* tree.h (TYPE_IS_SIZETYPE): Add more documentation.
[official-gcc.git] / gcc / optabs.c
blob16433a9a3dc08fa9f73323ea26599cdf4c2ff992
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "toplev.h"
27 /* Include insn-config.h before expr.h so that HAVE_conditional_move
28 is properly defined. */
29 #include "insn-config.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "insn-flags.h"
35 #include "insn-codes.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "recog.h"
39 #include "reload.h"
40 #include "ggc.h"
41 #include "real.h"
42 #include "defaults.h"
44 /* Each optab contains info on how this target machine
45 can perform a particular operation
46 for all sizes and kinds of operands.
48 The operation to be performed is often specified
49 by passing one of these optabs as an argument.
51 See expr.h for documentation of these optabs. */
53 optab optab_table[OTI_MAX];
55 rtx libfunc_table[LTI_MAX];
57 /* Tables of patterns for extending one integer mode to another. */
58 enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2];
60 /* Tables of patterns for converting between fixed and floating point. */
61 enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
62 enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
63 enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
65 /* Contains the optab used for each rtx code. */
66 optab code_to_optab[NUM_RTX_CODE + 1];
68 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
69 gives the gen_function to make a branch to test that condition. */
71 rtxfun bcc_gen_fctn[NUM_RTX_CODE];
73 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
74 gives the insn code to make a store-condition insn
75 to test that condition. */
77 enum insn_code setcc_gen_code[NUM_RTX_CODE];
79 #ifdef HAVE_conditional_move
80 /* Indexed by the machine mode, gives the insn code to make a conditional
81 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
82 setcc_gen_code to cut down on the number of named patterns. Consider a day
83 when a lot more rtx codes are conditional (eg: for the ARM). */
85 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
86 #endif
88 static int add_equal_note PARAMS ((rtx, rtx, enum rtx_code, rtx, rtx));
89 static rtx widen_operand PARAMS ((rtx, enum machine_mode,
90 enum machine_mode, int, int));
91 static int expand_cmplxdiv_straight PARAMS ((rtx, rtx, rtx, rtx,
92 rtx, rtx, enum machine_mode,
93 int, enum optab_methods,
94 enum mode_class, optab));
95 static int expand_cmplxdiv_wide PARAMS ((rtx, rtx, rtx, rtx,
96 rtx, rtx, enum machine_mode,
97 int, enum optab_methods,
98 enum mode_class, optab));
99 static enum insn_code can_fix_p PARAMS ((enum machine_mode, enum machine_mode,
100 int, int *));
101 static enum insn_code can_float_p PARAMS ((enum machine_mode, enum machine_mode,
102 int));
103 static rtx ftruncify PARAMS ((rtx));
104 static optab init_optab PARAMS ((enum rtx_code));
105 static void init_libfuncs PARAMS ((optab, int, int, const char *, int));
106 static void init_integral_libfuncs PARAMS ((optab, const char *, int));
107 static void init_floating_libfuncs PARAMS ((optab, const char *, int));
108 #ifdef HAVE_conditional_trap
109 static void init_traps PARAMS ((void));
110 #endif
111 static void emit_cmp_and_jump_insn_1 PARAMS ((rtx, rtx, enum machine_mode,
112 enum rtx_code, int, rtx));
113 static void prepare_float_lib_cmp PARAMS ((rtx *, rtx *, enum rtx_code *,
114 enum machine_mode *, int *));
116 /* Add a REG_EQUAL note to the last insn in SEQ. TARGET is being set to
117 the result of operation CODE applied to OP0 (and OP1 if it is a binary
118 operation).
120 If the last insn does not set TARGET, don't do anything, but return 1.
122 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
123 don't add the REG_EQUAL note but return 0. Our caller can then try
124 again, ensuring that TARGET is not one of the operands. */
126 static int
127 add_equal_note (seq, target, code, op0, op1)
128 rtx seq;
129 rtx target;
130 enum rtx_code code;
131 rtx op0, op1;
133 rtx set;
134 int i;
135 rtx note;
137 if ((GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2'
138 && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<')
139 || GET_CODE (seq) != SEQUENCE
140 || (set = single_set (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))) == 0
141 || GET_CODE (target) == ZERO_EXTRACT
142 || (! rtx_equal_p (SET_DEST (set), target)
143 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the
144 SUBREG. */
145 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
146 || ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)),
147 target))))
148 return 1;
150 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
151 besides the last insn. */
152 if (reg_overlap_mentioned_p (target, op0)
153 || (op1 && reg_overlap_mentioned_p (target, op1)))
154 for (i = XVECLEN (seq, 0) - 2; i >= 0; i--)
155 if (reg_set_p (target, XVECEXP (seq, 0, i)))
156 return 0;
158 if (GET_RTX_CLASS (code) == '1')
159 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
160 else
161 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
163 set_unique_reg_note (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1), REG_EQUAL, note);
165 return 1;
168 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
169 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
170 not actually do a sign-extend or zero-extend, but can leave the
171 higher-order bits of the result rtx undefined, for example, in the case
172 of logical operations, but not right shifts. */
174 static rtx
175 widen_operand (op, mode, oldmode, unsignedp, no_extend)
176 rtx op;
177 enum machine_mode mode, oldmode;
178 int unsignedp;
179 int no_extend;
181 rtx result;
183 /* If we must extend do so. If OP is either a constant or a SUBREG
184 for a promoted object, also extend since it will be more efficient to
185 do so. */
186 if (! no_extend
187 || GET_MODE (op) == VOIDmode
188 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)))
189 return convert_modes (mode, oldmode, op, unsignedp);
191 /* If MODE is no wider than a single word, we return a paradoxical
192 SUBREG. */
193 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
194 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
196 /* Otherwise, get an object of MODE, clobber it, and set the low-order
197 part to OP. */
199 result = gen_reg_rtx (mode);
200 emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
201 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
202 return result;
205 /* Generate code to perform a straightforward complex divide. */
207 static int
208 expand_cmplxdiv_straight (real0, real1, imag0, imag1, realr, imagr, submode,
209 unsignedp, methods, class, binoptab)
210 rtx real0, real1, imag0, imag1, realr, imagr;
211 enum machine_mode submode;
212 int unsignedp;
213 enum optab_methods methods;
214 enum mode_class class;
215 optab binoptab;
217 rtx divisor;
218 rtx real_t, imag_t;
219 rtx temp1, temp2;
220 rtx res;
221 optab this_add_optab = add_optab;
222 optab this_sub_optab = sub_optab;
223 optab this_neg_optab = neg_optab;
224 optab this_mul_optab = smul_optab;
226 if (binoptab == sdivv_optab)
228 this_add_optab = addv_optab;
229 this_sub_optab = subv_optab;
230 this_neg_optab = negv_optab;
231 this_mul_optab = smulv_optab;
234 /* Don't fetch these from memory more than once. */
235 real0 = force_reg (submode, real0);
236 real1 = force_reg (submode, real1);
238 if (imag0 != 0)
239 imag0 = force_reg (submode, imag0);
241 imag1 = force_reg (submode, imag1);
243 /* Divisor: c*c + d*d. */
244 temp1 = expand_binop (submode, this_mul_optab, real1, real1,
245 NULL_RTX, unsignedp, methods);
247 temp2 = expand_binop (submode, this_mul_optab, imag1, imag1,
248 NULL_RTX, unsignedp, methods);
250 if (temp1 == 0 || temp2 == 0)
251 return 0;
253 divisor = expand_binop (submode, this_add_optab, temp1, temp2,
254 NULL_RTX, unsignedp, methods);
255 if (divisor == 0)
256 return 0;
258 if (imag0 == 0)
260 /* Mathematically, ((a)(c-id))/divisor. */
261 /* Computationally, (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)). */
263 /* Calculate the dividend. */
264 real_t = expand_binop (submode, this_mul_optab, real0, real1,
265 NULL_RTX, unsignedp, methods);
267 imag_t = expand_binop (submode, this_mul_optab, real0, imag1,
268 NULL_RTX, unsignedp, methods);
270 if (real_t == 0 || imag_t == 0)
271 return 0;
273 imag_t = expand_unop (submode, this_neg_optab, imag_t,
274 NULL_RTX, unsignedp);
276 else
278 /* Mathematically, ((a+ib)(c-id))/divider. */
279 /* Calculate the dividend. */
280 temp1 = expand_binop (submode, this_mul_optab, real0, real1,
281 NULL_RTX, unsignedp, methods);
283 temp2 = expand_binop (submode, this_mul_optab, imag0, imag1,
284 NULL_RTX, unsignedp, methods);
286 if (temp1 == 0 || temp2 == 0)
287 return 0;
289 real_t = expand_binop (submode, this_add_optab, temp1, temp2,
290 NULL_RTX, unsignedp, methods);
292 temp1 = expand_binop (submode, this_mul_optab, imag0, real1,
293 NULL_RTX, unsignedp, methods);
295 temp2 = expand_binop (submode, this_mul_optab, real0, imag1,
296 NULL_RTX, unsignedp, methods);
298 if (temp1 == 0 || temp2 == 0)
299 return 0;
301 imag_t = expand_binop (submode, this_sub_optab, temp1, temp2,
302 NULL_RTX, unsignedp, methods);
304 if (real_t == 0 || imag_t == 0)
305 return 0;
308 if (class == MODE_COMPLEX_FLOAT)
309 res = expand_binop (submode, binoptab, real_t, divisor,
310 realr, unsignedp, methods);
311 else
312 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
313 real_t, divisor, realr, unsignedp);
315 if (res == 0)
316 return 0;
318 if (res != realr)
319 emit_move_insn (realr, res);
321 if (class == MODE_COMPLEX_FLOAT)
322 res = expand_binop (submode, binoptab, imag_t, divisor,
323 imagr, unsignedp, methods);
324 else
325 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
326 imag_t, divisor, imagr, unsignedp);
328 if (res == 0)
329 return 0;
331 if (res != imagr)
332 emit_move_insn (imagr, res);
334 return 1;
337 /* Generate code to perform a wide-input-range-acceptable complex divide. */
339 static int
340 expand_cmplxdiv_wide (real0, real1, imag0, imag1, realr, imagr, submode,
341 unsignedp, methods, class, binoptab)
342 rtx real0, real1, imag0, imag1, realr, imagr;
343 enum machine_mode submode;
344 int unsignedp;
345 enum optab_methods methods;
346 enum mode_class class;
347 optab binoptab;
349 rtx ratio, divisor;
350 rtx real_t, imag_t;
351 rtx temp1, temp2, lab1, lab2;
352 enum machine_mode mode;
353 int align;
354 rtx res;
355 optab this_add_optab = add_optab;
356 optab this_sub_optab = sub_optab;
357 optab this_neg_optab = neg_optab;
358 optab this_mul_optab = smul_optab;
360 if (binoptab == sdivv_optab)
362 this_add_optab = addv_optab;
363 this_sub_optab = subv_optab;
364 this_neg_optab = negv_optab;
365 this_mul_optab = smulv_optab;
368 /* Don't fetch these from memory more than once. */
369 real0 = force_reg (submode, real0);
370 real1 = force_reg (submode, real1);
372 if (imag0 != 0)
373 imag0 = force_reg (submode, imag0);
375 imag1 = force_reg (submode, imag1);
377 /* XXX What's an "unsigned" complex number? */
378 if (unsignedp)
380 temp1 = real1;
381 temp2 = imag1;
383 else
385 temp1 = expand_abs (submode, real1, NULL_RTX, unsignedp, 1);
386 temp2 = expand_abs (submode, imag1, NULL_RTX, unsignedp, 1);
389 if (temp1 == 0 || temp2 == 0)
390 return 0;
392 mode = GET_MODE (temp1);
393 align = GET_MODE_ALIGNMENT (mode);
394 lab1 = gen_label_rtx ();
395 emit_cmp_and_jump_insns (temp1, temp2, LT, NULL_RTX,
396 mode, unsignedp, align, lab1);
398 /* |c| >= |d|; use ratio d/c to scale dividend and divisor. */
400 if (class == MODE_COMPLEX_FLOAT)
401 ratio = expand_binop (submode, binoptab, imag1, real1,
402 NULL_RTX, unsignedp, methods);
403 else
404 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
405 imag1, real1, NULL_RTX, unsignedp);
407 if (ratio == 0)
408 return 0;
410 /* Calculate divisor. */
412 temp1 = expand_binop (submode, this_mul_optab, imag1, ratio,
413 NULL_RTX, unsignedp, methods);
415 if (temp1 == 0)
416 return 0;
418 divisor = expand_binop (submode, this_add_optab, temp1, real1,
419 NULL_RTX, unsignedp, methods);
421 if (divisor == 0)
422 return 0;
424 /* Calculate dividend. */
426 if (imag0 == 0)
428 real_t = real0;
430 /* Compute a / (c+id) as a / (c+d(d/c)) + i (-a(d/c)) / (c+d(d/c)). */
432 imag_t = expand_binop (submode, this_mul_optab, real0, ratio,
433 NULL_RTX, unsignedp, methods);
435 if (imag_t == 0)
436 return 0;
438 imag_t = expand_unop (submode, this_neg_optab, imag_t,
439 NULL_RTX, unsignedp);
441 if (real_t == 0 || imag_t == 0)
442 return 0;
444 else
446 /* Compute (a+ib)/(c+id) as
447 (a+b(d/c))/(c+d(d/c) + i(b-a(d/c))/(c+d(d/c)). */
449 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
450 NULL_RTX, unsignedp, methods);
452 if (temp1 == 0)
453 return 0;
455 real_t = expand_binop (submode, this_add_optab, temp1, real0,
456 NULL_RTX, unsignedp, methods);
458 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
459 NULL_RTX, unsignedp, methods);
461 if (temp1 == 0)
462 return 0;
464 imag_t = expand_binop (submode, this_sub_optab, imag0, temp1,
465 NULL_RTX, unsignedp, methods);
467 if (real_t == 0 || imag_t == 0)
468 return 0;
471 if (class == MODE_COMPLEX_FLOAT)
472 res = expand_binop (submode, binoptab, real_t, divisor,
473 realr, unsignedp, methods);
474 else
475 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
476 real_t, divisor, realr, unsignedp);
478 if (res == 0)
479 return 0;
481 if (res != realr)
482 emit_move_insn (realr, res);
484 if (class == MODE_COMPLEX_FLOAT)
485 res = expand_binop (submode, binoptab, imag_t, divisor,
486 imagr, unsignedp, methods);
487 else
488 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
489 imag_t, divisor, imagr, unsignedp);
491 if (res == 0)
492 return 0;
494 if (res != imagr)
495 emit_move_insn (imagr, res);
497 lab2 = gen_label_rtx ();
498 emit_jump_insn (gen_jump (lab2));
499 emit_barrier ();
501 emit_label (lab1);
503 /* |d| > |c|; use ratio c/d to scale dividend and divisor. */
505 if (class == MODE_COMPLEX_FLOAT)
506 ratio = expand_binop (submode, binoptab, real1, imag1,
507 NULL_RTX, unsignedp, methods);
508 else
509 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
510 real1, imag1, NULL_RTX, unsignedp);
512 if (ratio == 0)
513 return 0;
515 /* Calculate divisor. */
517 temp1 = expand_binop (submode, this_mul_optab, real1, ratio,
518 NULL_RTX, unsignedp, methods);
520 if (temp1 == 0)
521 return 0;
523 divisor = expand_binop (submode, this_add_optab, temp1, imag1,
524 NULL_RTX, unsignedp, methods);
526 if (divisor == 0)
527 return 0;
529 /* Calculate dividend. */
531 if (imag0 == 0)
533 /* Compute a / (c+id) as a(c/d) / (c(c/d)+d) + i (-a) / (c(c/d)+d). */
535 real_t = expand_binop (submode, this_mul_optab, real0, ratio,
536 NULL_RTX, unsignedp, methods);
538 imag_t = expand_unop (submode, this_neg_optab, real0,
539 NULL_RTX, unsignedp);
541 if (real_t == 0 || imag_t == 0)
542 return 0;
544 else
546 /* Compute (a+ib)/(c+id) as
547 (a(c/d)+b)/(c(c/d)+d) + i (b(c/d)-a)/(c(c/d)+d). */
549 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
550 NULL_RTX, unsignedp, methods);
552 if (temp1 == 0)
553 return 0;
555 real_t = expand_binop (submode, this_add_optab, temp1, imag0,
556 NULL_RTX, unsignedp, methods);
558 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
559 NULL_RTX, unsignedp, methods);
561 if (temp1 == 0)
562 return 0;
564 imag_t = expand_binop (submode, this_sub_optab, temp1, real0,
565 NULL_RTX, unsignedp, methods);
567 if (real_t == 0 || imag_t == 0)
568 return 0;
571 if (class == MODE_COMPLEX_FLOAT)
572 res = expand_binop (submode, binoptab, real_t, divisor,
573 realr, unsignedp, methods);
574 else
575 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
576 real_t, divisor, realr, unsignedp);
578 if (res == 0)
579 return 0;
581 if (res != realr)
582 emit_move_insn (realr, res);
584 if (class == MODE_COMPLEX_FLOAT)
585 res = expand_binop (submode, binoptab, imag_t, divisor,
586 imagr, unsignedp, methods);
587 else
588 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
589 imag_t, divisor, imagr, unsignedp);
591 if (res == 0)
592 return 0;
594 if (res != imagr)
595 emit_move_insn (imagr, res);
597 emit_label (lab2);
599 return 1;
602 /* Generate code to perform an operation specified by BINOPTAB
603 on operands OP0 and OP1, with result having machine-mode MODE.
605 UNSIGNEDP is for the case where we have to widen the operands
606 to perform the operation. It says to use zero-extension.
608 If TARGET is nonzero, the value
609 is generated there, if it is convenient to do so.
610 In all cases an rtx is returned for the locus of the value;
611 this may or may not be TARGET. */
614 expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
615 enum machine_mode mode;
616 optab binoptab;
617 rtx op0, op1;
618 rtx target;
619 int unsignedp;
620 enum optab_methods methods;
622 enum optab_methods next_methods
623 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
624 ? OPTAB_WIDEN : methods);
625 enum mode_class class;
626 enum machine_mode wider_mode;
627 register rtx temp;
628 int commutative_op = 0;
629 int shift_op = (binoptab->code == ASHIFT
630 || binoptab->code == ASHIFTRT
631 || binoptab->code == LSHIFTRT
632 || binoptab->code == ROTATE
633 || binoptab->code == ROTATERT);
634 rtx entry_last = get_last_insn ();
635 rtx last;
637 class = GET_MODE_CLASS (mode);
639 op0 = protect_from_queue (op0, 0);
640 op1 = protect_from_queue (op1, 0);
641 if (target)
642 target = protect_from_queue (target, 1);
644 if (flag_force_mem)
646 op0 = force_not_mem (op0);
647 op1 = force_not_mem (op1);
650 /* If subtracting an integer constant, convert this into an addition of
651 the negated constant. */
653 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
655 op1 = negate_rtx (mode, op1);
656 binoptab = add_optab;
659 /* If we are inside an appropriately-short loop and one operand is an
660 expensive constant, force it into a register. */
661 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
662 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
663 op0 = force_reg (mode, op0);
665 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
666 && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
667 op1 = force_reg (mode, op1);
669 /* Record where to delete back to if we backtrack. */
670 last = get_last_insn ();
672 /* If operation is commutative,
673 try to make the first operand a register.
674 Even better, try to make it the same as the target.
675 Also try to make the last operand a constant. */
676 if (GET_RTX_CLASS (binoptab->code) == 'c'
677 || binoptab == smul_widen_optab
678 || binoptab == umul_widen_optab
679 || binoptab == smul_highpart_optab
680 || binoptab == umul_highpart_optab)
682 commutative_op = 1;
684 if (((target == 0 || GET_CODE (target) == REG)
685 ? ((GET_CODE (op1) == REG
686 && GET_CODE (op0) != REG)
687 || target == op1)
688 : rtx_equal_p (op1, target))
689 || GET_CODE (op0) == CONST_INT)
691 temp = op1;
692 op1 = op0;
693 op0 = temp;
697 /* If we can do it with a three-operand insn, do so. */
699 if (methods != OPTAB_MUST_WIDEN
700 && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
702 int icode = (int) binoptab->handlers[(int) mode].insn_code;
703 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
704 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
705 rtx pat;
706 rtx xop0 = op0, xop1 = op1;
708 if (target)
709 temp = target;
710 else
711 temp = gen_reg_rtx (mode);
713 /* If it is a commutative operator and the modes would match
714 if we would swap the operands, we can save the conversions. */
715 if (commutative_op)
717 if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
718 && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
720 register rtx tmp;
722 tmp = op0; op0 = op1; op1 = tmp;
723 tmp = xop0; xop0 = xop1; xop1 = tmp;
727 /* In case the insn wants input operands in modes different from
728 the result, convert the operands. */
730 if (GET_MODE (op0) != VOIDmode
731 && GET_MODE (op0) != mode0
732 && mode0 != VOIDmode)
733 xop0 = convert_to_mode (mode0, xop0, unsignedp);
735 if (GET_MODE (xop1) != VOIDmode
736 && GET_MODE (xop1) != mode1
737 && mode1 != VOIDmode)
738 xop1 = convert_to_mode (mode1, xop1, unsignedp);
740 /* Now, if insn's predicates don't allow our operands, put them into
741 pseudo regs. */
743 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)
744 && mode0 != VOIDmode)
745 xop0 = copy_to_mode_reg (mode0, xop0);
747 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)
748 && mode1 != VOIDmode)
749 xop1 = copy_to_mode_reg (mode1, xop1);
751 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
752 temp = gen_reg_rtx (mode);
754 pat = GEN_FCN (icode) (temp, xop0, xop1);
755 if (pat)
757 /* If PAT is a multi-insn sequence, try to add an appropriate
758 REG_EQUAL note to it. If we can't because TEMP conflicts with an
759 operand, call ourselves again, this time without a target. */
760 if (GET_CODE (pat) == SEQUENCE
761 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
763 delete_insns_since (last);
764 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
765 unsignedp, methods);
768 emit_insn (pat);
769 return temp;
771 else
772 delete_insns_since (last);
775 /* If this is a multiply, see if we can do a widening operation that
776 takes operands of this mode and makes a wider mode. */
778 if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
779 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
780 ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
781 != CODE_FOR_nothing))
783 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
784 unsignedp ? umul_widen_optab : smul_widen_optab,
785 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
787 if (temp != 0)
789 if (GET_MODE_CLASS (mode) == MODE_INT)
790 return gen_lowpart (mode, temp);
791 else
792 return convert_to_mode (mode, temp, unsignedp);
796 /* Look for a wider mode of the same class for which we think we
797 can open-code the operation. Check for a widening multiply at the
798 wider mode as well. */
800 if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
801 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
802 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
803 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
805 if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
806 || (binoptab == smul_optab
807 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
808 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
809 ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
810 != CODE_FOR_nothing)))
812 rtx xop0 = op0, xop1 = op1;
813 int no_extend = 0;
815 /* For certain integer operations, we need not actually extend
816 the narrow operands, as long as we will truncate
817 the results to the same narrowness. */
819 if ((binoptab == ior_optab || binoptab == and_optab
820 || binoptab == xor_optab
821 || binoptab == add_optab || binoptab == sub_optab
822 || binoptab == smul_optab || binoptab == ashl_optab)
823 && class == MODE_INT)
824 no_extend = 1;
826 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
828 /* The second operand of a shift must always be extended. */
829 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
830 no_extend && binoptab != ashl_optab);
832 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
833 unsignedp, OPTAB_DIRECT);
834 if (temp)
836 if (class != MODE_INT)
838 if (target == 0)
839 target = gen_reg_rtx (mode);
840 convert_move (target, temp, 0);
841 return target;
843 else
844 return gen_lowpart (mode, temp);
846 else
847 delete_insns_since (last);
851 /* These can be done a word at a time. */
852 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
853 && class == MODE_INT
854 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
855 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
857 unsigned int i;
858 rtx insns;
859 rtx equiv_value;
861 /* If TARGET is the same as one of the operands, the REG_EQUAL note
862 won't be accurate, so use a new target. */
863 if (target == 0 || target == op0 || target == op1)
864 target = gen_reg_rtx (mode);
866 start_sequence ();
868 /* Do the actual arithmetic. */
869 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
871 rtx target_piece = operand_subword (target, i, 1, mode);
872 rtx x = expand_binop (word_mode, binoptab,
873 operand_subword_force (op0, i, mode),
874 operand_subword_force (op1, i, mode),
875 target_piece, unsignedp, next_methods);
877 if (x == 0)
878 break;
880 if (target_piece != x)
881 emit_move_insn (target_piece, x);
884 insns = get_insns ();
885 end_sequence ();
887 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
889 if (binoptab->code != UNKNOWN)
890 equiv_value
891 = gen_rtx_fmt_ee (binoptab->code, mode,
892 copy_rtx (op0), copy_rtx (op1));
893 else
894 equiv_value = 0;
896 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
897 return target;
901 /* Synthesize double word shifts from single word shifts. */
902 if ((binoptab == lshr_optab || binoptab == ashl_optab
903 || binoptab == ashr_optab)
904 && class == MODE_INT
905 && GET_CODE (op1) == CONST_INT
906 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
907 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
908 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
909 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
911 rtx insns, inter, equiv_value;
912 rtx into_target, outof_target;
913 rtx into_input, outof_input;
914 int shift_count, left_shift, outof_word;
916 /* If TARGET is the same as one of the operands, the REG_EQUAL note
917 won't be accurate, so use a new target. */
918 if (target == 0 || target == op0 || target == op1)
919 target = gen_reg_rtx (mode);
921 start_sequence ();
923 shift_count = INTVAL (op1);
925 /* OUTOF_* is the word we are shifting bits away from, and
926 INTO_* is the word that we are shifting bits towards, thus
927 they differ depending on the direction of the shift and
928 WORDS_BIG_ENDIAN. */
930 left_shift = binoptab == ashl_optab;
931 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
933 outof_target = operand_subword (target, outof_word, 1, mode);
934 into_target = operand_subword (target, 1 - outof_word, 1, mode);
936 outof_input = operand_subword_force (op0, outof_word, mode);
937 into_input = operand_subword_force (op0, 1 - outof_word, mode);
939 if (shift_count >= BITS_PER_WORD)
941 inter = expand_binop (word_mode, binoptab,
942 outof_input,
943 GEN_INT (shift_count - BITS_PER_WORD),
944 into_target, unsignedp, next_methods);
946 if (inter != 0 && inter != into_target)
947 emit_move_insn (into_target, inter);
949 /* For a signed right shift, we must fill the word we are shifting
950 out of with copies of the sign bit. Otherwise it is zeroed. */
951 if (inter != 0 && binoptab != ashr_optab)
952 inter = CONST0_RTX (word_mode);
953 else if (inter != 0)
954 inter = expand_binop (word_mode, binoptab,
955 outof_input,
956 GEN_INT (BITS_PER_WORD - 1),
957 outof_target, unsignedp, next_methods);
959 if (inter != 0 && inter != outof_target)
960 emit_move_insn (outof_target, inter);
962 else
964 rtx carries;
965 optab reverse_unsigned_shift, unsigned_shift;
967 /* For a shift of less then BITS_PER_WORD, to compute the carry,
968 we must do a logical shift in the opposite direction of the
969 desired shift. */
971 reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
973 /* For a shift of less than BITS_PER_WORD, to compute the word
974 shifted towards, we need to unsigned shift the orig value of
975 that word. */
977 unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
979 carries = expand_binop (word_mode, reverse_unsigned_shift,
980 outof_input,
981 GEN_INT (BITS_PER_WORD - shift_count),
982 0, unsignedp, next_methods);
984 if (carries == 0)
985 inter = 0;
986 else
987 inter = expand_binop (word_mode, unsigned_shift, into_input,
988 op1, 0, unsignedp, next_methods);
990 if (inter != 0)
991 inter = expand_binop (word_mode, ior_optab, carries, inter,
992 into_target, unsignedp, next_methods);
994 if (inter != 0 && inter != into_target)
995 emit_move_insn (into_target, inter);
997 if (inter != 0)
998 inter = expand_binop (word_mode, binoptab, outof_input,
999 op1, outof_target, unsignedp, next_methods);
1001 if (inter != 0 && inter != outof_target)
1002 emit_move_insn (outof_target, inter);
1005 insns = get_insns ();
1006 end_sequence ();
1008 if (inter != 0)
1010 if (binoptab->code != UNKNOWN)
1011 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1012 else
1013 equiv_value = 0;
1015 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1016 return target;
1020 /* Synthesize double word rotates from single word shifts. */
1021 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1022 && class == MODE_INT
1023 && GET_CODE (op1) == CONST_INT
1024 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1025 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1026 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1028 rtx insns, equiv_value;
1029 rtx into_target, outof_target;
1030 rtx into_input, outof_input;
1031 rtx inter;
1032 int shift_count, left_shift, outof_word;
1034 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1035 won't be accurate, so use a new target. */
1036 if (target == 0 || target == op0 || target == op1)
1037 target = gen_reg_rtx (mode);
1039 start_sequence ();
1041 shift_count = INTVAL (op1);
1043 /* OUTOF_* is the word we are shifting bits away from, and
1044 INTO_* is the word that we are shifting bits towards, thus
1045 they differ depending on the direction of the shift and
1046 WORDS_BIG_ENDIAN. */
1048 left_shift = (binoptab == rotl_optab);
1049 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1051 outof_target = operand_subword (target, outof_word, 1, mode);
1052 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1054 outof_input = operand_subword_force (op0, outof_word, mode);
1055 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1057 if (shift_count == BITS_PER_WORD)
1059 /* This is just a word swap. */
1060 emit_move_insn (outof_target, into_input);
1061 emit_move_insn (into_target, outof_input);
1062 inter = const0_rtx;
1064 else
1066 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1067 rtx first_shift_count, second_shift_count;
1068 optab reverse_unsigned_shift, unsigned_shift;
1070 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1071 ? lshr_optab : ashl_optab);
1073 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1074 ? ashl_optab : lshr_optab);
1076 if (shift_count > BITS_PER_WORD)
1078 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1079 second_shift_count = GEN_INT (2*BITS_PER_WORD - shift_count);
1081 else
1083 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1084 second_shift_count = GEN_INT (shift_count);
1087 into_temp1 = expand_binop (word_mode, unsigned_shift,
1088 outof_input, first_shift_count,
1089 NULL_RTX, unsignedp, next_methods);
1090 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1091 into_input, second_shift_count,
1092 into_target, unsignedp, next_methods);
1094 if (into_temp1 != 0 && into_temp2 != 0)
1095 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1096 into_target, unsignedp, next_methods);
1097 else
1098 inter = 0;
1100 if (inter != 0 && inter != into_target)
1101 emit_move_insn (into_target, inter);
1103 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1104 into_input, first_shift_count,
1105 NULL_RTX, unsignedp, next_methods);
1106 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1107 outof_input, second_shift_count,
1108 outof_target, unsignedp, next_methods);
1110 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1111 inter = expand_binop (word_mode, ior_optab,
1112 outof_temp1, outof_temp2,
1113 outof_target, unsignedp, next_methods);
1115 if (inter != 0 && inter != outof_target)
1116 emit_move_insn (outof_target, inter);
1119 insns = get_insns ();
1120 end_sequence ();
1122 if (inter != 0)
1124 if (binoptab->code != UNKNOWN)
1125 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1126 else
1127 equiv_value = 0;
1129 /* We can't make this a no conflict block if this is a word swap,
1130 because the word swap case fails if the input and output values
1131 are in the same register. */
1132 if (shift_count != BITS_PER_WORD)
1133 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1134 else
1135 emit_insns (insns);
1138 return target;
1142 /* These can be done a word at a time by propagating carries. */
1143 if ((binoptab == add_optab || binoptab == sub_optab)
1144 && class == MODE_INT
1145 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1146 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1148 unsigned int i;
1149 rtx carry_tmp = gen_reg_rtx (word_mode);
1150 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1151 unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1152 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1153 rtx xop0, xop1;
1155 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1156 value is one of those, use it. Otherwise, use 1 since it is the
1157 one easiest to get. */
1158 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1159 int normalizep = STORE_FLAG_VALUE;
1160 #else
1161 int normalizep = 1;
1162 #endif
1164 /* Prepare the operands. */
1165 xop0 = force_reg (mode, op0);
1166 xop1 = force_reg (mode, op1);
1168 if (target == 0 || GET_CODE (target) != REG
1169 || target == xop0 || target == xop1)
1170 target = gen_reg_rtx (mode);
1172 /* Indicate for flow that the entire target reg is being set. */
1173 if (GET_CODE (target) == REG)
1174 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1176 /* Do the actual arithmetic. */
1177 for (i = 0; i < nwords; i++)
1179 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1180 rtx target_piece = operand_subword (target, index, 1, mode);
1181 rtx op0_piece = operand_subword_force (xop0, index, mode);
1182 rtx op1_piece = operand_subword_force (xop1, index, mode);
1183 rtx x;
1185 /* Main add/subtract of the input operands. */
1186 x = expand_binop (word_mode, binoptab,
1187 op0_piece, op1_piece,
1188 target_piece, unsignedp, next_methods);
1189 if (x == 0)
1190 break;
1192 if (i + 1 < nwords)
1194 /* Store carry from main add/subtract. */
1195 carry_out = gen_reg_rtx (word_mode);
1196 carry_out = emit_store_flag_force (carry_out,
1197 (binoptab == add_optab
1198 ? LT : GT),
1199 x, op0_piece,
1200 word_mode, 1, normalizep);
1203 if (i > 0)
1205 /* Add/subtract previous carry to main result. */
1206 x = expand_binop (word_mode,
1207 normalizep == 1 ? binoptab : otheroptab,
1208 x, carry_in,
1209 target_piece, 1, next_methods);
1210 if (x == 0)
1211 break;
1212 else if (target_piece != x)
1213 emit_move_insn (target_piece, x);
1215 if (i + 1 < nwords)
1217 /* THIS CODE HAS NOT BEEN TESTED. */
1218 /* Get out carry from adding/subtracting carry in. */
1219 carry_tmp = emit_store_flag_force (carry_tmp,
1220 binoptab == add_optab
1221 ? LT : GT,
1222 x, carry_in,
1223 word_mode, 1, normalizep);
1225 /* Logical-ior the two poss. carry together. */
1226 carry_out = expand_binop (word_mode, ior_optab,
1227 carry_out, carry_tmp,
1228 carry_out, 0, next_methods);
1229 if (carry_out == 0)
1230 break;
1234 carry_in = carry_out;
1237 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1239 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1241 rtx temp = emit_move_insn (target, target);
1243 set_unique_reg_note (temp,
1244 REG_EQUAL,
1245 gen_rtx_fmt_ee (binoptab->code, mode,
1246 copy_rtx (xop0),
1247 copy_rtx (xop1)));
1250 return target;
1253 else
1254 delete_insns_since (last);
1257 /* If we want to multiply two two-word values and have normal and widening
1258 multiplies of single-word values, we can do this with three smaller
1259 multiplications. Note that we do not make a REG_NO_CONFLICT block here
1260 because we are not operating on one word at a time.
1262 The multiplication proceeds as follows:
1263 _______________________
1264 [__op0_high_|__op0_low__]
1265 _______________________
1266 * [__op1_high_|__op1_low__]
1267 _______________________________________________
1268 _______________________
1269 (1) [__op0_low__*__op1_low__]
1270 _______________________
1271 (2a) [__op0_low__*__op1_high_]
1272 _______________________
1273 (2b) [__op0_high_*__op1_low__]
1274 _______________________
1275 (3) [__op0_high_*__op1_high_]
1278 This gives a 4-word result. Since we are only interested in the
1279 lower 2 words, partial result (3) and the upper words of (2a) and
1280 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1281 calculated using non-widening multiplication.
1283 (1), however, needs to be calculated with an unsigned widening
1284 multiplication. If this operation is not directly supported we
1285 try using a signed widening multiplication and adjust the result.
1286 This adjustment works as follows:
1288 If both operands are positive then no adjustment is needed.
1290 If the operands have different signs, for example op0_low < 0 and
1291 op1_low >= 0, the instruction treats the most significant bit of
1292 op0_low as a sign bit instead of a bit with significance
1293 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1294 with 2**BITS_PER_WORD - op0_low, and two's complements the
1295 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1296 the result.
1298 Similarly, if both operands are negative, we need to add
1299 (op0_low + op1_low) * 2**BITS_PER_WORD.
1301 We use a trick to adjust quickly. We logically shift op0_low right
1302 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1303 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1304 logical shift exists, we do an arithmetic right shift and subtract
1305 the 0 or -1. */
1307 if (binoptab == smul_optab
1308 && class == MODE_INT
1309 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1310 && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1311 && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1312 && ((umul_widen_optab->handlers[(int) mode].insn_code
1313 != CODE_FOR_nothing)
1314 || (smul_widen_optab->handlers[(int) mode].insn_code
1315 != CODE_FOR_nothing)))
1317 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1318 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1319 rtx op0_high = operand_subword_force (op0, high, mode);
1320 rtx op0_low = operand_subword_force (op0, low, mode);
1321 rtx op1_high = operand_subword_force (op1, high, mode);
1322 rtx op1_low = operand_subword_force (op1, low, mode);
1323 rtx product = 0;
1324 rtx op0_xhigh = NULL_RTX;
1325 rtx op1_xhigh = NULL_RTX;
1327 /* If the target is the same as one of the inputs, don't use it. This
1328 prevents problems with the REG_EQUAL note. */
1329 if (target == op0 || target == op1
1330 || (target != 0 && GET_CODE (target) != REG))
1331 target = 0;
1333 /* Multiply the two lower words to get a double-word product.
1334 If unsigned widening multiplication is available, use that;
1335 otherwise use the signed form and compensate. */
1337 if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1339 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1340 target, 1, OPTAB_DIRECT);
1342 /* If we didn't succeed, delete everything we did so far. */
1343 if (product == 0)
1344 delete_insns_since (last);
1345 else
1346 op0_xhigh = op0_high, op1_xhigh = op1_high;
1349 if (product == 0
1350 && smul_widen_optab->handlers[(int) mode].insn_code
1351 != CODE_FOR_nothing)
1353 rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
1354 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1355 target, 1, OPTAB_DIRECT);
1356 op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1357 NULL_RTX, 1, next_methods);
1358 if (op0_xhigh)
1359 op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
1360 op0_xhigh, op0_xhigh, 0, next_methods);
1361 else
1363 op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1364 NULL_RTX, 0, next_methods);
1365 if (op0_xhigh)
1366 op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
1367 op0_xhigh, op0_xhigh, 0,
1368 next_methods);
1371 op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1372 NULL_RTX, 1, next_methods);
1373 if (op1_xhigh)
1374 op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
1375 op1_xhigh, op1_xhigh, 0, next_methods);
1376 else
1378 op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1379 NULL_RTX, 0, next_methods);
1380 if (op1_xhigh)
1381 op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
1382 op1_xhigh, op1_xhigh, 0,
1383 next_methods);
1387 /* If we have been able to directly compute the product of the
1388 low-order words of the operands and perform any required adjustments
1389 of the operands, we proceed by trying two more multiplications
1390 and then computing the appropriate sum.
1392 We have checked above that the required addition is provided.
1393 Full-word addition will normally always succeed, especially if
1394 it is provided at all, so we don't worry about its failure. The
1395 multiplication may well fail, however, so we do handle that. */
1397 if (product && op0_xhigh && op1_xhigh)
1399 rtx product_high = operand_subword (product, high, 1, mode);
1400 rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
1401 NULL_RTX, 0, OPTAB_DIRECT);
1403 if (temp != 0)
1404 temp = expand_binop (word_mode, add_optab, temp, product_high,
1405 product_high, 0, next_methods);
1407 if (temp != 0 && temp != product_high)
1408 emit_move_insn (product_high, temp);
1410 if (temp != 0)
1411 temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
1412 NULL_RTX, 0, OPTAB_DIRECT);
1414 if (temp != 0)
1415 temp = expand_binop (word_mode, add_optab, temp,
1416 product_high, product_high,
1417 0, next_methods);
1419 if (temp != 0 && temp != product_high)
1420 emit_move_insn (product_high, temp);
1422 if (temp != 0)
1424 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1426 temp = emit_move_insn (product, product);
1427 set_unique_reg_note (temp,
1428 REG_EQUAL,
1429 gen_rtx_fmt_ee (MULT, mode,
1430 copy_rtx (op0),
1431 copy_rtx (op1)));
1434 return product;
1438 /* If we get here, we couldn't do it for some reason even though we
1439 originally thought we could. Delete anything we've emitted in
1440 trying to do it. */
1442 delete_insns_since (last);
1445 /* We need to open-code the complex type operations: '+, -, * and /' */
1447 /* At this point we allow operations between two similar complex
1448 numbers, and also if one of the operands is not a complex number
1449 but rather of MODE_FLOAT or MODE_INT. However, the caller
1450 must make sure that the MODE of the non-complex operand matches
1451 the SUBMODE of the complex operand. */
1453 if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
1455 rtx real0 = 0, imag0 = 0;
1456 rtx real1 = 0, imag1 = 0;
1457 rtx realr, imagr, res;
1458 rtx seq;
1459 rtx equiv_value;
1460 int ok = 0;
1462 /* Find the correct mode for the real and imaginary parts */
1463 enum machine_mode submode
1464 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
1465 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
1468 if (submode == BLKmode)
1469 abort ();
1471 if (! target)
1472 target = gen_reg_rtx (mode);
1474 start_sequence ();
1476 realr = gen_realpart (submode, target);
1477 imagr = gen_imagpart (submode, target);
1479 if (GET_MODE (op0) == mode)
1481 real0 = gen_realpart (submode, op0);
1482 imag0 = gen_imagpart (submode, op0);
1484 else
1485 real0 = op0;
1487 if (GET_MODE (op1) == mode)
1489 real1 = gen_realpart (submode, op1);
1490 imag1 = gen_imagpart (submode, op1);
1492 else
1493 real1 = op1;
1495 if (real0 == 0 || real1 == 0 || ! (imag0 != 0|| imag1 != 0))
1496 abort ();
1498 switch (binoptab->code)
1500 case PLUS:
1501 /* (a+ib) + (c+id) = (a+c) + i(b+d) */
1502 case MINUS:
1503 /* (a+ib) - (c+id) = (a-c) + i(b-d) */
1504 res = expand_binop (submode, binoptab, real0, real1,
1505 realr, unsignedp, methods);
1507 if (res == 0)
1508 break;
1509 else if (res != realr)
1510 emit_move_insn (realr, res);
1512 if (imag0 && imag1)
1513 res = expand_binop (submode, binoptab, imag0, imag1,
1514 imagr, unsignedp, methods);
1515 else if (imag0)
1516 res = imag0;
1517 else if (binoptab->code == MINUS)
1518 res = expand_unop (submode,
1519 binoptab == subv_optab ? negv_optab : neg_optab,
1520 imag1, imagr, unsignedp);
1521 else
1522 res = imag1;
1524 if (res == 0)
1525 break;
1526 else if (res != imagr)
1527 emit_move_insn (imagr, res);
1529 ok = 1;
1530 break;
1532 case MULT:
1533 /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1535 if (imag0 && imag1)
1537 rtx temp1, temp2;
1539 /* Don't fetch these from memory more than once. */
1540 real0 = force_reg (submode, real0);
1541 real1 = force_reg (submode, real1);
1542 imag0 = force_reg (submode, imag0);
1543 imag1 = force_reg (submode, imag1);
1545 temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
1546 unsignedp, methods);
1548 temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
1549 unsignedp, methods);
1551 if (temp1 == 0 || temp2 == 0)
1552 break;
1554 res = (expand_binop
1555 (submode,
1556 binoptab == smulv_optab ? subv_optab : sub_optab,
1557 temp1, temp2, realr, unsignedp, methods));
1559 if (res == 0)
1560 break;
1561 else if (res != realr)
1562 emit_move_insn (realr, res);
1564 temp1 = expand_binop (submode, binoptab, real0, imag1,
1565 NULL_RTX, unsignedp, methods);
1567 temp2 = expand_binop (submode, binoptab, real1, imag0,
1568 NULL_RTX, unsignedp, methods);
1570 if (temp1 == 0 || temp2 == 0)
1571 break;
1573 res = (expand_binop
1574 (submode,
1575 binoptab == smulv_optab ? addv_optab : add_optab,
1576 temp1, temp2, imagr, unsignedp, methods));
1578 if (res == 0)
1579 break;
1580 else if (res != imagr)
1581 emit_move_insn (imagr, res);
1583 ok = 1;
1585 else
1587 /* Don't fetch these from memory more than once. */
1588 real0 = force_reg (submode, real0);
1589 real1 = force_reg (submode, real1);
1591 res = expand_binop (submode, binoptab, real0, real1,
1592 realr, unsignedp, methods);
1593 if (res == 0)
1594 break;
1595 else if (res != realr)
1596 emit_move_insn (realr, res);
1598 if (imag0 != 0)
1599 res = expand_binop (submode, binoptab,
1600 real1, imag0, imagr, unsignedp, methods);
1601 else
1602 res = expand_binop (submode, binoptab,
1603 real0, imag1, imagr, unsignedp, methods);
1605 if (res == 0)
1606 break;
1607 else if (res != imagr)
1608 emit_move_insn (imagr, res);
1610 ok = 1;
1612 break;
1614 case DIV:
1615 /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
1617 if (imag1 == 0)
1619 /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
1621 /* Don't fetch these from memory more than once. */
1622 real1 = force_reg (submode, real1);
1624 /* Simply divide the real and imaginary parts by `c' */
1625 if (class == MODE_COMPLEX_FLOAT)
1626 res = expand_binop (submode, binoptab, real0, real1,
1627 realr, unsignedp, methods);
1628 else
1629 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1630 real0, real1, realr, unsignedp);
1632 if (res == 0)
1633 break;
1634 else if (res != realr)
1635 emit_move_insn (realr, res);
1637 if (class == MODE_COMPLEX_FLOAT)
1638 res = expand_binop (submode, binoptab, imag0, real1,
1639 imagr, unsignedp, methods);
1640 else
1641 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1642 imag0, real1, imagr, unsignedp);
1644 if (res == 0)
1645 break;
1646 else if (res != imagr)
1647 emit_move_insn (imagr, res);
1649 ok = 1;
1651 else
1653 switch (flag_complex_divide_method)
1655 case 0:
1656 ok = expand_cmplxdiv_straight (real0, real1, imag0, imag1,
1657 realr, imagr, submode,
1658 unsignedp, methods,
1659 class, binoptab);
1660 break;
1662 case 1:
1663 ok = expand_cmplxdiv_wide (real0, real1, imag0, imag1,
1664 realr, imagr, submode,
1665 unsignedp, methods,
1666 class, binoptab);
1667 break;
1669 default:
1670 abort ();
1673 break;
1675 default:
1676 abort ();
1679 seq = get_insns ();
1680 end_sequence ();
1682 if (ok)
1684 if (binoptab->code != UNKNOWN)
1685 equiv_value
1686 = gen_rtx_fmt_ee (binoptab->code, mode,
1687 copy_rtx (op0), copy_rtx (op1));
1688 else
1689 equiv_value = 0;
1691 emit_no_conflict_block (seq, target, op0, op1, equiv_value);
1693 return target;
1697 /* It can't be open-coded in this mode.
1698 Use a library call if one is available and caller says that's ok. */
1700 if (binoptab->handlers[(int) mode].libfunc
1701 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1703 rtx insns;
1704 rtx op1x = op1;
1705 enum machine_mode op1_mode = mode;
1706 rtx value;
1708 start_sequence ();
1710 if (shift_op)
1712 op1_mode = word_mode;
1713 /* Specify unsigned here,
1714 since negative shift counts are meaningless. */
1715 op1x = convert_to_mode (word_mode, op1, 1);
1718 if (GET_MODE (op0) != VOIDmode
1719 && GET_MODE (op0) != mode)
1720 op0 = convert_to_mode (mode, op0, unsignedp);
1722 /* Pass 1 for NO_QUEUE so we don't lose any increments
1723 if the libcall is cse'd or moved. */
1724 value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
1725 NULL_RTX, LCT_CONST, mode, 2,
1726 op0, mode, op1x, op1_mode);
1728 insns = get_insns ();
1729 end_sequence ();
1731 target = gen_reg_rtx (mode);
1732 emit_libcall_block (insns, target, value,
1733 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
1735 return target;
1738 delete_insns_since (last);
1740 /* It can't be done in this mode. Can we do it in a wider mode? */
1742 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1743 || methods == OPTAB_MUST_WIDEN))
1745 /* Caller says, don't even try. */
1746 delete_insns_since (entry_last);
1747 return 0;
1750 /* Compute the value of METHODS to pass to recursive calls.
1751 Don't allow widening to be tried recursively. */
1753 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1755 /* Look for a wider mode of the same class for which it appears we can do
1756 the operation. */
1758 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1760 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1761 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1763 if ((binoptab->handlers[(int) wider_mode].insn_code
1764 != CODE_FOR_nothing)
1765 || (methods == OPTAB_LIB
1766 && binoptab->handlers[(int) wider_mode].libfunc))
1768 rtx xop0 = op0, xop1 = op1;
1769 int no_extend = 0;
1771 /* For certain integer operations, we need not actually extend
1772 the narrow operands, as long as we will truncate
1773 the results to the same narrowness. */
1775 if ((binoptab == ior_optab || binoptab == and_optab
1776 || binoptab == xor_optab
1777 || binoptab == add_optab || binoptab == sub_optab
1778 || binoptab == smul_optab || binoptab == ashl_optab)
1779 && class == MODE_INT)
1780 no_extend = 1;
1782 xop0 = widen_operand (xop0, wider_mode, mode,
1783 unsignedp, no_extend);
1785 /* The second operand of a shift must always be extended. */
1786 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1787 no_extend && binoptab != ashl_optab);
1789 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1790 unsignedp, methods);
1791 if (temp)
1793 if (class != MODE_INT)
1795 if (target == 0)
1796 target = gen_reg_rtx (mode);
1797 convert_move (target, temp, 0);
1798 return target;
1800 else
1801 return gen_lowpart (mode, temp);
1803 else
1804 delete_insns_since (last);
1809 delete_insns_since (entry_last);
1810 return 0;
1813 /* Expand a binary operator which has both signed and unsigned forms.
1814 UOPTAB is the optab for unsigned operations, and SOPTAB is for
1815 signed operations.
1817 If we widen unsigned operands, we may use a signed wider operation instead
1818 of an unsigned wider operation, since the result would be the same. */
1821 sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods)
1822 enum machine_mode mode;
1823 optab uoptab, soptab;
1824 rtx op0, op1, target;
1825 int unsignedp;
1826 enum optab_methods methods;
1828 register rtx temp;
1829 optab direct_optab = unsignedp ? uoptab : soptab;
1830 struct optab wide_soptab;
1832 /* Do it without widening, if possible. */
1833 temp = expand_binop (mode, direct_optab, op0, op1, target,
1834 unsignedp, OPTAB_DIRECT);
1835 if (temp || methods == OPTAB_DIRECT)
1836 return temp;
1838 /* Try widening to a signed int. Make a fake signed optab that
1839 hides any signed insn for direct use. */
1840 wide_soptab = *soptab;
1841 wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
1842 wide_soptab.handlers[(int) mode].libfunc = 0;
1844 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
1845 unsignedp, OPTAB_WIDEN);
1847 /* For unsigned operands, try widening to an unsigned int. */
1848 if (temp == 0 && unsignedp)
1849 temp = expand_binop (mode, uoptab, op0, op1, target,
1850 unsignedp, OPTAB_WIDEN);
1851 if (temp || methods == OPTAB_WIDEN)
1852 return temp;
1854 /* Use the right width lib call if that exists. */
1855 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
1856 if (temp || methods == OPTAB_LIB)
1857 return temp;
1859 /* Must widen and use a lib call, use either signed or unsigned. */
1860 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
1861 unsignedp, methods);
1862 if (temp != 0)
1863 return temp;
1864 if (unsignedp)
1865 return expand_binop (mode, uoptab, op0, op1, target,
1866 unsignedp, methods);
1867 return 0;
1870 /* Generate code to perform an operation specified by BINOPTAB
1871 on operands OP0 and OP1, with two results to TARG1 and TARG2.
1872 We assume that the order of the operands for the instruction
1873 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
1874 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
1876 Either TARG0 or TARG1 may be zero, but what that means is that
1877 the result is not actually wanted. We will generate it into
1878 a dummy pseudo-reg and discard it. They may not both be zero.
1880 Returns 1 if this operation can be performed; 0 if not. */
1883 expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp)
1884 optab binoptab;
1885 rtx op0, op1;
1886 rtx targ0, targ1;
1887 int unsignedp;
1889 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
1890 enum mode_class class;
1891 enum machine_mode wider_mode;
1892 rtx entry_last = get_last_insn ();
1893 rtx last;
1895 class = GET_MODE_CLASS (mode);
1897 op0 = protect_from_queue (op0, 0);
1898 op1 = protect_from_queue (op1, 0);
1900 if (flag_force_mem)
1902 op0 = force_not_mem (op0);
1903 op1 = force_not_mem (op1);
1906 /* If we are inside an appropriately-short loop and one operand is an
1907 expensive constant, force it into a register. */
1908 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
1909 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
1910 op0 = force_reg (mode, op0);
1912 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
1913 && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
1914 op1 = force_reg (mode, op1);
1916 if (targ0)
1917 targ0 = protect_from_queue (targ0, 1);
1918 else
1919 targ0 = gen_reg_rtx (mode);
1920 if (targ1)
1921 targ1 = protect_from_queue (targ1, 1);
1922 else
1923 targ1 = gen_reg_rtx (mode);
1925 /* Record where to go back to if we fail. */
1926 last = get_last_insn ();
1928 if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1930 int icode = (int) binoptab->handlers[(int) mode].insn_code;
1931 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
1932 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
1933 rtx pat;
1934 rtx xop0 = op0, xop1 = op1;
1936 /* In case this insn wants input operands in modes different from the
1937 result, convert the operands. */
1938 if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0)
1939 xop0 = convert_to_mode (mode0, xop0, unsignedp);
1941 if (GET_MODE (op1) != VOIDmode && GET_MODE (op1) != mode1)
1942 xop1 = convert_to_mode (mode1, xop1, unsignedp);
1944 /* Now, if insn doesn't accept these operands, put them into pseudos. */
1945 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
1946 xop0 = copy_to_mode_reg (mode0, xop0);
1948 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1))
1949 xop1 = copy_to_mode_reg (mode1, xop1);
1951 /* We could handle this, but we should always be called with a pseudo
1952 for our targets and all insns should take them as outputs. */
1953 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
1954 || ! (*insn_data[icode].operand[3].predicate) (targ1, mode))
1955 abort ();
1957 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
1958 if (pat)
1960 emit_insn (pat);
1961 return 1;
1963 else
1964 delete_insns_since (last);
1967 /* It can't be done in this mode. Can we do it in a wider mode? */
1969 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1971 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1972 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1974 if (binoptab->handlers[(int) wider_mode].insn_code
1975 != CODE_FOR_nothing)
1977 register rtx t0 = gen_reg_rtx (wider_mode);
1978 register rtx t1 = gen_reg_rtx (wider_mode);
1980 if (expand_twoval_binop (binoptab,
1981 convert_modes (wider_mode, mode, op0,
1982 unsignedp),
1983 convert_modes (wider_mode, mode, op1,
1984 unsignedp),
1985 t0, t1, unsignedp))
1987 convert_move (targ0, t0, unsignedp);
1988 convert_move (targ1, t1, unsignedp);
1989 return 1;
1991 else
1992 delete_insns_since (last);
1997 delete_insns_since (entry_last);
1998 return 0;
2001 /* Generate code to perform an operation specified by UNOPTAB
2002 on operand OP0, with result having machine-mode MODE.
2004 UNSIGNEDP is for the case where we have to widen the operands
2005 to perform the operation. It says to use zero-extension.
2007 If TARGET is nonzero, the value
2008 is generated there, if it is convenient to do so.
2009 In all cases an rtx is returned for the locus of the value;
2010 this may or may not be TARGET. */
2013 expand_unop (mode, unoptab, op0, target, unsignedp)
2014 enum machine_mode mode;
2015 optab unoptab;
2016 rtx op0;
2017 rtx target;
2018 int unsignedp;
2020 enum mode_class class;
2021 enum machine_mode wider_mode;
2022 register rtx temp;
2023 rtx last = get_last_insn ();
2024 rtx pat;
2026 class = GET_MODE_CLASS (mode);
2028 op0 = protect_from_queue (op0, 0);
2030 if (flag_force_mem)
2032 op0 = force_not_mem (op0);
2035 if (target)
2036 target = protect_from_queue (target, 1);
2038 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2040 int icode = (int) unoptab->handlers[(int) mode].insn_code;
2041 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2042 rtx xop0 = op0;
2044 if (target)
2045 temp = target;
2046 else
2047 temp = gen_reg_rtx (mode);
2049 if (GET_MODE (xop0) != VOIDmode
2050 && GET_MODE (xop0) != mode0)
2051 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2053 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2055 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2056 xop0 = copy_to_mode_reg (mode0, xop0);
2058 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
2059 temp = gen_reg_rtx (mode);
2061 pat = GEN_FCN (icode) (temp, xop0);
2062 if (pat)
2064 if (GET_CODE (pat) == SEQUENCE
2065 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
2067 delete_insns_since (last);
2068 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2071 emit_insn (pat);
2073 return temp;
2075 else
2076 delete_insns_since (last);
2079 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2081 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2082 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2083 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2085 if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2087 rtx xop0 = op0;
2089 /* For certain operations, we need not actually extend
2090 the narrow operand, as long as we will truncate the
2091 results to the same narrowness. */
2093 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2094 (unoptab == neg_optab
2095 || unoptab == one_cmpl_optab)
2096 && class == MODE_INT);
2098 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2099 unsignedp);
2101 if (temp)
2103 if (class != MODE_INT)
2105 if (target == 0)
2106 target = gen_reg_rtx (mode);
2107 convert_move (target, temp, 0);
2108 return target;
2110 else
2111 return gen_lowpart (mode, temp);
2113 else
2114 delete_insns_since (last);
2118 /* These can be done a word at a time. */
2119 if (unoptab == one_cmpl_optab
2120 && class == MODE_INT
2121 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
2122 && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
2124 unsigned int i;
2125 rtx insns;
2127 if (target == 0 || target == op0)
2128 target = gen_reg_rtx (mode);
2130 start_sequence ();
2132 /* Do the actual arithmetic. */
2133 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2135 rtx target_piece = operand_subword (target, i, 1, mode);
2136 rtx x = expand_unop (word_mode, unoptab,
2137 operand_subword_force (op0, i, mode),
2138 target_piece, unsignedp);
2139 if (target_piece != x)
2140 emit_move_insn (target_piece, x);
2143 insns = get_insns ();
2144 end_sequence ();
2146 emit_no_conflict_block (insns, target, op0, NULL_RTX,
2147 gen_rtx_fmt_e (unoptab->code, mode,
2148 copy_rtx (op0)));
2149 return target;
2152 /* Open-code the complex negation operation. */
2153 else if (unoptab->code == NEG
2154 && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
2156 rtx target_piece;
2157 rtx x;
2158 rtx seq;
2160 /* Find the correct mode for the real and imaginary parts */
2161 enum machine_mode submode
2162 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
2163 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
2166 if (submode == BLKmode)
2167 abort ();
2169 if (target == 0)
2170 target = gen_reg_rtx (mode);
2172 start_sequence ();
2174 target_piece = gen_imagpart (submode, target);
2175 x = expand_unop (submode, unoptab,
2176 gen_imagpart (submode, op0),
2177 target_piece, unsignedp);
2178 if (target_piece != x)
2179 emit_move_insn (target_piece, x);
2181 target_piece = gen_realpart (submode, target);
2182 x = expand_unop (submode, unoptab,
2183 gen_realpart (submode, op0),
2184 target_piece, unsignedp);
2185 if (target_piece != x)
2186 emit_move_insn (target_piece, x);
2188 seq = get_insns ();
2189 end_sequence ();
2191 emit_no_conflict_block (seq, target, op0, 0,
2192 gen_rtx_fmt_e (unoptab->code, mode,
2193 copy_rtx (op0)));
2194 return target;
2197 /* Now try a library call in this mode. */
2198 if (unoptab->handlers[(int) mode].libfunc)
2200 rtx insns;
2201 rtx value;
2203 start_sequence ();
2205 /* Pass 1 for NO_QUEUE so we don't lose any increments
2206 if the libcall is cse'd or moved. */
2207 value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
2208 NULL_RTX, LCT_CONST, mode, 1, op0, mode);
2209 insns = get_insns ();
2210 end_sequence ();
2212 target = gen_reg_rtx (mode);
2213 emit_libcall_block (insns, target, value,
2214 gen_rtx_fmt_e (unoptab->code, mode, op0));
2216 return target;
2219 /* It can't be done in this mode. Can we do it in a wider mode? */
2221 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2223 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2224 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2226 if ((unoptab->handlers[(int) wider_mode].insn_code
2227 != CODE_FOR_nothing)
2228 || unoptab->handlers[(int) wider_mode].libfunc)
2230 rtx xop0 = op0;
2232 /* For certain operations, we need not actually extend
2233 the narrow operand, as long as we will truncate the
2234 results to the same narrowness. */
2236 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2237 (unoptab == neg_optab
2238 || unoptab == one_cmpl_optab)
2239 && class == MODE_INT);
2241 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2242 unsignedp);
2244 if (temp)
2246 if (class != MODE_INT)
2248 if (target == 0)
2249 target = gen_reg_rtx (mode);
2250 convert_move (target, temp, 0);
2251 return target;
2253 else
2254 return gen_lowpart (mode, temp);
2256 else
2257 delete_insns_since (last);
2262 /* If there is no negate operation, try doing a subtract from zero.
2263 The US Software GOFAST library needs this. */
2264 if (unoptab->code == NEG)
2266 rtx temp;
2267 temp = expand_binop (mode,
2268 unoptab == negv_optab ? subv_optab : sub_optab,
2269 CONST0_RTX (mode), op0,
2270 target, unsignedp, OPTAB_LIB_WIDEN);
2271 if (temp)
2272 return temp;
2275 return 0;
2278 /* Emit code to compute the absolute value of OP0, with result to
2279 TARGET if convenient. (TARGET may be 0.) The return value says
2280 where the result actually is to be found.
2282 MODE is the mode of the operand; the mode of the result is
2283 different but can be deduced from MODE.
2288 expand_abs (mode, op0, target, result_unsignedp, safe)
2289 enum machine_mode mode;
2290 rtx op0;
2291 rtx target;
2292 int result_unsignedp;
2293 int safe;
2295 rtx temp, op1;
2297 if (! flag_trapv)
2298 result_unsignedp = 1;
2300 /* First try to do it with a special abs instruction. */
2301 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
2302 op0, target, 0);
2303 if (temp != 0)
2304 return temp;
2306 /* If we have a MAX insn, we can do this as MAX (x, -x). */
2307 if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2309 rtx last = get_last_insn ();
2311 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
2312 if (temp != 0)
2313 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
2314 OPTAB_WIDEN);
2316 if (temp != 0)
2317 return temp;
2319 delete_insns_since (last);
2322 /* If this machine has expensive jumps, we can do integer absolute
2323 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
2324 where W is the width of MODE. But don't do this if the machine has
2325 conditional arithmetic since the branches will be converted into
2326 a conditional negation insn. */
2328 #ifndef HAVE_conditional_arithmetic
2329 if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
2331 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
2332 size_int (GET_MODE_BITSIZE (mode) - 1),
2333 NULL_RTX, 0);
2335 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
2336 OPTAB_LIB_WIDEN);
2337 if (temp != 0)
2338 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
2339 temp, extended, target, 0, OPTAB_LIB_WIDEN);
2341 if (temp != 0)
2342 return temp;
2344 #endif
2346 /* If that does not win, use conditional jump and negate. */
2348 /* It is safe to use the target if it is the same
2349 as the source if this is also a pseudo register */
2350 if (op0 == target && GET_CODE (op0) == REG
2351 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
2352 safe = 1;
2354 op1 = gen_label_rtx ();
2355 if (target == 0 || ! safe
2356 || GET_MODE (target) != mode
2357 || (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
2358 || (GET_CODE (target) == REG
2359 && REGNO (target) < FIRST_PSEUDO_REGISTER))
2360 target = gen_reg_rtx (mode);
2362 emit_move_insn (target, op0);
2363 NO_DEFER_POP;
2365 /* If this mode is an integer too wide to compare properly,
2366 compare word by word. Rely on CSE to optimize constant cases. */
2367 if (GET_MODE_CLASS (mode) == MODE_INT
2368 && ! can_compare_p (GE, mode, ccp_jump))
2369 do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
2370 NULL_RTX, op1);
2371 else
2372 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
2373 NULL_RTX, 0, NULL_RTX, op1);
2375 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
2376 target, target, 0);
2377 if (op0 != target)
2378 emit_move_insn (target, op0);
2379 emit_label (op1);
2380 OK_DEFER_POP;
2381 return target;
2384 /* Emit code to compute the absolute value of OP0, with result to
2385 TARGET if convenient. (TARGET may be 0.) The return value says
2386 where the result actually is to be found.
2388 MODE is the mode of the operand; the mode of the result is
2389 different but can be deduced from MODE.
2391 UNSIGNEDP is relevant for complex integer modes. */
2394 expand_complex_abs (mode, op0, target, unsignedp)
2395 enum machine_mode mode;
2396 rtx op0;
2397 rtx target;
2398 int unsignedp;
2400 enum mode_class class = GET_MODE_CLASS (mode);
2401 enum machine_mode wider_mode;
2402 register rtx temp;
2403 rtx entry_last = get_last_insn ();
2404 rtx last;
2405 rtx pat;
2406 optab this_abs_optab;
2408 /* Find the correct mode for the real and imaginary parts. */
2409 enum machine_mode submode
2410 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
2411 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
2414 if (submode == BLKmode)
2415 abort ();
2417 op0 = protect_from_queue (op0, 0);
2419 if (flag_force_mem)
2421 op0 = force_not_mem (op0);
2424 last = get_last_insn ();
2426 if (target)
2427 target = protect_from_queue (target, 1);
2429 this_abs_optab = ! unsignedp && flag_trapv
2430 && (GET_MODE_CLASS(mode) == MODE_INT)
2431 ? absv_optab : abs_optab;
2433 if (this_abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2435 int icode = (int) this_abs_optab->handlers[(int) mode].insn_code;
2436 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2437 rtx xop0 = op0;
2439 if (target)
2440 temp = target;
2441 else
2442 temp = gen_reg_rtx (submode);
2444 if (GET_MODE (xop0) != VOIDmode
2445 && GET_MODE (xop0) != mode0)
2446 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2448 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2450 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2451 xop0 = copy_to_mode_reg (mode0, xop0);
2453 if (! (*insn_data[icode].operand[0].predicate) (temp, submode))
2454 temp = gen_reg_rtx (submode);
2456 pat = GEN_FCN (icode) (temp, xop0);
2457 if (pat)
2459 if (GET_CODE (pat) == SEQUENCE
2460 && ! add_equal_note (pat, temp, this_abs_optab->code, xop0,
2461 NULL_RTX))
2463 delete_insns_since (last);
2464 return expand_unop (mode, this_abs_optab, op0, NULL_RTX,
2465 unsignedp);
2468 emit_insn (pat);
2470 return temp;
2472 else
2473 delete_insns_since (last);
2476 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2478 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2479 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2481 if (this_abs_optab->handlers[(int) wider_mode].insn_code
2482 != CODE_FOR_nothing)
2484 rtx xop0 = op0;
2486 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
2487 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2489 if (temp)
2491 if (class != MODE_COMPLEX_INT)
2493 if (target == 0)
2494 target = gen_reg_rtx (submode);
2495 convert_move (target, temp, 0);
2496 return target;
2498 else
2499 return gen_lowpart (submode, temp);
2501 else
2502 delete_insns_since (last);
2506 /* Open-code the complex absolute-value operation
2507 if we can open-code sqrt. Otherwise it's not worth while. */
2508 if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing)
2510 rtx real, imag, total;
2512 real = gen_realpart (submode, op0);
2513 imag = gen_imagpart (submode, op0);
2515 /* Square both parts. */
2516 real = expand_mult (submode, real, real, NULL_RTX, 0);
2517 imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
2519 /* Sum the parts. */
2520 total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
2521 0, OPTAB_LIB_WIDEN);
2523 /* Get sqrt in TARGET. Set TARGET to where the result is. */
2524 target = expand_unop (submode, sqrt_optab, total, target, 0);
2525 if (target == 0)
2526 delete_insns_since (last);
2527 else
2528 return target;
2531 /* Now try a library call in this mode. */
2532 if (this_abs_optab->handlers[(int) mode].libfunc)
2534 rtx insns;
2535 rtx value;
2537 start_sequence ();
2539 /* Pass 1 for NO_QUEUE so we don't lose any increments
2540 if the libcall is cse'd or moved. */
2541 value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
2542 NULL_RTX, LCT_CONST, submode, 1, op0, mode);
2543 insns = get_insns ();
2544 end_sequence ();
2546 target = gen_reg_rtx (submode);
2547 emit_libcall_block (insns, target, value,
2548 gen_rtx_fmt_e (this_abs_optab->code, mode, op0));
2550 return target;
2553 /* It can't be done in this mode. Can we do it in a wider mode? */
2555 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2556 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2558 if ((this_abs_optab->handlers[(int) wider_mode].insn_code
2559 != CODE_FOR_nothing)
2560 || this_abs_optab->handlers[(int) wider_mode].libfunc)
2562 rtx xop0 = op0;
2564 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
2566 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2568 if (temp)
2570 if (class != MODE_COMPLEX_INT)
2572 if (target == 0)
2573 target = gen_reg_rtx (submode);
2574 convert_move (target, temp, 0);
2575 return target;
2577 else
2578 return gen_lowpart (submode, temp);
2580 else
2581 delete_insns_since (last);
2585 delete_insns_since (entry_last);
2586 return 0;
2589 /* Generate an instruction whose insn-code is INSN_CODE,
2590 with two operands: an output TARGET and an input OP0.
2591 TARGET *must* be nonzero, and the output is always stored there.
2592 CODE is an rtx code such that (CODE OP0) is an rtx that describes
2593 the value that is stored into TARGET. */
2595 void
2596 emit_unop_insn (icode, target, op0, code)
2597 int icode;
2598 rtx target;
2599 rtx op0;
2600 enum rtx_code code;
2602 register rtx temp;
2603 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2604 rtx pat;
2606 temp = target = protect_from_queue (target, 1);
2608 op0 = protect_from_queue (op0, 0);
2610 /* Sign and zero extension from memory is often done specially on
2611 RISC machines, so forcing into a register here can pessimize
2612 code. */
2613 if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND)
2614 op0 = force_not_mem (op0);
2616 /* Now, if insn does not accept our operands, put them into pseudos. */
2618 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
2619 op0 = copy_to_mode_reg (mode0, op0);
2621 if (! (*insn_data[icode].operand[0].predicate) (temp, GET_MODE (temp))
2622 || (flag_force_mem && GET_CODE (temp) == MEM))
2623 temp = gen_reg_rtx (GET_MODE (temp));
2625 pat = GEN_FCN (icode) (temp, op0);
2627 if (GET_CODE (pat) == SEQUENCE && code != UNKNOWN)
2628 add_equal_note (pat, temp, code, op0, NULL_RTX);
2630 emit_insn (pat);
2632 if (temp != target)
2633 emit_move_insn (target, temp);
2636 /* Emit code to perform a series of operations on a multi-word quantity, one
2637 word at a time.
2639 Such a block is preceded by a CLOBBER of the output, consists of multiple
2640 insns, each setting one word of the output, and followed by a SET copying
2641 the output to itself.
2643 Each of the insns setting words of the output receives a REG_NO_CONFLICT
2644 note indicating that it doesn't conflict with the (also multi-word)
2645 inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
2646 notes.
2648 INSNS is a block of code generated to perform the operation, not including
2649 the CLOBBER and final copy. All insns that compute intermediate values
2650 are first emitted, followed by the block as described above.
2652 TARGET, OP0, and OP1 are the output and inputs of the operations,
2653 respectively. OP1 may be zero for a unary operation.
2655 EQUIV, if non-zero, is an expression to be placed into a REG_EQUAL note
2656 on the last insn.
2658 If TARGET is not a register, INSNS is simply emitted with no special
2659 processing. Likewise if anything in INSNS is not an INSN or if
2660 there is a libcall block inside INSNS.
2662 The final insn emitted is returned. */
2665 emit_no_conflict_block (insns, target, op0, op1, equiv)
2666 rtx insns;
2667 rtx target;
2668 rtx op0, op1;
2669 rtx equiv;
2671 rtx prev, next, first, last, insn;
2673 if (GET_CODE (target) != REG || reload_in_progress)
2674 return emit_insns (insns);
2675 else
2676 for (insn = insns; insn; insn = NEXT_INSN (insn))
2677 if (GET_CODE (insn) != INSN
2678 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2679 return emit_insns (insns);
2681 /* First emit all insns that do not store into words of the output and remove
2682 these from the list. */
2683 for (insn = insns; insn; insn = next)
2685 rtx set = 0;
2686 int i;
2688 next = NEXT_INSN (insn);
2690 if (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == USE
2691 || GET_CODE (PATTERN (insn)) == CLOBBER)
2692 set = PATTERN (insn);
2693 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2695 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2696 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
2698 set = XVECEXP (PATTERN (insn), 0, i);
2699 break;
2703 if (set == 0)
2704 abort ();
2706 if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
2708 if (PREV_INSN (insn))
2709 NEXT_INSN (PREV_INSN (insn)) = next;
2710 else
2711 insns = next;
2713 if (next)
2714 PREV_INSN (next) = PREV_INSN (insn);
2716 add_insn (insn);
2720 prev = get_last_insn ();
2722 /* Now write the CLOBBER of the output, followed by the setting of each
2723 of the words, followed by the final copy. */
2724 if (target != op0 && target != op1)
2725 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
2727 for (insn = insns; insn; insn = next)
2729 next = NEXT_INSN (insn);
2730 add_insn (insn);
2732 if (op1 && GET_CODE (op1) == REG)
2733 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
2734 REG_NOTES (insn));
2736 if (op0 && GET_CODE (op0) == REG)
2737 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
2738 REG_NOTES (insn));
2741 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
2742 != CODE_FOR_nothing)
2744 last = emit_move_insn (target, target);
2745 if (equiv)
2746 set_unique_reg_note (last, REG_EQUAL, equiv);
2748 else
2750 last = get_last_insn ();
2752 /* Remove any existing REG_EQUAL note from "last", or else it will
2753 be mistaken for a note referring to the full contents of the
2754 alleged libcall value when found together with the REG_RETVAL
2755 note added below. An existing note can come from an insn
2756 expansion at "last". */
2757 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
2760 if (prev == 0)
2761 first = get_insns ();
2762 else
2763 first = NEXT_INSN (prev);
2765 /* Encapsulate the block so it gets manipulated as a unit. */
2766 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
2767 REG_NOTES (first));
2768 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
2770 return last;
2773 /* Emit code to make a call to a constant function or a library call.
2775 INSNS is a list containing all insns emitted in the call.
2776 These insns leave the result in RESULT. Our block is to copy RESULT
2777 to TARGET, which is logically equivalent to EQUIV.
2779 We first emit any insns that set a pseudo on the assumption that these are
2780 loading constants into registers; doing so allows them to be safely cse'ed
2781 between blocks. Then we emit all the other insns in the block, followed by
2782 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
2783 note with an operand of EQUIV.
2785 Moving assignments to pseudos outside of the block is done to improve
2786 the generated code, but is not required to generate correct code,
2787 hence being unable to move an assignment is not grounds for not making
2788 a libcall block. There are two reasons why it is safe to leave these
2789 insns inside the block: First, we know that these pseudos cannot be
2790 used in generated RTL outside the block since they are created for
2791 temporary purposes within the block. Second, CSE will not record the
2792 values of anything set inside a libcall block, so we know they must
2793 be dead at the end of the block.
2795 Except for the first group of insns (the ones setting pseudos), the
2796 block is delimited by REG_RETVAL and REG_LIBCALL notes. */
2798 void
2799 emit_libcall_block (insns, target, result, equiv)
2800 rtx insns;
2801 rtx target;
2802 rtx result;
2803 rtx equiv;
2805 rtx final_dest = target;
2806 rtx prev, next, first, last, insn;
2808 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
2809 into a MEM later. Protect the libcall block from this change. */
2810 if (! REG_P (target) || REG_USERVAR_P (target))
2811 target = gen_reg_rtx (GET_MODE (target));
2813 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
2814 reg note to indicate that this call cannot throw or execute a nonlocal
2815 goto (unless there is already a REG_EH_REGION note, in which case
2816 we update it). Also set the CONST_CALL_P flag. */
2818 for (insn = insns; insn; insn = NEXT_INSN (insn))
2819 if (GET_CODE (insn) == CALL_INSN)
2821 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2823 CONST_CALL_P (insn) = 1;
2824 if (note != 0)
2825 XEXP (note, 0) = GEN_INT (-1);
2826 else
2827 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (-1),
2828 REG_NOTES (insn));
2831 /* First emit all insns that set pseudos. Remove them from the list as
2832 we go. Avoid insns that set pseudos which were referenced in previous
2833 insns. These can be generated by move_by_pieces, for example,
2834 to update an address. Similarly, avoid insns that reference things
2835 set in previous insns. */
2837 for (insn = insns; insn; insn = next)
2839 rtx set = single_set (insn);
2841 next = NEXT_INSN (insn);
2843 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
2844 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
2845 && (insn == insns
2846 || ((! INSN_P(insns)
2847 || ! reg_mentioned_p (SET_DEST (set), PATTERN (insns)))
2848 && ! reg_used_between_p (SET_DEST (set), insns, insn)
2849 && ! modified_in_p (SET_SRC (set), insns)
2850 && ! modified_between_p (SET_SRC (set), insns, insn))))
2852 if (PREV_INSN (insn))
2853 NEXT_INSN (PREV_INSN (insn)) = next;
2854 else
2855 insns = next;
2857 if (next)
2858 PREV_INSN (next) = PREV_INSN (insn);
2860 add_insn (insn);
2864 prev = get_last_insn ();
2866 /* Write the remaining insns followed by the final copy. */
2868 for (insn = insns; insn; insn = next)
2870 next = NEXT_INSN (insn);
2872 add_insn (insn);
2875 last = emit_move_insn (target, result);
2876 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
2877 != CODE_FOR_nothing)
2878 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
2879 else
2881 /* Remove any existing REG_EQUAL note from "last", or else it will
2882 be mistaken for a note referring to the full contents of the
2883 libcall value when found together with the REG_RETVAL note added
2884 below. An existing note can come from an insn expansion at
2885 "last". */
2886 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
2889 if (final_dest != target)
2890 emit_move_insn (final_dest, target);
2892 if (prev == 0)
2893 first = get_insns ();
2894 else
2895 first = NEXT_INSN (prev);
2897 /* Encapsulate the block so it gets manipulated as a unit. */
2898 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
2899 REG_NOTES (first));
2900 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
2903 /* Generate code to store zero in X. */
2905 void
2906 emit_clr_insn (x)
2907 rtx x;
2909 emit_move_insn (x, const0_rtx);
2912 /* Generate code to store 1 in X
2913 assuming it contains zero beforehand. */
2915 void
2916 emit_0_to_1_insn (x)
2917 rtx x;
2919 emit_move_insn (x, const1_rtx);
2922 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
2923 PURPOSE describes how this comparison will be used. CODE is the rtx
2924 comparison code we will be using.
2926 ??? Actually, CODE is slightly weaker than that. A target is still
2927 required to implement all of the normal bcc operations, but not
2928 required to implement all (or any) of the unordered bcc operations. */
2931 can_compare_p (code, mode, purpose)
2932 enum rtx_code code;
2933 enum machine_mode mode;
2934 enum can_compare_purpose purpose;
2938 if (cmp_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
2940 if (purpose == ccp_jump)
2941 return bcc_gen_fctn[(int)code] != NULL;
2942 else if (purpose == ccp_store_flag)
2943 return setcc_gen_code[(int)code] != CODE_FOR_nothing;
2944 else
2945 /* There's only one cmov entry point, and it's allowed to fail. */
2946 return 1;
2948 if (purpose == ccp_jump
2949 && cbranch_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
2950 return 1;
2951 if (purpose == ccp_cmov
2952 && cmov_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
2953 return 1;
2954 if (purpose == ccp_store_flag
2955 && cstore_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
2956 return 1;
2958 mode = GET_MODE_WIDER_MODE (mode);
2960 while (mode != VOIDmode);
2962 return 0;
2965 /* This function is called when we are going to emit a compare instruction that
2966 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
2968 *PMODE is the mode of the inputs (in case they are const_int).
2969 *PUNSIGNEDP nonzero says that the operands are unsigned;
2970 this matters if they need to be widened.
2972 If they have mode BLKmode, then SIZE specifies the size of both operands,
2973 and ALIGN specifies the known shared alignment of the operands.
2975 This function performs all the setup necessary so that the caller only has
2976 to emit a single comparison insn. This setup can involve doing a BLKmode
2977 comparison or emitting a library call to perform the comparison if no insn
2978 is available to handle it.
2979 The values which are passed in through pointers can be modified; the caller
2980 should perform the comparison on the modified values. */
2982 void
2983 prepare_cmp_insn (px, py, pcomparison, size, pmode, punsignedp, align,
2984 purpose)
2985 rtx *px, *py;
2986 enum rtx_code *pcomparison;
2987 rtx size;
2988 enum machine_mode *pmode;
2989 int *punsignedp;
2990 int align ATTRIBUTE_UNUSED;
2991 enum can_compare_purpose purpose;
2993 enum machine_mode mode = *pmode;
2994 rtx x = *px, y = *py;
2995 int unsignedp = *punsignedp;
2996 enum mode_class class;
2997 rtx opalign ATTRIBUTE_UNUSED = GEN_INT (align / BITS_PER_UNIT);;
2999 class = GET_MODE_CLASS (mode);
3001 /* They could both be VOIDmode if both args are immediate constants,
3002 but we should fold that at an earlier stage.
3003 With no special code here, this will call abort,
3004 reminding the programmer to implement such folding. */
3006 if (mode != BLKmode && flag_force_mem)
3008 x = force_not_mem (x);
3009 y = force_not_mem (y);
3012 /* If we are inside an appropriately-short loop and one operand is an
3013 expensive constant, force it into a register. */
3014 if (CONSTANT_P (x) && preserve_subexpressions_p ()
3015 && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
3016 x = force_reg (mode, x);
3018 if (CONSTANT_P (y) && preserve_subexpressions_p ()
3019 && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
3020 y = force_reg (mode, y);
3022 #ifdef HAVE_cc0
3023 /* Abort if we have a non-canonical comparison. The RTL documentation
3024 states that canonical comparisons are required only for targets which
3025 have cc0. */
3026 if (CONSTANT_P (x) && ! CONSTANT_P (y))
3027 abort();
3028 #endif
3030 /* Don't let both operands fail to indicate the mode. */
3031 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3032 x = force_reg (mode, x);
3034 /* Handle all BLKmode compares. */
3036 if (mode == BLKmode)
3038 rtx result;
3039 enum machine_mode result_mode;
3041 emit_queue ();
3042 x = protect_from_queue (x, 0);
3043 y = protect_from_queue (y, 0);
3045 if (size == 0)
3046 abort ();
3047 #ifdef HAVE_cmpstrqi
3048 if (HAVE_cmpstrqi
3049 && GET_CODE (size) == CONST_INT
3050 && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
3052 result_mode = insn_data[(int) CODE_FOR_cmpstrqi].operand[0].mode;
3053 result = gen_reg_rtx (result_mode);
3054 emit_insn (gen_cmpstrqi (result, x, y, size, opalign));
3056 else
3057 #endif
3058 #ifdef HAVE_cmpstrhi
3059 if (HAVE_cmpstrhi
3060 && GET_CODE (size) == CONST_INT
3061 && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
3063 result_mode = insn_data[(int) CODE_FOR_cmpstrhi].operand[0].mode;
3064 result = gen_reg_rtx (result_mode);
3065 emit_insn (gen_cmpstrhi (result, x, y, size, opalign));
3067 else
3068 #endif
3069 #ifdef HAVE_cmpstrsi
3070 if (HAVE_cmpstrsi)
3072 result_mode = insn_data[(int) CODE_FOR_cmpstrsi].operand[0].mode;
3073 result = gen_reg_rtx (result_mode);
3074 size = protect_from_queue (size, 0);
3075 emit_insn (gen_cmpstrsi (result, x, y,
3076 convert_to_mode (SImode, size, 1),
3077 opalign));
3079 else
3080 #endif
3082 #ifdef TARGET_MEM_FUNCTIONS
3083 emit_library_call (memcmp_libfunc, LCT_PURE_MAKE_BLOCK,
3084 TYPE_MODE (integer_type_node), 3,
3085 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
3086 convert_to_mode (TYPE_MODE (sizetype), size,
3087 TREE_UNSIGNED (sizetype)),
3088 TYPE_MODE (sizetype));
3089 #else
3090 emit_library_call (bcmp_libfunc, LCT_PURE_MAKE_BLOCK,
3091 TYPE_MODE (integer_type_node), 3,
3092 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
3093 convert_to_mode (TYPE_MODE (integer_type_node),
3094 size,
3095 TREE_UNSIGNED (integer_type_node)),
3096 TYPE_MODE (integer_type_node));
3097 #endif
3099 /* Immediately move the result of the libcall into a pseudo
3100 register so reload doesn't clobber the value if it needs
3101 the return register for a spill reg. */
3102 result = gen_reg_rtx (TYPE_MODE (integer_type_node));
3103 result_mode = TYPE_MODE (integer_type_node);
3104 emit_move_insn (result,
3105 hard_libcall_value (result_mode));
3107 *px = result;
3108 *py = const0_rtx;
3109 *pmode = result_mode;
3110 return;
3113 *px = x;
3114 *py = y;
3115 if (can_compare_p (*pcomparison, mode, purpose))
3116 return;
3118 /* Handle a lib call just for the mode we are using. */
3120 if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT)
3122 rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
3123 rtx result;
3125 /* If we want unsigned, and this mode has a distinct unsigned
3126 comparison routine, use that. */
3127 if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
3128 libfunc = ucmp_optab->handlers[(int) mode].libfunc;
3130 emit_library_call (libfunc, 1,
3131 word_mode, 2, x, mode, y, mode);
3133 /* Immediately move the result of the libcall into a pseudo
3134 register so reload doesn't clobber the value if it needs
3135 the return register for a spill reg. */
3136 result = gen_reg_rtx (word_mode);
3137 emit_move_insn (result, hard_libcall_value (word_mode));
3139 /* Integer comparison returns a result that must be compared against 1,
3140 so that even if we do an unsigned compare afterward,
3141 there is still a value that can represent the result "less than". */
3142 *px = result;
3143 *py = const1_rtx;
3144 *pmode = word_mode;
3145 return;
3148 if (class == MODE_FLOAT)
3149 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3151 else
3152 abort ();
3155 /* Before emitting an insn with code ICODE, make sure that X, which is going
3156 to be used for operand OPNUM of the insn, is converted from mode MODE to
3157 WIDER_MODE (UNSIGNEDP determines whether it is a unsigned conversion), and
3158 that it is accepted by the operand predicate. Return the new value. */
3161 prepare_operand (icode, x, opnum, mode, wider_mode, unsignedp)
3162 int icode;
3163 rtx x;
3164 int opnum;
3165 enum machine_mode mode, wider_mode;
3166 int unsignedp;
3168 x = protect_from_queue (x, 0);
3170 if (mode != wider_mode)
3171 x = convert_modes (wider_mode, mode, x, unsignedp);
3173 if (! (*insn_data[icode].operand[opnum].predicate)
3174 (x, insn_data[icode].operand[opnum].mode))
3175 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
3176 return x;
3179 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3180 we can do the comparison.
3181 The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
3182 be NULL_RTX which indicates that only a comparison is to be generated. */
3184 static void
3185 emit_cmp_and_jump_insn_1 (x, y, mode, comparison, unsignedp, label)
3186 rtx x, y;
3187 enum machine_mode mode;
3188 enum rtx_code comparison;
3189 int unsignedp;
3190 rtx label;
3192 rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
3193 enum mode_class class = GET_MODE_CLASS (mode);
3194 enum machine_mode wider_mode = mode;
3196 /* Try combined insns first. */
3199 enum insn_code icode;
3200 PUT_MODE (test, wider_mode);
3202 if (label)
3204 icode = cbranch_optab->handlers[(int)wider_mode].insn_code;
3206 if (icode != CODE_FOR_nothing
3207 && (*insn_data[icode].operand[0].predicate) (test, wider_mode))
3209 x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
3210 y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
3211 emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
3212 return;
3216 /* Handle some compares against zero. */
3217 icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
3218 if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
3220 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3221 emit_insn (GEN_FCN (icode) (x));
3222 if (label)
3223 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3224 return;
3227 /* Handle compares for which there is a directly suitable insn. */
3229 icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
3230 if (icode != CODE_FOR_nothing)
3232 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3233 y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
3234 emit_insn (GEN_FCN (icode) (x, y));
3235 if (label)
3236 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3237 return;
3240 if (class != MODE_INT && class != MODE_FLOAT
3241 && class != MODE_COMPLEX_FLOAT)
3242 break;
3244 wider_mode = GET_MODE_WIDER_MODE (wider_mode);
3245 } while (wider_mode != VOIDmode);
3247 abort ();
3250 /* Generate code to compare X with Y so that the condition codes are
3251 set and to jump to LABEL if the condition is true. If X is a
3252 constant and Y is not a constant, then the comparison is swapped to
3253 ensure that the comparison RTL has the canonical form.
3255 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3256 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
3257 the proper branch condition code.
3259 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y,
3260 and ALIGN specifies the known shared alignment of X and Y.
3262 MODE is the mode of the inputs (in case they are const_int).
3264 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
3265 be passed unchanged to emit_cmp_insn, then potentially converted into an
3266 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
3268 void
3269 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, align, label)
3270 rtx x, y;
3271 enum rtx_code comparison;
3272 rtx size;
3273 enum machine_mode mode;
3274 int unsignedp;
3275 unsigned int align;
3276 rtx label;
3278 rtx op0;
3279 rtx op1;
3281 if ((CONSTANT_P (x) && ! CONSTANT_P (y))
3282 || (GET_CODE (x) == CONST_INT && GET_CODE (y) != CONST_INT))
3284 /* Swap operands and condition to ensure canonical RTL. */
3285 op0 = y;
3286 op1 = x;
3287 comparison = swap_condition (comparison);
3289 else
3291 op0 = x;
3292 op1 = y;
3295 #ifdef HAVE_cc0
3296 /* If OP0 is still a constant, then both X and Y must be constants. Force
3297 X into a register to avoid aborting in emit_cmp_insn due to non-canonical
3298 RTL. */
3299 if (CONSTANT_P (op0))
3300 op0 = force_reg (mode, op0);
3301 #endif
3303 emit_queue ();
3304 if (unsignedp)
3305 comparison = unsigned_condition (comparison);
3306 prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp, align,
3307 ccp_jump);
3308 emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
3311 /* Like emit_cmp_and_jump_insns, but generate only the comparison. */
3313 void
3314 emit_cmp_insn (x, y, comparison, size, mode, unsignedp, align)
3315 rtx x, y;
3316 enum rtx_code comparison;
3317 rtx size;
3318 enum machine_mode mode;
3319 int unsignedp;
3320 unsigned int align;
3322 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, align, 0);
3325 /* Emit a library call comparison between floating point X and Y.
3326 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
3328 static void
3329 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp)
3330 rtx *px, *py;
3331 enum rtx_code *pcomparison;
3332 enum machine_mode *pmode;
3333 int *punsignedp;
3335 enum rtx_code comparison = *pcomparison;
3336 rtx x = *px = protect_from_queue (*px, 0);
3337 rtx y = *py = protect_from_queue (*py, 0);
3338 enum machine_mode mode = GET_MODE (x);
3339 rtx libfunc = 0;
3340 rtx result;
3342 if (mode == HFmode)
3343 switch (comparison)
3345 case EQ:
3346 libfunc = eqhf2_libfunc;
3347 break;
3349 case NE:
3350 libfunc = nehf2_libfunc;
3351 break;
3353 case GT:
3354 libfunc = gthf2_libfunc;
3355 break;
3357 case GE:
3358 libfunc = gehf2_libfunc;
3359 break;
3361 case LT:
3362 libfunc = lthf2_libfunc;
3363 break;
3365 case LE:
3366 libfunc = lehf2_libfunc;
3367 break;
3369 case UNORDERED:
3370 libfunc = unordhf2_libfunc;
3371 break;
3373 default:
3374 break;
3376 else if (mode == SFmode)
3377 switch (comparison)
3379 case EQ:
3380 libfunc = eqsf2_libfunc;
3381 break;
3383 case NE:
3384 libfunc = nesf2_libfunc;
3385 break;
3387 case GT:
3388 libfunc = gtsf2_libfunc;
3389 break;
3391 case GE:
3392 libfunc = gesf2_libfunc;
3393 break;
3395 case LT:
3396 libfunc = ltsf2_libfunc;
3397 break;
3399 case LE:
3400 libfunc = lesf2_libfunc;
3401 break;
3403 case UNORDERED:
3404 libfunc = unordsf2_libfunc;
3405 break;
3407 default:
3408 break;
3410 else if (mode == DFmode)
3411 switch (comparison)
3413 case EQ:
3414 libfunc = eqdf2_libfunc;
3415 break;
3417 case NE:
3418 libfunc = nedf2_libfunc;
3419 break;
3421 case GT:
3422 libfunc = gtdf2_libfunc;
3423 break;
3425 case GE:
3426 libfunc = gedf2_libfunc;
3427 break;
3429 case LT:
3430 libfunc = ltdf2_libfunc;
3431 break;
3433 case LE:
3434 libfunc = ledf2_libfunc;
3435 break;
3437 case UNORDERED:
3438 libfunc = unorddf2_libfunc;
3439 break;
3441 default:
3442 break;
3444 else if (mode == XFmode)
3445 switch (comparison)
3447 case EQ:
3448 libfunc = eqxf2_libfunc;
3449 break;
3451 case NE:
3452 libfunc = nexf2_libfunc;
3453 break;
3455 case GT:
3456 libfunc = gtxf2_libfunc;
3457 break;
3459 case GE:
3460 libfunc = gexf2_libfunc;
3461 break;
3463 case LT:
3464 libfunc = ltxf2_libfunc;
3465 break;
3467 case LE:
3468 libfunc = lexf2_libfunc;
3469 break;
3471 case UNORDERED:
3472 libfunc = unordxf2_libfunc;
3473 break;
3475 default:
3476 break;
3478 else if (mode == TFmode)
3479 switch (comparison)
3481 case EQ:
3482 libfunc = eqtf2_libfunc;
3483 break;
3485 case NE:
3486 libfunc = netf2_libfunc;
3487 break;
3489 case GT:
3490 libfunc = gttf2_libfunc;
3491 break;
3493 case GE:
3494 libfunc = getf2_libfunc;
3495 break;
3497 case LT:
3498 libfunc = lttf2_libfunc;
3499 break;
3501 case LE:
3502 libfunc = letf2_libfunc;
3503 break;
3505 case UNORDERED:
3506 libfunc = unordtf2_libfunc;
3507 break;
3509 default:
3510 break;
3512 else
3514 enum machine_mode wider_mode;
3516 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3517 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3519 if ((cmp_optab->handlers[(int) wider_mode].insn_code
3520 != CODE_FOR_nothing)
3521 || (cmp_optab->handlers[(int) wider_mode].libfunc != 0))
3523 x = protect_from_queue (x, 0);
3524 y = protect_from_queue (y, 0);
3525 *px = convert_to_mode (wider_mode, x, 0);
3526 *py = convert_to_mode (wider_mode, y, 0);
3527 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3528 return;
3531 abort ();
3534 if (libfunc == 0)
3535 abort ();
3537 emit_library_call (libfunc, LCT_CONST_MAKE_BLOCK, word_mode, 2, x, mode, y,
3538 mode);
3540 /* Immediately move the result of the libcall into a pseudo
3541 register so reload doesn't clobber the value if it needs
3542 the return register for a spill reg. */
3543 result = gen_reg_rtx (word_mode);
3544 emit_move_insn (result, hard_libcall_value (word_mode));
3545 *px = result;
3546 *py = const0_rtx;
3547 *pmode = word_mode;
3548 if (comparison == UNORDERED)
3549 *pcomparison = NE;
3550 #ifdef FLOAT_LIB_COMPARE_RETURNS_BOOL
3551 else if (FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
3552 *pcomparison = NE;
3553 #endif
3554 *punsignedp = 0;
3557 /* Generate code to indirectly jump to a location given in the rtx LOC. */
3559 void
3560 emit_indirect_jump (loc)
3561 rtx loc;
3563 if (! ((*insn_data[(int)CODE_FOR_indirect_jump].operand[0].predicate)
3564 (loc, Pmode)))
3565 loc = copy_to_mode_reg (Pmode, loc);
3567 emit_jump_insn (gen_indirect_jump (loc));
3568 emit_barrier ();
3571 #ifdef HAVE_conditional_move
3573 /* Emit a conditional move instruction if the machine supports one for that
3574 condition and machine mode.
3576 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
3577 the mode to use should they be constants. If it is VOIDmode, they cannot
3578 both be constants.
3580 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
3581 should be stored there. MODE is the mode to use should they be constants.
3582 If it is VOIDmode, they cannot both be constants.
3584 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
3585 is not supported. */
3588 emit_conditional_move (target, code, op0, op1, cmode, op2, op3, mode,
3589 unsignedp)
3590 rtx target;
3591 enum rtx_code code;
3592 rtx op0, op1;
3593 enum machine_mode cmode;
3594 rtx op2, op3;
3595 enum machine_mode mode;
3596 int unsignedp;
3598 rtx tem, subtarget, comparison, insn;
3599 enum insn_code icode;
3601 /* If one operand is constant, make it the second one. Only do this
3602 if the other operand is not constant as well. */
3604 if ((CONSTANT_P (op0) && ! CONSTANT_P (op1))
3605 || (GET_CODE (op0) == CONST_INT && GET_CODE (op1) != CONST_INT))
3607 tem = op0;
3608 op0 = op1;
3609 op1 = tem;
3610 code = swap_condition (code);
3613 /* get_condition will prefer to generate LT and GT even if the old
3614 comparison was against zero, so undo that canonicalization here since
3615 comparisons against zero are cheaper. */
3616 if (code == LT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == 1)
3617 code = LE, op1 = const0_rtx;
3618 else if (code == GT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == -1)
3619 code = GE, op1 = const0_rtx;
3621 if (cmode == VOIDmode)
3622 cmode = GET_MODE (op0);
3624 if (((CONSTANT_P (op2) && ! CONSTANT_P (op3))
3625 || (GET_CODE (op2) == CONST_INT && GET_CODE (op3) != CONST_INT))
3626 && (GET_MODE_CLASS (GET_MODE (op1)) != MODE_FLOAT
3627 || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT || flag_fast_math))
3629 tem = op2;
3630 op2 = op3;
3631 op3 = tem;
3632 code = reverse_condition (code);
3635 if (mode == VOIDmode)
3636 mode = GET_MODE (op2);
3638 icode = movcc_gen_code[mode];
3640 if (icode == CODE_FOR_nothing)
3641 return 0;
3643 if (flag_force_mem)
3645 op2 = force_not_mem (op2);
3646 op3 = force_not_mem (op3);
3649 if (target)
3650 target = protect_from_queue (target, 1);
3651 else
3652 target = gen_reg_rtx (mode);
3654 subtarget = target;
3656 emit_queue ();
3658 op2 = protect_from_queue (op2, 0);
3659 op3 = protect_from_queue (op3, 0);
3661 /* If the insn doesn't accept these operands, put them in pseudos. */
3663 if (! (*insn_data[icode].operand[0].predicate)
3664 (subtarget, insn_data[icode].operand[0].mode))
3665 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
3667 if (! (*insn_data[icode].operand[2].predicate)
3668 (op2, insn_data[icode].operand[2].mode))
3669 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
3671 if (! (*insn_data[icode].operand[3].predicate)
3672 (op3, insn_data[icode].operand[3].mode))
3673 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
3675 /* Everything should now be in the suitable form, so emit the compare insn
3676 and then the conditional move. */
3678 comparison
3679 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX, 0);
3681 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
3682 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
3683 return NULL and let the caller figure out how best to deal with this
3684 situation. */
3685 if (GET_CODE (comparison) != code)
3686 return NULL_RTX;
3688 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
3690 /* If that failed, then give up. */
3691 if (insn == 0)
3692 return 0;
3694 emit_insn (insn);
3696 if (subtarget != target)
3697 convert_move (target, subtarget, 0);
3699 return target;
3702 /* Return non-zero if a conditional move of mode MODE is supported.
3704 This function is for combine so it can tell whether an insn that looks
3705 like a conditional move is actually supported by the hardware. If we
3706 guess wrong we lose a bit on optimization, but that's it. */
3707 /* ??? sparc64 supports conditionally moving integers values based on fp
3708 comparisons, and vice versa. How do we handle them? */
3711 can_conditionally_move_p (mode)
3712 enum machine_mode mode;
3714 if (movcc_gen_code[mode] != CODE_FOR_nothing)
3715 return 1;
3717 return 0;
3720 #endif /* HAVE_conditional_move */
3722 /* These three functions generate an insn body and return it
3723 rather than emitting the insn.
3725 They do not protect from queued increments,
3726 because they may be used 1) in protect_from_queue itself
3727 and 2) in other passes where there is no queue. */
3729 /* Generate and return an insn body to add Y to X. */
3732 gen_add2_insn (x, y)
3733 rtx x, y;
3735 int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
3737 if (! ((*insn_data[icode].operand[0].predicate)
3738 (x, insn_data[icode].operand[0].mode))
3739 || ! ((*insn_data[icode].operand[1].predicate)
3740 (x, insn_data[icode].operand[1].mode))
3741 || ! ((*insn_data[icode].operand[2].predicate)
3742 (y, insn_data[icode].operand[2].mode)))
3743 abort ();
3745 return (GEN_FCN (icode) (x, x, y));
3749 have_add2_insn (mode)
3750 enum machine_mode mode;
3752 return add_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
3755 /* Generate and return an insn body to subtract Y from X. */
3758 gen_sub2_insn (x, y)
3759 rtx x, y;
3761 int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
3763 if (! ((*insn_data[icode].operand[0].predicate)
3764 (x, insn_data[icode].operand[0].mode))
3765 || ! ((*insn_data[icode].operand[1].predicate)
3766 (x, insn_data[icode].operand[1].mode))
3767 || ! ((*insn_data[icode].operand[2].predicate)
3768 (y, insn_data[icode].operand[2].mode)))
3769 abort ();
3771 return (GEN_FCN (icode) (x, x, y));
3775 have_sub2_insn (mode)
3776 enum machine_mode mode;
3778 return sub_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
3781 /* Generate the body of an instruction to copy Y into X.
3782 It may be a SEQUENCE, if one insn isn't enough. */
3785 gen_move_insn (x, y)
3786 rtx x, y;
3788 register enum machine_mode mode = GET_MODE (x);
3789 enum insn_code insn_code;
3790 rtx seq;
3792 if (mode == VOIDmode)
3793 mode = GET_MODE (y);
3795 insn_code = mov_optab->handlers[(int) mode].insn_code;
3797 /* Handle MODE_CC modes: If we don't have a special move insn for this mode,
3798 find a mode to do it in. If we have a movcc, use it. Otherwise,
3799 find the MODE_INT mode of the same width. */
3801 if (GET_MODE_CLASS (mode) == MODE_CC && insn_code == CODE_FOR_nothing)
3803 enum machine_mode tmode = VOIDmode;
3804 rtx x1 = x, y1 = y;
3806 if (mode != CCmode
3807 && mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing)
3808 tmode = CCmode;
3809 else
3810 for (tmode = QImode; tmode != VOIDmode;
3811 tmode = GET_MODE_WIDER_MODE (tmode))
3812 if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode))
3813 break;
3815 if (tmode == VOIDmode)
3816 abort ();
3818 /* Get X and Y in TMODE. We can't use gen_lowpart here because it
3819 may call change_address which is not appropriate if we were
3820 called when a reload was in progress. We don't have to worry
3821 about changing the address since the size in bytes is supposed to
3822 be the same. Copy the MEM to change the mode and move any
3823 substitutions from the old MEM to the new one. */
3825 if (reload_in_progress)
3827 x = gen_lowpart_common (tmode, x1);
3828 if (x == 0 && GET_CODE (x1) == MEM)
3830 x = gen_rtx_MEM (tmode, XEXP (x1, 0));
3831 MEM_COPY_ATTRIBUTES (x, x1);
3832 copy_replacements (x1, x);
3835 y = gen_lowpart_common (tmode, y1);
3836 if (y == 0 && GET_CODE (y1) == MEM)
3838 y = gen_rtx_MEM (tmode, XEXP (y1, 0));
3839 MEM_COPY_ATTRIBUTES (y, y1);
3840 copy_replacements (y1, y);
3843 else
3845 x = gen_lowpart (tmode, x);
3846 y = gen_lowpart (tmode, y);
3849 insn_code = mov_optab->handlers[(int) tmode].insn_code;
3850 return (GEN_FCN (insn_code) (x, y));
3853 start_sequence ();
3854 emit_move_insn_1 (x, y);
3855 seq = gen_sequence ();
3856 end_sequence ();
3857 return seq;
3860 /* Return the insn code used to extend FROM_MODE to TO_MODE.
3861 UNSIGNEDP specifies zero-extension instead of sign-extension. If
3862 no such operation exists, CODE_FOR_nothing will be returned. */
3864 enum insn_code
3865 can_extend_p (to_mode, from_mode, unsignedp)
3866 enum machine_mode to_mode, from_mode;
3867 int unsignedp;
3869 return extendtab[(int) to_mode][(int) from_mode][unsignedp != 0];
3872 /* Generate the body of an insn to extend Y (with mode MFROM)
3873 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
3876 gen_extend_insn (x, y, mto, mfrom, unsignedp)
3877 rtx x, y;
3878 enum machine_mode mto, mfrom;
3879 int unsignedp;
3881 return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp != 0]) (x, y));
3884 /* can_fix_p and can_float_p say whether the target machine
3885 can directly convert a given fixed point type to
3886 a given floating point type, or vice versa.
3887 The returned value is the CODE_FOR_... value to use,
3888 or CODE_FOR_nothing if these modes cannot be directly converted.
3890 *TRUNCP_PTR is set to 1 if it is necessary to output
3891 an explicit FTRUNC insn before the fix insn; otherwise 0. */
3893 static enum insn_code
3894 can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr)
3895 enum machine_mode fltmode, fixmode;
3896 int unsignedp;
3897 int *truncp_ptr;
3899 *truncp_ptr = 0;
3900 if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0]
3901 != CODE_FOR_nothing)
3902 return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0];
3904 if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing)
3906 *truncp_ptr = 1;
3907 return fixtab[(int) fltmode][(int) fixmode][unsignedp != 0];
3909 return CODE_FOR_nothing;
3912 static enum insn_code
3913 can_float_p (fltmode, fixmode, unsignedp)
3914 enum machine_mode fixmode, fltmode;
3915 int unsignedp;
3917 return floattab[(int) fltmode][(int) fixmode][unsignedp != 0];
3920 /* Generate code to convert FROM to floating point
3921 and store in TO. FROM must be fixed point and not VOIDmode.
3922 UNSIGNEDP nonzero means regard FROM as unsigned.
3923 Normally this is done by correcting the final value
3924 if it is negative. */
3926 void
3927 expand_float (to, from, unsignedp)
3928 rtx to, from;
3929 int unsignedp;
3931 enum insn_code icode;
3932 register rtx target = to;
3933 enum machine_mode fmode, imode;
3935 /* Crash now, because we won't be able to decide which mode to use. */
3936 if (GET_MODE (from) == VOIDmode)
3937 abort ();
3939 /* Look for an insn to do the conversion. Do it in the specified
3940 modes if possible; otherwise convert either input, output or both to
3941 wider mode. If the integer mode is wider than the mode of FROM,
3942 we can do the conversion signed even if the input is unsigned. */
3944 for (imode = GET_MODE (from); imode != VOIDmode;
3945 imode = GET_MODE_WIDER_MODE (imode))
3946 for (fmode = GET_MODE (to); fmode != VOIDmode;
3947 fmode = GET_MODE_WIDER_MODE (fmode))
3949 int doing_unsigned = unsignedp;
3951 if (fmode != GET_MODE (to)
3952 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
3953 continue;
3955 icode = can_float_p (fmode, imode, unsignedp);
3956 if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
3957 icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
3959 if (icode != CODE_FOR_nothing)
3961 to = protect_from_queue (to, 1);
3962 from = protect_from_queue (from, 0);
3964 if (imode != GET_MODE (from))
3965 from = convert_to_mode (imode, from, unsignedp);
3967 if (fmode != GET_MODE (to))
3968 target = gen_reg_rtx (fmode);
3970 emit_unop_insn (icode, target, from,
3971 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
3973 if (target != to)
3974 convert_move (to, target, 0);
3975 return;
3979 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3981 /* Unsigned integer, and no way to convert directly.
3982 Convert as signed, then conditionally adjust the result. */
3983 if (unsignedp)
3985 rtx label = gen_label_rtx ();
3986 rtx temp;
3987 REAL_VALUE_TYPE offset;
3989 emit_queue ();
3991 to = protect_from_queue (to, 1);
3992 from = protect_from_queue (from, 0);
3994 if (flag_force_mem)
3995 from = force_not_mem (from);
3997 /* Look for a usable floating mode FMODE wider than the source and at
3998 least as wide as the target. Using FMODE will avoid rounding woes
3999 with unsigned values greater than the signed maximum value. */
4001 for (fmode = GET_MODE (to); fmode != VOIDmode;
4002 fmode = GET_MODE_WIDER_MODE (fmode))
4003 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4004 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4005 break;
4007 if (fmode == VOIDmode)
4009 /* There is no such mode. Pretend the target is wide enough. */
4010 fmode = GET_MODE (to);
4012 /* Avoid double-rounding when TO is narrower than FROM. */
4013 if ((significand_size (fmode) + 1)
4014 < GET_MODE_BITSIZE (GET_MODE (from)))
4016 rtx temp1;
4017 rtx neglabel = gen_label_rtx ();
4019 /* Don't use TARGET if it isn't a register, is a hard register,
4020 or is the wrong mode. */
4021 if (GET_CODE (target) != REG
4022 || REGNO (target) < FIRST_PSEUDO_REGISTER
4023 || GET_MODE (target) != fmode)
4024 target = gen_reg_rtx (fmode);
4026 imode = GET_MODE (from);
4027 do_pending_stack_adjust ();
4029 /* Test whether the sign bit is set. */
4030 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4031 0, 0, neglabel);
4033 /* The sign bit is not set. Convert as signed. */
4034 expand_float (target, from, 0);
4035 emit_jump_insn (gen_jump (label));
4036 emit_barrier ();
4038 /* The sign bit is set.
4039 Convert to a usable (positive signed) value by shifting right
4040 one bit, while remembering if a nonzero bit was shifted
4041 out; i.e., compute (from & 1) | (from >> 1). */
4043 emit_label (neglabel);
4044 temp = expand_binop (imode, and_optab, from, const1_rtx,
4045 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4046 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
4047 NULL_RTX, 1);
4048 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4049 OPTAB_LIB_WIDEN);
4050 expand_float (target, temp, 0);
4052 /* Multiply by 2 to undo the shift above. */
4053 temp = expand_binop (fmode, add_optab, target, target,
4054 target, 0, OPTAB_LIB_WIDEN);
4055 if (temp != target)
4056 emit_move_insn (target, temp);
4058 do_pending_stack_adjust ();
4059 emit_label (label);
4060 goto done;
4064 /* If we are about to do some arithmetic to correct for an
4065 unsigned operand, do it in a pseudo-register. */
4067 if (GET_MODE (to) != fmode
4068 || GET_CODE (to) != REG || REGNO (to) < FIRST_PSEUDO_REGISTER)
4069 target = gen_reg_rtx (fmode);
4071 /* Convert as signed integer to floating. */
4072 expand_float (target, from, 0);
4074 /* If FROM is negative (and therefore TO is negative),
4075 correct its value by 2**bitwidth. */
4077 do_pending_stack_adjust ();
4078 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
4079 0, 0, label);
4081 /* On SCO 3.2.1, ldexp rejects values outside [0.5, 1).
4082 Rather than setting up a dconst_dot_5, let's hope SCO
4083 fixes the bug. */
4084 offset = REAL_VALUE_LDEXP (dconst1, GET_MODE_BITSIZE (GET_MODE (from)));
4085 temp = expand_binop (fmode, add_optab, target,
4086 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
4087 target, 0, OPTAB_LIB_WIDEN);
4088 if (temp != target)
4089 emit_move_insn (target, temp);
4091 do_pending_stack_adjust ();
4092 emit_label (label);
4093 goto done;
4095 #endif
4097 /* No hardware instruction available; call a library routine to convert from
4098 SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */
4100 rtx libfcn;
4101 rtx insns;
4102 rtx value;
4104 to = protect_from_queue (to, 1);
4105 from = protect_from_queue (from, 0);
4107 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
4108 from = convert_to_mode (SImode, from, unsignedp);
4110 if (flag_force_mem)
4111 from = force_not_mem (from);
4113 if (GET_MODE (to) == SFmode)
4115 if (GET_MODE (from) == SImode)
4116 libfcn = floatsisf_libfunc;
4117 else if (GET_MODE (from) == DImode)
4118 libfcn = floatdisf_libfunc;
4119 else if (GET_MODE (from) == TImode)
4120 libfcn = floattisf_libfunc;
4121 else
4122 abort ();
4124 else if (GET_MODE (to) == DFmode)
4126 if (GET_MODE (from) == SImode)
4127 libfcn = floatsidf_libfunc;
4128 else if (GET_MODE (from) == DImode)
4129 libfcn = floatdidf_libfunc;
4130 else if (GET_MODE (from) == TImode)
4131 libfcn = floattidf_libfunc;
4132 else
4133 abort ();
4135 else if (GET_MODE (to) == XFmode)
4137 if (GET_MODE (from) == SImode)
4138 libfcn = floatsixf_libfunc;
4139 else if (GET_MODE (from) == DImode)
4140 libfcn = floatdixf_libfunc;
4141 else if (GET_MODE (from) == TImode)
4142 libfcn = floattixf_libfunc;
4143 else
4144 abort ();
4146 else if (GET_MODE (to) == TFmode)
4148 if (GET_MODE (from) == SImode)
4149 libfcn = floatsitf_libfunc;
4150 else if (GET_MODE (from) == DImode)
4151 libfcn = floatditf_libfunc;
4152 else if (GET_MODE (from) == TImode)
4153 libfcn = floattitf_libfunc;
4154 else
4155 abort ();
4157 else
4158 abort ();
4160 start_sequence ();
4162 value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
4163 GET_MODE (to), 1, from,
4164 GET_MODE (from));
4165 insns = get_insns ();
4166 end_sequence ();
4168 emit_libcall_block (insns, target, value,
4169 gen_rtx_FLOAT (GET_MODE (to), from));
4172 done:
4174 /* Copy result to requested destination
4175 if we have been computing in a temp location. */
4177 if (target != to)
4179 if (GET_MODE (target) == GET_MODE (to))
4180 emit_move_insn (to, target);
4181 else
4182 convert_move (to, target, 0);
4186 /* expand_fix: generate code to convert FROM to fixed point
4187 and store in TO. FROM must be floating point. */
4189 static rtx
4190 ftruncify (x)
4191 rtx x;
4193 rtx temp = gen_reg_rtx (GET_MODE (x));
4194 return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0);
4197 void
4198 expand_fix (to, from, unsignedp)
4199 register rtx to, from;
4200 int unsignedp;
4202 enum insn_code icode;
4203 register rtx target = to;
4204 enum machine_mode fmode, imode;
4205 int must_trunc = 0;
4206 rtx libfcn = 0;
4208 /* We first try to find a pair of modes, one real and one integer, at
4209 least as wide as FROM and TO, respectively, in which we can open-code
4210 this conversion. If the integer mode is wider than the mode of TO,
4211 we can do the conversion either signed or unsigned. */
4213 for (imode = GET_MODE (to); imode != VOIDmode;
4214 imode = GET_MODE_WIDER_MODE (imode))
4215 for (fmode = GET_MODE (from); fmode != VOIDmode;
4216 fmode = GET_MODE_WIDER_MODE (fmode))
4218 int doing_unsigned = unsignedp;
4220 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4221 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4222 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4224 if (icode != CODE_FOR_nothing)
4226 to = protect_from_queue (to, 1);
4227 from = protect_from_queue (from, 0);
4229 if (fmode != GET_MODE (from))
4230 from = convert_to_mode (fmode, from, 0);
4232 if (must_trunc)
4233 from = ftruncify (from);
4235 if (imode != GET_MODE (to))
4236 target = gen_reg_rtx (imode);
4238 emit_unop_insn (icode, target, from,
4239 doing_unsigned ? UNSIGNED_FIX : FIX);
4240 if (target != to)
4241 convert_move (to, target, unsignedp);
4242 return;
4246 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4247 /* For an unsigned conversion, there is one more way to do it.
4248 If we have a signed conversion, we generate code that compares
4249 the real value to the largest representable positive number. If if
4250 is smaller, the conversion is done normally. Otherwise, subtract
4251 one plus the highest signed number, convert, and add it back.
4253 We only need to check all real modes, since we know we didn't find
4254 anything with a wider integer mode. */
4256 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
4257 for (fmode = GET_MODE (from); fmode != VOIDmode;
4258 fmode = GET_MODE_WIDER_MODE (fmode))
4259 /* Make sure we won't lose significant bits doing this. */
4260 if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))
4261 && CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
4262 &must_trunc))
4264 int bitsize;
4265 REAL_VALUE_TYPE offset;
4266 rtx limit, lab1, lab2, insn;
4268 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
4269 offset = REAL_VALUE_LDEXP (dconst1, bitsize - 1);
4270 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
4271 lab1 = gen_label_rtx ();
4272 lab2 = gen_label_rtx ();
4274 emit_queue ();
4275 to = protect_from_queue (to, 1);
4276 from = protect_from_queue (from, 0);
4278 if (flag_force_mem)
4279 from = force_not_mem (from);
4281 if (fmode != GET_MODE (from))
4282 from = convert_to_mode (fmode, from, 0);
4284 /* See if we need to do the subtraction. */
4285 do_pending_stack_adjust ();
4286 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
4287 0, 0, lab1);
4289 /* If not, do the signed "fix" and branch around fixup code. */
4290 expand_fix (to, from, 0);
4291 emit_jump_insn (gen_jump (lab2));
4292 emit_barrier ();
4294 /* Otherwise, subtract 2**(N-1), convert to signed number,
4295 then add 2**(N-1). Do the addition using XOR since this
4296 will often generate better code. */
4297 emit_label (lab1);
4298 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
4299 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4300 expand_fix (to, target, 0);
4301 target = expand_binop (GET_MODE (to), xor_optab, to,
4302 GEN_INT ((HOST_WIDE_INT) 1 << (bitsize - 1)),
4303 to, 1, OPTAB_LIB_WIDEN);
4305 if (target != to)
4306 emit_move_insn (to, target);
4308 emit_label (lab2);
4310 if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
4311 != CODE_FOR_nothing)
4313 /* Make a place for a REG_NOTE and add it. */
4314 insn = emit_move_insn (to, to);
4315 set_unique_reg_note (insn,
4316 REG_EQUAL,
4317 gen_rtx_fmt_e (UNSIGNED_FIX,
4318 GET_MODE (to),
4319 copy_rtx (from)));
4322 return;
4324 #endif
4326 /* We can't do it with an insn, so use a library call. But first ensure
4327 that the mode of TO is at least as wide as SImode, since those are the
4328 only library calls we know about. */
4330 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
4332 target = gen_reg_rtx (SImode);
4334 expand_fix (target, from, unsignedp);
4336 else if (GET_MODE (from) == SFmode)
4338 if (GET_MODE (to) == SImode)
4339 libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc;
4340 else if (GET_MODE (to) == DImode)
4341 libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc;
4342 else if (GET_MODE (to) == TImode)
4343 libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc;
4344 else
4345 abort ();
4347 else if (GET_MODE (from) == DFmode)
4349 if (GET_MODE (to) == SImode)
4350 libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc;
4351 else if (GET_MODE (to) == DImode)
4352 libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc;
4353 else if (GET_MODE (to) == TImode)
4354 libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc;
4355 else
4356 abort ();
4358 else if (GET_MODE (from) == XFmode)
4360 if (GET_MODE (to) == SImode)
4361 libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc;
4362 else if (GET_MODE (to) == DImode)
4363 libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc;
4364 else if (GET_MODE (to) == TImode)
4365 libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc;
4366 else
4367 abort ();
4369 else if (GET_MODE (from) == TFmode)
4371 if (GET_MODE (to) == SImode)
4372 libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc;
4373 else if (GET_MODE (to) == DImode)
4374 libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc;
4375 else if (GET_MODE (to) == TImode)
4376 libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc;
4377 else
4378 abort ();
4380 else
4381 abort ();
4383 if (libfcn)
4385 rtx insns;
4386 rtx value;
4388 to = protect_from_queue (to, 1);
4389 from = protect_from_queue (from, 0);
4391 if (flag_force_mem)
4392 from = force_not_mem (from);
4394 start_sequence ();
4396 value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
4397 GET_MODE (to), 1, from,
4398 GET_MODE (from));
4399 insns = get_insns ();
4400 end_sequence ();
4402 emit_libcall_block (insns, target, value,
4403 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
4404 GET_MODE (to), from));
4407 if (target != to)
4409 if (GET_MODE (to) == GET_MODE (target))
4410 emit_move_insn (to, target);
4411 else
4412 convert_move (to, target, 0);
4416 static optab
4417 init_optab (code)
4418 enum rtx_code code;
4420 int i;
4421 optab op = (optab) xmalloc (sizeof (struct optab));
4422 op->code = code;
4423 for (i = 0; i < NUM_MACHINE_MODES; i++)
4425 op->handlers[i].insn_code = CODE_FOR_nothing;
4426 op->handlers[i].libfunc = 0;
4429 if (code != UNKNOWN)
4430 code_to_optab[(int) code] = op;
4432 return op;
4435 /* Initialize the libfunc fields of an entire group of entries in some
4436 optab. Each entry is set equal to a string consisting of a leading
4437 pair of underscores followed by a generic operation name followed by
4438 a mode name (downshifted to lower case) followed by a single character
4439 representing the number of operands for the given operation (which is
4440 usually one of the characters '2', '3', or '4').
4442 OPTABLE is the table in which libfunc fields are to be initialized.
4443 FIRST_MODE is the first machine mode index in the given optab to
4444 initialize.
4445 LAST_MODE is the last machine mode index in the given optab to
4446 initialize.
4447 OPNAME is the generic (string) name of the operation.
4448 SUFFIX is the character which specifies the number of operands for
4449 the given generic operation.
4452 static void
4453 init_libfuncs (optable, first_mode, last_mode, opname, suffix)
4454 register optab optable;
4455 register int first_mode;
4456 register int last_mode;
4457 register const char *opname;
4458 register int suffix;
4460 register int mode;
4461 register unsigned opname_len = strlen (opname);
4463 for (mode = first_mode; (int) mode <= (int) last_mode;
4464 mode = (enum machine_mode) ((int) mode + 1))
4466 register const char *mname = GET_MODE_NAME(mode);
4467 register unsigned mname_len = strlen (mname);
4468 register char *libfunc_name
4469 = ggc_alloc_string (NULL, 2 + opname_len + mname_len + 1 + 1);
4470 register char *p;
4471 register const char *q;
4473 p = libfunc_name;
4474 *p++ = '_';
4475 *p++ = '_';
4476 for (q = opname; *q; )
4477 *p++ = *q++;
4478 for (q = mname; *q; q++)
4479 *p++ = TOLOWER (*q);
4480 *p++ = suffix;
4481 *p++ = '\0';
4483 optable->handlers[(int) mode].libfunc
4484 = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
4488 /* Initialize the libfunc fields of an entire group of entries in some
4489 optab which correspond to all integer mode operations. The parameters
4490 have the same meaning as similarly named ones for the `init_libfuncs'
4491 routine. (See above). */
4493 static void
4494 init_integral_libfuncs (optable, opname, suffix)
4495 register optab optable;
4496 register const char *opname;
4497 register int suffix;
4499 init_libfuncs (optable, SImode, TImode, opname, suffix);
4502 /* Initialize the libfunc fields of an entire group of entries in some
4503 optab which correspond to all real mode operations. The parameters
4504 have the same meaning as similarly named ones for the `init_libfuncs'
4505 routine. (See above). */
4507 static void
4508 init_floating_libfuncs (optable, opname, suffix)
4509 register optab optable;
4510 register const char *opname;
4511 register int suffix;
4513 init_libfuncs (optable, SFmode, TFmode, opname, suffix);
4517 init_one_libfunc (name)
4518 register const char *name;
4520 name = ggc_strdup (name);
4522 return gen_rtx_SYMBOL_REF (Pmode, name);
4525 /* Mark ARG (which is really an OPTAB *) for GC. */
4527 void
4528 mark_optab (arg)
4529 void *arg;
4531 optab o = *(optab *) arg;
4532 int i;
4534 for (i = 0; i < NUM_MACHINE_MODES; ++i)
4535 ggc_mark_rtx (o->handlers[i].libfunc);
4538 /* Call this once to initialize the contents of the optabs
4539 appropriately for the current target machine. */
4541 void
4542 init_optabs ()
4544 unsigned int i, j, k;
4546 /* Start by initializing all tables to contain CODE_FOR_nothing. */
4548 for (i = 0; i < ARRAY_SIZE (fixtab); i++)
4549 for (j = 0; j < ARRAY_SIZE (fixtab[0]); j++)
4550 for (k = 0; k < ARRAY_SIZE (fixtab[0][0]); k++)
4551 fixtab[i][j][k] = CODE_FOR_nothing;
4553 for (i = 0; i < ARRAY_SIZE (fixtrunctab); i++)
4554 for (j = 0; j < ARRAY_SIZE (fixtrunctab[0]); j++)
4555 for (k = 0; k < ARRAY_SIZE (fixtrunctab[0][0]); k++)
4556 fixtrunctab[i][j][k] = CODE_FOR_nothing;
4558 for (i = 0; i < ARRAY_SIZE (floattab); i++)
4559 for (j = 0; j < ARRAY_SIZE (floattab[0]); j++)
4560 for (k = 0; k < ARRAY_SIZE (floattab[0][0]); k++)
4561 floattab[i][j][k] = CODE_FOR_nothing;
4563 for (i = 0; i < ARRAY_SIZE (extendtab); i++)
4564 for (j = 0; j < ARRAY_SIZE (extendtab[0]); j++)
4565 for (k = 0; k < ARRAY_SIZE (extendtab[0][0]); k++)
4566 extendtab[i][j][k] = CODE_FOR_nothing;
4568 for (i = 0; i < NUM_RTX_CODE; i++)
4569 setcc_gen_code[i] = CODE_FOR_nothing;
4571 #ifdef HAVE_conditional_move
4572 for (i = 0; i < NUM_MACHINE_MODES; i++)
4573 movcc_gen_code[i] = CODE_FOR_nothing;
4574 #endif
4576 add_optab = init_optab (PLUS);
4577 addv_optab = init_optab (PLUS);
4578 sub_optab = init_optab (MINUS);
4579 subv_optab = init_optab (MINUS);
4580 smul_optab = init_optab (MULT);
4581 smulv_optab = init_optab (MULT);
4582 smul_highpart_optab = init_optab (UNKNOWN);
4583 umul_highpart_optab = init_optab (UNKNOWN);
4584 smul_widen_optab = init_optab (UNKNOWN);
4585 umul_widen_optab = init_optab (UNKNOWN);
4586 sdiv_optab = init_optab (DIV);
4587 sdivv_optab = init_optab (DIV);
4588 sdivmod_optab = init_optab (UNKNOWN);
4589 udiv_optab = init_optab (UDIV);
4590 udivmod_optab = init_optab (UNKNOWN);
4591 smod_optab = init_optab (MOD);
4592 umod_optab = init_optab (UMOD);
4593 flodiv_optab = init_optab (DIV);
4594 ftrunc_optab = init_optab (UNKNOWN);
4595 and_optab = init_optab (AND);
4596 ior_optab = init_optab (IOR);
4597 xor_optab = init_optab (XOR);
4598 ashl_optab = init_optab (ASHIFT);
4599 ashr_optab = init_optab (ASHIFTRT);
4600 lshr_optab = init_optab (LSHIFTRT);
4601 rotl_optab = init_optab (ROTATE);
4602 rotr_optab = init_optab (ROTATERT);
4603 smin_optab = init_optab (SMIN);
4604 smax_optab = init_optab (SMAX);
4605 umin_optab = init_optab (UMIN);
4606 umax_optab = init_optab (UMAX);
4607 mov_optab = init_optab (UNKNOWN);
4608 movstrict_optab = init_optab (UNKNOWN);
4609 cmp_optab = init_optab (UNKNOWN);
4610 ucmp_optab = init_optab (UNKNOWN);
4611 tst_optab = init_optab (UNKNOWN);
4612 neg_optab = init_optab (NEG);
4613 negv_optab = init_optab (NEG);
4614 abs_optab = init_optab (ABS);
4615 absv_optab = init_optab (ABS);
4616 one_cmpl_optab = init_optab (NOT);
4617 ffs_optab = init_optab (FFS);
4618 sqrt_optab = init_optab (SQRT);
4619 sin_optab = init_optab (UNKNOWN);
4620 cos_optab = init_optab (UNKNOWN);
4621 strlen_optab = init_optab (UNKNOWN);
4622 cbranch_optab = init_optab (UNKNOWN);
4623 cmov_optab = init_optab (UNKNOWN);
4624 cstore_optab = init_optab (UNKNOWN);
4626 for (i = 0; i < NUM_MACHINE_MODES; i++)
4628 movstr_optab[i] = CODE_FOR_nothing;
4629 clrstr_optab[i] = CODE_FOR_nothing;
4631 #ifdef HAVE_SECONDARY_RELOADS
4632 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
4633 #endif
4636 /* Fill in the optabs with the insns we support. */
4637 init_all_optabs ();
4639 #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
4640 /* This flag says the same insns that convert to a signed fixnum
4641 also convert validly to an unsigned one. */
4642 for (i = 0; i < NUM_MACHINE_MODES; i++)
4643 for (j = 0; j < NUM_MACHINE_MODES; j++)
4644 fixtrunctab[i][j][1] = fixtrunctab[i][j][0];
4645 #endif
4647 /* Initialize the optabs with the names of the library functions. */
4648 init_integral_libfuncs (add_optab, "add", '3');
4649 init_floating_libfuncs (add_optab, "add", '3');
4650 init_integral_libfuncs (addv_optab, "addv", '3');
4651 init_floating_libfuncs (addv_optab, "add", '3');
4652 init_integral_libfuncs (sub_optab, "sub", '3');
4653 init_floating_libfuncs (sub_optab, "sub", '3');
4654 init_integral_libfuncs (subv_optab, "subv", '3');
4655 init_floating_libfuncs (subv_optab, "sub", '3');
4656 init_integral_libfuncs (smul_optab, "mul", '3');
4657 init_floating_libfuncs (smul_optab, "mul", '3');
4658 init_integral_libfuncs (smulv_optab, "mulv", '3');
4659 init_floating_libfuncs (smulv_optab, "mul", '3');
4660 init_integral_libfuncs (sdiv_optab, "div", '3');
4661 init_integral_libfuncs (sdivv_optab, "divv", '3');
4662 init_integral_libfuncs (udiv_optab, "udiv", '3');
4663 init_integral_libfuncs (sdivmod_optab, "divmod", '4');
4664 init_integral_libfuncs (udivmod_optab, "udivmod", '4');
4665 init_integral_libfuncs (smod_optab, "mod", '3');
4666 init_integral_libfuncs (umod_optab, "umod", '3');
4667 init_floating_libfuncs (flodiv_optab, "div", '3');
4668 init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
4669 init_integral_libfuncs (and_optab, "and", '3');
4670 init_integral_libfuncs (ior_optab, "ior", '3');
4671 init_integral_libfuncs (xor_optab, "xor", '3');
4672 init_integral_libfuncs (ashl_optab, "ashl", '3');
4673 init_integral_libfuncs (ashr_optab, "ashr", '3');
4674 init_integral_libfuncs (lshr_optab, "lshr", '3');
4675 init_integral_libfuncs (smin_optab, "min", '3');
4676 init_floating_libfuncs (smin_optab, "min", '3');
4677 init_integral_libfuncs (smax_optab, "max", '3');
4678 init_floating_libfuncs (smax_optab, "max", '3');
4679 init_integral_libfuncs (umin_optab, "umin", '3');
4680 init_integral_libfuncs (umax_optab, "umax", '3');
4681 init_integral_libfuncs (neg_optab, "neg", '2');
4682 init_floating_libfuncs (neg_optab, "neg", '2');
4683 init_integral_libfuncs (negv_optab, "negv", '2');
4684 init_floating_libfuncs (negv_optab, "neg", '2');
4685 init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
4686 init_integral_libfuncs (ffs_optab, "ffs", '2');
4688 /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
4689 init_integral_libfuncs (cmp_optab, "cmp", '2');
4690 init_integral_libfuncs (ucmp_optab, "ucmp", '2');
4691 init_floating_libfuncs (cmp_optab, "cmp", '2');
4693 #ifdef MULSI3_LIBCALL
4694 smul_optab->handlers[(int) SImode].libfunc
4695 = init_one_libfunc (MULSI3_LIBCALL);
4696 #endif
4697 #ifdef MULDI3_LIBCALL
4698 smul_optab->handlers[(int) DImode].libfunc
4699 = init_one_libfunc (MULDI3_LIBCALL);
4700 #endif
4702 #ifdef DIVSI3_LIBCALL
4703 sdiv_optab->handlers[(int) SImode].libfunc
4704 = init_one_libfunc (DIVSI3_LIBCALL);
4705 #endif
4706 #ifdef DIVDI3_LIBCALL
4707 sdiv_optab->handlers[(int) DImode].libfunc
4708 = init_one_libfunc (DIVDI3_LIBCALL);
4709 #endif
4711 #ifdef UDIVSI3_LIBCALL
4712 udiv_optab->handlers[(int) SImode].libfunc
4713 = init_one_libfunc (UDIVSI3_LIBCALL);
4714 #endif
4715 #ifdef UDIVDI3_LIBCALL
4716 udiv_optab->handlers[(int) DImode].libfunc
4717 = init_one_libfunc (UDIVDI3_LIBCALL);
4718 #endif
4720 #ifdef MODSI3_LIBCALL
4721 smod_optab->handlers[(int) SImode].libfunc
4722 = init_one_libfunc (MODSI3_LIBCALL);
4723 #endif
4724 #ifdef MODDI3_LIBCALL
4725 smod_optab->handlers[(int) DImode].libfunc
4726 = init_one_libfunc (MODDI3_LIBCALL);
4727 #endif
4729 #ifdef UMODSI3_LIBCALL
4730 umod_optab->handlers[(int) SImode].libfunc
4731 = init_one_libfunc (UMODSI3_LIBCALL);
4732 #endif
4733 #ifdef UMODDI3_LIBCALL
4734 umod_optab->handlers[(int) DImode].libfunc
4735 = init_one_libfunc (UMODDI3_LIBCALL);
4736 #endif
4738 /* Use cabs for DC complex abs, since systems generally have cabs.
4739 Don't define any libcall for SCmode, so that cabs will be used. */
4740 abs_optab->handlers[(int) DCmode].libfunc
4741 = init_one_libfunc ("cabs");
4743 /* The ffs function operates on `int'. */
4744 ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
4745 = init_one_libfunc ("ffs");
4747 extendsfdf2_libfunc = init_one_libfunc ("__extendsfdf2");
4748 extendsfxf2_libfunc = init_one_libfunc ("__extendsfxf2");
4749 extendsftf2_libfunc = init_one_libfunc ("__extendsftf2");
4750 extenddfxf2_libfunc = init_one_libfunc ("__extenddfxf2");
4751 extenddftf2_libfunc = init_one_libfunc ("__extenddftf2");
4753 truncdfsf2_libfunc = init_one_libfunc ("__truncdfsf2");
4754 truncxfsf2_libfunc = init_one_libfunc ("__truncxfsf2");
4755 trunctfsf2_libfunc = init_one_libfunc ("__trunctfsf2");
4756 truncxfdf2_libfunc = init_one_libfunc ("__truncxfdf2");
4757 trunctfdf2_libfunc = init_one_libfunc ("__trunctfdf2");
4759 memcpy_libfunc = init_one_libfunc ("memcpy");
4760 bcopy_libfunc = init_one_libfunc ("bcopy");
4761 memcmp_libfunc = init_one_libfunc ("memcmp");
4762 bcmp_libfunc = init_one_libfunc ("__gcc_bcmp");
4763 memset_libfunc = init_one_libfunc ("memset");
4764 bzero_libfunc = init_one_libfunc ("bzero");
4766 throw_libfunc = init_one_libfunc ("__throw");
4767 rethrow_libfunc = init_one_libfunc ("__rethrow");
4768 sjthrow_libfunc = init_one_libfunc ("__sjthrow");
4769 sjpopnthrow_libfunc = init_one_libfunc ("__sjpopnthrow");
4770 terminate_libfunc = init_one_libfunc ("__terminate");
4771 eh_rtime_match_libfunc = init_one_libfunc ("__eh_rtime_match");
4772 #ifndef DONT_USE_BUILTIN_SETJMP
4773 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
4774 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
4775 #else
4776 setjmp_libfunc = init_one_libfunc ("setjmp");
4777 longjmp_libfunc = init_one_libfunc ("longjmp");
4778 #endif
4780 eqhf2_libfunc = init_one_libfunc ("__eqhf2");
4781 nehf2_libfunc = init_one_libfunc ("__nehf2");
4782 gthf2_libfunc = init_one_libfunc ("__gthf2");
4783 gehf2_libfunc = init_one_libfunc ("__gehf2");
4784 lthf2_libfunc = init_one_libfunc ("__lthf2");
4785 lehf2_libfunc = init_one_libfunc ("__lehf2");
4786 unordhf2_libfunc = init_one_libfunc ("__unordhf2");
4788 eqsf2_libfunc = init_one_libfunc ("__eqsf2");
4789 nesf2_libfunc = init_one_libfunc ("__nesf2");
4790 gtsf2_libfunc = init_one_libfunc ("__gtsf2");
4791 gesf2_libfunc = init_one_libfunc ("__gesf2");
4792 ltsf2_libfunc = init_one_libfunc ("__ltsf2");
4793 lesf2_libfunc = init_one_libfunc ("__lesf2");
4794 unordsf2_libfunc = init_one_libfunc ("__unordsf2");
4796 eqdf2_libfunc = init_one_libfunc ("__eqdf2");
4797 nedf2_libfunc = init_one_libfunc ("__nedf2");
4798 gtdf2_libfunc = init_one_libfunc ("__gtdf2");
4799 gedf2_libfunc = init_one_libfunc ("__gedf2");
4800 ltdf2_libfunc = init_one_libfunc ("__ltdf2");
4801 ledf2_libfunc = init_one_libfunc ("__ledf2");
4802 unorddf2_libfunc = init_one_libfunc ("__unorddf2");
4804 eqxf2_libfunc = init_one_libfunc ("__eqxf2");
4805 nexf2_libfunc = init_one_libfunc ("__nexf2");
4806 gtxf2_libfunc = init_one_libfunc ("__gtxf2");
4807 gexf2_libfunc = init_one_libfunc ("__gexf2");
4808 ltxf2_libfunc = init_one_libfunc ("__ltxf2");
4809 lexf2_libfunc = init_one_libfunc ("__lexf2");
4810 unordxf2_libfunc = init_one_libfunc ("__unordxf2");
4812 eqtf2_libfunc = init_one_libfunc ("__eqtf2");
4813 netf2_libfunc = init_one_libfunc ("__netf2");
4814 gttf2_libfunc = init_one_libfunc ("__gttf2");
4815 getf2_libfunc = init_one_libfunc ("__getf2");
4816 lttf2_libfunc = init_one_libfunc ("__lttf2");
4817 letf2_libfunc = init_one_libfunc ("__letf2");
4818 unordtf2_libfunc = init_one_libfunc ("__unordtf2");
4820 floatsisf_libfunc = init_one_libfunc ("__floatsisf");
4821 floatdisf_libfunc = init_one_libfunc ("__floatdisf");
4822 floattisf_libfunc = init_one_libfunc ("__floattisf");
4824 floatsidf_libfunc = init_one_libfunc ("__floatsidf");
4825 floatdidf_libfunc = init_one_libfunc ("__floatdidf");
4826 floattidf_libfunc = init_one_libfunc ("__floattidf");
4828 floatsixf_libfunc = init_one_libfunc ("__floatsixf");
4829 floatdixf_libfunc = init_one_libfunc ("__floatdixf");
4830 floattixf_libfunc = init_one_libfunc ("__floattixf");
4832 floatsitf_libfunc = init_one_libfunc ("__floatsitf");
4833 floatditf_libfunc = init_one_libfunc ("__floatditf");
4834 floattitf_libfunc = init_one_libfunc ("__floattitf");
4836 fixsfsi_libfunc = init_one_libfunc ("__fixsfsi");
4837 fixsfdi_libfunc = init_one_libfunc ("__fixsfdi");
4838 fixsfti_libfunc = init_one_libfunc ("__fixsfti");
4840 fixdfsi_libfunc = init_one_libfunc ("__fixdfsi");
4841 fixdfdi_libfunc = init_one_libfunc ("__fixdfdi");
4842 fixdfti_libfunc = init_one_libfunc ("__fixdfti");
4844 fixxfsi_libfunc = init_one_libfunc ("__fixxfsi");
4845 fixxfdi_libfunc = init_one_libfunc ("__fixxfdi");
4846 fixxfti_libfunc = init_one_libfunc ("__fixxfti");
4848 fixtfsi_libfunc = init_one_libfunc ("__fixtfsi");
4849 fixtfdi_libfunc = init_one_libfunc ("__fixtfdi");
4850 fixtfti_libfunc = init_one_libfunc ("__fixtfti");
4852 fixunssfsi_libfunc = init_one_libfunc ("__fixunssfsi");
4853 fixunssfdi_libfunc = init_one_libfunc ("__fixunssfdi");
4854 fixunssfti_libfunc = init_one_libfunc ("__fixunssfti");
4856 fixunsdfsi_libfunc = init_one_libfunc ("__fixunsdfsi");
4857 fixunsdfdi_libfunc = init_one_libfunc ("__fixunsdfdi");
4858 fixunsdfti_libfunc = init_one_libfunc ("__fixunsdfti");
4860 fixunsxfsi_libfunc = init_one_libfunc ("__fixunsxfsi");
4861 fixunsxfdi_libfunc = init_one_libfunc ("__fixunsxfdi");
4862 fixunsxfti_libfunc = init_one_libfunc ("__fixunsxfti");
4864 fixunstfsi_libfunc = init_one_libfunc ("__fixunstfsi");
4865 fixunstfdi_libfunc = init_one_libfunc ("__fixunstfdi");
4866 fixunstfti_libfunc = init_one_libfunc ("__fixunstfti");
4868 /* For check-memory-usage. */
4869 chkr_check_addr_libfunc = init_one_libfunc ("chkr_check_addr");
4870 chkr_set_right_libfunc = init_one_libfunc ("chkr_set_right");
4871 chkr_copy_bitmap_libfunc = init_one_libfunc ("chkr_copy_bitmap");
4872 chkr_check_exec_libfunc = init_one_libfunc ("chkr_check_exec");
4873 chkr_check_str_libfunc = init_one_libfunc ("chkr_check_str");
4875 /* For function entry/exit instrumentation. */
4876 profile_function_entry_libfunc
4877 = init_one_libfunc ("__cyg_profile_func_enter");
4878 profile_function_exit_libfunc
4879 = init_one_libfunc ("__cyg_profile_func_exit");
4881 #ifdef HAVE_conditional_trap
4882 init_traps ();
4883 #endif
4885 #ifdef INIT_TARGET_OPTABS
4886 /* Allow the target to add more libcalls or rename some, etc. */
4887 INIT_TARGET_OPTABS;
4888 #endif
4890 /* Add these GC roots. */
4891 ggc_add_root (optab_table, OTI_MAX, sizeof(optab), mark_optab);
4892 ggc_add_rtx_root (libfunc_table, LTI_MAX);
4895 #ifdef BROKEN_LDEXP
4897 /* SCO 3.2 apparently has a broken ldexp. */
4899 double
4900 ldexp(x,n)
4901 double x;
4902 int n;
4904 if (n > 0)
4905 while (n--)
4906 x *= 2;
4908 return x;
4910 #endif /* BROKEN_LDEXP */
4912 #ifdef HAVE_conditional_trap
4913 /* The insn generating function can not take an rtx_code argument.
4914 TRAP_RTX is used as an rtx argument. Its code is replaced with
4915 the code to be used in the trap insn and all other fields are
4916 ignored. */
4917 static rtx trap_rtx;
4919 static void
4920 init_traps ()
4922 if (HAVE_conditional_trap)
4924 trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
4925 ggc_add_rtx_root (&trap_rtx, 1);
4928 #endif
4930 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
4931 CODE. Return 0 on failure. */
4934 gen_cond_trap (code, op1, op2, tcode)
4935 enum rtx_code code ATTRIBUTE_UNUSED;
4936 rtx op1, op2 ATTRIBUTE_UNUSED, tcode ATTRIBUTE_UNUSED;
4938 enum machine_mode mode = GET_MODE (op1);
4940 if (mode == VOIDmode)
4941 return 0;
4943 #ifdef HAVE_conditional_trap
4944 if (HAVE_conditional_trap
4945 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
4947 rtx insn;
4948 start_sequence();
4949 emit_insn (GEN_FCN (cmp_optab->handlers[(int) mode].insn_code) (op1, op2));
4950 PUT_CODE (trap_rtx, code);
4951 insn = gen_conditional_trap (trap_rtx, tcode);
4952 if (insn)
4954 emit_insn (insn);
4955 insn = gen_sequence ();
4957 end_sequence();
4958 return insn;
4960 #endif
4962 return 0;