_rtx = XEXP (x, 2);
4675 true_code = GET_CODE (cond);
4678 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4679 reversed, do so to avoid needing two sets of patterns for
4680 subtract-and-branch insns. Similarly if we have a constant in the true
4681 arm, the false arm is the same as the first operand of the comparison, or
4682 the false arm is more complicated than the true arm. */
4684 if (comparison_p
4685 && combine_reversed_comparison_code (cond) != UNKNOWN
4686 && (true_rtx == pc_rtx
4687 || (CONSTANT_P (true_rtx)
4688 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4689 || true_rtx == const0_rtx
4690 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4691 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4692 && !OBJECT_P (false_rtx))
4693 || reg_mentioned_p (true_rtx, false_rtx)
4694 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4696 true_code = reversed_comparison_code (cond, NULL);
4697 SUBST (XEXP (x, 0),
4698 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4699 XEXP (cond, 1)));
4701 SUBST (XEXP (x, 1), false_rtx);
4702 SUBST (XEXP (x, 2), true_rtx);
4704 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4705 cond = XEXP (x, 0);
4707 /* It is possible that the conditional has been simplified out. */
4708 true_code = GET_CODE (cond);
4709 comparison_p = COMPARISON_P (cond);
4712 /* If the two arms are identical, we don't need the comparison. */
4714 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4715 return true_rtx;
4717 /* Convert a == b ? b : a to "a". */
4718 if (true_code == EQ && ! side_effects_p (cond)
4719 && !HONOR_NANS (mode)
4720 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4721 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4722 return false_rtx;
4723 else if (true_code == NE && ! side_effects_p (cond)
4724 && !HONOR_NANS (mode)
4725 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4726 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4727 return true_rtx;
4729 /* Look for cases where we have (abs x) or (neg (abs X)). */
4731 if (GET_MODE_CLASS (mode) == MODE_INT
4732 && GET_CODE (false_rtx) == NEG
4733 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4734 && comparison_p
4735 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4736 && ! side_effects_p (true_rtx))
4737 switch (true_code)
4739 case GT:
4740 case GE:
4741 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4742 case LT:
4743 case LE:
4744 return
4745 simplify_gen_unary (NEG, mode,
4746 simplify_gen_unary (ABS, mode, true_rtx, mode),
4747 mode);
4748 default:
4749 break;
4752 /* Look for MIN or MAX. */
4754 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4755 && comparison_p
4756 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4757 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4758 && ! side_effects_p (cond))
4759 switch (true_code)
4761 case GE:
4762 case GT:
4763 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4764 case LE:
4765 case LT:
4766 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4767 case GEU:
4768 case GTU:
4769 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4770 case LEU:
4771 case LTU:
4772 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4773 default:
4774 break;
4777 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4778 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4779 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4780 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4781 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4782 neither 1 or -1, but it isn't worth checking for. */
4784 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4785 && comparison_p
4786 && GET_MODE_CLASS (mode) == MODE_INT
4787 && ! side_effects_p (x))
4789 rtx t = make_compound_operation (true_rtx, SET);
4790 rtx f = make_compound_operation (false_rtx, SET);
4791 rtx cond_op0 = XEXP (cond, 0);
4792 rtx cond_op1 = XEXP (cond, 1);
4793 enum rtx_code op = NIL, extend_op = NIL;
4794 enum machine_mode m = mode;
4795 rtx z = 0, c1 = NULL_RTX;
4797 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4798 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4799 || GET_CODE (t) == ASHIFT
4800 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4801 && rtx_equal_p (XEXP (t, 0), f))
4802 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4804 /* If an identity-zero op is commutative, check whether there
4805 would be a match if we swapped the operands. */
4806 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4807 || GET_CODE (t) == XOR)
4808 && rtx_equal_p (XEXP (t, 1), f))
4809 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4810 else if (GET_CODE (t) == SIGN_EXTEND
4811 && (GET_CODE (XEXP (t, 0)) == PLUS
4812 || GET_CODE (XEXP (t, 0)) == MINUS
4813 || GET_CODE (XEXP (t, 0)) == IOR
4814 || GET_CODE (XEXP (t, 0)) == XOR
4815 || GET_CODE (XEXP (t, 0)) == ASHIFT
4816 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4817 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4818 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4819 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4820 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4821 && (num_sign_bit_copies (f, GET_MODE (f))
4822 > (unsigned int)
4823 (GET_MODE_BITSIZE (mode)
4824 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4826 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4827 extend_op = SIGN_EXTEND;
4828 m = GET_MODE (XEXP (t, 0));
4830 else if (GET_CODE (t) == SIGN_EXTEND
4831 && (GET_CODE (XEXP (t, 0)) == PLUS
4832 || GET_CODE (XEXP (t, 0)) == IOR
4833 || GET_CODE (XEXP (t, 0)) == XOR)
4834 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4835 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4836 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4837 && (num_sign_bit_copies (f, GET_MODE (f))
4838 > (unsigned int)
4839 (GET_MODE_BITSIZE (mode)
4840 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4842 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4843 extend_op = SIGN_EXTEND;
4844 m = GET_MODE (XEXP (t, 0));
4846 else if (GET_CODE (t) == ZERO_EXTEND
4847 && (GET_CODE (XEXP (t, 0)) == PLUS
4848 || GET_CODE (XEXP (t, 0)) == MINUS
4849 || GET_CODE (XEXP (t, 0)) == IOR
4850 || GET_CODE (XEXP (t, 0)) == XOR
4851 || GET_CODE (XEXP (t, 0)) == ASHIFT
4852 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4853 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4854 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4855 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4856 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4857 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4858 && ((nonzero_bits (f, GET_MODE (f))
4859 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4860 == 0))
4862 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4863 extend_op = ZERO_EXTEND;
4864 m = GET_MODE (XEXP (t, 0));
4866 else if (GET_CODE (t) == ZERO_EXTEND
4867 && (GET_CODE (XEXP (t, 0)) == PLUS
4868 || GET_CODE (XEXP (t, 0)) == IOR
4869 || GET_CODE (XEXP (t, 0)) == XOR)
4870 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4871 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4872 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4873 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4874 && ((nonzero_bits (f, GET_MODE (f))
4875 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4876 == 0))
4878 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4879 extend_op = ZERO_EXTEND;
4880 m = GET_MODE (XEXP (t, 0));
4883 if (z)
4885 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4886 pc_rtx, pc_rtx, 0, 0);
4887 temp = gen_binary (MULT, m, temp,
4888 gen_binary (MULT, m, c1, const_true_rtx));
4889 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4890 temp = gen_binary (op, m, gen_lowpart (m, z), temp);
4892 if (extend_op != NIL)
4893 temp = simplify_gen_unary (extend_op, mode, temp, m);
4895 return temp;
4899 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4900 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4901 negation of a single bit, we can convert this operation to a shift. We
4902 can actually do this more generally, but it doesn't seem worth it. */
4904 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4905 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4906 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4907 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4908 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4909 == GET_MODE_BITSIZE (mode))
4910 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4911 return
4912 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4913 gen_lowpart (mode, XEXP (cond, 0)), i);
4915 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
4916 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4917 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4918 && GET_MODE (XEXP (cond, 0)) == mode
4919 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
4920 == nonzero_bits (XEXP (cond, 0), mode)
4921 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
4922 return XEXP (cond, 0);
4924 return x;
4927 /* Simplify X, a SET expression. Return the new expression. */
4929 static rtx
4930 simplify_set (rtx x)
4932 rtx src = SET_SRC (x);
4933 rtx dest = SET_DEST (x);
4934 enum machine_mode mode
4935 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4936 rtx other_insn;
4937 rtx *cc_use;
4939 /* (set (pc) (return)) gets written as (return). */
4940 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4941 return src;
4943 /* Now that we know for sure which bits of SRC we are using, see if we can
4944 simplify the expression for the object knowing that we only need the
4945 low-order bits. */
4947 if (GET_MODE_CLASS (mode) == MODE_INT
4948 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
4950 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
4951 SUBST (SET_SRC (x), src);
4954 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4955 the comparison result and try to simplify it unless we already have used
4956 undobuf.other_insn. */
4957 if ((GET_MODE_CLASS (mode) == MODE_CC
4958 || GET_CODE (src) == COMPARE
4959 || CC0_P (dest))
4960 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4961 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4962 && COMPARISON_P (*cc_use)
4963 && rtx_equal_p (XEXP (*cc_use, 0), dest))
4965 enum rtx_code old_code = GET_CODE (*cc_use);
4966 enum rtx_code new_code;
4967 rtx op0, op1, tmp;
4968 int other_changed = 0;
4969 enum machine_mode compare_mode = GET_MODE (dest);
4971 if (GET_CODE (src) == COMPARE)
4972 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
4973 else
4974 op0 = src, op1 = const0_rtx;
4976 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
4977 op0, op1);
4978 if (!tmp)
4979 new_code = old_code;
4980 else if (!CONSTANT_P (tmp))
4982 new_code = GET_CODE (tmp);
4983 op0 = XEXP (tmp, 0);
4984 op1 = XEXP (tmp, 1);
4986 else
4988 rtx pat = PATTERN (other_insn);
4989 undobuf.other_insn = other_insn;
4990 SUBST (*cc_use, tmp);
4992 /* Attempt to simplify CC user. */
4993 if (GET_CODE (pat) == SET)
4995 rtx new = simplify_rtx (SET_SRC (pat));
4996 if (new != NULL_RTX)
4997 SUBST (SET_SRC (pat), new);
5000 /* Convert X into a no-op move. */
5001 SUBST (SET_DEST (x), pc_rtx);
5002 SUBST (SET_SRC (x), pc_rtx);
5003 return x;
5006 /* Simplify our comparison, if possible. */
5007 new_code = simplify_comparison (new_code, &op0, &op1);
5009 #ifdef SELECT_CC_MODE
5010 /* If this machine has CC modes other than CCmode, check to see if we
5011 need to use a different CC mode here. */
5012 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5013 compare_mode = GET_MODE (op0);
5014 else
5015 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5017 #ifndef HAVE_cc0
5018 /* If the mode changed, we have to change SET_DEST, the mode in the
5019 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5020 a hard register, just build new versions with the proper mode. If it
5021 is a pseudo, we lose unless it is only time we set the pseudo, in
5022 which case we can safely change its mode. */
5023 if (compare_mode != GET_MODE (dest))
5025 unsigned int regno = REGNO (dest);
5026 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5028 if (regno < FIRST_PSEUDO_REGISTER
5029 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5031 if (regno >= FIRST_PSEUDO_REGISTER)
5032 SUBST (regno_reg_rtx[regno], new_dest);
5034 SUBST (SET_DEST (x), new_dest);
5035 SUBST (XEXP (*cc_use, 0), new_dest);
5036 other_changed = 1;
5038 dest = new_dest;
5041 #endif /* cc0 */
5042 #endif /* SELECT_CC_MODE */
5044 /* If the code changed, we have to build a new comparison in
5045 undobuf.other_insn. */
5046 if (new_code != old_code)
5048 int other_changed_previously = other_changed;
5049 unsigned HOST_WIDE_INT mask;
5051 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5052 dest, const0_rtx));
5053 other_changed = 1;
5055 /* If the only change we made was to change an EQ into an NE or
5056 vice versa, OP0 has only one bit that might be nonzero, and OP1
5057 is zero, check if changing the user of the condition code will
5058 produce a valid insn. If it won't, we can keep the original code
5059 in that insn by surrounding our operation with an XOR. */
5061 if (((old_code == NE && new_code == EQ)
5062 || (old_code == EQ && new_code == NE))
5063 && ! other_changed_previously && op1 == const0_rtx
5064 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5065 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5067 rtx pat = PATTERN (other_insn), note = 0;
5069 if ((recog_for_combine (&pat, other_insn, &note) < 0
5070 && ! check_asm_operands (pat)))
5072 PUT_CODE (*cc_use, old_code);
5073 other_changed = 0;
5075 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5080 if (other_changed)
5081 undobuf.other_insn = other_insn;
5083 #ifdef HAVE_cc0
5084 /* If we are now comparing against zero, change our source if
5085 needed. If we do not use cc0, we always have a COMPARE. */
5086 if (op1 == const0_rtx && dest == cc0_rtx)
5088 SUBST (SET_SRC (x), op0);
5089 src = op0;
5091 else
5092 #endif
5094 /* Otherwise, if we didn't previously have a COMPARE in the
5095 correct mode, we need one. */
5096 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5098 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5099 src = SET_SRC (x);
5101 else
5103 /* Otherwise, update the COMPARE if needed. */
5104 SUBST (XEXP (src, 0), op0);
5105 SUBST (XEXP (src, 1), op1);
5108 else
5110 /* Get SET_SRC in a form where we have placed back any
5111 compound expressions. Then do the checks below. */
5112 src = make_compound_operation (src, SET);
5113 SUBST (SET_SRC (x), src);
5116 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5117 and X being a REG or (subreg (reg)), we may be able to convert this to
5118 (set (subreg:m2 x) (op)).
5120 We can always do this if M1 is narrower than M2 because that means that
5121 we only care about the low bits of the result.
5123 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5124 perform a narrower operation than requested since the high-order bits will
5125 be undefined. On machine where it is defined, this transformation is safe
5126 as long as M1 and M2 have the same number of words. */
5128 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5129 && !OBJECT_P (SUBREG_REG (src))
5130 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5131 / UNITS_PER_WORD)
5132 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5133 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5134 #ifndef WORD_REGISTER_OPERATIONS
5135 && (GET_MODE_SIZE (GET_MODE (src))
5136 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5137 #endif
5138 #ifdef CANNOT_CHANGE_MODE_CLASS
5139 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5140 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5141 GET_MODE (SUBREG_REG (src)),
5142 GET_MODE (src)))
5143 #endif
5144 && (GET_CODE (dest) == REG
5145 || (GET_CODE (dest) == SUBREG
5146 && GET_CODE (SUBREG_REG (dest)) == REG)))
5148 SUBST (SET_DEST (x),
5149 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5150 dest));
5151 SUBST (SET_SRC (x), SUBREG_REG (src));
5153 src = SET_SRC (x), dest = SET_DEST (x);
5156 #ifdef HAVE_cc0
5157 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5158 in SRC. */
5159 if (dest == cc0_rtx
5160 && GET_CODE (src) == SUBREG
5161 && subreg_lowpart_p (src)
5162 && (GET_MODE_BITSIZE (GET_MODE (src))
5163 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5165 rtx inner = SUBREG_REG (src);
5166 enum machine_mode inner_mode = GET_MODE (inner);
5168 /* Here we make sure that we don't have a sign bit on. */
5169 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5170 && (nonzero_bits (inner, inner_mode)
5171 < ((unsigned HOST_WIDE_INT) 1
5172 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5174 SUBST (SET_SRC (x), inner);
5175 src = SET_SRC (x);
5178 #endif
5180 #ifdef LOAD_EXTEND_OP
5181 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5182 would require a paradoxical subreg. Replace the subreg with a
5183 zero_extend to avoid the reload that would otherwise be required. */
5185 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5186 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5187 && SUBREG_BYTE (src) == 0
5188 && (GET_MODE_SIZE (GET_MODE (src))
5189 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5190 && GET_CODE (SUBREG_REG (src)) == MEM)
5192 SUBST (SET_SRC (x),
5193 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5194 GET_MODE (src), SUBREG_REG (src)));
5196 src = SET_SRC (x);
5198 #endif
5200 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5201 are comparing an item known to be 0 or -1 against 0, use a logical
5202 operation instead. Check for one of the arms being an IOR of the other
5203 arm with some value. We compute three terms to be IOR'ed together. In
5204 practice, at most two will be nonzero. Then we do the IOR's. */
5206 if (GET_CODE (dest) != PC
5207 && GET_CODE (src) == IF_THEN_ELSE
5208 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5209 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5210 && XEXP (XEXP (src, 0), 1) == const0_rtx
5211 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5212 #ifdef HAVE_conditional_move
5213 && ! can_conditionally_move_p (GET_MODE (src))
5214 #endif
5215 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5216 GET_MODE (XEXP (XEXP (src, 0), 0)))
5217 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5218 && ! side_effects_p (src))
5220 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5221 ? XEXP (src, 1) : XEXP (src, 2));
5222 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5223 ? XEXP (src, 2) : XEXP (src, 1));
5224 rtx term1 = const0_rtx, term2, term3;
5226 if (GET_CODE (true_rtx) == IOR
5227 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5228 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5229 else if (GET_CODE (true_rtx) == IOR
5230 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5231 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5232 else if (GET_CODE (false_rtx) == IOR
5233 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5234 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5235 else if (GET_CODE (false_rtx) == IOR
5236 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5237 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5239 term2 = gen_binary (AND, GET_MODE (src),
5240 XEXP (XEXP (src, 0), 0), true_rtx);
5241 term3 = gen_binary (AND, GET_MODE (src),
5242 simplify_gen_unary (NOT, GET_MODE (src),
5243 XEXP (XEXP (src, 0), 0),
5244 GET_MODE (src)),
5245 false_rtx);
5247 SUBST (SET_SRC (x),
5248 gen_binary (IOR, GET_MODE (src),
5249 gen_binary (IOR, GET_MODE (src), term1, term2),
5250 term3));
5252 src = SET_SRC (x);
5255 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5256 whole thing fail. */
5257 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5258 return src;
5259 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5260 return dest;
5261 else
5262 /* Convert this into a field assignment operation, if possible. */
5263 return make_field_assignment (x);
5266 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5267 result. */
5269 static rtx
5270 simplify_logical (rtx x)
5272 enum machine_mode mode = GET_MODE (x);
5273 rtx op0 = XEXP (x, 0);
5274 rtx op1 = XEXP (x, 1);
5275 rtx reversed;
5277 switch (GET_CODE (x))
5279 case AND:
5280 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5281 insn (and may simplify more). */
5282 if (GET_CODE (op0) == XOR
5283 && rtx_equal_p (XEXP (op0, 0), op1)
5284 && ! side_effects_p (op1))
5285 x = gen_binary (AND, mode,
5286 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5287 op1);
5289 if (GET_CODE (op0) == XOR
5290 && rtx_equal_p (XEXP (op0, 1), op1)
5291 && ! side_effects_p (op1))
5292 x = gen_binary (AND, mode,
5293 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5294 op1);
5296 /* Similarly for (~(A ^ B)) & A. */
5297 if (GET_CODE (op0) == NOT
5298 && GET_CODE (XEXP (op0, 0)) == XOR
5299 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5300 && ! side_effects_p (op1))
5301 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5303 if (GET_CODE (op0) == NOT
5304 && GET_CODE (XEXP (op0, 0)) == XOR
5305 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5306 && ! side_effects_p (op1))
5307 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5309 /* We can call simplify_and_const_int only if we don't lose
5310 any (sign) bits when converting INTVAL (op1) to
5311 "unsigned HOST_WIDE_INT". */
5312 if (GET_CODE (op1) == CONST_INT
5313 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5314 || INTVAL (op1) > 0))
5316 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5318 /* If we have (ior (and (X C1) C2)) and the next restart would be
5319 the last, simplify this by making C1 as small as possible
5320 and then exit. Only do this if C1 actually changes: for now
5321 this only saves memory but, should this transformation be
5322 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5323 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5324 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5325 && GET_CODE (op1) == CONST_INT
5326 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5327 return gen_binary (IOR, mode,
5328 gen_binary (AND, mode, XEXP (op0, 0),
5329 GEN_INT (INTVAL (XEXP (op0, 1))
5330 & ~INTVAL (op1))), op1);
5332 if (GET_CODE (x) != AND)
5333 return x;
5335 op0 = XEXP (x, 0);
5336 op1 = XEXP (x, 1);
5339 /* Convert (A | B) & A to A. */
5340 if (GET_CODE (op0) == IOR
5341 && (rtx_equal_p (XEXP (op0, 0), op1)
5342 || rtx_equal_p (XEXP (op0, 1), op1))
5343 && ! side_effects_p (XEXP (op0, 0))
5344 && ! side_effects_p (XEXP (op0, 1)))
5345 return op1;
5347 /* In the following group of tests (and those in case IOR below),
5348 we start with some combination of logical operations and apply
5349 the distributive law followed by the inverse distributive law.
5350 Most of the time, this results in no change. However, if some of
5351 the operands are the same or inverses of each other, simplifications
5352 will result.
5354 For example, (and (ior A B) (not B)) can occur as the result of
5355 expanding a bit field assignment. When we apply the distributive
5356 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5357 which then simplifies to (and (A (not B))).
5359 If we have (and (ior A B) C), apply the distributive law and then
5360 the inverse distributive law to see if things simplify. */
5362 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5364 x = apply_distributive_law
5365 (gen_binary (GET_CODE (op0), mode,
5366 gen_binary (AND, mode, XEXP (op0, 0), op1),
5367 gen_binary (AND, mode, XEXP (op0, 1),
5368 copy_rtx (op1))));
5369 if (GET_CODE (x) != AND)
5370 return x;
5373 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5374 return apply_distributive_law
5375 (gen_binary (GET_CODE (op1), mode,
5376 gen_binary (AND, mode, XEXP (op1, 0), op0),
5377 gen_binary (AND, mode, XEXP (op1, 1),
5378 copy_rtx (op0))));
5380 /* Similarly, taking advantage of the fact that
5381 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5383 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5384 return apply_distributive_law
5385 (gen_binary (XOR, mode,
5386 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5387 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5388 XEXP (op1, 1))));
5390 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5391 return apply_distributive_law
5392 (gen_binary (XOR, mode,
5393 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5394 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5395 break;
5397 case IOR:
5398 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5399 if (GET_CODE (op1) == CONST_INT
5400 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5401 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5402 return op1;
5404 /* Convert (A & B) | A to A. */
5405 if (GET_CODE (op0) == AND
5406 && (rtx_equal_p (XEXP (op0, 0), op1)
5407 || rtx_equal_p (XEXP (op0, 1), op1))
5408 && ! side_effects_p (XEXP (op0, 0))
5409 && ! side_effects_p (XEXP (op0, 1)))
5410 return op1;
5412 /* If we have (ior (and A B) C), apply the distributive law and then
5413 the inverse distributive law to see if things simplify. */
5415 if (GET_CODE (op0) == AND)
5417 x = apply_distributive_law
5418 (gen_binary (AND, mode,
5419 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5420 gen_binary (IOR, mode, XEXP (op0, 1),
5421 copy_rtx (op1))));
5423 if (GET_CODE (x) != IOR)
5424 return x;
5427 if (GET_CODE (op1) == AND)
5429 x = apply_distributive_law
5430 (gen_binary (AND, mode,
5431 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5432 gen_binary (IOR, mode, XEXP (op1, 1),
5433 copy_rtx (op0))));
5435 if (GET_CODE (x) != IOR)
5436 return x;
5439 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5440 mode size to (rotate A CX). */
5442 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5443 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5444 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5445 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5446 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5447 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5448 == GET_MODE_BITSIZE (mode)))
5449 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5450 (GET_CODE (op0) == ASHIFT
5451 ? XEXP (op0, 1) : XEXP (op1, 1)));
5453 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5454 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5455 does not affect any of the bits in OP1, it can really be done
5456 as a PLUS and we can associate. We do this by seeing if OP1
5457 can be safely shifted left C bits. */
5458 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5459 && GET_CODE (XEXP (op0, 0)) == PLUS
5460 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5461 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5462 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5464 int count = INTVAL (XEXP (op0, 1));
5465 HOST_WIDE_INT mask = INTVAL (op1) << count;
5467 if (mask >> count == INTVAL (op1)
5468 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5470 SUBST (XEXP (XEXP (op0, 0), 1),
5471 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5472 return op0;
5475 break;
5477 case XOR:
5478 /* If we are XORing two things that have no bits in common,
5479 convert them into an IOR. This helps to detect rotation encoded
5480 using those methods and possibly other simplifications. */
5482 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5483 && (nonzero_bits (op0, mode)
5484 & nonzero_bits (op1, mode)) == 0)
5485 return (gen_binary (IOR, mode, op0, op1));
5487 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5488 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5489 (NOT y). */
5491 int num_negated = 0;
5493 if (GET_CODE (op0) == NOT)
5494 num_negated++, op0 = XEXP (op0, 0);
5495 if (GET_CODE (op1) == NOT)
5496 num_negated++, op1 = XEXP (op1, 0);
5498 if (num_negated == 2)
5500 SUBST (XEXP (x, 0), op0);
5501 SUBST (XEXP (x, 1), op1);
5503 else if (num_negated == 1)
5504 return
5505 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5506 mode);
5509 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5510 correspond to a machine insn or result in further simplifications
5511 if B is a constant. */
5513 if (GET_CODE (op0) == AND
5514 && rtx_equal_p (XEXP (op0, 1), op1)
5515 && ! side_effects_p (op1))
5516 return gen_binary (AND, mode,
5517 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5518 op1);
5520 else if (GET_CODE (op0) == AND
5521 && rtx_equal_p (XEXP (op0, 0), op1)
5522 && ! side_effects_p (op1))
5523 return gen_binary (AND, mode,
5524 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5525 op1);
5527 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5528 comparison if STORE_FLAG_VALUE is 1. */
5529 if (STORE_FLAG_VALUE == 1
5530 && op1 == const1_rtx
5531 && COMPARISON_P (op0)
5532 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5533 XEXP (op0, 1))))
5534 return reversed;
5536 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5537 is (lt foo (const_int 0)), so we can perform the above
5538 simplification if STORE_FLAG_VALUE is 1. */
5540 if (STORE_FLAG_VALUE == 1
5541 && op1 == const1_rtx
5542 && GET_CODE (op0) == LSHIFTRT
5543 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5544 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5545 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5547 /* (xor (comparison foo bar) (const_int sign-bit))
5548 when STORE_FLAG_VALUE is the sign bit. */
5549 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5550 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5551 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5552 && op1 == const_true_rtx
5553 && COMPARISON_P (op0)
5554 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5555 XEXP (op0, 1))))
5556 return reversed;
5558 break;
5560 default:
5561 abort ();
5564 return x;
5567 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5568 operations" because they can be replaced with two more basic operations.
5569 ZERO_EXTEND is also considered "compound" because it can be replaced with
5570 an AND operation, which is simpler, though only one operation.
5572 The function expand_compound_operation is called with an rtx expression
5573 and will convert it to the appropriate shifts and AND operations,
5574 simplifying at each stage.
5576 The function make_compound_operation is called to convert an expression
5577 consisting of shifts and ANDs into the equivalent compound expression.
5578 It is the inverse of this function, loosely speaking. */
5580 static rtx
5581 expand_compound_operation (rtx x)
5583 unsigned HOST_WIDE_INT pos = 0, len;
5584 int unsignedp = 0;
5585 unsigned int modewidth;
5586 rtx tem;
5588 switch (GET_CODE (x))
5590 case ZERO_EXTEND:
5591 unsignedp = 1;
5592 case SIGN_EXTEND:
5593 /* We can't necessarily use a const_int for a multiword mode;
5594 it depends on implicitly extending the value.
5595 Since we don't know the right way to extend it,
5596 we can't tell whether the implicit way is right.
5598 Even for a mode that is no wider than a const_int,
5599 we can't win, because we need to sign extend one of its bits through
5600 the rest of it, and we don't know which bit. */
5601 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5602 return x;
5604 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5605 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5606 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5607 reloaded. If not for that, MEM's would very rarely be safe.
5609 Reject MODEs bigger than a word, because we might not be able
5610 to reference a two-register group starting with an arbitrary register
5611 (and currently gen_lowpart might crash for a SUBREG). */
5613 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5614 return x;
5616 /* Reject MODEs that aren't scalar integers because turning vector
5617 or complex modes into shifts causes problems. */
5619 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5620 return x;
5622 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5623 /* If the inner object has VOIDmode (the only way this can happen
5624 is if it is an ASM_OPERANDS), we can't do anything since we don't
5625 know how much masking to do. */
5626 if (len == 0)
5627 return x;
5629 break;
5631 case ZERO_EXTRACT:
5632 unsignedp = 1;
5633 case SIGN_EXTRACT:
5634 /* If the operand is a CLOBBER, just return it. */
5635 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5636 return XEXP (x, 0);
5638 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5639 || GET_CODE (XEXP (x, 2)) != CONST_INT
5640 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5641 return x;
5643 /* Reject MODEs that aren't scalar integers because turning vector
5644 or complex modes into shifts causes problems. */
5646 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5647 return x;
5649 len = INTVAL (XEXP (x, 1));
5650 pos = INTVAL (XEXP (x, 2));
5652 /* If this goes outside the object being extracted, replace the object
5653 with a (use (mem ...)) construct that only combine understands
5654 and is used only for this purpose. */
5655 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5656 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5658 if (BITS_BIG_ENDIAN)
5659 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5661 break;
5663 default:
5664 return x;
5666 /* Convert sign extension to zero extension, if we know that the high
5667 bit is not set, as this is easier to optimize. It will be converted
5668 back to cheaper alternative in make_extraction. */
5669 if (GET_CODE (x) == SIGN_EXTEND
5670 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5671 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5672 & ~(((unsigned HOST_WIDE_INT)
5673 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5674 >> 1))
5675 == 0)))
5677 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5678 rtx temp2 = expand_compound_operation (temp);
5680 /* Make sure this is a profitable operation. */
5681 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5682 return temp2;
5683 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5684 return temp;
5685 else
5686 return x;
5689 /* We can optimize some special cases of ZERO_EXTEND. */
5690 if (GET_CODE (x) == ZERO_EXTEND)
5692 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5693 know that the last value didn't have any inappropriate bits
5694 set. */
5695 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5696 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5697 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5698 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5699 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5700 return XEXP (XEXP (x, 0), 0);
5702 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5703 if (GET_CODE (XEXP (x, 0)) == SUBREG
5704 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5705 && subreg_lowpart_p (XEXP (x, 0))
5706 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5707 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5708 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5709 return SUBREG_REG (XEXP (x, 0));
5711 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5712 is a comparison and STORE_FLAG_VALUE permits. This is like
5713 the first case, but it works even when GET_MODE (x) is larger
5714 than HOST_WIDE_INT. */
5715 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5716 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5717 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5718 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5719 <= HOST_BITS_PER_WIDE_INT)
5720 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5721 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5722 return XEXP (XEXP (x, 0), 0);
5724 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5725 if (GET_CODE (XEXP (x, 0)) == SUBREG
5726 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5727 && subreg_lowpart_p (XEXP (x, 0))
5728 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5729 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5730 <= HOST_BITS_PER_WIDE_INT)
5731 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5732 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5733 return SUBREG_REG (XEXP (x, 0));
5737 /* If we reach here, we want to return a pair of shifts. The inner
5738 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5739 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5740 logical depending on the value of UNSIGNEDP.
5742 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5743 converted into an AND of a shift.
5745 We must check for the case where the left shift would have a negative
5746 count. This can happen in a case like (x >> 31) & 255 on machines
5747 that can't shift by a constant. On those machines, we would first
5748 combine the shift with the AND to produce a variable-position
5749 extraction. Then the constant of 31 would be substituted in to produce
5750 a such a position. */
5752 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5753 if (modewidth + len >= pos)
5754 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5755 GET_MODE (x),
5756 simplify_shift_const (NULL_RTX, ASHIFT,
5757 GET_MODE (x),
5758 XEXP (x, 0),
5759 modewidth - pos - len),
5760 modewidth - len);
5762 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5763 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5764 simplify_shift_const (NULL_RTX, LSHIFTRT,
5765 GET_MODE (x),
5766 XEXP (x, 0), pos),
5767 ((HOST_WIDE_INT) 1 << len) - 1);
5768 else
5769 /* Any other cases we can't handle. */
5770 return x;
5772 /* If we couldn't do this for some reason, return the original
5773 expression. */
5774 if (GET_CODE (tem) == CLOBBER)
5775 return x;
5777 return tem;
5780 /* X is a SET which contains an assignment of one object into
5781 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5782 or certain SUBREGS). If possible, convert it into a series of
5783 logical operations.
5785 We half-heartedly support variable positions, but do not at all
5786 support variable lengths. */
5788 static rtx
5789 expand_field_assignment (rtx x)
5791 rtx inner;
5792 rtx pos; /* Always counts from low bit. */
5793 int len;
5794 rtx mask;
5795 enum machine_mode compute_mode;
5797 /* Loop until we find something we can't simplify. */
5798 while (1)
5800 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5801 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5803 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5804 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5805 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5807 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5808 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5810 inner = XEXP (SET_DEST (x), 0);
5811 len = INTVAL (XEXP (SET_DEST (x), 1));
5812 pos = XEXP (SET_DEST (x), 2);
5814 /* If the position is constant and spans the width of INNER,
5815 surround INNER with a USE to indicate this. */
5816 if (GET_CODE (pos) == CONST_INT
5817 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5818 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5820 if (BITS_BIG_ENDIAN)
5822 if (GET_CODE (pos) == CONST_INT)
5823 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5824 - INTVAL (pos));
5825 else if (GET_CODE (pos) == MINUS
5826 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5827 && (INTVAL (XEXP (pos, 1))
5828 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5829 /* If position is ADJUST - X, new position is X. */
5830 pos = XEXP (pos, 0);
5831 else
5832 pos = gen_binary (MINUS, GET_MODE (pos),
5833 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5834 - len),
5835 pos);
5839 /* A SUBREG between two modes that occupy the same numbers of words
5840 can be done by moving the SUBREG to the source. */
5841 else if (GET_CODE (SET_DEST (x)) == SUBREG
5842 /* We need SUBREGs to compute nonzero_bits properly. */
5843 && nonzero_sign_valid
5844 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5845 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5846 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5847 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5849 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5850 gen_lowpart
5851 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5852 SET_SRC (x)));
5853 continue;
5855 else
5856 break;
5858 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5859 inner = SUBREG_REG (inner);
5861 compute_mode = GET_MODE (inner);
5863 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5864 if (! SCALAR_INT_MODE_P (compute_mode))
5866 enum machine_mode imode;
5868 /* Don't do anything for vector or complex integral types. */
5869 if (! FLOAT_MODE_P (compute_mode))
5870 break;
5872 /* Try to find an integral mode to pun with. */
5873 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5874 if (imode == BLKmode)
5875 break;
5877 compute_mode = imode;
5878 inner = gen_lowpart (imode, inner);
5881 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5882 if (len < HOST_BITS_PER_WIDE_INT)
5883 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5884 else
5885 break;
5887 /* Now compute the equivalent expression. Make a copy of INNER
5888 for the SET_DEST in case it is a MEM into which we will substitute;
5889 we don't want shared RTL in that case. */
5890 x = gen_rtx_SET
5891 (VOIDmode, copy_rtx (inner),
5892 gen_binary (IOR, compute_mode,
5893 gen_binary (AND, compute_mode,
5894 simplify_gen_unary (NOT, compute_mode,
5895 gen_binary (ASHIFT,
5896 compute_mode,
5897 mask, pos),
5898 compute_mode),
5899 inner),
5900 gen_binary (ASHIFT, compute_mode,
5901 gen_binary (AND, compute_mode,
5902 gen_lowpart
5903 (compute_mode, SET_SRC (x)),
5904 mask),
5905 pos)));
5908 return x;
5911 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5912 it is an RTX that represents a variable starting position; otherwise,
5913 POS is the (constant) starting bit position (counted from the LSB).
5915 INNER may be a USE. This will occur when we started with a bitfield
5916 that went outside the boundary of the object in memory, which is
5917 allowed on most machines. To isolate this case, we produce a USE
5918 whose mode is wide enough and surround the MEM with it. The only
5919 code that understands the USE is this routine. If it is not removed,
5920 it will cause the resulting insn not to match.
5922 UNSIGNEDP is nonzero for an unsigned reference and zero for a
5923 signed reference.
5925 IN_DEST is nonzero if this is a reference in the destination of a
5926 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
5927 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5928 be used.
5930 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
5931 ZERO_EXTRACT should be built even for bits starting at bit 0.
5933 MODE is the desired mode of the result (if IN_DEST == 0).
5935 The result is an RTX for the extraction or NULL_RTX if the target
5936 can't handle it. */
5938 static rtx
5939 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
5940 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
5941 int in_dest, int in_compare)
5943 /* This mode describes the size of the storage area
5944 to fetch the overall value from. Within that, we
5945 ignore the POS lowest bits, etc. */
5946 enum machine_mode is_mode = GET_MODE (inner);
5947 enum machine_mode inner_mode;
5948 enum machine_mode wanted_inner_mode = byte_mode;
5949 enum machine_mode wanted_inner_reg_mode = word_mode;
5950 enum machine_mode pos_mode = word_mode;
5951 enum machine_mode extraction_mode = word_mode;
5952 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5953 int spans_byte = 0;
5954 rtx new = 0;
5955 rtx orig_pos_rtx = pos_rtx;
5956 HOST_WIDE_INT orig_pos;
5958 /* Get some information about INNER and get the innermost object. */
5959 if (GET_CODE (inner) == USE)
5960 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5961 /* We don't need to adjust the position because we set up the USE
5962 to pretend that it was a full-word object. */
5963 spans_byte = 1, inner = XEXP (inner, 0);
5964 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5966 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5967 consider just the QI as the memory to extract from.
5968 The subreg adds or removes high bits; its mode is
5969 irrelevant to the meaning of this extraction,
5970 since POS and LEN count from the lsb. */
5971 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5972 is_mode = GET_MODE (SUBREG_REG (inner));
5973 inner = SUBREG_REG (inner);
5975 else if (GET_CODE (inner) == ASHIFT
5976 && GET_CODE (XEXP (inner, 1)) == CONST_INT
5977 && pos_rtx == 0 && pos == 0
5978 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
5980 /* We're extracting the least significant bits of an rtx
5981 (ashift X (const_int C)), where LEN > C. Extract the
5982 least significant (LEN - C) bits of X, giving an rtx
5983 whose mode is MODE, then shift it left C times. */
5984 new = make_extraction (mode, XEXP (inner, 0),
5985 0, 0, len - INTVAL (XEXP (inner, 1)),
5986 unsignedp, in_dest, in_compare);
5987 if (new != 0)
5988 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
5991 inner_mode = GET_MODE (inner);
5993 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5994 pos = INTVAL (pos_rtx), pos_rtx = 0;
5996 /* See if this can be done without an extraction. We never can if the
5997 width of the field is not the same as that of some integer mode. For
5998 registers, we can only avoid the extraction if the position is at the
5999 low-order bit and this is either not in the destination or we have the
6000 appropriate STRICT_LOW_PART operation available.
6002 For MEM, we can avoid an extract if the field starts on an appropriate
6003 boundary and we can change the mode of the memory reference. However,
6004 we cannot directly access the MEM if we have a USE and the underlying
6005 MEM is not TMODE. This combination means that MEM was being used in a
6006 context where bits outside its mode were being referenced; that is only
6007 valid in bit-field insns. */
6009 if (tmode != BLKmode
6010 && ! (spans_byte && inner_mode != tmode)
6011 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6012 && GET_CODE (inner) != MEM
6013 && (! in_dest
6014 || (GET_CODE (inner) == REG
6015 && have_insn_for (STRICT_LOW_PART, tmode))))
6016 || (GET_CODE (inner) == MEM && pos_rtx == 0
6017 && (pos
6018 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6019 : BITS_PER_UNIT)) == 0
6020 /* We can't do this if we are widening INNER_MODE (it
6021 may not be aligned, for one thing). */
6022 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6023 && (inner_mode == tmode
6024 || (! mode_dependent_address_p (XEXP (inner, 0))
6025 && ! MEM_VOLATILE_P (inner))))))
6027 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6028 field. If the original and current mode are the same, we need not
6029 adjust the offset. Otherwise, we do if bytes big endian.
6031 If INNER is not a MEM, get a piece consisting of just the field
6032 of interest (in this case POS % BITS_PER_WORD must be 0). */
6034 if (GET_CODE (inner) == MEM)
6036 HOST_WIDE_INT offset;
6038 /* POS counts from lsb, but make OFFSET count in memory order. */
6039 if (BYTES_BIG_ENDIAN)
6040 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6041 else
6042 offset = pos / BITS_PER_UNIT;
6044 new = adjust_address_nv (inner, tmode, offset);
6046 else if (GET_CODE (inner) == REG)
6048 if (tmode != inner_mode)
6050 /* We can't call gen_lowpart in a DEST since we
6051 always want a SUBREG (see below) and it would sometimes
6052 return a new hard register. */
6053 if (pos || in_dest)
6055 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6057 if (WORDS_BIG_ENDIAN
6058 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6059 final_word = ((GET_MODE_SIZE (inner_mode)
6060 - GET_MODE_SIZE (tmode))
6061 / UNITS_PER_WORD) - final_word;
6063 final_word *= UNITS_PER_WORD;
6064 if (BYTES_BIG_ENDIAN &&
6065 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6066 final_word += (GET_MODE_SIZE (inner_mode)
6067 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6069 /* Avoid creating invalid subregs, for example when
6070 simplifying (x>>32)&255. */
6071 if (final_word >= GET_MODE_SIZE (inner_mode))
6072 return NULL_RTX;
6074 new = gen_rtx_SUBREG (tmode, inner, final_word);
6076 else
6077 new = gen_lowpart (tmode, inner);
6079 else
6080 new = inner;
6082 else
6083 new = force_to_mode (inner, tmode,
6084 len >= HOST_BITS_PER_WIDE_INT
6085 ? ~(unsigned HOST_WIDE_INT) 0
6086 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6087 NULL_RTX, 0);
6089 /* If this extraction is going into the destination of a SET,
6090 make a STRICT_LOW_PART unless we made a MEM. */
6092 if (in_dest)
6093 return (GET_CODE (new) == MEM ? new
6094 : (GET_CODE (new) != SUBREG
6095 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6096 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6098 if (mode == tmode)
6099 return new;
6101 if (GET_CODE (new) == CONST_INT)
6102 return gen_int_mode (INTVAL (new), mode);
6104 /* If we know that no extraneous bits are set, and that the high
6105 bit is not set, convert the extraction to the cheaper of
6106 sign and zero extension, that are equivalent in these cases. */
6107 if (flag_expensive_optimizations
6108 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6109 && ((nonzero_bits (new, tmode)
6110 & ~(((unsigned HOST_WIDE_INT)
6111 GET_MODE_MASK (tmode))
6112 >> 1))
6113 == 0)))
6115 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6116 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6118 /* Prefer ZERO_EXTENSION, since it gives more information to
6119 backends. */
6120 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6121 return temp;
6122 return temp1;
6125 /* Otherwise, sign- or zero-extend unless we already are in the
6126 proper mode. */
6128 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6129 mode, new));
6132 /* Unless this is a COMPARE or we have a funny memory reference,
6133 don't do anything with zero-extending field extracts starting at
6134 the low-order bit since they are simple AND operations. */
6135 if (pos_rtx == 0 && pos == 0 && ! in_dest
6136 && ! in_compare && ! spans_byte && unsignedp)
6137 return 0;
6139 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6140 we would be spanning bytes or if the position is not a constant and the
6141 length is not 1. In all other cases, we would only be going outside
6142 our object in cases when an original shift would have been
6143 undefined. */
6144 if (! spans_byte && GET_CODE (inner) == MEM
6145 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6146 || (pos_rtx != 0 && len != 1)))
6147 return 0;
6149 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6150 and the mode for the result. */
6151 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6153 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6154 pos_mode = mode_for_extraction (EP_insv, 2);
6155 extraction_mode = mode_for_extraction (EP_insv, 3);
6158 if (! in_dest && unsignedp
6159 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6161 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6162 pos_mode = mode_for_extraction (EP_extzv, 3);
6163 extraction_mode = mode_for_extraction (EP_extzv, 0);
6166 if (! in_dest && ! unsignedp
6167 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6169 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6170 pos_mode = mode_for_extraction (EP_extv, 3);
6171 extraction_mode = mode_for_extraction (EP_extv, 0);
6174 /* Never narrow an object, since that might not be safe. */
6176 if (mode != VOIDmode
6177 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6178 extraction_mode = mode;
6180 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6181 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6182 pos_mode = GET_MODE (pos_rtx);
6184 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6185 if we have to change the mode of memory and cannot, the desired mode is
6186 EXTRACTION_MODE. */
6187 if (GET_CODE (inner) != MEM)
6188 wanted_inner_mode = wanted_inner_reg_mode;
6189 else if (inner_mode != wanted_inner_mode
6190 && (mode_dependent_address_p (XEXP (inner, 0))
6191 || MEM_VOLATILE_P (inner)))
6192 wanted_inner_mode = extraction_mode;
6194 orig_pos = pos;
6196 if (BITS_BIG_ENDIAN)
6198 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6199 BITS_BIG_ENDIAN style. If position is constant, compute new
6200 position. Otherwise, build subtraction.
6201 Note that POS is relative to the mode of the original argument.
6202 If it's a MEM we need to recompute POS relative to that.
6203 However, if we're extracting from (or inserting into) a register,
6204 we want to recompute POS relative to wanted_inner_mode. */
6205 int width = (GET_CODE (inner) == MEM
6206 ? GET_MODE_BITSIZE (is_mode)
6207 : GET_MODE_BITSIZE (wanted_inner_mode));
6209 if (pos_rtx == 0)
6210 pos = width - len - pos;
6211 else
6212 pos_rtx
6213 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6214 /* POS may be less than 0 now, but we check for that below.
6215 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6218 /* If INNER has a wider mode, make it smaller. If this is a constant
6219 extract, try to adjust the byte to point to the byte containing
6220 the value. */
6221 if (wanted_inner_mode != VOIDmode
6222 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6223 && ((GET_CODE (inner) == MEM
6224 && (inner_mode == wanted_inner_mode
6225 || (! mode_dependent_address_p (XEXP (inner, 0))
6226 && ! MEM_VOLATILE_P (inner))))))
6228 int offset = 0;
6230 /* The computations below will be correct if the machine is big
6231 endian in both bits and bytes or little endian in bits and bytes.
6232 If it is mixed, we must adjust. */
6234 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6235 adjust OFFSET to compensate. */
6236 if (BYTES_BIG_ENDIAN
6237 && ! spans_byte
6238 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6239 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6241 /* If this is a constant position, we can move to the desired byte. */
6242 if (pos_rtx == 0)
6244 offset += pos / BITS_PER_UNIT;
6245 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6248 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6249 && ! spans_byte
6250 && is_mode != wanted_inner_mode)
6251 offset = (GET_MODE_SIZE (is_mode)
6252 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6254 if (offset != 0 || inner_mode != wanted_inner_mode)
6255 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6258 /* If INNER is not memory, we can always get it into the proper mode. If we
6259 are changing its mode, POS must be a constant and smaller than the size
6260 of the new mode. */
6261 else if (GET_CODE (inner) != MEM)
6263 if (GET_MODE (inner) != wanted_inner_mode
6264 && (pos_rtx != 0
6265 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6266 return 0;
6268 inner = force_to_mode (inner, wanted_inner_mode,
6269 pos_rtx
6270 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6271 ? ~(unsigned HOST_WIDE_INT) 0
6272 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6273 << orig_pos),
6274 NULL_RTX, 0);
6277 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6278 have to zero extend. Otherwise, we can just use a SUBREG. */
6279 if (pos_rtx != 0
6280 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6282 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6284 /* If we know that no extraneous bits are set, and that the high
6285 bit is not set, convert extraction to cheaper one - either
6286 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6287 cases. */
6288 if (flag_expensive_optimizations
6289 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6290 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6291 & ~(((unsigned HOST_WIDE_INT)
6292 GET_MODE_MASK (GET_MODE (pos_rtx)))
6293 >> 1))
6294 == 0)))
6296 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6298 /* Prefer ZERO_EXTENSION, since it gives more information to
6299 backends. */
6300 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6301 temp = temp1;
6303 pos_rtx = temp;
6305 else if (pos_rtx != 0
6306 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6307 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6309 /* Make POS_RTX unless we already have it and it is correct. If we don't
6310 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6311 be a CONST_INT. */
6312 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6313 pos_rtx = orig_pos_rtx;
6315 else if (pos_rtx == 0)
6316 pos_rtx = GEN_INT (pos);
6318 /* Make the required operation. See if we can use existing rtx. */
6319 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6320 extraction_mode, inner, GEN_INT (len), pos_rtx);
6321 if (! in_dest)
6322 new = gen_lowpart (mode, new);
6324 return new;
6327 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6328 with any other operations in X. Return X without that shift if so. */
6330 static rtx
6331 extract_left_shift (rtx x, int count)
6333 enum rtx_code code = GET_CODE (x);
6334 enum machine_mode mode = GET_MODE (x);
6335 rtx tem;
6337 switch (code)
6339 case ASHIFT:
6340 /* This is the shift itself. If it is wide enough, we will return
6341 either the value being shifted if the shift count is equal to
6342 COUNT or a shift for the difference. */
6343 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6344 && INTVAL (XEXP (x, 1)) >= count)
6345 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6346 INTVAL (XEXP (x, 1)) - count);
6347 break;
6349 case NEG: case NOT:
6350 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6351 return simplify_gen_unary (code, mode, tem, mode);
6353 break;
6355 case PLUS: case IOR: case XOR: case AND:
6356 /* If we can safely shift this constant and we find the inner shift,
6357 make a new operation. */
6358 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6359 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6360 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6361 return gen_binary (code, mode, tem,
6362 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6364 break;
6366 default:
6367 break;
6370 return 0;
6373 /* Look at the expression rooted at X. Look for expressions
6374 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6375 Form these expressions.
6377 Return the new rtx, usually just X.
6379 Also, for machines like the VAX that don't have logical shift insns,
6380 try to convert logical to arithmetic shift operations in cases where
6381 they are equivalent. This undoes the canonicalizations to logical
6382 shifts done elsewhere.
6384 We try, as much as possible, to re-use rtl expressions to save memory.
6386 IN_CODE says what kind of expression we are processing. Normally, it is
6387 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6388 being kludges), it is MEM. When processing the arguments of a comparison
6389 or a COMPARE against zero, it is COMPARE. */
6391 static rtx
6392 make_compound_operation (rtx x, enum rtx_code in_code)
6394 enum rtx_code code = GET_CODE (x);
6395 enum machine_mode mode = GET_MODE (x);
6396 int mode_width = GET_MODE_BITSIZE (mode);
6397 rtx rhs, lhs;
6398 enum rtx_code next_code;
6399 int i;
6400 rtx new = 0;
6401 rtx tem;
6402 const char *fmt;
6404 /* Select the code to be used in recursive calls. Once we are inside an
6405 address, we stay there. If we have a comparison, set to COMPARE,
6406 but once inside, go back to our default of SET. */
6408 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6409 : ((code == COMPARE || COMPARISON_P (x))
6410 && XEXP (x, 1) == const0_rtx) ? COMPARE
6411 : in_code == COMPARE ? SET : in_code);
6413 /* Process depending on the code of this operation. If NEW is set
6414 nonzero, it will be returned. */
6416 switch (code)
6418 case ASHIFT:
6419 /* Convert shifts by constants into multiplications if inside
6420 an address. */
6421 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6422 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6423 && INTVAL (XEXP (x, 1)) >= 0)
6425 new = make_compound_operation (XEXP (x, 0), next_code);
6426 new = gen_rtx_MULT (mode, new,
6427 GEN_INT ((HOST_WIDE_INT) 1
6428 << INTVAL (XEXP (x, 1))));
6430 break;
6432 case AND:
6433 /* If the second operand is not a constant, we can't do anything
6434 with it. */
6435 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6436 break;
6438 /* If the constant is a power of two minus one and the first operand
6439 is a logical right shift, make an extraction. */
6440 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6441 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6443 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6444 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6445 0, in_code == COMPARE);
6448 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6449 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6450 && subreg_lowpart_p (XEXP (x, 0))
6451 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6452 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6454 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6455 next_code);
6456 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6457 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6458 0, in_code == COMPARE);
6460 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6461 else if ((GET_CODE (XEXP (x, 0)) == XOR
6462 || GET_CODE (XEXP (x, 0)) == IOR)
6463 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6464 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6465 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6467 /* Apply the distributive law, and then try to make extractions. */
6468 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6469 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6470 XEXP (x, 1)),
6471 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6472 XEXP (x, 1)));
6473 new = make_compound_operation (new, in_code);
6476 /* If we are have (and (rotate X C) M) and C is larger than the number
6477 of bits in M, this is an extraction. */
6479 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6480 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6481 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6482 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6484 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6485 new = make_extraction (mode, new,
6486 (GET_MODE_BITSIZE (mode)
6487 - INTVAL (XEXP (XEXP (x, 0), 1))),
6488 NULL_RTX, i, 1, 0, in_code == COMPARE);
6491 /* On machines without logical shifts, if the operand of the AND is
6492 a logical shift and our mask turns off all the propagated sign
6493 bits, we can replace the logical shift with an arithmetic shift. */
6494 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6495 && !have_insn_for (LSHIFTRT, mode)
6496 && have_insn_for (ASHIFTRT, mode)
6497 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6498 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6499 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6500 && mode_width <= HOST_BITS_PER_WIDE_INT)
6502 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6504 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6505 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6506 SUBST (XEXP (x, 0),
6507 gen_rtx_ASHIFTRT (mode,
6508 make_compound_operation
6509 (XEXP (XEXP (x, 0), 0), next_code),
6510 XEXP (XEXP (x, 0), 1)));
6513 /* If the constant is one less than a power of two, this might be
6514 representable by an extraction even if no shift is present.
6515 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6516 we are in a COMPARE. */
6517 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6518 new = make_extraction (mode,
6519 make_compound_operation (XEXP (x, 0),
6520 next_code),
6521 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6523 /* If we are in a comparison and this is an AND with a power of two,
6524 convert this into the appropriate bit extract. */
6525 else if (in_code == COMPARE
6526 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6527 new = make_extraction (mode,
6528 make_compound_operation (XEXP (x, 0),
6529 next_code),
6530 i, NULL_RTX, 1, 1, 0, 1);
6532 break;
6534 case LSHIFTRT:
6535 /* If the sign bit is known to be zero, replace this with an
6536 arithmetic shift. */
6537 if (have_insn_for (ASHIFTRT, mode)
6538 && ! have_insn_for (LSHIFTRT, mode)
6539 && mode_width <= HOST_BITS_PER_WIDE_INT
6540 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6542 new = gen_rtx_ASHIFTRT (mode,
6543 make_compound_operation (XEXP (x, 0),
6544 next_code),
6545 XEXP (x, 1));
6546 break;
6549 /* ... fall through ... */
6551 case ASHIFTRT:
6552 lhs = XEXP (x, 0);
6553 rhs = XEXP (x, 1);
6555 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6556 this is a SIGN_EXTRACT. */
6557 if (GET_CODE (rhs) == CONST_INT
6558 && GET_CODE (lhs) == ASHIFT
6559 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6560 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6562 new = make_compound_operation (XEXP (lhs, 0), next_code);
6563 new = make_extraction (mode, new,
6564 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6565 NULL_RTX, mode_width - INTVAL (rhs),
6566 code == LSHIFTRT, 0, in_code == COMPARE);
6567 break;
6570 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6571 If so, try to merge the shifts into a SIGN_EXTEND. We could
6572 also do this for some cases of SIGN_EXTRACT, but it doesn't
6573 seem worth the effort; the case checked for occurs on Alpha. */
6575 if (!OBJECT_P (lhs)
6576 && ! (GET_CODE (lhs) == SUBREG
6577 && (OBJECT_P (SUBREG_REG (lhs))))
6578 && GET_CODE (rhs) == CONST_INT
6579 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6580 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6581 new = make_extraction (mode, make_compound_operation (new, next_code),
6582 0, NULL_RTX, mode_width - INTVAL (rhs),
6583 code == LSHIFTRT, 0, in_code == COMPARE);
6585 break;
6587 case SUBREG:
6588 /* Call ourselves recursively on the inner expression. If we are
6589 narrowing the object and it has a different RTL code from
6590 what it originally did, do this SUBREG as a force_to_mode. */
6592 tem = make_compound_operation (SUBREG_REG (x), in_code);
6593 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6594 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6595 && subreg_lowpart_p (x))
6597 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6598 NULL_RTX, 0);
6600 /* If we have something other than a SUBREG, we might have
6601 done an expansion, so rerun ourselves. */
6602 if (GET_CODE (newer) != SUBREG)
6603 newer = make_compound_operation (newer, in_code);
6605 return newer;
6608 /* If this is a paradoxical subreg, and the new code is a sign or
6609 zero extension, omit the subreg and widen the extension. If it
6610 is a regular subreg, we can still get rid of the subreg by not
6611 widening so much, or in fact removing the extension entirely. */
6612 if ((GET_CODE (tem) == SIGN_EXTEND
6613 || GET_CODE (tem) == ZERO_EXTEND)
6614 && subreg_lowpart_p (x))
6616 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6617 || (GET_MODE_SIZE (mode) >
6618 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6620 if (! SCALAR_INT_MODE_P (mode))
6621 break;
6622 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6624 else
6625 tem = gen_lowpart (mode, XEXP (tem, 0));
6626 return tem;
6628 break;
6630 default:
6631 break;
6634 if (new)
6636 x = gen_lowpart (mode, new);
6637 code = GET_CODE (x);
6640 /* Now recursively process each operand of this operation. */
6641 fmt = GET_RTX_FORMAT (code);
6642 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6643 if (fmt[i] == 'e')
6645 new = make_compound_operation (XEXP (x, i), next_code);
6646 SUBST (XEXP (x, i), new);
6649 return x;
6652 /* Given M see if it is a value that would select a field of bits
6653 within an item, but not the entire word. Return -1 if not.
6654 Otherwise, return the starting position of the field, where 0 is the
6655 low-order bit.
6657 *PLEN is set to the length of the field. */
6659 static int
6660 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6662 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6663 int pos = exact_log2 (m & -m);
6664 int len = 0;
6666 if (pos >= 0)
6667 /* Now shift off the low-order zero bits and see if we have a
6668 power of two minus 1. */
6669 len = exact_log2 ((m >> pos) + 1);
6671 if (len <= 0)
6672 pos = -1;
6674 *plen = len;
6675 return pos;
6678 /* See if X can be simplified knowing that we will only refer to it in
6679 MODE and will only refer to those bits that are nonzero in MASK.
6680 If other bits are being computed or if masking operations are done
6681 that select a superset of the bits in MASK, they can sometimes be
6682 ignored.
6684 Return a possibly simplified expression, but always convert X to
6685 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6687 Also, if REG is nonzero and X is a register equal in value to REG,
6688 replace X with REG.
6690 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6691 are all off in X. This is used when X will be complemented, by either
6692 NOT, NEG, or XOR. */
6694 static rtx
6695 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6696 rtx reg, int just_select)
6698 enum rtx_code code = GET_CODE (x);
6699 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6700 enum machine_mode op_mode;
6701 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6702 rtx op0, op1, temp;
6704 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6705 code below will do the wrong thing since the mode of such an
6706 expression is VOIDmode.
6708 Also do nothing if X is a CLOBBER; this can happen if X was
6709 the return value from a call to gen_lowpart. */
6710 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6711 return x;
6713 /* We want to perform the operation is its present mode unless we know
6714 that the operation is valid in MODE, in which case we do the operation
6715 in MODE. */
6716 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6717 && have_insn_for (code, mode))
6718 ? mode : GET_MODE (x));
6720 /* It is not valid to do a right-shift in a narrower mode
6721 than the one it came in with. */
6722 if ((code == LSHIFTRT || code == ASHIFTRT)
6723 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6724 op_mode = GET_MODE (x);
6726 /* Truncate MASK to fit OP_MODE. */
6727 if (op_mode)
6728 mask &= GET_MODE_MASK (op_mode);
6730 /* When we have an arithmetic operation, or a shift whose count we
6731 do not know, we need to assume that all bits up to the highest-order
6732 bit in MASK will be needed. This is how we form such a mask. */
6733 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6734 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6735 else
6736 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6737 - 1);
6739 /* Determine what bits of X are guaranteed to be (non)zero. */
6740 nonzero = nonzero_bits (x, mode);
6742 /* If none of the bits in X are needed, return a zero. */
6743 if (! just_select && (nonzero & mask) == 0)
6744 x = const0_rtx;
6746 /* If X is a CONST_INT, return a new one. Do this here since the
6747 test below will fail. */
6748 if (GET_CODE (x) == CONST_INT)
6750 if (SCALAR_INT_MODE_P (mode))
6751 return gen_int_mode (INTVAL (x) & mask, mode);
6752 else
6754 x = GEN_INT (INTVAL (x) & mask);
6755 return gen_lowpart_common (mode, x);
6759 /* If X is narrower than MODE and we want all the bits in X's mode, just
6760 get X in the proper mode. */
6761 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6762 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6763 return gen_lowpart (mode, x);
6765 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6766 MASK are already known to be zero in X, we need not do anything. */
6767 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6768 return x;
6770 switch (code)
6772 case CLOBBER:
6773 /* If X is a (clobber (const_int)), return it since we know we are
6774 generating something that won't match. */
6775 return x;
6777 case USE:
6778 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6779 spanned the boundary of the MEM. If we are now masking so it is
6780 within that boundary, we don't need the USE any more. */
6781 if (! BITS_BIG_ENDIAN
6782 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6783 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6784 break;
6786 case SIGN_EXTEND:
6787 case ZERO_EXTEND:
6788 case ZERO_EXTRACT:
6789 case SIGN_EXTRACT:
6790 x = expand_compound_operation (x);
6791 if (GET_CODE (x) != code)
6792 return force_to_mode (x, mode, mask, reg, next_select);
6793 break;
6795 case REG:
6796 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6797 || rtx_equal_p (reg, get_last_value (x))))
6798 x = reg;
6799 break;
6801 case SUBREG:
6802 if (subreg_lowpart_p (x)
6803 /* We can ignore the effect of this SUBREG if it narrows the mode or
6804 if the constant masks to zero all the bits the mode doesn't
6805 have. */
6806 && ((GET_MODE_SIZE (GET_MODE (x))
6807 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6808 || (0 == (mask
6809 & GET_MODE_MASK (GET_MODE (x))
6810 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6811 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6812 break;
6814 case AND:
6815 /* If this is an AND with a constant, convert it into an AND
6816 whose constant is the AND of that constant with MASK. If it
6817 remains an AND of MASK, delete it since it is redundant. */
6819 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6821 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6822 mask & INTVAL (XEXP (x, 1)));
6824 /* If X is still an AND, see if it is an AND with a mask that
6825 is just some low-order bits. If so, and it is MASK, we don't
6826 need it. */
6828 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6829 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6830 == mask))
6831 x = XEXP (x, 0);
6833 /* If it remains an AND, try making another AND with the bits
6834 in the mode mask that aren't in MASK turned on. If the
6835 constant in the AND is wide enough, this might make a
6836 cheaper constant. */
6838 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6839 && GET_MODE_MASK (GET_MODE (x)) != mask
6840 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6842 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6843 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6844 int width = GET_MODE_BITSIZE (GET_MODE (x));
6845 rtx y;
6847 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6848 number, sign extend it. */
6849 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6850 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6851 cval |= (HOST_WIDE_INT) -1 << width;
6853 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6854 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6855 x = y;
6858 break;
6861 goto binop;
6863 case PLUS:
6864 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6865 low-order bits (as in an alignment operation) and FOO is already
6866 aligned to that boundary, mask C1 to that boundary as well.
6867 This may eliminate that PLUS and, later, the AND. */
6870 unsigned int width = GET_MODE_BITSIZE (mode);
6871 unsigned HOST_WIDE_INT smask = mask;
6873 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6874 number, sign extend it. */
6876 if (width < HOST_BITS_PER_WIDE_INT
6877 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6878 smask |= (HOST_WIDE_INT) -1 << width;
6880 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6881 && exact_log2 (- smask) >= 0
6882 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6883 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6884 return force_to_mode (plus_constant (XEXP (x, 0),
6885 (INTVAL (XEXP (x, 1)) & smask)),
6886 mode, smask, reg, next_select);
6889 /* ... fall through ... */
6891 case MULT:
6892 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6893 most significant bit in MASK since carries from those bits will
6894 affect the bits we are interested in. */
6895 mask = fuller_mask;
6896 goto binop;
6898 case MINUS:
6899 /* If X is (minus C Y) where C's least set bit is larger than any bit
6900 in the mask, then we may replace with (neg Y). */
6901 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6902 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6903 & -INTVAL (XEXP (x, 0))))
6904 > mask))
6906 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6907 GET_MODE (x));
6908 return force_to_mode (x, mode, mask, reg, next_select);
6911 /* Similarly, if C contains every bit in the fuller_mask, then we may
6912 replace with (not Y). */
6913 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6914 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
6915 == INTVAL (XEXP (x, 0))))
6917 x = simplify_gen_unary (NOT, GET_MODE (x),
6918 XEXP (x, 1), GET_MODE (x));
6919 return force_to_mode (x, mode, mask, reg, next_select);
6922 mask = fuller_mask;
6923 goto binop;
6925 case IOR:
6926 case XOR:
6927 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6928 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6929 operation which may be a bitfield extraction. Ensure that the
6930 constant we form is not wider than the mode of X. */
6932 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6933 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6934 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6935 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6936 && GET_CODE (XEXP (x, 1)) == CONST_INT
6937 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6938 + floor_log2 (INTVAL (XEXP (x, 1))))
6939 < GET_MODE_BITSIZE (GET_MODE (x)))
6940 && (INTVAL (XEXP (x, 1))
6941 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6943 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6944 << INTVAL (XEXP (XEXP (x, 0), 1)));
6945 temp = gen_binary (GET_CODE (x), GET_MODE (x),
6946 XEXP (XEXP (x, 0), 0), temp);
6947 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6948 XEXP (XEXP (x, 0), 1));
6949 return force_to_mode (x, mode, mask, reg, next_select);
6952 binop:
6953 /* For most binary operations, just propagate into the operation and
6954 change the mode if we have an operation of that mode. */
6956 op0 = gen_lowpart (op_mode,
6957 force_to_mode (XEXP (x, 0), mode, mask,
6958 reg, next_select));
6959 op1 = gen_lowpart (op_mode,
6960 force_to_mode (XEXP (x, 1), mode, mask,
6961 reg, next_select));
6963 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6964 x = gen_binary (code, op_mode, op0, op1);
6965 break;
6967 case ASHIFT:
6968 /* For left shifts, do the same, but just for the first operand.
6969 However, we cannot do anything with shifts where we cannot
6970 guarantee that the counts are smaller than the size of the mode
6971 because such a count will have a different meaning in a
6972 wider mode. */
6974 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6975 && INTVAL (XEXP (x, 1)) >= 0
6976 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6977 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6978 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6979 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6980 break;
6982 /* If the shift count is a constant and we can do arithmetic in
6983 the mode of the shift, refine which bits we need. Otherwise, use the
6984 conservative form of the mask. */
6985 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6986 && INTVAL (XEXP (x, 1)) >= 0
6987 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6988 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6989 mask >>= INTVAL (XEXP (x, 1));
6990 else
6991 mask = fuller_mask;
6993 op0 = gen_lowpart (op_mode,
6994 force_to_mode (XEXP (x, 0), op_mode,
6995 mask, reg, next_select));
6997 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6998 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6999 break;
7001 case LSHIFTRT:
7002 /* Here we can only do something if the shift count is a constant,
7003 this shift constant is valid for the host, and we can do arithmetic
7004 in OP_MODE. */
7006 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7007 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7008 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7010 rtx inner = XEXP (x, 0);
7011 unsigned HOST_WIDE_INT inner_mask;
7013 /* Select the mask of the bits we need for the shift operand. */
7014 inner_mask = mask << INTVAL (XEXP (x, 1));
7016 /* We can only change the mode of the shift if we can do arithmetic
7017 in the mode of the shift and INNER_MASK is no wider than the
7018 width of OP_MODE. */
7019 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
7020 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
7021 op_mode = GET_MODE (x);
7023 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7025 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7026 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7029 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7030 shift and AND produces only copies of the sign bit (C2 is one less
7031 than a power of two), we can do this with just a shift. */
7033 if (GET_CODE (x) == LSHIFTRT
7034 && GET_CODE (XEXP (x, 1)) == CONST_INT
7035 /* The shift puts one of the sign bit copies in the least significant
7036 bit. */
7037 && ((INTVAL (XEXP (x, 1))
7038 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7039 >= GET_MODE_BITSIZE (GET_MODE (x)))
7040 && exact_log2 (mask + 1) >= 0
7041 /* Number of bits left after the shift must be more than the mask
7042 needs. */
7043 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7044 <= GET_MODE_BITSIZE (GET_MODE (x)))
7045 /* Must be more sign bit copies than the mask needs. */
7046 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7047 >= exact_log2 (mask + 1)))
7048 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7049 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7050 - exact_log2 (mask + 1)));
7052 goto shiftrt;
7054 case ASHIFTRT:
7055 /* If we are just looking for the sign bit, we don't need this shift at
7056 all, even if it has a variable count. */
7057 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7058 && (mask == ((unsigned HOST_WIDE_INT) 1
7059 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7060 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7062 /* If this is a shift by a constant, get a mask that contains those bits
7063 that are not copies of the sign bit. We then have two cases: If
7064 MASK only includes those bits, this can be a logical shift, which may
7065 allow simplifications. If MASK is a single-bit field not within
7066 those bits, we are requesting a copy of the sign bit and hence can
7067 shift the sign bit to the appropriate location. */
7069 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7070 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7072 int i = -1;
7074 /* If the considered data is wider than HOST_WIDE_INT, we can't
7075 represent a mask for all its bits in a single scalar.
7076 But we only care about the lower bits, so calculate these. */
7078 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7080 nonzero = ~(HOST_WIDE_INT) 0;
7082 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7083 is the number of bits a full-width mask would have set.
7084 We need only shift if these are fewer than nonzero can
7085 hold. If not, we must keep all bits set in nonzero. */
7087 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7088 < HOST_BITS_PER_WIDE_INT)
7089 nonzero >>= INTVAL (XEXP (x, 1))
7090 + HOST_BITS_PER_WIDE_INT
7091 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7093 else
7095 nonzero = GET_MODE_MASK (GET_MODE (x));
7096 nonzero >>= INTVAL (XEXP (x, 1));
7099 if ((mask & ~nonzero) == 0
7100 || (i = exact_log2 (mask)) >= 0)
7102 x = simplify_shift_const
7103 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7104 i < 0 ? INTVAL (XEXP (x, 1))
7105 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7107 if (GET_CODE (x) != ASHIFTRT)
7108 return force_to_mode (x, mode, mask, reg, next_select);
7112 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7113 even if the shift count isn't a constant. */
7114 if (mask == 1)
7115 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7117 shiftrt:
7119 /* If this is a zero- or sign-extension operation that just affects bits
7120 we don't care about, remove it. Be sure the call above returned
7121 something that is still a shift. */
7123 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7124 && GET_CODE (XEXP (x, 1)) == CONST_INT
7125 && INTVAL (XEXP (x, 1)) >= 0
7126 && (INTVAL (XEXP (x, 1))
7127 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7128 && GET_CODE (XEXP (x, 0)) == ASHIFT
7129 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7130 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7131 reg, next_select);
7133 break;
7135 case ROTATE:
7136 case ROTATERT:
7137 /* If the shift count is constant and we can do computations
7138 in the mode of X, compute where the bits we care about are.
7139 Otherwise, we can't do anything. Don't change the mode of
7140 the shift or propagate MODE into the shift, though. */
7141 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7142 && INTVAL (XEXP (x, 1)) >= 0)
7144 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7145 GET_MODE (x), GEN_INT (mask),
7146 XEXP (x, 1));
7147 if (temp && GET_CODE (temp) == CONST_INT)
7148 SUBST (XEXP (x, 0),
7149 force_to_mode (XEXP (x, 0), GET_MODE (x),
7150 INTVAL (temp), reg, next_select));
7152 break;
7154 case NEG:
7155 /* If we just want the low-order bit, the NEG isn't needed since it
7156 won't change the low-order bit. */
7157 if (mask == 1)
7158 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7160 /* We need any bits less significant than the most significant bit in
7161 MASK since carries from those bits will affect the bits we are
7162 interested in. */
7163 mask = fuller_mask;
7164 goto unop;
7166 case NOT:
7167 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7168 same as the XOR case above. Ensure that the constant we form is not
7169 wider than the mode of X. */
7171 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7172 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7173 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7174 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7175 < GET_MODE_BITSIZE (GET_MODE (x)))
7176 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7178 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7179 GET_MODE (x));
7180 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7181 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7183 return force_to_mode (x, mode, mask, reg, next_select);
7186 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7187 use the full mask inside the NOT. */
7188 mask = fuller_mask;
7190 unop:
7191 op0 = gen_lowpart (op_mode,
7192 force_to_mode (XEXP (x, 0), mode, mask,
7193 reg, next_select));
7194 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7195 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7196 break;
7198 case NE:
7199 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7200 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7201 which is equal to STORE_FLAG_VALUE. */
7202 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7203 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7204 && (nonzero_bits (XEXP (x, 0), mode)
7205 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7206 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7208 break;
7210 case IF_THEN_ELSE:
7211 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7212 written in a narrower mode. We play it safe and do not do so. */
7214 SUBST (XEXP (x, 1),
7215 gen_lowpart (GET_MODE (x),
7216 force_to_mode (XEXP (x, 1), mode,
7217 mask, reg, next_select)));
7218 SUBST (XEXP (x, 2),
7219 gen_lowpart (GET_MODE (x),
7220 force_to_mode (XEXP (x, 2), mode,
7221 mask, reg, next_select)));
7222 break;
7224 default:
7225 break;
7228 /* Ensure we return a value of the proper mode. */
7229 return gen_lowpart (mode, x);
7232 /* Return nonzero if X is an expression that has one of two values depending on
7233 whether some other value is zero or nonzero. In that case, we return the
7234 value that is being tested, *PTRUE is set to the value if the rtx being
7235 returned has a nonzero value, and *PFALSE is set to the other alternative.
7237 If we return zero, we set *PTRUE and *PFALSE to X. */
7239 static rtx
7240 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7242 enum machine_mode mode = GET_MODE (x);
7243 enum rtx_code code = GET_CODE (x);
7244 rtx cond0, cond1, true0, true1, false0, false1;
7245 unsigned HOST_WIDE_INT nz;
7247 /* If we are comparing a value against zero, we are done. */
7248 if ((code == NE || code == EQ)
7249 && XEXP (x, 1) == const0_rtx)
7251 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7252 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7253 return XEXP (x, 0);
7256 /* If this is a unary operation whose operand has one of two values, apply
7257 our opcode to compute those values. */
7258 else if (UNARY_P (x)
7259 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7261 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7262 *pfalse = simplify_gen_unary (code, mode, false0,
7263 GET_MODE (XEXP (x, 0)));
7264 return cond0;
7267 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7268 make can't possibly match and would suppress other optimizations. */
7269 else if (code == COMPARE)
7272 /* If this is a binary operation, see if either side has only one of two
7273 values. If either one does or if both do and they are conditional on
7274 the same value, compute the new true and false values. */
7275 else if (BINARY_P (x))
7277 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7278 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7280 if ((cond0 != 0 || cond1 != 0)
7281 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7283 /* If if_then_else_cond returned zero, then true/false are the
7284 same rtl. We must copy one of them to prevent invalid rtl
7285 sharing. */
7286 if (cond0 == 0)
7287 true0 = copy_rtx (true0);
7288 else if (cond1 == 0)
7289 true1 = copy_rtx (true1);
7291 *ptrue = gen_binary (code, mode, true0, true1);
7292 *pfalse = gen_binary (code, mode, false0, false1);
7293 return cond0 ? cond0 : cond1;
7296 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7297 operands is zero when the other is nonzero, and vice-versa,
7298 and STORE_FLAG_VALUE is 1 or -1. */
7300 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7301 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7302 || code == UMAX)
7303 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7305 rtx op0 = XEXP (XEXP (x, 0), 1);
7306 rtx op1 = XEXP (XEXP (x, 1), 1);
7308 cond0 = XEXP (XEXP (x, 0), 0);
7309 cond1 = XEXP (XEXP (x, 1), 0);
7311 if (COMPARISON_P (cond0)
7312 && COMPARISON_P (cond1)
7313 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7314 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7315 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7316 || ((swap_condition (GET_CODE (cond0))
7317 == combine_reversed_comparison_code (cond1))
7318 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7319 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7320 && ! side_effects_p (x))
7322 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7323 *pfalse = gen_binary (MULT, mode,
7324 (code == MINUS
7325 ? simplify_gen_unary (NEG, mode, op1,
7326 mode)
7327 : op1),
7328 const_true_rtx);
7329 return cond0;
7333 /* Similarly for MULT, AND and UMIN, except that for these the result
7334 is always zero. */
7335 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7336 && (code == MULT || code == AND || code == UMIN)
7337 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7339 cond0 = XEXP (XEXP (x, 0), 0);
7340 cond1 = XEXP (XEXP (x, 1), 0);
7342 if (COMPARISON_P (cond0)
7343 && COMPARISON_P (cond1)
7344 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7345 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7346 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7347 || ((swap_condition (GET_CODE (cond0))
7348 == combine_reversed_comparison_code (cond1))
7349 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7350 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7351 && ! side_effects_p (x))
7353 *ptrue = *pfalse = const0_rtx;
7354 return cond0;
7359 else if (code == IF_THEN_ELSE)
7361 /* If we have IF_THEN_ELSE already, extract the condition and
7362 canonicalize it if it is NE or EQ. */
7363 cond0 = XEXP (x, 0);
7364 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7365 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7366 return XEXP (cond0, 0);
7367 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7369 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7370 return XEXP (cond0, 0);
7372 else
7373 return cond0;
7376 /* If X is a SUBREG, we can narrow both the true and false values
7377 if the inner expression, if there is a condition. */
7378 else if (code == SUBREG
7379 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7380 &true0, &false0)))
7382 true0 = simplify_gen_subreg (mode, true0,
7383 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7384 false0 = simplify_gen_subreg (mode, false0,
7385 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7386 if (true0 && false0)
7388 *ptrue = true0;
7389 *pfalse = false0;
7390 return cond0;
7394 /* If X is a constant, this isn't special and will cause confusions
7395 if we treat it as such. Likewise if it is equivalent to a constant. */
7396 else if (CONSTANT_P (x)
7397 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7400 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7401 will be least confusing to the rest of the compiler. */
7402 else if (mode == BImode)
7404 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7405 return x;
7408 /* If X is known to be either 0 or -1, those are the true and
7409 false values when testing X. */
7410 else if (x == constm1_rtx || x == const0_rtx
7411 || (mode != VOIDmode
7412 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7414 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7415 return x;
7418 /* Likewise for 0 or a single bit. */
7419 else if (SCALAR_INT_MODE_P (mode)
7420 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7421 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7423 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7424 return x;
7427 /* Otherwise fail; show no condition with true and false values the same. */
7428 *ptrue = *pfalse = x;
7429 return 0;
7432 /* Return the value of expression X given the fact that condition COND
7433 is known to be true when applied to REG as its first operand and VAL
7434 as its second. X is known to not be shared and so can be modified in
7435 place.
7437 We only handle the simplest cases, and specifically those cases that
7438 arise with IF_THEN_ELSE expressions. */
7440 static rtx
7441 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7443 enum rtx_code code = GET_CODE (x);
7444 rtx temp;
7445 const char *fmt;
7446 int i, j;
7448 if (side_effects_p (x))
7449 return x;
7451 /* If either operand of the condition is a floating point value,
7452 then we have to avoid collapsing an EQ comparison. */
7453 if (cond == EQ
7454 && rtx_equal_p (x, reg)
7455 && ! FLOAT_MODE_P (GET_MODE (x))
7456 && ! FLOAT_MODE_P (GET_MODE (val)))
7457 return val;
7459 if (cond == UNEQ && rtx_equal_p (x, reg))
7460 return val;
7462 /* If X is (abs REG) and we know something about REG's relationship
7463 with zero, we may be able to simplify this. */
7465 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7466 switch (cond)
7468 case GE: case GT: case EQ:
7469 return XEXP (x, 0);
7470 case LT: case LE:
7471 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7472 XEXP (x, 0),
7473 GET_MODE (XEXP (x, 0)));
7474 default:
7475 break;
7478 /* The only other cases we handle are MIN, MAX, and comparisons if the
7479 operands are the same as REG and VAL. */
7481 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7483 if (rtx_equal_p (XEXP (x, 0), val))
7484 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7486 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7488 if (COMPARISON_P (x))
7490 if (comparison_dominates_p (cond, code))
7491 return const_true_rtx;
7493 code = combine_reversed_comparison_code (x);
7494 if (code != UNKNOWN
7495 && comparison_dominates_p (cond, code))
7496 return const0_rtx;
7497 else
7498 return x;
7500 else if (code == SMAX || code == SMIN
7501 || code == UMIN || code == UMAX)
7503 int unsignedp = (code == UMIN || code == UMAX);
7505 /* Do not reverse the condition when it is NE or EQ.
7506 This is because we cannot conclude anything about
7507 the value of 'SMAX (x, y)' when x is not equal to y,
7508 but we can when x equals y. */
7509 if ((code == SMAX || code == UMAX)
7510 && ! (cond == EQ || cond == NE))
7511 cond = reverse_condition (cond);
7513 switch (cond)
7515 case GE: case GT:
7516 return unsignedp ? x : XEXP (x, 1);
7517 case LE: case LT:
7518 return unsignedp ? x : XEXP (x, 0);
7519 case GEU: case GTU:
7520 return unsignedp ? XEXP (x, 1) : x;
7521 case LEU: case LTU:
7522 return unsignedp ? XEXP (x, 0) : x;
7523 default:
7524 break;
7529 else if (code == SUBREG)
7531 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7532 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7534 if (SUBREG_REG (x) != r)
7536 /* We must simplify subreg here, before we lose track of the
7537 original inner_mode. */
7538 new = simplify_subreg (GET_MODE (x), r,
7539 inner_mode, SUBREG_BYTE (x));
7540 if (new)
7541 return new;
7542 else
7543 SUBST (SUBREG_REG (x), r);
7546 return x;
7548 /* We don't have to handle SIGN_EXTEND here, because even in the
7549 case of replacing something with a modeless CONST_INT, a
7550 CONST_INT is already (supposed to be) a valid sign extension for
7551 its narrower mode, which implies it's already properly
7552 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7553 story is different. */
7554 else if (code == ZERO_EXTEND)
7556 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7557 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7559 if (XEXP (x, 0) != r)
7561 /* We must simplify the zero_extend here, before we lose
7562 track of the original inner_mode. */
7563 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7564 r, inner_mode);
7565 if (new)
7566 return new;
7567 else
7568 SUBST (XEXP (x, 0), r);
7571 return x;
7574 fmt = GET_RTX_FORMAT (code);
7575 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7577 if (fmt[i] == 'e')
7578 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7579 else if (fmt[i] == 'E')
7580 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7581 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7582 cond, reg, val));
7585 return x;
7588 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7589 assignment as a field assignment. */
7591 static int
7592 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7594 if (x == y || rtx_equal_p (x, y))
7595 return 1;
7597 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7598 return 0;
7600 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7601 Note that all SUBREGs of MEM are paradoxical; otherwise they
7602 would have been rewritten. */
7603 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7604 && GET_CODE (SUBREG_REG (y)) == MEM
7605 && rtx_equal_p (SUBREG_REG (y),
7606 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7607 return 1;
7609 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7610 && GET_CODE (SUBREG_REG (x)) == MEM
7611 && rtx_equal_p (SUBREG_REG (x),
7612 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7613 return 1;
7615 /* We used to see if get_last_value of X and Y were the same but that's
7616 not correct. In one direction, we'll cause the assignment to have
7617 the wrong destination and in the case, we'll import a register into this
7618 insn that might have already have been dead. So fail if none of the
7619 above cases are true. */
7620 return 0;
7623 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7624 Return that assignment if so.
7626 We only handle the most common cases. */
7628 static rtx
7629 make_field_assignment (rtx x)
7631 rtx dest = SET_DEST (x);
7632 rtx src = SET_SRC (x);
7633 rtx assign;
7634 rtx rhs, lhs;
7635 HOST_WIDE_INT c1;
7636 HOST_WIDE_INT pos;
7637 unsigned HOST_WIDE_INT len;
7638 rtx other;
7639 enum machine_mode mode;
7641 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7642 a clear of a one-bit field. We will have changed it to
7643 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7644 for a SUBREG. */
7646 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7647 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7648 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7649 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7651 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7652 1, 1, 1, 0);
7653 if (assign != 0)
7654 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7655 return x;
7658 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7659 && subreg_lowpart_p (XEXP (src, 0))
7660 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7661 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7662 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7663 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7664 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7665 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7667 assign = make_extraction (VOIDmode, dest, 0,
7668 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7669 1, 1, 1, 0);
7670 if (assign != 0)
7671 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7672 return x;
7675 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7676 one-bit field. */
7677 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7678 && XEXP (XEXP (src, 0), 0) == const1_rtx
7679 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7681 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7682 1, 1, 1, 0);
7683 if (assign != 0)
7684 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7685 return x;
7688 /* The other case we handle is assignments into a constant-position
7689 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7690 a mask that has all one bits except for a group of zero bits and
7691 OTHER is known to have zeros where C1 has ones, this is such an
7692 assignment. Compute the position and length from C1. Shift OTHER
7693 to the appropriate position, force it to the required mode, and
7694 make the extraction. Check for the AND in both operands. */
7696 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7697 return x;
7699 rhs = expand_compound_operation (XEXP (src, 0));
7700 lhs = expand_compound_operation (XEXP (src, 1));
7702 if (GET_CODE (rhs) == AND
7703 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7704 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7705 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7706 else if (GET_CODE (lhs) == AND
7707 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7708 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7709 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7710 else
7711 return x;
7713 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7714 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7715 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7716 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7717 return x;
7719 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7720 if (assign == 0)
7721 return x;
7723 /* The mode to use for the source is the mode of the assignment, or of
7724 what is inside a possible STRICT_LOW_PART. */
7725 mode = (GET_CODE (assign) == STRICT_LOW_PART
7726 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7728 /* Shift OTHER right POS places and make it the source, restricting it
7729 to the proper length and mode. */
7731 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7732 GET_MODE (src), other, pos),
7733 mode,
7734 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7735 ? ~(unsigned HOST_WIDE_INT) 0
7736 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7737 dest, 0);
7739 /* If SRC is masked by an AND that does not make a difference in
7740 the value being stored, strip it. */
7741 if (GET_CODE (assign) == ZERO_EXTRACT
7742 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7743 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7744 && GET_CODE (src) == AND
7745 && GET_CODE (XEXP (src, 1)) == CONST_INT
7746 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7747 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7748 src = XEXP (src, 0);
7750 return gen_rtx_SET (VOIDmode, assign, src);
7753 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7754 if so. */
7756 static rtx
7757 apply_distributive_law (rtx x)
7759 enum rtx_code code = GET_CODE (x);
7760 enum rtx_code inner_code;
7761 rtx lhs, rhs, other;
7762 rtx tem;
7764 /* Distributivity is not true for floating point as it can change the
7765 value. So we don't do it unless -funsafe-math-optimizations. */
7766 if (FLOAT_MODE_P (GET_MODE (x))
7767 && ! flag_unsafe_math_optimizations)
7768 return x;
7770 /* The outer operation can only be one of the following: */
7771 if (code != IOR && code != AND && code != XOR
7772 && code != PLUS && code != MINUS)
7773 return x;
7775 lhs = XEXP (x, 0);
7776 rhs = XEXP (x, 1);
7778 /* If either operand is a primitive we can't do anything, so get out
7779 fast. */
7780 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7781 return x;
7783 lhs = expand_compound_operation (lhs);
7784 rhs = expand_compound_operation (rhs);
7785 inner_code = GET_CODE (lhs);
7786 if (inner_code != GET_CODE (rhs))
7787 return x;
7789 /* See if the inner and outer operations distribute. */
7790 switch (inner_code)
7792 case LSHIFTRT:
7793 case ASHIFTRT:
7794 case AND:
7795 case IOR:
7796 /* These all distribute except over PLUS. */
7797 if (code == PLUS || code == MINUS)
7798 return x;
7799 break;
7801 case MULT:
7802 if (code != PLUS && code != MINUS)
7803 return x;
7804 break;
7806 case ASHIFT:
7807 /* This is also a multiply, so it distributes over everything. */
7808 break;
7810 case SUBREG:
7811 /* Non-paradoxical SUBREGs distributes over all operations, provided
7812 the inner modes and byte offsets are the same, this is an extraction
7813 of a low-order part, we don't convert an fp operation to int or
7814 vice versa, and we would not be converting a single-word
7815 operation into a multi-word operation. The latter test is not
7816 required, but it prevents generating unneeded multi-word operations.
7817 Some of the previous tests are redundant given the latter test, but
7818 are retained because they are required for correctness.
7820 We produce the result slightly differently in this case. */
7822 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7823 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7824 || ! subreg_lowpart_p (lhs)
7825 || (GET_MODE_CLASS (GET_MODE (lhs))
7826 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7827 || (GET_MODE_SIZE (GET_MODE (lhs))
7828 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7829 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7830 return x;
7832 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7833 SUBREG_REG (lhs), SUBREG_REG (rhs));
7834 return gen_lowpart (GET_MODE (x), tem);
7836 default:
7837 return x;
7840 /* Set LHS and RHS to the inner operands (A and B in the example
7841 above) and set OTHER to the common operand (C in the example).
7842 There is only one way to do this unless the inner operation is
7843 commutative. */
7844 if (COMMUTATIVE_ARITH_P (lhs)
7845 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7846 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7847 else if (COMMUTATIVE_ARITH_P (lhs)
7848 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7849 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7850 else if (COMMUTATIVE_ARITH_P (lhs)
7851 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7852 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7853 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7854 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7855 else
7856 return x;
7858 /* Form the new inner operation, seeing if it simplifies first. */
7859 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7861 /* There is one exception to the general way of distributing:
7862 (a | c) ^ (b | c) -> (a ^ b) & ~c */
7863 if (code == XOR && inner_code == IOR)
7865 inner_code = AND;
7866 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7869 /* We may be able to continuing distributing the result, so call
7870 ourselves recursively on the inner operation before forming the
7871 outer operation, which we return. */
7872 return gen_binary (inner_code, GET_MODE (x),
7873 apply_distributive_law (tem), other);
7876 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7877 in MODE.
7879 Return an equivalent form, if different from X. Otherwise, return X. If
7880 X is zero, we are to always construct the equivalent form. */
7882 static rtx
7883 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
7884 unsigned HOST_WIDE_INT constop)
7886 unsigned HOST_WIDE_INT nonzero;
7887 int i;
7889 /* Simplify VAROP knowing that we will be only looking at some of the
7890 bits in it.
7892 Note by passing in CONSTOP, we guarantee that the bits not set in
7893 CONSTOP are not significant and will never be examined. We must
7894 ensure that is the case by explicitly masking out those bits
7895 before returning. */
7896 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7898 /* If VAROP is a CLOBBER, we will fail so return it. */
7899 if (GET_CODE (varop) == CLOBBER)
7900 return varop;
7902 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
7903 to VAROP and return the new constant. */
7904 if (GET_CODE (varop) == CONST_INT)
7905 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
7907 /* See what bits may be nonzero in VAROP. Unlike the general case of
7908 a call to nonzero_bits, here we don't care about bits outside
7909 MODE. */
7911 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7913 /* Turn off all bits in the constant that are known to already be zero.
7914 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7915 which is tested below. */
7917 constop &= nonzero;
7919 /* If we don't have any bits left, return zero. */
7920 if (constop == 0)
7921 return const0_rtx;
7923 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7924 a power of two, we can replace this with an ASHIFT. */
7925 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7926 && (i = exact_log2 (constop)) >= 0)
7927 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7929 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7930 or XOR, then try to apply the distributive law. This may eliminate
7931 operations if either branch can be simplified because of the AND.
7932 It may also make some cases more complex, but those cases probably
7933 won't match a pattern either with or without this. */
7935 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7936 return
7937 gen_lowpart
7938 (mode,
7939 apply_distributive_law
7940 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7941 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7942 XEXP (varop, 0), constop),
7943 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7944 XEXP (varop, 1), constop))));
7946 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
7947 the AND and see if one of the operands simplifies to zero. If so, we
7948 may eliminate it. */
7950 if (GET_CODE (varop) == PLUS
7951 && exact_log2 (constop + 1) >= 0)
7953 rtx o0, o1;
7955 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
7956 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
7957 if (o0 == const0_rtx)
7958 return o1;
7959 if (o1 == const0_rtx)
7960 return o0;
7963 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7964 if we already had one (just check for the simplest cases). */
7965 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7966 && GET_MODE (XEXP (x, 0)) == mode
7967 && SUBREG_REG (XEXP (x, 0)) == varop)
7968 varop = XEXP (x, 0);
7969 else
7970 varop = gen_lowpart (mode, varop);
7972 /* If we can't make the SUBREG, try to return what we were given. */
7973 if (GET_CODE (varop) == CLOBBER)
7974 return x ? x : varop;
7976 /* If we are only masking insignificant bits, return VAROP. */
7977 if (constop == nonzero)
7978 x = varop;
7979 else
7981 /* Otherwise, return an AND. */
7982 constop = trunc_int_for_mode (constop, mode);
7983 /* See how much, if any, of X we can use. */
7984 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7985 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7987 else
7989 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7990 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7991 SUBST (XEXP (x, 1), GEN_INT (constop));
7993 SUBST (XEXP (x, 0), varop);
7997 return x;
8000 #define nonzero_bits_with_known(X, MODE) \
8001 cached_nonzero_bits (X, MODE, known_x, known_mode, known_ret)
8003 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
8004 It avoids exponential behavior in nonzero_bits1 when X has
8005 identical subexpressions on the first or the second level. */
8007 static unsigned HOST_WIDE_INT
8008 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
8009 enum machine_mode known_mode,
8010 unsigned HOST_WIDE_INT known_ret)
8012 if (x == known_x && mode == known_mode)
8013 return known_ret;
8015 /* Try to find identical subexpressions. If found call
8016 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
8017 precomputed value for the subexpression as KNOWN_RET. */
8019 if (ARITHMETIC_P (x))
8021 rtx x0 = XEXP (x, 0);
8022 rtx x1 = XEXP (x, 1);
8024 /* Check the first level. */
8025 if (x0 == x1)
8026 return nonzero_bits1 (x, mode, x0, mode,
8027 nonzero_bits_with_known (x0, mode));
8029 /* Check the second level. */
8030 if (ARITHMETIC_P (x0)
8031 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8032 return nonzero_bits1 (x, mode, x1, mode,
8033 nonzero_bits_with_known (x1, mode));
8035 if (ARITHMETIC_P (x1)
8036 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8037 return nonzero_bits1 (x, mode, x0, mode,
8038 nonzero_bits_with_known (x0, mode));
8041 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
8044 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
8045 We don't let nonzero_bits recur into num_sign_bit_copies, because that
8046 is less useful. We can't allow both, because that results in exponential
8047 run time recursion. There is a nullstone testcase that triggered
8048 this. This macro avoids accidental uses of num_sign_bit_copies. */
8049 #define cached_num_sign_bit_copies()
8051 /* Given an expression, X, compute which bits in X can be nonzero.
8052 We don't care about bits outside of those defined in MODE.
8054 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8055 a shift, AND, or zero_extract, we can do better. */
8057 static unsigned HOST_WIDE_INT
8058 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
8059 enum machine_mode known_mode,
8060 unsigned HOST_WIDE_INT known_ret)
8062 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
8063 unsigned HOST_WIDE_INT inner_nz;
8064 enum rtx_code code;
8065 unsigned int mode_width = GET_MODE_BITSIZE (mode);
8066 rtx tem;
8068 /* For floating-point values, assume all bits are needed. */
8069 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
8070 return nonzero;
8072 /* If X is wider than MODE, use its mode instead. */
8073 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
8075 mode = GET_MODE (x);
8076 nonzero = GET_MODE_MASK (mode);
8077 mode_width = GET_MODE_BITSIZE (mode);
8080 if (mode_width > HOST_BITS_PER_WIDE_INT)
8081 /* Our only callers in this case look for single bit values. So
8082 just return the mode mask. Those tests will then be false. */
8083 return nonzero;
8085 #ifndef WORD_REGISTER_OPERATIONS
8086 /* If MODE is wider than X, but both are a single word for both the host
8087 and target machines, we can compute this from which bits of the
8088 object might be nonzero in its own mode, taking into account the fact
8089 that on many CISC machines, accessing an object in a wider mode
8090 causes the high-order bits to become undefined. So they are
8091 not known to be zero. */
8093 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8094 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8095 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8096 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8098 nonzero &= nonzero_bits_with_known (x, GET_MODE (x));
8099 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8100 return nonzero;
8102 #endif
8104 code = GET_CODE (x);
8105 switch (code)
8107 case REG:
8108 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8109 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8110 all the bits above ptr_mode are known to be zero. */
8111 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8112 && REG_POINTER (x))
8113 nonzero &= GET_MODE_MASK (ptr_mode);
8114 #endif
8116 /* Include declared information about alignment of pointers. */
8117 /* ??? We don't properly preserve REG_POINTER changes across
8118 pointer-to-integer casts, so we can't trust it except for
8119 things that we know must be pointers. See execute/960116-1.c. */
8120 if ((x == stack_pointer_rtx
8121 || x == frame_pointer_rtx
8122 || x == arg_pointer_rtx)
8123 && REGNO_POINTER_ALIGN (REGNO (x)))
8125 unsigned HOST_WIDE_INT alignment
8126 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8128 #ifdef PUSH_ROUNDING
8129 /* If PUSH_ROUNDING is defined, it is possible for the
8130 stack to be momentarily aligned only to that amount,
8131 so we pick the least alignment. */
8132 if (x == stack_pointer_rtx && PUSH_ARGS)
8133 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
8134 alignment);
8135 #endif
8137 nonzero &= ~(alignment - 1);
8140 /* If X is a register whose nonzero bits value is current, use it.
8141 Otherwise, if X is a register whose value we can find, use that
8142 value. Otherwise, use the previously-computed global nonzero bits
8143 for this register. */
8145 if (reg_stat[REGNO (x)].last_set_value != 0
8146 && (reg_stat[REGNO (x)].last_set_mode == mode
8147 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8148 && GET_MODE_CLASS (mode) == MODE_INT))
8149 && (reg_stat[REGNO (x)].last_set_label == label_tick
8150 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8151 && REG_N_SETS (REGNO (x)) == 1
8152 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8153 REGNO (x))))
8154 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8155 return reg_stat[REGNO (x)].last_set_nonzero_bits & nonzero;
8157 tem = get_last_value (x);
8159 if (tem)
8161 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8162 /* If X is narrower than MODE and TEM is a non-negative
8163 constant that would appear negative in the mode of X,
8164 sign-extend it for use in reg_stat[].nonzero_bits because
8165 some machines (maybe most) will actually do the sign-extension
8166 and this is the conservative approach.
8168 ??? For 2.5, try to tighten up the MD files in this regard
8169 instead of this kludge. */
8171 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8172 && GET_CODE (tem) == CONST_INT
8173 && INTVAL (tem) > 0
8174 && 0 != (INTVAL (tem)
8175 & ((HOST_WIDE_INT) 1
8176 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8177 tem = GEN_INT (INTVAL (tem)
8178 | ((HOST_WIDE_INT) (-1)
8179 << GET_MODE_BITSIZE (GET_MODE (x))));
8180 #endif
8181 return nonzero_bits_with_known (tem, mode) & nonzero;
8183 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8185 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8187 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8188 /* We don't know anything about the upper bits. */
8189 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8190 return nonzero & mask;
8192 else
8193 return nonzero;
8195 case CONST_INT:
8196 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8197 /* If X is negative in MODE, sign-extend the value. */
8198 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8199 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8200 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8201 #endif
8203 return INTVAL (x);
8205 case MEM:
8206 #ifdef LOAD_EXTEND_OP
8207 /* In many, if not most, RISC machines, reading a byte from memory
8208 zeros the rest of the register. Noticing that fact saves a lot
8209 of extra zero-extends. */
8210 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8211 nonzero &= GET_MODE_MASK (GET_MODE (x));
8212 #endif
8213 break;
8215 case EQ: case NE:
8216 case UNEQ: case LTGT:
8217 case GT: case GTU: case UNGT:
8218 case LT: case LTU: case UNLT:
8219 case GE: case GEU: case UNGE:
8220 case LE: case LEU: case UNLE:
8221 case UNORDERED: case ORDERED:
8223 /* If this produces an integer result, we know which bits are set.
8224 Code here used to clear bits outside the mode of X, but that is
8225 now done above. */
8227 if (GET_MODE_CLASS (mode) == MODE_INT
8228 && mode_width <= HOST_BITS_PER_WIDE_INT)
8229 nonzero = STORE_FLAG_VALUE;
8230 break;
8232 case NEG:
8233 #if 0
8234 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8235 and num_sign_bit_copies. */
8236 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8237 == GET_MODE_BITSIZE (GET_MODE (x)))
8238 nonzero = 1;
8239 #endif
8241 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8242 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8243 break;
8245 case ABS:
8246 #if 0
8247 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8248 and num_sign_bit_copies. */
8249 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8250 == GET_MODE_BITSIZE (GET_MODE (x)))
8251 nonzero = 1;
8252 #endif
8253 break;
8255 case TRUNCATE:
8256 nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8257 & GET_MODE_MASK (mode));
8258 break;
8260 case ZERO_EXTEND:
8261 nonzero &= nonzero_bits_with_known (XEXP (x, 0), mode);
8262 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8263 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8264 break;
8266 case SIGN_EXTEND:
8267 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8268 Otherwise, show all the bits in the outer mode but not the inner
8269 may be nonzero. */
8270 inner_nz = nonzero_bits_with_known (XEXP (x, 0), mode);
8271 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8273 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8274 if (inner_nz
8275 & (((HOST_WIDE_INT) 1
8276 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8277 inner_nz |= (GET_MODE_MASK (mode)
8278 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8281 nonzero &= inner_nz;
8282 break;
8284 case AND:
8285 nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8286 & nonzero_bits_with_known (XEXP (x, 1), mode));
8287 break;
8289 case XOR: case IOR:
8290 case UMIN: case UMAX: case SMIN: case SMAX:
8292 unsigned HOST_WIDE_INT nonzero0 =
8293 nonzero_bits_with_known (XEXP (x, 0), mode);
8295 /* Don't call nonzero_bits for the second time if it cannot change
8296 anything. */
8297 if ((nonzero & nonzero0) != nonzero)
8298 nonzero &= (nonzero0
8299 | nonzero_bits_with_known (XEXP (x, 1), mode));
8301 break;
8303 case PLUS: case MINUS:
8304 case MULT:
8305 case DIV: case UDIV:
8306 case MOD: case UMOD:
8307 /* We can apply the rules of arithmetic to compute the number of
8308 high- and low-order zero bits of these operations. We start by
8309 computing the width (position of the highest-order nonzero bit)
8310 and the number of low-order zero bits for each value. */
8312 unsigned HOST_WIDE_INT nz0 =
8313 nonzero_bits_with_known (XEXP (x, 0), mode);
8314 unsigned HOST_WIDE_INT nz1 =
8315 nonzero_bits_with_known (XEXP (x, 1), mode);
8316 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
8317 int width0 = floor_log2 (nz0) + 1;
8318 int width1 = floor_log2 (nz1) + 1;
8319 int low0 = floor_log2 (nz0 & -nz0);
8320 int low1 = floor_log2 (nz1 & -nz1);
8321 HOST_WIDE_INT op0_maybe_minusp
8322 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
8323 HOST_WIDE_INT op1_maybe_minusp
8324 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
8325 unsigned int result_width = mode_width;
8326 int result_low = 0;
8328 switch (code)
8330 case PLUS:
8331 result_width = MAX (width0, width1) + 1;
8332 result_low = MIN (low0, low1);
8333 break;
8334 case MINUS:
8335 result_low = MIN (low0, low1);
8336 break;
8337 case MULT:
8338 result_width = width0 + width1;
8339 result_low = low0 + low1;
8340 break;
8341 case DIV:
8342 if (width1 == 0)
8343 break;
8344 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8345 result_width = width0;
8346 break;
8347 case UDIV:
8348 if (width1 == 0)
8349 break;
8350 result_width = width0;
8351 break;
8352 case MOD:
8353 if (width1 == 0)
8354 break;
8355 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8356 result_width = MIN (width0, width1);
8357 result_low = MIN (low0, low1);
8358 break;
8359 case UMOD:
8360 if (width1 == 0)
8361 break;
8362 result_width = MIN (width0, width1);
8363 result_low = MIN (low0, low1);
8364 break;
8365 default:
8366 abort ();
8369 if (result_width < mode_width)
8370 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8372 if (result_low > 0)
8373 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8375 #ifdef POINTERS_EXTEND_UNSIGNED
8376 /* If pointers extend unsigned and this is an addition or subtraction
8377 to a pointer in Pmode, all the bits above ptr_mode are known to be
8378 zero. */
8379 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8380 && (code == PLUS || code == MINUS)
8381 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8382 nonzero &= GET_MODE_MASK (ptr_mode);
8383 #endif
8385 break;
8387 case ZERO_EXTRACT:
8388 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8389 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8390 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8391 break;
8393 case SUBREG:
8394 /* If this is a SUBREG formed for a promoted variable that has
8395 been zero-extended, we know that at least the high-order bits
8396 are zero, though others might be too. */
8398 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8399 nonzero = (GET_MODE_MASK (GET_MODE (x))
8400 & nonzero_bits_with_known (SUBREG_REG (x), GET_MODE (x)));
8402 /* If the inner mode is a single word for both the host and target
8403 machines, we can compute this from which bits of the inner
8404 object might be nonzero. */
8405 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8406 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8407 <= HOST_BITS_PER_WIDE_INT))
8409 nonzero &= nonzero_bits_with_known (SUBREG_REG (x), mode);
8411 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8412 /* If this is a typical RISC machine, we only have to worry
8413 about the way loads are extended. */
8414 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8415 ? (((nonzero
8416 & (((unsigned HOST_WIDE_INT) 1
8417 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8418 != 0))
8419 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8420 || GET_CODE (SUBREG_REG (x)) != MEM)
8421 #endif
8423 /* On many CISC machines, accessing an object in a wider mode
8424 causes the high-order bits to become undefined. So they are
8425 not known to be zero. */
8426 if (GET_MODE_SIZE (GET_MODE (x))
8427 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8428 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8429 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8432 break;
8434 case ASHIFTRT:
8435 case LSHIFTRT:
8436 case ASHIFT:
8437 case ROTATE:
8438 /* The nonzero bits are in two classes: any bits within MODE
8439 that aren't in GET_MODE (x) are always significant. The rest of the
8440 nonzero bits are those that are significant in the operand of
8441 the shift when shifted the appropriate number of bits. This
8442 shows that high-order bits are cleared by the right shift and
8443 low-order bits by left shifts. */
8444 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8445 && INTVAL (XEXP (x, 1)) >= 0
8446 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8448 enum machine_mode inner_mode = GET_MODE (x);
8449 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8450 int count = INTVAL (XEXP (x, 1));
8451 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8452 unsigned HOST_WIDE_INT op_nonzero =
8453 nonzero_bits_with_known (XEXP (x, 0), mode);
8454 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8455 unsigned HOST_WIDE_INT outer = 0;
8457 if (mode_width > width)
8458 outer = (op_nonzero & nonzero & ~mode_mask);
8460 if (code == LSHIFTRT)
8461 inner >>= count;
8462 else if (code == ASHIFTRT)
8464 inner >>= count;
8466 /* If the sign bit may have been nonzero before the shift, we
8467 need to mark all the places it could have been copied to
8468 by the shift as possibly nonzero. */
8469 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8470 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8472 else if (code == ASHIFT)
8473 inner <<= count;
8474 else
8475 inner = ((inner << (count % width)
8476 | (inner >> (width - (count % width)))) & mode_mask);
8478 nonzero &= (outer | inner);
8480 break;
8482 case FFS:
8483 case POPCOUNT:
8484 /* This is at most the number of bits in the mode. */
8485 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
8486 break;
8488 case CLZ:
8489 /* If CLZ has a known value at zero, then the nonzero bits are
8490 that value, plus the number of bits in the mode minus one. */
8491 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8492 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8493 else
8494 nonzero = -1;
8495 break;
8497 case CTZ:
8498 /* If CTZ has a known value at zero, then the nonzero bits are
8499 that value, plus the number of bits in the mode minus one. */
8500 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8501 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8502 else
8503 nonzero = -1;
8504 break;
8506 case PARITY:
8507 nonzero = 1;
8508 break;
8510 case IF_THEN_ELSE:
8511 nonzero &= (nonzero_bits_with_known (XEXP (x, 1), mode)
8512 | nonzero_bits_with_known (XEXP (x, 2), mode));
8513 break;
8515 default:
8516 break;
8519 return nonzero;
8522 /* See the macro definition above. */
8523 #undef cached_num_sign_bit_copies
8525 #define num_sign_bit_copies_with_known(X, M) \
8526 cached_num_sign_bit_copies (X, M, known_x, known_mode, known_ret)
8528 /* The function cached_num_sign_bit_copies is a wrapper around
8529 num_sign_bit_copies1. It avoids exponential behavior in
8530 num_sign_bit_copies1 when X has identical subexpressions on the
8531 first or the second level. */
8533 static unsigned int
8534 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
8535 enum machine_mode known_mode,
8536 unsigned int known_ret)
8538 if (x == known_x && mode == known_mode)
8539 return known_ret;
8541 /* Try to find identical subexpressions. If found call
8542 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
8543 the precomputed value for the subexpression as KNOWN_RET. */
8545 if (ARITHMETIC_P (x))
8547 rtx x0 = XEXP (x, 0);
8548 rtx x1 = XEXP (x, 1);
8550 /* Check the first level. */
8551 if (x0 == x1)
8552 return
8553 num_sign_bit_copies1 (x, mode, x0, mode,
8554 num_sign_bit_copies_with_known (x0, mode));
8556 /* Check the second level. */
8557 if (ARITHMETIC_P (x0)
8558 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8559 return
8560 num_sign_bit_copies1 (x, mode, x1, mode,
8561 num_sign_bit_copies_with_known (x1, mode));
8563 if (ARITHMETIC_P (x1)
8564 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8565 return
8566 num_sign_bit_copies1 (x, mode, x0, mode,
8567 num_sign_bit_copies_with_known (x0, mode));
8570 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
8573 /* Return the number of bits at the high-order end of X that are known to
8574 be equal to the sign bit. X will be used in mode MODE; if MODE is
8575 VOIDmode, X will be used in its own mode. The returned value will always
8576 be between 1 and the number of bits in MODE. */
8578 static unsigned int
8579 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
8580 enum machine_mode known_mode,
8581 unsigned int known_ret)
8583 enum rtx_code code = GET_CODE (x);
8584 unsigned int bitwidth;
8585 int num0, num1, result;
8586 unsigned HOST_WIDE_INT nonzero;
8587 rtx tem;
8589 /* If we weren't given a mode, use the mode of X. If the mode is still
8590 VOIDmode, we don't know anything. Likewise if one of the modes is
8591 floating-point. */
8593 if (mode == VOIDmode)
8594 mode = GET_MODE (x);
8596 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8597 return 1;
8599 bitwidth = GET_MODE_BITSIZE (mode);
8601 /* For a smaller object, just ignore the high bits. */
8602 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8604 num0 = num_sign_bit_copies_with_known (x, GET_MODE (x));
8605 return MAX (1,
8606 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8609 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8611 #ifndef WORD_REGISTER_OPERATIONS
8612 /* If this machine does not do all register operations on the entire
8613 register and MODE is wider than the mode of X, we can say nothing
8614 at all about the high-order bits. */
8615 return 1;
8616 #else
8617 /* Likewise on machines that do, if the mode of the object is smaller
8618 than a word and loads of that size don't sign extend, we can say
8619 nothing about the high order bits. */
8620 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8621 #ifdef LOAD_EXTEND_OP
8622 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8623 #endif
8625 return 1;
8626 #endif
8629 switch (code)
8631 case REG:
8633 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8634 /* If pointers extend signed and this is a pointer in Pmode, say that
8635 all the bits above ptr_mode are known to be sign bit copies. */
8636 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8637 && REG_POINTER (x))
8638 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8639 #endif
8641 if (reg_stat[REGNO (x)].last_set_value != 0
8642 && reg_stat[REGNO (x)].last_set_mode == mode
8643 && (reg_stat[REGNO (x)].last_set_label == label_tick
8644 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8645 && REG_N_SETS (REGNO (x)) == 1
8646 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8647 REGNO (x))))
8648 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8649 return reg_stat[REGNO (x)].last_set_sign_bit_copies;
8651 tem = get_last_value (x);
8652 if (tem != 0)
8653 return num_sign_bit_copies_with_known (tem, mode);
8655 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8656 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8657 return reg_stat[REGNO (x)].sign_bit_copies;
8658 break;
8660 case MEM:
8661 #ifdef LOAD_EXTEND_OP
8662 /* Some RISC machines sign-extend all loads of smaller than a word. */
8663 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8664 return MAX (1, ((int) bitwidth
8665 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8666 #endif
8667 break;
8669 case CONST_INT:
8670 /* If the constant is negative, take its 1's complement and remask.
8671 Then see how many zero bits we have. */
8672 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8673 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8674 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8675 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8677 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8679 case SUBREG:
8680 /* If this is a SUBREG for a promoted object that is sign-extended
8681 and we are looking at it in a wider mode, we know that at least the
8682 high-order bits are known to be sign bit copies. */
8684 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8686 num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8687 return MAX ((int) bitwidth
8688 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8689 num0);
8692 /* For a smaller object, just ignore the high bits. */
8693 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8695 num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), VOIDmode);
8696 return MAX (1, (num0
8697 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8698 - bitwidth)));
8701 #ifdef WORD_REGISTER_OPERATIONS
8702 #ifdef LOAD_EXTEND_OP
8703 /* For paradoxical SUBREGs on machines where all register operations
8704 affect the entire register, just look inside. Note that we are
8705 passing MODE to the recursive call, so the number of sign bit copies
8706 will remain relative to that mode, not the inner mode. */
8708 /* This works only if loads sign extend. Otherwise, if we get a
8709 reload for the inner part, it may be loaded from the stack, and
8710 then we lose all sign bit copies that existed before the store
8711 to the stack. */
8713 if ((GET_MODE_SIZE (GET_MODE (x))
8714 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8715 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8716 && GET_CODE (SUBREG_REG (x)) == MEM)
8717 return num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8718 #endif
8719 #endif
8720 break;
8722 case SIGN_EXTRACT:
8723 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8724 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8725 break;
8727 case SIGN_EXTEND:
8728 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8729 + num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode));
8731 case TRUNCATE:
8732 /* For a smaller object, just ignore the high bits. */
8733 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode);
8734 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8735 - bitwidth)));
8737 case NOT:
8738 return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8740 case ROTATE: case ROTATERT:
8741 /* If we are rotating left by a number of bits less than the number
8742 of sign bit copies, we can just subtract that amount from the
8743 number. */
8744 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8745 && INTVAL (XEXP (x, 1)) >= 0
8746 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8748 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8749 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8750 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8752 break;
8754 case NEG:
8755 /* In general, this subtracts one sign bit copy. But if the value
8756 is known to be positive, the number of sign bit copies is the
8757 same as that of the input. Finally, if the input has just one bit
8758 that might be nonzero, all the bits are copies of the sign bit. */
8759 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8760 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8761 return num0 > 1 ? num0 - 1 : 1;
8763 nonzero = nonzero_bits (XEXP (x, 0), mode);
8764 if (nonzero == 1)
8765 return bitwidth;
8767 if (num0 > 1
8768 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8769 num0--;
8771 return num0;
8773 case IOR: case AND: case XOR:
8774 case SMIN: case SMAX: case UMIN: case UMAX:
8775 /* Logical operations will preserve the number of sign-bit copies.
8776 MIN and MAX operations always return one of the operands. */
8777 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8778 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8779 return MIN (num0, num1);
8781 case PLUS: case MINUS:
8782 /* For addition and subtraction, we can have a 1-bit carry. However,
8783 if we are subtracting 1 from a positive number, there will not
8784 be such a carry. Furthermore, if the positive number is known to
8785 be 0 or 1, we know the result is either -1 or 0. */
8787 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8788 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8790 nonzero = nonzero_bits (XEXP (x, 0), mode);
8791 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8792 return (nonzero == 1 || nonzero == 0 ? bitwidth
8793 : bitwidth - floor_log2 (nonzero) - 1);
8796 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8797 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8798 result = MAX (1, MIN (num0, num1) - 1);
8800 #ifdef POINTERS_EXTEND_UNSIGNED
8801 /* If pointers extend signed and this is an addition or subtraction
8802 to a pointer in Pmode, all the bits above ptr_mode are known to be
8803 sign bit copies. */
8804 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8805 && (code == PLUS || code == MINUS)
8806 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8807 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8808 - GET_MODE_BITSIZE (ptr_mode) + 1),
8809 result);
8810 #endif
8811 return result;
8813 case MULT:
8814 /* The number of bits of the product is the sum of the number of
8815 bits of both terms. However, unless one of the terms if known
8816 to be positive, we must allow for an additional bit since negating
8817 a negative number can remove one sign bit copy. */
8819 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8820 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8822 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8823 if (result > 0
8824 && (bitwidth > HOST_BITS_PER_WIDE_INT
8825 || (((nonzero_bits (XEXP (x, 0), mode)
8826 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8827 && ((nonzero_bits (XEXP (x, 1), mode)
8828 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8829 result--;
8831 return MAX (1, result);
8833 case UDIV:
8834 /* The result must be <= the first operand. If the first operand
8835 has the high bit set, we know nothing about the number of sign
8836 bit copies. */
8837 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8838 return 1;
8839 else if ((nonzero_bits (XEXP (x, 0), mode)
8840 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8841 return 1;
8842 else
8843 return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8845 case UMOD:
8846 /* The result must be <= the second operand. */
8847 return num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8849 case DIV:
8850 /* Similar to unsigned division, except that we have to worry about
8851 the case where the divisor is negative, in which case we have
8852 to add 1. */
8853 result = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8854 if (result > 1
8855 && (bitwidth > HOST_BITS_PER_WIDE_INT
8856 || (nonzero_bits (XEXP (x, 1), mode)
8857 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8858 result--;
8860 return result;
8862 case MOD:
8863 result = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8864 if (result > 1
8865 && (bitwidth > HOST_BITS_PER_WIDE_INT
8866 || (nonzero_bits (XEXP (x, 1), mode)
8867 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8868 result--;
8870 return result;
8872 case ASHIFTRT:
8873 /* Shifts by a constant add to the number of bits equal to the
8874 sign bit. */
8875 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8876 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8877 && INTVAL (XEXP (x, 1)) > 0)
8878 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8880 return num0;
8882 case ASHIFT:
8883 /* Left shifts destroy copies. */
8884 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8885 || INTVAL (XEXP (x, 1)) < 0
8886 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8887 return 1;
8889 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8890 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8892 case IF_THEN_ELSE:
8893 num0 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8894 num1 = num_sign_bit_copies_with_known (XEXP (x, 2), mode);
8895 return MIN (num0, num1);
8897 case EQ: case NE: case GE: case GT: case LE: case LT:
8898 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8899 case GEU: case GTU: case LEU: case LTU:
8900 case UNORDERED: case ORDERED:
8901 /* If the constant is negative, take its 1's complement and remask.
8902 Then see how many zero bits we have. */
8903 nonzero = STORE_FLAG_VALUE;
8904 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8905 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8906 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8908 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8909 break;
8911 default:
8912 break;
8915 /* If we haven't been able to figure it out by one of the above rules,
8916 see if some of the high-order bits are known to be zero. If so,
8917 count those bits and return one less than that amount. If we can't
8918 safely compute the mask for this mode, always return BITWIDTH. */
8920 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8921 return 1;
8923 nonzero = nonzero_bits (x, mode);
8924 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8925 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8928 /* Return the number of "extended" bits there are in X, when interpreted
8929 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8930 unsigned quantities, this is the number of high-order zero bits.
8931 For signed quantities, this is the number of copies of the sign bit
8932 minus 1. In both case, this function returns the number of "spare"
8933 bits. For example, if two quantities for which this function returns
8934 at least 1 are added, the addition is known not to overflow.
8936 This function will always return 0 unless called during combine, which
8937 implies that it must be called from a define_split. */
8939 unsigned int
8940 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8942 if (nonzero_sign_valid == 0)
8943 return 0;
8945 return (unsignedp
8946 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8947 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8948 - floor_log2 (nonzero_bits (x, mode)))
8949 : 0)
8950 : num_sign_bit_copies (x, mode) - 1);
8953 /* This function is called from `simplify_shift_const' to merge two
8954 outer operations. Specifically, we have already found that we need
8955 to perform operation *POP0 with constant *PCONST0 at the outermost
8956 position. We would now like to also perform OP1 with constant CONST1
8957 (with *POP0 being done last).
8959 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8960 the resulting operation. *PCOMP_P is set to 1 if we would need to
8961 complement the innermost operand, otherwise it is unchanged.
8963 MODE is the mode in which the operation will be done. No bits outside
8964 the width of this mode matter. It is assumed that the width of this mode
8965 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8967 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8968 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8969 result is simply *PCONST0.
8971 If the resulting operation cannot be expressed as one operation, we
8972 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8974 static int
8975 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8977 enum rtx_code op0 = *pop0;
8978 HOST_WIDE_INT const0 = *pconst0;
8980 const0 &= GET_MODE_MASK (mode);
8981 const1 &= GET_MODE_MASK (mode);
8983 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8984 if (op0 == AND)
8985 const1 &= const0;
8987 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8988 if OP0 is SET. */
8990 if (op1 == NIL || op0 == SET)
8991 return 1;
8993 else if (op0 == NIL)
8994 op0 = op1, const0 = const1;
8996 else if (op0 == op1)
8998 switch (op0)
9000 case AND:
9001 const0 &= const1;
9002 break;
9003 case IOR:
9004 const0 |= const1;
9005 break;
9006 case XOR:
9007 const0 ^= const1;
9008 break;
9009 case PLUS:
9010 const0 += const1;
9011 break;
9012 case NEG:
9013 op0 = NIL;
9014 break;
9015 default:
9016 break;
9020 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9021 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9022 return 0;
9024 /* If the two constants aren't the same, we can't do anything. The
9025 remaining six cases can all be done. */
9026 else if (const0 != const1)
9027 return 0;
9029 else
9030 switch (op0)
9032 case IOR:
9033 if (op1 == AND)
9034 /* (a & b) | b == b */
9035 op0 = SET;
9036 else /* op1 == XOR */
9037 /* (a ^ b) | b == a | b */
9039 break;
9041 case XOR:
9042 if (op1 == AND)
9043 /* (a & b) ^ b == (~a) & b */
9044 op0 = AND, *pcomp_p = 1;
9045 else /* op1 == IOR */
9046 /* (a | b) ^ b == a & ~b */
9047 op0 = AND, const0 = ~const0;
9048 break;
9050 case AND:
9051 if (op1 == IOR)
9052 /* (a | b) & b == b */
9053 op0 = SET;
9054 else /* op1 == XOR */
9055 /* (a ^ b) & b) == (~a) & b */
9056 *pcomp_p = 1;
9057 break;
9058 default:
9059 break;
9062 /* Check for NO-OP cases. */
9063 const0 &= GET_MODE_MASK (mode);
9064 if (const0 == 0
9065 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9066 op0 = NIL;
9067 else if (const0 == 0 && op0 == AND)
9068 op0 = SET;
9069 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9070 && op0 == AND)
9071 op0 = NIL;
9073 /* ??? Slightly redundant with the above mask, but not entirely.
9074 Moving this above means we'd have to sign-extend the mode mask
9075 for the final test. */
9076 const0 = trunc_int_for_mode (const0, mode);
9078 *pop0 = op0;
9079 *pconst0 = const0;
9081 return 1;
9084 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9085 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
9086 that we started with.
9088 The shift is normally computed in the widest mode we find in VAROP, as
9089 long as it isn't a different number of words than RESULT_MODE. Exceptions
9090 are ASHIFTRT and ROTATE, which are always done in their original mode, */
9092 static rtx
9093 simplify_shift_const (rtx x, enum rtx_code code,
9094 enum machine_mode result_mode, rtx varop,
9095 int orig_count)
9097 enum rtx_code orig_code = code;
9098 unsigned int count;
9099 int signed_count;
9100 enum machine_mode mode = result_mode;
9101 enum machine_mode shift_mode, tmode;
9102 unsigned int mode_words
9103 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9104 /* We form (outer_op (code varop count) (outer_const)). */
9105 enum rtx_code outer_op = NIL;
9106 HOST_WIDE_INT outer_const = 0;
9107 rtx const_rtx;
9108 int complement_p = 0;
9109 rtx new;
9111 /* Make sure and truncate the "natural" shift on the way in. We don't
9112 want to do this inside the loop as it makes it more difficult to
9113 combine shifts. */
9114 if (SHIFT_COUNT_TRUNCATED)
9115 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9117 /* If we were given an invalid count, don't do anything except exactly
9118 what was requested. */
9120 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9122 if (x)
9123 return x;
9125 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
9128 count = orig_count;
9130 /* Unless one of the branches of the `if' in this loop does a `continue',
9131 we will `break' the loop after the `if'. */
9133 while (count != 0)
9135 /* If we have an operand of (clobber (const_int 0)), just return that
9136 value. */
9137 if (GET_CODE (varop) == CLOBBER)
9138 return varop;
9140 /* If we discovered we had to complement VAROP, leave. Making a NOT
9141 here would cause an infinite loop. */
9142 if (complement_p)
9143 break;
9145 /* Convert ROTATERT to ROTATE. */
9146 if (code == ROTATERT)
9148 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9149 code = ROTATE;
9150 if (VECTOR_MODE_P (result_mode))
9151 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9152 else
9153 count = bitsize - count;
9156 /* We need to determine what mode we will do the shift in. If the
9157 shift is a right shift or a ROTATE, we must always do it in the mode
9158 it was originally done in. Otherwise, we can do it in MODE, the
9159 widest mode encountered. */
9160 shift_mode
9161 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9162 ? result_mode : mode);
9164 /* Handle cases where the count is greater than the size of the mode
9165 minus 1. For ASHIFT, use the size minus one as the count (this can
9166 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9167 take the count modulo the size. For other shifts, the result is
9168 zero.
9170 Since these shifts are being produced by the compiler by combining
9171 multiple operations, each of which are defined, we know what the
9172 result is supposed to be. */
9174 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
9176 if (code == ASHIFTRT)
9177 count = GET_MODE_BITSIZE (shift_mode) - 1;
9178 else if (code == ROTATE || code == ROTATERT)
9179 count %= GET_MODE_BITSIZE (shift_mode);
9180 else
9182 /* We can't simply return zero because there may be an
9183 outer op. */
9184 varop = const0_rtx;
9185 count = 0;
9186 break;
9190 /* An arithmetic right shift of a quantity known to be -1 or 0
9191 is a no-op. */
9192 if (code == ASHIFTRT
9193 && (num_sign_bit_copies (varop, shift_mode)
9194 == GET_MODE_BITSIZE (shift_mode)))
9196 count = 0;
9197 break;
9200 /* If we are doing an arithmetic right shift and discarding all but
9201 the sign bit copies, this is equivalent to doing a shift by the
9202 bitsize minus one. Convert it into that shift because it will often
9203 allow other simplifications. */
9205 if (code == ASHIFTRT
9206 && (count + num_sign_bit_copies (varop, shift_mode)
9207 >= GET_MODE_BITSIZE (shift_mode)))
9208 count = GET_MODE_BITSIZE (shift_mode) - 1;
9210 /* We simplify the tests below and elsewhere by converting
9211 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9212 `make_compound_operation' will convert it to an ASHIFTRT for
9213 those machines (such as VAX) that don't have an LSHIFTRT. */
9214 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9215 && code == ASHIFTRT
9216 && ((nonzero_bits (varop, shift_mode)
9217 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9218 == 0))
9219 code = LSHIFTRT;
9221 if (code == LSHIFTRT
9222 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9223 && !(nonzero_bits (varop, shift_mode) >> count))
9224 varop = const0_rtx;
9225 if (code == ASHIFT
9226 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9227 && !((nonzero_bits (varop, shift_mode) << count)
9228 & GET_MODE_MASK (shift_mode)))
9229 varop = const0_rtx;
9231 switch (GET_CODE (varop))
9233 case SIGN_EXTEND:
9234 case ZERO_EXTEND:
9235 case SIGN_EXTRACT:
9236 case ZERO_EXTRACT:
9237 new = expand_compound_operation (varop);
9238 if (new != varop)
9240 varop = new;
9241 continue;
9243 break;
9245 case MEM:
9246 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9247 minus the width of a smaller mode, we can do this with a
9248 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9249 if ((code == ASHIFTRT || code == LSHIFTRT)
9250 && ! mode_dependent_address_p (XEXP (varop, 0))
9251 && ! MEM_VOLATILE_P (varop)
9252 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9253 MODE_INT, 1)) != BLKmode)
9255 new = adjust_address_nv (varop, tmode,
9256 BYTES_BIG_ENDIAN ? 0
9257 : count / BITS_PER_UNIT);
9259 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9260 : ZERO_EXTEND, mode, new);
9261 count = 0;
9262 continue;
9264 break;
9266 case USE:
9267 /* Similar to the case above, except that we can only do this if
9268 the resulting mode is the same as that of the underlying
9269 MEM and adjust the address depending on the *bits* endianness
9270 because of the way that bit-field extract insns are defined. */
9271 if ((code == ASHIFTRT || code == LSHIFTRT)
9272 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9273 MODE_INT, 1)) != BLKmode
9274 && tmode == GET_MODE (XEXP (varop, 0)))
9276 if (BITS_BIG_ENDIAN)
9277 new = XEXP (varop, 0);
9278 else
9280 new = copy_rtx (XEXP (varop, 0));
9281 SUBST (XEXP (new, 0),
9282 plus_constant (XEXP (new, 0),
9283 count / BITS_PER_UNIT));
9286 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9287 : ZERO_EXTEND, mode, new);
9288 count = 0;
9289 continue;
9291 break;
9293 case SUBREG:
9294 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9295 the same number of words as what we've seen so far. Then store
9296 the widest mode in MODE. */
9297 if (subreg_lowpart_p (varop)
9298 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9299 > GET_MODE_SIZE (GET_MODE (varop)))
9300 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9301 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9302 == mode_words)
9304 varop = SUBREG_REG (varop);
9305 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9306 mode = GET_MODE (varop);
9307 continue;
9309 break;
9311 case MULT:
9312 /* Some machines use MULT instead of ASHIFT because MULT
9313 is cheaper. But it is still better on those machines to
9314 merge two shifts into one. */
9315 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9316 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9318 varop
9319 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9320 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9321 continue;
9323 break;
9325 case UDIV:
9326 /* Similar, for when divides are cheaper. */
9327 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9328 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9330 varop
9331 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9332 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9333 continue;
9335 break;
9337 case ASHIFTRT:
9338 /* If we are extracting just the sign bit of an arithmetic
9339 right shift, that shift is not needed. However, the sign
9340 bit of a wider mode may be different from what would be
9341 interpreted as the sign bit in a narrower mode, so, if
9342 the result is narrower, don't discard the shift. */
9343 if (code == LSHIFTRT
9344 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9345 && (GET_MODE_BITSIZE (result_mode)
9346 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9348 varop = XEXP (varop, 0);
9349 continue;
9352 /* ... fall through ... */
9354 case LSHIFTRT:
9355 case ASHIFT:
9356 case ROTATE:
9357 /* Here we have two nested shifts. The result is usually the
9358 AND of a new shift with a mask. We compute the result below. */
9359 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9360 && INTVAL (XEXP (varop, 1)) >= 0
9361 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9362 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9363 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9365 enum rtx_code first_code = GET_CODE (varop);
9366 unsigned int first_count = INTVAL (XEXP (varop, 1));
9367 unsigned HOST_WIDE_INT mask;
9368 rtx mask_rtx;
9370 /* We have one common special case. We can't do any merging if
9371 the inner code is an ASHIFTRT of a smaller mode. However, if
9372 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9373 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9374 we can convert it to
9375 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9376 This simplifies certain SIGN_EXTEND operations. */
9377 if (code == ASHIFT && first_code == ASHIFTRT
9378 && count == (unsigned int)
9379 (GET_MODE_BITSIZE (result_mode)
9380 - GET_MODE_BITSIZE (GET_MODE (varop))))
9382 /* C3 has the low-order C1 bits zero. */
9384 mask = (GET_MODE_MASK (mode)
9385 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9387 varop = simplify_and_const_int (NULL_RTX, result_mode,
9388 XEXP (varop, 0), mask);
9389 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9390 varop, count);
9391 count = first_count;
9392 code = ASHIFTRT;
9393 continue;
9396 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9397 than C1 high-order bits equal to the sign bit, we can convert
9398 this to either an ASHIFT or an ASHIFTRT depending on the
9399 two counts.
9401 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9403 if (code == ASHIFTRT && first_code == ASHIFT
9404 && GET_MODE (varop) == shift_mode
9405 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9406 > first_count))
9408 varop = XEXP (varop, 0);
9410 signed_count = count - first_count;
9411 if (signed_count < 0)
9412 count = -signed_count, code = ASHIFT;
9413 else
9414 count = signed_count;
9416 continue;
9419 /* There are some cases we can't do. If CODE is ASHIFTRT,
9420 we can only do this if FIRST_CODE is also ASHIFTRT.
9422 We can't do the case when CODE is ROTATE and FIRST_CODE is
9423 ASHIFTRT.
9425 If the mode of this shift is not the mode of the outer shift,
9426 we can't do this if either shift is a right shift or ROTATE.
9428 Finally, we can't do any of these if the mode is too wide
9429 unless the codes are the same.
9431 Handle the case where the shift codes are the same
9432 first. */
9434 if (code == first_code)
9436 if (GET_MODE (varop) != result_mode
9437 && (code == ASHIFTRT || code == LSHIFTRT
9438 || code == ROTATE))
9439 break;
9441 count += first_count;
9442 varop = XEXP (varop, 0);
9443 continue;
9446 if (code == ASHIFTRT
9447 || (code == ROTATE && first_code == ASHIFTRT)
9448 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9449 || (GET_MODE (varop) != result_mode
9450 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9451 || first_code == ROTATE
9452 || code == ROTATE)))
9453 break;
9455 /* To compute the mask to apply after the shift, shift the
9456 nonzero bits of the inner shift the same way the
9457 outer shift will. */
9459 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9461 mask_rtx
9462 = simplify_binary_operation (code, result_mode, mask_rtx,
9463 GEN_INT (count));
9465 /* Give up if we can't compute an outer operation to use. */
9466 if (mask_rtx == 0
9467 || GET_CODE (mask_rtx) != CONST_INT
9468 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9469 INTVAL (mask_rtx),
9470 result_mode, &complement_p))
9471 break;
9473 /* If the shifts are in the same direction, we add the
9474 counts. Otherwise, we subtract them. */
9475 signed_count = count;
9476 if ((code == ASHIFTRT || code == LSHIFTRT)
9477 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9478 signed_count += first_count;
9479 else
9480 signed_count -= first_count;
9482 /* If COUNT is positive, the new shift is usually CODE,
9483 except for the two exceptions below, in which case it is
9484 FIRST_CODE. If the count is negative, FIRST_CODE should
9485 always be used */
9486 if (signed_count > 0
9487 && ((first_code == ROTATE && code == ASHIFT)
9488 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9489 code = first_code, count = signed_count;
9490 else if (signed_count < 0)
9491 code = first_code, count = -signed_count;
9492 else
9493 count = signed_count;
9495 varop = XEXP (varop, 0);
9496 continue;
9499 /* If we have (A << B << C) for any shift, we can convert this to
9500 (A << C << B). This wins if A is a constant. Only try this if
9501 B is not a constant. */
9503 else if (GET_CODE (varop) == code
9504 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9505 && 0 != (new
9506 = simplify_binary_operation (code, mode,
9507 XEXP (varop, 0),
9508 GEN_INT (count))))
9510 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9511 count = 0;
9512 continue;
9514 break;
9516 case NOT:
9517 /* Make this fit the case below. */
9518 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9519 GEN_INT (GET_MODE_MASK (mode)));
9520 continue;
9522 case IOR:
9523 case AND:
9524 case XOR:
9525 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9526 with C the size of VAROP - 1 and the shift is logical if
9527 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9528 we have an (le X 0) operation. If we have an arithmetic shift
9529 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9530 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9532 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9533 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9534 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9535 && (code == LSHIFTRT || code == ASHIFTRT)
9536 && count == (unsigned int)
9537 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9538 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9540 count = 0;
9541 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9542 const0_rtx);
9544 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9545 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9547 continue;
9550 /* If we have (shift (logical)), move the logical to the outside
9551 to allow it to possibly combine with another logical and the
9552 shift to combine with another shift. This also canonicalizes to
9553 what a ZERO_EXTRACT looks like. Also, some machines have
9554 (and (shift)) insns. */
9556 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9557 /* We can't do this if we have (ashiftrt (xor)) and the
9558 constant has its sign bit set in shift_mode. */
9559 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9560 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9561 shift_mode))
9562 && (new = simplify_binary_operation (code, result_mode,
9563 XEXP (varop, 1),
9564 GEN_INT (count))) != 0
9565 && GET_CODE (new) == CONST_INT
9566 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9567 INTVAL (new), result_mode, &complement_p))
9569 varop = XEXP (varop, 0);
9570 continue;
9573 /* If we can't do that, try to simplify the shift in each arm of the
9574 logical expression, make a new logical expression, and apply
9575 the inverse distributive law. This also can't be done
9576 for some (ashiftrt (xor)). */
9577 if (code != ASHIFTRT || GET_CODE (varop)!= XOR
9578 || 0 <= trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9579 shift_mode))
9581 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9582 XEXP (varop, 0), count);
9583 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9584 XEXP (varop, 1), count);
9586 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9587 varop = apply_distributive_law (varop);
9589 count = 0;
9591 break;
9593 case EQ:
9594 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9595 says that the sign bit can be tested, FOO has mode MODE, C is
9596 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9597 that may be nonzero. */
9598 if (code == LSHIFTRT
9599 && XEXP (varop, 1) == const0_rtx
9600 && GET_MODE (XEXP (varop, 0)) == result_mode
9601 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9602 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9603 && ((STORE_FLAG_VALUE
9604 & ((HOST_WIDE_INT) 1
9605 < (GET_MODE_BITSIZE (result_mode) - 1))))
9606 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9607 && merge_outer_ops (&outer_op, &outer_const, XOR,
9608 (HOST_WIDE_INT) 1, result_mode,
9609 &complement_p))
9611 varop = XEXP (varop, 0);
9612 count = 0;
9613 continue;
9615 break;
9617 case NEG:
9618 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9619 than the number of bits in the mode is equivalent to A. */
9620 if (code == LSHIFTRT
9621 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9622 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9624 varop = XEXP (varop, 0);
9625 count = 0;
9626 continue;
9629 /* NEG commutes with ASHIFT since it is multiplication. Move the
9630 NEG outside to allow shifts to combine. */
9631 if (code == ASHIFT
9632 && merge_outer_ops (&outer_op, &outer_const, NEG,
9633 (HOST_WIDE_INT) 0, result_mode,
9634 &complement_p))
9636 varop = XEXP (varop, 0);
9637 continue;
9639 break;
9641 case PLUS:
9642 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9643 is one less than the number of bits in the mode is
9644 equivalent to (xor A 1). */
9645 if (code == LSHIFTRT
9646 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9647 && XEXP (varop, 1) == constm1_rtx
9648 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9649 && merge_outer_ops (&outer_op, &outer_const, XOR,
9650 (HOST_WIDE_INT) 1, result_mode,
9651 &complement_p))
9653 count = 0;
9654 varop = XEXP (varop, 0);
9655 continue;
9658 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9659 that might be nonzero in BAR are those being shifted out and those
9660 bits are known zero in FOO, we can replace the PLUS with FOO.
9661 Similarly in the other operand order. This code occurs when
9662 we are computing the size of a variable-size array. */
9664 if ((code == ASHIFTRT || code == LSHIFTRT)
9665 && count < HOST_BITS_PER_WIDE_INT
9666 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9667 && (nonzero_bits (XEXP (varop, 1), result_mode)
9668 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9670 varop = XEXP (varop, 0);
9671 continue;
9673 else if ((code == ASHIFTRT || code == LSHIFTRT)
9674 && count < HOST_BITS_PER_WIDE_INT
9675 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9676 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9677 >> count)
9678 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9679 & nonzero_bits (XEXP (varop, 1),
9680 result_mode)))
9682 varop = XEXP (varop, 1);
9683 continue;
9686 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9687 if (code == ASHIFT
9688 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9689 && (new = simplify_binary_operation (ASHIFT, result_mode,
9690 XEXP (varop, 1),
9691 GEN_INT (count))) != 0
9692 && GET_CODE (new) == CONST_INT
9693 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9694 INTVAL (new), result_mode, &complement_p))
9696 varop = XEXP (varop, 0);
9697 continue;
9699 break;
9701 case MINUS:
9702 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9703 with C the size of VAROP - 1 and the shift is logical if
9704 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9705 we have a (gt X 0) operation. If the shift is arithmetic with
9706 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9707 we have a (neg (gt X 0)) operation. */
9709 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9710 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9711 && count == (unsigned int)
9712 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9713 && (code == LSHIFTRT || code == ASHIFTRT)
9714 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9715 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9716 == count
9717 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9719 count = 0;
9720 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9721 const0_rtx);
9723 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9724 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9726 continue;
9728 break;
9730 case TRUNCATE:
9731 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9732 if the truncate does not affect the value. */
9733 if (code == LSHIFTRT
9734 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9735 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9736 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9737 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9738 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9740 rtx varop_inner = XEXP (varop, 0);
9742 varop_inner
9743 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9744 XEXP (varop_inner, 0),
9745 GEN_INT
9746 (count + INTVAL (XEXP (varop_inner, 1))));
9747 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9748 count = 0;
9749 continue;
9751 break;
9753 default:
9754 break;
9757 break;
9760 /* We need to determine what mode to do the shift in. If the shift is
9761 a right shift or ROTATE, we must always do it in the mode it was
9762 originally done in. Otherwise, we can do it in MODE, the widest mode
9763 encountered. The code we care about is that of the shift that will
9764 actually be done, not the shift that was originally requested. */
9765 shift_mode
9766 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9767 ? result_mode : mode);
9769 /* We have now finished analyzing the shift. The result should be
9770 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9771 OUTER_OP is non-NIL, it is an operation that needs to be applied
9772 to the result of the shift. OUTER_CONST is the relevant constant,
9773 but we must turn off all bits turned off in the shift.
9775 If we were passed a value for X, see if we can use any pieces of
9776 it. If not, make new rtx. */
9778 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9779 && GET_CODE (XEXP (x, 1)) == CONST_INT
9780 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9781 const_rtx = XEXP (x, 1);
9782 else
9783 const_rtx = GEN_INT (count);
9785 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9786 && GET_MODE (XEXP (x, 0)) == shift_mode
9787 && SUBREG_REG (XEXP (x, 0)) == varop)
9788 varop = XEXP (x, 0);
9789 else if (GET_MODE (varop) != shift_mode)
9790 varop = gen_lowpart (shift_mode, varop);
9792 /* If we can't make the SUBREG, try to return what we were given. */
9793 if (GET_CODE (varop) == CLOBBER)
9794 return x ? x : varop;
9796 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9797 if (new != 0)
9798 x = new;
9799 else
9800 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9802 /* If we have an outer operation and we just made a shift, it is
9803 possible that we could have simplified the shift were it not
9804 for the outer operation. So try to do the simplification
9805 recursively. */
9807 if (outer_op != NIL && GET_CODE (x) == code
9808 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9809 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9810 INTVAL (XEXP (x, 1)));
9812 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9813 turn off all the bits that the shift would have turned off. */
9814 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9815 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9816 GET_MODE_MASK (result_mode) >> orig_count);
9818 /* Do the remainder of the processing in RESULT_MODE. */
9819 x = gen_lowpart (result_mode, x);
9821 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9822 operation. */
9823 if (complement_p)
9824 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9826 if (outer_op != NIL)
9828 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9829 outer_const = trunc_int_for_mode (outer_const, result_mode);
9831 if (outer_op == AND)
9832 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9833 else if (outer_op == SET)
9834 /* This means that we have determined that the result is
9835 equivalent to a constant. This should be rare. */
9836 x = GEN_INT (outer_const);
9837 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9838 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9839 else
9840 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9843 return x;
9846 /* Like recog, but we receive the address of a pointer to a new pattern.
9847 We try to match the rtx that the pointer points to.
9848 If that fails, we may try to modify or replace the pattern,
9849 storing the replacement into the same pointer object.
9851 Modifications include deletion or addition of CLOBBERs.
9853 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9854 the CLOBBERs are placed.
9856 The value is the final insn code from the pattern ultimately matched,
9857 or -1. */
9859 static int
9860 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9862 rtx pat = *pnewpat;
9863 int insn_code_number;
9864 int num_clobbers_to_add = 0;
9865 int i;
9866 rtx notes = 0;
9867 rtx old_notes, old_pat;
9869 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9870 we use to indicate that something didn't match. If we find such a
9871 thing, force rejection. */
9872 if (GET_CODE (pat) == PARALLEL)
9873 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9874 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9875 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9876 return -1;
9878 old_pat = PATTERN (insn);
9879 old_notes = REG_NOTES (insn);
9880 PATTERN (insn) = pat;
9881 REG_NOTES (insn) = 0;
9883 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9885 /* If it isn't, there is the possibility that we previously had an insn
9886 that clobbered some register as a side effect, but the combined
9887 insn doesn't need to do that. So try once more without the clobbers
9888 unless this represents an ASM insn. */
9890 if (insn_code_number < 0 && ! check_asm_operands (pat)
9891 && GET_CODE (pat) == PARALLEL)
9893 int pos;
9895 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9896 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9898 if (i != pos)
9899 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9900 pos++;
9903 SUBST_INT (XVECLEN (pat, 0), pos);
9905 if (pos == 1)
9906 pat = XVECEXP (pat, 0, 0);
9908 PATTERN (insn) = pat;
9909 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9911 PATTERN (insn) = old_pat;
9912 REG_NOTES (insn) = old_notes;
9914 /* Recognize all noop sets, these will be killed by followup pass. */
9915 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9916 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9918 /* If we had any clobbers to add, make a new pattern than contains
9919 them. Then check to make sure that all of them are dead. */
9920 if (num_clobbers_to_add)
9922 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9923 rtvec_alloc (GET_CODE (pat) == PARALLEL
9924 ? (XVECLEN (pat, 0)
9925 + num_clobbers_to_add)
9926 : num_clobbers_to_add + 1));
9928 if (GET_CODE (pat) == PARALLEL)
9929 for (i = 0; i < XVECLEN (pat, 0); i++)
9930 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9931 else
9932 XVECEXP (newpat, 0, 0) = pat;
9934 add_clobbers (newpat, insn_code_number);
9936 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9937 i < XVECLEN (newpat, 0); i++)
9939 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9940 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9941 return -1;
9942 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9943 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9945 pat = newpat;
9948 *pnewpat = pat;
9949 *pnotes = notes;
9951 return insn_code_number;
9954 /* Like gen_lowpart_general but for use by combine. In combine it
9955 is not possible to create any new pseudoregs. However, it is
9956 safe to create invalid memory addresses, because combine will
9957 try to recognize them and all they will do is make the combine
9958 attempt fail.
9960 If for some reason this cannot do its job, an rtx
9961 (clobber (const_int 0)) is returned.
9962 An insn containing that will not be recognized. */
9964 static rtx
9965 gen_lowpart_for_combine (enum machine_mode mode, rtx x)
9967 rtx result;
9969 if (GET_MODE (x) == mode)
9970 return x;
9972 /* Return identity if this is a CONST or symbolic
9973 reference. */
9974 if (mode == Pmode
9975 && (GET_CODE (x) == CONST
9976 || GET_CODE (x) == SYMBOL_REF
9977 || GET_CODE (x) == LABEL_REF))
9978 return x;
9980 /* We can only support MODE being wider than a word if X is a
9981 constant integer or has a mode the same size. */
9983 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9984 && ! ((GET_MODE (x) == VOIDmode
9985 && (GET_CODE (x) == CONST_INT
9986 || GET_CODE (x) == CONST_DOUBLE))
9987 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9988 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9990 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9991 won't know what to do. So we will strip off the SUBREG here and
9992 process normally. */
9993 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9995 x = SUBREG_REG (x);
9996 if (GET_MODE (x) == mode)
9997 return x;
10000 result = gen_lowpart_common (mode, x);
10001 #ifdef CANNOT_CHANGE_MODE_CLASS
10002 if (result != 0
10003 && GET_CODE (result) == SUBREG
10004 && GET_CODE (SUBREG_REG (result)) == REG
10005 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER)
10006 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (result))
10007 * MAX_MACHINE_MODE
10008 + GET_MODE (result));
10009 #endif
10011 if (result)
10012 return result;
10014 if (GET_CODE (x) == MEM)
10016 int offset = 0;
10018 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10019 address. */
10020 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10021 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10023 /* If we want to refer to something bigger than the original memref,
10024 generate a paradoxical subreg instead. That will force a reload
10025 of the original memref X. */
10026 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
10027 return gen_rtx_SUBREG (mode, x, 0);
10029 if (WORDS_BIG_ENDIAN)
10030 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
10031 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
10033 if (BYTES_BIG_ENDIAN)
10035 /* Adjust the address so that the address-after-the-data is
10036 unchanged. */
10037 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
10038 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
10041 return adjust_address_nv (x, mode, offset);
10044 /* If X is a comparison operator, rewrite it in a new mode. This
10045 probably won't match, but may allow further simplifications. */
10046 else if (COMPARISON_P (x))
10047 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
10049 /* If we couldn't simplify X any other way, just enclose it in a
10050 SUBREG. Normally, this SUBREG won't match, but some patterns may
10051 include an explicit SUBREG or we may simplify it further in combine. */
10052 else
10054 int offset = 0;
10055 rtx res;
10056 enum machine_mode sub_mode = GET_MODE (x);
10058 offset = subreg_lowpart_offset (mode, sub_mode);
10059 if (sub_mode == VOIDmode)
10061 sub_mode = int_mode_for_mode (mode);
10062 x = gen_lowpart_common (sub_mode, x);
10063 if (x == 0)
10064 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
10066 res = simplify_gen_subreg (mode, x, sub_mode, offset);
10067 if (res)
10068 return res;
10069 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10073 /* These routines make binary and unary operations by first seeing if they
10074 fold; if not, a new expression is allocated. */
10076 static rtx
10077 gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0, rtx op1)
10079 rtx result;
10080 rtx tem;
10082 if (GET_CODE (op0) == CLOBBER)
10083 return op0;
10084 else if (GET_CODE (op1) == CLOBBER)
10085 return op1;
10087 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
10088 && swap_commutative_operands_p (op0, op1))
10089 tem = op0, op0 = op1, op1 = tem;
10091 if (GET_RTX_CLASS (code) == RTX_COMPARE
10092 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
10094 enum machine_mode op_mode = GET_MODE (op0);
10096 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
10097 just (REL_OP X Y). */
10098 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
10100 op1 = XEXP (op0, 1);
10101 op0 = XEXP (op0, 0);
10102 op_mode = GET_MODE (op0);
10105 if (op_mode == VOIDmode)
10106 op_mode = GET_MODE (op1);
10107 result = simplify_relational_operation (code, mode, op_mode, op0, op1);
10109 else
10110 result = simplify_binary_operation (code, mode, op0, op1);
10112 if (result)
10113 return result;
10115 /* Put complex operands first and constants second. */
10116 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
10117 && swap_commutative_operands_p (op0, op1))
10118 return gen_rtx_fmt_ee (code, mode, op1, op0);
10120 /* If we are turning off bits already known off in OP0, we need not do
10121 an AND. */
10122 else if (code == AND && GET_CODE (op1) == CONST_INT
10123 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10124 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
10125 return op0;
10127 return gen_rtx_fmt_ee (code, mode, op0, op1);
10130 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10131 comparison code that will be tested.
10133 The result is a possibly different comparison code to use. *POP0 and
10134 *POP1 may be updated.
10136 It is possible that we might detect that a comparison is either always
10137 true or always false. However, we do not perform general constant
10138 folding in combine, so this knowledge isn't useful. Such tautologies
10139 should have been detected earlier. Hence we ignore all such cases. */
10141 static enum rtx_code
10142 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10144 rtx op0 = *pop0;
10145 rtx op1 = *pop1;
10146 rtx tem, tem1;
10147 int i;
10148 enum machine_mode mode, tmode;
10150 /* Try a few ways of applying the same transformation to both operands. */
10151 while (1)
10153 #ifndef WORD_REGISTER_OPERATIONS
10154 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10155 so check specially. */
10156 if (code != GTU && code != GEU && code != LTU && code != LEU
10157 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10158 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10159 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10160 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10161 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10162 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10163 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10164 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10165 && XEXP (op0, 1) == XEXP (op1, 1)
10166 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10167 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10168 && (INTVAL (XEXP (op0, 1))
10169 == (GET_MODE_BITSIZE (GET_MODE (op0))
10170 - (GET_MODE_BITSIZE
10171 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10173 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10174 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10176 #endif
10178 /* If both operands are the same constant shift, see if we can ignore the
10179 shift. We can if the shift is a rotate or if the bits shifted out of
10180 this shift are known to be zero for both inputs and if the type of
10181 comparison is compatible with the shift. */
10182 if (GET_CODE (op0) == GET_CODE (op1)
10183 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10184 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10185 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10186 && (code != GT && code != LT && code != GE && code != LE))
10187 || (GET_CODE (op0) == ASHIFTRT
10188 && (code != GTU && code != LTU
10189 && code != GEU && code != LEU)))
10190 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10191 && INTVAL (XEXP (op0, 1)) >= 0
10192 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10193 && XEXP (op0, 1) == XEXP (op1, 1))
10195 enum machine_mode mode = GET_MODE (op0);
10196 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10197 int shift_count = INTVAL (XEXP (op0, 1));
10199 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10200 mask &= (mask >> shift_count) << shift_count;
10201 else if (GET_CODE (op0) == ASHIFT)
10202 mask = (mask & (mask << shift_count)) >> shift_count;
10204 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10205 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10206 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10207 else
10208 break;
10211 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10212 SUBREGs are of the same mode, and, in both cases, the AND would
10213 be redundant if the comparison was done in the narrower mode,
10214 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10215 and the operand's possibly nonzero bits are 0xffffff01; in that case
10216 if we only care about QImode, we don't need the AND). This case
10217 occurs if the output mode of an scc insn is not SImode and
10218 STORE_FLAG_VALUE == 1 (e.g., the 386).
10220 Similarly, check for a case where the AND's are ZERO_EXTEND
10221 operations from some narrower mode even though a SUBREG is not
10222 present. */
10224 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10225 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10226 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10228 rtx inner_op0 = XEXP (op0, 0);
10229 rtx inner_op1 = XEXP (op1, 0);
10230 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10231 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10232 int changed = 0;
10234 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10235 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10236 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10237 && (GET_MODE (SUBREG_REG (inner_op0))
10238 == GET_MODE (SUBREG_REG (inner_op1)))
10239 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10240 <= HOST_BITS_PER_WIDE_INT)
10241 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10242 GET_MODE (SUBREG_REG (inner_op0)))))
10243 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10244 GET_MODE (SUBREG_REG (inner_op1))))))
10246 op0 = SUBREG_REG (inner_op0);
10247 op1 = SUBREG_REG (inner_op1);
10249 /* The resulting comparison is always unsigned since we masked
10250 off the original sign bit. */
10251 code = unsigned_condition (code);
10253 changed = 1;
10256 else if (c0 == c1)
10257 for (tmode = GET_CLASS_NARROWEST_MODE
10258 (GET_MODE_CLASS (GET_MODE (op0)));
10259 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10260 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10262 op0 = gen_lowpart (tmode, inner_op0);
10263 op1 = gen_lowpart (tmode, inner_op1);
10264 code = unsigned_condition (code);
10265 changed = 1;
10266 break;
10269 if (! changed)
10270 break;
10273 /* If both operands are NOT, we can strip off the outer operation
10274 and adjust the comparison code for swapped operands; similarly for
10275 NEG, except that this must be an equality comparison. */
10276 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10277 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10278 && (code == EQ || code == NE)))
10279 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10281 else
10282 break;
10285 /* If the first operand is a constant, swap the operands and adjust the
10286 comparison code appropriately, but don't do this if the second operand
10287 is already a constant integer. */
10288 if (swap_commutative_operands_p (op0, op1))
10290 tem = op0, op0 = op1, op1 = tem;
10291 code = swap_condition (code);
10294 /* We now enter a loop during which we will try to simplify the comparison.
10295 For the most part, we only are concerned with comparisons with zero,
10296 but some things may really be comparisons with zero but not start
10297 out looking that way. */
10299 while (GET_CODE (op1) == CONST_INT)
10301 enum machine_mode mode = GET_MODE (op0);
10302 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10303 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10304 int equality_comparison_p;
10305 int sign_bit_comparison_p;
10306 int unsigned_comparison_p;
10307 HOST_WIDE_INT const_op;
10309 /* We only want to handle integral modes. This catches VOIDmode,
10310 CCmode, and the floating-point modes. An exception is that we
10311 can handle VOIDmode if OP0 is a COMPARE or a comparison
10312 operation. */
10314 if (GET_MODE_CLASS (mode) != MODE_INT
10315 && ! (mode == VOIDmode
10316 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10317 break;
10319 /* Get the constant we are comparing against and turn off all bits
10320 not on in our mode. */
10321 const_op = INTVAL (op1);
10322 if (mode != VOIDmode)
10323 const_op = trunc_int_for_mode (const_op, mode);
10324 op1 = GEN_INT (const_op);
10326 /* If we are comparing against a constant power of two and the value
10327 being compared can only have that single bit nonzero (e.g., it was
10328 `and'ed with that bit), we can replace this with a comparison
10329 with zero. */
10330 if (const_op
10331 && (code == EQ || code == NE || code == GE || code == GEU
10332 || code == LT || code == LTU)
10333 && mode_width <= HOST_BITS_PER_WIDE_INT
10334 && exact_log2 (const_op) >= 0
10335 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10337 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10338 op1 = const0_rtx, const_op = 0;
10341 /* Similarly, if we are comparing a value known to be either -1 or
10342 0 with -1, change it to the opposite comparison against zero. */
10344 if (const_op == -1
10345 && (code == EQ || code == NE || code == GT || code == LE
10346 || code == GEU || code == LTU)
10347 && num_sign_bit_copies (op0, mode) == mode_width)
10349 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10350 op1 = const0_rtx, const_op = 0;
10353 /* Do some canonicalizations based on the comparison code. We prefer
10354 comparisons against zero and then prefer equality comparisons.
10355 If we can reduce the size of a constant, we will do that too. */
10357 switch (code)
10359 case LT:
10360 /* < C is equivalent to <= (C - 1) */
10361 if (const_op > 0)
10363 const_op -= 1;
10364 op1 = GEN_INT (const_op);
10365 code = LE;
10366 /* ... fall through to LE case below. */
10368 else
10369 break;
10371 case LE:
10372 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10373 if (const_op < 0)
10375 const_op += 1;
10376 op1 = GEN_INT (const_op);
10377 code = LT;
10380 /* If we are doing a <= 0 comparison on a value known to have
10381 a zero sign bit, we can replace this with == 0. */
10382 else if (const_op == 0
10383 && mode_width <= HOST_BITS_PER_WIDE_INT
10384 && (nonzero_bits (op0, mode)
10385 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10386 code = EQ;
10387 break;
10389 case GE:
10390 /* >= C is equivalent to > (C - 1). */
10391 if (const_op > 0)
10393 const_op -= 1;
10394 op1 = GEN_INT (const_op);
10395 code = GT;
10396 /* ... fall through to GT below. */
10398 else
10399 break;
10401 case GT:
10402 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10403 if (const_op < 0)
10405 const_op += 1;
10406 op1 = GEN_INT (const_op);
10407 code = GE;
10410 /* If we are doing a > 0 comparison on a value known to have
10411 a zero sign bit, we can replace this with != 0. */
10412 else if (const_op == 0
10413 && mode_width <= HOST_BITS_PER_WIDE_INT
10414 && (nonzero_bits (op0, mode)
10415 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10416 code = NE;
10417 break;
10419 case LTU:
10420 /* < C is equivalent to <= (C - 1). */
10421 if (const_op > 0)
10423 const_op -= 1;
10424 op1 = GEN_INT (const_op);
10425 code = LEU;
10426 /* ... fall through ... */
10429 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10430 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10431 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10433 const_op = 0, op1 = const0_rtx;
10434 code = GE;
10435 break;
10437 else
10438 break;
10440 case LEU:
10441 /* unsigned <= 0 is equivalent to == 0 */
10442 if (const_op == 0)
10443 code = EQ;
10445 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10446 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10447 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10449 const_op = 0, op1 = const0_rtx;
10450 code = GE;
10452 break;
10454 case GEU:
10455 /* >= C is equivalent to < (C - 1). */
10456 if (const_op > 1)
10458 const_op -= 1;
10459 op1 = GEN_INT (const_op);
10460 code = GTU;
10461 /* ... fall through ... */
10464 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10465 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10466 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10468 const_op = 0, op1 = const0_rtx;
10469 code = LT;
10470 break;
10472 else
10473 break;
10475 case GTU:
10476 /* unsigned > 0 is equivalent to != 0 */
10477 if (const_op == 0)
10478 code = NE;
10480 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10481 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10482 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10484 const_op = 0, op1 = const0_rtx;
10485 code = LT;
10487 break;
10489 default:
10490 break;
10493 /* Compute some predicates to simplify code below. */
10495 equality_comparison_p = (code == EQ || code == NE);
10496 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10497 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10498 || code == GEU);
10500 /* If this is a sign bit comparison and we can do arithmetic in
10501 MODE, say that we will only be needing the sign bit of OP0. */
10502 if (sign_bit_comparison_p
10503 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10504 op0 = force_to_mode (op0, mode,
10505 ((HOST_WIDE_INT) 1
10506 << (GET_MODE_BITSIZE (mode) - 1)),
10507 NULL_RTX, 0);
10509 /* Now try cases based on the opcode of OP0. If none of the cases
10510 does a "continue", we exit this loop immediately after the
10511 switch. */
10513 switch (GET_CODE (op0))
10515 case ZERO_EXTRACT:
10516 /* If we are extracting a single bit from a variable position in
10517 a constant that has only a single bit set and are comparing it
10518 with zero, we can convert this into an equality comparison
10519 between the position and the location of the single bit. */
10520 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10521 have already reduced the shift count modulo the word size. */
10522 if (!SHIFT_COUNT_TRUNCATED
10523 && GET_CODE (XEXP (op0, 0)) == CONST_INT
10524 && XEXP (op0, 1) == const1_rtx
10525 && equality_comparison_p && const_op == 0
10526 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10528 if (BITS_BIG_ENDIAN)
10530 enum machine_mode new_mode
10531 = mode_for_extraction (EP_extzv, 1);
10532 if (new_mode == MAX_MACHINE_MODE)
10533 i = BITS_PER_WORD - 1 - i;
10534 else
10536 mode = new_mode;
10537 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10541 op0 = XEXP (op0, 2);
10542 op1 = GEN_INT (i);
10543 const_op = i;
10545 /* Result is nonzero iff shift count is equal to I. */
10546 code = reverse_condition (code);
10547 continue;
10550 /* ... fall through ... */
10552 case SIGN_EXTRACT:
10553 tem = expand_compound_operation (op0);
10554 if (tem != op0)
10556 op0 = tem;
10557 continue;
10559 break;
10561 case NOT:
10562 /* If testing for equality, we can take the NOT of the constant. */
10563 if (equality_comparison_p
10564 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10566 op0 = XEXP (op0, 0);
10567 op1 = tem;
10568 continue;
10571 /* If just looking at the sign bit, reverse the sense of the
10572 comparison. */
10573 if (sign_bit_comparison_p)
10575 op0 = XEXP (op0, 0);
10576 code = (code == GE ? LT : GE);
10577 continue;
10579 break;
10581 case NEG:
10582 /* If testing for equality, we can take the NEG of the constant. */
10583 if (equality_comparison_p
10584 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10586 op0 = XEXP (op0, 0);
10587 op1 = tem;
10588 continue;
10591 /* The remaining cases only apply to comparisons with zero. */
10592 if (const_op != 0)
10593 break;
10595 /* When X is ABS or is known positive,
10596 (neg X) is < 0 if and only if X != 0. */
10598 if (sign_bit_comparison_p
10599 && (GET_CODE (XEXP (op0, 0)) == ABS
10600 || (mode_width <= HOST_BITS_PER_WIDE_INT
10601 && (nonzero_bits (XEXP (op0, 0), mode)
10602 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10604 op0 = XEXP (op0, 0);
10605 code = (code == LT ? NE : EQ);
10606 continue;
10609 /* If we have NEG of something whose two high-order bits are the
10610 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10611 if (num_sign_bit_copies (op0, mode) >= 2)
10613 op0 = XEXP (op0, 0);
10614 code = swap_condition (code);
10615 continue;
10617 break;
10619 case ROTATE:
10620 /* If we are testing equality and our count is a constant, we
10621 can perform the inverse operation on our RHS. */
10622 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10623 && (tem = simplify_binary_operation (ROTATERT, mode,
10624 op1, XEXP (op0, 1))) != 0)
10626 op0 = XEXP (op0, 0);
10627 op1 = tem;
10628 continue;
10631 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10632 a particular bit. Convert it to an AND of a constant of that
10633 bit. This will be converted into a ZERO_EXTRACT. */
10634 if (const_op == 0 && sign_bit_comparison_p
10635 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10636 && mode_width <= HOST_BITS_PER_WIDE_INT)
10638 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10639 ((HOST_WIDE_INT) 1
10640 << (mode_width - 1
10641 - INTVAL (XEXP (op0, 1)))));
10642 code = (code == LT ? NE : EQ);
10643 continue;
10646 /* Fall through. */
10648 case ABS:
10649 /* ABS is ignorable inside an equality comparison with zero. */
10650 if (const_op == 0 && equality_comparison_p)
10652 op0 = XEXP (op0, 0);
10653 continue;
10655 break;
10657 case SIGN_EXTEND:
10658 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10659 to (compare FOO CONST) if CONST fits in FOO's mode and we
10660 are either testing inequality or have an unsigned comparison
10661 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10662 if (! unsigned_comparison_p
10663 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10664 <= HOST_BITS_PER_WIDE_INT)
10665 && ((unsigned HOST_WIDE_INT) const_op
10666 < (((unsigned HOST_WIDE_INT) 1
10667 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10669 op0 = XEXP (op0, 0);
10670 continue;
10672 break;
10674 case SUBREG:
10675 /* Check for the case where we are comparing A - C1 with C2,
10676 both constants are smaller than 1/2 the maximum positive
10677 value in MODE, and the comparison is equality or unsigned.
10678 In that case, if A is either zero-extended to MODE or has
10679 sufficient sign bits so that the high-order bit in MODE
10680 is a copy of the sign in the inner mode, we can prove that it is
10681 safe to do the operation in the wider mode. This simplifies
10682 many range checks. */
10684 if (mode_width <= HOST_BITS_PER_WIDE_INT
10685 && subreg_lowpart_p (op0)
10686 && GET_CODE (SUBREG_REG (op0)) == PLUS
10687 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10688 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10689 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10690 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10691 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10692 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10693 GET_MODE (SUBREG_REG (op0)))
10694 & ~GET_MODE_MASK (mode))
10695 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10696 GET_MODE (SUBREG_REG (op0)))
10697 > (unsigned int)
10698 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10699 - GET_MODE_BITSIZE (mode)))))
10701 op0 = SUBREG_REG (op0);
10702 continue;
10705 /* If the inner mode is narrower and we are extracting the low part,
10706 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10707 if (subreg_lowpart_p (op0)
10708 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10709 /* Fall through */ ;
10710 else
10711 break;
10713 /* ... fall through ... */
10715 case ZERO_EXTEND:
10716 if ((unsigned_comparison_p || equality_comparison_p)
10717 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10718 <= HOST_BITS_PER_WIDE_INT)
10719 && ((unsigned HOST_WIDE_INT) const_op
10720 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10722 op0 = XEXP (op0, 0);
10723 continue;
10725 break;
10727 case PLUS:
10728 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10729 this for equality comparisons due to pathological cases involving
10730 overflows. */
10731 if (equality_comparison_p
10732 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10733 op1, XEXP (op0, 1))))
10735 op0 = XEXP (op0, 0);
10736 op1 = tem;
10737 continue;
10740 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10741 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10742 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10744 op0 = XEXP (XEXP (op0, 0), 0);
10745 code = (code == LT ? EQ : NE);
10746 continue;
10748 break;
10750 case MINUS:
10751 /* We used to optimize signed comparisons against zero, but that
10752 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10753 arrive here as equality comparisons, or (GEU, LTU) are
10754 optimized away. No need to special-case them. */
10756 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10757 (eq B (minus A C)), whichever simplifies. We can only do
10758 this for equality comparisons due to pathological cases involving
10759 overflows. */
10760 if (equality_comparison_p
10761 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10762 XEXP (op0, 1), op1)))
10764 op0 = XEXP (op0, 0);
10765 op1 = tem;
10766 continue;
10769 if (equality_comparison_p
10770 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10771 XEXP (op0, 0), op1)))
10773 op0 = XEXP (op0, 1);
10774 op1 = tem;
10775 continue;
10778 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10779 of bits in X minus 1, is one iff X > 0. */
10780 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10781 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10782 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10783 == mode_width - 1
10784 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10786 op0 = XEXP (op0, 1);
10787 code = (code == GE ? LE : GT);
10788 continue;
10790 break;
10792 case XOR:
10793 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10794 if C is zero or B is a constant. */
10795 if (equality_comparison_p
10796 && 0 != (tem = simplify_binary_operation (XOR, mode,
10797 XEXP (op0, 1), op1)))
10799 op0 = XEXP (op0, 0);
10800 op1 = tem;
10801 continue;
10803 break;
10805 case EQ: case NE:
10806 case UNEQ: case LTGT:
10807 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10808 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10809 case UNORDERED: case ORDERED:
10810 /* We can't do anything if OP0 is a condition code value, rather
10811 than an actual data value. */
10812 if (const_op != 0
10813 || CC0_P (XEXP (op0, 0))
10814 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10815 break;
10817 /* Get the two operands being compared. */
10818 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10819 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10820 else
10821 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10823 /* Check for the cases where we simply want the result of the
10824 earlier test or the opposite of that result. */
10825 if (code == NE || code == EQ
10826 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10827 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10828 && (STORE_FLAG_VALUE
10829 & (((HOST_WIDE_INT) 1
10830 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10831 && (code == LT || code == GE)))
10833 enum rtx_code new_code;
10834 if (code == LT || code == NE)
10835 new_code = GET_CODE (op0);
10836 else
10837 new_code = combine_reversed_comparison_code (op0);
10839 if (new_code != UNKNOWN)
10841 code = new_code;
10842 op0 = tem;
10843 op1 = tem1;
10844 continue;
10847 break;
10849 case IOR:
10850 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10851 iff X <= 0. */
10852 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10853 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10854 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10856 op0 = XEXP (op0, 1);
10857 code = (code == GE ? GT : LE);
10858 continue;
10860 break;
10862 case AND:
10863 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10864 will be converted to a ZERO_EXTRACT later. */
10865 if (const_op == 0 && equality_comparison_p
10866 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10867 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10869 op0 = simplify_and_const_int
10870 (op0, mode, gen_rtx_LSHIFTRT (mode,
10871 XEXP (op0, 1),
10872 XEXP (XEXP (op0, 0), 1)),
10873 (HOST_WIDE_INT) 1);
10874 continue;
10877 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10878 zero and X is a comparison and C1 and C2 describe only bits set
10879 in STORE_FLAG_VALUE, we can compare with X. */
10880 if (const_op == 0 && equality_comparison_p
10881 && mode_width <= HOST_BITS_PER_WIDE_INT
10882 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10883 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10884 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10885 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10886 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10888 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10889 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10890 if ((~STORE_FLAG_VALUE & mask) == 0
10891 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10892 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10893 && COMPARISON_P (tem))))
10895 op0 = XEXP (XEXP (op0, 0), 0);
10896 continue;
10900 /* If we are doing an equality comparison of an AND of a bit equal
10901 to the sign bit, replace this with a LT or GE comparison of
10902 the underlying value. */
10903 if (equality_comparison_p
10904 && const_op == 0
10905 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10906 && mode_width <= HOST_BITS_PER_WIDE_INT
10907 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10908 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10910 op0 = XEXP (op0, 0);
10911 code = (code == EQ ? GE : LT);
10912 continue;
10915 /* If this AND operation is really a ZERO_EXTEND from a narrower
10916 mode, the constant fits within that mode, and this is either an
10917 equality or unsigned comparison, try to do this comparison in
10918 the narrower mode. */
10919 if ((equality_comparison_p || unsigned_comparison_p)
10920 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10921 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10922 & GET_MODE_MASK (mode))
10923 + 1)) >= 0
10924 && const_op >> i == 0
10925 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10927 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10928 continue;
10931 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10932 fits in both M1 and M2 and the SUBREG is either paradoxical
10933 or represents the low part, permute the SUBREG and the AND
10934 and try again. */
10935 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10937 unsigned HOST_WIDE_INT c1;
10938 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10939 /* Require an integral mode, to avoid creating something like
10940 (AND:SF ...). */
10941 if (SCALAR_INT_MODE_P (tmode)
10942 /* It is unsafe to commute the AND into the SUBREG if the
10943 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10944 not defined. As originally written the upper bits
10945 have a defined value due to the AND operation.
10946 However, if we commute the AND inside the SUBREG then
10947 they no longer have defined values and the meaning of
10948 the code has been changed. */
10949 && (0
10950 #ifdef WORD_REGISTER_OPERATIONS
10951 || (mode_width > GET_MODE_BITSIZE (tmode)
10952 && mode_width <= BITS_PER_WORD)
10953 #endif
10954 || (mode_width <= GET_MODE_BITSIZE (tmode)
10955 && subreg_lowpart_p (XEXP (op0, 0))))
10956 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10957 && mode_width <= HOST_BITS_PER_WIDE_INT
10958 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10959 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10960 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10961 && c1 != mask
10962 && c1 != GET_MODE_MASK (tmode))
10964 op0 = gen_binary (AND, tmode,
10965 SUBREG_REG (XEXP (op0, 0)),
10966 gen_int_mode (c1, tmode));
10967 op0 = gen_lowpart (mode, op0);
10968 continue;
10972 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10973 if (const_op == 0 && equality_comparison_p
10974 && XEXP (op0, 1) == const1_rtx
10975 && GET_CODE (XEXP (op0, 0)) == NOT)
10977 op0 = simplify_and_const_int
10978 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10979 code = (code == NE ? EQ : NE);
10980 continue;
10983 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10984 (eq (and (lshiftrt X) 1) 0).
10985 Also handle the case where (not X) is expressed using xor. */
10986 if (const_op == 0 && equality_comparison_p
10987 && XEXP (op0, 1) == const1_rtx
10988 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10990 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10991 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10993 if (GET_CODE (shift_op) == NOT
10994 || (GET_CODE (shift_op) == XOR
10995 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10996 && GET_CODE (shift_count) == CONST_INT
10997 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10998 && (INTVAL (XEXP (shift_op, 1))
10999 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
11001 op0 = simplify_and_const_int
11002 (NULL_RTX, mode,
11003 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
11004 (HOST_WIDE_INT) 1);
11005 code = (code == NE ? EQ : NE);
11006 continue;
11009 break;
11011 case ASHIFT:
11012 /* If we have (compare (ashift FOO N) (const_int C)) and
11013 the high order N bits of FOO (N+1 if an inequality comparison)
11014 are known to be zero, we can do this by comparing FOO with C
11015 shifted right N bits so long as the low-order N bits of C are
11016 zero. */
11017 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11018 && INTVAL (XEXP (op0, 1)) >= 0
11019 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11020 < HOST_BITS_PER_WIDE_INT)
11021 && ((const_op
11022 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
11023 && mode_width <= HOST_BITS_PER_WIDE_INT
11024 && (nonzero_bits (XEXP (op0, 0), mode)
11025 & ~(mask >> (INTVAL (XEXP (op0, 1))
11026 + ! equality_comparison_p))) == 0)
11028 /* We must perform a logical shift, not an arithmetic one,
11029 as we want the top N bits of C to be zero. */
11030 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11032 temp >>= INTVAL (XEXP (op0, 1));
11033 op1 = gen_int_mode (temp, mode);
11034 op0 = XEXP (op0, 0);
11035 continue;
11038 /* If we are doing a sign bit comparison, it means we are testing
11039 a particular bit. Convert it to the appropriate AND. */
11040 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
11041 && mode_width <= HOST_BITS_PER_WIDE_INT)
11043 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11044 ((HOST_WIDE_INT) 1
11045 << (mode_width - 1
11046 - INTVAL (XEXP (op0, 1)))));
11047 code = (code == LT ? NE : EQ);
11048 continue;
11051 /* If this an equality comparison with zero and we are shifting
11052 the low bit to the sign bit, we can convert this to an AND of the
11053 low-order bit. */
11054 if (const_op == 0 && equality_comparison_p
11055 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11056 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11057 == mode_width - 1)
11059 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11060 (HOST_WIDE_INT) 1);
11061 continue;
11063 break;
11065 case ASHIFTRT:
11066 /* If this is an equality comparison with zero, we can do this
11067 as a logical shift, which might be much simpler. */
11068 if (equality_comparison_p && const_op == 0
11069 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
11071 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11072 XEXP (op0, 0),
11073 INTVAL (XEXP (op0, 1)));
11074 continue;
11077 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11078 do the comparison in a narrower mode. */
11079 if (! unsigned_comparison_p
11080 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11081 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11082 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11083 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11084 MODE_INT, 1)) != BLKmode
11085 && (((unsigned HOST_WIDE_INT) const_op
11086 + (GET_MODE_MASK (tmode) >> 1) + 1)
11087 <= GET_MODE_MASK (tmode)))
11089 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11090 continue;
11093 /* Likewise if OP0 is a PLUS of a sign extension with a
11094 constant, which is usually represented with the PLUS
11095 between the shifts. */
11096 if (! unsigned_comparison_p
11097 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11098 && GET_CODE (XEXP (op0, 0)) == PLUS
11099 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
11100 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11101 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11102 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11103 MODE_INT, 1)) != BLKmode
11104 && (((unsigned HOST_WIDE_INT) const_op
11105 + (GET_MODE_MASK (tmode) >> 1) + 1)
11106 <= GET_MODE_MASK (tmode)))
11108 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11109 rtx add_const = XEXP (XEXP (op0, 0), 1);
11110 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
11111 XEXP (op0, 1));
11113 op0 = gen_binary (PLUS, tmode,
11114 gen_lowpart (tmode, inner),
11115 new_const);
11116 continue;
11119 /* ... fall through ... */
11120 case LSHIFTRT:
11121 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11122 the low order N bits of FOO are known to be zero, we can do this
11123 by comparing FOO with C shifted left N bits so long as no
11124 overflow occurs. */
11125 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11126 && INTVAL (XEXP (op0, 1)) >= 0
11127 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11128 && mode_width <= HOST_BITS_PER_WIDE_INT
11129 && (nonzero_bits (XEXP (op0, 0), mode)
11130 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11131 && (((unsigned HOST_WIDE_INT) const_op
11132 + (GET_CODE (op0) != LSHIFTRT
11133 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11134 + 1)
11135 : 0))
11136 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11138 /* If the shift was logical, then we must make the condition
11139 unsigned. */
11140 if (GET_CODE (op0) == LSHIFTRT)
11141 code = unsigned_condition (code);
11143 const_op <<= INTVAL (XEXP (op0, 1));
11144 op1 = GEN_INT (const_op);
11145 op0 = XEXP (op0, 0);
11146 continue;
11149 /* If we are using this shift to extract just the sign bit, we
11150 can replace this with an LT or GE comparison. */
11151 if (const_op == 0
11152 && (equality_comparison_p || sign_bit_comparison_p)
11153 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11154 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11155 == mode_width - 1)
11157 op0 = XEXP (op0, 0);
11158 code = (code == NE || code == GT ? LT : GE);
11159 continue;
11161 break;
11163 default:
11164 break;
11167 break;
11170 /* Now make any compound operations involved in this comparison. Then,
11171 check for an outmost SUBREG on OP0 that is not doing anything or is
11172 paradoxical. The latter transformation must only be performed when
11173 it is known that the "extra" bits will be the same in op0 and op1 or
11174 that they don't matter. There are three cases to consider:
11176 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11177 care bits and we can assume they have any convenient value. So
11178 making the transformation is safe.
11180 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11181 In this case the upper bits of op0 are undefined. We should not make
11182 the simplification in that case as we do not know the contents of
11183 those bits.
11185 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11186 NIL. In that case we know those bits are zeros or ones. We must
11187 also be sure that they are the same as the upper bits of op1.
11189 We can never remove a SUBREG for a non-equality comparison because
11190 the sign bit is in a different place in the underlying object. */
11192 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11193 op1 = make_compound_operation (op1, SET);
11195 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11196 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11197 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11198 && (code == NE || code == EQ))
11200 if (GET_MODE_SIZE (GET_MODE (op0))
11201 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11203 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11204 implemented. */
11205 if (GET_CODE (SUBREG_REG (op0)) == REG)
11207 op0 = SUBREG_REG (op0);
11208 op1 = gen_lowpart (GET_MODE (op0), op1);
11211 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11212 <= HOST_BITS_PER_WIDE_INT)
11213 && (nonzero_bits (SUBREG_REG (op0),
11214 GET_MODE (SUBREG_REG (op0)))
11215 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11217 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11219 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11220 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11221 op0 = SUBREG_REG (op0), op1 = tem;
11225 /* We now do the opposite procedure: Some machines don't have compare
11226 insns in all modes. If OP0's mode is an integer mode smaller than a
11227 word and we can't do a compare in that mode, see if there is a larger
11228 mode for which we can do the compare. There are a number of cases in
11229 which we can use the wider mode. */
11231 mode = GET_MODE (op0);
11232 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11233 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11234 && ! have_insn_for (COMPARE, mode))
11235 for (tmode = GET_MODE_WIDER_MODE (mode);
11236 (tmode != VOIDmode
11237 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11238 tmode = GET_MODE_WIDER_MODE (tmode))
11239 if (have_insn_for (COMPARE, tmode))
11241 int zero_extended;
11243 /* If the only nonzero bits in OP0 and OP1 are those in the
11244 narrower mode and this is an equality or unsigned comparison,
11245 we can use the wider mode. Similarly for sign-extended
11246 values, in which case it is true for all comparisons. */
11247 zero_extended = ((code == EQ || code == NE
11248 || code == GEU || code == GTU
11249 || code == LEU || code == LTU)
11250 && (nonzero_bits (op0, tmode)
11251 & ~GET_MODE_MASK (mode)) == 0
11252 && ((GET_CODE (op1) == CONST_INT
11253 || (nonzero_bits (op1, tmode)
11254 & ~GET_MODE_MASK (mode)) == 0)));
11256 if (zero_extended
11257 || ((num_sign_bit_copies (op0, tmode)
11258 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11259 - GET_MODE_BITSIZE (mode)))
11260 && (num_sign_bit_copies (op1, tmode)
11261 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11262 - GET_MODE_BITSIZE (mode)))))
11264 /* If OP0 is an AND and we don't have an AND in MODE either,
11265 make a new AND in the proper mode. */
11266 if (GET_CODE (op0) == AND
11267 && !have_insn_for (AND, mode))
11268 op0 = gen_binary (AND, tmode,
11269 gen_lowpart (tmode,
11270 XEXP (op0, 0)),
11271 gen_lowpart (tmode,
11272 XEXP (op0, 1)));
11274 op0 = gen_lowpart (tmode, op0);
11275 if (zero_extended && GET_CODE (op1) == CONST_INT)
11276 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11277 op1 = gen_lowpart (tmode, op1);
11278 break;
11281 /* If this is a test for negative, we can make an explicit
11282 test of the sign bit. */
11284 if (op1 == const0_rtx && (code == LT || code == GE)
11285 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11287 op0 = gen_binary (AND, tmode,
11288 gen_lowpart (tmode, op0),
11289 GEN_INT ((HOST_WIDE_INT) 1
11290 << (GET_MODE_BITSIZE (mode) - 1)));
11291 code = (code == LT) ? NE : EQ;
11292 break;
11296 #ifdef CANONICALIZE_COMPARISON
11297 /* If this machine only supports a subset of valid comparisons, see if we
11298 can convert an unsupported one into a supported one. */
11299 CANONICALIZE_COMPARISON (code, op0, op1);
11300 #endif
11302 *pop0 = op0;
11303 *pop1 = op1;
11305 return code;
11308 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11309 searching backward. */
11310 static enum rtx_code
11311 combine_reversed_comparison_code (rtx exp)
11313 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11314 rtx x;
11316 if (code1 != UNKNOWN
11317 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11318 return code1;
11319 /* Otherwise try and find where the condition codes were last set and
11320 use that. */
11321 x = get_last_value (XEXP (exp, 0));
11322 if (!x || GET_CODE (x) != COMPARE)
11323 return UNKNOWN;
11324 return reversed_comparison_code_parts (GET_CODE (exp),
11325 XEXP (x, 0), XEXP (x, 1), NULL);
11328 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11329 Return NULL_RTX in case we fail to do the reversal. */
11330 static rtx
11331 reversed_comparison (rtx exp, enum machine_mode mode, rtx op0, rtx op1)
11333 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11334 if (reversed_code == UNKNOWN)
11335 return NULL_RTX;
11336 else
11337 return gen_binary (reversed_code, mode, op0, op1);
11340 /* Utility function for following routine. Called when X is part of a value
11341 being stored into last_set_value. Sets last_set_table_tick
11342 for each register mentioned. Similar to mention_regs in cse.c */
11344 static void
11345 update_table_tick (rtx x)
11347 enum rtx_code code = GET_CODE (x);
11348 const char *fmt = GET_RTX_FORMAT (code);
11349 int i;
11351 if (code == REG)
11353 unsigned int regno = REGNO (x);
11354 unsigned int endregno
11355 = regno + (regno < FIRST_PSEUDO_REGISTER
11356 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11357 unsigned int r;
11359 for (r = regno; r < endregno; r++)
11360 reg_stat[r].last_set_table_tick = label_tick;
11362 return;
11365 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11366 /* Note that we can't have an "E" in values stored; see
11367 get_last_value_validate. */
11368 if (fmt[i] == 'e')
11370 /* Check for identical subexpressions. If x contains
11371 identical subexpression we only have to traverse one of
11372 them. */
11373 if (i == 0 && ARITHMETIC_P (x))
11375 /* Note that at this point x1 has already been
11376 processed. */
11377 rtx x0 = XEXP (x, 0);
11378 rtx x1 = XEXP (x, 1);
11380 /* If x0 and x1 are identical then there is no need to
11381 process x0. */
11382 if (x0 == x1)
11383 break;
11385 /* If x0 is identical to a subexpression of x1 then while
11386 processing x1, x0 has already been processed. Thus we
11387 are done with x. */
11388 if (ARITHMETIC_P (x1)
11389 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11390 break;
11392 /* If x1 is identical to a subexpression of x0 then we
11393 still have to process the rest of x0. */
11394 if (ARITHMETIC_P (x0)
11395 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11397 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11398 break;
11402 update_table_tick (XEXP (x, i));
11406 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11407 are saying that the register is clobbered and we no longer know its
11408 value. If INSN is zero, don't update reg_stat[].last_set; this is
11409 only permitted with VALUE also zero and is used to invalidate the
11410 register. */
11412 static void
11413 record_value_for_reg (rtx reg, rtx insn, rtx value)
11415 unsigned int regno = REGNO (reg);
11416 unsigned int endregno
11417 = regno + (regno < FIRST_PSEUDO_REGISTER
11418 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
11419 unsigned int i;
11421 /* If VALUE contains REG and we have a previous value for REG, substitute
11422 the previous value. */
11423 if (value && insn && reg_overlap_mentioned_p (reg, value))
11425 rtx tem;
11427 /* Set things up so get_last_value is allowed to see anything set up to
11428 our insn. */
11429 subst_low_cuid = INSN_CUID (insn);
11430 tem = get_last_value (reg);
11432 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11433 it isn't going to be useful and will take a lot of time to process,
11434 so just use the CLOBBER. */
11436 if (tem)
11438 if (ARITHMETIC_P (tem)
11439 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11440 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11441 tem = XEXP (tem, 0);
11443 value = replace_rtx (copy_rtx (value), reg, tem);
11447 /* For each register modified, show we don't know its value, that
11448 we don't know about its bitwise content, that its value has been
11449 updated, and that we don't know the location of the death of the
11450 register. */
11451 for (i = regno; i < endregno; i++)
11453 if (insn)
11454 reg_stat[i].last_set = insn;
11456 reg_stat[i].last_set_value = 0;
11457 reg_stat[i].last_set_mode = 0;
11458 reg_stat[i].last_set_nonzero_bits = 0;
11459 reg_stat[i].last_set_sign_bit_copies = 0;
11460 reg_stat[i].last_death = 0;
11463 /* Mark registers that are being referenced in this value. */
11464 if (value)
11465 update_table_tick (value);
11467 /* Now update the status of each register being set.
11468 If someone is using this register in this block, set this register
11469 to invalid since we will get confused between the two lives in this
11470 basic block. This makes using this register always invalid. In cse, we
11471 scan the table to invalidate all entries using this register, but this
11472 is too much work for us. */
11474 for (i = regno; i < endregno; i++)
11476 reg_stat[i].last_set_label = label_tick;
11477 if (value && reg_stat[i].last_set_table_tick == label_tick)
11478 reg_stat[i].last_set_invalid = 1;
11479 else
11480 reg_stat[i].last_set_invalid = 0;
11483 /* The value being assigned might refer to X (like in "x++;"). In that
11484 case, we must replace it with (clobber (const_int 0)) to prevent
11485 infinite loops. */
11486 if (value && ! get_last_value_validate (&value, insn,
11487 reg_stat[regno].last_set_label, 0))
11489 value = copy_rtx (value);
11490 if (! get_last_value_validate (&value, insn,
11491 reg_stat[regno].last_set_label, 1))
11492 value = 0;
11495 /* For the main register being modified, update the value, the mode, the
11496 nonzero bits, and the number of sign bit copies. */
11498 reg_stat[regno].last_set_value = value;
11500 if (value)
11502 enum machine_mode mode = GET_MODE (reg);
11503 subst_low_cuid = INSN_CUID (insn);
11504 reg_stat[regno].last_set_mode = mode;
11505 if (GET_MODE_CLASS (mode) == MODE_INT
11506 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11507 mode = nonzero_bits_mode;
11508 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
11509 reg_stat[regno].last_set_sign_bit_copies
11510 = num_sign_bit_copies (value, GET_MODE (reg));
11514 /* Called via note_stores from record_dead_and_set_regs to handle one
11515 SET or CLOBBER in an insn. DATA is the instruction in which the
11516 set is occurring. */
11518 static void
11519 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
11521 rtx record_dead_insn = (rtx) data;
11523 if (GET_CODE (dest) == SUBREG)
11524 dest = SUBREG_REG (dest);
11526 if (GET_CODE (dest) == REG)
11528 /* If we are setting the whole register, we know its value. Otherwise
11529 show that we don't know the value. We can handle SUBREG in
11530 some cases. */
11531 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11532 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11533 else if (GET_CODE (setter) == SET
11534 && GET_CODE (SET_DEST (setter)) == SUBREG
11535 && SUBREG_REG (SET_DEST (setter)) == dest
11536 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11537 && subreg_lowpart_p (SET_DEST (setter)))
11538 record_value_for_reg (dest, record_dead_insn,
11539 gen_lowpart (GET_MODE (dest),
11540 SET_SRC (setter)));
11541 else
11542 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11544 else if (GET_CODE (dest) == MEM
11545 /* Ignore pushes, they clobber nothing. */
11546 && ! push_operand (dest, GET_MODE (dest)))
11547 mem_last_set = INSN_CUID (record_dead_insn);
11550 /* Update the records of when each REG was most recently set or killed
11551 for the things done by INSN. This is the last thing done in processing
11552 INSN in the combiner loop.
11554 We update reg_stat[], in particular fields last_set, last_set_value,
11555 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11556 last_death, and also the similar information mem_last_set (which insn
11557 most recently modified memory) and last_call_cuid (which insn was the
11558 most recent subroutine call). */
11560 static void
11561 record_dead_and_set_regs (rtx insn)
11563 rtx link;
11564 unsigned int i;
11566 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11568 if (REG_NOTE_KIND (link) == REG_DEAD
11569 && GET_CODE (XEXP (link, 0)) == REG)
11571 unsigned int regno = REGNO (XEXP (link, 0));
11572 unsigned int endregno
11573 = regno + (regno < FIRST_PSEUDO_REGISTER
11574 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11575 : 1);
11577 for (i = regno; i < endregno; i++)
11578 reg_stat[i].last_death = insn;
11580 else if (REG_NOTE_KIND (link) == REG_INC)
11581 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11584 if (GET_CODE (insn) == CALL_INSN)
11586 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11587 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11589 reg_stat[i].last_set_value = 0;
11590 reg_stat[i].last_set_mode = 0;
11591 reg_stat[i].last_set_nonzero_bits = 0;
11592 reg_stat[i].last_set_sign_bit_copies = 0;
11593 reg_stat[i].last_death = 0;
11596 last_call_cuid = mem_last_set = INSN_CUID (insn);
11598 /* Don't bother recording what this insn does. It might set the
11599 return value register, but we can't combine into a call
11600 pattern anyway, so there's no point trying (and it may cause
11601 a crash, if e.g. we wind up asking for last_set_value of a
11602 SUBREG of the return value register). */
11603 return;
11606 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11609 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11610 register present in the SUBREG, so for each such SUBREG go back and
11611 adjust nonzero and sign bit information of the registers that are
11612 known to have some zero/sign bits set.
11614 This is needed because when combine blows the SUBREGs away, the
11615 information on zero/sign bits is lost and further combines can be
11616 missed because of that. */
11618 static void
11619 record_promoted_value (rtx insn, rtx subreg)
11621 rtx links, set;
11622 unsigned int regno = REGNO (SUBREG_REG (subreg));
11623 enum machine_mode mode = GET_MODE (subreg);
11625 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11626 return;
11628 for (links = LOG_LINKS (insn); links;)
11630 insn = XEXP (links, 0);
11631 set = single_set (insn);
11633 if (! set || GET_CODE (SET_DEST (set)) != REG
11634 || REGNO (SET_DEST (set)) != regno
11635 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11637 links = XEXP (links, 1);
11638 continue;
11641 if (reg_stat[regno].last_set == insn)
11643 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11644 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11647 if (GET_CODE (SET_SRC (set)) == REG)
11649 regno = REGNO (SET_SRC (set));
11650 links = LOG_LINKS (insn);
11652 else
11653 break;
11657 /* Scan X for promoted SUBREGs. For each one found,
11658 note what it implies to the registers used in it. */
11660 static void
11661 check_promoted_subreg (rtx insn, rtx x)
11663 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11664 && GET_CODE (SUBREG_REG (x)) == REG)
11665 record_promoted_value (insn, x);
11666 else
11668 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11669 int i, j;
11671 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11672 switch (format[i])
11674 case 'e':
11675 check_promoted_subreg (insn, XEXP (x, i));
11676 break;
11677 case 'V':
11678 case 'E':
11679 if (XVEC (x, i) != 0)
11680 for (j = 0; j < XVECLEN (x, i); j++)
11681 check_promoted_subreg (insn, XVECEXP (x, i, j));
11682 break;
11687 /* Utility routine for the following function. Verify that all the registers
11688 mentioned in *LOC are valid when *LOC was part of a value set when
11689 label_tick == TICK. Return 0 if some are not.
11691 If REPLACE is nonzero, replace the invalid reference with
11692 (clobber (const_int 0)) and return 1. This replacement is useful because
11693 we often can get useful information about the form of a value (e.g., if
11694 it was produced by a shift that always produces -1 or 0) even though
11695 we don't know exactly what registers it was produced from. */
11697 static int
11698 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11700 rtx x = *loc;
11701 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11702 int len = GET_RTX_LENGTH (GET_CODE (x));
11703 int i;
11705 if (GET_CODE (x) == REG)
11707 unsigned int regno = REGNO (x);
11708 unsigned int endregno
11709 = regno + (regno < FIRST_PSEUDO_REGISTER
11710 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11711 unsigned int j;
11713 for (j = regno; j < endregno; j++)
11714 if (reg_stat[j].last_set_invalid
11715 /* If this is a pseudo-register that was only set once and not
11716 live at the beginning of the function, it is always valid. */
11717 || (! (regno >= FIRST_PSEUDO_REGISTER
11718 && REG_N_SETS (regno) == 1
11719 && (! REGNO_REG_SET_P
11720 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11721 && reg_stat[j].last_set_label > tick))
11723 if (replace)
11724 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11725 return replace;
11728 return 1;
11730 /* If this is a memory reference, make sure that there were
11731 no stores after it that might have clobbered the value. We don't
11732 have alias info, so we assume any store invalidates it. */
11733 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11734 && INSN_CUID (insn) <= mem_last_set)
11736 if (replace)
11737 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11738 return replace;
11741 for (i = 0; i < len; i++)
11743 if (fmt[i] == 'e')
11745 /* Check for identical subexpressions. If x contains
11746 identical subexpression we only have to traverse one of
11747 them. */
11748 if (i == 1 && ARITHMETIC_P (x))
11750 /* Note that at this point x0 has already been checked
11751 and found valid. */
11752 rtx x0 = XEXP (x, 0);
11753 rtx x1 = XEXP (x, 1);
11755 /* If x0 and x1 are identical then x is also valid. */
11756 if (x0 == x1)
11757 return 1;
11759 /* If x1 is identical to a subexpression of x0 then
11760 while checking x0, x1 has already been checked. Thus
11761 it is valid and so as x. */
11762 if (ARITHMETIC_P (x0)
11763 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11764 return 1;
11766 /* If x0 is identical to a subexpression of x1 then x is
11767 valid iff the rest of x1 is valid. */
11768 if (ARITHMETIC_P (x1)
11769 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11770 return
11771 get_last_value_validate (&XEXP (x1,
11772 x0 == XEXP (x1, 0) ? 1 : 0),
11773 insn, tick, replace);
11776 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11777 replace) == 0)
11778 return 0;
11780 /* Don't bother with these. They shouldn't occur anyway. */
11781 else if (fmt[i] == 'E')
11782 return 0;
11785 /* If we haven't found a reason for it to be invalid, it is valid. */
11786 return 1;
11789 /* Get the last value assigned to X, if known. Some registers
11790 in the value may be replaced with (clobber (const_int 0)) if their value
11791 is known longer known reliably. */
11793 static rtx
11794 get_last_value (rtx x)
11796 unsigned int regno;
11797 rtx value;
11799 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11800 then convert it to the desired mode. If this is a paradoxical SUBREG,
11801 we cannot predict what values the "extra" bits might have. */
11802 if (GET_CODE (x) == SUBREG
11803 && subreg_lowpart_p (x)
11804 && (GET_MODE_SIZE (GET_MODE (x))
11805 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11806 && (value = get_last_value (SUBREG_REG (x))) != 0)
11807 return gen_lowpart (GET_MODE (x), value);
11809 if (GET_CODE (x) != REG)
11810 return 0;
11812 regno = REGNO (x);
11813 value = reg_stat[regno].last_set_value;
11815 /* If we don't have a value, or if it isn't for this basic block and
11816 it's either a hard register, set more than once, or it's a live
11817 at the beginning of the function, return 0.
11819 Because if it's not live at the beginning of the function then the reg
11820 is always set before being used (is never used without being set).
11821 And, if it's set only once, and it's always set before use, then all
11822 uses must have the same last value, even if it's not from this basic
11823 block. */
11825 if (value == 0
11826 || (reg_stat[regno].last_set_label != label_tick
11827 && (regno < FIRST_PSEUDO_REGISTER
11828 || REG_N_SETS (regno) != 1
11829 || (REGNO_REG_SET_P
11830 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11831 return 0;
11833 /* If the value was set in a later insn than the ones we are processing,
11834 we can't use it even if the register was only set once. */
11835 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11836 return 0;
11838 /* If the value has all its registers valid, return it. */
11839 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11840 reg_stat[regno].last_set_label, 0))
11841 return value;
11843 /* Otherwise, make a copy and replace any invalid register with
11844 (clobber (const_int 0)). If that fails for some reason, return 0. */
11846 value = copy_rtx (value);
11847 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11848 reg_stat[regno].last_set_label, 1))
11849 return value;
11851 return 0;
11854 /* Return nonzero if expression X refers to a REG or to memory
11855 that is set in an instruction more recent than FROM_CUID. */
11857 static int
11858 use_crosses_set_p (rtx x, int from_cuid)
11860 const char *fmt;
11861 int i;
11862 enum rtx_code code = GET_CODE (x);
11864 if (code == REG)
11866 unsigned int regno = REGNO (x);
11867 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11868 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11870 #ifdef PUSH_ROUNDING
11871 /* Don't allow uses of the stack pointer to be moved,
11872 because we don't know whether the move crosses a push insn. */
11873 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11874 return 1;
11875 #endif
11876 for (; regno < endreg; regno++)
11877 if (reg_stat[regno].last_set
11878 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11879 return 1;
11880 return 0;
11883 if (code == MEM && mem_last_set > from_cuid)
11884 return 1;
11886 fmt = GET_RTX_FORMAT (code);
11888 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11890 if (fmt[i] == 'E')
11892 int j;
11893 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11894 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11895 return 1;
11897 else if (fmt[i] == 'e'
11898 && use_crosses_set_p (XEXP (x, i), from_cuid))
11899 return 1;
11901 return 0;
11904 /* Define three variables used for communication between the following
11905 routines. */
11907 static unsigned int reg_dead_regno, reg_dead_endregno;
11908 static int reg_dead_flag;
11910 /* Function called via note_stores from reg_dead_at_p.
11912 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11913 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11915 static void
11916 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11918 unsigned int regno, endregno;
11920 if (GET_CODE (dest) != REG)
11921 return;
11923 regno = REGNO (dest);
11924 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11925 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11927 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11928 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11931 /* Return nonzero if REG is known to be dead at INSN.
11933 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11934 referencing REG, it is dead. If we hit a SET referencing REG, it is
11935 live. Otherwise, see if it is live or dead at the start of the basic
11936 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11937 must be assumed to be always live. */
11939 static int
11940 reg_dead_at_p (rtx reg, rtx insn)
11942 basic_block block;
11943 unsigned int i;
11945 /* Set variables for reg_dead_at_p_1. */
11946 reg_dead_regno = REGNO (reg);
11947 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11948 ? hard_regno_nregs[reg_dead_regno]
11949 [GET_MODE (reg)]
11950 : 1);
11952 reg_dead_flag = 0;
11954 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11955 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11957 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11958 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11959 return 0;
11962 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11963 beginning of function. */
11964 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11965 insn = prev_nonnote_insn (insn))
11967 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11968 if (reg_dead_flag)
11969 return reg_dead_flag == 1 ? 1 : 0;
11971 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11972 return 1;
11975 /* Get the basic block that we were in. */
11976 if (insn == 0)
11977 block = ENTRY_BLOCK_PTR->next_bb;
11978 else
11980 FOR_EACH_BB (block)
11981 if (insn == BB_HEAD (block))
11982 break;
11984 if (block == EXIT_BLOCK_PTR)
11985 return 0;
11988 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11989 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11990 return 0;
11992 return 1;
11995 /* Note hard registers in X that are used. This code is similar to
11996 that in flow.c, but much simpler since we don't care about pseudos. */
11998 static void
11999 mark_used_regs_combine (rtx x)
12001 RTX_CODE code = GET_CODE (x);
12002 unsigned int regno;
12003 int i;
12005 switch (code)
12007 case LABEL_REF:
12008 case SYMBOL_REF:
12009 case CONST_INT:
12010 case CONST:
12011 case CONST_DOUBLE:
12012 case CONST_VECTOR:
12013 case PC:
12014 case ADDR_VEC:
12015 case ADDR_DIFF_VEC:
12016 case ASM_INPUT:
12017 #ifdef HAVE_cc0
12018 /* CC0 must die in the insn after it is set, so we don't need to take
12019 special note of it here. */
12020 case CC0:
12021 #endif
12022 return;
12024 case CLOBBER:
12025 /* If we are clobbering a MEM, mark any hard registers inside the
12026 address as used. */
12027 if (GET_CODE (XEXP (x, 0)) == MEM)
12028 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12029 return;
12031 case REG:
12032 regno = REGNO (x);
12033 /* A hard reg in a wide mode may really be multiple registers.
12034 If so, mark all of them just like the first. */
12035 if (regno < FIRST_PSEUDO_REGISTER)
12037 unsigned int endregno, r;
12039 /* None of this applies to the stack, frame or arg pointers. */
12040 if (regno == STACK_POINTER_REGNUM
12041 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12042 || regno == HARD_FRAME_POINTER_REGNUM
12043 #endif
12044 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12045 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12046 #endif
12047 || regno == FRAME_POINTER_REGNUM)
12048 return;
12050 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
12051 for (r = regno; r < endregno; r++)
12052 SET_HARD_REG_BIT (newpat_used_regs, r);
12054 return;
12056 case SET:
12058 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12059 the address. */
12060 rtx testreg = SET_DEST (x);
12062 while (GET_CODE (testreg) == SUBREG
12063 || GET_CODE (testreg) == ZERO_EXTRACT
12064 || GET_CODE (testreg) == SIGN_EXTRACT
12065 || GET_CODE (testreg) == STRICT_LOW_PART)
12066 testreg = XEXP (testreg, 0);
12068 if (GET_CODE (testreg) == MEM)
12069 mark_used_regs_combine (XEXP (testreg, 0));
12071 mark_used_regs_combine (SET_SRC (x));
12073 return;
12075 default:
12076 break;
12079 /* Recursively scan the operands of this expression. */
12082 const char *fmt = GET_RTX_FORMAT (code);
12084 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12086 if (fmt[i] == 'e')
12087 mark_used_regs_combine (XEXP (x, i));
12088 else if (fmt[i] == 'E')
12090 int j;
12092 for (j = 0; j < XVECLEN (x, i); j++)
12093 mark_used_regs_combine (XVECEXP (x, i, j));
12099 /* Remove register number REGNO from the dead registers list of INSN.
12101 Return the note used to record the death, if there was one. */
12104 remove_death (unsigned int regno, rtx insn)
12106 rtx note = find_regno_note (insn, REG_DEAD, regno);
12108 if (note)
12110 REG_N_DEATHS (regno)--;
12111 remove_note (insn, note);
12114 return note;
12117 /* For each register (hardware or pseudo) used within expression X, if its
12118 death is in an instruction with cuid between FROM_CUID (inclusive) and
12119 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12120 list headed by PNOTES.
12122 That said, don't move registers killed by maybe_kill_insn.
12124 This is done when X is being merged by combination into TO_INSN. These
12125 notes will then be distributed as needed. */
12127 static void
12128 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
12129 rtx *pnotes)
12131 const char *fmt;
12132 int len, i;
12133 enum rtx_code code = GET_CODE (x);
12135 if (code == REG)
12137 unsigned int regno = REGNO (x);
12138 rtx where_dead = reg_stat[regno].last_death;
12139 rtx before_dead, after_dead;
12141 /* Don't move the register if it gets killed in between from and to. */
12142 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12143 && ! reg_referenced_p (x, maybe_kill_insn))
12144 return;
12146 /* WHERE_DEAD could be a USE insn made by combine, so first we
12147 make sure that we have insns with valid INSN_CUID values. */
12148 before_dead = where_dead;
12149 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
12150 before_dead = PREV_INSN (before_dead);
12152 after_dead = where_dead;
12153 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
12154 after_dead = NEXT_INSN (after_dead);
12156 if (before_dead && after_dead
12157 && INSN_CUID (before_dead) >= from_cuid
12158 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
12159 || (where_dead != after_dead
12160 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
12162 rtx note = remove_death (regno, where_dead);
12164 /* It is possible for the call above to return 0. This can occur
12165 when last_death points to I2 or I1 that we combined with.
12166 In that case make a new note.
12168 We must also check for the case where X is a hard register
12169 and NOTE is a death note for a range of hard registers
12170 including X. In that case, we must put REG_DEAD notes for
12171 the remaining registers in place of NOTE. */
12173 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12174 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12175 > GET_MODE_SIZE (GET_MODE (x))))
12177 unsigned int deadregno = REGNO (XEXP (note, 0));
12178 unsigned int deadend
12179 = (deadregno + hard_regno_nregs[deadregno]
12180 [GET_MODE (XEXP (note, 0))]);
12181 unsigned int ourend
12182 = regno + hard_regno_nregs[regno][GET_MODE (x)];
12183 unsigned int i;
12185 for (i = deadregno; i < deadend; i++)
12186 if (i < regno || i >= ourend)
12187 REG_NOTES (where_dead)
12188 = gen_rtx_EXPR_LIST (REG_DEAD,
12189 regno_reg_rtx[i],
12190 REG_NOTES (where_dead));
12193 /* If we didn't find any note, or if we found a REG_DEAD note that
12194 covers only part of the given reg, and we have a multi-reg hard
12195 register, then to be safe we must check for REG_DEAD notes
12196 for each register other than the first. They could have
12197 their own REG_DEAD notes lying around. */
12198 else if ((note == 0
12199 || (note != 0
12200 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12201 < GET_MODE_SIZE (GET_MODE (x)))))
12202 && regno < FIRST_PSEUDO_REGISTER
12203 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12205 unsigned int ourend
12206 = regno + hard_regno_nregs[regno][GET_MODE (x)];
12207 unsigned int i, offset;
12208 rtx oldnotes = 0;
12210 if (note)
12211 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12212 else
12213 offset = 1;
12215 for (i = regno + offset; i < ourend; i++)
12216 move_deaths (regno_reg_rtx[i],
12217 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
12220 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12222 XEXP (note, 1) = *pnotes;
12223 *pnotes = note;
12225 else
12226 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12228 REG_N_DEATHS (regno)++;
12231 return;
12234 else if (GET_CODE (x) == SET)
12236 rtx dest = SET_DEST (x);
12238 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
12240 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12241 that accesses one word of a multi-word item, some
12242 piece of everything register in the expression is used by
12243 this insn, so remove any old death. */
12244 /* ??? So why do we test for equality of the sizes? */
12246 if (GET_CODE (dest) == ZERO_EXTRACT
12247 || GET_CODE (dest) == STRICT_LOW_PART
12248 || (GET_CODE (dest) == SUBREG
12249 && (((GET_MODE_SIZE (GET_MODE (dest))
12250 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12251 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12252 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12254 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12255 return;
12258 /* If this is some other SUBREG, we know it replaces the entire
12259 value, so use that as the destination. */
12260 if (GET_CODE (dest) == SUBREG)
12261 dest = SUBREG_REG (dest);
12263 /* If this is a MEM, adjust deaths of anything used in the address.
12264 For a REG (the only other possibility), the entire value is
12265 being replaced so the old value is not used in this insn. */
12267 if (GET_CODE (dest) == MEM)
12268 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12269 to_insn, pnotes);
12270 return;
12273 else if (GET_CODE (x) == CLOBBER)
12274 return;
12276 len = GET_RTX_LENGTH (code);
12277 fmt = GET_RTX_FORMAT (code);
12279 for (i = 0; i < len; i++)
12281 if (fmt[i] == 'E')
12283 int j;
12284 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12285 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12286 to_insn, pnotes);
12288 else if (fmt[i] == 'e')
12289 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12293 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12294 pattern of an insn. X must be a REG. */
12296 static int
12297 reg_bitfield_target_p (rtx x, rtx body)
12299 int i;
12301 if (GET_CODE (body) == SET)
12303 rtx dest = SET_DEST (body);
12304 rtx target;
12305 unsigned int regno, tregno, endregno, endtregno;
12307 if (GET_CODE (dest) == ZERO_EXTRACT)
12308 target = XEXP (dest, 0);
12309 else if (GET_CODE (dest) == STRICT_LOW_PART)
12310 target = SUBREG_REG (XEXP (dest, 0));
12311 else
12312 return 0;
12314 if (GET_CODE (target) == SUBREG)
12315 target = SUBREG_REG (target);
12317 if (GET_CODE (target) != REG)
12318 return 0;
12320 tregno = REGNO (target), regno = REGNO (x);
12321 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12322 return target == x;
12324 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
12325 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
12327 return endregno > tregno && regno < endtregno;
12330 else if (GET_CODE (body) == PARALLEL)
12331 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12332 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12333 return 1;
12335 return 0;
12338 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12339 as appropriate. I3 and I2 are the insns resulting from the combination
12340 insns including FROM (I2 may be zero).
12342 Each note in the list is either ignored or placed on some insns, depending
12343 on the type of note. */
12345 static void
12346 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
12348 rtx note, next_note;
12349 rtx tem;
12351 for (note = notes; note; note = next_note)
12353 rtx place = 0, place2 = 0;
12355 /* If this NOTE references a pseudo register, ensure it references
12356 the latest copy of that register. */
12357 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12358 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12359 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12361 next_note = XEXP (note, 1);
12362 switch (REG_NOTE_KIND (note))
12364 case REG_BR_PROB:
12365 case REG_BR_PRED:
12366 /* Doesn't matter much where we put this, as long as it's somewhere.
12367 It is preferable to keep these notes on branches, which is most
12368 likely to be i3. */
12369 place = i3;
12370 break;
12372 case REG_VALUE_PROFILE:
12373 /* Just get rid of this note, as it is unused later anyway. */
12374 break;
12376 case REG_VTABLE_REF:
12377 /* ??? Should remain with *a particular* memory load. Given the
12378 nature of vtable data, the last insn seems relatively safe. */
12379 place = i3;
12380 break;
12382 case REG_NON_LOCAL_GOTO:
12383 if (GET_CODE (i3) == JUMP_INSN)
12384 place = i3;
12385 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12386 place = i2;
12387 else
12388 abort ();
12389 break;
12391 case REG_EH_REGION:
12392 /* These notes must remain with the call or trapping instruction. */
12393 if (GET_CODE (i3) == CALL_INSN)
12394 place = i3;
12395 else if (i2 && GET_CODE (i2) == CALL_INSN)
12396 place = i2;
12397 else if (flag_non_call_exceptions)
12399 if (may_trap_p (i3))
12400 place = i3;
12401 else if (i2 && may_trap_p (i2))
12402 place = i2;
12403 /* ??? Otherwise assume we've combined things such that we
12404 can now prove that the instructions can't trap. Drop the
12405 note in this case. */
12407 else
12408 abort ();
12409 break;
12411 case REG_ALWAYS_RETURN:
12412 case REG_NORETURN:
12413 case REG_SETJMP:
12414 /* These notes must remain with the call. It should not be
12415 possible for both I2 and I3 to be a call. */
12416 if (GET_CODE (i3) == CALL_INSN)
12417 place = i3;
12418 else if (i2 && GET_CODE (i2) == CALL_INSN)
12419 place = i2;
12420 else
12421 abort ();
12422 break;
12424 case REG_UNUSED:
12425 /* Any clobbers for i3 may still exist, and so we must process
12426 REG_UNUSED notes from that insn.
12428 Any clobbers from i2 or i1 can only exist if they were added by
12429 recog_for_combine. In that case, recog_for_combine created the
12430 necessary REG_UNUSED notes. Trying to keep any original
12431 REG_UNUSED notes from these insns can cause incorrect output
12432 if it is for the same register as the original i3 dest.
12433 In that case, we will notice that the register is set in i3,
12434 and then add a REG_UNUSED note for the destination of i3, which
12435 is wrong. However, it is possible to have REG_UNUSED notes from
12436 i2 or i1 for register which were both used and clobbered, so
12437 we keep notes from i2 or i1 if they will turn into REG_DEAD
12438 notes. */
12440 /* If this register is set or clobbered in I3, put the note there
12441 unless there is one already. */
12442 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12444 if (from_insn != i3)
12445 break;
12447 if (! (GET_CODE (XEXP (note, 0)) == REG
12448 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12449 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12450 place = i3;
12452 /* Otherwise, if this register is used by I3, then this register
12453 now dies here, so we must put a REG_DEAD note here unless there
12454 is one already. */
12455 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12456 && ! (GET_CODE (XEXP (note, 0)) == REG
12457 ? find_regno_note (i3, REG_DEAD,
12458 REGNO (XEXP (note, 0)))
12459 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12461 PUT_REG_NOTE_KIND (note, REG_DEAD);
12462 place = i3;
12464 break;
12466 case REG_EQUAL:
12467 case REG_EQUIV:
12468 case REG_NOALIAS:
12469 /* These notes say something about results of an insn. We can
12470 only support them if they used to be on I3 in which case they
12471 remain on I3. Otherwise they are ignored.
12473 If the note refers to an expression that is not a constant, we
12474 must also ignore the note since we cannot tell whether the
12475 equivalence is still true. It might be possible to do
12476 slightly better than this (we only have a problem if I2DEST
12477 or I1DEST is present in the expression), but it doesn't
12478 seem worth the trouble. */
12480 if (from_insn == i3
12481 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12482 place = i3;
12483 break;
12485 case REG_INC:
12486 case REG_NO_CONFLICT:
12487 /* These notes say something about how a register is used. They must
12488 be present on any use of the register in I2 or I3. */
12489 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12490 place = i3;
12492 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12494 if (place)
12495 place2 = i2;
12496 else
12497 place = i2;
12499 break;
12501 case REG_LABEL:
12502 /* This can show up in several ways -- either directly in the
12503 pattern, or hidden off in the constant pool with (or without?)
12504 a REG_EQUAL note. */
12505 /* ??? Ignore the without-reg_equal-note problem for now. */
12506 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12507 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12508 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12509 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12510 place = i3;
12512 if (i2
12513 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12514 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12515 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12516 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12518 if (place)
12519 place2 = i2;
12520 else
12521 place = i2;
12524 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12525 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12526 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12528 if (JUMP_LABEL (place) != XEXP (note, 0))
12529 abort ();
12530 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12531 LABEL_NUSES (JUMP_LABEL (place))--;
12532 place = 0;
12534 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12536 if (JUMP_LABEL (place2) != XEXP (note, 0))
12537 abort ();
12538 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12539 LABEL_NUSES (JUMP_LABEL (place2))--;
12540 place2 = 0;
12542 break;
12544 case REG_NONNEG:
12545 /* This note says something about the value of a register prior
12546 to the execution of an insn. It is too much trouble to see
12547 if the note is still correct in all situations. It is better
12548 to simply delete it. */
12549 break;
12551 case REG_RETVAL:
12552 /* If the insn previously containing this note still exists,
12553 put it back where it was. Otherwise move it to the previous
12554 insn. Adjust the corresponding REG_LIBCALL note. */
12555 if (GET_CODE (from_insn) != NOTE)
12556 place = from_insn;
12557 else
12559 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12560 place = prev_real_insn (from_insn);
12561 if (tem && place)
12562 XEXP (tem, 0) = place;
12563 /* If we're deleting the last remaining instruction of a
12564 libcall sequence, don't add the notes. */
12565 else if (XEXP (note, 0) == from_insn)
12566 tem = place = 0;
12567 /* Don't add the dangling REG_RETVAL note. */
12568 else if (! tem)
12569 place = 0;
12571 break;
12573 case REG_LIBCALL:
12574 /* This is handled similarly to REG_RETVAL. */
12575 if (GET_CODE (from_insn) != NOTE)
12576 place = from_insn;
12577 else
12579 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12580 place = next_real_insn (from_insn);
12581 if (tem && place)
12582 XEXP (tem, 0) = place;
12583 /* If we're deleting the last remaining instruction of a
12584 libcall sequence, don't add the notes. */
12585 else if (XEXP (note, 0) == from_insn)
12586 tem = place = 0;
12587 /* Don't add the dangling REG_LIBCALL note. */
12588 else if (! tem)
12589 place = 0;
12591 break;
12593 case REG_DEAD:
12594 /* If the register is used as an input in I3, it dies there.
12595 Similarly for I2, if it is nonzero and adjacent to I3.
12597 If the register is not used as an input in either I3 or I2
12598 and it is not one of the registers we were supposed to eliminate,
12599 there are two possibilities. We might have a non-adjacent I2
12600 or we might have somehow eliminated an additional register
12601 from a computation. For example, we might have had A & B where
12602 we discover that B will always be zero. In this case we will
12603 eliminate the reference to A.
12605 In both cases, we must search to see if we can find a previous
12606 use of A and put the death note there. */
12608 if (from_insn
12609 && GET_CODE (from_insn) == CALL_INSN
12610 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12611 place = from_insn;
12612 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12613 place = i3;
12614 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12615 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12616 place = i2;
12618 if (place == 0)
12620 basic_block bb = this_basic_block;
12622 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12624 if (! INSN_P (tem))
12626 if (tem == BB_HEAD (bb))
12627 break;
12628 continue;
12631 /* If the register is being set at TEM, see if that is all
12632 TEM is doing. If so, delete TEM. Otherwise, make this
12633 into a REG_UNUSED note instead. */
12634 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12636 rtx set = single_set (tem);
12637 rtx inner_dest = 0;
12638 #ifdef HAVE_cc0
12639 rtx cc0_setter = NULL_RTX;
12640 #endif
12642 if (set != 0)
12643 for (inner_dest = SET_DEST (set);
12644 (GET_CODE (inner_dest) == STRICT_LOW_PART
12645 || GET_CODE (inner_dest) == SUBREG
12646 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12647 inner_dest = XEXP (inner_dest, 0))
12650 /* Verify that it was the set, and not a clobber that
12651 modified the register.
12653 CC0 targets must be careful to maintain setter/user
12654 pairs. If we cannot delete the setter due to side
12655 effects, mark the user with an UNUSED note instead
12656 of deleting it. */
12658 if (set != 0 && ! side_effects_p (SET_SRC (set))
12659 && rtx_equal_p (XEXP (note, 0), inner_dest)
12660 #ifdef HAVE_cc0
12661 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12662 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12663 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12664 #endif
12667 /* Move the notes and links of TEM elsewhere.
12668 This might delete other dead insns recursively.
12669 First set the pattern to something that won't use
12670 any register. */
12671 rtx old_notes = REG_NOTES (tem);
12673 PATTERN (tem) = pc_rtx;
12674 REG_NOTES (tem) = NULL;
12676 distribute_notes (old_notes, tem, tem, NULL_RTX);
12677 distribute_links (LOG_LINKS (tem));
12679 PUT_CODE (tem, NOTE);
12680 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12681 NOTE_SOURCE_FILE (tem) = 0;
12683 #ifdef HAVE_cc0
12684 /* Delete the setter too. */
12685 if (cc0_setter)
12687 PATTERN (cc0_setter) = pc_rtx;
12688 old_notes = REG_NOTES (cc0_setter);
12689 REG_NOTES (cc0_setter) = NULL;
12691 distribute_notes (old_notes, cc0_setter,
12692 cc0_setter, NULL_RTX);
12693 distribute_links (LOG_LINKS (cc0_setter));
12695 PUT_CODE (cc0_setter, NOTE);
12696 NOTE_LINE_NUMBER (cc0_setter)
12697 = NOTE_INSN_DELETED;
12698 NOTE_SOURCE_FILE (cc0_setter) = 0;
12700 #endif
12702 else
12704 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12706 /* If there isn't already a REG_UNUSED note, put one
12707 here. Do not place a REG_DEAD note, even if
12708 the register is also used here; that would not
12709 match the algorithm used in lifetime analysis
12710 and can cause the consistency check in the
12711 scheduler to fail. */
12712 if (! find_regno_note (tem, REG_UNUSED,
12713 REGNO (XEXP (note, 0))))
12714 place = tem;
12715 break;
12718 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12719 || (GET_CODE (tem) == CALL_INSN
12720 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12722 place = tem;
12724 /* If we are doing a 3->2 combination, and we have a
12725 register which formerly died in i3 and was not used
12726 by i2, which now no longer dies in i3 and is used in
12727 i2 but does not die in i2, and place is between i2
12728 and i3, then we may need to move a link from place to
12729 i2. */
12730 if (i2 && INSN_UID (place) <= max_uid_cuid
12731 && INSN_CUID (place) > INSN_CUID (i2)
12732 && from_insn
12733 && INSN_CUID (from_insn) > INSN_CUID (i2)
12734 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12736 rtx links = LOG_LINKS (place);
12737 LOG_LINKS (place) = 0;
12738 distribute_links (links);
12740 break;
12743 if (tem == BB_HEAD (bb))
12744 break;
12747 /* We haven't found an insn for the death note and it
12748 is still a REG_DEAD note, but we have hit the beginning
12749 of the block. If the existing life info says the reg
12750 was dead, there's nothing left to do. Otherwise, we'll
12751 need to do a global life update after combine. */
12752 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12753 && REGNO_REG_SET_P (bb->global_live_at_start,
12754 REGNO (XEXP (note, 0))))
12755 SET_BIT (refresh_blocks, this_basic_block->index);
12758 /* If the register is set or already dead at PLACE, we needn't do
12759 anything with this note if it is still a REG_DEAD note.
12760 We can here if it is set at all, not if is it totally replace,
12761 which is what `dead_or_set_p' checks, so also check for it being
12762 set partially. */
12764 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12766 unsigned int regno = REGNO (XEXP (note, 0));
12768 /* Similarly, if the instruction on which we want to place
12769 the note is a noop, we'll need do a global live update
12770 after we remove them in delete_noop_moves. */
12771 if (noop_move_p (place))
12772 SET_BIT (refresh_blocks, this_basic_block->index);
12774 if (dead_or_set_p (place, XEXP (note, 0))
12775 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12777 /* Unless the register previously died in PLACE, clear
12778 last_death. [I no longer understand why this is
12779 being done.] */
12780 if (reg_stat[regno].last_death != place)
12781 reg_stat[regno].last_death = 0;
12782 place = 0;
12784 else
12785 reg_stat[regno].last_death = place;
12787 /* If this is a death note for a hard reg that is occupying
12788 multiple registers, ensure that we are still using all
12789 parts of the object. If we find a piece of the object
12790 that is unused, we must arrange for an appropriate REG_DEAD
12791 note to be added for it. However, we can't just emit a USE
12792 and tag the note to it, since the register might actually
12793 be dead; so we recourse, and the recursive call then finds
12794 the previous insn that used this register. */
12796 if (place && regno < FIRST_PSEUDO_REGISTER
12797 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12799 unsigned int endregno
12800 = regno + hard_regno_nregs[regno]
12801 [GET_MODE (XEXP (note, 0))];
12802 int all_used = 1;
12803 unsigned int i;
12805 for (i = regno; i < endregno; i++)
12806 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12807 && ! find_regno_fusage (place, USE, i))
12808 || dead_or_set_regno_p (place, i))
12809 all_used = 0;
12811 if (! all_used)
12813 /* Put only REG_DEAD notes for pieces that are
12814 not already dead or set. */
12816 for (i = regno; i < endregno;
12817 i += hard_regno_nregs[i][reg_raw_mode[i]])
12819 rtx piece = regno_reg_rtx[i];
12820 basic_block bb = this_basic_block;
12822 if (! dead_or_set_p (place, piece)
12823 && ! reg_bitfield_target_p (piece,
12824 PATTERN (place)))
12826 rtx new_note
12827 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12829 distribute_notes (new_note, place, place,
12830 NULL_RTX);
12832 else if (! refers_to_regno_p (i, i + 1,
12833 PATTERN (place), 0)
12834 && ! find_regno_fusage (place, USE, i))
12835 for (tem = PREV_INSN (place); ;
12836 tem = PREV_INSN (tem))
12838 if (! INSN_P (tem))
12840 if (tem == BB_HEAD (bb))
12842 SET_BIT (refresh_blocks,
12843 this_basic_block->index);
12844 break;
12846 continue;
12848 if (dead_or_set_p (tem, piece)
12849 || reg_bitfield_target_p (piece,
12850 PATTERN (tem)))
12852 REG_NOTES (tem)
12853 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12854 REG_NOTES (tem));
12855 break;
12861 place = 0;
12865 break;
12867 default:
12868 /* Any other notes should not be present at this point in the
12869 compilation. */
12870 abort ();
12873 if (place)
12875 XEXP (note, 1) = REG_NOTES (place);
12876 REG_NOTES (place) = note;
12878 else if ((REG_NOTE_KIND (note) == REG_DEAD
12879 || REG_NOTE_KIND (note) == REG_UNUSED)
12880 && GET_CODE (XEXP (note, 0)) == REG)
12881 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12883 if (place2)
12885 if ((REG_NOTE_KIND (note) == REG_DEAD
12886 || REG_NOTE_KIND (note) == REG_UNUSED)
12887 && GET_CODE (XEXP (note, 0)) == REG)
12888 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12890 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12891 REG_NOTE_KIND (note),
12892 XEXP (note, 0),
12893 REG_NOTES (place2));
12898 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12899 I3, I2, and I1 to new locations. This is also called to add a link
12900 pointing at I3 when I3's destination is changed. */
12902 static void
12903 distribute_links (rtx links)
12905 rtx link, next_link;
12907 for (link = links; link; link = next_link)
12909 rtx place = 0;
12910 rtx insn;
12911 rtx set, reg;
12913 next_link = XEXP (link, 1);
12915 /* If the insn that this link points to is a NOTE or isn't a single
12916 set, ignore it. In the latter case, it isn't clear what we
12917 can do other than ignore the link, since we can't tell which
12918 register it was for. Such links wouldn't be used by combine
12919 anyway.
12921 It is not possible for the destination of the target of the link to
12922 have been changed by combine. The only potential of this is if we
12923 replace I3, I2, and I1 by I3 and I2. But in that case the
12924 destination of I2 also remains unchanged. */
12926 if (GET_CODE (XEXP (link, 0)) == NOTE
12927 || (set = single_set (XEXP (link, 0))) == 0)
12928 continue;
12930 reg = SET_DEST (set);
12931 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12932 || GET_CODE (reg) == SIGN_EXTRACT
12933 || GET_CODE (reg) == STRICT_LOW_PART)
12934 reg = XEXP (reg, 0);
12936 /* A LOG_LINK is defined as being placed on the first insn that uses
12937 a register and points to the insn that sets the register. Start
12938 searching at the next insn after the target of the link and stop
12939 when we reach a set of the register or the end of the basic block.
12941 Note that this correctly handles the link that used to point from
12942 I3 to I2. Also note that not much searching is typically done here
12943 since most links don't point very far away. */
12945 for (insn = NEXT_INSN (XEXP (link, 0));
12946 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12947 || BB_HEAD (this_basic_block->next_bb) != insn));
12948 insn = NEXT_INSN (insn))
12949 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12951 if (reg_referenced_p (reg, PATTERN (insn)))
12952 place = insn;
12953 break;
12955 else if (GET_CODE (insn) == CALL_INSN
12956 && find_reg_fusage (insn, USE, reg))
12958 place = insn;
12959 break;
12961 else if (INSN_P (insn) && reg_set_p (reg, insn))
12962 break;
12964 /* If we found a place to put the link, place it there unless there
12965 is already a link to the same insn as LINK at that point. */
12967 if (place)
12969 rtx link2;
12971 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12972 if (XEXP (link2, 0) == XEXP (link, 0))
12973 break;
12975 if (link2 == 0)
12977 XEXP (link, 1) = LOG_LINKS (place);
12978 LOG_LINKS (place) = link;
12980 /* Set added_links_insn to the earliest insn we added a
12981 link to. */
12982 if (added_links_insn == 0
12983 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12984 added_links_insn = place;
12990 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12991 Check whether the expression pointer to by LOC is a register or
12992 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12993 Otherwise return zero. */
12995 static int
12996 unmentioned_reg_p_1 (rtx *loc, void *expr)
12998 rtx x = *loc;
13000 if (x != NULL_RTX
13001 && (GET_CODE (x) == REG || GET_CODE (x) == MEM)
13002 && ! reg_mentioned_p (x, (rtx) expr))
13003 return 1;
13004 return 0;
13007 /* Check for any register or memory mentioned in EQUIV that is not
13008 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13009 of EXPR where some registers may have been replaced by constants. */
13011 static bool
13012 unmentioned_reg_p (rtx equiv, rtx expr)
13014 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13017 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
13019 static int
13020 insn_cuid (rtx insn)
13022 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
13023 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
13024 insn = NEXT_INSN (insn);
13026 if (INSN_UID (insn) > max_uid_cuid)
13027 abort ();
13029 return INSN_CUID (insn);
13032 void
13033 dump_combine_stats (FILE *file)
13035 fnotice
13036 (file,
13037 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13038 combine_attempts, combine_merges, combine_extras, combine_successes);
13041 void
13042 dump_combine_total_stats (FILE *file)
13044 fnotice
13045 (file,
13046 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13047 total_attempts, total_merges, total_extras, total_successes);