GCCPY:
[official-gcc.git] / gcc / postreload-gcse.c
blobeb6f0d85033f3f8ac280e13c0af5089d018dcaf5
1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "basic-block.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "except.h"
38 #include "intl.h"
39 #include "obstack.h"
40 #include "hashtab.h"
41 #include "params.h"
42 #include "target.h"
43 #include "tree-pass.h"
44 #include "dbgcnt.h"
46 /* The following code implements gcse after reload, the purpose of this
47 pass is to cleanup redundant loads generated by reload and other
48 optimizations that come after gcse. It searches for simple inter-block
49 redundancies and tries to eliminate them by adding moves and loads
50 in cold places.
52 Perform partially redundant load elimination, try to eliminate redundant
53 loads created by the reload pass. We try to look for full or partial
54 redundant loads fed by one or more loads/stores in predecessor BBs,
55 and try adding loads to make them fully redundant. We also check if
56 it's worth adding loads to be able to delete the redundant load.
58 Algorithm:
59 1. Build available expressions hash table:
60 For each load/store instruction, if the loaded/stored memory didn't
61 change until the end of the basic block add this memory expression to
62 the hash table.
63 2. Perform Redundancy elimination:
64 For each load instruction do the following:
65 perform partial redundancy elimination, check if it's worth adding
66 loads to make the load fully redundant. If so add loads and
67 register copies and delete the load.
68 3. Delete instructions made redundant in step 2.
70 Future enhancement:
71 If the loaded register is used/defined between load and some store,
72 look for some other free register between load and all its stores,
73 and replace the load with a copy from this register to the loaded
74 register.
78 /* Keep statistics of this pass. */
79 static struct
81 int moves_inserted;
82 int copies_inserted;
83 int insns_deleted;
84 } stats;
86 /* We need to keep a hash table of expressions. The table entries are of
87 type 'struct expr', and for each expression there is a single linked
88 list of occurrences. */
90 /* The table itself. */
91 static htab_t expr_table;
93 /* Expression elements in the hash table. */
94 struct expr
96 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
97 rtx expr;
99 /* The same hash for this entry. */
100 hashval_t hash;
102 /* List of available occurrence in basic blocks in the function. */
103 struct occr *avail_occr;
106 static struct obstack expr_obstack;
108 /* Occurrence of an expression.
109 There is at most one occurrence per basic block. If a pattern appears
110 more than once, the last appearance is used. */
112 struct occr
114 /* Next occurrence of this expression. */
115 struct occr *next;
116 /* The insn that computes the expression. */
117 rtx insn;
118 /* Nonzero if this [anticipatable] occurrence has been deleted. */
119 char deleted_p;
122 static struct obstack occr_obstack;
124 /* The following structure holds the information about the occurrences of
125 the redundant instructions. */
126 struct unoccr
128 struct unoccr *next;
129 edge pred;
130 rtx insn;
133 static struct obstack unoccr_obstack;
135 /* Array where each element is the CUID if the insn that last set the hard
136 register with the number of the element, since the start of the current
137 basic block.
139 This array is used during the building of the hash table (step 1) to
140 determine if a reg is killed before the end of a basic block.
142 It is also used when eliminating partial redundancies (step 2) to see
143 if a reg was modified since the start of a basic block. */
144 static int *reg_avail_info;
146 /* A list of insns that may modify memory within the current basic block. */
147 struct modifies_mem
149 rtx insn;
150 struct modifies_mem *next;
152 static struct modifies_mem *modifies_mem_list;
154 /* The modifies_mem structs also go on an obstack, only this obstack is
155 freed each time after completing the analysis or transformations on
156 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
157 object on the obstack to keep track of the bottom of the obstack. */
158 static struct obstack modifies_mem_obstack;
159 static struct modifies_mem *modifies_mem_obstack_bottom;
161 /* Mapping of insn UIDs to CUIDs.
162 CUIDs are like UIDs except they increase monotonically in each basic
163 block, have no gaps, and only apply to real insns. */
164 static int *uid_cuid;
165 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
168 /* Helpers for memory allocation/freeing. */
169 static void alloc_mem (void);
170 static void free_mem (void);
172 /* Support for hash table construction and transformations. */
173 static bool oprs_unchanged_p (rtx, rtx, bool);
174 static void record_last_reg_set_info (rtx, rtx);
175 static void record_last_reg_set_info_regno (rtx, int);
176 static void record_last_mem_set_info (rtx);
177 static void record_last_set_info (rtx, const_rtx, void *);
178 static void record_opr_changes (rtx);
180 static void find_mem_conflicts (rtx, const_rtx, void *);
181 static int load_killed_in_block_p (int, rtx, bool);
182 static void reset_opr_set_tables (void);
184 /* Hash table support. */
185 static hashval_t hash_expr (rtx, int *);
186 static hashval_t hash_expr_for_htab (const void *);
187 static int expr_equiv_p (const void *, const void *);
188 static void insert_expr_in_table (rtx, rtx);
189 static struct expr *lookup_expr_in_table (rtx);
190 static int dump_hash_table_entry (void **, void *);
191 static void dump_hash_table (FILE *);
193 /* Helpers for eliminate_partially_redundant_load. */
194 static bool reg_killed_on_edge (rtx, edge);
195 static bool reg_used_on_edge (rtx, edge);
197 static rtx get_avail_load_store_reg (rtx);
199 static bool bb_has_well_behaved_predecessors (basic_block);
200 static struct occr* get_bb_avail_insn (basic_block, struct occr *);
201 static void hash_scan_set (rtx);
202 static void compute_hash_table (void);
204 /* The work horses of this pass. */
205 static void eliminate_partially_redundant_load (basic_block,
206 rtx,
207 struct expr *);
208 static void eliminate_partially_redundant_loads (void);
211 /* Allocate memory for the CUID mapping array and register/memory
212 tracking tables. */
214 static void
215 alloc_mem (void)
217 int i;
218 basic_block bb;
219 rtx insn;
221 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
222 uid_cuid = XCNEWVEC (int, get_max_uid () + 1);
223 i = 1;
224 FOR_EACH_BB (bb)
225 FOR_BB_INSNS (bb, insn)
227 if (INSN_P (insn))
228 uid_cuid[INSN_UID (insn)] = i++;
229 else
230 uid_cuid[INSN_UID (insn)] = i;
233 /* Allocate the available expressions hash table. We don't want to
234 make the hash table too small, but unnecessarily making it too large
235 also doesn't help. The i/4 is a gcse.c relic, and seems like a
236 reasonable choice. */
237 expr_table = htab_create (MAX (i / 4, 13),
238 hash_expr_for_htab, expr_equiv_p, NULL);
240 /* We allocate everything on obstacks because we often can roll back
241 the whole obstack to some point. Freeing obstacks is very fast. */
242 gcc_obstack_init (&expr_obstack);
243 gcc_obstack_init (&occr_obstack);
244 gcc_obstack_init (&unoccr_obstack);
245 gcc_obstack_init (&modifies_mem_obstack);
247 /* Working array used to track the last set for each register
248 in the current block. */
249 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
251 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
252 can roll it back in reset_opr_set_tables. */
253 modifies_mem_obstack_bottom =
254 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
255 sizeof (struct modifies_mem));
258 /* Free memory allocated by alloc_mem. */
260 static void
261 free_mem (void)
263 free (uid_cuid);
265 htab_delete (expr_table);
267 obstack_free (&expr_obstack, NULL);
268 obstack_free (&occr_obstack, NULL);
269 obstack_free (&unoccr_obstack, NULL);
270 obstack_free (&modifies_mem_obstack, NULL);
272 free (reg_avail_info);
276 /* Hash expression X.
277 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
278 or if the expression contains something we don't want to insert in the
279 table. */
281 static hashval_t
282 hash_expr (rtx x, int *do_not_record_p)
284 *do_not_record_p = 0;
285 return hash_rtx (x, GET_MODE (x), do_not_record_p,
286 NULL, /*have_reg_qty=*/false);
289 /* Callback for hashtab.
290 Return the hash value for expression EXP. We don't actually hash
291 here, we just return the cached hash value. */
293 static hashval_t
294 hash_expr_for_htab (const void *expp)
296 const struct expr *const exp = (const struct expr *) expp;
297 return exp->hash;
300 /* Callback for hashtab.
301 Return nonzero if exp1 is equivalent to exp2. */
303 static int
304 expr_equiv_p (const void *exp1p, const void *exp2p)
306 const struct expr *const exp1 = (const struct expr *) exp1p;
307 const struct expr *const exp2 = (const struct expr *) exp2p;
308 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
310 gcc_assert (!equiv_p || exp1->hash == exp2->hash);
311 return equiv_p;
315 /* Insert expression X in INSN in the hash TABLE.
316 If it is already present, record it as the last occurrence in INSN's
317 basic block. */
319 static void
320 insert_expr_in_table (rtx x, rtx insn)
322 int do_not_record_p;
323 hashval_t hash;
324 struct expr *cur_expr, **slot;
325 struct occr *avail_occr, *last_occr = NULL;
327 hash = hash_expr (x, &do_not_record_p);
329 /* Do not insert expression in the table if it contains volatile operands,
330 or if hash_expr determines the expression is something we don't want
331 to or can't handle. */
332 if (do_not_record_p)
333 return;
335 /* We anticipate that redundant expressions are rare, so for convenience
336 allocate a new hash table element here already and set its fields.
337 If we don't do this, we need a hack with a static struct expr. Anyway,
338 obstack_free is really fast and one more obstack_alloc doesn't hurt if
339 we're going to see more expressions later on. */
340 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
341 sizeof (struct expr));
342 cur_expr->expr = x;
343 cur_expr->hash = hash;
344 cur_expr->avail_occr = NULL;
346 slot = (struct expr **) htab_find_slot_with_hash (expr_table, cur_expr,
347 hash, INSERT);
349 if (! (*slot))
350 /* The expression isn't found, so insert it. */
351 *slot = cur_expr;
352 else
354 /* The expression is already in the table, so roll back the
355 obstack and use the existing table entry. */
356 obstack_free (&expr_obstack, cur_expr);
357 cur_expr = *slot;
360 /* Search for another occurrence in the same basic block. */
361 avail_occr = cur_expr->avail_occr;
362 while (avail_occr
363 && BLOCK_FOR_INSN (avail_occr->insn) != BLOCK_FOR_INSN (insn))
365 /* If an occurrence isn't found, save a pointer to the end of
366 the list. */
367 last_occr = avail_occr;
368 avail_occr = avail_occr->next;
371 if (avail_occr)
372 /* Found another instance of the expression in the same basic block.
373 Prefer this occurrence to the currently recorded one. We want
374 the last one in the block and the block is scanned from start
375 to end. */
376 avail_occr->insn = insn;
377 else
379 /* First occurrence of this expression in this basic block. */
380 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
381 sizeof (struct occr));
383 /* First occurrence of this expression in any block? */
384 if (cur_expr->avail_occr == NULL)
385 cur_expr->avail_occr = avail_occr;
386 else
387 last_occr->next = avail_occr;
389 avail_occr->insn = insn;
390 avail_occr->next = NULL;
391 avail_occr->deleted_p = 0;
396 /* Lookup pattern PAT in the expression hash table.
397 The result is a pointer to the table entry, or NULL if not found. */
399 static struct expr *
400 lookup_expr_in_table (rtx pat)
402 int do_not_record_p;
403 struct expr **slot, *tmp_expr;
404 hashval_t hash = hash_expr (pat, &do_not_record_p);
406 if (do_not_record_p)
407 return NULL;
409 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
410 sizeof (struct expr));
411 tmp_expr->expr = pat;
412 tmp_expr->hash = hash;
413 tmp_expr->avail_occr = NULL;
415 slot = (struct expr **) htab_find_slot_with_hash (expr_table, tmp_expr,
416 hash, INSERT);
417 obstack_free (&expr_obstack, tmp_expr);
419 if (!slot)
420 return NULL;
421 else
422 return (*slot);
426 /* Dump all expressions and occurrences that are currently in the
427 expression hash table to FILE. */
429 /* This helper is called via htab_traverse. */
430 static int
431 dump_hash_table_entry (void **slot, void *filep)
433 struct expr *expr = (struct expr *) *slot;
434 FILE *file = (FILE *) filep;
435 struct occr *occr;
437 fprintf (file, "expr: ");
438 print_rtl (file, expr->expr);
439 fprintf (file,"\nhashcode: %u\n", expr->hash);
440 fprintf (file,"list of occurrences:\n");
441 occr = expr->avail_occr;
442 while (occr)
444 rtx insn = occr->insn;
445 print_rtl_single (file, insn);
446 fprintf (file, "\n");
447 occr = occr->next;
449 fprintf (file, "\n");
450 return 1;
453 static void
454 dump_hash_table (FILE *file)
456 fprintf (file, "\n\nexpression hash table\n");
457 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
458 (long) htab_size (expr_table),
459 (long) htab_elements (expr_table),
460 htab_collisions (expr_table));
461 if (htab_elements (expr_table) > 0)
463 fprintf (file, "\n\ntable entries:\n");
464 htab_traverse (expr_table, dump_hash_table_entry, file);
466 fprintf (file, "\n");
469 /* Return true if register X is recorded as being set by an instruction
470 whose CUID is greater than the one given. */
472 static bool
473 reg_changed_after_insn_p (rtx x, int cuid)
475 unsigned int regno, end_regno;
477 regno = REGNO (x);
478 end_regno = END_HARD_REGNO (x);
480 if (reg_avail_info[regno] > cuid)
481 return true;
482 while (++regno < end_regno);
483 return false;
486 /* Return nonzero if the operands of expression X are unchanged
487 1) from the start of INSN's basic block up to but not including INSN
488 if AFTER_INSN is false, or
489 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
491 static bool
492 oprs_unchanged_p (rtx x, rtx insn, bool after_insn)
494 int i, j;
495 enum rtx_code code;
496 const char *fmt;
498 if (x == 0)
499 return 1;
501 code = GET_CODE (x);
502 switch (code)
504 case REG:
505 /* We are called after register allocation. */
506 gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
507 if (after_insn)
508 return !reg_changed_after_insn_p (x, INSN_CUID (insn) - 1);
509 else
510 return !reg_changed_after_insn_p (x, 0);
512 case MEM:
513 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
514 return 0;
515 else
516 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
518 case PC:
519 case CC0: /*FIXME*/
520 case CONST:
521 CASE_CONST_ANY:
522 case SYMBOL_REF:
523 case LABEL_REF:
524 case ADDR_VEC:
525 case ADDR_DIFF_VEC:
526 return 1;
528 case PRE_DEC:
529 case PRE_INC:
530 case POST_DEC:
531 case POST_INC:
532 case PRE_MODIFY:
533 case POST_MODIFY:
534 if (after_insn)
535 return 0;
536 break;
538 default:
539 break;
542 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
544 if (fmt[i] == 'e')
546 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
547 return 0;
549 else if (fmt[i] == 'E')
550 for (j = 0; j < XVECLEN (x, i); j++)
551 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
552 return 0;
555 return 1;
559 /* Used for communication between find_mem_conflicts and
560 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
561 conflict between two memory references.
562 This is a bit of a hack to work around the limitations of note_stores. */
563 static int mems_conflict_p;
565 /* DEST is the output of an instruction. If it is a memory reference, and
566 possibly conflicts with the load found in DATA, then set mems_conflict_p
567 to a nonzero value. */
569 static void
570 find_mem_conflicts (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
571 void *data)
573 rtx mem_op = (rtx) data;
575 while (GET_CODE (dest) == SUBREG
576 || GET_CODE (dest) == ZERO_EXTRACT
577 || GET_CODE (dest) == STRICT_LOW_PART)
578 dest = XEXP (dest, 0);
580 /* If DEST is not a MEM, then it will not conflict with the load. Note
581 that function calls are assumed to clobber memory, but are handled
582 elsewhere. */
583 if (! MEM_P (dest))
584 return;
586 if (true_dependence (dest, GET_MODE (dest), mem_op))
587 mems_conflict_p = 1;
591 /* Return nonzero if the expression in X (a memory reference) is killed
592 in the current basic block before (if AFTER_INSN is false) or after
593 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
595 This function assumes that the modifies_mem table is flushed when
596 the hash table construction or redundancy elimination phases start
597 processing a new basic block. */
599 static int
600 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
602 struct modifies_mem *list_entry = modifies_mem_list;
604 while (list_entry)
606 rtx setter = list_entry->insn;
608 /* Ignore entries in the list that do not apply. */
609 if ((after_insn
610 && INSN_CUID (setter) < uid_limit)
611 || (! after_insn
612 && INSN_CUID (setter) > uid_limit))
614 list_entry = list_entry->next;
615 continue;
618 /* If SETTER is a call everything is clobbered. Note that calls
619 to pure functions are never put on the list, so we need not
620 worry about them. */
621 if (CALL_P (setter))
622 return 1;
624 /* SETTER must be an insn of some kind that sets memory. Call
625 note_stores to examine each hunk of memory that is modified.
626 It will set mems_conflict_p to nonzero if there may be a
627 conflict between X and SETTER. */
628 mems_conflict_p = 0;
629 note_stores (PATTERN (setter), find_mem_conflicts, x);
630 if (mems_conflict_p)
631 return 1;
633 list_entry = list_entry->next;
635 return 0;
639 /* Record register first/last/block set information for REGNO in INSN. */
641 static inline void
642 record_last_reg_set_info (rtx insn, rtx reg)
644 unsigned int regno, end_regno;
646 regno = REGNO (reg);
647 end_regno = END_HARD_REGNO (reg);
649 reg_avail_info[regno] = INSN_CUID (insn);
650 while (++regno < end_regno);
653 static inline void
654 record_last_reg_set_info_regno (rtx insn, int regno)
656 reg_avail_info[regno] = INSN_CUID (insn);
660 /* Record memory modification information for INSN. We do not actually care
661 about the memory location(s) that are set, or even how they are set (consider
662 a CALL_INSN). We merely need to record which insns modify memory. */
664 static void
665 record_last_mem_set_info (rtx insn)
667 struct modifies_mem *list_entry;
669 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
670 sizeof (struct modifies_mem));
671 list_entry->insn = insn;
672 list_entry->next = modifies_mem_list;
673 modifies_mem_list = list_entry;
676 /* Called from compute_hash_table via note_stores to handle one
677 SET or CLOBBER in an insn. DATA is really the instruction in which
678 the SET is taking place. */
680 static void
681 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
683 rtx last_set_insn = (rtx) data;
685 if (GET_CODE (dest) == SUBREG)
686 dest = SUBREG_REG (dest);
688 if (REG_P (dest))
689 record_last_reg_set_info (last_set_insn, dest);
690 else if (MEM_P (dest))
692 /* Ignore pushes, they don't clobber memory. They may still
693 clobber the stack pointer though. Some targets do argument
694 pushes without adding REG_INC notes. See e.g. PR25196,
695 where a pushsi2 on i386 doesn't have REG_INC notes. Note
696 such changes here too. */
697 if (! push_operand (dest, GET_MODE (dest)))
698 record_last_mem_set_info (last_set_insn);
699 else
700 record_last_reg_set_info_regno (last_set_insn, STACK_POINTER_REGNUM);
705 /* Reset tables used to keep track of what's still available since the
706 start of the block. */
708 static void
709 reset_opr_set_tables (void)
711 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
712 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
713 modifies_mem_list = NULL;
717 /* Record things set by INSN.
718 This data is used by oprs_unchanged_p. */
720 static void
721 record_opr_changes (rtx insn)
723 rtx note;
725 /* Find all stores and record them. */
726 note_stores (PATTERN (insn), record_last_set_info, insn);
728 /* Also record autoincremented REGs for this insn as changed. */
729 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
730 if (REG_NOTE_KIND (note) == REG_INC)
731 record_last_reg_set_info (insn, XEXP (note, 0));
733 /* Finally, if this is a call, record all call clobbers. */
734 if (CALL_P (insn))
736 unsigned int regno;
737 rtx link, x;
738 hard_reg_set_iterator hrsi;
739 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
740 record_last_reg_set_info_regno (insn, regno);
742 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
743 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
745 x = XEXP (XEXP (link, 0), 0);
746 if (REG_P (x))
748 gcc_assert (HARD_REGISTER_P (x));
749 record_last_reg_set_info (insn, x);
753 if (! RTL_CONST_OR_PURE_CALL_P (insn))
754 record_last_mem_set_info (insn);
759 /* Scan the pattern of INSN and add an entry to the hash TABLE.
760 After reload we are interested in loads/stores only. */
762 static void
763 hash_scan_set (rtx insn)
765 rtx pat = PATTERN (insn);
766 rtx src = SET_SRC (pat);
767 rtx dest = SET_DEST (pat);
769 /* We are only interested in loads and stores. */
770 if (! MEM_P (src) && ! MEM_P (dest))
771 return;
773 /* Don't mess with jumps and nops. */
774 if (JUMP_P (insn) || set_noop_p (pat))
775 return;
777 if (REG_P (dest))
779 if (/* Don't CSE something if we can't do a reg/reg copy. */
780 can_copy_p (GET_MODE (dest))
781 /* Is SET_SRC something we want to gcse? */
782 && general_operand (src, GET_MODE (src))
783 #ifdef STACK_REGS
784 /* Never consider insns touching the register stack. It may
785 create situations that reg-stack cannot handle (e.g. a stack
786 register live across an abnormal edge). */
787 && (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG)
788 #endif
789 /* An expression is not available if its operands are
790 subsequently modified, including this insn. */
791 && oprs_unchanged_p (src, insn, true))
793 insert_expr_in_table (src, insn);
796 else if (REG_P (src))
798 /* Only record sets of pseudo-regs in the hash table. */
799 if (/* Don't CSE something if we can't do a reg/reg copy. */
800 can_copy_p (GET_MODE (src))
801 /* Is SET_DEST something we want to gcse? */
802 && general_operand (dest, GET_MODE (dest))
803 #ifdef STACK_REGS
804 /* As above for STACK_REGS. */
805 && (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG)
806 #endif
807 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
808 /* Check if the memory expression is killed after insn. */
809 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
810 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
812 insert_expr_in_table (dest, insn);
818 /* Create hash table of memory expressions available at end of basic
819 blocks. Basically you should think of this hash table as the
820 representation of AVAIL_OUT. This is the set of expressions that
821 is generated in a basic block and not killed before the end of the
822 same basic block. Notice that this is really a local computation. */
824 static void
825 compute_hash_table (void)
827 basic_block bb;
829 FOR_EACH_BB (bb)
831 rtx insn;
833 /* First pass over the instructions records information used to
834 determine when registers and memory are last set.
835 Since we compute a "local" AVAIL_OUT, reset the tables that
836 help us keep track of what has been modified since the start
837 of the block. */
838 reset_opr_set_tables ();
839 FOR_BB_INSNS (bb, insn)
841 if (INSN_P (insn))
842 record_opr_changes (insn);
845 /* The next pass actually builds the hash table. */
846 FOR_BB_INSNS (bb, insn)
847 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
848 hash_scan_set (insn);
853 /* Check if register REG is killed in any insn waiting to be inserted on
854 edge E. This function is required to check that our data flow analysis
855 is still valid prior to commit_edge_insertions. */
857 static bool
858 reg_killed_on_edge (rtx reg, edge e)
860 rtx insn;
862 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
863 if (INSN_P (insn) && reg_set_p (reg, insn))
864 return true;
866 return false;
869 /* Similar to above - check if register REG is used in any insn waiting
870 to be inserted on edge E.
871 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
872 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
874 static bool
875 reg_used_on_edge (rtx reg, edge e)
877 rtx insn;
879 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
880 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
881 return true;
883 return false;
886 /* Return the loaded/stored register of a load/store instruction. */
888 static rtx
889 get_avail_load_store_reg (rtx insn)
891 if (REG_P (SET_DEST (PATTERN (insn))))
892 /* A load. */
893 return SET_DEST(PATTERN(insn));
894 else
896 /* A store. */
897 gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
898 return SET_SRC (PATTERN (insn));
902 /* Return nonzero if the predecessors of BB are "well behaved". */
904 static bool
905 bb_has_well_behaved_predecessors (basic_block bb)
907 edge pred;
908 edge_iterator ei;
910 if (EDGE_COUNT (bb->preds) == 0)
911 return false;
913 FOR_EACH_EDGE (pred, ei, bb->preds)
915 if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
916 return false;
918 if ((pred->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
919 return false;
921 if (JUMP_TABLE_DATA_P (BB_END (pred->src)))
922 return false;
924 return true;
928 /* Search for the occurrences of expression in BB. */
930 static struct occr*
931 get_bb_avail_insn (basic_block bb, struct occr *occr)
933 for (; occr != NULL; occr = occr->next)
934 if (BLOCK_FOR_INSN (occr->insn) == bb)
935 return occr;
936 return NULL;
940 /* This handles the case where several stores feed a partially redundant
941 load. It checks if the redundancy elimination is possible and if it's
942 worth it.
944 Redundancy elimination is possible if,
945 1) None of the operands of an insn have been modified since the start
946 of the current basic block.
947 2) In any predecessor of the current basic block, the same expression
948 is generated.
950 See the function body for the heuristics that determine if eliminating
951 a redundancy is also worth doing, assuming it is possible. */
953 static void
954 eliminate_partially_redundant_load (basic_block bb, rtx insn,
955 struct expr *expr)
957 edge pred;
958 rtx avail_insn = NULL_RTX;
959 rtx avail_reg;
960 rtx dest, pat;
961 struct occr *a_occr;
962 struct unoccr *occr, *avail_occrs = NULL;
963 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
964 int npred_ok = 0;
965 gcov_type ok_count = 0; /* Redundant load execution count. */
966 gcov_type critical_count = 0; /* Execution count of critical edges. */
967 edge_iterator ei;
968 bool critical_edge_split = false;
970 /* The execution count of the loads to be added to make the
971 load fully redundant. */
972 gcov_type not_ok_count = 0;
973 basic_block pred_bb;
975 pat = PATTERN (insn);
976 dest = SET_DEST (pat);
978 /* Check that the loaded register is not used, set, or killed from the
979 beginning of the block. */
980 if (reg_changed_after_insn_p (dest, 0)
981 || reg_used_between_p (dest, PREV_INSN (BB_HEAD (bb)), insn))
982 return;
984 /* Check potential for replacing load with copy for predecessors. */
985 FOR_EACH_EDGE (pred, ei, bb->preds)
987 rtx next_pred_bb_end;
989 avail_insn = NULL_RTX;
990 avail_reg = NULL_RTX;
991 pred_bb = pred->src;
992 next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
993 for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
994 a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
996 /* Check if the loaded register is not used. */
997 avail_insn = a_occr->insn;
998 avail_reg = get_avail_load_store_reg (avail_insn);
999 gcc_assert (avail_reg);
1001 /* Make sure we can generate a move from register avail_reg to
1002 dest. */
1003 extract_insn (gen_move_insn (copy_rtx (dest),
1004 copy_rtx (avail_reg)));
1005 if (! constrain_operands (1)
1006 || reg_killed_on_edge (avail_reg, pred)
1007 || reg_used_on_edge (dest, pred))
1009 avail_insn = NULL;
1010 continue;
1012 if (!reg_set_between_p (avail_reg, avail_insn, next_pred_bb_end))
1013 /* AVAIL_INSN remains non-null. */
1014 break;
1015 else
1016 avail_insn = NULL;
1019 if (EDGE_CRITICAL_P (pred))
1020 critical_count += pred->count;
1022 if (avail_insn != NULL_RTX)
1024 npred_ok++;
1025 ok_count += pred->count;
1026 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
1027 copy_rtx (avail_reg)))))
1029 /* Check if there is going to be a split. */
1030 if (EDGE_CRITICAL_P (pred))
1031 critical_edge_split = true;
1033 else /* Its a dead move no need to generate. */
1034 continue;
1035 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1036 sizeof (struct unoccr));
1037 occr->insn = avail_insn;
1038 occr->pred = pred;
1039 occr->next = avail_occrs;
1040 avail_occrs = occr;
1041 if (! rollback_unoccr)
1042 rollback_unoccr = occr;
1044 else
1046 /* Adding a load on a critical edge will cause a split. */
1047 if (EDGE_CRITICAL_P (pred))
1048 critical_edge_split = true;
1049 not_ok_count += pred->count;
1050 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1051 sizeof (struct unoccr));
1052 unoccr->insn = NULL_RTX;
1053 unoccr->pred = pred;
1054 unoccr->next = unavail_occrs;
1055 unavail_occrs = unoccr;
1056 if (! rollback_unoccr)
1057 rollback_unoccr = unoccr;
1061 if (/* No load can be replaced by copy. */
1062 npred_ok == 0
1063 /* Prevent exploding the code. */
1064 || (optimize_bb_for_size_p (bb) && npred_ok > 1)
1065 /* If we don't have profile information we cannot tell if splitting
1066 a critical edge is profitable or not so don't do it. */
1067 || ((! profile_info || ! flag_branch_probabilities
1068 || targetm.cannot_modify_jumps_p ())
1069 && critical_edge_split))
1070 goto cleanup;
1072 /* Check if it's worth applying the partial redundancy elimination. */
1073 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1074 goto cleanup;
1075 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1076 goto cleanup;
1078 /* Generate moves to the loaded register from where
1079 the memory is available. */
1080 for (occr = avail_occrs; occr; occr = occr->next)
1082 avail_insn = occr->insn;
1083 pred = occr->pred;
1084 /* Set avail_reg to be the register having the value of the
1085 memory. */
1086 avail_reg = get_avail_load_store_reg (avail_insn);
1087 gcc_assert (avail_reg);
1089 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1090 copy_rtx (avail_reg)),
1091 pred);
1092 stats.moves_inserted++;
1094 if (dump_file)
1095 fprintf (dump_file,
1096 "generating move from %d to %d on edge from %d to %d\n",
1097 REGNO (avail_reg),
1098 REGNO (dest),
1099 pred->src->index,
1100 pred->dest->index);
1103 /* Regenerate loads where the memory is unavailable. */
1104 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1106 pred = unoccr->pred;
1107 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1108 stats.copies_inserted++;
1110 if (dump_file)
1112 fprintf (dump_file,
1113 "generating on edge from %d to %d a copy of load: ",
1114 pred->src->index,
1115 pred->dest->index);
1116 print_rtl (dump_file, PATTERN (insn));
1117 fprintf (dump_file, "\n");
1121 /* Delete the insn if it is not available in this block and mark it
1122 for deletion if it is available. If insn is available it may help
1123 discover additional redundancies, so mark it for later deletion. */
1124 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
1125 a_occr && (a_occr->insn != insn);
1126 a_occr = get_bb_avail_insn (bb, a_occr->next))
1129 if (!a_occr)
1131 stats.insns_deleted++;
1133 if (dump_file)
1135 fprintf (dump_file, "deleting insn:\n");
1136 print_rtl_single (dump_file, insn);
1137 fprintf (dump_file, "\n");
1139 delete_insn (insn);
1141 else
1142 a_occr->deleted_p = 1;
1144 cleanup:
1145 if (rollback_unoccr)
1146 obstack_free (&unoccr_obstack, rollback_unoccr);
1149 /* Performing the redundancy elimination as described before. */
1151 static void
1152 eliminate_partially_redundant_loads (void)
1154 rtx insn;
1155 basic_block bb;
1157 /* Note we start at block 1. */
1159 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
1160 return;
1162 FOR_BB_BETWEEN (bb,
1163 ENTRY_BLOCK_PTR->next_bb->next_bb,
1164 EXIT_BLOCK_PTR,
1165 next_bb)
1167 /* Don't try anything on basic blocks with strange predecessors. */
1168 if (! bb_has_well_behaved_predecessors (bb))
1169 continue;
1171 /* Do not try anything on cold basic blocks. */
1172 if (optimize_bb_for_size_p (bb))
1173 continue;
1175 /* Reset the table of things changed since the start of the current
1176 basic block. */
1177 reset_opr_set_tables ();
1179 /* Look at all insns in the current basic block and see if there are
1180 any loads in it that we can record. */
1181 FOR_BB_INSNS (bb, insn)
1183 /* Is it a load - of the form (set (reg) (mem))? */
1184 if (NONJUMP_INSN_P (insn)
1185 && GET_CODE (PATTERN (insn)) == SET
1186 && REG_P (SET_DEST (PATTERN (insn)))
1187 && MEM_P (SET_SRC (PATTERN (insn))))
1189 rtx pat = PATTERN (insn);
1190 rtx src = SET_SRC (pat);
1191 struct expr *expr;
1193 if (!MEM_VOLATILE_P (src)
1194 && GET_MODE (src) != BLKmode
1195 && general_operand (src, GET_MODE (src))
1196 /* Are the operands unchanged since the start of the
1197 block? */
1198 && oprs_unchanged_p (src, insn, false)
1199 && !(cfun->can_throw_non_call_exceptions && may_trap_p (src))
1200 && !side_effects_p (src)
1201 /* Is the expression recorded? */
1202 && (expr = lookup_expr_in_table (src)) != NULL)
1204 /* We now have a load (insn) and an available memory at
1205 its BB start (expr). Try to remove the loads if it is
1206 redundant. */
1207 eliminate_partially_redundant_load (bb, insn, expr);
1211 /* Keep track of everything modified by this insn, so that we
1212 know what has been modified since the start of the current
1213 basic block. */
1214 if (INSN_P (insn))
1215 record_opr_changes (insn);
1219 commit_edge_insertions ();
1222 /* Go over the expression hash table and delete insns that were
1223 marked for later deletion. */
1225 /* This helper is called via htab_traverse. */
1226 static int
1227 delete_redundant_insns_1 (void **slot, void *data ATTRIBUTE_UNUSED)
1229 struct expr *expr = (struct expr *) *slot;
1230 struct occr *occr;
1232 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1234 if (occr->deleted_p && dbg_cnt (gcse2_delete))
1236 delete_insn (occr->insn);
1237 stats.insns_deleted++;
1239 if (dump_file)
1241 fprintf (dump_file, "deleting insn:\n");
1242 print_rtl_single (dump_file, occr->insn);
1243 fprintf (dump_file, "\n");
1248 return 1;
1251 static void
1252 delete_redundant_insns (void)
1254 htab_traverse (expr_table, delete_redundant_insns_1, NULL);
1255 if (dump_file)
1256 fprintf (dump_file, "\n");
1259 /* Main entry point of the GCSE after reload - clean some redundant loads
1260 due to spilling. */
1262 static void
1263 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1266 memset (&stats, 0, sizeof (stats));
1268 /* Allocate memory for this pass.
1269 Also computes and initializes the insns' CUIDs. */
1270 alloc_mem ();
1272 /* We need alias analysis. */
1273 init_alias_analysis ();
1275 compute_hash_table ();
1277 if (dump_file)
1278 dump_hash_table (dump_file);
1280 if (htab_elements (expr_table) > 0)
1282 eliminate_partially_redundant_loads ();
1283 delete_redundant_insns ();
1285 if (dump_file)
1287 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1288 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1289 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1290 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1291 fprintf (dump_file, "\n\n");
1294 statistics_counter_event (cfun, "copies inserted",
1295 stats.copies_inserted);
1296 statistics_counter_event (cfun, "moves inserted",
1297 stats.moves_inserted);
1298 statistics_counter_event (cfun, "insns deleted",
1299 stats.insns_deleted);
1302 /* We are finished with alias. */
1303 end_alias_analysis ();
1305 free_mem ();
1309 static bool
1310 gate_handle_gcse2 (void)
1312 return (optimize > 0 && flag_gcse_after_reload
1313 && optimize_function_for_speed_p (cfun));
1317 static unsigned int
1318 rest_of_handle_gcse2 (void)
1320 gcse_after_reload_main (get_insns ());
1321 rebuild_jump_labels (get_insns ());
1322 return 0;
1325 struct rtl_opt_pass pass_gcse2 =
1328 RTL_PASS,
1329 "gcse2", /* name */
1330 OPTGROUP_NONE, /* optinfo_flags */
1331 gate_handle_gcse2, /* gate */
1332 rest_of_handle_gcse2, /* execute */
1333 NULL, /* sub */
1334 NULL, /* next */
1335 0, /* static_pass_number */
1336 TV_GCSE_AFTER_RELOAD, /* tv_id */
1337 0, /* properties_required */
1338 0, /* properties_provided */
1339 0, /* properties_destroyed */
1340 0, /* todo_flags_start */
1341 TODO_verify_rtl_sharing
1342 | TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */