2004-07-21 Eric Christopher <echristo@redhat.com>
[official-gcc.git] / gcc / cp / parser.c
blobfde2c79341d461725d2c1589521e8b65fff09146
1 /* C++ Parser.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Written by Mark Mitchell <mark@codesourcery.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "dyn-string.h"
27 #include "varray.h"
28 #include "cpplib.h"
29 #include "tree.h"
30 #include "cp-tree.h"
31 #include "c-pragma.h"
32 #include "decl.h"
33 #include "flags.h"
34 #include "diagnostic.h"
35 #include "toplev.h"
36 #include "output.h"
37 #include "target.h"
40 /* The lexer. */
42 /* Overview
43 --------
45 A cp_lexer represents a stream of cp_tokens. It allows arbitrary
46 look-ahead.
48 Methodology
49 -----------
51 We use a circular buffer to store incoming tokens.
53 Some artifacts of the C++ language (such as the
54 expression/declaration ambiguity) require arbitrary look-ahead.
55 The strategy we adopt for dealing with these problems is to attempt
56 to parse one construct (e.g., the declaration) and fall back to the
57 other (e.g., the expression) if that attempt does not succeed.
58 Therefore, we must sometimes store an arbitrary number of tokens.
60 The parser routinely peeks at the next token, and then consumes it
61 later. That also requires a buffer in which to store the tokens.
63 In order to easily permit adding tokens to the end of the buffer,
64 while removing them from the beginning of the buffer, we use a
65 circular buffer. */
67 /* A C++ token. */
69 typedef struct cp_token GTY (())
71 /* The kind of token. */
72 ENUM_BITFIELD (cpp_ttype) type : 8;
73 /* If this token is a keyword, this value indicates which keyword.
74 Otherwise, this value is RID_MAX. */
75 ENUM_BITFIELD (rid) keyword : 8;
76 /* Token flags. */
77 unsigned char flags;
78 /* The value associated with this token, if any. */
79 tree value;
80 /* The location at which this token was found. */
81 location_t location;
82 } cp_token;
84 /* The number of tokens in a single token block.
85 Computed so that cp_token_block fits in a 512B allocation unit. */
87 #define CP_TOKEN_BLOCK_NUM_TOKENS ((512 - 3*sizeof (char*))/sizeof (cp_token))
89 /* A group of tokens. These groups are chained together to store
90 large numbers of tokens. (For example, a token block is created
91 when the body of an inline member function is first encountered;
92 the tokens are processed later after the class definition is
93 complete.)
95 This somewhat ungainly data structure (as opposed to, say, a
96 variable-length array), is used due to constraints imposed by the
97 current garbage-collection methodology. If it is made more
98 flexible, we could perhaps simplify the data structures involved. */
100 typedef struct cp_token_block GTY (())
102 /* The tokens. */
103 cp_token tokens[CP_TOKEN_BLOCK_NUM_TOKENS];
104 /* The number of tokens in this block. */
105 size_t num_tokens;
106 /* The next token block in the chain. */
107 struct cp_token_block *next;
108 /* The previous block in the chain. */
109 struct cp_token_block *prev;
110 } cp_token_block;
112 typedef struct cp_token_cache GTY (())
114 /* The first block in the cache. NULL if there are no tokens in the
115 cache. */
116 cp_token_block *first;
117 /* The last block in the cache. NULL If there are no tokens in the
118 cache. */
119 cp_token_block *last;
120 } cp_token_cache;
122 /* Prototypes. */
124 static cp_token_cache *cp_token_cache_new
125 (void);
126 static void cp_token_cache_push_token
127 (cp_token_cache *, cp_token *);
129 /* Create a new cp_token_cache. */
131 static cp_token_cache *
132 cp_token_cache_new (void)
134 return ggc_alloc_cleared (sizeof (cp_token_cache));
137 /* Add *TOKEN to *CACHE. */
139 static void
140 cp_token_cache_push_token (cp_token_cache *cache,
141 cp_token *token)
143 cp_token_block *b = cache->last;
145 /* See if we need to allocate a new token block. */
146 if (!b || b->num_tokens == CP_TOKEN_BLOCK_NUM_TOKENS)
148 b = ggc_alloc_cleared (sizeof (cp_token_block));
149 b->prev = cache->last;
150 if (cache->last)
152 cache->last->next = b;
153 cache->last = b;
155 else
156 cache->first = cache->last = b;
158 /* Add this token to the current token block. */
159 b->tokens[b->num_tokens++] = *token;
162 /* The cp_lexer structure represents the C++ lexer. It is responsible
163 for managing the token stream from the preprocessor and supplying
164 it to the parser. */
166 typedef struct cp_lexer GTY (())
168 /* The memory allocated for the buffer. Never NULL. */
169 cp_token * GTY ((length ("(%h.buffer_end - %h.buffer)"))) buffer;
170 /* A pointer just past the end of the memory allocated for the buffer. */
171 cp_token * GTY ((skip)) buffer_end;
172 /* The first valid token in the buffer, or NULL if none. */
173 cp_token * GTY ((skip)) first_token;
174 /* The next available token. If NEXT_TOKEN is NULL, then there are
175 no more available tokens. */
176 cp_token * GTY ((skip)) next_token;
177 /* A pointer just past the last available token. If FIRST_TOKEN is
178 NULL, however, there are no available tokens, and then this
179 location is simply the place in which the next token read will be
180 placed. If LAST_TOKEN == FIRST_TOKEN, then the buffer is full.
181 When the LAST_TOKEN == BUFFER, then the last token is at the
182 highest memory address in the BUFFER. */
183 cp_token * GTY ((skip)) last_token;
185 /* A stack indicating positions at which cp_lexer_save_tokens was
186 called. The top entry is the most recent position at which we
187 began saving tokens. The entries are differences in token
188 position between FIRST_TOKEN and the first saved token.
190 If the stack is non-empty, we are saving tokens. When a token is
191 consumed, the NEXT_TOKEN pointer will move, but the FIRST_TOKEN
192 pointer will not. The token stream will be preserved so that it
193 can be reexamined later.
195 If the stack is empty, then we are not saving tokens. Whenever a
196 token is consumed, the FIRST_TOKEN pointer will be moved, and the
197 consumed token will be gone forever. */
198 varray_type saved_tokens;
200 /* The STRING_CST tokens encountered while processing the current
201 string literal. */
202 varray_type string_tokens;
204 /* True if we should obtain more tokens from the preprocessor; false
205 if we are processing a saved token cache. */
206 bool main_lexer_p;
208 /* True if we should output debugging information. */
209 bool debugging_p;
211 /* The next lexer in a linked list of lexers. */
212 struct cp_lexer *next;
213 } cp_lexer;
215 /* Prototypes. */
217 static cp_lexer *cp_lexer_new_main
218 (void);
219 static cp_lexer *cp_lexer_new_from_tokens
220 (struct cp_token_cache *);
221 static int cp_lexer_saving_tokens
222 (const cp_lexer *);
223 static cp_token *cp_lexer_next_token
224 (cp_lexer *, cp_token *);
225 static cp_token *cp_lexer_prev_token
226 (cp_lexer *, cp_token *);
227 static ptrdiff_t cp_lexer_token_difference
228 (cp_lexer *, cp_token *, cp_token *);
229 static cp_token *cp_lexer_read_token
230 (cp_lexer *);
231 static void cp_lexer_maybe_grow_buffer
232 (cp_lexer *);
233 static void cp_lexer_get_preprocessor_token
234 (cp_lexer *, cp_token *);
235 static cp_token *cp_lexer_peek_token
236 (cp_lexer *);
237 static cp_token *cp_lexer_peek_nth_token
238 (cp_lexer *, size_t);
239 static inline bool cp_lexer_next_token_is
240 (cp_lexer *, enum cpp_ttype);
241 static bool cp_lexer_next_token_is_not
242 (cp_lexer *, enum cpp_ttype);
243 static bool cp_lexer_next_token_is_keyword
244 (cp_lexer *, enum rid);
245 static cp_token *cp_lexer_consume_token
246 (cp_lexer *);
247 static void cp_lexer_purge_token
248 (cp_lexer *);
249 static void cp_lexer_purge_tokens_after
250 (cp_lexer *, cp_token *);
251 static void cp_lexer_save_tokens
252 (cp_lexer *);
253 static void cp_lexer_commit_tokens
254 (cp_lexer *);
255 static void cp_lexer_rollback_tokens
256 (cp_lexer *);
257 static inline void cp_lexer_set_source_position_from_token
258 (cp_lexer *, const cp_token *);
259 static void cp_lexer_print_token
260 (FILE *, cp_token *);
261 static inline bool cp_lexer_debugging_p
262 (cp_lexer *);
263 static void cp_lexer_start_debugging
264 (cp_lexer *) ATTRIBUTE_UNUSED;
265 static void cp_lexer_stop_debugging
266 (cp_lexer *) ATTRIBUTE_UNUSED;
268 /* Manifest constants. */
270 #define CP_TOKEN_BUFFER_SIZE 5
271 #define CP_SAVED_TOKENS_SIZE 5
273 /* A token type for keywords, as opposed to ordinary identifiers. */
274 #define CPP_KEYWORD ((enum cpp_ttype) (N_TTYPES + 1))
276 /* A token type for template-ids. If a template-id is processed while
277 parsing tentatively, it is replaced with a CPP_TEMPLATE_ID token;
278 the value of the CPP_TEMPLATE_ID is whatever was returned by
279 cp_parser_template_id. */
280 #define CPP_TEMPLATE_ID ((enum cpp_ttype) (CPP_KEYWORD + 1))
282 /* A token type for nested-name-specifiers. If a
283 nested-name-specifier is processed while parsing tentatively, it is
284 replaced with a CPP_NESTED_NAME_SPECIFIER token; the value of the
285 CPP_NESTED_NAME_SPECIFIER is whatever was returned by
286 cp_parser_nested_name_specifier_opt. */
287 #define CPP_NESTED_NAME_SPECIFIER ((enum cpp_ttype) (CPP_TEMPLATE_ID + 1))
289 /* A token type for tokens that are not tokens at all; these are used
290 to mark the end of a token block. */
291 #define CPP_NONE (CPP_NESTED_NAME_SPECIFIER + 1)
293 /* Variables. */
295 /* The stream to which debugging output should be written. */
296 static FILE *cp_lexer_debug_stream;
298 /* Create a new main C++ lexer, the lexer that gets tokens from the
299 preprocessor. */
301 static cp_lexer *
302 cp_lexer_new_main (void)
304 cp_lexer *lexer;
305 cp_token first_token;
307 /* It's possible that lexing the first token will load a PCH file,
308 which is a GC collection point. So we have to grab the first
309 token before allocating any memory. */
310 cp_lexer_get_preprocessor_token (NULL, &first_token);
311 c_common_no_more_pch ();
313 /* Allocate the memory. */
314 lexer = ggc_alloc_cleared (sizeof (cp_lexer));
316 /* Create the circular buffer. */
317 lexer->buffer = ggc_calloc (CP_TOKEN_BUFFER_SIZE, sizeof (cp_token));
318 lexer->buffer_end = lexer->buffer + CP_TOKEN_BUFFER_SIZE;
320 /* There is one token in the buffer. */
321 lexer->last_token = lexer->buffer + 1;
322 lexer->first_token = lexer->buffer;
323 lexer->next_token = lexer->buffer;
324 memcpy (lexer->buffer, &first_token, sizeof (cp_token));
326 /* This lexer obtains more tokens by calling c_lex. */
327 lexer->main_lexer_p = true;
329 /* Create the SAVED_TOKENS stack. */
330 VARRAY_INT_INIT (lexer->saved_tokens, CP_SAVED_TOKENS_SIZE, "saved_tokens");
332 /* Create the STRINGS array. */
333 VARRAY_TREE_INIT (lexer->string_tokens, 32, "strings");
335 /* Assume we are not debugging. */
336 lexer->debugging_p = false;
338 return lexer;
341 /* Create a new lexer whose token stream is primed with the TOKENS.
342 When these tokens are exhausted, no new tokens will be read. */
344 static cp_lexer *
345 cp_lexer_new_from_tokens (cp_token_cache *tokens)
347 cp_lexer *lexer;
348 cp_token *token;
349 cp_token_block *block;
350 ptrdiff_t num_tokens;
352 /* Allocate the memory. */
353 lexer = ggc_alloc_cleared (sizeof (cp_lexer));
355 /* Create a new buffer, appropriately sized. */
356 num_tokens = 0;
357 for (block = tokens->first; block != NULL; block = block->next)
358 num_tokens += block->num_tokens;
359 lexer->buffer = ggc_alloc (num_tokens * sizeof (cp_token));
360 lexer->buffer_end = lexer->buffer + num_tokens;
362 /* Install the tokens. */
363 token = lexer->buffer;
364 for (block = tokens->first; block != NULL; block = block->next)
366 memcpy (token, block->tokens, block->num_tokens * sizeof (cp_token));
367 token += block->num_tokens;
370 /* The FIRST_TOKEN is the beginning of the buffer. */
371 lexer->first_token = lexer->buffer;
372 /* The next available token is also at the beginning of the buffer. */
373 lexer->next_token = lexer->buffer;
374 /* The buffer is full. */
375 lexer->last_token = lexer->first_token;
377 /* This lexer doesn't obtain more tokens. */
378 lexer->main_lexer_p = false;
380 /* Create the SAVED_TOKENS stack. */
381 VARRAY_INT_INIT (lexer->saved_tokens, CP_SAVED_TOKENS_SIZE, "saved_tokens");
383 /* Create the STRINGS array. */
384 VARRAY_TREE_INIT (lexer->string_tokens, 32, "strings");
386 /* Assume we are not debugging. */
387 lexer->debugging_p = false;
389 return lexer;
392 /* Returns nonzero if debugging information should be output. */
394 static inline bool
395 cp_lexer_debugging_p (cp_lexer *lexer)
397 return lexer->debugging_p;
400 /* Set the current source position from the information stored in
401 TOKEN. */
403 static inline void
404 cp_lexer_set_source_position_from_token (cp_lexer *lexer ATTRIBUTE_UNUSED ,
405 const cp_token *token)
407 /* Ideally, the source position information would not be a global
408 variable, but it is. */
410 /* Update the line number. */
411 if (token->type != CPP_EOF)
412 input_location = token->location;
415 /* TOKEN points into the circular token buffer. Return a pointer to
416 the next token in the buffer. */
418 static inline cp_token *
419 cp_lexer_next_token (cp_lexer* lexer, cp_token* token)
421 token++;
422 if (token == lexer->buffer_end)
423 token = lexer->buffer;
424 return token;
427 /* TOKEN points into the circular token buffer. Return a pointer to
428 the previous token in the buffer. */
430 static inline cp_token *
431 cp_lexer_prev_token (cp_lexer* lexer, cp_token* token)
433 if (token == lexer->buffer)
434 token = lexer->buffer_end;
435 return token - 1;
438 /* nonzero if we are presently saving tokens. */
440 static int
441 cp_lexer_saving_tokens (const cp_lexer* lexer)
443 return VARRAY_ACTIVE_SIZE (lexer->saved_tokens) != 0;
446 /* Return a pointer to the token that is N tokens beyond TOKEN in the
447 buffer. */
449 static cp_token *
450 cp_lexer_advance_token (cp_lexer *lexer, cp_token *token, ptrdiff_t n)
452 token += n;
453 if (token >= lexer->buffer_end)
454 token = lexer->buffer + (token - lexer->buffer_end);
455 return token;
458 /* Returns the number of times that START would have to be incremented
459 to reach FINISH. If START and FINISH are the same, returns zero. */
461 static ptrdiff_t
462 cp_lexer_token_difference (cp_lexer* lexer, cp_token* start, cp_token* finish)
464 if (finish >= start)
465 return finish - start;
466 else
467 return ((lexer->buffer_end - lexer->buffer)
468 - (start - finish));
471 /* Obtain another token from the C preprocessor and add it to the
472 token buffer. Returns the newly read token. */
474 static cp_token *
475 cp_lexer_read_token (cp_lexer* lexer)
477 cp_token *token;
479 /* Make sure there is room in the buffer. */
480 cp_lexer_maybe_grow_buffer (lexer);
482 /* If there weren't any tokens, then this one will be the first. */
483 if (!lexer->first_token)
484 lexer->first_token = lexer->last_token;
485 /* Similarly, if there were no available tokens, there is one now. */
486 if (!lexer->next_token)
487 lexer->next_token = lexer->last_token;
489 /* Figure out where we're going to store the new token. */
490 token = lexer->last_token;
492 /* Get a new token from the preprocessor. */
493 cp_lexer_get_preprocessor_token (lexer, token);
495 /* Increment LAST_TOKEN. */
496 lexer->last_token = cp_lexer_next_token (lexer, token);
498 /* Strings should have type `const char []'. Right now, we will
499 have an ARRAY_TYPE that is constant rather than an array of
500 constant elements.
501 FIXME: Make fix_string_type get this right in the first place. */
502 if ((token->type == CPP_STRING || token->type == CPP_WSTRING)
503 && flag_const_strings)
505 if (c_lex_string_translate)
507 tree value = token->value;
508 tree type;
510 /* We might as well go ahead and release the chained
511 translated string such that we can reuse its memory. */
512 if (TREE_CHAIN (value))
513 value = TREE_CHAIN (token->value);
515 /* Get the current type. It will be an ARRAY_TYPE. */
516 type = TREE_TYPE (value);
517 /* Use build_cplus_array_type to rebuild the array, thereby
518 getting the right type. */
519 type = build_cplus_array_type (TREE_TYPE (type),
520 TYPE_DOMAIN (type));
521 /* Reset the type of the token. */
522 TREE_TYPE (value) = type;
526 return token;
529 /* If the circular buffer is full, make it bigger. */
531 static void
532 cp_lexer_maybe_grow_buffer (cp_lexer* lexer)
534 /* If the buffer is full, enlarge it. */
535 if (lexer->last_token == lexer->first_token)
537 cp_token *new_buffer;
538 cp_token *old_buffer;
539 cp_token *new_first_token;
540 ptrdiff_t buffer_length;
541 size_t num_tokens_to_copy;
543 /* Remember the current buffer pointer. It will become invalid,
544 but we will need to do pointer arithmetic involving this
545 value. */
546 old_buffer = lexer->buffer;
547 /* Compute the current buffer size. */
548 buffer_length = lexer->buffer_end - lexer->buffer;
549 /* Allocate a buffer twice as big. */
550 new_buffer = ggc_realloc (lexer->buffer,
551 2 * buffer_length * sizeof (cp_token));
553 /* Because the buffer is circular, logically consecutive tokens
554 are not necessarily placed consecutively in memory.
555 Therefore, we must keep move the tokens that were before
556 FIRST_TOKEN to the second half of the newly allocated
557 buffer. */
558 num_tokens_to_copy = (lexer->first_token - old_buffer);
559 memcpy (new_buffer + buffer_length,
560 new_buffer,
561 num_tokens_to_copy * sizeof (cp_token));
562 /* Clear the rest of the buffer. We never look at this storage,
563 but the garbage collector may. */
564 memset (new_buffer + buffer_length + num_tokens_to_copy, 0,
565 (buffer_length - num_tokens_to_copy) * sizeof (cp_token));
567 /* Now recompute all of the buffer pointers. */
568 new_first_token
569 = new_buffer + (lexer->first_token - old_buffer);
570 if (lexer->next_token != NULL)
572 ptrdiff_t next_token_delta;
574 if (lexer->next_token > lexer->first_token)
575 next_token_delta = lexer->next_token - lexer->first_token;
576 else
577 next_token_delta =
578 buffer_length - (lexer->first_token - lexer->next_token);
579 lexer->next_token = new_first_token + next_token_delta;
581 lexer->last_token = new_first_token + buffer_length;
582 lexer->buffer = new_buffer;
583 lexer->buffer_end = new_buffer + buffer_length * 2;
584 lexer->first_token = new_first_token;
588 /* Store the next token from the preprocessor in *TOKEN. */
590 static void
591 cp_lexer_get_preprocessor_token (cp_lexer *lexer ATTRIBUTE_UNUSED ,
592 cp_token *token)
594 bool done;
596 /* If this not the main lexer, return a terminating CPP_EOF token. */
597 if (lexer != NULL && !lexer->main_lexer_p)
599 token->type = CPP_EOF;
600 token->location = UNKNOWN_LOCATION;
601 token->value = NULL_TREE;
602 token->keyword = RID_MAX;
604 return;
607 done = false;
608 /* Keep going until we get a token we like. */
609 while (!done)
611 /* Get a new token from the preprocessor. */
612 token->type = c_lex_with_flags (&token->value, &token->flags);
613 /* Issue messages about tokens we cannot process. */
614 switch (token->type)
616 case CPP_ATSIGN:
617 case CPP_HASH:
618 case CPP_PASTE:
619 error ("invalid token");
620 break;
622 default:
623 /* This is a good token, so we exit the loop. */
624 done = true;
625 break;
628 /* Now we've got our token. */
629 token->location = input_location;
631 /* Check to see if this token is a keyword. */
632 if (token->type == CPP_NAME
633 && C_IS_RESERVED_WORD (token->value))
635 /* Mark this token as a keyword. */
636 token->type = CPP_KEYWORD;
637 /* Record which keyword. */
638 token->keyword = C_RID_CODE (token->value);
639 /* Update the value. Some keywords are mapped to particular
640 entities, rather than simply having the value of the
641 corresponding IDENTIFIER_NODE. For example, `__const' is
642 mapped to `const'. */
643 token->value = ridpointers[token->keyword];
645 else
646 token->keyword = RID_MAX;
649 /* Return a pointer to the next token in the token stream, but do not
650 consume it. */
652 static cp_token *
653 cp_lexer_peek_token (cp_lexer* lexer)
655 cp_token *token;
657 /* If there are no tokens, read one now. */
658 if (!lexer->next_token)
659 cp_lexer_read_token (lexer);
661 /* Provide debugging output. */
662 if (cp_lexer_debugging_p (lexer))
664 fprintf (cp_lexer_debug_stream, "cp_lexer: peeking at token: ");
665 cp_lexer_print_token (cp_lexer_debug_stream, lexer->next_token);
666 fprintf (cp_lexer_debug_stream, "\n");
669 token = lexer->next_token;
670 cp_lexer_set_source_position_from_token (lexer, token);
671 return token;
674 /* Return true if the next token has the indicated TYPE. */
676 static bool
677 cp_lexer_next_token_is (cp_lexer* lexer, enum cpp_ttype type)
679 cp_token *token;
681 /* Peek at the next token. */
682 token = cp_lexer_peek_token (lexer);
683 /* Check to see if it has the indicated TYPE. */
684 return token->type == type;
687 /* Return true if the next token does not have the indicated TYPE. */
689 static bool
690 cp_lexer_next_token_is_not (cp_lexer* lexer, enum cpp_ttype type)
692 return !cp_lexer_next_token_is (lexer, type);
695 /* Return true if the next token is the indicated KEYWORD. */
697 static bool
698 cp_lexer_next_token_is_keyword (cp_lexer* lexer, enum rid keyword)
700 cp_token *token;
702 /* Peek at the next token. */
703 token = cp_lexer_peek_token (lexer);
704 /* Check to see if it is the indicated keyword. */
705 return token->keyword == keyword;
708 /* Return a pointer to the Nth token in the token stream. If N is 1,
709 then this is precisely equivalent to cp_lexer_peek_token. */
711 static cp_token *
712 cp_lexer_peek_nth_token (cp_lexer* lexer, size_t n)
714 cp_token *token;
716 /* N is 1-based, not zero-based. */
717 my_friendly_assert (n > 0, 20000224);
719 /* Skip ahead from NEXT_TOKEN, reading more tokens as necessary. */
720 token = lexer->next_token;
721 /* If there are no tokens in the buffer, get one now. */
722 if (!token)
724 cp_lexer_read_token (lexer);
725 token = lexer->next_token;
728 /* Now, read tokens until we have enough. */
729 while (--n > 0)
731 /* Advance to the next token. */
732 token = cp_lexer_next_token (lexer, token);
733 /* If that's all the tokens we have, read a new one. */
734 if (token == lexer->last_token)
735 token = cp_lexer_read_token (lexer);
738 return token;
741 /* Consume the next token. The pointer returned is valid only until
742 another token is read. Callers should preserve copy the token
743 explicitly if they will need its value for a longer period of
744 time. */
746 static cp_token *
747 cp_lexer_consume_token (cp_lexer* lexer)
749 cp_token *token;
751 /* If there are no tokens, read one now. */
752 if (!lexer->next_token)
753 cp_lexer_read_token (lexer);
755 /* Remember the token we'll be returning. */
756 token = lexer->next_token;
758 /* Increment NEXT_TOKEN. */
759 lexer->next_token = cp_lexer_next_token (lexer,
760 lexer->next_token);
761 /* Check to see if we're all out of tokens. */
762 if (lexer->next_token == lexer->last_token)
763 lexer->next_token = NULL;
765 /* If we're not saving tokens, then move FIRST_TOKEN too. */
766 if (!cp_lexer_saving_tokens (lexer))
768 /* If there are no tokens available, set FIRST_TOKEN to NULL. */
769 if (!lexer->next_token)
770 lexer->first_token = NULL;
771 else
772 lexer->first_token = lexer->next_token;
775 /* Provide debugging output. */
776 if (cp_lexer_debugging_p (lexer))
778 fprintf (cp_lexer_debug_stream, "cp_lexer: consuming token: ");
779 cp_lexer_print_token (cp_lexer_debug_stream, token);
780 fprintf (cp_lexer_debug_stream, "\n");
783 return token;
786 /* Permanently remove the next token from the token stream. There
787 must be a valid next token already; this token never reads
788 additional tokens from the preprocessor. */
790 static void
791 cp_lexer_purge_token (cp_lexer *lexer)
793 cp_token *token;
794 cp_token *next_token;
796 token = lexer->next_token;
797 while (true)
799 next_token = cp_lexer_next_token (lexer, token);
800 if (next_token == lexer->last_token)
801 break;
802 *token = *next_token;
803 token = next_token;
806 lexer->last_token = token;
807 /* The token purged may have been the only token remaining; if so,
808 clear NEXT_TOKEN. */
809 if (lexer->next_token == token)
810 lexer->next_token = NULL;
813 /* Permanently remove all tokens after TOKEN, up to, but not
814 including, the token that will be returned next by
815 cp_lexer_peek_token. */
817 static void
818 cp_lexer_purge_tokens_after (cp_lexer *lexer, cp_token *token)
820 cp_token *peek;
821 cp_token *t1;
822 cp_token *t2;
824 if (lexer->next_token)
826 /* Copy the tokens that have not yet been read to the location
827 immediately following TOKEN. */
828 t1 = cp_lexer_next_token (lexer, token);
829 t2 = peek = cp_lexer_peek_token (lexer);
830 /* Move tokens into the vacant area between TOKEN and PEEK. */
831 while (t2 != lexer->last_token)
833 *t1 = *t2;
834 t1 = cp_lexer_next_token (lexer, t1);
835 t2 = cp_lexer_next_token (lexer, t2);
837 /* Now, the next available token is right after TOKEN. */
838 lexer->next_token = cp_lexer_next_token (lexer, token);
839 /* And the last token is wherever we ended up. */
840 lexer->last_token = t1;
842 else
844 /* There are no tokens in the buffer, so there is nothing to
845 copy. The last token in the buffer is TOKEN itself. */
846 lexer->last_token = cp_lexer_next_token (lexer, token);
850 /* Begin saving tokens. All tokens consumed after this point will be
851 preserved. */
853 static void
854 cp_lexer_save_tokens (cp_lexer* lexer)
856 /* Provide debugging output. */
857 if (cp_lexer_debugging_p (lexer))
858 fprintf (cp_lexer_debug_stream, "cp_lexer: saving tokens\n");
860 /* Make sure that LEXER->NEXT_TOKEN is non-NULL so that we can
861 restore the tokens if required. */
862 if (!lexer->next_token)
863 cp_lexer_read_token (lexer);
865 VARRAY_PUSH_INT (lexer->saved_tokens,
866 cp_lexer_token_difference (lexer,
867 lexer->first_token,
868 lexer->next_token));
871 /* Commit to the portion of the token stream most recently saved. */
873 static void
874 cp_lexer_commit_tokens (cp_lexer* lexer)
876 /* Provide debugging output. */
877 if (cp_lexer_debugging_p (lexer))
878 fprintf (cp_lexer_debug_stream, "cp_lexer: committing tokens\n");
880 VARRAY_POP (lexer->saved_tokens);
883 /* Return all tokens saved since the last call to cp_lexer_save_tokens
884 to the token stream. Stop saving tokens. */
886 static void
887 cp_lexer_rollback_tokens (cp_lexer* lexer)
889 size_t delta;
891 /* Provide debugging output. */
892 if (cp_lexer_debugging_p (lexer))
893 fprintf (cp_lexer_debug_stream, "cp_lexer: restoring tokens\n");
895 /* Find the token that was the NEXT_TOKEN when we started saving
896 tokens. */
897 delta = VARRAY_TOP_INT(lexer->saved_tokens);
898 /* Make it the next token again now. */
899 lexer->next_token = cp_lexer_advance_token (lexer,
900 lexer->first_token,
901 delta);
902 /* It might be the case that there were no tokens when we started
903 saving tokens, but that there are some tokens now. */
904 if (!lexer->next_token && lexer->first_token)
905 lexer->next_token = lexer->first_token;
907 /* Stop saving tokens. */
908 VARRAY_POP (lexer->saved_tokens);
911 /* Print a representation of the TOKEN on the STREAM. */
913 static void
914 cp_lexer_print_token (FILE * stream, cp_token* token)
916 const char *token_type = NULL;
918 /* Figure out what kind of token this is. */
919 switch (token->type)
921 case CPP_EQ:
922 token_type = "EQ";
923 break;
925 case CPP_COMMA:
926 token_type = "COMMA";
927 break;
929 case CPP_OPEN_PAREN:
930 token_type = "OPEN_PAREN";
931 break;
933 case CPP_CLOSE_PAREN:
934 token_type = "CLOSE_PAREN";
935 break;
937 case CPP_OPEN_BRACE:
938 token_type = "OPEN_BRACE";
939 break;
941 case CPP_CLOSE_BRACE:
942 token_type = "CLOSE_BRACE";
943 break;
945 case CPP_SEMICOLON:
946 token_type = "SEMICOLON";
947 break;
949 case CPP_NAME:
950 token_type = "NAME";
951 break;
953 case CPP_EOF:
954 token_type = "EOF";
955 break;
957 case CPP_KEYWORD:
958 token_type = "keyword";
959 break;
961 /* This is not a token that we know how to handle yet. */
962 default:
963 break;
966 /* If we have a name for the token, print it out. Otherwise, we
967 simply give the numeric code. */
968 if (token_type)
969 fprintf (stream, "%s", token_type);
970 else
971 fprintf (stream, "%d", token->type);
972 /* And, for an identifier, print the identifier name. */
973 if (token->type == CPP_NAME
974 /* Some keywords have a value that is not an IDENTIFIER_NODE.
975 For example, `struct' is mapped to an INTEGER_CST. */
976 || (token->type == CPP_KEYWORD
977 && TREE_CODE (token->value) == IDENTIFIER_NODE))
978 fprintf (stream, " %s", IDENTIFIER_POINTER (token->value));
981 /* Start emitting debugging information. */
983 static void
984 cp_lexer_start_debugging (cp_lexer* lexer)
986 ++lexer->debugging_p;
989 /* Stop emitting debugging information. */
991 static void
992 cp_lexer_stop_debugging (cp_lexer* lexer)
994 --lexer->debugging_p;
998 /* Decl-specifiers. */
1000 static void clear_decl_specs
1001 (cp_decl_specifier_seq *);
1003 /* Set *DECL_SPECS to represent an empty decl-specifier-seq. */
1005 static void
1006 clear_decl_specs (cp_decl_specifier_seq *decl_specs)
1008 memset (decl_specs, 0, sizeof (cp_decl_specifier_seq));
1011 /* Declarators. */
1013 /* Nothing other than the parser should be creating declarators;
1014 declarators are a semi-syntactic representation of C++ entities.
1015 Other parts of the front end that need to create entities (like
1016 VAR_DECLs or FUNCTION_DECLs) should do that directly. */
1018 static cp_declarator *make_id_declarator
1019 (tree);
1020 static cp_declarator *make_call_declarator
1021 (cp_declarator *, cp_parameter_declarator *, cp_cv_quals, tree);
1022 static cp_declarator *make_array_declarator
1023 (cp_declarator *, tree);
1024 static cp_declarator *make_pointer_declarator
1025 (cp_cv_quals, cp_declarator *);
1026 static cp_declarator *make_reference_declarator
1027 (cp_cv_quals, cp_declarator *);
1028 static cp_parameter_declarator *make_parameter_declarator
1029 (cp_decl_specifier_seq *, cp_declarator *, tree);
1030 static cp_declarator *make_ptrmem_declarator
1031 (cp_cv_quals, tree, cp_declarator *);
1033 cp_declarator *cp_error_declarator;
1035 /* The obstack on which declarators and related data structures are
1036 allocated. */
1037 static struct obstack declarator_obstack;
1039 /* Alloc BYTES from the declarator memory pool. */
1041 static inline void *
1042 alloc_declarator (size_t bytes)
1044 return obstack_alloc (&declarator_obstack, bytes);
1047 /* Allocate a declarator of the indicated KIND. Clear fields that are
1048 common to all declarators. */
1050 static cp_declarator *
1051 make_declarator (cp_declarator_kind kind)
1053 cp_declarator *declarator;
1055 declarator = (cp_declarator *) alloc_declarator (sizeof (cp_declarator));
1056 declarator->kind = kind;
1057 declarator->attributes = NULL_TREE;
1058 declarator->declarator = NULL;
1060 return declarator;
1063 /* Make a declarator for a generalized identifier. */
1065 cp_declarator *
1066 make_id_declarator (tree id)
1068 cp_declarator *declarator;
1070 declarator = make_declarator (cdk_id);
1071 declarator->u.id.name = id;
1072 declarator->u.id.sfk = sfk_none;
1074 return declarator;
1077 /* Make a declarator for a pointer to TARGET. CV_QUALIFIERS is a list
1078 of modifiers such as const or volatile to apply to the pointer
1079 type, represented as identifiers. */
1081 cp_declarator *
1082 make_pointer_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target)
1084 cp_declarator *declarator;
1086 declarator = make_declarator (cdk_pointer);
1087 declarator->declarator = target;
1088 declarator->u.pointer.qualifiers = cv_qualifiers;
1089 declarator->u.pointer.class_type = NULL_TREE;
1091 return declarator;
1094 /* Like make_pointer_declarator -- but for references. */
1096 cp_declarator *
1097 make_reference_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target)
1099 cp_declarator *declarator;
1101 declarator = make_declarator (cdk_reference);
1102 declarator->declarator = target;
1103 declarator->u.pointer.qualifiers = cv_qualifiers;
1104 declarator->u.pointer.class_type = NULL_TREE;
1106 return declarator;
1109 /* Like make_pointer_declarator -- but for a pointer to a non-static
1110 member of CLASS_TYPE. */
1112 cp_declarator *
1113 make_ptrmem_declarator (cp_cv_quals cv_qualifiers, tree class_type,
1114 cp_declarator *pointee)
1116 cp_declarator *declarator;
1118 declarator = make_declarator (cdk_ptrmem);
1119 declarator->declarator = pointee;
1120 declarator->u.pointer.qualifiers = cv_qualifiers;
1121 declarator->u.pointer.class_type = class_type;
1123 return declarator;
1126 /* Make a declarator for the function given by TARGET, with the
1127 indicated PARMS. The CV_QUALIFIERS aply to the function, as in
1128 "const"-qualified member function. The EXCEPTION_SPECIFICATION
1129 indicates what exceptions can be thrown. */
1131 cp_declarator *
1132 make_call_declarator (cp_declarator *target,
1133 cp_parameter_declarator *parms,
1134 cp_cv_quals cv_qualifiers,
1135 tree exception_specification)
1137 cp_declarator *declarator;
1139 declarator = make_declarator (cdk_function);
1140 declarator->declarator = target;
1141 declarator->u.function.parameters = parms;
1142 declarator->u.function.qualifiers = cv_qualifiers;
1143 declarator->u.function.exception_specification = exception_specification;
1145 return declarator;
1148 /* Make a declarator for an array of BOUNDS elements, each of which is
1149 defined by ELEMENT. */
1151 cp_declarator *
1152 make_array_declarator (cp_declarator *element, tree bounds)
1154 cp_declarator *declarator;
1156 declarator = make_declarator (cdk_array);
1157 declarator->declarator = element;
1158 declarator->u.array.bounds = bounds;
1160 return declarator;
1163 cp_parameter_declarator *no_parameters;
1165 /* Create a parameter declarator with the indicated DECL_SPECIFIERS,
1166 DECLARATOR and DEFAULT_ARGUMENT. */
1168 cp_parameter_declarator *
1169 make_parameter_declarator (cp_decl_specifier_seq *decl_specifiers,
1170 cp_declarator *declarator,
1171 tree default_argument)
1173 cp_parameter_declarator *parameter;
1175 parameter = ((cp_parameter_declarator *)
1176 alloc_declarator (sizeof (cp_parameter_declarator)));
1177 parameter->next = NULL;
1178 if (decl_specifiers)
1179 parameter->decl_specifiers = *decl_specifiers;
1180 else
1181 clear_decl_specs (&parameter->decl_specifiers);
1182 parameter->declarator = declarator;
1183 parameter->default_argument = default_argument;
1184 parameter->ellipsis_p = false;
1186 return parameter;
1189 /* The parser. */
1191 /* Overview
1192 --------
1194 A cp_parser parses the token stream as specified by the C++
1195 grammar. Its job is purely parsing, not semantic analysis. For
1196 example, the parser breaks the token stream into declarators,
1197 expressions, statements, and other similar syntactic constructs.
1198 It does not check that the types of the expressions on either side
1199 of an assignment-statement are compatible, or that a function is
1200 not declared with a parameter of type `void'.
1202 The parser invokes routines elsewhere in the compiler to perform
1203 semantic analysis and to build up the abstract syntax tree for the
1204 code processed.
1206 The parser (and the template instantiation code, which is, in a
1207 way, a close relative of parsing) are the only parts of the
1208 compiler that should be calling push_scope and pop_scope, or
1209 related functions. The parser (and template instantiation code)
1210 keeps track of what scope is presently active; everything else
1211 should simply honor that. (The code that generates static
1212 initializers may also need to set the scope, in order to check
1213 access control correctly when emitting the initializers.)
1215 Methodology
1216 -----------
1218 The parser is of the standard recursive-descent variety. Upcoming
1219 tokens in the token stream are examined in order to determine which
1220 production to use when parsing a non-terminal. Some C++ constructs
1221 require arbitrary look ahead to disambiguate. For example, it is
1222 impossible, in the general case, to tell whether a statement is an
1223 expression or declaration without scanning the entire statement.
1224 Therefore, the parser is capable of "parsing tentatively." When the
1225 parser is not sure what construct comes next, it enters this mode.
1226 Then, while we attempt to parse the construct, the parser queues up
1227 error messages, rather than issuing them immediately, and saves the
1228 tokens it consumes. If the construct is parsed successfully, the
1229 parser "commits", i.e., it issues any queued error messages and
1230 the tokens that were being preserved are permanently discarded.
1231 If, however, the construct is not parsed successfully, the parser
1232 rolls back its state completely so that it can resume parsing using
1233 a different alternative.
1235 Future Improvements
1236 -------------------
1238 The performance of the parser could probably be improved
1239 substantially. Some possible improvements include:
1241 - The expression parser recurses through the various levels of
1242 precedence as specified in the grammar, rather than using an
1243 operator-precedence technique. Therefore, parsing a simple
1244 identifier requires multiple recursive calls.
1246 - We could often eliminate the need to parse tentatively by
1247 looking ahead a little bit. In some places, this approach
1248 might not entirely eliminate the need to parse tentatively, but
1249 it might still speed up the average case. */
1251 /* Flags that are passed to some parsing functions. These values can
1252 be bitwise-ored together. */
1254 typedef enum cp_parser_flags
1256 /* No flags. */
1257 CP_PARSER_FLAGS_NONE = 0x0,
1258 /* The construct is optional. If it is not present, then no error
1259 should be issued. */
1260 CP_PARSER_FLAGS_OPTIONAL = 0x1,
1261 /* When parsing a type-specifier, do not allow user-defined types. */
1262 CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES = 0x2
1263 } cp_parser_flags;
1265 /* The different kinds of declarators we want to parse. */
1267 typedef enum cp_parser_declarator_kind
1269 /* We want an abstract declarator. */
1270 CP_PARSER_DECLARATOR_ABSTRACT,
1271 /* We want a named declarator. */
1272 CP_PARSER_DECLARATOR_NAMED,
1273 /* We don't mind, but the name must be an unqualified-id. */
1274 CP_PARSER_DECLARATOR_EITHER
1275 } cp_parser_declarator_kind;
1277 /* A mapping from a token type to a corresponding tree node type. */
1279 typedef struct cp_parser_token_tree_map_node
1281 /* The token type. */
1282 ENUM_BITFIELD (cpp_ttype) token_type : 8;
1283 /* The corresponding tree code. */
1284 ENUM_BITFIELD (tree_code) tree_type : 8;
1285 } cp_parser_token_tree_map_node;
1287 /* A complete map consists of several ordinary entries, followed by a
1288 terminator. The terminating entry has a token_type of CPP_EOF. */
1290 typedef cp_parser_token_tree_map_node cp_parser_token_tree_map[];
1292 /* The status of a tentative parse. */
1294 typedef enum cp_parser_status_kind
1296 /* No errors have occurred. */
1297 CP_PARSER_STATUS_KIND_NO_ERROR,
1298 /* An error has occurred. */
1299 CP_PARSER_STATUS_KIND_ERROR,
1300 /* We are committed to this tentative parse, whether or not an error
1301 has occurred. */
1302 CP_PARSER_STATUS_KIND_COMMITTED
1303 } cp_parser_status_kind;
1305 /* Context that is saved and restored when parsing tentatively. */
1307 typedef struct cp_parser_context GTY (())
1309 /* If this is a tentative parsing context, the status of the
1310 tentative parse. */
1311 enum cp_parser_status_kind status;
1312 /* If non-NULL, we have just seen a `x->' or `x.' expression. Names
1313 that are looked up in this context must be looked up both in the
1314 scope given by OBJECT_TYPE (the type of `x' or `*x') and also in
1315 the context of the containing expression. */
1316 tree object_type;
1317 /* The next parsing context in the stack. */
1318 struct cp_parser_context *next;
1319 } cp_parser_context;
1321 /* Prototypes. */
1323 /* Constructors and destructors. */
1325 static cp_parser_context *cp_parser_context_new
1326 (cp_parser_context *);
1328 /* Class variables. */
1330 static GTY((deletable)) cp_parser_context* cp_parser_context_free_list;
1332 /* Constructors and destructors. */
1334 /* Construct a new context. The context below this one on the stack
1335 is given by NEXT. */
1337 static cp_parser_context *
1338 cp_parser_context_new (cp_parser_context* next)
1340 cp_parser_context *context;
1342 /* Allocate the storage. */
1343 if (cp_parser_context_free_list != NULL)
1345 /* Pull the first entry from the free list. */
1346 context = cp_parser_context_free_list;
1347 cp_parser_context_free_list = context->next;
1348 memset (context, 0, sizeof (*context));
1350 else
1351 context = ggc_alloc_cleared (sizeof (cp_parser_context));
1352 /* No errors have occurred yet in this context. */
1353 context->status = CP_PARSER_STATUS_KIND_NO_ERROR;
1354 /* If this is not the bottomost context, copy information that we
1355 need from the previous context. */
1356 if (next)
1358 /* If, in the NEXT context, we are parsing an `x->' or `x.'
1359 expression, then we are parsing one in this context, too. */
1360 context->object_type = next->object_type;
1361 /* Thread the stack. */
1362 context->next = next;
1365 return context;
1368 /* The cp_parser structure represents the C++ parser. */
1370 typedef struct cp_parser GTY(())
1372 /* The lexer from which we are obtaining tokens. */
1373 cp_lexer *lexer;
1375 /* The scope in which names should be looked up. If NULL_TREE, then
1376 we look up names in the scope that is currently open in the
1377 source program. If non-NULL, this is either a TYPE or
1378 NAMESPACE_DECL for the scope in which we should look.
1380 This value is not cleared automatically after a name is looked
1381 up, so we must be careful to clear it before starting a new look
1382 up sequence. (If it is not cleared, then `X::Y' followed by `Z'
1383 will look up `Z' in the scope of `X', rather than the current
1384 scope.) Unfortunately, it is difficult to tell when name lookup
1385 is complete, because we sometimes peek at a token, look it up,
1386 and then decide not to consume it. */
1387 tree scope;
1389 /* OBJECT_SCOPE and QUALIFYING_SCOPE give the scopes in which the
1390 last lookup took place. OBJECT_SCOPE is used if an expression
1391 like "x->y" or "x.y" was used; it gives the type of "*x" or "x",
1392 respectively. QUALIFYING_SCOPE is used for an expression of the
1393 form "X::Y"; it refers to X. */
1394 tree object_scope;
1395 tree qualifying_scope;
1397 /* A stack of parsing contexts. All but the bottom entry on the
1398 stack will be tentative contexts.
1400 We parse tentatively in order to determine which construct is in
1401 use in some situations. For example, in order to determine
1402 whether a statement is an expression-statement or a
1403 declaration-statement we parse it tentatively as a
1404 declaration-statement. If that fails, we then reparse the same
1405 token stream as an expression-statement. */
1406 cp_parser_context *context;
1408 /* True if we are parsing GNU C++. If this flag is not set, then
1409 GNU extensions are not recognized. */
1410 bool allow_gnu_extensions_p;
1412 /* TRUE if the `>' token should be interpreted as the greater-than
1413 operator. FALSE if it is the end of a template-id or
1414 template-parameter-list. */
1415 bool greater_than_is_operator_p;
1417 /* TRUE if default arguments are allowed within a parameter list
1418 that starts at this point. FALSE if only a gnu extension makes
1419 them permissible. */
1420 bool default_arg_ok_p;
1422 /* TRUE if we are parsing an integral constant-expression. See
1423 [expr.const] for a precise definition. */
1424 bool integral_constant_expression_p;
1426 /* TRUE if we are parsing an integral constant-expression -- but a
1427 non-constant expression should be permitted as well. This flag
1428 is used when parsing an array bound so that GNU variable-length
1429 arrays are tolerated. */
1430 bool allow_non_integral_constant_expression_p;
1432 /* TRUE if ALLOW_NON_CONSTANT_EXPRESSION_P is TRUE and something has
1433 been seen that makes the expression non-constant. */
1434 bool non_integral_constant_expression_p;
1436 /* TRUE if local variable names and `this' are forbidden in the
1437 current context. */
1438 bool local_variables_forbidden_p;
1440 /* TRUE if the declaration we are parsing is part of a
1441 linkage-specification of the form `extern string-literal
1442 declaration'. */
1443 bool in_unbraced_linkage_specification_p;
1445 /* TRUE if we are presently parsing a declarator, after the
1446 direct-declarator. */
1447 bool in_declarator_p;
1449 /* TRUE if we are presently parsing a template-argument-list. */
1450 bool in_template_argument_list_p;
1452 /* TRUE if we are presently parsing the body of an
1453 iteration-statement. */
1454 bool in_iteration_statement_p;
1456 /* TRUE if we are presently parsing the body of a switch
1457 statement. */
1458 bool in_switch_statement_p;
1460 /* TRUE if we are parsing a type-id in an expression context. In
1461 such a situation, both "type (expr)" and "type (type)" are valid
1462 alternatives. */
1463 bool in_type_id_in_expr_p;
1465 /* If non-NULL, then we are parsing a construct where new type
1466 definitions are not permitted. The string stored here will be
1467 issued as an error message if a type is defined. */
1468 const char *type_definition_forbidden_message;
1470 /* A list of lists. The outer list is a stack, used for member
1471 functions of local classes. At each level there are two sub-list,
1472 one on TREE_VALUE and one on TREE_PURPOSE. Each of those
1473 sub-lists has a FUNCTION_DECL or TEMPLATE_DECL on their
1474 TREE_VALUE's. The functions are chained in reverse declaration
1475 order.
1477 The TREE_PURPOSE sublist contains those functions with default
1478 arguments that need post processing, and the TREE_VALUE sublist
1479 contains those functions with definitions that need post
1480 processing.
1482 These lists can only be processed once the outermost class being
1483 defined is complete. */
1484 tree unparsed_functions_queues;
1486 /* The number of classes whose definitions are currently in
1487 progress. */
1488 unsigned num_classes_being_defined;
1490 /* The number of template parameter lists that apply directly to the
1491 current declaration. */
1492 unsigned num_template_parameter_lists;
1493 } cp_parser;
1495 /* The type of a function that parses some kind of expression. */
1496 typedef tree (*cp_parser_expression_fn) (cp_parser *);
1498 /* Prototypes. */
1500 /* Constructors and destructors. */
1502 static cp_parser *cp_parser_new
1503 (void);
1505 /* Routines to parse various constructs.
1507 Those that return `tree' will return the error_mark_node (rather
1508 than NULL_TREE) if a parse error occurs, unless otherwise noted.
1509 Sometimes, they will return an ordinary node if error-recovery was
1510 attempted, even though a parse error occurred. So, to check
1511 whether or not a parse error occurred, you should always use
1512 cp_parser_error_occurred. If the construct is optional (indicated
1513 either by an `_opt' in the name of the function that does the
1514 parsing or via a FLAGS parameter), then NULL_TREE is returned if
1515 the construct is not present. */
1517 /* Lexical conventions [gram.lex] */
1519 static tree cp_parser_identifier
1520 (cp_parser *);
1522 /* Basic concepts [gram.basic] */
1524 static bool cp_parser_translation_unit
1525 (cp_parser *);
1527 /* Expressions [gram.expr] */
1529 static tree cp_parser_primary_expression
1530 (cp_parser *, cp_id_kind *, tree *);
1531 static tree cp_parser_id_expression
1532 (cp_parser *, bool, bool, bool *, bool);
1533 static tree cp_parser_unqualified_id
1534 (cp_parser *, bool, bool, bool);
1535 static tree cp_parser_nested_name_specifier_opt
1536 (cp_parser *, bool, bool, bool, bool);
1537 static tree cp_parser_nested_name_specifier
1538 (cp_parser *, bool, bool, bool, bool);
1539 static tree cp_parser_class_or_namespace_name
1540 (cp_parser *, bool, bool, bool, bool, bool);
1541 static tree cp_parser_postfix_expression
1542 (cp_parser *, bool);
1543 static tree cp_parser_postfix_open_square_expression
1544 (cp_parser *, tree, bool);
1545 static tree cp_parser_postfix_dot_deref_expression
1546 (cp_parser *, enum cpp_ttype, tree, bool, cp_id_kind *);
1547 static tree cp_parser_parenthesized_expression_list
1548 (cp_parser *, bool, bool *);
1549 static void cp_parser_pseudo_destructor_name
1550 (cp_parser *, tree *, tree *);
1551 static tree cp_parser_unary_expression
1552 (cp_parser *, bool);
1553 static enum tree_code cp_parser_unary_operator
1554 (cp_token *);
1555 static tree cp_parser_new_expression
1556 (cp_parser *);
1557 static tree cp_parser_new_placement
1558 (cp_parser *);
1559 static tree cp_parser_new_type_id
1560 (cp_parser *, tree *);
1561 static cp_declarator *cp_parser_new_declarator_opt
1562 (cp_parser *);
1563 static cp_declarator *cp_parser_direct_new_declarator
1564 (cp_parser *);
1565 static tree cp_parser_new_initializer
1566 (cp_parser *);
1567 static tree cp_parser_delete_expression
1568 (cp_parser *);
1569 static tree cp_parser_cast_expression
1570 (cp_parser *, bool);
1571 static tree cp_parser_pm_expression
1572 (cp_parser *);
1573 static tree cp_parser_multiplicative_expression
1574 (cp_parser *);
1575 static tree cp_parser_additive_expression
1576 (cp_parser *);
1577 static tree cp_parser_shift_expression
1578 (cp_parser *);
1579 static tree cp_parser_relational_expression
1580 (cp_parser *);
1581 static tree cp_parser_equality_expression
1582 (cp_parser *);
1583 static tree cp_parser_and_expression
1584 (cp_parser *);
1585 static tree cp_parser_exclusive_or_expression
1586 (cp_parser *);
1587 static tree cp_parser_inclusive_or_expression
1588 (cp_parser *);
1589 static tree cp_parser_logical_and_expression
1590 (cp_parser *);
1591 static tree cp_parser_logical_or_expression
1592 (cp_parser *);
1593 static tree cp_parser_question_colon_clause
1594 (cp_parser *, tree);
1595 static tree cp_parser_assignment_expression
1596 (cp_parser *);
1597 static enum tree_code cp_parser_assignment_operator_opt
1598 (cp_parser *);
1599 static tree cp_parser_expression
1600 (cp_parser *);
1601 static tree cp_parser_constant_expression
1602 (cp_parser *, bool, bool *);
1603 static tree cp_parser_builtin_offsetof
1604 (cp_parser *);
1606 /* Statements [gram.stmt.stmt] */
1608 static void cp_parser_statement
1609 (cp_parser *, tree);
1610 static tree cp_parser_labeled_statement
1611 (cp_parser *, tree);
1612 static tree cp_parser_expression_statement
1613 (cp_parser *, tree);
1614 static tree cp_parser_compound_statement
1615 (cp_parser *, tree, bool);
1616 static void cp_parser_statement_seq_opt
1617 (cp_parser *, tree);
1618 static tree cp_parser_selection_statement
1619 (cp_parser *);
1620 static tree cp_parser_condition
1621 (cp_parser *);
1622 static tree cp_parser_iteration_statement
1623 (cp_parser *);
1624 static void cp_parser_for_init_statement
1625 (cp_parser *);
1626 static tree cp_parser_jump_statement
1627 (cp_parser *);
1628 static void cp_parser_declaration_statement
1629 (cp_parser *);
1631 static tree cp_parser_implicitly_scoped_statement
1632 (cp_parser *);
1633 static void cp_parser_already_scoped_statement
1634 (cp_parser *);
1636 /* Declarations [gram.dcl.dcl] */
1638 static void cp_parser_declaration_seq_opt
1639 (cp_parser *);
1640 static void cp_parser_declaration
1641 (cp_parser *);
1642 static void cp_parser_block_declaration
1643 (cp_parser *, bool);
1644 static void cp_parser_simple_declaration
1645 (cp_parser *, bool);
1646 static void cp_parser_decl_specifier_seq
1647 (cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, int *);
1648 static tree cp_parser_storage_class_specifier_opt
1649 (cp_parser *);
1650 static tree cp_parser_function_specifier_opt
1651 (cp_parser *, cp_decl_specifier_seq *);
1652 static tree cp_parser_type_specifier
1653 (cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, bool,
1654 int *, bool *);
1655 static tree cp_parser_simple_type_specifier
1656 (cp_parser *, cp_decl_specifier_seq *, cp_parser_flags);
1657 static tree cp_parser_type_name
1658 (cp_parser *);
1659 static tree cp_parser_elaborated_type_specifier
1660 (cp_parser *, bool, bool);
1661 static tree cp_parser_enum_specifier
1662 (cp_parser *);
1663 static void cp_parser_enumerator_list
1664 (cp_parser *, tree);
1665 static void cp_parser_enumerator_definition
1666 (cp_parser *, tree);
1667 static tree cp_parser_namespace_name
1668 (cp_parser *);
1669 static void cp_parser_namespace_definition
1670 (cp_parser *);
1671 static void cp_parser_namespace_body
1672 (cp_parser *);
1673 static tree cp_parser_qualified_namespace_specifier
1674 (cp_parser *);
1675 static void cp_parser_namespace_alias_definition
1676 (cp_parser *);
1677 static void cp_parser_using_declaration
1678 (cp_parser *);
1679 static void cp_parser_using_directive
1680 (cp_parser *);
1681 static void cp_parser_asm_definition
1682 (cp_parser *);
1683 static void cp_parser_linkage_specification
1684 (cp_parser *);
1686 /* Declarators [gram.dcl.decl] */
1688 static tree cp_parser_init_declarator
1689 (cp_parser *, cp_decl_specifier_seq *, bool, bool, int, bool *);
1690 static cp_declarator *cp_parser_declarator
1691 (cp_parser *, cp_parser_declarator_kind, int *, bool *);
1692 static cp_declarator *cp_parser_direct_declarator
1693 (cp_parser *, cp_parser_declarator_kind, int *);
1694 static enum tree_code cp_parser_ptr_operator
1695 (cp_parser *, tree *, cp_cv_quals *);
1696 static cp_cv_quals cp_parser_cv_qualifier_seq_opt
1697 (cp_parser *);
1698 static tree cp_parser_declarator_id
1699 (cp_parser *);
1700 static tree cp_parser_type_id
1701 (cp_parser *);
1702 static void cp_parser_type_specifier_seq
1703 (cp_parser *, cp_decl_specifier_seq *);
1704 static cp_parameter_declarator *cp_parser_parameter_declaration_clause
1705 (cp_parser *);
1706 static cp_parameter_declarator *cp_parser_parameter_declaration_list
1707 (cp_parser *, bool *);
1708 static cp_parameter_declarator *cp_parser_parameter_declaration
1709 (cp_parser *, bool, bool *);
1710 static void cp_parser_function_body
1711 (cp_parser *);
1712 static tree cp_parser_initializer
1713 (cp_parser *, bool *, bool *);
1714 static tree cp_parser_initializer_clause
1715 (cp_parser *, bool *);
1716 static tree cp_parser_initializer_list
1717 (cp_parser *, bool *);
1719 static bool cp_parser_ctor_initializer_opt_and_function_body
1720 (cp_parser *);
1722 /* Classes [gram.class] */
1724 static tree cp_parser_class_name
1725 (cp_parser *, bool, bool, bool, bool, bool, bool);
1726 static tree cp_parser_class_specifier
1727 (cp_parser *);
1728 static tree cp_parser_class_head
1729 (cp_parser *, bool *, tree *);
1730 static enum tag_types cp_parser_class_key
1731 (cp_parser *);
1732 static void cp_parser_member_specification_opt
1733 (cp_parser *);
1734 static void cp_parser_member_declaration
1735 (cp_parser *);
1736 static tree cp_parser_pure_specifier
1737 (cp_parser *);
1738 static tree cp_parser_constant_initializer
1739 (cp_parser *);
1741 /* Derived classes [gram.class.derived] */
1743 static tree cp_parser_base_clause
1744 (cp_parser *);
1745 static tree cp_parser_base_specifier
1746 (cp_parser *);
1748 /* Special member functions [gram.special] */
1750 static tree cp_parser_conversion_function_id
1751 (cp_parser *);
1752 static tree cp_parser_conversion_type_id
1753 (cp_parser *);
1754 static cp_declarator *cp_parser_conversion_declarator_opt
1755 (cp_parser *);
1756 static bool cp_parser_ctor_initializer_opt
1757 (cp_parser *);
1758 static void cp_parser_mem_initializer_list
1759 (cp_parser *);
1760 static tree cp_parser_mem_initializer
1761 (cp_parser *);
1762 static tree cp_parser_mem_initializer_id
1763 (cp_parser *);
1765 /* Overloading [gram.over] */
1767 static tree cp_parser_operator_function_id
1768 (cp_parser *);
1769 static tree cp_parser_operator
1770 (cp_parser *);
1772 /* Templates [gram.temp] */
1774 static void cp_parser_template_declaration
1775 (cp_parser *, bool);
1776 static tree cp_parser_template_parameter_list
1777 (cp_parser *);
1778 static tree cp_parser_template_parameter
1779 (cp_parser *, bool *);
1780 static tree cp_parser_type_parameter
1781 (cp_parser *);
1782 static tree cp_parser_template_id
1783 (cp_parser *, bool, bool, bool);
1784 static tree cp_parser_template_name
1785 (cp_parser *, bool, bool, bool, bool *);
1786 static tree cp_parser_template_argument_list
1787 (cp_parser *);
1788 static tree cp_parser_template_argument
1789 (cp_parser *);
1790 static void cp_parser_explicit_instantiation
1791 (cp_parser *);
1792 static void cp_parser_explicit_specialization
1793 (cp_parser *);
1795 /* Exception handling [gram.exception] */
1797 static tree cp_parser_try_block
1798 (cp_parser *);
1799 static bool cp_parser_function_try_block
1800 (cp_parser *);
1801 static void cp_parser_handler_seq
1802 (cp_parser *);
1803 static void cp_parser_handler
1804 (cp_parser *);
1805 static tree cp_parser_exception_declaration
1806 (cp_parser *);
1807 static tree cp_parser_throw_expression
1808 (cp_parser *);
1809 static tree cp_parser_exception_specification_opt
1810 (cp_parser *);
1811 static tree cp_parser_type_id_list
1812 (cp_parser *);
1814 /* GNU Extensions */
1816 static tree cp_parser_asm_specification_opt
1817 (cp_parser *);
1818 static tree cp_parser_asm_operand_list
1819 (cp_parser *);
1820 static tree cp_parser_asm_clobber_list
1821 (cp_parser *);
1822 static tree cp_parser_attributes_opt
1823 (cp_parser *);
1824 static tree cp_parser_attribute_list
1825 (cp_parser *);
1826 static bool cp_parser_extension_opt
1827 (cp_parser *, int *);
1828 static void cp_parser_label_declaration
1829 (cp_parser *);
1831 /* Utility Routines */
1833 static tree cp_parser_lookup_name
1834 (cp_parser *, tree, bool, bool, bool, bool);
1835 static tree cp_parser_lookup_name_simple
1836 (cp_parser *, tree);
1837 static tree cp_parser_maybe_treat_template_as_class
1838 (tree, bool);
1839 static bool cp_parser_check_declarator_template_parameters
1840 (cp_parser *, cp_declarator *);
1841 static bool cp_parser_check_template_parameters
1842 (cp_parser *, unsigned);
1843 static tree cp_parser_simple_cast_expression
1844 (cp_parser *);
1845 static tree cp_parser_binary_expression
1846 (cp_parser *, const cp_parser_token_tree_map, cp_parser_expression_fn);
1847 static tree cp_parser_global_scope_opt
1848 (cp_parser *, bool);
1849 static bool cp_parser_constructor_declarator_p
1850 (cp_parser *, bool);
1851 static tree cp_parser_function_definition_from_specifiers_and_declarator
1852 (cp_parser *, cp_decl_specifier_seq *, tree, const cp_declarator *);
1853 static tree cp_parser_function_definition_after_declarator
1854 (cp_parser *, bool);
1855 static void cp_parser_template_declaration_after_export
1856 (cp_parser *, bool);
1857 static tree cp_parser_single_declaration
1858 (cp_parser *, bool, bool *);
1859 static tree cp_parser_functional_cast
1860 (cp_parser *, tree);
1861 static tree cp_parser_save_member_function_body
1862 (cp_parser *, cp_decl_specifier_seq *, cp_declarator *, tree);
1863 static tree cp_parser_enclosed_template_argument_list
1864 (cp_parser *);
1865 static void cp_parser_save_default_args
1866 (cp_parser *, tree);
1867 static void cp_parser_late_parsing_for_member
1868 (cp_parser *, tree);
1869 static void cp_parser_late_parsing_default_args
1870 (cp_parser *, tree);
1871 static tree cp_parser_sizeof_operand
1872 (cp_parser *, enum rid);
1873 static bool cp_parser_declares_only_class_p
1874 (cp_parser *);
1875 static void cp_parser_set_storage_class
1876 (cp_decl_specifier_seq *, cp_storage_class);
1877 static void cp_parser_set_decl_spec_type
1878 (cp_decl_specifier_seq *, tree, bool);
1879 static bool cp_parser_friend_p
1880 (const cp_decl_specifier_seq *);
1881 static cp_token *cp_parser_require
1882 (cp_parser *, enum cpp_ttype, const char *);
1883 static cp_token *cp_parser_require_keyword
1884 (cp_parser *, enum rid, const char *);
1885 static bool cp_parser_token_starts_function_definition_p
1886 (cp_token *);
1887 static bool cp_parser_next_token_starts_class_definition_p
1888 (cp_parser *);
1889 static bool cp_parser_next_token_ends_template_argument_p
1890 (cp_parser *);
1891 static bool cp_parser_nth_token_starts_template_argument_list_p
1892 (cp_parser *, size_t);
1893 static enum tag_types cp_parser_token_is_class_key
1894 (cp_token *);
1895 static void cp_parser_check_class_key
1896 (enum tag_types, tree type);
1897 static void cp_parser_check_access_in_redeclaration
1898 (tree type);
1899 static bool cp_parser_optional_template_keyword
1900 (cp_parser *);
1901 static void cp_parser_pre_parsed_nested_name_specifier
1902 (cp_parser *);
1903 static void cp_parser_cache_group
1904 (cp_parser *, cp_token_cache *, enum cpp_ttype, unsigned);
1905 static void cp_parser_parse_tentatively
1906 (cp_parser *);
1907 static void cp_parser_commit_to_tentative_parse
1908 (cp_parser *);
1909 static void cp_parser_abort_tentative_parse
1910 (cp_parser *);
1911 static bool cp_parser_parse_definitely
1912 (cp_parser *);
1913 static inline bool cp_parser_parsing_tentatively
1914 (cp_parser *);
1915 static bool cp_parser_committed_to_tentative_parse
1916 (cp_parser *);
1917 static void cp_parser_error
1918 (cp_parser *, const char *);
1919 static void cp_parser_name_lookup_error
1920 (cp_parser *, tree, tree, const char *);
1921 static bool cp_parser_simulate_error
1922 (cp_parser *);
1923 static void cp_parser_check_type_definition
1924 (cp_parser *);
1925 static void cp_parser_check_for_definition_in_return_type
1926 (cp_declarator *, int);
1927 static void cp_parser_check_for_invalid_template_id
1928 (cp_parser *, tree);
1929 static bool cp_parser_non_integral_constant_expression
1930 (cp_parser *, const char *);
1931 static void cp_parser_diagnose_invalid_type_name
1932 (cp_parser *, tree, tree);
1933 static bool cp_parser_parse_and_diagnose_invalid_type_name
1934 (cp_parser *);
1935 static int cp_parser_skip_to_closing_parenthesis
1936 (cp_parser *, bool, bool, bool);
1937 static void cp_parser_skip_to_end_of_statement
1938 (cp_parser *);
1939 static void cp_parser_consume_semicolon_at_end_of_statement
1940 (cp_parser *);
1941 static void cp_parser_skip_to_end_of_block_or_statement
1942 (cp_parser *);
1943 static void cp_parser_skip_to_closing_brace
1944 (cp_parser *);
1945 static void cp_parser_skip_until_found
1946 (cp_parser *, enum cpp_ttype, const char *);
1947 static bool cp_parser_error_occurred
1948 (cp_parser *);
1949 static bool cp_parser_allow_gnu_extensions_p
1950 (cp_parser *);
1951 static bool cp_parser_is_string_literal
1952 (cp_token *);
1953 static bool cp_parser_is_keyword
1954 (cp_token *, enum rid);
1955 static tree cp_parser_make_typename_type
1956 (cp_parser *, tree, tree);
1958 /* Returns nonzero if we are parsing tentatively. */
1960 static inline bool
1961 cp_parser_parsing_tentatively (cp_parser* parser)
1963 return parser->context->next != NULL;
1966 /* Returns nonzero if TOKEN is a string literal. */
1968 static bool
1969 cp_parser_is_string_literal (cp_token* token)
1971 return (token->type == CPP_STRING || token->type == CPP_WSTRING);
1974 /* Returns nonzero if TOKEN is the indicated KEYWORD. */
1976 static bool
1977 cp_parser_is_keyword (cp_token* token, enum rid keyword)
1979 return token->keyword == keyword;
1982 /* Issue the indicated error MESSAGE. */
1984 static void
1985 cp_parser_error (cp_parser* parser, const char* message)
1987 /* Output the MESSAGE -- unless we're parsing tentatively. */
1988 if (!cp_parser_simulate_error (parser))
1990 cp_token *token;
1991 token = cp_lexer_peek_token (parser->lexer);
1992 c_parse_error (message,
1993 /* Because c_parser_error does not understand
1994 CPP_KEYWORD, keywords are treated like
1995 identifiers. */
1996 (token->type == CPP_KEYWORD ? CPP_NAME : token->type),
1997 token->value);
2001 /* Issue an error about name-lookup failing. NAME is the
2002 IDENTIFIER_NODE DECL is the result of
2003 the lookup (as returned from cp_parser_lookup_name). DESIRED is
2004 the thing that we hoped to find. */
2006 static void
2007 cp_parser_name_lookup_error (cp_parser* parser,
2008 tree name,
2009 tree decl,
2010 const char* desired)
2012 /* If name lookup completely failed, tell the user that NAME was not
2013 declared. */
2014 if (decl == error_mark_node)
2016 if (parser->scope && parser->scope != global_namespace)
2017 error ("`%D::%D' has not been declared",
2018 parser->scope, name);
2019 else if (parser->scope == global_namespace)
2020 error ("`::%D' has not been declared", name);
2021 else
2022 error ("`%D' has not been declared", name);
2024 else if (parser->scope && parser->scope != global_namespace)
2025 error ("`%D::%D' %s", parser->scope, name, desired);
2026 else if (parser->scope == global_namespace)
2027 error ("`::%D' %s", name, desired);
2028 else
2029 error ("`%D' %s", name, desired);
2032 /* If we are parsing tentatively, remember that an error has occurred
2033 during this tentative parse. Returns true if the error was
2034 simulated; false if a message should be issued by the caller. */
2036 static bool
2037 cp_parser_simulate_error (cp_parser* parser)
2039 if (cp_parser_parsing_tentatively (parser)
2040 && !cp_parser_committed_to_tentative_parse (parser))
2042 parser->context->status = CP_PARSER_STATUS_KIND_ERROR;
2043 return true;
2045 return false;
2048 /* This function is called when a type is defined. If type
2049 definitions are forbidden at this point, an error message is
2050 issued. */
2052 static void
2053 cp_parser_check_type_definition (cp_parser* parser)
2055 /* If types are forbidden here, issue a message. */
2056 if (parser->type_definition_forbidden_message)
2057 /* Use `%s' to print the string in case there are any escape
2058 characters in the message. */
2059 error ("%s", parser->type_definition_forbidden_message);
2062 /* This function is called when a declaration is parsed. If
2063 DECLARATOR is a function declarator and DECLARES_CLASS_OR_ENUM
2064 indicates that a type was defined in the decl-specifiers for DECL,
2065 then an error is issued. */
2067 static void
2068 cp_parser_check_for_definition_in_return_type (cp_declarator *declarator,
2069 int declares_class_or_enum)
2071 /* [dcl.fct] forbids type definitions in return types.
2072 Unfortunately, it's not easy to know whether or not we are
2073 processing a return type until after the fact. */
2074 while (declarator
2075 && (declarator->kind == cdk_pointer
2076 || declarator->kind == cdk_reference
2077 || declarator->kind == cdk_ptrmem))
2078 declarator = declarator->declarator;
2079 if (declarator
2080 && declarator->kind == cdk_function
2081 && declares_class_or_enum & 2)
2082 error ("new types may not be defined in a return type");
2085 /* A type-specifier (TYPE) has been parsed which cannot be followed by
2086 "<" in any valid C++ program. If the next token is indeed "<",
2087 issue a message warning the user about what appears to be an
2088 invalid attempt to form a template-id. */
2090 static void
2091 cp_parser_check_for_invalid_template_id (cp_parser* parser,
2092 tree type)
2094 ptrdiff_t start;
2095 cp_token *token;
2097 if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
2099 if (TYPE_P (type))
2100 error ("`%T' is not a template", type);
2101 else if (TREE_CODE (type) == IDENTIFIER_NODE)
2102 error ("`%E' is not a template", type);
2103 else
2104 error ("invalid template-id");
2105 /* Remember the location of the invalid "<". */
2106 if (cp_parser_parsing_tentatively (parser)
2107 && !cp_parser_committed_to_tentative_parse (parser))
2109 token = cp_lexer_peek_token (parser->lexer);
2110 token = cp_lexer_prev_token (parser->lexer, token);
2111 start = cp_lexer_token_difference (parser->lexer,
2112 parser->lexer->first_token,
2113 token);
2115 else
2116 start = -1;
2117 /* Consume the "<". */
2118 cp_lexer_consume_token (parser->lexer);
2119 /* Parse the template arguments. */
2120 cp_parser_enclosed_template_argument_list (parser);
2121 /* Permanently remove the invalid template arguments so that
2122 this error message is not issued again. */
2123 if (start >= 0)
2125 token = cp_lexer_advance_token (parser->lexer,
2126 parser->lexer->first_token,
2127 start);
2128 cp_lexer_purge_tokens_after (parser->lexer, token);
2133 /* If parsing an integral constant-expression, issue an error message
2134 about the fact that THING appeared and return true. Otherwise,
2135 return false, marking the current expression as non-constant. */
2137 static bool
2138 cp_parser_non_integral_constant_expression (cp_parser *parser,
2139 const char *thing)
2141 if (parser->integral_constant_expression_p)
2143 if (!parser->allow_non_integral_constant_expression_p)
2145 error ("%s cannot appear in a constant-expression", thing);
2146 return true;
2148 parser->non_integral_constant_expression_p = true;
2150 return false;
2153 /* Emit a diagnostic for an invalid type name. Consider also if it is
2154 qualified or not and the result of a lookup, to provide a better
2155 message. */
2157 static void
2158 cp_parser_diagnose_invalid_type_name (cp_parser *parser, tree scope, tree id)
2160 tree decl, old_scope;
2161 /* Try to lookup the identifier. */
2162 old_scope = parser->scope;
2163 parser->scope = scope;
2164 decl = cp_parser_lookup_name_simple (parser, id);
2165 parser->scope = old_scope;
2166 /* If the lookup found a template-name, it means that the user forgot
2167 to specify an argument list. Emit an useful error message. */
2168 if (TREE_CODE (decl) == TEMPLATE_DECL)
2169 error ("invalid use of template-name `%E' without an argument list",
2170 decl);
2171 else if (!parser->scope)
2173 /* Issue an error message. */
2174 error ("`%E' does not name a type", id);
2175 /* If we're in a template class, it's possible that the user was
2176 referring to a type from a base class. For example:
2178 template <typename T> struct A { typedef T X; };
2179 template <typename T> struct B : public A<T> { X x; };
2181 The user should have said "typename A<T>::X". */
2182 if (processing_template_decl && current_class_type)
2184 tree b;
2186 for (b = TREE_CHAIN (TYPE_BINFO (current_class_type));
2188 b = TREE_CHAIN (b))
2190 tree base_type = BINFO_TYPE (b);
2191 if (CLASS_TYPE_P (base_type)
2192 && dependent_type_p (base_type))
2194 tree field;
2195 /* Go from a particular instantiation of the
2196 template (which will have an empty TYPE_FIELDs),
2197 to the main version. */
2198 base_type = CLASSTYPE_PRIMARY_TEMPLATE_TYPE (base_type);
2199 for (field = TYPE_FIELDS (base_type);
2200 field;
2201 field = TREE_CHAIN (field))
2202 if (TREE_CODE (field) == TYPE_DECL
2203 && DECL_NAME (field) == id)
2205 inform ("(perhaps `typename %T::%E' was intended)",
2206 BINFO_TYPE (b), id);
2207 break;
2209 if (field)
2210 break;
2215 /* Here we diagnose qualified-ids where the scope is actually correct,
2216 but the identifier does not resolve to a valid type name. */
2217 else
2219 if (TREE_CODE (parser->scope) == NAMESPACE_DECL)
2220 error ("`%E' in namespace `%E' does not name a type",
2221 id, parser->scope);
2222 else if (TYPE_P (parser->scope))
2223 error ("`%E' in class `%T' does not name a type",
2224 id, parser->scope);
2225 else
2226 abort();
2230 /* Check for a common situation where a type-name should be present,
2231 but is not, and issue a sensible error message. Returns true if an
2232 invalid type-name was detected.
2234 The situation handled by this function are variable declarations of the
2235 form `ID a', where `ID' is an id-expression and `a' is a plain identifier.
2236 Usually, `ID' should name a type, but if we got here it means that it
2237 does not. We try to emit the best possible error message depending on
2238 how exactly the id-expression looks like.
2241 static bool
2242 cp_parser_parse_and_diagnose_invalid_type_name (cp_parser *parser)
2244 tree id;
2246 cp_parser_parse_tentatively (parser);
2247 id = cp_parser_id_expression (parser,
2248 /*template_keyword_p=*/false,
2249 /*check_dependency_p=*/true,
2250 /*template_p=*/NULL,
2251 /*declarator_p=*/true);
2252 /* After the id-expression, there should be a plain identifier,
2253 otherwise this is not a simple variable declaration. Also, if
2254 the scope is dependent, we cannot do much. */
2255 if (!cp_lexer_next_token_is (parser->lexer, CPP_NAME)
2256 || (parser->scope && TYPE_P (parser->scope)
2257 && dependent_type_p (parser->scope)))
2259 cp_parser_abort_tentative_parse (parser);
2260 return false;
2262 if (!cp_parser_parse_definitely (parser))
2263 return false;
2265 /* If we got here, this cannot be a valid variable declaration, thus
2266 the cp_parser_id_expression must have resolved to a plain identifier
2267 node (not a TYPE_DECL or TEMPLATE_ID_EXPR). */
2268 my_friendly_assert (TREE_CODE (id) == IDENTIFIER_NODE, 20030203);
2269 /* Emit a diagnostic for the invalid type. */
2270 cp_parser_diagnose_invalid_type_name (parser, parser->scope, id);
2271 /* Skip to the end of the declaration; there's no point in
2272 trying to process it. */
2273 cp_parser_skip_to_end_of_block_or_statement (parser);
2274 return true;
2277 /* Consume tokens up to, and including, the next non-nested closing `)'.
2278 Returns 1 iff we found a closing `)'. RECOVERING is true, if we
2279 are doing error recovery. Returns -1 if OR_COMMA is true and we
2280 found an unnested comma. */
2282 static int
2283 cp_parser_skip_to_closing_parenthesis (cp_parser *parser,
2284 bool recovering,
2285 bool or_comma,
2286 bool consume_paren)
2288 unsigned paren_depth = 0;
2289 unsigned brace_depth = 0;
2290 int saved_c_lex_string_translate = c_lex_string_translate;
2291 int result;
2293 if (recovering && !or_comma && cp_parser_parsing_tentatively (parser)
2294 && !cp_parser_committed_to_tentative_parse (parser))
2295 return 0;
2297 if (! recovering)
2298 /* If we're looking ahead, keep both translated and untranslated
2299 strings. */
2300 c_lex_string_translate = -1;
2302 while (true)
2304 cp_token *token;
2306 /* If we've run out of tokens, then there is no closing `)'. */
2307 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
2309 result = 0;
2310 break;
2313 token = cp_lexer_peek_token (parser->lexer);
2315 /* This matches the processing in skip_to_end_of_statement. */
2316 if (token->type == CPP_SEMICOLON && !brace_depth)
2318 result = 0;
2319 break;
2321 if (token->type == CPP_OPEN_BRACE)
2322 ++brace_depth;
2323 if (token->type == CPP_CLOSE_BRACE)
2325 if (!brace_depth--)
2327 result = 0;
2328 break;
2331 if (recovering && or_comma && token->type == CPP_COMMA
2332 && !brace_depth && !paren_depth)
2334 result = -1;
2335 break;
2338 if (!brace_depth)
2340 /* If it is an `(', we have entered another level of nesting. */
2341 if (token->type == CPP_OPEN_PAREN)
2342 ++paren_depth;
2343 /* If it is a `)', then we might be done. */
2344 else if (token->type == CPP_CLOSE_PAREN && !paren_depth--)
2346 if (consume_paren)
2347 cp_lexer_consume_token (parser->lexer);
2349 result = 1;
2350 break;
2355 /* Consume the token. */
2356 cp_lexer_consume_token (parser->lexer);
2359 c_lex_string_translate = saved_c_lex_string_translate;
2360 return result;
2363 /* Consume tokens until we reach the end of the current statement.
2364 Normally, that will be just before consuming a `;'. However, if a
2365 non-nested `}' comes first, then we stop before consuming that. */
2367 static void
2368 cp_parser_skip_to_end_of_statement (cp_parser* parser)
2370 unsigned nesting_depth = 0;
2372 while (true)
2374 cp_token *token;
2376 /* Peek at the next token. */
2377 token = cp_lexer_peek_token (parser->lexer);
2378 /* If we've run out of tokens, stop. */
2379 if (token->type == CPP_EOF)
2380 break;
2381 /* If the next token is a `;', we have reached the end of the
2382 statement. */
2383 if (token->type == CPP_SEMICOLON && !nesting_depth)
2384 break;
2385 /* If the next token is a non-nested `}', then we have reached
2386 the end of the current block. */
2387 if (token->type == CPP_CLOSE_BRACE)
2389 /* If this is a non-nested `}', stop before consuming it.
2390 That way, when confronted with something like:
2392 { 3 + }
2394 we stop before consuming the closing `}', even though we
2395 have not yet reached a `;'. */
2396 if (nesting_depth == 0)
2397 break;
2398 /* If it is the closing `}' for a block that we have
2399 scanned, stop -- but only after consuming the token.
2400 That way given:
2402 void f g () { ... }
2403 typedef int I;
2405 we will stop after the body of the erroneously declared
2406 function, but before consuming the following `typedef'
2407 declaration. */
2408 if (--nesting_depth == 0)
2410 cp_lexer_consume_token (parser->lexer);
2411 break;
2414 /* If it the next token is a `{', then we are entering a new
2415 block. Consume the entire block. */
2416 else if (token->type == CPP_OPEN_BRACE)
2417 ++nesting_depth;
2418 /* Consume the token. */
2419 cp_lexer_consume_token (parser->lexer);
2423 /* This function is called at the end of a statement or declaration.
2424 If the next token is a semicolon, it is consumed; otherwise, error
2425 recovery is attempted. */
2427 static void
2428 cp_parser_consume_semicolon_at_end_of_statement (cp_parser *parser)
2430 /* Look for the trailing `;'. */
2431 if (!cp_parser_require (parser, CPP_SEMICOLON, "`;'"))
2433 /* If there is additional (erroneous) input, skip to the end of
2434 the statement. */
2435 cp_parser_skip_to_end_of_statement (parser);
2436 /* If the next token is now a `;', consume it. */
2437 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
2438 cp_lexer_consume_token (parser->lexer);
2442 /* Skip tokens until we have consumed an entire block, or until we
2443 have consumed a non-nested `;'. */
2445 static void
2446 cp_parser_skip_to_end_of_block_or_statement (cp_parser* parser)
2448 unsigned nesting_depth = 0;
2450 while (true)
2452 cp_token *token;
2454 /* Peek at the next token. */
2455 token = cp_lexer_peek_token (parser->lexer);
2456 /* If we've run out of tokens, stop. */
2457 if (token->type == CPP_EOF)
2458 break;
2459 /* If the next token is a `;', we have reached the end of the
2460 statement. */
2461 if (token->type == CPP_SEMICOLON && !nesting_depth)
2463 /* Consume the `;'. */
2464 cp_lexer_consume_token (parser->lexer);
2465 break;
2467 /* Consume the token. */
2468 token = cp_lexer_consume_token (parser->lexer);
2469 /* If the next token is a non-nested `}', then we have reached
2470 the end of the current block. */
2471 if (token->type == CPP_CLOSE_BRACE
2472 && (nesting_depth == 0 || --nesting_depth == 0))
2473 break;
2474 /* If it the next token is a `{', then we are entering a new
2475 block. Consume the entire block. */
2476 if (token->type == CPP_OPEN_BRACE)
2477 ++nesting_depth;
2481 /* Skip tokens until a non-nested closing curly brace is the next
2482 token. */
2484 static void
2485 cp_parser_skip_to_closing_brace (cp_parser *parser)
2487 unsigned nesting_depth = 0;
2489 while (true)
2491 cp_token *token;
2493 /* Peek at the next token. */
2494 token = cp_lexer_peek_token (parser->lexer);
2495 /* If we've run out of tokens, stop. */
2496 if (token->type == CPP_EOF)
2497 break;
2498 /* If the next token is a non-nested `}', then we have reached
2499 the end of the current block. */
2500 if (token->type == CPP_CLOSE_BRACE && nesting_depth-- == 0)
2501 break;
2502 /* If it the next token is a `{', then we are entering a new
2503 block. Consume the entire block. */
2504 else if (token->type == CPP_OPEN_BRACE)
2505 ++nesting_depth;
2506 /* Consume the token. */
2507 cp_lexer_consume_token (parser->lexer);
2511 /* This is a simple wrapper around make_typename_type. When the id is
2512 an unresolved identifier node, we can provide a superior diagnostic
2513 using cp_parser_diagnose_invalid_type_name. */
2515 static tree
2516 cp_parser_make_typename_type (cp_parser *parser, tree scope, tree id)
2518 tree result;
2519 if (TREE_CODE (id) == IDENTIFIER_NODE)
2521 result = make_typename_type (scope, id, /*complain=*/0);
2522 if (result == error_mark_node)
2523 cp_parser_diagnose_invalid_type_name (parser, scope, id);
2524 return result;
2526 return make_typename_type (scope, id, tf_error);
2530 /* Create a new C++ parser. */
2532 static cp_parser *
2533 cp_parser_new (void)
2535 cp_parser *parser;
2536 cp_lexer *lexer;
2538 /* cp_lexer_new_main is called before calling ggc_alloc because
2539 cp_lexer_new_main might load a PCH file. */
2540 lexer = cp_lexer_new_main ();
2542 parser = ggc_alloc_cleared (sizeof (cp_parser));
2543 parser->lexer = lexer;
2544 parser->context = cp_parser_context_new (NULL);
2546 /* For now, we always accept GNU extensions. */
2547 parser->allow_gnu_extensions_p = 1;
2549 /* The `>' token is a greater-than operator, not the end of a
2550 template-id. */
2551 parser->greater_than_is_operator_p = true;
2553 parser->default_arg_ok_p = true;
2555 /* We are not parsing a constant-expression. */
2556 parser->integral_constant_expression_p = false;
2557 parser->allow_non_integral_constant_expression_p = false;
2558 parser->non_integral_constant_expression_p = false;
2560 /* Local variable names are not forbidden. */
2561 parser->local_variables_forbidden_p = false;
2563 /* We are not processing an `extern "C"' declaration. */
2564 parser->in_unbraced_linkage_specification_p = false;
2566 /* We are not processing a declarator. */
2567 parser->in_declarator_p = false;
2569 /* We are not processing a template-argument-list. */
2570 parser->in_template_argument_list_p = false;
2572 /* We are not in an iteration statement. */
2573 parser->in_iteration_statement_p = false;
2575 /* We are not in a switch statement. */
2576 parser->in_switch_statement_p = false;
2578 /* We are not parsing a type-id inside an expression. */
2579 parser->in_type_id_in_expr_p = false;
2581 /* The unparsed function queue is empty. */
2582 parser->unparsed_functions_queues = build_tree_list (NULL_TREE, NULL_TREE);
2584 /* There are no classes being defined. */
2585 parser->num_classes_being_defined = 0;
2587 /* No template parameters apply. */
2588 parser->num_template_parameter_lists = 0;
2590 return parser;
2593 /* Lexical conventions [gram.lex] */
2595 /* Parse an identifier. Returns an IDENTIFIER_NODE representing the
2596 identifier. */
2598 static tree
2599 cp_parser_identifier (cp_parser* parser)
2601 cp_token *token;
2603 /* Look for the identifier. */
2604 token = cp_parser_require (parser, CPP_NAME, "identifier");
2605 /* Return the value. */
2606 return token ? token->value : error_mark_node;
2609 /* Basic concepts [gram.basic] */
2611 /* Parse a translation-unit.
2613 translation-unit:
2614 declaration-seq [opt]
2616 Returns TRUE if all went well. */
2618 static bool
2619 cp_parser_translation_unit (cp_parser* parser)
2621 /* The address of the first non-permanent object on the declarator
2622 obstack. */
2623 static void *declarator_obstack_base;
2625 bool success;
2627 /* Create the declarator obstack, if necessary. */
2628 if (!cp_error_declarator)
2630 gcc_obstack_init (&declarator_obstack);
2631 /* Create the error declarator. */
2632 cp_error_declarator = make_declarator (cdk_error);
2633 /* Create the empty parameter list. */
2634 no_parameters = make_parameter_declarator (NULL, NULL, NULL_TREE);
2635 /* Remember where the base of the declarator obstack lies. */
2636 declarator_obstack_base = obstack_next_free (&declarator_obstack);
2639 while (true)
2641 cp_parser_declaration_seq_opt (parser);
2643 /* If there are no tokens left then all went well. */
2644 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
2646 /* Consume the EOF token. */
2647 cp_parser_require (parser, CPP_EOF, "end-of-file");
2649 /* Finish up. */
2650 finish_translation_unit ();
2652 success = true;
2653 break;
2655 else
2657 cp_parser_error (parser, "expected declaration");
2658 success = false;
2659 break;
2663 /* Make sure the declarator obstack was fully cleaned up. */
2664 my_friendly_assert (obstack_next_free (&declarator_obstack) ==
2665 declarator_obstack_base,
2666 20040621);
2668 /* All went well. */
2669 return success;
2672 /* Expressions [gram.expr] */
2674 /* Parse a primary-expression.
2676 primary-expression:
2677 literal
2678 this
2679 ( expression )
2680 id-expression
2682 GNU Extensions:
2684 primary-expression:
2685 ( compound-statement )
2686 __builtin_va_arg ( assignment-expression , type-id )
2688 literal:
2689 __null
2691 Returns a representation of the expression.
2693 *IDK indicates what kind of id-expression (if any) was present.
2695 *QUALIFYING_CLASS is set to a non-NULL value if the id-expression can be
2696 used as the operand of a pointer-to-member. In that case,
2697 *QUALIFYING_CLASS gives the class that is used as the qualifying
2698 class in the pointer-to-member. */
2700 static tree
2701 cp_parser_primary_expression (cp_parser *parser,
2702 cp_id_kind *idk,
2703 tree *qualifying_class)
2705 cp_token *token;
2707 /* Assume the primary expression is not an id-expression. */
2708 *idk = CP_ID_KIND_NONE;
2709 /* And that it cannot be used as pointer-to-member. */
2710 *qualifying_class = NULL_TREE;
2712 /* Peek at the next token. */
2713 token = cp_lexer_peek_token (parser->lexer);
2714 switch (token->type)
2716 /* literal:
2717 integer-literal
2718 character-literal
2719 floating-literal
2720 string-literal
2721 boolean-literal */
2722 case CPP_CHAR:
2723 case CPP_WCHAR:
2724 case CPP_NUMBER:
2725 token = cp_lexer_consume_token (parser->lexer);
2726 return token->value;
2728 case CPP_STRING:
2729 case CPP_WSTRING:
2730 token = cp_lexer_consume_token (parser->lexer);
2731 if (TREE_CHAIN (token->value))
2732 return TREE_CHAIN (token->value);
2733 else
2734 return token->value;
2736 case CPP_OPEN_PAREN:
2738 tree expr;
2739 bool saved_greater_than_is_operator_p;
2741 /* Consume the `('. */
2742 cp_lexer_consume_token (parser->lexer);
2743 /* Within a parenthesized expression, a `>' token is always
2744 the greater-than operator. */
2745 saved_greater_than_is_operator_p
2746 = parser->greater_than_is_operator_p;
2747 parser->greater_than_is_operator_p = true;
2748 /* If we see `( { ' then we are looking at the beginning of
2749 a GNU statement-expression. */
2750 if (cp_parser_allow_gnu_extensions_p (parser)
2751 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
2753 /* Statement-expressions are not allowed by the standard. */
2754 if (pedantic)
2755 pedwarn ("ISO C++ forbids braced-groups within expressions");
2757 /* And they're not allowed outside of a function-body; you
2758 cannot, for example, write:
2760 int i = ({ int j = 3; j + 1; });
2762 at class or namespace scope. */
2763 if (!at_function_scope_p ())
2764 error ("statement-expressions are allowed only inside functions");
2765 /* Start the statement-expression. */
2766 expr = begin_stmt_expr ();
2767 /* Parse the compound-statement. */
2768 cp_parser_compound_statement (parser, expr, false);
2769 /* Finish up. */
2770 expr = finish_stmt_expr (expr, false);
2772 else
2774 /* Parse the parenthesized expression. */
2775 expr = cp_parser_expression (parser);
2776 /* Let the front end know that this expression was
2777 enclosed in parentheses. This matters in case, for
2778 example, the expression is of the form `A::B', since
2779 `&A::B' might be a pointer-to-member, but `&(A::B)' is
2780 not. */
2781 finish_parenthesized_expr (expr);
2783 /* The `>' token might be the end of a template-id or
2784 template-parameter-list now. */
2785 parser->greater_than_is_operator_p
2786 = saved_greater_than_is_operator_p;
2787 /* Consume the `)'. */
2788 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
2789 cp_parser_skip_to_end_of_statement (parser);
2791 return expr;
2794 case CPP_KEYWORD:
2795 switch (token->keyword)
2797 /* These two are the boolean literals. */
2798 case RID_TRUE:
2799 cp_lexer_consume_token (parser->lexer);
2800 return boolean_true_node;
2801 case RID_FALSE:
2802 cp_lexer_consume_token (parser->lexer);
2803 return boolean_false_node;
2805 /* The `__null' literal. */
2806 case RID_NULL:
2807 cp_lexer_consume_token (parser->lexer);
2808 return null_node;
2810 /* Recognize the `this' keyword. */
2811 case RID_THIS:
2812 cp_lexer_consume_token (parser->lexer);
2813 if (parser->local_variables_forbidden_p)
2815 error ("`this' may not be used in this context");
2816 return error_mark_node;
2818 /* Pointers cannot appear in constant-expressions. */
2819 if (cp_parser_non_integral_constant_expression (parser,
2820 "`this'"))
2821 return error_mark_node;
2822 return finish_this_expr ();
2824 /* The `operator' keyword can be the beginning of an
2825 id-expression. */
2826 case RID_OPERATOR:
2827 goto id_expression;
2829 case RID_FUNCTION_NAME:
2830 case RID_PRETTY_FUNCTION_NAME:
2831 case RID_C99_FUNCTION_NAME:
2832 /* The symbols __FUNCTION__, __PRETTY_FUNCTION__, and
2833 __func__ are the names of variables -- but they are
2834 treated specially. Therefore, they are handled here,
2835 rather than relying on the generic id-expression logic
2836 below. Grammatically, these names are id-expressions.
2838 Consume the token. */
2839 token = cp_lexer_consume_token (parser->lexer);
2840 /* Look up the name. */
2841 return finish_fname (token->value);
2843 case RID_VA_ARG:
2845 tree expression;
2846 tree type;
2848 /* The `__builtin_va_arg' construct is used to handle
2849 `va_arg'. Consume the `__builtin_va_arg' token. */
2850 cp_lexer_consume_token (parser->lexer);
2851 /* Look for the opening `('. */
2852 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
2853 /* Now, parse the assignment-expression. */
2854 expression = cp_parser_assignment_expression (parser);
2855 /* Look for the `,'. */
2856 cp_parser_require (parser, CPP_COMMA, "`,'");
2857 /* Parse the type-id. */
2858 type = cp_parser_type_id (parser);
2859 /* Look for the closing `)'. */
2860 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
2861 /* Using `va_arg' in a constant-expression is not
2862 allowed. */
2863 if (cp_parser_non_integral_constant_expression (parser,
2864 "`va_arg'"))
2865 return error_mark_node;
2866 return build_x_va_arg (expression, type);
2869 case RID_OFFSETOF:
2870 return cp_parser_builtin_offsetof (parser);
2872 default:
2873 cp_parser_error (parser, "expected primary-expression");
2874 return error_mark_node;
2877 /* An id-expression can start with either an identifier, a
2878 `::' as the beginning of a qualified-id, or the "operator"
2879 keyword. */
2880 case CPP_NAME:
2881 case CPP_SCOPE:
2882 case CPP_TEMPLATE_ID:
2883 case CPP_NESTED_NAME_SPECIFIER:
2885 tree id_expression;
2886 tree decl;
2887 const char *error_msg;
2889 id_expression:
2890 /* Parse the id-expression. */
2891 id_expression
2892 = cp_parser_id_expression (parser,
2893 /*template_keyword_p=*/false,
2894 /*check_dependency_p=*/true,
2895 /*template_p=*/NULL,
2896 /*declarator_p=*/false);
2897 if (id_expression == error_mark_node)
2898 return error_mark_node;
2899 /* If we have a template-id, then no further lookup is
2900 required. If the template-id was for a template-class, we
2901 will sometimes have a TYPE_DECL at this point. */
2902 else if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR
2903 || TREE_CODE (id_expression) == TYPE_DECL)
2904 decl = id_expression;
2905 /* Look up the name. */
2906 else
2908 decl = cp_parser_lookup_name_simple (parser, id_expression);
2909 /* If name lookup gives us a SCOPE_REF, then the
2910 qualifying scope was dependent. Just propagate the
2911 name. */
2912 if (TREE_CODE (decl) == SCOPE_REF)
2914 if (TYPE_P (TREE_OPERAND (decl, 0)))
2915 *qualifying_class = TREE_OPERAND (decl, 0);
2916 return decl;
2918 /* Check to see if DECL is a local variable in a context
2919 where that is forbidden. */
2920 if (parser->local_variables_forbidden_p
2921 && local_variable_p (decl))
2923 /* It might be that we only found DECL because we are
2924 trying to be generous with pre-ISO scoping rules.
2925 For example, consider:
2927 int i;
2928 void g() {
2929 for (int i = 0; i < 10; ++i) {}
2930 extern void f(int j = i);
2933 Here, name look up will originally find the out
2934 of scope `i'. We need to issue a warning message,
2935 but then use the global `i'. */
2936 decl = check_for_out_of_scope_variable (decl);
2937 if (local_variable_p (decl))
2939 error ("local variable `%D' may not appear in this context",
2940 decl);
2941 return error_mark_node;
2946 decl = finish_id_expression (id_expression, decl, parser->scope,
2947 idk, qualifying_class,
2948 parser->integral_constant_expression_p,
2949 parser->allow_non_integral_constant_expression_p,
2950 &parser->non_integral_constant_expression_p,
2951 &error_msg);
2952 if (error_msg)
2953 cp_parser_error (parser, error_msg);
2954 return decl;
2957 /* Anything else is an error. */
2958 default:
2959 cp_parser_error (parser, "expected primary-expression");
2960 return error_mark_node;
2964 /* Parse an id-expression.
2966 id-expression:
2967 unqualified-id
2968 qualified-id
2970 qualified-id:
2971 :: [opt] nested-name-specifier template [opt] unqualified-id
2972 :: identifier
2973 :: operator-function-id
2974 :: template-id
2976 Return a representation of the unqualified portion of the
2977 identifier. Sets PARSER->SCOPE to the qualifying scope if there is
2978 a `::' or nested-name-specifier.
2980 Often, if the id-expression was a qualified-id, the caller will
2981 want to make a SCOPE_REF to represent the qualified-id. This
2982 function does not do this in order to avoid wastefully creating
2983 SCOPE_REFs when they are not required.
2985 If TEMPLATE_KEYWORD_P is true, then we have just seen the
2986 `template' keyword.
2988 If CHECK_DEPENDENCY_P is false, then names are looked up inside
2989 uninstantiated templates.
2991 If *TEMPLATE_P is non-NULL, it is set to true iff the
2992 `template' keyword is used to explicitly indicate that the entity
2993 named is a template.
2995 If DECLARATOR_P is true, the id-expression is appearing as part of
2996 a declarator, rather than as part of an expression. */
2998 static tree
2999 cp_parser_id_expression (cp_parser *parser,
3000 bool template_keyword_p,
3001 bool check_dependency_p,
3002 bool *template_p,
3003 bool declarator_p)
3005 bool global_scope_p;
3006 bool nested_name_specifier_p;
3008 /* Assume the `template' keyword was not used. */
3009 if (template_p)
3010 *template_p = false;
3012 /* Look for the optional `::' operator. */
3013 global_scope_p
3014 = (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false)
3015 != NULL_TREE);
3016 /* Look for the optional nested-name-specifier. */
3017 nested_name_specifier_p
3018 = (cp_parser_nested_name_specifier_opt (parser,
3019 /*typename_keyword_p=*/false,
3020 check_dependency_p,
3021 /*type_p=*/false,
3022 /*is_declarator=*/false)
3023 != NULL_TREE);
3024 /* If there is a nested-name-specifier, then we are looking at
3025 the first qualified-id production. */
3026 if (nested_name_specifier_p)
3028 tree saved_scope;
3029 tree saved_object_scope;
3030 tree saved_qualifying_scope;
3031 tree unqualified_id;
3032 bool is_template;
3034 /* See if the next token is the `template' keyword. */
3035 if (!template_p)
3036 template_p = &is_template;
3037 *template_p = cp_parser_optional_template_keyword (parser);
3038 /* Name lookup we do during the processing of the
3039 unqualified-id might obliterate SCOPE. */
3040 saved_scope = parser->scope;
3041 saved_object_scope = parser->object_scope;
3042 saved_qualifying_scope = parser->qualifying_scope;
3043 /* Process the final unqualified-id. */
3044 unqualified_id = cp_parser_unqualified_id (parser, *template_p,
3045 check_dependency_p,
3046 declarator_p);
3047 /* Restore the SAVED_SCOPE for our caller. */
3048 parser->scope = saved_scope;
3049 parser->object_scope = saved_object_scope;
3050 parser->qualifying_scope = saved_qualifying_scope;
3052 return unqualified_id;
3054 /* Otherwise, if we are in global scope, then we are looking at one
3055 of the other qualified-id productions. */
3056 else if (global_scope_p)
3058 cp_token *token;
3059 tree id;
3061 /* Peek at the next token. */
3062 token = cp_lexer_peek_token (parser->lexer);
3064 /* If it's an identifier, and the next token is not a "<", then
3065 we can avoid the template-id case. This is an optimization
3066 for this common case. */
3067 if (token->type == CPP_NAME
3068 && !cp_parser_nth_token_starts_template_argument_list_p
3069 (parser, 2))
3070 return cp_parser_identifier (parser);
3072 cp_parser_parse_tentatively (parser);
3073 /* Try a template-id. */
3074 id = cp_parser_template_id (parser,
3075 /*template_keyword_p=*/false,
3076 /*check_dependency_p=*/true,
3077 declarator_p);
3078 /* If that worked, we're done. */
3079 if (cp_parser_parse_definitely (parser))
3080 return id;
3082 /* Peek at the next token. (Changes in the token buffer may
3083 have invalidated the pointer obtained above.) */
3084 token = cp_lexer_peek_token (parser->lexer);
3086 switch (token->type)
3088 case CPP_NAME:
3089 return cp_parser_identifier (parser);
3091 case CPP_KEYWORD:
3092 if (token->keyword == RID_OPERATOR)
3093 return cp_parser_operator_function_id (parser);
3094 /* Fall through. */
3096 default:
3097 cp_parser_error (parser, "expected id-expression");
3098 return error_mark_node;
3101 else
3102 return cp_parser_unqualified_id (parser, template_keyword_p,
3103 /*check_dependency_p=*/true,
3104 declarator_p);
3107 /* Parse an unqualified-id.
3109 unqualified-id:
3110 identifier
3111 operator-function-id
3112 conversion-function-id
3113 ~ class-name
3114 template-id
3116 If TEMPLATE_KEYWORD_P is TRUE, we have just seen the `template'
3117 keyword, in a construct like `A::template ...'.
3119 Returns a representation of unqualified-id. For the `identifier'
3120 production, an IDENTIFIER_NODE is returned. For the `~ class-name'
3121 production a BIT_NOT_EXPR is returned; the operand of the
3122 BIT_NOT_EXPR is an IDENTIFIER_NODE for the class-name. For the
3123 other productions, see the documentation accompanying the
3124 corresponding parsing functions. If CHECK_DEPENDENCY_P is false,
3125 names are looked up in uninstantiated templates. If DECLARATOR_P
3126 is true, the unqualified-id is appearing as part of a declarator,
3127 rather than as part of an expression. */
3129 static tree
3130 cp_parser_unqualified_id (cp_parser* parser,
3131 bool template_keyword_p,
3132 bool check_dependency_p,
3133 bool declarator_p)
3135 cp_token *token;
3137 /* Peek at the next token. */
3138 token = cp_lexer_peek_token (parser->lexer);
3140 switch (token->type)
3142 case CPP_NAME:
3144 tree id;
3146 /* We don't know yet whether or not this will be a
3147 template-id. */
3148 cp_parser_parse_tentatively (parser);
3149 /* Try a template-id. */
3150 id = cp_parser_template_id (parser, template_keyword_p,
3151 check_dependency_p,
3152 declarator_p);
3153 /* If it worked, we're done. */
3154 if (cp_parser_parse_definitely (parser))
3155 return id;
3156 /* Otherwise, it's an ordinary identifier. */
3157 return cp_parser_identifier (parser);
3160 case CPP_TEMPLATE_ID:
3161 return cp_parser_template_id (parser, template_keyword_p,
3162 check_dependency_p,
3163 declarator_p);
3165 case CPP_COMPL:
3167 tree type_decl;
3168 tree qualifying_scope;
3169 tree object_scope;
3170 tree scope;
3172 /* Consume the `~' token. */
3173 cp_lexer_consume_token (parser->lexer);
3174 /* Parse the class-name. The standard, as written, seems to
3175 say that:
3177 template <typename T> struct S { ~S (); };
3178 template <typename T> S<T>::~S() {}
3180 is invalid, since `~' must be followed by a class-name, but
3181 `S<T>' is dependent, and so not known to be a class.
3182 That's not right; we need to look in uninstantiated
3183 templates. A further complication arises from:
3185 template <typename T> void f(T t) {
3186 t.T::~T();
3189 Here, it is not possible to look up `T' in the scope of `T'
3190 itself. We must look in both the current scope, and the
3191 scope of the containing complete expression.
3193 Yet another issue is:
3195 struct S {
3196 int S;
3197 ~S();
3200 S::~S() {}
3202 The standard does not seem to say that the `S' in `~S'
3203 should refer to the type `S' and not the data member
3204 `S::S'. */
3206 /* DR 244 says that we look up the name after the "~" in the
3207 same scope as we looked up the qualifying name. That idea
3208 isn't fully worked out; it's more complicated than that. */
3209 scope = parser->scope;
3210 object_scope = parser->object_scope;
3211 qualifying_scope = parser->qualifying_scope;
3213 /* If the name is of the form "X::~X" it's OK. */
3214 if (scope && TYPE_P (scope)
3215 && cp_lexer_next_token_is (parser->lexer, CPP_NAME)
3216 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
3217 == CPP_OPEN_PAREN)
3218 && (cp_lexer_peek_token (parser->lexer)->value
3219 == TYPE_IDENTIFIER (scope)))
3221 cp_lexer_consume_token (parser->lexer);
3222 return build_nt (BIT_NOT_EXPR, scope);
3225 /* If there was an explicit qualification (S::~T), first look
3226 in the scope given by the qualification (i.e., S). */
3227 if (scope)
3229 cp_parser_parse_tentatively (parser);
3230 type_decl = cp_parser_class_name (parser,
3231 /*typename_keyword_p=*/false,
3232 /*template_keyword_p=*/false,
3233 /*type_p=*/false,
3234 /*check_dependency=*/false,
3235 /*class_head_p=*/false,
3236 declarator_p);
3237 if (cp_parser_parse_definitely (parser))
3238 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3240 /* In "N::S::~S", look in "N" as well. */
3241 if (scope && qualifying_scope)
3243 cp_parser_parse_tentatively (parser);
3244 parser->scope = qualifying_scope;
3245 parser->object_scope = NULL_TREE;
3246 parser->qualifying_scope = NULL_TREE;
3247 type_decl
3248 = cp_parser_class_name (parser,
3249 /*typename_keyword_p=*/false,
3250 /*template_keyword_p=*/false,
3251 /*type_p=*/false,
3252 /*check_dependency=*/false,
3253 /*class_head_p=*/false,
3254 declarator_p);
3255 if (cp_parser_parse_definitely (parser))
3256 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3258 /* In "p->S::~T", look in the scope given by "*p" as well. */
3259 else if (object_scope)
3261 cp_parser_parse_tentatively (parser);
3262 parser->scope = object_scope;
3263 parser->object_scope = NULL_TREE;
3264 parser->qualifying_scope = NULL_TREE;
3265 type_decl
3266 = cp_parser_class_name (parser,
3267 /*typename_keyword_p=*/false,
3268 /*template_keyword_p=*/false,
3269 /*type_p=*/false,
3270 /*check_dependency=*/false,
3271 /*class_head_p=*/false,
3272 declarator_p);
3273 if (cp_parser_parse_definitely (parser))
3274 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3276 /* Look in the surrounding context. */
3277 parser->scope = NULL_TREE;
3278 parser->object_scope = NULL_TREE;
3279 parser->qualifying_scope = NULL_TREE;
3280 type_decl
3281 = cp_parser_class_name (parser,
3282 /*typename_keyword_p=*/false,
3283 /*template_keyword_p=*/false,
3284 /*type_p=*/false,
3285 /*check_dependency=*/false,
3286 /*class_head_p=*/false,
3287 declarator_p);
3288 /* If an error occurred, assume that the name of the
3289 destructor is the same as the name of the qualifying
3290 class. That allows us to keep parsing after running
3291 into ill-formed destructor names. */
3292 if (type_decl == error_mark_node && scope && TYPE_P (scope))
3293 return build_nt (BIT_NOT_EXPR, scope);
3294 else if (type_decl == error_mark_node)
3295 return error_mark_node;
3297 /* [class.dtor]
3299 A typedef-name that names a class shall not be used as the
3300 identifier in the declarator for a destructor declaration. */
3301 if (declarator_p
3302 && !DECL_IMPLICIT_TYPEDEF_P (type_decl)
3303 && !DECL_SELF_REFERENCE_P (type_decl))
3304 error ("typedef-name `%D' used as destructor declarator",
3305 type_decl);
3307 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3310 case CPP_KEYWORD:
3311 if (token->keyword == RID_OPERATOR)
3313 tree id;
3315 /* This could be a template-id, so we try that first. */
3316 cp_parser_parse_tentatively (parser);
3317 /* Try a template-id. */
3318 id = cp_parser_template_id (parser, template_keyword_p,
3319 /*check_dependency_p=*/true,
3320 declarator_p);
3321 /* If that worked, we're done. */
3322 if (cp_parser_parse_definitely (parser))
3323 return id;
3324 /* We still don't know whether we're looking at an
3325 operator-function-id or a conversion-function-id. */
3326 cp_parser_parse_tentatively (parser);
3327 /* Try an operator-function-id. */
3328 id = cp_parser_operator_function_id (parser);
3329 /* If that didn't work, try a conversion-function-id. */
3330 if (!cp_parser_parse_definitely (parser))
3331 id = cp_parser_conversion_function_id (parser);
3333 return id;
3335 /* Fall through. */
3337 default:
3338 cp_parser_error (parser, "expected unqualified-id");
3339 return error_mark_node;
3343 /* Parse an (optional) nested-name-specifier.
3345 nested-name-specifier:
3346 class-or-namespace-name :: nested-name-specifier [opt]
3347 class-or-namespace-name :: template nested-name-specifier [opt]
3349 PARSER->SCOPE should be set appropriately before this function is
3350 called. TYPENAME_KEYWORD_P is TRUE if the `typename' keyword is in
3351 effect. TYPE_P is TRUE if we non-type bindings should be ignored
3352 in name lookups.
3354 Sets PARSER->SCOPE to the class (TYPE) or namespace
3355 (NAMESPACE_DECL) specified by the nested-name-specifier, or leaves
3356 it unchanged if there is no nested-name-specifier. Returns the new
3357 scope iff there is a nested-name-specifier, or NULL_TREE otherwise.
3359 If IS_DECLARATION is TRUE, the nested-name-specifier is known to be
3360 part of a declaration and/or decl-specifier. */
3362 static tree
3363 cp_parser_nested_name_specifier_opt (cp_parser *parser,
3364 bool typename_keyword_p,
3365 bool check_dependency_p,
3366 bool type_p,
3367 bool is_declaration)
3369 bool success = false;
3370 tree access_check = NULL_TREE;
3371 ptrdiff_t start;
3372 cp_token* token;
3374 /* If the next token corresponds to a nested name specifier, there
3375 is no need to reparse it. However, if CHECK_DEPENDENCY_P is
3376 false, it may have been true before, in which case something
3377 like `A<X>::B<Y>::C' may have resulted in a nested-name-specifier
3378 of `A<X>::', where it should now be `A<X>::B<Y>::'. So, when
3379 CHECK_DEPENDENCY_P is false, we have to fall through into the
3380 main loop. */
3381 if (check_dependency_p
3382 && cp_lexer_next_token_is (parser->lexer, CPP_NESTED_NAME_SPECIFIER))
3384 cp_parser_pre_parsed_nested_name_specifier (parser);
3385 return parser->scope;
3388 /* Remember where the nested-name-specifier starts. */
3389 if (cp_parser_parsing_tentatively (parser)
3390 && !cp_parser_committed_to_tentative_parse (parser))
3392 token = cp_lexer_peek_token (parser->lexer);
3393 start = cp_lexer_token_difference (parser->lexer,
3394 parser->lexer->first_token,
3395 token);
3397 else
3398 start = -1;
3400 push_deferring_access_checks (dk_deferred);
3402 while (true)
3404 tree new_scope;
3405 tree old_scope;
3406 tree saved_qualifying_scope;
3407 bool template_keyword_p;
3409 /* Spot cases that cannot be the beginning of a
3410 nested-name-specifier. */
3411 token = cp_lexer_peek_token (parser->lexer);
3413 /* If the next token is CPP_NESTED_NAME_SPECIFIER, just process
3414 the already parsed nested-name-specifier. */
3415 if (token->type == CPP_NESTED_NAME_SPECIFIER)
3417 /* Grab the nested-name-specifier and continue the loop. */
3418 cp_parser_pre_parsed_nested_name_specifier (parser);
3419 success = true;
3420 continue;
3423 /* Spot cases that cannot be the beginning of a
3424 nested-name-specifier. On the second and subsequent times
3425 through the loop, we look for the `template' keyword. */
3426 if (success && token->keyword == RID_TEMPLATE)
3428 /* A template-id can start a nested-name-specifier. */
3429 else if (token->type == CPP_TEMPLATE_ID)
3431 else
3433 /* If the next token is not an identifier, then it is
3434 definitely not a class-or-namespace-name. */
3435 if (token->type != CPP_NAME)
3436 break;
3437 /* If the following token is neither a `<' (to begin a
3438 template-id), nor a `::', then we are not looking at a
3439 nested-name-specifier. */
3440 token = cp_lexer_peek_nth_token (parser->lexer, 2);
3441 if (token->type != CPP_SCOPE
3442 && !cp_parser_nth_token_starts_template_argument_list_p
3443 (parser, 2))
3444 break;
3447 /* The nested-name-specifier is optional, so we parse
3448 tentatively. */
3449 cp_parser_parse_tentatively (parser);
3451 /* Look for the optional `template' keyword, if this isn't the
3452 first time through the loop. */
3453 if (success)
3454 template_keyword_p = cp_parser_optional_template_keyword (parser);
3455 else
3456 template_keyword_p = false;
3458 /* Save the old scope since the name lookup we are about to do
3459 might destroy it. */
3460 old_scope = parser->scope;
3461 saved_qualifying_scope = parser->qualifying_scope;
3462 /* Parse the qualifying entity. */
3463 new_scope
3464 = cp_parser_class_or_namespace_name (parser,
3465 typename_keyword_p,
3466 template_keyword_p,
3467 check_dependency_p,
3468 type_p,
3469 is_declaration);
3470 /* Look for the `::' token. */
3471 cp_parser_require (parser, CPP_SCOPE, "`::'");
3473 /* If we found what we wanted, we keep going; otherwise, we're
3474 done. */
3475 if (!cp_parser_parse_definitely (parser))
3477 bool error_p = false;
3479 /* Restore the OLD_SCOPE since it was valid before the
3480 failed attempt at finding the last
3481 class-or-namespace-name. */
3482 parser->scope = old_scope;
3483 parser->qualifying_scope = saved_qualifying_scope;
3484 /* If the next token is an identifier, and the one after
3485 that is a `::', then any valid interpretation would have
3486 found a class-or-namespace-name. */
3487 while (cp_lexer_next_token_is (parser->lexer, CPP_NAME)
3488 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
3489 == CPP_SCOPE)
3490 && (cp_lexer_peek_nth_token (parser->lexer, 3)->type
3491 != CPP_COMPL))
3493 token = cp_lexer_consume_token (parser->lexer);
3494 if (!error_p)
3496 tree decl;
3498 decl = cp_parser_lookup_name_simple (parser, token->value);
3499 if (TREE_CODE (decl) == TEMPLATE_DECL)
3500 error ("`%D' used without template parameters",
3501 decl);
3502 else
3503 cp_parser_name_lookup_error
3504 (parser, token->value, decl,
3505 "is not a class or namespace");
3506 parser->scope = NULL_TREE;
3507 error_p = true;
3508 /* Treat this as a successful nested-name-specifier
3509 due to:
3511 [basic.lookup.qual]
3513 If the name found is not a class-name (clause
3514 _class_) or namespace-name (_namespace.def_), the
3515 program is ill-formed. */
3516 success = true;
3518 cp_lexer_consume_token (parser->lexer);
3520 break;
3523 /* We've found one valid nested-name-specifier. */
3524 success = true;
3525 /* Make sure we look in the right scope the next time through
3526 the loop. */
3527 parser->scope = (TREE_CODE (new_scope) == TYPE_DECL
3528 ? TREE_TYPE (new_scope)
3529 : new_scope);
3530 /* If it is a class scope, try to complete it; we are about to
3531 be looking up names inside the class. */
3532 if (TYPE_P (parser->scope)
3533 /* Since checking types for dependency can be expensive,
3534 avoid doing it if the type is already complete. */
3535 && !COMPLETE_TYPE_P (parser->scope)
3536 /* Do not try to complete dependent types. */
3537 && !dependent_type_p (parser->scope))
3538 complete_type (parser->scope);
3541 /* Retrieve any deferred checks. Do not pop this access checks yet
3542 so the memory will not be reclaimed during token replacing below. */
3543 access_check = get_deferred_access_checks ();
3545 /* If parsing tentatively, replace the sequence of tokens that makes
3546 up the nested-name-specifier with a CPP_NESTED_NAME_SPECIFIER
3547 token. That way, should we re-parse the token stream, we will
3548 not have to repeat the effort required to do the parse, nor will
3549 we issue duplicate error messages. */
3550 if (success && start >= 0)
3552 /* Find the token that corresponds to the start of the
3553 template-id. */
3554 token = cp_lexer_advance_token (parser->lexer,
3555 parser->lexer->first_token,
3556 start);
3558 /* Reset the contents of the START token. */
3559 token->type = CPP_NESTED_NAME_SPECIFIER;
3560 token->value = build_tree_list (access_check, parser->scope);
3561 TREE_TYPE (token->value) = parser->qualifying_scope;
3562 token->keyword = RID_MAX;
3563 /* Purge all subsequent tokens. */
3564 cp_lexer_purge_tokens_after (parser->lexer, token);
3567 pop_deferring_access_checks ();
3568 return success ? parser->scope : NULL_TREE;
3571 /* Parse a nested-name-specifier. See
3572 cp_parser_nested_name_specifier_opt for details. This function
3573 behaves identically, except that it will an issue an error if no
3574 nested-name-specifier is present, and it will return
3575 ERROR_MARK_NODE, rather than NULL_TREE, if no nested-name-specifier
3576 is present. */
3578 static tree
3579 cp_parser_nested_name_specifier (cp_parser *parser,
3580 bool typename_keyword_p,
3581 bool check_dependency_p,
3582 bool type_p,
3583 bool is_declaration)
3585 tree scope;
3587 /* Look for the nested-name-specifier. */
3588 scope = cp_parser_nested_name_specifier_opt (parser,
3589 typename_keyword_p,
3590 check_dependency_p,
3591 type_p,
3592 is_declaration);
3593 /* If it was not present, issue an error message. */
3594 if (!scope)
3596 cp_parser_error (parser, "expected nested-name-specifier");
3597 parser->scope = NULL_TREE;
3598 return error_mark_node;
3601 return scope;
3604 /* Parse a class-or-namespace-name.
3606 class-or-namespace-name:
3607 class-name
3608 namespace-name
3610 TYPENAME_KEYWORD_P is TRUE iff the `typename' keyword is in effect.
3611 TEMPLATE_KEYWORD_P is TRUE iff the `template' keyword is in effect.
3612 CHECK_DEPENDENCY_P is FALSE iff dependent names should be looked up.
3613 TYPE_P is TRUE iff the next name should be taken as a class-name,
3614 even the same name is declared to be another entity in the same
3615 scope.
3617 Returns the class (TYPE_DECL) or namespace (NAMESPACE_DECL)
3618 specified by the class-or-namespace-name. If neither is found the
3619 ERROR_MARK_NODE is returned. */
3621 static tree
3622 cp_parser_class_or_namespace_name (cp_parser *parser,
3623 bool typename_keyword_p,
3624 bool template_keyword_p,
3625 bool check_dependency_p,
3626 bool type_p,
3627 bool is_declaration)
3629 tree saved_scope;
3630 tree saved_qualifying_scope;
3631 tree saved_object_scope;
3632 tree scope;
3633 bool only_class_p;
3635 /* Before we try to parse the class-name, we must save away the
3636 current PARSER->SCOPE since cp_parser_class_name will destroy
3637 it. */
3638 saved_scope = parser->scope;
3639 saved_qualifying_scope = parser->qualifying_scope;
3640 saved_object_scope = parser->object_scope;
3641 /* Try for a class-name first. If the SAVED_SCOPE is a type, then
3642 there is no need to look for a namespace-name. */
3643 only_class_p = template_keyword_p || (saved_scope && TYPE_P (saved_scope));
3644 if (!only_class_p)
3645 cp_parser_parse_tentatively (parser);
3646 scope = cp_parser_class_name (parser,
3647 typename_keyword_p,
3648 template_keyword_p,
3649 type_p,
3650 check_dependency_p,
3651 /*class_head_p=*/false,
3652 is_declaration);
3653 /* If that didn't work, try for a namespace-name. */
3654 if (!only_class_p && !cp_parser_parse_definitely (parser))
3656 /* Restore the saved scope. */
3657 parser->scope = saved_scope;
3658 parser->qualifying_scope = saved_qualifying_scope;
3659 parser->object_scope = saved_object_scope;
3660 /* If we are not looking at an identifier followed by the scope
3661 resolution operator, then this is not part of a
3662 nested-name-specifier. (Note that this function is only used
3663 to parse the components of a nested-name-specifier.) */
3664 if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME)
3665 || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SCOPE)
3666 return error_mark_node;
3667 scope = cp_parser_namespace_name (parser);
3670 return scope;
3673 /* Parse a postfix-expression.
3675 postfix-expression:
3676 primary-expression
3677 postfix-expression [ expression ]
3678 postfix-expression ( expression-list [opt] )
3679 simple-type-specifier ( expression-list [opt] )
3680 typename :: [opt] nested-name-specifier identifier
3681 ( expression-list [opt] )
3682 typename :: [opt] nested-name-specifier template [opt] template-id
3683 ( expression-list [opt] )
3684 postfix-expression . template [opt] id-expression
3685 postfix-expression -> template [opt] id-expression
3686 postfix-expression . pseudo-destructor-name
3687 postfix-expression -> pseudo-destructor-name
3688 postfix-expression ++
3689 postfix-expression --
3690 dynamic_cast < type-id > ( expression )
3691 static_cast < type-id > ( expression )
3692 reinterpret_cast < type-id > ( expression )
3693 const_cast < type-id > ( expression )
3694 typeid ( expression )
3695 typeid ( type-id )
3697 GNU Extension:
3699 postfix-expression:
3700 ( type-id ) { initializer-list , [opt] }
3702 This extension is a GNU version of the C99 compound-literal
3703 construct. (The C99 grammar uses `type-name' instead of `type-id',
3704 but they are essentially the same concept.)
3706 If ADDRESS_P is true, the postfix expression is the operand of the
3707 `&' operator.
3709 Returns a representation of the expression. */
3711 static tree
3712 cp_parser_postfix_expression (cp_parser *parser, bool address_p)
3714 cp_token *token;
3715 enum rid keyword;
3716 cp_id_kind idk = CP_ID_KIND_NONE;
3717 tree postfix_expression = NULL_TREE;
3718 /* Non-NULL only if the current postfix-expression can be used to
3719 form a pointer-to-member. In that case, QUALIFYING_CLASS is the
3720 class used to qualify the member. */
3721 tree qualifying_class = NULL_TREE;
3723 /* Peek at the next token. */
3724 token = cp_lexer_peek_token (parser->lexer);
3725 /* Some of the productions are determined by keywords. */
3726 keyword = token->keyword;
3727 switch (keyword)
3729 case RID_DYNCAST:
3730 case RID_STATCAST:
3731 case RID_REINTCAST:
3732 case RID_CONSTCAST:
3734 tree type;
3735 tree expression;
3736 const char *saved_message;
3738 /* All of these can be handled in the same way from the point
3739 of view of parsing. Begin by consuming the token
3740 identifying the cast. */
3741 cp_lexer_consume_token (parser->lexer);
3743 /* New types cannot be defined in the cast. */
3744 saved_message = parser->type_definition_forbidden_message;
3745 parser->type_definition_forbidden_message
3746 = "types may not be defined in casts";
3748 /* Look for the opening `<'. */
3749 cp_parser_require (parser, CPP_LESS, "`<'");
3750 /* Parse the type to which we are casting. */
3751 type = cp_parser_type_id (parser);
3752 /* Look for the closing `>'. */
3753 cp_parser_require (parser, CPP_GREATER, "`>'");
3754 /* Restore the old message. */
3755 parser->type_definition_forbidden_message = saved_message;
3757 /* And the expression which is being cast. */
3758 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
3759 expression = cp_parser_expression (parser);
3760 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3762 /* Only type conversions to integral or enumeration types
3763 can be used in constant-expressions. */
3764 if (parser->integral_constant_expression_p
3765 && !dependent_type_p (type)
3766 && !INTEGRAL_OR_ENUMERATION_TYPE_P (type)
3767 && (cp_parser_non_integral_constant_expression
3768 (parser,
3769 "a cast to a type other than an integral or "
3770 "enumeration type")))
3771 return error_mark_node;
3773 switch (keyword)
3775 case RID_DYNCAST:
3776 postfix_expression
3777 = build_dynamic_cast (type, expression);
3778 break;
3779 case RID_STATCAST:
3780 postfix_expression
3781 = build_static_cast (type, expression);
3782 break;
3783 case RID_REINTCAST:
3784 postfix_expression
3785 = build_reinterpret_cast (type, expression);
3786 break;
3787 case RID_CONSTCAST:
3788 postfix_expression
3789 = build_const_cast (type, expression);
3790 break;
3791 default:
3792 abort ();
3795 break;
3797 case RID_TYPEID:
3799 tree type;
3800 const char *saved_message;
3801 bool saved_in_type_id_in_expr_p;
3803 /* Consume the `typeid' token. */
3804 cp_lexer_consume_token (parser->lexer);
3805 /* Look for the `(' token. */
3806 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
3807 /* Types cannot be defined in a `typeid' expression. */
3808 saved_message = parser->type_definition_forbidden_message;
3809 parser->type_definition_forbidden_message
3810 = "types may not be defined in a `typeid\' expression";
3811 /* We can't be sure yet whether we're looking at a type-id or an
3812 expression. */
3813 cp_parser_parse_tentatively (parser);
3814 /* Try a type-id first. */
3815 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
3816 parser->in_type_id_in_expr_p = true;
3817 type = cp_parser_type_id (parser);
3818 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
3819 /* Look for the `)' token. Otherwise, we can't be sure that
3820 we're not looking at an expression: consider `typeid (int
3821 (3))', for example. */
3822 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3823 /* If all went well, simply lookup the type-id. */
3824 if (cp_parser_parse_definitely (parser))
3825 postfix_expression = get_typeid (type);
3826 /* Otherwise, fall back to the expression variant. */
3827 else
3829 tree expression;
3831 /* Look for an expression. */
3832 expression = cp_parser_expression (parser);
3833 /* Compute its typeid. */
3834 postfix_expression = build_typeid (expression);
3835 /* Look for the `)' token. */
3836 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3838 /* `typeid' may not appear in an integral constant expression. */
3839 if (cp_parser_non_integral_constant_expression(parser,
3840 "`typeid' operator"))
3841 return error_mark_node;
3842 /* Restore the saved message. */
3843 parser->type_definition_forbidden_message = saved_message;
3845 break;
3847 case RID_TYPENAME:
3849 bool template_p = false;
3850 tree id;
3851 tree type;
3853 /* Consume the `typename' token. */
3854 cp_lexer_consume_token (parser->lexer);
3855 /* Look for the optional `::' operator. */
3856 cp_parser_global_scope_opt (parser,
3857 /*current_scope_valid_p=*/false);
3858 /* Look for the nested-name-specifier. */
3859 cp_parser_nested_name_specifier (parser,
3860 /*typename_keyword_p=*/true,
3861 /*check_dependency_p=*/true,
3862 /*type_p=*/true,
3863 /*is_declaration=*/true);
3864 /* Look for the optional `template' keyword. */
3865 template_p = cp_parser_optional_template_keyword (parser);
3866 /* We don't know whether we're looking at a template-id or an
3867 identifier. */
3868 cp_parser_parse_tentatively (parser);
3869 /* Try a template-id. */
3870 id = cp_parser_template_id (parser, template_p,
3871 /*check_dependency_p=*/true,
3872 /*is_declaration=*/true);
3873 /* If that didn't work, try an identifier. */
3874 if (!cp_parser_parse_definitely (parser))
3875 id = cp_parser_identifier (parser);
3876 /* If we look up a template-id in a non-dependent qualifying
3877 scope, there's no need to create a dependent type. */
3878 if (TREE_CODE (id) == TYPE_DECL
3879 && !dependent_type_p (parser->scope))
3880 type = TREE_TYPE (id);
3881 /* Create a TYPENAME_TYPE to represent the type to which the
3882 functional cast is being performed. */
3883 else
3884 type = make_typename_type (parser->scope, id,
3885 /*complain=*/1);
3887 postfix_expression = cp_parser_functional_cast (parser, type);
3889 break;
3891 default:
3893 tree type;
3895 /* If the next thing is a simple-type-specifier, we may be
3896 looking at a functional cast. We could also be looking at
3897 an id-expression. So, we try the functional cast, and if
3898 that doesn't work we fall back to the primary-expression. */
3899 cp_parser_parse_tentatively (parser);
3900 /* Look for the simple-type-specifier. */
3901 type = cp_parser_simple_type_specifier (parser,
3902 /*decl_specs=*/NULL,
3903 CP_PARSER_FLAGS_NONE);
3904 /* Parse the cast itself. */
3905 if (!cp_parser_error_occurred (parser))
3906 postfix_expression
3907 = cp_parser_functional_cast (parser, type);
3908 /* If that worked, we're done. */
3909 if (cp_parser_parse_definitely (parser))
3910 break;
3912 /* If the functional-cast didn't work out, try a
3913 compound-literal. */
3914 if (cp_parser_allow_gnu_extensions_p (parser)
3915 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
3917 tree initializer_list = NULL_TREE;
3918 bool saved_in_type_id_in_expr_p;
3920 cp_parser_parse_tentatively (parser);
3921 /* Consume the `('. */
3922 cp_lexer_consume_token (parser->lexer);
3923 /* Parse the type. */
3924 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
3925 parser->in_type_id_in_expr_p = true;
3926 type = cp_parser_type_id (parser);
3927 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
3928 /* Look for the `)'. */
3929 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3930 /* Look for the `{'. */
3931 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
3932 /* If things aren't going well, there's no need to
3933 keep going. */
3934 if (!cp_parser_error_occurred (parser))
3936 bool non_constant_p;
3937 /* Parse the initializer-list. */
3938 initializer_list
3939 = cp_parser_initializer_list (parser, &non_constant_p);
3940 /* Allow a trailing `,'. */
3941 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
3942 cp_lexer_consume_token (parser->lexer);
3943 /* Look for the final `}'. */
3944 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
3946 /* If that worked, we're definitely looking at a
3947 compound-literal expression. */
3948 if (cp_parser_parse_definitely (parser))
3950 /* Warn the user that a compound literal is not
3951 allowed in standard C++. */
3952 if (pedantic)
3953 pedwarn ("ISO C++ forbids compound-literals");
3954 /* Form the representation of the compound-literal. */
3955 postfix_expression
3956 = finish_compound_literal (type, initializer_list);
3957 break;
3961 /* It must be a primary-expression. */
3962 postfix_expression = cp_parser_primary_expression (parser,
3963 &idk,
3964 &qualifying_class);
3966 break;
3969 /* If we were avoiding committing to the processing of a
3970 qualified-id until we knew whether or not we had a
3971 pointer-to-member, we now know. */
3972 if (qualifying_class)
3974 bool done;
3976 /* Peek at the next token. */
3977 token = cp_lexer_peek_token (parser->lexer);
3978 done = (token->type != CPP_OPEN_SQUARE
3979 && token->type != CPP_OPEN_PAREN
3980 && token->type != CPP_DOT
3981 && token->type != CPP_DEREF
3982 && token->type != CPP_PLUS_PLUS
3983 && token->type != CPP_MINUS_MINUS);
3985 postfix_expression = finish_qualified_id_expr (qualifying_class,
3986 postfix_expression,
3987 done,
3988 address_p);
3989 if (done)
3990 return postfix_expression;
3993 /* Keep looping until the postfix-expression is complete. */
3994 while (true)
3996 if (idk == CP_ID_KIND_UNQUALIFIED
3997 && TREE_CODE (postfix_expression) == IDENTIFIER_NODE
3998 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
3999 /* It is not a Koenig lookup function call. */
4000 postfix_expression
4001 = unqualified_name_lookup_error (postfix_expression);
4003 /* Peek at the next token. */
4004 token = cp_lexer_peek_token (parser->lexer);
4006 switch (token->type)
4008 case CPP_OPEN_SQUARE:
4009 postfix_expression
4010 = cp_parser_postfix_open_square_expression (parser,
4011 postfix_expression,
4012 false);
4013 idk = CP_ID_KIND_NONE;
4014 break;
4016 case CPP_OPEN_PAREN:
4017 /* postfix-expression ( expression-list [opt] ) */
4019 bool koenig_p;
4020 tree args = (cp_parser_parenthesized_expression_list
4021 (parser, false, /*non_constant_p=*/NULL));
4023 if (args == error_mark_node)
4025 postfix_expression = error_mark_node;
4026 break;
4029 /* Function calls are not permitted in
4030 constant-expressions. */
4031 if (cp_parser_non_integral_constant_expression (parser,
4032 "a function call"))
4034 postfix_expression = error_mark_node;
4035 break;
4038 koenig_p = false;
4039 if (idk == CP_ID_KIND_UNQUALIFIED)
4041 /* We do not perform argument-dependent lookup if
4042 normal lookup finds a non-function, in accordance
4043 with the expected resolution of DR 218. */
4044 if (args
4045 && (is_overloaded_fn (postfix_expression)
4046 || TREE_CODE (postfix_expression) == IDENTIFIER_NODE))
4048 koenig_p = true;
4049 postfix_expression
4050 = perform_koenig_lookup (postfix_expression, args);
4052 else if (TREE_CODE (postfix_expression) == IDENTIFIER_NODE)
4053 postfix_expression
4054 = unqualified_fn_lookup_error (postfix_expression);
4057 if (TREE_CODE (postfix_expression) == COMPONENT_REF)
4059 tree instance = TREE_OPERAND (postfix_expression, 0);
4060 tree fn = TREE_OPERAND (postfix_expression, 1);
4062 if (processing_template_decl
4063 && (type_dependent_expression_p (instance)
4064 || (!BASELINK_P (fn)
4065 && TREE_CODE (fn) != FIELD_DECL)
4066 || type_dependent_expression_p (fn)
4067 || any_type_dependent_arguments_p (args)))
4069 postfix_expression
4070 = build_min_nt (CALL_EXPR, postfix_expression,
4071 args, NULL_TREE);
4072 break;
4075 if (BASELINK_P (fn))
4076 postfix_expression
4077 = (build_new_method_call
4078 (instance, fn, args, NULL_TREE,
4079 (idk == CP_ID_KIND_QUALIFIED
4080 ? LOOKUP_NONVIRTUAL : LOOKUP_NORMAL)));
4081 else
4082 postfix_expression
4083 = finish_call_expr (postfix_expression, args,
4084 /*disallow_virtual=*/false,
4085 /*koenig_p=*/false);
4087 else if (TREE_CODE (postfix_expression) == OFFSET_REF
4088 || TREE_CODE (postfix_expression) == MEMBER_REF
4089 || TREE_CODE (postfix_expression) == DOTSTAR_EXPR)
4090 postfix_expression = (build_offset_ref_call_from_tree
4091 (postfix_expression, args));
4092 else if (idk == CP_ID_KIND_QUALIFIED)
4093 /* A call to a static class member, or a namespace-scope
4094 function. */
4095 postfix_expression
4096 = finish_call_expr (postfix_expression, args,
4097 /*disallow_virtual=*/true,
4098 koenig_p);
4099 else
4100 /* All other function calls. */
4101 postfix_expression
4102 = finish_call_expr (postfix_expression, args,
4103 /*disallow_virtual=*/false,
4104 koenig_p);
4106 /* The POSTFIX_EXPRESSION is certainly no longer an id. */
4107 idk = CP_ID_KIND_NONE;
4109 break;
4111 case CPP_DOT:
4112 case CPP_DEREF:
4113 /* postfix-expression . template [opt] id-expression
4114 postfix-expression . pseudo-destructor-name
4115 postfix-expression -> template [opt] id-expression
4116 postfix-expression -> pseudo-destructor-name */
4118 /* Consume the `.' or `->' operator. */
4119 cp_lexer_consume_token (parser->lexer);
4121 postfix_expression
4122 = cp_parser_postfix_dot_deref_expression (parser, token->type,
4123 postfix_expression,
4124 false, &idk);
4125 break;
4127 case CPP_PLUS_PLUS:
4128 /* postfix-expression ++ */
4129 /* Consume the `++' token. */
4130 cp_lexer_consume_token (parser->lexer);
4131 /* Generate a representation for the complete expression. */
4132 postfix_expression
4133 = finish_increment_expr (postfix_expression,
4134 POSTINCREMENT_EXPR);
4135 /* Increments may not appear in constant-expressions. */
4136 if (cp_parser_non_integral_constant_expression (parser,
4137 "an increment"))
4138 postfix_expression = error_mark_node;
4139 idk = CP_ID_KIND_NONE;
4140 break;
4142 case CPP_MINUS_MINUS:
4143 /* postfix-expression -- */
4144 /* Consume the `--' token. */
4145 cp_lexer_consume_token (parser->lexer);
4146 /* Generate a representation for the complete expression. */
4147 postfix_expression
4148 = finish_increment_expr (postfix_expression,
4149 POSTDECREMENT_EXPR);
4150 /* Decrements may not appear in constant-expressions. */
4151 if (cp_parser_non_integral_constant_expression (parser,
4152 "a decrement"))
4153 postfix_expression = error_mark_node;
4154 idk = CP_ID_KIND_NONE;
4155 break;
4157 default:
4158 return postfix_expression;
4162 /* We should never get here. */
4163 abort ();
4164 return error_mark_node;
4167 /* A subroutine of cp_parser_postfix_expression that also gets hijacked
4168 by cp_parser_builtin_offsetof. We're looking for
4170 postfix-expression [ expression ]
4172 FOR_OFFSETOF is set if we're being called in that context, which
4173 changes how we deal with integer constant expressions. */
4175 static tree
4176 cp_parser_postfix_open_square_expression (cp_parser *parser,
4177 tree postfix_expression,
4178 bool for_offsetof)
4180 tree index;
4182 /* Consume the `[' token. */
4183 cp_lexer_consume_token (parser->lexer);
4185 /* Parse the index expression. */
4186 /* ??? For offsetof, there is a question of what to allow here. If
4187 offsetof is not being used in an integral constant expression context,
4188 then we *could* get the right answer by computing the value at runtime.
4189 If we are in an integral constant expression context, then we might
4190 could accept any constant expression; hard to say without analysis.
4191 Rather than open the barn door too wide right away, allow only integer
4192 constant expresions here. */
4193 if (for_offsetof)
4194 index = cp_parser_constant_expression (parser, false, NULL);
4195 else
4196 index = cp_parser_expression (parser);
4198 /* Look for the closing `]'. */
4199 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
4201 /* Build the ARRAY_REF. */
4202 postfix_expression = grok_array_decl (postfix_expression, index);
4204 /* When not doing offsetof, array references are not permitted in
4205 constant-expressions. */
4206 if (!for_offsetof
4207 && (cp_parser_non_integral_constant_expression
4208 (parser, "an array reference")))
4209 postfix_expression = error_mark_node;
4211 return postfix_expression;
4214 /* A subroutine of cp_parser_postfix_expression that also gets hijacked
4215 by cp_parser_builtin_offsetof. We're looking for
4217 postfix-expression . template [opt] id-expression
4218 postfix-expression . pseudo-destructor-name
4219 postfix-expression -> template [opt] id-expression
4220 postfix-expression -> pseudo-destructor-name
4222 FOR_OFFSETOF is set if we're being called in that context. That sorta
4223 limits what of the above we'll actually accept, but nevermind.
4224 TOKEN_TYPE is the "." or "->" token, which will already have been
4225 removed from the stream. */
4227 static tree
4228 cp_parser_postfix_dot_deref_expression (cp_parser *parser,
4229 enum cpp_ttype token_type,
4230 tree postfix_expression,
4231 bool for_offsetof, cp_id_kind *idk)
4233 tree name;
4234 bool dependent_p;
4235 bool template_p;
4236 tree scope = NULL_TREE;
4238 /* If this is a `->' operator, dereference the pointer. */
4239 if (token_type == CPP_DEREF)
4240 postfix_expression = build_x_arrow (postfix_expression);
4241 /* Check to see whether or not the expression is type-dependent. */
4242 dependent_p = type_dependent_expression_p (postfix_expression);
4243 /* The identifier following the `->' or `.' is not qualified. */
4244 parser->scope = NULL_TREE;
4245 parser->qualifying_scope = NULL_TREE;
4246 parser->object_scope = NULL_TREE;
4247 *idk = CP_ID_KIND_NONE;
4248 /* Enter the scope corresponding to the type of the object
4249 given by the POSTFIX_EXPRESSION. */
4250 if (!dependent_p && TREE_TYPE (postfix_expression) != NULL_TREE)
4252 scope = TREE_TYPE (postfix_expression);
4253 /* According to the standard, no expression should ever have
4254 reference type. Unfortunately, we do not currently match
4255 the standard in this respect in that our internal representation
4256 of an expression may have reference type even when the standard
4257 says it does not. Therefore, we have to manually obtain the
4258 underlying type here. */
4259 scope = non_reference (scope);
4260 /* The type of the POSTFIX_EXPRESSION must be complete. */
4261 scope = complete_type_or_else (scope, NULL_TREE);
4262 /* Let the name lookup machinery know that we are processing a
4263 class member access expression. */
4264 parser->context->object_type = scope;
4265 /* If something went wrong, we want to be able to discern that case,
4266 as opposed to the case where there was no SCOPE due to the type
4267 of expression being dependent. */
4268 if (!scope)
4269 scope = error_mark_node;
4270 /* If the SCOPE was erroneous, make the various semantic analysis
4271 functions exit quickly -- and without issuing additional error
4272 messages. */
4273 if (scope == error_mark_node)
4274 postfix_expression = error_mark_node;
4277 /* If the SCOPE is not a scalar type, we are looking at an
4278 ordinary class member access expression, rather than a
4279 pseudo-destructor-name. */
4280 if (!scope || !SCALAR_TYPE_P (scope))
4282 template_p = cp_parser_optional_template_keyword (parser);
4283 /* Parse the id-expression. */
4284 name = cp_parser_id_expression (parser, template_p,
4285 /*check_dependency_p=*/true,
4286 /*template_p=*/NULL,
4287 /*declarator_p=*/false);
4288 /* In general, build a SCOPE_REF if the member name is qualified.
4289 However, if the name was not dependent and has already been
4290 resolved; there is no need to build the SCOPE_REF. For example;
4292 struct X { void f(); };
4293 template <typename T> void f(T* t) { t->X::f(); }
4295 Even though "t" is dependent, "X::f" is not and has been resolved
4296 to a BASELINK; there is no need to include scope information. */
4298 /* But we do need to remember that there was an explicit scope for
4299 virtual function calls. */
4300 if (parser->scope)
4301 *idk = CP_ID_KIND_QUALIFIED;
4303 if (name != error_mark_node && !BASELINK_P (name) && parser->scope)
4305 name = build_nt (SCOPE_REF, parser->scope, name);
4306 parser->scope = NULL_TREE;
4307 parser->qualifying_scope = NULL_TREE;
4308 parser->object_scope = NULL_TREE;
4310 if (scope && name && BASELINK_P (name))
4311 adjust_result_of_qualified_name_lookup
4312 (name, BINFO_TYPE (BASELINK_BINFO (name)), scope);
4313 postfix_expression
4314 = finish_class_member_access_expr (postfix_expression, name);
4316 /* Otherwise, try the pseudo-destructor-name production. */
4317 else
4319 tree s = NULL_TREE;
4320 tree type;
4322 /* Parse the pseudo-destructor-name. */
4323 cp_parser_pseudo_destructor_name (parser, &s, &type);
4324 /* Form the call. */
4325 postfix_expression
4326 = finish_pseudo_destructor_expr (postfix_expression,
4327 s, TREE_TYPE (type));
4330 /* We no longer need to look up names in the scope of the object on
4331 the left-hand side of the `.' or `->' operator. */
4332 parser->context->object_type = NULL_TREE;
4334 /* Outside of offsetof, these operators may not appear in
4335 constant-expressions. */
4336 if (!for_offsetof
4337 && (cp_parser_non_integral_constant_expression
4338 (parser, token_type == CPP_DEREF ? "'->'" : "`.'")))
4339 postfix_expression = error_mark_node;
4341 return postfix_expression;
4344 /* Parse a parenthesized expression-list.
4346 expression-list:
4347 assignment-expression
4348 expression-list, assignment-expression
4350 attribute-list:
4351 expression-list
4352 identifier
4353 identifier, expression-list
4355 Returns a TREE_LIST. The TREE_VALUE of each node is a
4356 representation of an assignment-expression. Note that a TREE_LIST
4357 is returned even if there is only a single expression in the list.
4358 error_mark_node is returned if the ( and or ) are
4359 missing. NULL_TREE is returned on no expressions. The parentheses
4360 are eaten. IS_ATTRIBUTE_LIST is true if this is really an attribute
4361 list being parsed. If NON_CONSTANT_P is non-NULL, *NON_CONSTANT_P
4362 indicates whether or not all of the expressions in the list were
4363 constant. */
4365 static tree
4366 cp_parser_parenthesized_expression_list (cp_parser* parser,
4367 bool is_attribute_list,
4368 bool *non_constant_p)
4370 tree expression_list = NULL_TREE;
4371 tree identifier = NULL_TREE;
4373 /* Assume all the expressions will be constant. */
4374 if (non_constant_p)
4375 *non_constant_p = false;
4377 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
4378 return error_mark_node;
4380 /* Consume expressions until there are no more. */
4381 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
4382 while (true)
4384 tree expr;
4386 /* At the beginning of attribute lists, check to see if the
4387 next token is an identifier. */
4388 if (is_attribute_list
4389 && cp_lexer_peek_token (parser->lexer)->type == CPP_NAME)
4391 cp_token *token;
4393 /* Consume the identifier. */
4394 token = cp_lexer_consume_token (parser->lexer);
4395 /* Save the identifier. */
4396 identifier = token->value;
4398 else
4400 /* Parse the next assignment-expression. */
4401 if (non_constant_p)
4403 bool expr_non_constant_p;
4404 expr = (cp_parser_constant_expression
4405 (parser, /*allow_non_constant_p=*/true,
4406 &expr_non_constant_p));
4407 if (expr_non_constant_p)
4408 *non_constant_p = true;
4410 else
4411 expr = cp_parser_assignment_expression (parser);
4413 /* Add it to the list. We add error_mark_node
4414 expressions to the list, so that we can still tell if
4415 the correct form for a parenthesized expression-list
4416 is found. That gives better errors. */
4417 expression_list = tree_cons (NULL_TREE, expr, expression_list);
4419 if (expr == error_mark_node)
4420 goto skip_comma;
4423 /* After the first item, attribute lists look the same as
4424 expression lists. */
4425 is_attribute_list = false;
4427 get_comma:;
4428 /* If the next token isn't a `,', then we are done. */
4429 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
4430 break;
4432 /* Otherwise, consume the `,' and keep going. */
4433 cp_lexer_consume_token (parser->lexer);
4436 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
4438 int ending;
4440 skip_comma:;
4441 /* We try and resync to an unnested comma, as that will give the
4442 user better diagnostics. */
4443 ending = cp_parser_skip_to_closing_parenthesis (parser,
4444 /*recovering=*/true,
4445 /*or_comma=*/true,
4446 /*consume_paren=*/true);
4447 if (ending < 0)
4448 goto get_comma;
4449 if (!ending)
4450 return error_mark_node;
4453 /* We built up the list in reverse order so we must reverse it now. */
4454 expression_list = nreverse (expression_list);
4455 if (identifier)
4456 expression_list = tree_cons (NULL_TREE, identifier, expression_list);
4458 return expression_list;
4461 /* Parse a pseudo-destructor-name.
4463 pseudo-destructor-name:
4464 :: [opt] nested-name-specifier [opt] type-name :: ~ type-name
4465 :: [opt] nested-name-specifier template template-id :: ~ type-name
4466 :: [opt] nested-name-specifier [opt] ~ type-name
4468 If either of the first two productions is used, sets *SCOPE to the
4469 TYPE specified before the final `::'. Otherwise, *SCOPE is set to
4470 NULL_TREE. *TYPE is set to the TYPE_DECL for the final type-name,
4471 or ERROR_MARK_NODE if the parse fails. */
4473 static void
4474 cp_parser_pseudo_destructor_name (cp_parser* parser,
4475 tree* scope,
4476 tree* type)
4478 bool nested_name_specifier_p;
4480 /* Look for the optional `::' operator. */
4481 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/true);
4482 /* Look for the optional nested-name-specifier. */
4483 nested_name_specifier_p
4484 = (cp_parser_nested_name_specifier_opt (parser,
4485 /*typename_keyword_p=*/false,
4486 /*check_dependency_p=*/true,
4487 /*type_p=*/false,
4488 /*is_declaration=*/true)
4489 != NULL_TREE);
4490 /* Now, if we saw a nested-name-specifier, we might be doing the
4491 second production. */
4492 if (nested_name_specifier_p
4493 && cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
4495 /* Consume the `template' keyword. */
4496 cp_lexer_consume_token (parser->lexer);
4497 /* Parse the template-id. */
4498 cp_parser_template_id (parser,
4499 /*template_keyword_p=*/true,
4500 /*check_dependency_p=*/false,
4501 /*is_declaration=*/true);
4502 /* Look for the `::' token. */
4503 cp_parser_require (parser, CPP_SCOPE, "`::'");
4505 /* If the next token is not a `~', then there might be some
4506 additional qualification. */
4507 else if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMPL))
4509 /* Look for the type-name. */
4510 *scope = TREE_TYPE (cp_parser_type_name (parser));
4512 /* If we didn't get an aggregate type, or we don't have ::~,
4513 then something has gone wrong. Since the only caller of this
4514 function is looking for something after `.' or `->' after a
4515 scalar type, most likely the program is trying to get a
4516 member of a non-aggregate type. */
4517 if (*scope == error_mark_node
4518 || cp_lexer_next_token_is_not (parser->lexer, CPP_SCOPE)
4519 || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_COMPL)
4521 cp_parser_error (parser, "request for member of non-aggregate type");
4522 *type = error_mark_node;
4523 return;
4526 /* Look for the `::' token. */
4527 cp_parser_require (parser, CPP_SCOPE, "`::'");
4529 else
4530 *scope = NULL_TREE;
4532 /* Look for the `~'. */
4533 cp_parser_require (parser, CPP_COMPL, "`~'");
4534 /* Look for the type-name again. We are not responsible for
4535 checking that it matches the first type-name. */
4536 *type = cp_parser_type_name (parser);
4539 /* Parse a unary-expression.
4541 unary-expression:
4542 postfix-expression
4543 ++ cast-expression
4544 -- cast-expression
4545 unary-operator cast-expression
4546 sizeof unary-expression
4547 sizeof ( type-id )
4548 new-expression
4549 delete-expression
4551 GNU Extensions:
4553 unary-expression:
4554 __extension__ cast-expression
4555 __alignof__ unary-expression
4556 __alignof__ ( type-id )
4557 __real__ cast-expression
4558 __imag__ cast-expression
4559 && identifier
4561 ADDRESS_P is true iff the unary-expression is appearing as the
4562 operand of the `&' operator.
4564 Returns a representation of the expression. */
4566 static tree
4567 cp_parser_unary_expression (cp_parser *parser, bool address_p)
4569 cp_token *token;
4570 enum tree_code unary_operator;
4572 /* Peek at the next token. */
4573 token = cp_lexer_peek_token (parser->lexer);
4574 /* Some keywords give away the kind of expression. */
4575 if (token->type == CPP_KEYWORD)
4577 enum rid keyword = token->keyword;
4579 switch (keyword)
4581 case RID_ALIGNOF:
4582 case RID_SIZEOF:
4584 tree operand;
4585 enum tree_code op;
4587 op = keyword == RID_ALIGNOF ? ALIGNOF_EXPR : SIZEOF_EXPR;
4588 /* Consume the token. */
4589 cp_lexer_consume_token (parser->lexer);
4590 /* Parse the operand. */
4591 operand = cp_parser_sizeof_operand (parser, keyword);
4593 if (TYPE_P (operand))
4594 return cxx_sizeof_or_alignof_type (operand, op, true);
4595 else
4596 return cxx_sizeof_or_alignof_expr (operand, op);
4599 case RID_NEW:
4600 return cp_parser_new_expression (parser);
4602 case RID_DELETE:
4603 return cp_parser_delete_expression (parser);
4605 case RID_EXTENSION:
4607 /* The saved value of the PEDANTIC flag. */
4608 int saved_pedantic;
4609 tree expr;
4611 /* Save away the PEDANTIC flag. */
4612 cp_parser_extension_opt (parser, &saved_pedantic);
4613 /* Parse the cast-expression. */
4614 expr = cp_parser_simple_cast_expression (parser);
4615 /* Restore the PEDANTIC flag. */
4616 pedantic = saved_pedantic;
4618 return expr;
4621 case RID_REALPART:
4622 case RID_IMAGPART:
4624 tree expression;
4626 /* Consume the `__real__' or `__imag__' token. */
4627 cp_lexer_consume_token (parser->lexer);
4628 /* Parse the cast-expression. */
4629 expression = cp_parser_simple_cast_expression (parser);
4630 /* Create the complete representation. */
4631 return build_x_unary_op ((keyword == RID_REALPART
4632 ? REALPART_EXPR : IMAGPART_EXPR),
4633 expression);
4635 break;
4637 default:
4638 break;
4642 /* Look for the `:: new' and `:: delete', which also signal the
4643 beginning of a new-expression, or delete-expression,
4644 respectively. If the next token is `::', then it might be one of
4645 these. */
4646 if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
4648 enum rid keyword;
4650 /* See if the token after the `::' is one of the keywords in
4651 which we're interested. */
4652 keyword = cp_lexer_peek_nth_token (parser->lexer, 2)->keyword;
4653 /* If it's `new', we have a new-expression. */
4654 if (keyword == RID_NEW)
4655 return cp_parser_new_expression (parser);
4656 /* Similarly, for `delete'. */
4657 else if (keyword == RID_DELETE)
4658 return cp_parser_delete_expression (parser);
4661 /* Look for a unary operator. */
4662 unary_operator = cp_parser_unary_operator (token);
4663 /* The `++' and `--' operators can be handled similarly, even though
4664 they are not technically unary-operators in the grammar. */
4665 if (unary_operator == ERROR_MARK)
4667 if (token->type == CPP_PLUS_PLUS)
4668 unary_operator = PREINCREMENT_EXPR;
4669 else if (token->type == CPP_MINUS_MINUS)
4670 unary_operator = PREDECREMENT_EXPR;
4671 /* Handle the GNU address-of-label extension. */
4672 else if (cp_parser_allow_gnu_extensions_p (parser)
4673 && token->type == CPP_AND_AND)
4675 tree identifier;
4677 /* Consume the '&&' token. */
4678 cp_lexer_consume_token (parser->lexer);
4679 /* Look for the identifier. */
4680 identifier = cp_parser_identifier (parser);
4681 /* Create an expression representing the address. */
4682 return finish_label_address_expr (identifier);
4685 if (unary_operator != ERROR_MARK)
4687 tree cast_expression;
4688 tree expression = error_mark_node;
4689 const char *non_constant_p = NULL;
4691 /* Consume the operator token. */
4692 token = cp_lexer_consume_token (parser->lexer);
4693 /* Parse the cast-expression. */
4694 cast_expression
4695 = cp_parser_cast_expression (parser, unary_operator == ADDR_EXPR);
4696 /* Now, build an appropriate representation. */
4697 switch (unary_operator)
4699 case INDIRECT_REF:
4700 non_constant_p = "`*'";
4701 expression = build_x_indirect_ref (cast_expression, "unary *");
4702 break;
4704 case ADDR_EXPR:
4705 non_constant_p = "`&'";
4706 /* Fall through. */
4707 case BIT_NOT_EXPR:
4708 expression = build_x_unary_op (unary_operator, cast_expression);
4709 break;
4711 case PREINCREMENT_EXPR:
4712 case PREDECREMENT_EXPR:
4713 non_constant_p = (unary_operator == PREINCREMENT_EXPR
4714 ? "`++'" : "`--'");
4715 /* Fall through. */
4716 case CONVERT_EXPR:
4717 case NEGATE_EXPR:
4718 case TRUTH_NOT_EXPR:
4719 expression = finish_unary_op_expr (unary_operator, cast_expression);
4720 break;
4722 default:
4723 abort ();
4726 if (non_constant_p
4727 && cp_parser_non_integral_constant_expression (parser,
4728 non_constant_p))
4729 expression = error_mark_node;
4731 return expression;
4734 return cp_parser_postfix_expression (parser, address_p);
4737 /* Returns ERROR_MARK if TOKEN is not a unary-operator. If TOKEN is a
4738 unary-operator, the corresponding tree code is returned. */
4740 static enum tree_code
4741 cp_parser_unary_operator (cp_token* token)
4743 switch (token->type)
4745 case CPP_MULT:
4746 return INDIRECT_REF;
4748 case CPP_AND:
4749 return ADDR_EXPR;
4751 case CPP_PLUS:
4752 return CONVERT_EXPR;
4754 case CPP_MINUS:
4755 return NEGATE_EXPR;
4757 case CPP_NOT:
4758 return TRUTH_NOT_EXPR;
4760 case CPP_COMPL:
4761 return BIT_NOT_EXPR;
4763 default:
4764 return ERROR_MARK;
4768 /* Parse a new-expression.
4770 new-expression:
4771 :: [opt] new new-placement [opt] new-type-id new-initializer [opt]
4772 :: [opt] new new-placement [opt] ( type-id ) new-initializer [opt]
4774 Returns a representation of the expression. */
4776 static tree
4777 cp_parser_new_expression (cp_parser* parser)
4779 bool global_scope_p;
4780 tree placement;
4781 tree type;
4782 tree initializer;
4783 tree nelts;
4785 /* Look for the optional `::' operator. */
4786 global_scope_p
4787 = (cp_parser_global_scope_opt (parser,
4788 /*current_scope_valid_p=*/false)
4789 != NULL_TREE);
4790 /* Look for the `new' operator. */
4791 cp_parser_require_keyword (parser, RID_NEW, "`new'");
4792 /* There's no easy way to tell a new-placement from the
4793 `( type-id )' construct. */
4794 cp_parser_parse_tentatively (parser);
4795 /* Look for a new-placement. */
4796 placement = cp_parser_new_placement (parser);
4797 /* If that didn't work out, there's no new-placement. */
4798 if (!cp_parser_parse_definitely (parser))
4799 placement = NULL_TREE;
4801 /* If the next token is a `(', then we have a parenthesized
4802 type-id. */
4803 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
4805 /* Consume the `('. */
4806 cp_lexer_consume_token (parser->lexer);
4807 /* Parse the type-id. */
4808 type = cp_parser_type_id (parser);
4809 /* Look for the closing `)'. */
4810 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
4811 /* There should not be a direct-new-declarator in this production,
4812 but GCC used to allowed this, so we check and emit a sensible error
4813 message for this case. */
4814 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
4816 error ("array bound forbidden after parenthesized type-id");
4817 inform ("try removing the parentheses around the type-id");
4818 cp_parser_direct_new_declarator (parser);
4820 nelts = integer_one_node;
4822 /* Otherwise, there must be a new-type-id. */
4823 else
4824 type = cp_parser_new_type_id (parser, &nelts);
4826 /* If the next token is a `(', then we have a new-initializer. */
4827 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
4828 initializer = cp_parser_new_initializer (parser);
4829 else
4830 initializer = NULL_TREE;
4832 /* A new-expression may not appear in an integral constant
4833 expression. */
4834 if (cp_parser_non_integral_constant_expression (parser, "`new'"))
4835 return error_mark_node;
4837 /* Create a representation of the new-expression. */
4838 return build_new (placement, type, nelts, initializer, global_scope_p);
4841 /* Parse a new-placement.
4843 new-placement:
4844 ( expression-list )
4846 Returns the same representation as for an expression-list. */
4848 static tree
4849 cp_parser_new_placement (cp_parser* parser)
4851 tree expression_list;
4853 /* Parse the expression-list. */
4854 expression_list = (cp_parser_parenthesized_expression_list
4855 (parser, false, /*non_constant_p=*/NULL));
4857 return expression_list;
4860 /* Parse a new-type-id.
4862 new-type-id:
4863 type-specifier-seq new-declarator [opt]
4865 Returns the TYPE allocated. If the new-type-id indicates an array
4866 type, *NELTS is set to the number of elements in the last array
4867 bound; the TYPE will not include the last array bound. */
4869 static tree
4870 cp_parser_new_type_id (cp_parser* parser, tree *nelts)
4872 cp_decl_specifier_seq type_specifier_seq;
4873 cp_declarator *new_declarator;
4874 cp_declarator *declarator;
4875 cp_declarator *outer_declarator;
4876 const char *saved_message;
4877 tree type;
4879 /* The type-specifier sequence must not contain type definitions.
4880 (It cannot contain declarations of new types either, but if they
4881 are not definitions we will catch that because they are not
4882 complete.) */
4883 saved_message = parser->type_definition_forbidden_message;
4884 parser->type_definition_forbidden_message
4885 = "types may not be defined in a new-type-id";
4886 /* Parse the type-specifier-seq. */
4887 cp_parser_type_specifier_seq (parser, &type_specifier_seq);
4888 /* Restore the old message. */
4889 parser->type_definition_forbidden_message = saved_message;
4890 /* Parse the new-declarator. */
4891 new_declarator = cp_parser_new_declarator_opt (parser);
4893 /* Determine the number of elements in the last array dimension, if
4894 any. */
4895 *nelts = NULL_TREE;
4896 /* Skip down to the last array dimension. */
4897 declarator = new_declarator;
4898 outer_declarator = NULL;
4899 while (declarator && (declarator->kind == cdk_pointer
4900 || declarator->kind == cdk_ptrmem))
4902 outer_declarator = declarator;
4903 declarator = declarator->declarator;
4905 while (declarator
4906 && declarator->kind == cdk_array
4907 && declarator->declarator
4908 && declarator->declarator->kind == cdk_array)
4910 outer_declarator = declarator;
4911 declarator = declarator->declarator;
4914 if (declarator && declarator->kind == cdk_array)
4916 *nelts = declarator->u.array.bounds;
4917 if (*nelts == error_mark_node)
4918 *nelts = integer_one_node;
4919 else if (!processing_template_decl)
4921 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, *nelts,
4922 false))
4923 pedwarn ("size in array new must have integral type");
4924 *nelts = save_expr (cp_convert (sizetype, *nelts));
4925 if (*nelts == integer_zero_node)
4926 warning ("zero size array reserves no space");
4928 if (outer_declarator)
4929 outer_declarator->declarator = declarator->declarator;
4930 else
4931 new_declarator = NULL;
4934 type = groktypename (&type_specifier_seq, new_declarator);
4935 if (TREE_CODE (type) == ARRAY_TYPE && *nelts == NULL_TREE)
4937 *nelts = array_type_nelts_top (type);
4938 type = TREE_TYPE (type);
4940 return type;
4943 /* Parse an (optional) new-declarator.
4945 new-declarator:
4946 ptr-operator new-declarator [opt]
4947 direct-new-declarator
4949 Returns the declarator. */
4951 static cp_declarator *
4952 cp_parser_new_declarator_opt (cp_parser* parser)
4954 enum tree_code code;
4955 tree type;
4956 cp_cv_quals cv_quals;
4958 /* We don't know if there's a ptr-operator next, or not. */
4959 cp_parser_parse_tentatively (parser);
4960 /* Look for a ptr-operator. */
4961 code = cp_parser_ptr_operator (parser, &type, &cv_quals);
4962 /* If that worked, look for more new-declarators. */
4963 if (cp_parser_parse_definitely (parser))
4965 cp_declarator *declarator;
4967 /* Parse another optional declarator. */
4968 declarator = cp_parser_new_declarator_opt (parser);
4970 /* Create the representation of the declarator. */
4971 if (type)
4972 declarator = make_ptrmem_declarator (cv_quals, type, declarator);
4973 else if (code == INDIRECT_REF)
4974 declarator = make_pointer_declarator (cv_quals, declarator);
4975 else
4976 declarator = make_reference_declarator (cv_quals, declarator);
4978 return declarator;
4981 /* If the next token is a `[', there is a direct-new-declarator. */
4982 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
4983 return cp_parser_direct_new_declarator (parser);
4985 return NULL;
4988 /* Parse a direct-new-declarator.
4990 direct-new-declarator:
4991 [ expression ]
4992 direct-new-declarator [constant-expression]
4996 static cp_declarator *
4997 cp_parser_direct_new_declarator (cp_parser* parser)
4999 cp_declarator *declarator = NULL;
5001 while (true)
5003 tree expression;
5005 /* Look for the opening `['. */
5006 cp_parser_require (parser, CPP_OPEN_SQUARE, "`['");
5007 /* The first expression is not required to be constant. */
5008 if (!declarator)
5010 expression = cp_parser_expression (parser);
5011 /* The standard requires that the expression have integral
5012 type. DR 74 adds enumeration types. We believe that the
5013 real intent is that these expressions be handled like the
5014 expression in a `switch' condition, which also allows
5015 classes with a single conversion to integral or
5016 enumeration type. */
5017 if (!processing_template_decl)
5019 expression
5020 = build_expr_type_conversion (WANT_INT | WANT_ENUM,
5021 expression,
5022 /*complain=*/true);
5023 if (!expression)
5025 error ("expression in new-declarator must have integral or enumeration type");
5026 expression = error_mark_node;
5030 /* But all the other expressions must be. */
5031 else
5032 expression
5033 = cp_parser_constant_expression (parser,
5034 /*allow_non_constant=*/false,
5035 NULL);
5036 /* Look for the closing `]'. */
5037 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
5039 /* Add this bound to the declarator. */
5040 declarator = make_array_declarator (declarator, expression);
5042 /* If the next token is not a `[', then there are no more
5043 bounds. */
5044 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_SQUARE))
5045 break;
5048 return declarator;
5051 /* Parse a new-initializer.
5053 new-initializer:
5054 ( expression-list [opt] )
5056 Returns a representation of the expression-list. If there is no
5057 expression-list, VOID_ZERO_NODE is returned. */
5059 static tree
5060 cp_parser_new_initializer (cp_parser* parser)
5062 tree expression_list;
5064 expression_list = (cp_parser_parenthesized_expression_list
5065 (parser, false, /*non_constant_p=*/NULL));
5066 if (!expression_list)
5067 expression_list = void_zero_node;
5069 return expression_list;
5072 /* Parse a delete-expression.
5074 delete-expression:
5075 :: [opt] delete cast-expression
5076 :: [opt] delete [ ] cast-expression
5078 Returns a representation of the expression. */
5080 static tree
5081 cp_parser_delete_expression (cp_parser* parser)
5083 bool global_scope_p;
5084 bool array_p;
5085 tree expression;
5087 /* Look for the optional `::' operator. */
5088 global_scope_p
5089 = (cp_parser_global_scope_opt (parser,
5090 /*current_scope_valid_p=*/false)
5091 != NULL_TREE);
5092 /* Look for the `delete' keyword. */
5093 cp_parser_require_keyword (parser, RID_DELETE, "`delete'");
5094 /* See if the array syntax is in use. */
5095 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
5097 /* Consume the `[' token. */
5098 cp_lexer_consume_token (parser->lexer);
5099 /* Look for the `]' token. */
5100 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
5101 /* Remember that this is the `[]' construct. */
5102 array_p = true;
5104 else
5105 array_p = false;
5107 /* Parse the cast-expression. */
5108 expression = cp_parser_simple_cast_expression (parser);
5110 /* A delete-expression may not appear in an integral constant
5111 expression. */
5112 if (cp_parser_non_integral_constant_expression (parser, "`delete'"))
5113 return error_mark_node;
5115 return delete_sanity (expression, NULL_TREE, array_p, global_scope_p);
5118 /* Parse a cast-expression.
5120 cast-expression:
5121 unary-expression
5122 ( type-id ) cast-expression
5124 Returns a representation of the expression. */
5126 static tree
5127 cp_parser_cast_expression (cp_parser *parser, bool address_p)
5129 /* If it's a `(', then we might be looking at a cast. */
5130 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
5132 tree type = NULL_TREE;
5133 tree expr = NULL_TREE;
5134 bool compound_literal_p;
5135 const char *saved_message;
5137 /* There's no way to know yet whether or not this is a cast.
5138 For example, `(int (3))' is a unary-expression, while `(int)
5139 3' is a cast. So, we resort to parsing tentatively. */
5140 cp_parser_parse_tentatively (parser);
5141 /* Types may not be defined in a cast. */
5142 saved_message = parser->type_definition_forbidden_message;
5143 parser->type_definition_forbidden_message
5144 = "types may not be defined in casts";
5145 /* Consume the `('. */
5146 cp_lexer_consume_token (parser->lexer);
5147 /* A very tricky bit is that `(struct S) { 3 }' is a
5148 compound-literal (which we permit in C++ as an extension).
5149 But, that construct is not a cast-expression -- it is a
5150 postfix-expression. (The reason is that `(struct S) { 3 }.i'
5151 is legal; if the compound-literal were a cast-expression,
5152 you'd need an extra set of parentheses.) But, if we parse
5153 the type-id, and it happens to be a class-specifier, then we
5154 will commit to the parse at that point, because we cannot
5155 undo the action that is done when creating a new class. So,
5156 then we cannot back up and do a postfix-expression.
5158 Therefore, we scan ahead to the closing `)', and check to see
5159 if the token after the `)' is a `{'. If so, we are not
5160 looking at a cast-expression.
5162 Save tokens so that we can put them back. */
5163 cp_lexer_save_tokens (parser->lexer);
5164 /* Skip tokens until the next token is a closing parenthesis.
5165 If we find the closing `)', and the next token is a `{', then
5166 we are looking at a compound-literal. */
5167 compound_literal_p
5168 = (cp_parser_skip_to_closing_parenthesis (parser, false, false,
5169 /*consume_paren=*/true)
5170 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE));
5171 /* Roll back the tokens we skipped. */
5172 cp_lexer_rollback_tokens (parser->lexer);
5173 /* If we were looking at a compound-literal, simulate an error
5174 so that the call to cp_parser_parse_definitely below will
5175 fail. */
5176 if (compound_literal_p)
5177 cp_parser_simulate_error (parser);
5178 else
5180 bool saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
5181 parser->in_type_id_in_expr_p = true;
5182 /* Look for the type-id. */
5183 type = cp_parser_type_id (parser);
5184 /* Look for the closing `)'. */
5185 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
5186 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
5189 /* Restore the saved message. */
5190 parser->type_definition_forbidden_message = saved_message;
5192 /* If ok so far, parse the dependent expression. We cannot be
5193 sure it is a cast. Consider `(T ())'. It is a parenthesized
5194 ctor of T, but looks like a cast to function returning T
5195 without a dependent expression. */
5196 if (!cp_parser_error_occurred (parser))
5197 expr = cp_parser_simple_cast_expression (parser);
5199 if (cp_parser_parse_definitely (parser))
5201 /* Warn about old-style casts, if so requested. */
5202 if (warn_old_style_cast
5203 && !in_system_header
5204 && !VOID_TYPE_P (type)
5205 && current_lang_name != lang_name_c)
5206 warning ("use of old-style cast");
5208 /* Only type conversions to integral or enumeration types
5209 can be used in constant-expressions. */
5210 if (parser->integral_constant_expression_p
5211 && !dependent_type_p (type)
5212 && !INTEGRAL_OR_ENUMERATION_TYPE_P (type)
5213 && (cp_parser_non_integral_constant_expression
5214 (parser,
5215 "a cast to a type other than an integral or "
5216 "enumeration type")))
5217 return error_mark_node;
5219 /* Perform the cast. */
5220 expr = build_c_cast (type, expr);
5221 return expr;
5225 /* If we get here, then it's not a cast, so it must be a
5226 unary-expression. */
5227 return cp_parser_unary_expression (parser, address_p);
5230 /* Parse a pm-expression.
5232 pm-expression:
5233 cast-expression
5234 pm-expression .* cast-expression
5235 pm-expression ->* cast-expression
5237 Returns a representation of the expression. */
5239 static tree
5240 cp_parser_pm_expression (cp_parser* parser)
5242 static const cp_parser_token_tree_map map = {
5243 { CPP_DEREF_STAR, MEMBER_REF },
5244 { CPP_DOT_STAR, DOTSTAR_EXPR },
5245 { CPP_EOF, ERROR_MARK }
5248 return cp_parser_binary_expression (parser, map,
5249 cp_parser_simple_cast_expression);
5252 /* Parse a multiplicative-expression.
5254 multiplicative-expression:
5255 pm-expression
5256 multiplicative-expression * pm-expression
5257 multiplicative-expression / pm-expression
5258 multiplicative-expression % pm-expression
5260 Returns a representation of the expression. */
5262 static tree
5263 cp_parser_multiplicative_expression (cp_parser* parser)
5265 static const cp_parser_token_tree_map map = {
5266 { CPP_MULT, MULT_EXPR },
5267 { CPP_DIV, TRUNC_DIV_EXPR },
5268 { CPP_MOD, TRUNC_MOD_EXPR },
5269 { CPP_EOF, ERROR_MARK }
5272 return cp_parser_binary_expression (parser,
5273 map,
5274 cp_parser_pm_expression);
5277 /* Parse an additive-expression.
5279 additive-expression:
5280 multiplicative-expression
5281 additive-expression + multiplicative-expression
5282 additive-expression - multiplicative-expression
5284 Returns a representation of the expression. */
5286 static tree
5287 cp_parser_additive_expression (cp_parser* parser)
5289 static const cp_parser_token_tree_map map = {
5290 { CPP_PLUS, PLUS_EXPR },
5291 { CPP_MINUS, MINUS_EXPR },
5292 { CPP_EOF, ERROR_MARK }
5295 return cp_parser_binary_expression (parser,
5296 map,
5297 cp_parser_multiplicative_expression);
5300 /* Parse a shift-expression.
5302 shift-expression:
5303 additive-expression
5304 shift-expression << additive-expression
5305 shift-expression >> additive-expression
5307 Returns a representation of the expression. */
5309 static tree
5310 cp_parser_shift_expression (cp_parser* parser)
5312 static const cp_parser_token_tree_map map = {
5313 { CPP_LSHIFT, LSHIFT_EXPR },
5314 { CPP_RSHIFT, RSHIFT_EXPR },
5315 { CPP_EOF, ERROR_MARK }
5318 return cp_parser_binary_expression (parser,
5319 map,
5320 cp_parser_additive_expression);
5323 /* Parse a relational-expression.
5325 relational-expression:
5326 shift-expression
5327 relational-expression < shift-expression
5328 relational-expression > shift-expression
5329 relational-expression <= shift-expression
5330 relational-expression >= shift-expression
5332 GNU Extension:
5334 relational-expression:
5335 relational-expression <? shift-expression
5336 relational-expression >? shift-expression
5338 Returns a representation of the expression. */
5340 static tree
5341 cp_parser_relational_expression (cp_parser* parser)
5343 static const cp_parser_token_tree_map map = {
5344 { CPP_LESS, LT_EXPR },
5345 { CPP_GREATER, GT_EXPR },
5346 { CPP_LESS_EQ, LE_EXPR },
5347 { CPP_GREATER_EQ, GE_EXPR },
5348 { CPP_MIN, MIN_EXPR },
5349 { CPP_MAX, MAX_EXPR },
5350 { CPP_EOF, ERROR_MARK }
5353 return cp_parser_binary_expression (parser,
5354 map,
5355 cp_parser_shift_expression);
5358 /* Parse an equality-expression.
5360 equality-expression:
5361 relational-expression
5362 equality-expression == relational-expression
5363 equality-expression != relational-expression
5365 Returns a representation of the expression. */
5367 static tree
5368 cp_parser_equality_expression (cp_parser* parser)
5370 static const cp_parser_token_tree_map map = {
5371 { CPP_EQ_EQ, EQ_EXPR },
5372 { CPP_NOT_EQ, NE_EXPR },
5373 { CPP_EOF, ERROR_MARK }
5376 return cp_parser_binary_expression (parser,
5377 map,
5378 cp_parser_relational_expression);
5381 /* Parse an and-expression.
5383 and-expression:
5384 equality-expression
5385 and-expression & equality-expression
5387 Returns a representation of the expression. */
5389 static tree
5390 cp_parser_and_expression (cp_parser* parser)
5392 static const cp_parser_token_tree_map map = {
5393 { CPP_AND, BIT_AND_EXPR },
5394 { CPP_EOF, ERROR_MARK }
5397 return cp_parser_binary_expression (parser,
5398 map,
5399 cp_parser_equality_expression);
5402 /* Parse an exclusive-or-expression.
5404 exclusive-or-expression:
5405 and-expression
5406 exclusive-or-expression ^ and-expression
5408 Returns a representation of the expression. */
5410 static tree
5411 cp_parser_exclusive_or_expression (cp_parser* parser)
5413 static const cp_parser_token_tree_map map = {
5414 { CPP_XOR, BIT_XOR_EXPR },
5415 { CPP_EOF, ERROR_MARK }
5418 return cp_parser_binary_expression (parser,
5419 map,
5420 cp_parser_and_expression);
5424 /* Parse an inclusive-or-expression.
5426 inclusive-or-expression:
5427 exclusive-or-expression
5428 inclusive-or-expression | exclusive-or-expression
5430 Returns a representation of the expression. */
5432 static tree
5433 cp_parser_inclusive_or_expression (cp_parser* parser)
5435 static const cp_parser_token_tree_map map = {
5436 { CPP_OR, BIT_IOR_EXPR },
5437 { CPP_EOF, ERROR_MARK }
5440 return cp_parser_binary_expression (parser,
5441 map,
5442 cp_parser_exclusive_or_expression);
5445 /* Parse a logical-and-expression.
5447 logical-and-expression:
5448 inclusive-or-expression
5449 logical-and-expression && inclusive-or-expression
5451 Returns a representation of the expression. */
5453 static tree
5454 cp_parser_logical_and_expression (cp_parser* parser)
5456 static const cp_parser_token_tree_map map = {
5457 { CPP_AND_AND, TRUTH_ANDIF_EXPR },
5458 { CPP_EOF, ERROR_MARK }
5461 return cp_parser_binary_expression (parser,
5462 map,
5463 cp_parser_inclusive_or_expression);
5466 /* Parse a logical-or-expression.
5468 logical-or-expression:
5469 logical-and-expression
5470 logical-or-expression || logical-and-expression
5472 Returns a representation of the expression. */
5474 static tree
5475 cp_parser_logical_or_expression (cp_parser* parser)
5477 static const cp_parser_token_tree_map map = {
5478 { CPP_OR_OR, TRUTH_ORIF_EXPR },
5479 { CPP_EOF, ERROR_MARK }
5482 return cp_parser_binary_expression (parser,
5483 map,
5484 cp_parser_logical_and_expression);
5487 /* Parse the `? expression : assignment-expression' part of a
5488 conditional-expression. The LOGICAL_OR_EXPR is the
5489 logical-or-expression that started the conditional-expression.
5490 Returns a representation of the entire conditional-expression.
5492 This routine is used by cp_parser_assignment_expression.
5494 ? expression : assignment-expression
5496 GNU Extensions:
5498 ? : assignment-expression */
5500 static tree
5501 cp_parser_question_colon_clause (cp_parser* parser, tree logical_or_expr)
5503 tree expr;
5504 tree assignment_expr;
5506 /* Consume the `?' token. */
5507 cp_lexer_consume_token (parser->lexer);
5508 if (cp_parser_allow_gnu_extensions_p (parser)
5509 && cp_lexer_next_token_is (parser->lexer, CPP_COLON))
5510 /* Implicit true clause. */
5511 expr = NULL_TREE;
5512 else
5513 /* Parse the expression. */
5514 expr = cp_parser_expression (parser);
5516 /* The next token should be a `:'. */
5517 cp_parser_require (parser, CPP_COLON, "`:'");
5518 /* Parse the assignment-expression. */
5519 assignment_expr = cp_parser_assignment_expression (parser);
5521 /* Build the conditional-expression. */
5522 return build_x_conditional_expr (logical_or_expr,
5523 expr,
5524 assignment_expr);
5527 /* Parse an assignment-expression.
5529 assignment-expression:
5530 conditional-expression
5531 logical-or-expression assignment-operator assignment_expression
5532 throw-expression
5534 Returns a representation for the expression. */
5536 static tree
5537 cp_parser_assignment_expression (cp_parser* parser)
5539 tree expr;
5541 /* If the next token is the `throw' keyword, then we're looking at
5542 a throw-expression. */
5543 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_THROW))
5544 expr = cp_parser_throw_expression (parser);
5545 /* Otherwise, it must be that we are looking at a
5546 logical-or-expression. */
5547 else
5549 /* Parse the logical-or-expression. */
5550 expr = cp_parser_logical_or_expression (parser);
5551 /* If the next token is a `?' then we're actually looking at a
5552 conditional-expression. */
5553 if (cp_lexer_next_token_is (parser->lexer, CPP_QUERY))
5554 return cp_parser_question_colon_clause (parser, expr);
5555 else
5557 enum tree_code assignment_operator;
5559 /* If it's an assignment-operator, we're using the second
5560 production. */
5561 assignment_operator
5562 = cp_parser_assignment_operator_opt (parser);
5563 if (assignment_operator != ERROR_MARK)
5565 tree rhs;
5567 /* Parse the right-hand side of the assignment. */
5568 rhs = cp_parser_assignment_expression (parser);
5569 /* An assignment may not appear in a
5570 constant-expression. */
5571 if (cp_parser_non_integral_constant_expression (parser,
5572 "an assignment"))
5573 return error_mark_node;
5574 /* Build the assignment expression. */
5575 expr = build_x_modify_expr (expr,
5576 assignment_operator,
5577 rhs);
5582 return expr;
5585 /* Parse an (optional) assignment-operator.
5587 assignment-operator: one of
5588 = *= /= %= += -= >>= <<= &= ^= |=
5590 GNU Extension:
5592 assignment-operator: one of
5593 <?= >?=
5595 If the next token is an assignment operator, the corresponding tree
5596 code is returned, and the token is consumed. For example, for
5597 `+=', PLUS_EXPR is returned. For `=' itself, the code returned is
5598 NOP_EXPR. For `/', TRUNC_DIV_EXPR is returned; for `%',
5599 TRUNC_MOD_EXPR is returned. If TOKEN is not an assignment
5600 operator, ERROR_MARK is returned. */
5602 static enum tree_code
5603 cp_parser_assignment_operator_opt (cp_parser* parser)
5605 enum tree_code op;
5606 cp_token *token;
5608 /* Peek at the next toen. */
5609 token = cp_lexer_peek_token (parser->lexer);
5611 switch (token->type)
5613 case CPP_EQ:
5614 op = NOP_EXPR;
5615 break;
5617 case CPP_MULT_EQ:
5618 op = MULT_EXPR;
5619 break;
5621 case CPP_DIV_EQ:
5622 op = TRUNC_DIV_EXPR;
5623 break;
5625 case CPP_MOD_EQ:
5626 op = TRUNC_MOD_EXPR;
5627 break;
5629 case CPP_PLUS_EQ:
5630 op = PLUS_EXPR;
5631 break;
5633 case CPP_MINUS_EQ:
5634 op = MINUS_EXPR;
5635 break;
5637 case CPP_RSHIFT_EQ:
5638 op = RSHIFT_EXPR;
5639 break;
5641 case CPP_LSHIFT_EQ:
5642 op = LSHIFT_EXPR;
5643 break;
5645 case CPP_AND_EQ:
5646 op = BIT_AND_EXPR;
5647 break;
5649 case CPP_XOR_EQ:
5650 op = BIT_XOR_EXPR;
5651 break;
5653 case CPP_OR_EQ:
5654 op = BIT_IOR_EXPR;
5655 break;
5657 case CPP_MIN_EQ:
5658 op = MIN_EXPR;
5659 break;
5661 case CPP_MAX_EQ:
5662 op = MAX_EXPR;
5663 break;
5665 default:
5666 /* Nothing else is an assignment operator. */
5667 op = ERROR_MARK;
5670 /* If it was an assignment operator, consume it. */
5671 if (op != ERROR_MARK)
5672 cp_lexer_consume_token (parser->lexer);
5674 return op;
5677 /* Parse an expression.
5679 expression:
5680 assignment-expression
5681 expression , assignment-expression
5683 Returns a representation of the expression. */
5685 static tree
5686 cp_parser_expression (cp_parser* parser)
5688 tree expression = NULL_TREE;
5690 while (true)
5692 tree assignment_expression;
5694 /* Parse the next assignment-expression. */
5695 assignment_expression
5696 = cp_parser_assignment_expression (parser);
5697 /* If this is the first assignment-expression, we can just
5698 save it away. */
5699 if (!expression)
5700 expression = assignment_expression;
5701 else
5702 expression = build_x_compound_expr (expression,
5703 assignment_expression);
5704 /* If the next token is not a comma, then we are done with the
5705 expression. */
5706 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
5707 break;
5708 /* Consume the `,'. */
5709 cp_lexer_consume_token (parser->lexer);
5710 /* A comma operator cannot appear in a constant-expression. */
5711 if (cp_parser_non_integral_constant_expression (parser,
5712 "a comma operator"))
5713 expression = error_mark_node;
5716 return expression;
5719 /* Parse a constant-expression.
5721 constant-expression:
5722 conditional-expression
5724 If ALLOW_NON_CONSTANT_P a non-constant expression is silently
5725 accepted. If ALLOW_NON_CONSTANT_P is true and the expression is not
5726 constant, *NON_CONSTANT_P is set to TRUE. If ALLOW_NON_CONSTANT_P
5727 is false, NON_CONSTANT_P should be NULL. */
5729 static tree
5730 cp_parser_constant_expression (cp_parser* parser,
5731 bool allow_non_constant_p,
5732 bool *non_constant_p)
5734 bool saved_integral_constant_expression_p;
5735 bool saved_allow_non_integral_constant_expression_p;
5736 bool saved_non_integral_constant_expression_p;
5737 tree expression;
5739 /* It might seem that we could simply parse the
5740 conditional-expression, and then check to see if it were
5741 TREE_CONSTANT. However, an expression that is TREE_CONSTANT is
5742 one that the compiler can figure out is constant, possibly after
5743 doing some simplifications or optimizations. The standard has a
5744 precise definition of constant-expression, and we must honor
5745 that, even though it is somewhat more restrictive.
5747 For example:
5749 int i[(2, 3)];
5751 is not a legal declaration, because `(2, 3)' is not a
5752 constant-expression. The `,' operator is forbidden in a
5753 constant-expression. However, GCC's constant-folding machinery
5754 will fold this operation to an INTEGER_CST for `3'. */
5756 /* Save the old settings. */
5757 saved_integral_constant_expression_p = parser->integral_constant_expression_p;
5758 saved_allow_non_integral_constant_expression_p
5759 = parser->allow_non_integral_constant_expression_p;
5760 saved_non_integral_constant_expression_p = parser->non_integral_constant_expression_p;
5761 /* We are now parsing a constant-expression. */
5762 parser->integral_constant_expression_p = true;
5763 parser->allow_non_integral_constant_expression_p = allow_non_constant_p;
5764 parser->non_integral_constant_expression_p = false;
5765 /* Although the grammar says "conditional-expression", we parse an
5766 "assignment-expression", which also permits "throw-expression"
5767 and the use of assignment operators. In the case that
5768 ALLOW_NON_CONSTANT_P is false, we get better errors than we would
5769 otherwise. In the case that ALLOW_NON_CONSTANT_P is true, it is
5770 actually essential that we look for an assignment-expression.
5771 For example, cp_parser_initializer_clauses uses this function to
5772 determine whether a particular assignment-expression is in fact
5773 constant. */
5774 expression = cp_parser_assignment_expression (parser);
5775 /* Restore the old settings. */
5776 parser->integral_constant_expression_p = saved_integral_constant_expression_p;
5777 parser->allow_non_integral_constant_expression_p
5778 = saved_allow_non_integral_constant_expression_p;
5779 if (allow_non_constant_p)
5780 *non_constant_p = parser->non_integral_constant_expression_p;
5781 parser->non_integral_constant_expression_p = saved_non_integral_constant_expression_p;
5783 return expression;
5786 /* Parse __builtin_offsetof.
5788 offsetof-expression:
5789 "__builtin_offsetof" "(" type-id "," offsetof-member-designator ")"
5791 offsetof-member-designator:
5792 id-expression
5793 | offsetof-member-designator "." id-expression
5794 | offsetof-member-designator "[" expression "]"
5797 static tree
5798 cp_parser_builtin_offsetof (cp_parser *parser)
5800 int save_ice_p, save_non_ice_p;
5801 tree type, expr;
5802 cp_id_kind dummy;
5804 /* We're about to accept non-integral-constant things, but will
5805 definitely yield an integral constant expression. Save and
5806 restore these values around our local parsing. */
5807 save_ice_p = parser->integral_constant_expression_p;
5808 save_non_ice_p = parser->non_integral_constant_expression_p;
5810 /* Consume the "__builtin_offsetof" token. */
5811 cp_lexer_consume_token (parser->lexer);
5812 /* Consume the opening `('. */
5813 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
5814 /* Parse the type-id. */
5815 type = cp_parser_type_id (parser);
5816 /* Look for the `,'. */
5817 cp_parser_require (parser, CPP_COMMA, "`,'");
5819 /* Build the (type *)null that begins the traditional offsetof macro. */
5820 expr = build_static_cast (build_pointer_type (type), null_pointer_node);
5822 /* Parse the offsetof-member-designator. We begin as if we saw "expr->". */
5823 expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DEREF, expr,
5824 true, &dummy);
5825 while (true)
5827 cp_token *token = cp_lexer_peek_token (parser->lexer);
5828 switch (token->type)
5830 case CPP_OPEN_SQUARE:
5831 /* offsetof-member-designator "[" expression "]" */
5832 expr = cp_parser_postfix_open_square_expression (parser, expr, true);
5833 break;
5835 case CPP_DOT:
5836 /* offsetof-member-designator "." identifier */
5837 cp_lexer_consume_token (parser->lexer);
5838 expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DOT, expr,
5839 true, &dummy);
5840 break;
5842 case CPP_CLOSE_PAREN:
5843 /* Consume the ")" token. */
5844 cp_lexer_consume_token (parser->lexer);
5845 goto success;
5847 default:
5848 /* Error. We know the following require will fail, but
5849 that gives the proper error message. */
5850 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
5851 cp_parser_skip_to_closing_parenthesis (parser, true, false, true);
5852 expr = error_mark_node;
5853 goto failure;
5857 success:
5858 /* We've finished the parsing, now finish with the semantics. At present
5859 we're just mirroring the traditional macro implementation. Better
5860 would be to do the lowering of the ADDR_EXPR to flat pointer arithmetic
5861 here rather than in build_x_unary_op. */
5862 expr = build_reinterpret_cast (build_reference_type (char_type_node), expr);
5863 expr = build_x_unary_op (ADDR_EXPR, expr);
5864 expr = build_reinterpret_cast (size_type_node, expr);
5866 failure:
5867 parser->integral_constant_expression_p = save_ice_p;
5868 parser->non_integral_constant_expression_p = save_non_ice_p;
5870 return expr;
5873 /* Statements [gram.stmt.stmt] */
5875 /* Parse a statement.
5877 statement:
5878 labeled-statement
5879 expression-statement
5880 compound-statement
5881 selection-statement
5882 iteration-statement
5883 jump-statement
5884 declaration-statement
5885 try-block */
5887 static void
5888 cp_parser_statement (cp_parser* parser, tree in_statement_expr)
5890 tree statement;
5891 cp_token *token;
5892 location_t statement_location;
5894 /* There is no statement yet. */
5895 statement = NULL_TREE;
5896 /* Peek at the next token. */
5897 token = cp_lexer_peek_token (parser->lexer);
5898 /* Remember the location of the first token in the statement. */
5899 statement_location = token->location;
5900 /* If this is a keyword, then that will often determine what kind of
5901 statement we have. */
5902 if (token->type == CPP_KEYWORD)
5904 enum rid keyword = token->keyword;
5906 switch (keyword)
5908 case RID_CASE:
5909 case RID_DEFAULT:
5910 statement = cp_parser_labeled_statement (parser,
5911 in_statement_expr);
5912 break;
5914 case RID_IF:
5915 case RID_SWITCH:
5916 statement = cp_parser_selection_statement (parser);
5917 break;
5919 case RID_WHILE:
5920 case RID_DO:
5921 case RID_FOR:
5922 statement = cp_parser_iteration_statement (parser);
5923 break;
5925 case RID_BREAK:
5926 case RID_CONTINUE:
5927 case RID_RETURN:
5928 case RID_GOTO:
5929 statement = cp_parser_jump_statement (parser);
5930 break;
5932 case RID_TRY:
5933 statement = cp_parser_try_block (parser);
5934 break;
5936 default:
5937 /* It might be a keyword like `int' that can start a
5938 declaration-statement. */
5939 break;
5942 else if (token->type == CPP_NAME)
5944 /* If the next token is a `:', then we are looking at a
5945 labeled-statement. */
5946 token = cp_lexer_peek_nth_token (parser->lexer, 2);
5947 if (token->type == CPP_COLON)
5948 statement = cp_parser_labeled_statement (parser, in_statement_expr);
5950 /* Anything that starts with a `{' must be a compound-statement. */
5951 else if (token->type == CPP_OPEN_BRACE)
5952 statement = cp_parser_compound_statement (parser, NULL, false);
5954 /* Everything else must be a declaration-statement or an
5955 expression-statement. Try for the declaration-statement
5956 first, unless we are looking at a `;', in which case we know that
5957 we have an expression-statement. */
5958 if (!statement)
5960 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
5962 cp_parser_parse_tentatively (parser);
5963 /* Try to parse the declaration-statement. */
5964 cp_parser_declaration_statement (parser);
5965 /* If that worked, we're done. */
5966 if (cp_parser_parse_definitely (parser))
5967 return;
5969 /* Look for an expression-statement instead. */
5970 statement = cp_parser_expression_statement (parser, in_statement_expr);
5973 /* Set the line number for the statement. */
5974 if (statement && STATEMENT_CODE_P (TREE_CODE (statement)))
5975 SET_EXPR_LOCATION (statement, statement_location);
5978 /* Parse a labeled-statement.
5980 labeled-statement:
5981 identifier : statement
5982 case constant-expression : statement
5983 default : statement
5985 GNU Extension:
5987 labeled-statement:
5988 case constant-expression ... constant-expression : statement
5990 Returns the new CASE_LABEL_EXPR, for a `case' or `default' label.
5991 For an ordinary label, returns a LABEL_EXPR. */
5993 static tree
5994 cp_parser_labeled_statement (cp_parser* parser, tree in_statement_expr)
5996 cp_token *token;
5997 tree statement = error_mark_node;
5999 /* The next token should be an identifier. */
6000 token = cp_lexer_peek_token (parser->lexer);
6001 if (token->type != CPP_NAME
6002 && token->type != CPP_KEYWORD)
6004 cp_parser_error (parser, "expected labeled-statement");
6005 return error_mark_node;
6008 switch (token->keyword)
6010 case RID_CASE:
6012 tree expr, expr_hi;
6013 cp_token *ellipsis;
6015 /* Consume the `case' token. */
6016 cp_lexer_consume_token (parser->lexer);
6017 /* Parse the constant-expression. */
6018 expr = cp_parser_constant_expression (parser,
6019 /*allow_non_constant_p=*/false,
6020 NULL);
6022 ellipsis = cp_lexer_peek_token (parser->lexer);
6023 if (ellipsis->type == CPP_ELLIPSIS)
6025 /* Consume the `...' token. */
6026 cp_lexer_consume_token (parser->lexer);
6027 expr_hi =
6028 cp_parser_constant_expression (parser,
6029 /*allow_non_constant_p=*/false,
6030 NULL);
6031 /* We don't need to emit warnings here, as the common code
6032 will do this for us. */
6034 else
6035 expr_hi = NULL_TREE;
6037 if (!parser->in_switch_statement_p)
6038 error ("case label `%E' not within a switch statement", expr);
6039 else
6040 statement = finish_case_label (expr, expr_hi);
6042 break;
6044 case RID_DEFAULT:
6045 /* Consume the `default' token. */
6046 cp_lexer_consume_token (parser->lexer);
6047 if (!parser->in_switch_statement_p)
6048 error ("case label not within a switch statement");
6049 else
6050 statement = finish_case_label (NULL_TREE, NULL_TREE);
6051 break;
6053 default:
6054 /* Anything else must be an ordinary label. */
6055 statement = finish_label_stmt (cp_parser_identifier (parser));
6056 break;
6059 /* Require the `:' token. */
6060 cp_parser_require (parser, CPP_COLON, "`:'");
6061 /* Parse the labeled statement. */
6062 cp_parser_statement (parser, in_statement_expr);
6064 /* Return the label, in the case of a `case' or `default' label. */
6065 return statement;
6068 /* Parse an expression-statement.
6070 expression-statement:
6071 expression [opt] ;
6073 Returns the new EXPR_STMT -- or NULL_TREE if the expression
6074 statement consists of nothing more than an `;'. IN_STATEMENT_EXPR_P
6075 indicates whether this expression-statement is part of an
6076 expression statement. */
6078 static tree
6079 cp_parser_expression_statement (cp_parser* parser, tree in_statement_expr)
6081 tree statement = NULL_TREE;
6083 /* If the next token is a ';', then there is no expression
6084 statement. */
6085 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6086 statement = cp_parser_expression (parser);
6088 /* Consume the final `;'. */
6089 cp_parser_consume_semicolon_at_end_of_statement (parser);
6091 if (in_statement_expr
6092 && cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
6094 /* This is the final expression statement of a statement
6095 expression. */
6096 statement = finish_stmt_expr_expr (statement, in_statement_expr);
6098 else if (statement)
6099 statement = finish_expr_stmt (statement);
6100 else
6101 finish_stmt ();
6103 return statement;
6106 /* Parse a compound-statement.
6108 compound-statement:
6109 { statement-seq [opt] }
6111 Returns a tree representing the statement. */
6113 static tree
6114 cp_parser_compound_statement (cp_parser *parser, tree in_statement_expr,
6115 bool in_try)
6117 tree compound_stmt;
6119 /* Consume the `{'. */
6120 if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
6121 return error_mark_node;
6122 /* Begin the compound-statement. */
6123 compound_stmt = begin_compound_stmt (in_try ? BCS_TRY_BLOCK : 0);
6124 /* Parse an (optional) statement-seq. */
6125 cp_parser_statement_seq_opt (parser, in_statement_expr);
6126 /* Finish the compound-statement. */
6127 finish_compound_stmt (compound_stmt);
6128 /* Consume the `}'. */
6129 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
6131 return compound_stmt;
6134 /* Parse an (optional) statement-seq.
6136 statement-seq:
6137 statement
6138 statement-seq [opt] statement */
6140 static void
6141 cp_parser_statement_seq_opt (cp_parser* parser, tree in_statement_expr)
6143 /* Scan statements until there aren't any more. */
6144 while (true)
6146 /* If we're looking at a `}', then we've run out of statements. */
6147 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE)
6148 || cp_lexer_next_token_is (parser->lexer, CPP_EOF))
6149 break;
6151 /* Parse the statement. */
6152 cp_parser_statement (parser, in_statement_expr);
6156 /* Parse a selection-statement.
6158 selection-statement:
6159 if ( condition ) statement
6160 if ( condition ) statement else statement
6161 switch ( condition ) statement
6163 Returns the new IF_STMT or SWITCH_STMT. */
6165 static tree
6166 cp_parser_selection_statement (cp_parser* parser)
6168 cp_token *token;
6169 enum rid keyword;
6171 /* Peek at the next token. */
6172 token = cp_parser_require (parser, CPP_KEYWORD, "selection-statement");
6174 /* See what kind of keyword it is. */
6175 keyword = token->keyword;
6176 switch (keyword)
6178 case RID_IF:
6179 case RID_SWITCH:
6181 tree statement;
6182 tree condition;
6184 /* Look for the `('. */
6185 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
6187 cp_parser_skip_to_end_of_statement (parser);
6188 return error_mark_node;
6191 /* Begin the selection-statement. */
6192 if (keyword == RID_IF)
6193 statement = begin_if_stmt ();
6194 else
6195 statement = begin_switch_stmt ();
6197 /* Parse the condition. */
6198 condition = cp_parser_condition (parser);
6199 /* Look for the `)'. */
6200 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
6201 cp_parser_skip_to_closing_parenthesis (parser, true, false,
6202 /*consume_paren=*/true);
6204 if (keyword == RID_IF)
6206 /* Add the condition. */
6207 finish_if_stmt_cond (condition, statement);
6209 /* Parse the then-clause. */
6210 cp_parser_implicitly_scoped_statement (parser);
6211 finish_then_clause (statement);
6213 /* If the next token is `else', parse the else-clause. */
6214 if (cp_lexer_next_token_is_keyword (parser->lexer,
6215 RID_ELSE))
6217 /* Consume the `else' keyword. */
6218 cp_lexer_consume_token (parser->lexer);
6219 begin_else_clause (statement);
6220 /* Parse the else-clause. */
6221 cp_parser_implicitly_scoped_statement (parser);
6222 finish_else_clause (statement);
6225 /* Now we're all done with the if-statement. */
6226 finish_if_stmt (statement);
6228 else
6230 bool in_switch_statement_p;
6232 /* Add the condition. */
6233 finish_switch_cond (condition, statement);
6235 /* Parse the body of the switch-statement. */
6236 in_switch_statement_p = parser->in_switch_statement_p;
6237 parser->in_switch_statement_p = true;
6238 cp_parser_implicitly_scoped_statement (parser);
6239 parser->in_switch_statement_p = in_switch_statement_p;
6241 /* Now we're all done with the switch-statement. */
6242 finish_switch_stmt (statement);
6245 return statement;
6247 break;
6249 default:
6250 cp_parser_error (parser, "expected selection-statement");
6251 return error_mark_node;
6255 /* Parse a condition.
6257 condition:
6258 expression
6259 type-specifier-seq declarator = assignment-expression
6261 GNU Extension:
6263 condition:
6264 type-specifier-seq declarator asm-specification [opt]
6265 attributes [opt] = assignment-expression
6267 Returns the expression that should be tested. */
6269 static tree
6270 cp_parser_condition (cp_parser* parser)
6272 cp_decl_specifier_seq type_specifiers;
6273 const char *saved_message;
6275 /* Try the declaration first. */
6276 cp_parser_parse_tentatively (parser);
6277 /* New types are not allowed in the type-specifier-seq for a
6278 condition. */
6279 saved_message = parser->type_definition_forbidden_message;
6280 parser->type_definition_forbidden_message
6281 = "types may not be defined in conditions";
6282 /* Parse the type-specifier-seq. */
6283 cp_parser_type_specifier_seq (parser, &type_specifiers);
6284 /* Restore the saved message. */
6285 parser->type_definition_forbidden_message = saved_message;
6286 /* If all is well, we might be looking at a declaration. */
6287 if (!cp_parser_error_occurred (parser))
6289 tree decl;
6290 tree asm_specification;
6291 tree attributes;
6292 cp_declarator *declarator;
6293 tree initializer = NULL_TREE;
6295 /* Parse the declarator. */
6296 declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
6297 /*ctor_dtor_or_conv_p=*/NULL,
6298 /*parenthesized_p=*/NULL);
6299 /* Parse the attributes. */
6300 attributes = cp_parser_attributes_opt (parser);
6301 /* Parse the asm-specification. */
6302 asm_specification = cp_parser_asm_specification_opt (parser);
6303 /* If the next token is not an `=', then we might still be
6304 looking at an expression. For example:
6306 if (A(a).x)
6308 looks like a decl-specifier-seq and a declarator -- but then
6309 there is no `=', so this is an expression. */
6310 cp_parser_require (parser, CPP_EQ, "`='");
6311 /* If we did see an `=', then we are looking at a declaration
6312 for sure. */
6313 if (cp_parser_parse_definitely (parser))
6315 /* Create the declaration. */
6316 decl = start_decl (declarator, &type_specifiers,
6317 /*initialized_p=*/true,
6318 attributes, /*prefix_attributes=*/NULL_TREE);
6319 /* Parse the assignment-expression. */
6320 initializer = cp_parser_assignment_expression (parser);
6322 /* Process the initializer. */
6323 cp_finish_decl (decl,
6324 initializer,
6325 asm_specification,
6326 LOOKUP_ONLYCONVERTING);
6328 return convert_from_reference (decl);
6331 /* If we didn't even get past the declarator successfully, we are
6332 definitely not looking at a declaration. */
6333 else
6334 cp_parser_abort_tentative_parse (parser);
6336 /* Otherwise, we are looking at an expression. */
6337 return cp_parser_expression (parser);
6340 /* Parse an iteration-statement.
6342 iteration-statement:
6343 while ( condition ) statement
6344 do statement while ( expression ) ;
6345 for ( for-init-statement condition [opt] ; expression [opt] )
6346 statement
6348 Returns the new WHILE_STMT, DO_STMT, or FOR_STMT. */
6350 static tree
6351 cp_parser_iteration_statement (cp_parser* parser)
6353 cp_token *token;
6354 enum rid keyword;
6355 tree statement;
6356 bool in_iteration_statement_p;
6359 /* Peek at the next token. */
6360 token = cp_parser_require (parser, CPP_KEYWORD, "iteration-statement");
6361 if (!token)
6362 return error_mark_node;
6364 /* Remember whether or not we are already within an iteration
6365 statement. */
6366 in_iteration_statement_p = parser->in_iteration_statement_p;
6368 /* See what kind of keyword it is. */
6369 keyword = token->keyword;
6370 switch (keyword)
6372 case RID_WHILE:
6374 tree condition;
6376 /* Begin the while-statement. */
6377 statement = begin_while_stmt ();
6378 /* Look for the `('. */
6379 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6380 /* Parse the condition. */
6381 condition = cp_parser_condition (parser);
6382 finish_while_stmt_cond (condition, statement);
6383 /* Look for the `)'. */
6384 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6385 /* Parse the dependent statement. */
6386 parser->in_iteration_statement_p = true;
6387 cp_parser_already_scoped_statement (parser);
6388 parser->in_iteration_statement_p = in_iteration_statement_p;
6389 /* We're done with the while-statement. */
6390 finish_while_stmt (statement);
6392 break;
6394 case RID_DO:
6396 tree expression;
6398 /* Begin the do-statement. */
6399 statement = begin_do_stmt ();
6400 /* Parse the body of the do-statement. */
6401 parser->in_iteration_statement_p = true;
6402 cp_parser_implicitly_scoped_statement (parser);
6403 parser->in_iteration_statement_p = in_iteration_statement_p;
6404 finish_do_body (statement);
6405 /* Look for the `while' keyword. */
6406 cp_parser_require_keyword (parser, RID_WHILE, "`while'");
6407 /* Look for the `('. */
6408 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6409 /* Parse the expression. */
6410 expression = cp_parser_expression (parser);
6411 /* We're done with the do-statement. */
6412 finish_do_stmt (expression, statement);
6413 /* Look for the `)'. */
6414 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6415 /* Look for the `;'. */
6416 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6418 break;
6420 case RID_FOR:
6422 tree condition = NULL_TREE;
6423 tree expression = NULL_TREE;
6425 /* Begin the for-statement. */
6426 statement = begin_for_stmt ();
6427 /* Look for the `('. */
6428 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6429 /* Parse the initialization. */
6430 cp_parser_for_init_statement (parser);
6431 finish_for_init_stmt (statement);
6433 /* If there's a condition, process it. */
6434 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6435 condition = cp_parser_condition (parser);
6436 finish_for_cond (condition, statement);
6437 /* Look for the `;'. */
6438 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6440 /* If there's an expression, process it. */
6441 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
6442 expression = cp_parser_expression (parser);
6443 finish_for_expr (expression, statement);
6444 /* Look for the `)'. */
6445 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6447 /* Parse the body of the for-statement. */
6448 parser->in_iteration_statement_p = true;
6449 cp_parser_already_scoped_statement (parser);
6450 parser->in_iteration_statement_p = in_iteration_statement_p;
6452 /* We're done with the for-statement. */
6453 finish_for_stmt (statement);
6455 break;
6457 default:
6458 cp_parser_error (parser, "expected iteration-statement");
6459 statement = error_mark_node;
6460 break;
6463 return statement;
6466 /* Parse a for-init-statement.
6468 for-init-statement:
6469 expression-statement
6470 simple-declaration */
6472 static void
6473 cp_parser_for_init_statement (cp_parser* parser)
6475 /* If the next token is a `;', then we have an empty
6476 expression-statement. Grammatically, this is also a
6477 simple-declaration, but an invalid one, because it does not
6478 declare anything. Therefore, if we did not handle this case
6479 specially, we would issue an error message about an invalid
6480 declaration. */
6481 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6483 /* We're going to speculatively look for a declaration, falling back
6484 to an expression, if necessary. */
6485 cp_parser_parse_tentatively (parser);
6486 /* Parse the declaration. */
6487 cp_parser_simple_declaration (parser,
6488 /*function_definition_allowed_p=*/false);
6489 /* If the tentative parse failed, then we shall need to look for an
6490 expression-statement. */
6491 if (cp_parser_parse_definitely (parser))
6492 return;
6495 cp_parser_expression_statement (parser, false);
6498 /* Parse a jump-statement.
6500 jump-statement:
6501 break ;
6502 continue ;
6503 return expression [opt] ;
6504 goto identifier ;
6506 GNU extension:
6508 jump-statement:
6509 goto * expression ;
6511 Returns the new BREAK_STMT, CONTINUE_STMT, RETURN_EXPR, or GOTO_EXPR. */
6513 static tree
6514 cp_parser_jump_statement (cp_parser* parser)
6516 tree statement = error_mark_node;
6517 cp_token *token;
6518 enum rid keyword;
6520 /* Peek at the next token. */
6521 token = cp_parser_require (parser, CPP_KEYWORD, "jump-statement");
6522 if (!token)
6523 return error_mark_node;
6525 /* See what kind of keyword it is. */
6526 keyword = token->keyword;
6527 switch (keyword)
6529 case RID_BREAK:
6530 if (!parser->in_switch_statement_p
6531 && !parser->in_iteration_statement_p)
6533 error ("break statement not within loop or switch");
6534 statement = error_mark_node;
6536 else
6537 statement = finish_break_stmt ();
6538 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6539 break;
6541 case RID_CONTINUE:
6542 if (!parser->in_iteration_statement_p)
6544 error ("continue statement not within a loop");
6545 statement = error_mark_node;
6547 else
6548 statement = finish_continue_stmt ();
6549 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6550 break;
6552 case RID_RETURN:
6554 tree expr;
6556 /* If the next token is a `;', then there is no
6557 expression. */
6558 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6559 expr = cp_parser_expression (parser);
6560 else
6561 expr = NULL_TREE;
6562 /* Build the return-statement. */
6563 statement = finish_return_stmt (expr);
6564 /* Look for the final `;'. */
6565 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6567 break;
6569 case RID_GOTO:
6570 /* Create the goto-statement. */
6571 if (cp_lexer_next_token_is (parser->lexer, CPP_MULT))
6573 /* Issue a warning about this use of a GNU extension. */
6574 if (pedantic)
6575 pedwarn ("ISO C++ forbids computed gotos");
6576 /* Consume the '*' token. */
6577 cp_lexer_consume_token (parser->lexer);
6578 /* Parse the dependent expression. */
6579 finish_goto_stmt (cp_parser_expression (parser));
6581 else
6582 finish_goto_stmt (cp_parser_identifier (parser));
6583 /* Look for the final `;'. */
6584 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6585 break;
6587 default:
6588 cp_parser_error (parser, "expected jump-statement");
6589 break;
6592 return statement;
6595 /* Parse a declaration-statement.
6597 declaration-statement:
6598 block-declaration */
6600 static void
6601 cp_parser_declaration_statement (cp_parser* parser)
6603 void *p;
6605 /* Get the high-water mark for the DECLARATOR_OBSTACK. */
6606 p = obstack_alloc (&declarator_obstack, 0);
6608 /* Parse the block-declaration. */
6609 cp_parser_block_declaration (parser, /*statement_p=*/true);
6611 /* Free any declarators allocated. */
6612 obstack_free (&declarator_obstack, p);
6614 /* Finish off the statement. */
6615 finish_stmt ();
6618 /* Some dependent statements (like `if (cond) statement'), are
6619 implicitly in their own scope. In other words, if the statement is
6620 a single statement (as opposed to a compound-statement), it is
6621 none-the-less treated as if it were enclosed in braces. Any
6622 declarations appearing in the dependent statement are out of scope
6623 after control passes that point. This function parses a statement,
6624 but ensures that is in its own scope, even if it is not a
6625 compound-statement.
6627 Returns the new statement. */
6629 static tree
6630 cp_parser_implicitly_scoped_statement (cp_parser* parser)
6632 tree statement;
6634 /* If the token is not a `{', then we must take special action. */
6635 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
6637 /* Create a compound-statement. */
6638 statement = begin_compound_stmt (0);
6639 /* Parse the dependent-statement. */
6640 cp_parser_statement (parser, false);
6641 /* Finish the dummy compound-statement. */
6642 finish_compound_stmt (statement);
6644 /* Otherwise, we simply parse the statement directly. */
6645 else
6646 statement = cp_parser_compound_statement (parser, NULL, false);
6648 /* Return the statement. */
6649 return statement;
6652 /* For some dependent statements (like `while (cond) statement'), we
6653 have already created a scope. Therefore, even if the dependent
6654 statement is a compound-statement, we do not want to create another
6655 scope. */
6657 static void
6658 cp_parser_already_scoped_statement (cp_parser* parser)
6660 /* If the token is a `{', then we must take special action. */
6661 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
6662 cp_parser_statement (parser, false);
6663 else
6665 /* Avoid calling cp_parser_compound_statement, so that we
6666 don't create a new scope. Do everything else by hand. */
6667 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
6668 cp_parser_statement_seq_opt (parser, false);
6669 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
6673 /* Declarations [gram.dcl.dcl] */
6675 /* Parse an optional declaration-sequence.
6677 declaration-seq:
6678 declaration
6679 declaration-seq declaration */
6681 static void
6682 cp_parser_declaration_seq_opt (cp_parser* parser)
6684 while (true)
6686 cp_token *token;
6688 token = cp_lexer_peek_token (parser->lexer);
6690 if (token->type == CPP_CLOSE_BRACE
6691 || token->type == CPP_EOF)
6692 break;
6694 if (token->type == CPP_SEMICOLON)
6696 /* A declaration consisting of a single semicolon is
6697 invalid. Allow it unless we're being pedantic. */
6698 if (pedantic && !in_system_header)
6699 pedwarn ("extra `;'");
6700 cp_lexer_consume_token (parser->lexer);
6701 continue;
6704 /* The C lexer modifies PENDING_LANG_CHANGE when it wants the
6705 parser to enter or exit implicit `extern "C"' blocks. */
6706 while (pending_lang_change > 0)
6708 push_lang_context (lang_name_c);
6709 --pending_lang_change;
6711 while (pending_lang_change < 0)
6713 pop_lang_context ();
6714 ++pending_lang_change;
6717 /* Parse the declaration itself. */
6718 cp_parser_declaration (parser);
6722 /* Parse a declaration.
6724 declaration:
6725 block-declaration
6726 function-definition
6727 template-declaration
6728 explicit-instantiation
6729 explicit-specialization
6730 linkage-specification
6731 namespace-definition
6733 GNU extension:
6735 declaration:
6736 __extension__ declaration */
6738 static void
6739 cp_parser_declaration (cp_parser* parser)
6741 cp_token token1;
6742 cp_token token2;
6743 int saved_pedantic;
6744 void *p;
6746 /* Set this here since we can be called after
6747 pushing the linkage specification. */
6748 c_lex_string_translate = 1;
6750 /* Check for the `__extension__' keyword. */
6751 if (cp_parser_extension_opt (parser, &saved_pedantic))
6753 /* Parse the qualified declaration. */
6754 cp_parser_declaration (parser);
6755 /* Restore the PEDANTIC flag. */
6756 pedantic = saved_pedantic;
6758 return;
6761 /* Try to figure out what kind of declaration is present. */
6762 token1 = *cp_lexer_peek_token (parser->lexer);
6764 /* Don't translate the CPP_STRING in extern "C". */
6765 if (token1.keyword == RID_EXTERN)
6766 c_lex_string_translate = 0;
6768 if (token1.type != CPP_EOF)
6769 token2 = *cp_lexer_peek_nth_token (parser->lexer, 2);
6771 c_lex_string_translate = 1;
6773 /* Get the high-water mark for the DECLARATOR_OBSTACK. */
6774 p = obstack_alloc (&declarator_obstack, 0);
6776 /* If the next token is `extern' and the following token is a string
6777 literal, then we have a linkage specification. */
6778 if (token1.keyword == RID_EXTERN
6779 && cp_parser_is_string_literal (&token2))
6780 cp_parser_linkage_specification (parser);
6781 /* If the next token is `template', then we have either a template
6782 declaration, an explicit instantiation, or an explicit
6783 specialization. */
6784 else if (token1.keyword == RID_TEMPLATE)
6786 /* `template <>' indicates a template specialization. */
6787 if (token2.type == CPP_LESS
6788 && cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_GREATER)
6789 cp_parser_explicit_specialization (parser);
6790 /* `template <' indicates a template declaration. */
6791 else if (token2.type == CPP_LESS)
6792 cp_parser_template_declaration (parser, /*member_p=*/false);
6793 /* Anything else must be an explicit instantiation. */
6794 else
6795 cp_parser_explicit_instantiation (parser);
6797 /* If the next token is `export', then we have a template
6798 declaration. */
6799 else if (token1.keyword == RID_EXPORT)
6800 cp_parser_template_declaration (parser, /*member_p=*/false);
6801 /* If the next token is `extern', 'static' or 'inline' and the one
6802 after that is `template', we have a GNU extended explicit
6803 instantiation directive. */
6804 else if (cp_parser_allow_gnu_extensions_p (parser)
6805 && (token1.keyword == RID_EXTERN
6806 || token1.keyword == RID_STATIC
6807 || token1.keyword == RID_INLINE)
6808 && token2.keyword == RID_TEMPLATE)
6809 cp_parser_explicit_instantiation (parser);
6810 /* If the next token is `namespace', check for a named or unnamed
6811 namespace definition. */
6812 else if (token1.keyword == RID_NAMESPACE
6813 && (/* A named namespace definition. */
6814 (token2.type == CPP_NAME
6815 && (cp_lexer_peek_nth_token (parser->lexer, 3)->type
6816 == CPP_OPEN_BRACE))
6817 /* An unnamed namespace definition. */
6818 || token2.type == CPP_OPEN_BRACE))
6819 cp_parser_namespace_definition (parser);
6820 /* We must have either a block declaration or a function
6821 definition. */
6822 else
6823 /* Try to parse a block-declaration, or a function-definition. */
6824 cp_parser_block_declaration (parser, /*statement_p=*/false);
6826 /* Free any declarators allocated. */
6827 obstack_free (&declarator_obstack, p);
6830 /* Parse a block-declaration.
6832 block-declaration:
6833 simple-declaration
6834 asm-definition
6835 namespace-alias-definition
6836 using-declaration
6837 using-directive
6839 GNU Extension:
6841 block-declaration:
6842 __extension__ block-declaration
6843 label-declaration
6845 If STATEMENT_P is TRUE, then this block-declaration is occurring as
6846 part of a declaration-statement. */
6848 static void
6849 cp_parser_block_declaration (cp_parser *parser,
6850 bool statement_p)
6852 cp_token *token1;
6853 int saved_pedantic;
6855 /* Check for the `__extension__' keyword. */
6856 if (cp_parser_extension_opt (parser, &saved_pedantic))
6858 /* Parse the qualified declaration. */
6859 cp_parser_block_declaration (parser, statement_p);
6860 /* Restore the PEDANTIC flag. */
6861 pedantic = saved_pedantic;
6863 return;
6866 /* Peek at the next token to figure out which kind of declaration is
6867 present. */
6868 token1 = cp_lexer_peek_token (parser->lexer);
6870 /* If the next keyword is `asm', we have an asm-definition. */
6871 if (token1->keyword == RID_ASM)
6873 if (statement_p)
6874 cp_parser_commit_to_tentative_parse (parser);
6875 cp_parser_asm_definition (parser);
6877 /* If the next keyword is `namespace', we have a
6878 namespace-alias-definition. */
6879 else if (token1->keyword == RID_NAMESPACE)
6880 cp_parser_namespace_alias_definition (parser);
6881 /* If the next keyword is `using', we have either a
6882 using-declaration or a using-directive. */
6883 else if (token1->keyword == RID_USING)
6885 cp_token *token2;
6887 if (statement_p)
6888 cp_parser_commit_to_tentative_parse (parser);
6889 /* If the token after `using' is `namespace', then we have a
6890 using-directive. */
6891 token2 = cp_lexer_peek_nth_token (parser->lexer, 2);
6892 if (token2->keyword == RID_NAMESPACE)
6893 cp_parser_using_directive (parser);
6894 /* Otherwise, it's a using-declaration. */
6895 else
6896 cp_parser_using_declaration (parser);
6898 /* If the next keyword is `__label__' we have a label declaration. */
6899 else if (token1->keyword == RID_LABEL)
6901 if (statement_p)
6902 cp_parser_commit_to_tentative_parse (parser);
6903 cp_parser_label_declaration (parser);
6905 /* Anything else must be a simple-declaration. */
6906 else
6907 cp_parser_simple_declaration (parser, !statement_p);
6910 /* Parse a simple-declaration.
6912 simple-declaration:
6913 decl-specifier-seq [opt] init-declarator-list [opt] ;
6915 init-declarator-list:
6916 init-declarator
6917 init-declarator-list , init-declarator
6919 If FUNCTION_DEFINITION_ALLOWED_P is TRUE, then we also recognize a
6920 function-definition as a simple-declaration. */
6922 static void
6923 cp_parser_simple_declaration (cp_parser* parser,
6924 bool function_definition_allowed_p)
6926 cp_decl_specifier_seq decl_specifiers;
6927 int declares_class_or_enum;
6928 bool saw_declarator;
6930 /* Defer access checks until we know what is being declared; the
6931 checks for names appearing in the decl-specifier-seq should be
6932 done as if we were in the scope of the thing being declared. */
6933 push_deferring_access_checks (dk_deferred);
6935 /* Parse the decl-specifier-seq. We have to keep track of whether
6936 or not the decl-specifier-seq declares a named class or
6937 enumeration type, since that is the only case in which the
6938 init-declarator-list is allowed to be empty.
6940 [dcl.dcl]
6942 In a simple-declaration, the optional init-declarator-list can be
6943 omitted only when declaring a class or enumeration, that is when
6944 the decl-specifier-seq contains either a class-specifier, an
6945 elaborated-type-specifier, or an enum-specifier. */
6946 cp_parser_decl_specifier_seq (parser,
6947 CP_PARSER_FLAGS_OPTIONAL,
6948 &decl_specifiers,
6949 &declares_class_or_enum);
6950 /* We no longer need to defer access checks. */
6951 stop_deferring_access_checks ();
6953 /* In a block scope, a valid declaration must always have a
6954 decl-specifier-seq. By not trying to parse declarators, we can
6955 resolve the declaration/expression ambiguity more quickly. */
6956 if (!function_definition_allowed_p
6957 && !decl_specifiers.any_specifiers_p)
6959 cp_parser_error (parser, "expected declaration");
6960 goto done;
6963 /* If the next two tokens are both identifiers, the code is
6964 erroneous. The usual cause of this situation is code like:
6966 T t;
6968 where "T" should name a type -- but does not. */
6969 if (cp_parser_parse_and_diagnose_invalid_type_name (parser))
6971 /* If parsing tentatively, we should commit; we really are
6972 looking at a declaration. */
6973 cp_parser_commit_to_tentative_parse (parser);
6974 /* Give up. */
6975 goto done;
6978 /* Keep going until we hit the `;' at the end of the simple
6979 declaration. */
6980 saw_declarator = false;
6981 while (cp_lexer_next_token_is_not (parser->lexer,
6982 CPP_SEMICOLON))
6984 cp_token *token;
6985 bool function_definition_p;
6986 tree decl;
6988 saw_declarator = true;
6989 /* Parse the init-declarator. */
6990 decl = cp_parser_init_declarator (parser, &decl_specifiers,
6991 function_definition_allowed_p,
6992 /*member_p=*/false,
6993 declares_class_or_enum,
6994 &function_definition_p);
6995 /* If an error occurred while parsing tentatively, exit quickly.
6996 (That usually happens when in the body of a function; each
6997 statement is treated as a declaration-statement until proven
6998 otherwise.) */
6999 if (cp_parser_error_occurred (parser))
7000 goto done;
7001 /* Handle function definitions specially. */
7002 if (function_definition_p)
7004 /* If the next token is a `,', then we are probably
7005 processing something like:
7007 void f() {}, *p;
7009 which is erroneous. */
7010 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
7011 error ("mixing declarations and function-definitions is forbidden");
7012 /* Otherwise, we're done with the list of declarators. */
7013 else
7015 pop_deferring_access_checks ();
7016 return;
7019 /* The next token should be either a `,' or a `;'. */
7020 token = cp_lexer_peek_token (parser->lexer);
7021 /* If it's a `,', there are more declarators to come. */
7022 if (token->type == CPP_COMMA)
7023 cp_lexer_consume_token (parser->lexer);
7024 /* If it's a `;', we are done. */
7025 else if (token->type == CPP_SEMICOLON)
7026 break;
7027 /* Anything else is an error. */
7028 else
7030 cp_parser_error (parser, "expected `,' or `;'");
7031 /* Skip tokens until we reach the end of the statement. */
7032 cp_parser_skip_to_end_of_statement (parser);
7033 /* If the next token is now a `;', consume it. */
7034 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
7035 cp_lexer_consume_token (parser->lexer);
7036 goto done;
7038 /* After the first time around, a function-definition is not
7039 allowed -- even if it was OK at first. For example:
7041 int i, f() {}
7043 is not valid. */
7044 function_definition_allowed_p = false;
7047 /* Issue an error message if no declarators are present, and the
7048 decl-specifier-seq does not itself declare a class or
7049 enumeration. */
7050 if (!saw_declarator)
7052 if (cp_parser_declares_only_class_p (parser))
7053 shadow_tag (&decl_specifiers);
7054 /* Perform any deferred access checks. */
7055 perform_deferred_access_checks ();
7058 /* Consume the `;'. */
7059 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
7061 done:
7062 pop_deferring_access_checks ();
7065 /* Parse a decl-specifier-seq.
7067 decl-specifier-seq:
7068 decl-specifier-seq [opt] decl-specifier
7070 decl-specifier:
7071 storage-class-specifier
7072 type-specifier
7073 function-specifier
7074 friend
7075 typedef
7077 GNU Extension:
7079 decl-specifier:
7080 attributes
7082 Set *DECL_SPECS to a representation of the decl-specifier-seq.
7084 If FRIEND_IS_NOT_CLASS_P is non-NULL, and the `friend' specifier
7085 appears, and the entity that will be a friend is not going to be a
7086 class, then *FRIEND_IS_NOT_CLASS_P will be set to TRUE. Note that
7087 even if *FRIEND_IS_NOT_CLASS_P is FALSE, the entity to which
7088 friendship is granted might not be a class.
7090 *DECLARES_CLASS_OR_ENUM is set to the bitwise or of the following
7091 flags:
7093 1: one of the decl-specifiers is an elaborated-type-specifier
7094 (i.e., a type declaration)
7095 2: one of the decl-specifiers is an enum-specifier or a
7096 class-specifier (i.e., a type definition)
7100 static void
7101 cp_parser_decl_specifier_seq (cp_parser* parser,
7102 cp_parser_flags flags,
7103 cp_decl_specifier_seq *decl_specs,
7104 int* declares_class_or_enum)
7106 bool constructor_possible_p = !parser->in_declarator_p;
7108 /* Clear DECL_SPECS. */
7109 clear_decl_specs (decl_specs);
7111 /* Assume no class or enumeration type is declared. */
7112 *declares_class_or_enum = 0;
7114 /* Keep reading specifiers until there are no more to read. */
7115 while (true)
7117 bool constructor_p;
7118 bool found_decl_spec;
7119 cp_token *token;
7121 /* Peek at the next token. */
7122 token = cp_lexer_peek_token (parser->lexer);
7123 /* Handle attributes. */
7124 if (token->keyword == RID_ATTRIBUTE)
7126 /* Parse the attributes. */
7127 decl_specs->attributes
7128 = chainon (decl_specs->attributes,
7129 cp_parser_attributes_opt (parser));
7130 continue;
7132 /* Assume we will find a decl-specifier keyword. */
7133 found_decl_spec = true;
7134 /* If the next token is an appropriate keyword, we can simply
7135 add it to the list. */
7136 switch (token->keyword)
7138 /* decl-specifier:
7139 friend */
7140 case RID_FRIEND:
7141 if (decl_specs->specs[(int) ds_friend]++)
7142 error ("duplicate `friend'");
7143 /* Consume the token. */
7144 cp_lexer_consume_token (parser->lexer);
7145 break;
7147 /* function-specifier:
7148 inline
7149 virtual
7150 explicit */
7151 case RID_INLINE:
7152 case RID_VIRTUAL:
7153 case RID_EXPLICIT:
7154 cp_parser_function_specifier_opt (parser, decl_specs);
7155 break;
7157 /* decl-specifier:
7158 typedef */
7159 case RID_TYPEDEF:
7160 ++decl_specs->specs[(int) ds_typedef];
7161 /* Consume the token. */
7162 cp_lexer_consume_token (parser->lexer);
7163 /* A constructor declarator cannot appear in a typedef. */
7164 constructor_possible_p = false;
7165 /* The "typedef" keyword can only occur in a declaration; we
7166 may as well commit at this point. */
7167 cp_parser_commit_to_tentative_parse (parser);
7168 break;
7170 /* storage-class-specifier:
7171 auto
7172 register
7173 static
7174 extern
7175 mutable
7177 GNU Extension:
7178 thread */
7179 case RID_AUTO:
7180 /* Consume the token. */
7181 cp_lexer_consume_token (parser->lexer);
7182 cp_parser_set_storage_class (decl_specs, sc_auto);
7183 break;
7184 case RID_REGISTER:
7185 /* Consume the token. */
7186 cp_lexer_consume_token (parser->lexer);
7187 cp_parser_set_storage_class (decl_specs, sc_register);
7188 break;
7189 case RID_STATIC:
7190 /* Consume the token. */
7191 cp_lexer_consume_token (parser->lexer);
7192 if (decl_specs->specs[(int) ds_thread])
7194 error ("`__thread' before `static'");
7195 decl_specs->specs[(int) ds_thread] = 0;
7197 cp_parser_set_storage_class (decl_specs, sc_static);
7198 break;
7199 case RID_EXTERN:
7200 /* Consume the token. */
7201 cp_lexer_consume_token (parser->lexer);
7202 if (decl_specs->specs[(int) ds_thread])
7204 error ("`__thread' before `extern'");
7205 decl_specs->specs[(int) ds_thread] = 0;
7207 cp_parser_set_storage_class (decl_specs, sc_extern);
7208 break;
7209 case RID_MUTABLE:
7210 /* Consume the token. */
7211 cp_lexer_consume_token (parser->lexer);
7212 cp_parser_set_storage_class (decl_specs, sc_mutable);
7213 break;
7214 case RID_THREAD:
7215 /* Consume the token. */
7216 cp_lexer_consume_token (parser->lexer);
7217 ++decl_specs->specs[(int) ds_thread];
7218 break;
7220 default:
7221 /* We did not yet find a decl-specifier yet. */
7222 found_decl_spec = false;
7223 break;
7226 /* Constructors are a special case. The `S' in `S()' is not a
7227 decl-specifier; it is the beginning of the declarator. */
7228 constructor_p
7229 = (!found_decl_spec
7230 && constructor_possible_p
7231 && (cp_parser_constructor_declarator_p
7232 (parser, decl_specs->specs[(int) ds_friend] != 0)));
7234 /* If we don't have a DECL_SPEC yet, then we must be looking at
7235 a type-specifier. */
7236 if (!found_decl_spec && !constructor_p)
7238 int decl_spec_declares_class_or_enum;
7239 bool is_cv_qualifier;
7240 tree type_spec;
7242 type_spec
7243 = cp_parser_type_specifier (parser, flags,
7244 decl_specs,
7245 /*is_declaration=*/true,
7246 &decl_spec_declares_class_or_enum,
7247 &is_cv_qualifier);
7249 *declares_class_or_enum |= decl_spec_declares_class_or_enum;
7251 /* If this type-specifier referenced a user-defined type
7252 (a typedef, class-name, etc.), then we can't allow any
7253 more such type-specifiers henceforth.
7255 [dcl.spec]
7257 The longest sequence of decl-specifiers that could
7258 possibly be a type name is taken as the
7259 decl-specifier-seq of a declaration. The sequence shall
7260 be self-consistent as described below.
7262 [dcl.type]
7264 As a general rule, at most one type-specifier is allowed
7265 in the complete decl-specifier-seq of a declaration. The
7266 only exceptions are the following:
7268 -- const or volatile can be combined with any other
7269 type-specifier.
7271 -- signed or unsigned can be combined with char, long,
7272 short, or int.
7274 -- ..
7276 Example:
7278 typedef char* Pc;
7279 void g (const int Pc);
7281 Here, Pc is *not* part of the decl-specifier seq; it's
7282 the declarator. Therefore, once we see a type-specifier
7283 (other than a cv-qualifier), we forbid any additional
7284 user-defined types. We *do* still allow things like `int
7285 int' to be considered a decl-specifier-seq, and issue the
7286 error message later. */
7287 if (type_spec && !is_cv_qualifier)
7288 flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES;
7289 /* A constructor declarator cannot follow a type-specifier. */
7290 if (type_spec)
7292 constructor_possible_p = false;
7293 found_decl_spec = true;
7297 /* If we still do not have a DECL_SPEC, then there are no more
7298 decl-specifiers. */
7299 if (!found_decl_spec)
7300 break;
7302 decl_specs->any_specifiers_p = true;
7303 /* After we see one decl-specifier, further decl-specifiers are
7304 always optional. */
7305 flags |= CP_PARSER_FLAGS_OPTIONAL;
7308 /* Don't allow a friend specifier with a class definition. */
7309 if (decl_specs->specs[(int) ds_friend] != 0
7310 && (*declares_class_or_enum & 2))
7311 error ("class definition may not be declared a friend");
7314 /* Parse an (optional) storage-class-specifier.
7316 storage-class-specifier:
7317 auto
7318 register
7319 static
7320 extern
7321 mutable
7323 GNU Extension:
7325 storage-class-specifier:
7326 thread
7328 Returns an IDENTIFIER_NODE corresponding to the keyword used. */
7330 static tree
7331 cp_parser_storage_class_specifier_opt (cp_parser* parser)
7333 switch (cp_lexer_peek_token (parser->lexer)->keyword)
7335 case RID_AUTO:
7336 case RID_REGISTER:
7337 case RID_STATIC:
7338 case RID_EXTERN:
7339 case RID_MUTABLE:
7340 case RID_THREAD:
7341 /* Consume the token. */
7342 return cp_lexer_consume_token (parser->lexer)->value;
7344 default:
7345 return NULL_TREE;
7349 /* Parse an (optional) function-specifier.
7351 function-specifier:
7352 inline
7353 virtual
7354 explicit
7356 Returns an IDENTIFIER_NODE corresponding to the keyword used.
7357 Updates DECL_SPECS, if it is non-NULL. */
7359 static tree
7360 cp_parser_function_specifier_opt (cp_parser* parser,
7361 cp_decl_specifier_seq *decl_specs)
7363 switch (cp_lexer_peek_token (parser->lexer)->keyword)
7365 case RID_INLINE:
7366 if (decl_specs)
7367 ++decl_specs->specs[(int) ds_inline];
7368 break;
7370 case RID_VIRTUAL:
7371 if (decl_specs)
7372 ++decl_specs->specs[(int) ds_virtual];
7373 break;
7375 case RID_EXPLICIT:
7376 if (decl_specs)
7377 ++decl_specs->specs[(int) ds_explicit];
7378 break;
7380 default:
7381 return NULL_TREE;
7384 /* Consume the token. */
7385 return cp_lexer_consume_token (parser->lexer)->value;
7388 /* Parse a linkage-specification.
7390 linkage-specification:
7391 extern string-literal { declaration-seq [opt] }
7392 extern string-literal declaration */
7394 static void
7395 cp_parser_linkage_specification (cp_parser* parser)
7397 cp_token *token;
7398 tree linkage;
7400 /* Look for the `extern' keyword. */
7401 cp_parser_require_keyword (parser, RID_EXTERN, "`extern'");
7403 /* Peek at the next token. */
7404 token = cp_lexer_peek_token (parser->lexer);
7405 /* If it's not a string-literal, then there's a problem. */
7406 if (!cp_parser_is_string_literal (token))
7408 cp_parser_error (parser, "expected language-name");
7409 return;
7411 /* Consume the token. */
7412 cp_lexer_consume_token (parser->lexer);
7414 /* Transform the literal into an identifier. If the literal is a
7415 wide-character string, or contains embedded NULs, then we can't
7416 handle it as the user wants. */
7417 if (token->type == CPP_WSTRING
7418 || (strlen (TREE_STRING_POINTER (token->value))
7419 != (size_t) (TREE_STRING_LENGTH (token->value) - 1)))
7421 cp_parser_error (parser, "invalid linkage-specification");
7422 /* Assume C++ linkage. */
7423 linkage = get_identifier ("c++");
7425 /* If the string is chained to another string, take the latter,
7426 that's the untranslated string. */
7427 else if (TREE_CHAIN (token->value))
7428 linkage = get_identifier (TREE_STRING_POINTER (TREE_CHAIN (token->value)));
7429 /* If it's a simple string constant, things are easier. */
7430 else
7431 linkage = get_identifier (TREE_STRING_POINTER (token->value));
7433 /* We're now using the new linkage. */
7434 push_lang_context (linkage);
7436 /* If the next token is a `{', then we're using the first
7437 production. */
7438 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
7440 /* Consume the `{' token. */
7441 cp_lexer_consume_token (parser->lexer);
7442 /* Parse the declarations. */
7443 cp_parser_declaration_seq_opt (parser);
7444 /* Look for the closing `}'. */
7445 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
7447 /* Otherwise, there's just one declaration. */
7448 else
7450 bool saved_in_unbraced_linkage_specification_p;
7452 saved_in_unbraced_linkage_specification_p
7453 = parser->in_unbraced_linkage_specification_p;
7454 parser->in_unbraced_linkage_specification_p = true;
7455 have_extern_spec = true;
7456 cp_parser_declaration (parser);
7457 have_extern_spec = false;
7458 parser->in_unbraced_linkage_specification_p
7459 = saved_in_unbraced_linkage_specification_p;
7462 /* We're done with the linkage-specification. */
7463 pop_lang_context ();
7466 /* Special member functions [gram.special] */
7468 /* Parse a conversion-function-id.
7470 conversion-function-id:
7471 operator conversion-type-id
7473 Returns an IDENTIFIER_NODE representing the operator. */
7475 static tree
7476 cp_parser_conversion_function_id (cp_parser* parser)
7478 tree type;
7479 tree saved_scope;
7480 tree saved_qualifying_scope;
7481 tree saved_object_scope;
7482 bool pop_p = false;
7484 /* Look for the `operator' token. */
7485 if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
7486 return error_mark_node;
7487 /* When we parse the conversion-type-id, the current scope will be
7488 reset. However, we need that information in able to look up the
7489 conversion function later, so we save it here. */
7490 saved_scope = parser->scope;
7491 saved_qualifying_scope = parser->qualifying_scope;
7492 saved_object_scope = parser->object_scope;
7493 /* We must enter the scope of the class so that the names of
7494 entities declared within the class are available in the
7495 conversion-type-id. For example, consider:
7497 struct S {
7498 typedef int I;
7499 operator I();
7502 S::operator I() { ... }
7504 In order to see that `I' is a type-name in the definition, we
7505 must be in the scope of `S'. */
7506 if (saved_scope)
7507 pop_p = push_scope (saved_scope);
7508 /* Parse the conversion-type-id. */
7509 type = cp_parser_conversion_type_id (parser);
7510 /* Leave the scope of the class, if any. */
7511 if (pop_p)
7512 pop_scope (saved_scope);
7513 /* Restore the saved scope. */
7514 parser->scope = saved_scope;
7515 parser->qualifying_scope = saved_qualifying_scope;
7516 parser->object_scope = saved_object_scope;
7517 /* If the TYPE is invalid, indicate failure. */
7518 if (type == error_mark_node)
7519 return error_mark_node;
7520 return mangle_conv_op_name_for_type (type);
7523 /* Parse a conversion-type-id:
7525 conversion-type-id:
7526 type-specifier-seq conversion-declarator [opt]
7528 Returns the TYPE specified. */
7530 static tree
7531 cp_parser_conversion_type_id (cp_parser* parser)
7533 tree attributes;
7534 cp_decl_specifier_seq type_specifiers;
7535 cp_declarator *declarator;
7537 /* Parse the attributes. */
7538 attributes = cp_parser_attributes_opt (parser);
7539 /* Parse the type-specifiers. */
7540 cp_parser_type_specifier_seq (parser, &type_specifiers);
7541 /* If that didn't work, stop. */
7542 if (type_specifiers.type == error_mark_node)
7543 return error_mark_node;
7544 /* Parse the conversion-declarator. */
7545 declarator = cp_parser_conversion_declarator_opt (parser);
7547 return grokdeclarator (declarator, &type_specifiers, TYPENAME,
7548 /*initialized=*/0, &attributes);
7551 /* Parse an (optional) conversion-declarator.
7553 conversion-declarator:
7554 ptr-operator conversion-declarator [opt]
7558 static cp_declarator *
7559 cp_parser_conversion_declarator_opt (cp_parser* parser)
7561 enum tree_code code;
7562 tree class_type;
7563 cp_cv_quals cv_quals;
7565 /* We don't know if there's a ptr-operator next, or not. */
7566 cp_parser_parse_tentatively (parser);
7567 /* Try the ptr-operator. */
7568 code = cp_parser_ptr_operator (parser, &class_type, &cv_quals);
7569 /* If it worked, look for more conversion-declarators. */
7570 if (cp_parser_parse_definitely (parser))
7572 cp_declarator *declarator;
7574 /* Parse another optional declarator. */
7575 declarator = cp_parser_conversion_declarator_opt (parser);
7577 /* Create the representation of the declarator. */
7578 if (class_type)
7579 declarator = make_ptrmem_declarator (cv_quals, class_type,
7580 declarator);
7581 else if (code == INDIRECT_REF)
7582 declarator = make_pointer_declarator (cv_quals, declarator);
7583 else
7584 declarator = make_reference_declarator (cv_quals, declarator);
7586 return declarator;
7589 return NULL;
7592 /* Parse an (optional) ctor-initializer.
7594 ctor-initializer:
7595 : mem-initializer-list
7597 Returns TRUE iff the ctor-initializer was actually present. */
7599 static bool
7600 cp_parser_ctor_initializer_opt (cp_parser* parser)
7602 /* If the next token is not a `:', then there is no
7603 ctor-initializer. */
7604 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
7606 /* Do default initialization of any bases and members. */
7607 if (DECL_CONSTRUCTOR_P (current_function_decl))
7608 finish_mem_initializers (NULL_TREE);
7610 return false;
7613 /* Consume the `:' token. */
7614 cp_lexer_consume_token (parser->lexer);
7615 /* And the mem-initializer-list. */
7616 cp_parser_mem_initializer_list (parser);
7618 return true;
7621 /* Parse a mem-initializer-list.
7623 mem-initializer-list:
7624 mem-initializer
7625 mem-initializer , mem-initializer-list */
7627 static void
7628 cp_parser_mem_initializer_list (cp_parser* parser)
7630 tree mem_initializer_list = NULL_TREE;
7632 /* Let the semantic analysis code know that we are starting the
7633 mem-initializer-list. */
7634 if (!DECL_CONSTRUCTOR_P (current_function_decl))
7635 error ("only constructors take base initializers");
7637 /* Loop through the list. */
7638 while (true)
7640 tree mem_initializer;
7642 /* Parse the mem-initializer. */
7643 mem_initializer = cp_parser_mem_initializer (parser);
7644 /* Add it to the list, unless it was erroneous. */
7645 if (mem_initializer)
7647 TREE_CHAIN (mem_initializer) = mem_initializer_list;
7648 mem_initializer_list = mem_initializer;
7650 /* If the next token is not a `,', we're done. */
7651 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
7652 break;
7653 /* Consume the `,' token. */
7654 cp_lexer_consume_token (parser->lexer);
7657 /* Perform semantic analysis. */
7658 if (DECL_CONSTRUCTOR_P (current_function_decl))
7659 finish_mem_initializers (mem_initializer_list);
7662 /* Parse a mem-initializer.
7664 mem-initializer:
7665 mem-initializer-id ( expression-list [opt] )
7667 GNU extension:
7669 mem-initializer:
7670 ( expression-list [opt] )
7672 Returns a TREE_LIST. The TREE_PURPOSE is the TYPE (for a base
7673 class) or FIELD_DECL (for a non-static data member) to initialize;
7674 the TREE_VALUE is the expression-list. */
7676 static tree
7677 cp_parser_mem_initializer (cp_parser* parser)
7679 tree mem_initializer_id;
7680 tree expression_list;
7681 tree member;
7683 /* Find out what is being initialized. */
7684 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
7686 pedwarn ("anachronistic old-style base class initializer");
7687 mem_initializer_id = NULL_TREE;
7689 else
7690 mem_initializer_id = cp_parser_mem_initializer_id (parser);
7691 member = expand_member_init (mem_initializer_id);
7692 if (member && !DECL_P (member))
7693 in_base_initializer = 1;
7695 expression_list
7696 = cp_parser_parenthesized_expression_list (parser, false,
7697 /*non_constant_p=*/NULL);
7698 if (!expression_list)
7699 expression_list = void_type_node;
7701 in_base_initializer = 0;
7703 return member ? build_tree_list (member, expression_list) : NULL_TREE;
7706 /* Parse a mem-initializer-id.
7708 mem-initializer-id:
7709 :: [opt] nested-name-specifier [opt] class-name
7710 identifier
7712 Returns a TYPE indicating the class to be initializer for the first
7713 production. Returns an IDENTIFIER_NODE indicating the data member
7714 to be initialized for the second production. */
7716 static tree
7717 cp_parser_mem_initializer_id (cp_parser* parser)
7719 bool global_scope_p;
7720 bool nested_name_specifier_p;
7721 bool template_p = false;
7722 tree id;
7724 /* `typename' is not allowed in this context ([temp.res]). */
7725 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
7727 error ("keyword `typename' not allowed in this context (a qualified "
7728 "member initializer is implicitly a type)");
7729 cp_lexer_consume_token (parser->lexer);
7731 /* Look for the optional `::' operator. */
7732 global_scope_p
7733 = (cp_parser_global_scope_opt (parser,
7734 /*current_scope_valid_p=*/false)
7735 != NULL_TREE);
7736 /* Look for the optional nested-name-specifier. The simplest way to
7737 implement:
7739 [temp.res]
7741 The keyword `typename' is not permitted in a base-specifier or
7742 mem-initializer; in these contexts a qualified name that
7743 depends on a template-parameter is implicitly assumed to be a
7744 type name.
7746 is to assume that we have seen the `typename' keyword at this
7747 point. */
7748 nested_name_specifier_p
7749 = (cp_parser_nested_name_specifier_opt (parser,
7750 /*typename_keyword_p=*/true,
7751 /*check_dependency_p=*/true,
7752 /*type_p=*/true,
7753 /*is_declaration=*/true)
7754 != NULL_TREE);
7755 if (nested_name_specifier_p)
7756 template_p = cp_parser_optional_template_keyword (parser);
7757 /* If there is a `::' operator or a nested-name-specifier, then we
7758 are definitely looking for a class-name. */
7759 if (global_scope_p || nested_name_specifier_p)
7760 return cp_parser_class_name (parser,
7761 /*typename_keyword_p=*/true,
7762 /*template_keyword_p=*/template_p,
7763 /*type_p=*/false,
7764 /*check_dependency_p=*/true,
7765 /*class_head_p=*/false,
7766 /*is_declaration=*/true);
7767 /* Otherwise, we could also be looking for an ordinary identifier. */
7768 cp_parser_parse_tentatively (parser);
7769 /* Try a class-name. */
7770 id = cp_parser_class_name (parser,
7771 /*typename_keyword_p=*/true,
7772 /*template_keyword_p=*/false,
7773 /*type_p=*/false,
7774 /*check_dependency_p=*/true,
7775 /*class_head_p=*/false,
7776 /*is_declaration=*/true);
7777 /* If we found one, we're done. */
7778 if (cp_parser_parse_definitely (parser))
7779 return id;
7780 /* Otherwise, look for an ordinary identifier. */
7781 return cp_parser_identifier (parser);
7784 /* Overloading [gram.over] */
7786 /* Parse an operator-function-id.
7788 operator-function-id:
7789 operator operator
7791 Returns an IDENTIFIER_NODE for the operator which is a
7792 human-readable spelling of the identifier, e.g., `operator +'. */
7794 static tree
7795 cp_parser_operator_function_id (cp_parser* parser)
7797 /* Look for the `operator' keyword. */
7798 if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
7799 return error_mark_node;
7800 /* And then the name of the operator itself. */
7801 return cp_parser_operator (parser);
7804 /* Parse an operator.
7806 operator:
7807 new delete new[] delete[] + - * / % ^ & | ~ ! = < >
7808 += -= *= /= %= ^= &= |= << >> >>= <<= == != <= >= &&
7809 || ++ -- , ->* -> () []
7811 GNU Extensions:
7813 operator:
7814 <? >? <?= >?=
7816 Returns an IDENTIFIER_NODE for the operator which is a
7817 human-readable spelling of the identifier, e.g., `operator +'. */
7819 static tree
7820 cp_parser_operator (cp_parser* parser)
7822 tree id = NULL_TREE;
7823 cp_token *token;
7825 /* Peek at the next token. */
7826 token = cp_lexer_peek_token (parser->lexer);
7827 /* Figure out which operator we have. */
7828 switch (token->type)
7830 case CPP_KEYWORD:
7832 enum tree_code op;
7834 /* The keyword should be either `new' or `delete'. */
7835 if (token->keyword == RID_NEW)
7836 op = NEW_EXPR;
7837 else if (token->keyword == RID_DELETE)
7838 op = DELETE_EXPR;
7839 else
7840 break;
7842 /* Consume the `new' or `delete' token. */
7843 cp_lexer_consume_token (parser->lexer);
7845 /* Peek at the next token. */
7846 token = cp_lexer_peek_token (parser->lexer);
7847 /* If it's a `[' token then this is the array variant of the
7848 operator. */
7849 if (token->type == CPP_OPEN_SQUARE)
7851 /* Consume the `[' token. */
7852 cp_lexer_consume_token (parser->lexer);
7853 /* Look for the `]' token. */
7854 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
7855 id = ansi_opname (op == NEW_EXPR
7856 ? VEC_NEW_EXPR : VEC_DELETE_EXPR);
7858 /* Otherwise, we have the non-array variant. */
7859 else
7860 id = ansi_opname (op);
7862 return id;
7865 case CPP_PLUS:
7866 id = ansi_opname (PLUS_EXPR);
7867 break;
7869 case CPP_MINUS:
7870 id = ansi_opname (MINUS_EXPR);
7871 break;
7873 case CPP_MULT:
7874 id = ansi_opname (MULT_EXPR);
7875 break;
7877 case CPP_DIV:
7878 id = ansi_opname (TRUNC_DIV_EXPR);
7879 break;
7881 case CPP_MOD:
7882 id = ansi_opname (TRUNC_MOD_EXPR);
7883 break;
7885 case CPP_XOR:
7886 id = ansi_opname (BIT_XOR_EXPR);
7887 break;
7889 case CPP_AND:
7890 id = ansi_opname (BIT_AND_EXPR);
7891 break;
7893 case CPP_OR:
7894 id = ansi_opname (BIT_IOR_EXPR);
7895 break;
7897 case CPP_COMPL:
7898 id = ansi_opname (BIT_NOT_EXPR);
7899 break;
7901 case CPP_NOT:
7902 id = ansi_opname (TRUTH_NOT_EXPR);
7903 break;
7905 case CPP_EQ:
7906 id = ansi_assopname (NOP_EXPR);
7907 break;
7909 case CPP_LESS:
7910 id = ansi_opname (LT_EXPR);
7911 break;
7913 case CPP_GREATER:
7914 id = ansi_opname (GT_EXPR);
7915 break;
7917 case CPP_PLUS_EQ:
7918 id = ansi_assopname (PLUS_EXPR);
7919 break;
7921 case CPP_MINUS_EQ:
7922 id = ansi_assopname (MINUS_EXPR);
7923 break;
7925 case CPP_MULT_EQ:
7926 id = ansi_assopname (MULT_EXPR);
7927 break;
7929 case CPP_DIV_EQ:
7930 id = ansi_assopname (TRUNC_DIV_EXPR);
7931 break;
7933 case CPP_MOD_EQ:
7934 id = ansi_assopname (TRUNC_MOD_EXPR);
7935 break;
7937 case CPP_XOR_EQ:
7938 id = ansi_assopname (BIT_XOR_EXPR);
7939 break;
7941 case CPP_AND_EQ:
7942 id = ansi_assopname (BIT_AND_EXPR);
7943 break;
7945 case CPP_OR_EQ:
7946 id = ansi_assopname (BIT_IOR_EXPR);
7947 break;
7949 case CPP_LSHIFT:
7950 id = ansi_opname (LSHIFT_EXPR);
7951 break;
7953 case CPP_RSHIFT:
7954 id = ansi_opname (RSHIFT_EXPR);
7955 break;
7957 case CPP_LSHIFT_EQ:
7958 id = ansi_assopname (LSHIFT_EXPR);
7959 break;
7961 case CPP_RSHIFT_EQ:
7962 id = ansi_assopname (RSHIFT_EXPR);
7963 break;
7965 case CPP_EQ_EQ:
7966 id = ansi_opname (EQ_EXPR);
7967 break;
7969 case CPP_NOT_EQ:
7970 id = ansi_opname (NE_EXPR);
7971 break;
7973 case CPP_LESS_EQ:
7974 id = ansi_opname (LE_EXPR);
7975 break;
7977 case CPP_GREATER_EQ:
7978 id = ansi_opname (GE_EXPR);
7979 break;
7981 case CPP_AND_AND:
7982 id = ansi_opname (TRUTH_ANDIF_EXPR);
7983 break;
7985 case CPP_OR_OR:
7986 id = ansi_opname (TRUTH_ORIF_EXPR);
7987 break;
7989 case CPP_PLUS_PLUS:
7990 id = ansi_opname (POSTINCREMENT_EXPR);
7991 break;
7993 case CPP_MINUS_MINUS:
7994 id = ansi_opname (PREDECREMENT_EXPR);
7995 break;
7997 case CPP_COMMA:
7998 id = ansi_opname (COMPOUND_EXPR);
7999 break;
8001 case CPP_DEREF_STAR:
8002 id = ansi_opname (MEMBER_REF);
8003 break;
8005 case CPP_DEREF:
8006 id = ansi_opname (COMPONENT_REF);
8007 break;
8009 case CPP_OPEN_PAREN:
8010 /* Consume the `('. */
8011 cp_lexer_consume_token (parser->lexer);
8012 /* Look for the matching `)'. */
8013 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
8014 return ansi_opname (CALL_EXPR);
8016 case CPP_OPEN_SQUARE:
8017 /* Consume the `['. */
8018 cp_lexer_consume_token (parser->lexer);
8019 /* Look for the matching `]'. */
8020 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
8021 return ansi_opname (ARRAY_REF);
8023 /* Extensions. */
8024 case CPP_MIN:
8025 id = ansi_opname (MIN_EXPR);
8026 break;
8028 case CPP_MAX:
8029 id = ansi_opname (MAX_EXPR);
8030 break;
8032 case CPP_MIN_EQ:
8033 id = ansi_assopname (MIN_EXPR);
8034 break;
8036 case CPP_MAX_EQ:
8037 id = ansi_assopname (MAX_EXPR);
8038 break;
8040 default:
8041 /* Anything else is an error. */
8042 break;
8045 /* If we have selected an identifier, we need to consume the
8046 operator token. */
8047 if (id)
8048 cp_lexer_consume_token (parser->lexer);
8049 /* Otherwise, no valid operator name was present. */
8050 else
8052 cp_parser_error (parser, "expected operator");
8053 id = error_mark_node;
8056 return id;
8059 /* Parse a template-declaration.
8061 template-declaration:
8062 export [opt] template < template-parameter-list > declaration
8064 If MEMBER_P is TRUE, this template-declaration occurs within a
8065 class-specifier.
8067 The grammar rule given by the standard isn't correct. What
8068 is really meant is:
8070 template-declaration:
8071 export [opt] template-parameter-list-seq
8072 decl-specifier-seq [opt] init-declarator [opt] ;
8073 export [opt] template-parameter-list-seq
8074 function-definition
8076 template-parameter-list-seq:
8077 template-parameter-list-seq [opt]
8078 template < template-parameter-list > */
8080 static void
8081 cp_parser_template_declaration (cp_parser* parser, bool member_p)
8083 /* Check for `export'. */
8084 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXPORT))
8086 /* Consume the `export' token. */
8087 cp_lexer_consume_token (parser->lexer);
8088 /* Warn that we do not support `export'. */
8089 warning ("keyword `export' not implemented, and will be ignored");
8092 cp_parser_template_declaration_after_export (parser, member_p);
8095 /* Parse a template-parameter-list.
8097 template-parameter-list:
8098 template-parameter
8099 template-parameter-list , template-parameter
8101 Returns a TREE_LIST. Each node represents a template parameter.
8102 The nodes are connected via their TREE_CHAINs. */
8104 static tree
8105 cp_parser_template_parameter_list (cp_parser* parser)
8107 tree parameter_list = NULL_TREE;
8109 while (true)
8111 tree parameter;
8112 cp_token *token;
8113 bool is_non_type;
8115 /* Parse the template-parameter. */
8116 parameter = cp_parser_template_parameter (parser, &is_non_type);
8117 /* Add it to the list. */
8118 parameter_list = process_template_parm (parameter_list,
8119 parameter,
8120 is_non_type);
8121 /* Peek at the next token. */
8122 token = cp_lexer_peek_token (parser->lexer);
8123 /* If it's not a `,', we're done. */
8124 if (token->type != CPP_COMMA)
8125 break;
8126 /* Otherwise, consume the `,' token. */
8127 cp_lexer_consume_token (parser->lexer);
8130 return parameter_list;
8133 /* Parse a template-parameter.
8135 template-parameter:
8136 type-parameter
8137 parameter-declaration
8139 Returns a TREE_LIST. The TREE_VALUE represents the parameter. The
8140 TREE_PURPOSE is the default value, if any. *IS_NON_TYPE is set to
8141 true iff this parameter is a non-type parameter. */
8143 static tree
8144 cp_parser_template_parameter (cp_parser* parser, bool *is_non_type)
8146 cp_token *token;
8147 cp_parameter_declarator *parameter_declarator;
8149 /* Assume it is a type parameter or a template parameter. */
8150 *is_non_type = false;
8151 /* Peek at the next token. */
8152 token = cp_lexer_peek_token (parser->lexer);
8153 /* If it is `class' or `template', we have a type-parameter. */
8154 if (token->keyword == RID_TEMPLATE)
8155 return cp_parser_type_parameter (parser);
8156 /* If it is `class' or `typename' we do not know yet whether it is a
8157 type parameter or a non-type parameter. Consider:
8159 template <typename T, typename T::X X> ...
8163 template <class C, class D*> ...
8165 Here, the first parameter is a type parameter, and the second is
8166 a non-type parameter. We can tell by looking at the token after
8167 the identifier -- if it is a `,', `=', or `>' then we have a type
8168 parameter. */
8169 if (token->keyword == RID_TYPENAME || token->keyword == RID_CLASS)
8171 /* Peek at the token after `class' or `typename'. */
8172 token = cp_lexer_peek_nth_token (parser->lexer, 2);
8173 /* If it's an identifier, skip it. */
8174 if (token->type == CPP_NAME)
8175 token = cp_lexer_peek_nth_token (parser->lexer, 3);
8176 /* Now, see if the token looks like the end of a template
8177 parameter. */
8178 if (token->type == CPP_COMMA
8179 || token->type == CPP_EQ
8180 || token->type == CPP_GREATER)
8181 return cp_parser_type_parameter (parser);
8184 /* Otherwise, it is a non-type parameter.
8186 [temp.param]
8188 When parsing a default template-argument for a non-type
8189 template-parameter, the first non-nested `>' is taken as the end
8190 of the template parameter-list rather than a greater-than
8191 operator. */
8192 *is_non_type = true;
8193 parameter_declarator
8194 = cp_parser_parameter_declaration (parser, /*template_parm_p=*/true,
8195 /*parenthesized_p=*/NULL);
8196 return (build_tree_list
8197 (parameter_declarator->default_argument,
8198 grokdeclarator (parameter_declarator->declarator,
8199 &parameter_declarator->decl_specifiers,
8200 PARM, /*initialized=*/0,
8201 /*attrlist=*/NULL)));
8204 /* Parse a type-parameter.
8206 type-parameter:
8207 class identifier [opt]
8208 class identifier [opt] = type-id
8209 typename identifier [opt]
8210 typename identifier [opt] = type-id
8211 template < template-parameter-list > class identifier [opt]
8212 template < template-parameter-list > class identifier [opt]
8213 = id-expression
8215 Returns a TREE_LIST. The TREE_VALUE is itself a TREE_LIST. The
8216 TREE_PURPOSE is the default-argument, if any. The TREE_VALUE is
8217 the declaration of the parameter. */
8219 static tree
8220 cp_parser_type_parameter (cp_parser* parser)
8222 cp_token *token;
8223 tree parameter;
8225 /* Look for a keyword to tell us what kind of parameter this is. */
8226 token = cp_parser_require (parser, CPP_KEYWORD,
8227 "`class', `typename', or `template'");
8228 if (!token)
8229 return error_mark_node;
8231 switch (token->keyword)
8233 case RID_CLASS:
8234 case RID_TYPENAME:
8236 tree identifier;
8237 tree default_argument;
8239 /* If the next token is an identifier, then it names the
8240 parameter. */
8241 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
8242 identifier = cp_parser_identifier (parser);
8243 else
8244 identifier = NULL_TREE;
8246 /* Create the parameter. */
8247 parameter = finish_template_type_parm (class_type_node, identifier);
8249 /* If the next token is an `=', we have a default argument. */
8250 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
8252 /* Consume the `=' token. */
8253 cp_lexer_consume_token (parser->lexer);
8254 /* Parse the default-argument. */
8255 default_argument = cp_parser_type_id (parser);
8257 else
8258 default_argument = NULL_TREE;
8260 /* Create the combined representation of the parameter and the
8261 default argument. */
8262 parameter = build_tree_list (default_argument, parameter);
8264 break;
8266 case RID_TEMPLATE:
8268 tree parameter_list;
8269 tree identifier;
8270 tree default_argument;
8272 /* Look for the `<'. */
8273 cp_parser_require (parser, CPP_LESS, "`<'");
8274 /* Parse the template-parameter-list. */
8275 begin_template_parm_list ();
8276 parameter_list
8277 = cp_parser_template_parameter_list (parser);
8278 parameter_list = end_template_parm_list (parameter_list);
8279 /* Look for the `>'. */
8280 cp_parser_require (parser, CPP_GREATER, "`>'");
8281 /* Look for the `class' keyword. */
8282 cp_parser_require_keyword (parser, RID_CLASS, "`class'");
8283 /* If the next token is an `=', then there is a
8284 default-argument. If the next token is a `>', we are at
8285 the end of the parameter-list. If the next token is a `,',
8286 then we are at the end of this parameter. */
8287 if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ)
8288 && cp_lexer_next_token_is_not (parser->lexer, CPP_GREATER)
8289 && cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
8290 identifier = cp_parser_identifier (parser);
8291 else
8292 identifier = NULL_TREE;
8293 /* Create the template parameter. */
8294 parameter = finish_template_template_parm (class_type_node,
8295 identifier);
8297 /* If the next token is an `=', then there is a
8298 default-argument. */
8299 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
8301 bool is_template;
8303 /* Consume the `='. */
8304 cp_lexer_consume_token (parser->lexer);
8305 /* Parse the id-expression. */
8306 default_argument
8307 = cp_parser_id_expression (parser,
8308 /*template_keyword_p=*/false,
8309 /*check_dependency_p=*/true,
8310 /*template_p=*/&is_template,
8311 /*declarator_p=*/false);
8312 if (TREE_CODE (default_argument) == TYPE_DECL)
8313 /* If the id-expression was a template-id that refers to
8314 a template-class, we already have the declaration here,
8315 so no further lookup is needed. */
8317 else
8318 /* Look up the name. */
8319 default_argument
8320 = cp_parser_lookup_name (parser, default_argument,
8321 /*is_type=*/false,
8322 /*is_template=*/is_template,
8323 /*is_namespace=*/false,
8324 /*check_dependency=*/true);
8325 /* See if the default argument is valid. */
8326 default_argument
8327 = check_template_template_default_arg (default_argument);
8329 else
8330 default_argument = NULL_TREE;
8332 /* Create the combined representation of the parameter and the
8333 default argument. */
8334 parameter = build_tree_list (default_argument, parameter);
8336 break;
8338 default:
8339 /* Anything else is an error. */
8340 cp_parser_error (parser,
8341 "expected `class', `typename', or `template'");
8342 parameter = error_mark_node;
8345 return parameter;
8348 /* Parse a template-id.
8350 template-id:
8351 template-name < template-argument-list [opt] >
8353 If TEMPLATE_KEYWORD_P is TRUE, then we have just seen the
8354 `template' keyword. In this case, a TEMPLATE_ID_EXPR will be
8355 returned. Otherwise, if the template-name names a function, or set
8356 of functions, returns a TEMPLATE_ID_EXPR. If the template-name
8357 names a class, returns a TYPE_DECL for the specialization.
8359 If CHECK_DEPENDENCY_P is FALSE, names are looked up in
8360 uninstantiated templates. */
8362 static tree
8363 cp_parser_template_id (cp_parser *parser,
8364 bool template_keyword_p,
8365 bool check_dependency_p,
8366 bool is_declaration)
8368 tree template;
8369 tree arguments;
8370 tree template_id;
8371 ptrdiff_t start_of_id;
8372 tree access_check = NULL_TREE;
8373 cp_token *next_token, *next_token_2;
8374 bool is_identifier;
8376 /* If the next token corresponds to a template-id, there is no need
8377 to reparse it. */
8378 next_token = cp_lexer_peek_token (parser->lexer);
8379 if (next_token->type == CPP_TEMPLATE_ID)
8381 tree value;
8382 tree check;
8384 /* Get the stored value. */
8385 value = cp_lexer_consume_token (parser->lexer)->value;
8386 /* Perform any access checks that were deferred. */
8387 for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
8388 perform_or_defer_access_check (TREE_PURPOSE (check),
8389 TREE_VALUE (check));
8390 /* Return the stored value. */
8391 return TREE_VALUE (value);
8394 /* Avoid performing name lookup if there is no possibility of
8395 finding a template-id. */
8396 if ((next_token->type != CPP_NAME && next_token->keyword != RID_OPERATOR)
8397 || (next_token->type == CPP_NAME
8398 && !cp_parser_nth_token_starts_template_argument_list_p
8399 (parser, 2)))
8401 cp_parser_error (parser, "expected template-id");
8402 return error_mark_node;
8405 /* Remember where the template-id starts. */
8406 if (cp_parser_parsing_tentatively (parser)
8407 && !cp_parser_committed_to_tentative_parse (parser))
8409 next_token = cp_lexer_peek_token (parser->lexer);
8410 start_of_id = cp_lexer_token_difference (parser->lexer,
8411 parser->lexer->first_token,
8412 next_token);
8414 else
8415 start_of_id = -1;
8417 push_deferring_access_checks (dk_deferred);
8419 /* Parse the template-name. */
8420 is_identifier = false;
8421 template = cp_parser_template_name (parser, template_keyword_p,
8422 check_dependency_p,
8423 is_declaration,
8424 &is_identifier);
8425 if (template == error_mark_node || is_identifier)
8427 pop_deferring_access_checks ();
8428 return template;
8431 /* If we find the sequence `[:' after a template-name, it's probably
8432 a digraph-typo for `< ::'. Substitute the tokens and check if we can
8433 parse correctly the argument list. */
8434 next_token = cp_lexer_peek_nth_token (parser->lexer, 1);
8435 next_token_2 = cp_lexer_peek_nth_token (parser->lexer, 2);
8436 if (next_token->type == CPP_OPEN_SQUARE
8437 && next_token->flags & DIGRAPH
8438 && next_token_2->type == CPP_COLON
8439 && !(next_token_2->flags & PREV_WHITE))
8441 cp_parser_parse_tentatively (parser);
8442 /* Change `:' into `::'. */
8443 next_token_2->type = CPP_SCOPE;
8444 /* Consume the first token (CPP_OPEN_SQUARE - which we pretend it is
8445 CPP_LESS. */
8446 cp_lexer_consume_token (parser->lexer);
8447 /* Parse the arguments. */
8448 arguments = cp_parser_enclosed_template_argument_list (parser);
8449 if (!cp_parser_parse_definitely (parser))
8451 /* If we couldn't parse an argument list, then we revert our changes
8452 and return simply an error. Maybe this is not a template-id
8453 after all. */
8454 next_token_2->type = CPP_COLON;
8455 cp_parser_error (parser, "expected `<'");
8456 pop_deferring_access_checks ();
8457 return error_mark_node;
8459 /* Otherwise, emit an error about the invalid digraph, but continue
8460 parsing because we got our argument list. */
8461 pedwarn ("`<::' cannot begin a template-argument list");
8462 inform ("`<:' is an alternate spelling for `['. Insert whitespace "
8463 "between `<' and `::'");
8464 if (!flag_permissive)
8466 static bool hint;
8467 if (!hint)
8469 inform ("(if you use `-fpermissive' G++ will accept your code)");
8470 hint = true;
8474 else
8476 /* Look for the `<' that starts the template-argument-list. */
8477 if (!cp_parser_require (parser, CPP_LESS, "`<'"))
8479 pop_deferring_access_checks ();
8480 return error_mark_node;
8482 /* Parse the arguments. */
8483 arguments = cp_parser_enclosed_template_argument_list (parser);
8486 /* Build a representation of the specialization. */
8487 if (TREE_CODE (template) == IDENTIFIER_NODE)
8488 template_id = build_min_nt (TEMPLATE_ID_EXPR, template, arguments);
8489 else if (DECL_CLASS_TEMPLATE_P (template)
8490 || DECL_TEMPLATE_TEMPLATE_PARM_P (template))
8491 template_id
8492 = finish_template_type (template, arguments,
8493 cp_lexer_next_token_is (parser->lexer,
8494 CPP_SCOPE));
8495 else
8497 /* If it's not a class-template or a template-template, it should be
8498 a function-template. */
8499 my_friendly_assert ((DECL_FUNCTION_TEMPLATE_P (template)
8500 || TREE_CODE (template) == OVERLOAD
8501 || BASELINK_P (template)),
8502 20010716);
8504 template_id = lookup_template_function (template, arguments);
8507 /* Retrieve any deferred checks. Do not pop this access checks yet
8508 so the memory will not be reclaimed during token replacing below. */
8509 access_check = get_deferred_access_checks ();
8511 /* If parsing tentatively, replace the sequence of tokens that makes
8512 up the template-id with a CPP_TEMPLATE_ID token. That way,
8513 should we re-parse the token stream, we will not have to repeat
8514 the effort required to do the parse, nor will we issue duplicate
8515 error messages about problems during instantiation of the
8516 template. */
8517 if (start_of_id >= 0)
8519 cp_token *token;
8521 /* Find the token that corresponds to the start of the
8522 template-id. */
8523 token = cp_lexer_advance_token (parser->lexer,
8524 parser->lexer->first_token,
8525 start_of_id);
8527 /* Reset the contents of the START_OF_ID token. */
8528 token->type = CPP_TEMPLATE_ID;
8529 token->value = build_tree_list (access_check, template_id);
8530 token->keyword = RID_MAX;
8531 /* Purge all subsequent tokens. */
8532 cp_lexer_purge_tokens_after (parser->lexer, token);
8535 pop_deferring_access_checks ();
8536 return template_id;
8539 /* Parse a template-name.
8541 template-name:
8542 identifier
8544 The standard should actually say:
8546 template-name:
8547 identifier
8548 operator-function-id
8550 A defect report has been filed about this issue.
8552 A conversion-function-id cannot be a template name because they cannot
8553 be part of a template-id. In fact, looking at this code:
8555 a.operator K<int>()
8557 the conversion-function-id is "operator K<int>", and K<int> is a type-id.
8558 It is impossible to call a templated conversion-function-id with an
8559 explicit argument list, since the only allowed template parameter is
8560 the type to which it is converting.
8562 If TEMPLATE_KEYWORD_P is true, then we have just seen the
8563 `template' keyword, in a construction like:
8565 T::template f<3>()
8567 In that case `f' is taken to be a template-name, even though there
8568 is no way of knowing for sure.
8570 Returns the TEMPLATE_DECL for the template, or an OVERLOAD if the
8571 name refers to a set of overloaded functions, at least one of which
8572 is a template, or an IDENTIFIER_NODE with the name of the template,
8573 if TEMPLATE_KEYWORD_P is true. If CHECK_DEPENDENCY_P is FALSE,
8574 names are looked up inside uninstantiated templates. */
8576 static tree
8577 cp_parser_template_name (cp_parser* parser,
8578 bool template_keyword_p,
8579 bool check_dependency_p,
8580 bool is_declaration,
8581 bool *is_identifier)
8583 tree identifier;
8584 tree decl;
8585 tree fns;
8587 /* If the next token is `operator', then we have either an
8588 operator-function-id or a conversion-function-id. */
8589 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_OPERATOR))
8591 /* We don't know whether we're looking at an
8592 operator-function-id or a conversion-function-id. */
8593 cp_parser_parse_tentatively (parser);
8594 /* Try an operator-function-id. */
8595 identifier = cp_parser_operator_function_id (parser);
8596 /* If that didn't work, try a conversion-function-id. */
8597 if (!cp_parser_parse_definitely (parser))
8599 cp_parser_error (parser, "expected template-name");
8600 return error_mark_node;
8603 /* Look for the identifier. */
8604 else
8605 identifier = cp_parser_identifier (parser);
8607 /* If we didn't find an identifier, we don't have a template-id. */
8608 if (identifier == error_mark_node)
8609 return error_mark_node;
8611 /* If the name immediately followed the `template' keyword, then it
8612 is a template-name. However, if the next token is not `<', then
8613 we do not treat it as a template-name, since it is not being used
8614 as part of a template-id. This enables us to handle constructs
8615 like:
8617 template <typename T> struct S { S(); };
8618 template <typename T> S<T>::S();
8620 correctly. We would treat `S' as a template -- if it were `S<T>'
8621 -- but we do not if there is no `<'. */
8623 if (processing_template_decl
8624 && cp_parser_nth_token_starts_template_argument_list_p (parser, 1))
8626 /* In a declaration, in a dependent context, we pretend that the
8627 "template" keyword was present in order to improve error
8628 recovery. For example, given:
8630 template <typename T> void f(T::X<int>);
8632 we want to treat "X<int>" as a template-id. */
8633 if (is_declaration
8634 && !template_keyword_p
8635 && parser->scope && TYPE_P (parser->scope)
8636 && dependent_type_p (parser->scope)
8637 /* Do not do this for dtors (or ctors), since they never
8638 need the template keyword before their name. */
8639 && !constructor_name_p (identifier, parser->scope))
8641 ptrdiff_t start;
8642 cp_token* token;
8643 /* Explain what went wrong. */
8644 error ("non-template `%D' used as template", identifier);
8645 inform ("use `%T::template %D' to indicate that it is a template",
8646 parser->scope, identifier);
8647 /* If parsing tentatively, find the location of the "<"
8648 token. */
8649 if (cp_parser_parsing_tentatively (parser)
8650 && !cp_parser_committed_to_tentative_parse (parser))
8652 cp_parser_simulate_error (parser);
8653 token = cp_lexer_peek_token (parser->lexer);
8654 token = cp_lexer_prev_token (parser->lexer, token);
8655 start = cp_lexer_token_difference (parser->lexer,
8656 parser->lexer->first_token,
8657 token);
8659 else
8660 start = -1;
8661 /* Parse the template arguments so that we can issue error
8662 messages about them. */
8663 cp_lexer_consume_token (parser->lexer);
8664 cp_parser_enclosed_template_argument_list (parser);
8665 /* Skip tokens until we find a good place from which to
8666 continue parsing. */
8667 cp_parser_skip_to_closing_parenthesis (parser,
8668 /*recovering=*/true,
8669 /*or_comma=*/true,
8670 /*consume_paren=*/false);
8671 /* If parsing tentatively, permanently remove the
8672 template argument list. That will prevent duplicate
8673 error messages from being issued about the missing
8674 "template" keyword. */
8675 if (start >= 0)
8677 token = cp_lexer_advance_token (parser->lexer,
8678 parser->lexer->first_token,
8679 start);
8680 cp_lexer_purge_tokens_after (parser->lexer, token);
8682 if (is_identifier)
8683 *is_identifier = true;
8684 return identifier;
8687 /* If the "template" keyword is present, then there is generally
8688 no point in doing name-lookup, so we just return IDENTIFIER.
8689 But, if the qualifying scope is non-dependent then we can
8690 (and must) do name-lookup normally. */
8691 if (template_keyword_p
8692 && (!parser->scope
8693 || (TYPE_P (parser->scope)
8694 && dependent_type_p (parser->scope))))
8695 return identifier;
8698 /* Look up the name. */
8699 decl = cp_parser_lookup_name (parser, identifier,
8700 /*is_type=*/false,
8701 /*is_template=*/false,
8702 /*is_namespace=*/false,
8703 check_dependency_p);
8704 decl = maybe_get_template_decl_from_type_decl (decl);
8706 /* If DECL is a template, then the name was a template-name. */
8707 if (TREE_CODE (decl) == TEMPLATE_DECL)
8709 else
8711 /* The standard does not explicitly indicate whether a name that
8712 names a set of overloaded declarations, some of which are
8713 templates, is a template-name. However, such a name should
8714 be a template-name; otherwise, there is no way to form a
8715 template-id for the overloaded templates. */
8716 fns = BASELINK_P (decl) ? BASELINK_FUNCTIONS (decl) : decl;
8717 if (TREE_CODE (fns) == OVERLOAD)
8719 tree fn;
8721 for (fn = fns; fn; fn = OVL_NEXT (fn))
8722 if (TREE_CODE (OVL_CURRENT (fn)) == TEMPLATE_DECL)
8723 break;
8725 else
8727 /* Otherwise, the name does not name a template. */
8728 cp_parser_error (parser, "expected template-name");
8729 return error_mark_node;
8733 /* If DECL is dependent, and refers to a function, then just return
8734 its name; we will look it up again during template instantiation. */
8735 if (DECL_FUNCTION_TEMPLATE_P (decl) || !DECL_P (decl))
8737 tree scope = CP_DECL_CONTEXT (get_first_fn (decl));
8738 if (TYPE_P (scope) && dependent_type_p (scope))
8739 return identifier;
8742 return decl;
8745 /* Parse a template-argument-list.
8747 template-argument-list:
8748 template-argument
8749 template-argument-list , template-argument
8751 Returns a TREE_VEC containing the arguments. */
8753 static tree
8754 cp_parser_template_argument_list (cp_parser* parser)
8756 tree fixed_args[10];
8757 unsigned n_args = 0;
8758 unsigned alloced = 10;
8759 tree *arg_ary = fixed_args;
8760 tree vec;
8761 bool saved_in_template_argument_list_p;
8763 saved_in_template_argument_list_p = parser->in_template_argument_list_p;
8764 parser->in_template_argument_list_p = true;
8767 tree argument;
8769 if (n_args)
8770 /* Consume the comma. */
8771 cp_lexer_consume_token (parser->lexer);
8773 /* Parse the template-argument. */
8774 argument = cp_parser_template_argument (parser);
8775 if (n_args == alloced)
8777 alloced *= 2;
8779 if (arg_ary == fixed_args)
8781 arg_ary = xmalloc (sizeof (tree) * alloced);
8782 memcpy (arg_ary, fixed_args, sizeof (tree) * n_args);
8784 else
8785 arg_ary = xrealloc (arg_ary, sizeof (tree) * alloced);
8787 arg_ary[n_args++] = argument;
8789 while (cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
8791 vec = make_tree_vec (n_args);
8793 while (n_args--)
8794 TREE_VEC_ELT (vec, n_args) = arg_ary[n_args];
8796 if (arg_ary != fixed_args)
8797 free (arg_ary);
8798 parser->in_template_argument_list_p = saved_in_template_argument_list_p;
8799 return vec;
8802 /* Parse a template-argument.
8804 template-argument:
8805 assignment-expression
8806 type-id
8807 id-expression
8809 The representation is that of an assignment-expression, type-id, or
8810 id-expression -- except that the qualified id-expression is
8811 evaluated, so that the value returned is either a DECL or an
8812 OVERLOAD.
8814 Although the standard says "assignment-expression", it forbids
8815 throw-expressions or assignments in the template argument.
8816 Therefore, we use "conditional-expression" instead. */
8818 static tree
8819 cp_parser_template_argument (cp_parser* parser)
8821 tree argument;
8822 bool template_p;
8823 bool address_p;
8824 bool maybe_type_id = false;
8825 cp_token *token;
8826 cp_id_kind idk;
8827 tree qualifying_class;
8829 /* There's really no way to know what we're looking at, so we just
8830 try each alternative in order.
8832 [temp.arg]
8834 In a template-argument, an ambiguity between a type-id and an
8835 expression is resolved to a type-id, regardless of the form of
8836 the corresponding template-parameter.
8838 Therefore, we try a type-id first. */
8839 cp_parser_parse_tentatively (parser);
8840 argument = cp_parser_type_id (parser);
8841 /* If there was no error parsing the type-id but the next token is a '>>',
8842 we probably found a typo for '> >'. But there are type-id which are
8843 also valid expressions. For instance:
8845 struct X { int operator >> (int); };
8846 template <int V> struct Foo {};
8847 Foo<X () >> 5> r;
8849 Here 'X()' is a valid type-id of a function type, but the user just
8850 wanted to write the expression "X() >> 5". Thus, we remember that we
8851 found a valid type-id, but we still try to parse the argument as an
8852 expression to see what happens. */
8853 if (!cp_parser_error_occurred (parser)
8854 && cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
8856 maybe_type_id = true;
8857 cp_parser_abort_tentative_parse (parser);
8859 else
8861 /* If the next token isn't a `,' or a `>', then this argument wasn't
8862 really finished. This means that the argument is not a valid
8863 type-id. */
8864 if (!cp_parser_next_token_ends_template_argument_p (parser))
8865 cp_parser_error (parser, "expected template-argument");
8866 /* If that worked, we're done. */
8867 if (cp_parser_parse_definitely (parser))
8868 return argument;
8870 /* We're still not sure what the argument will be. */
8871 cp_parser_parse_tentatively (parser);
8872 /* Try a template. */
8873 argument = cp_parser_id_expression (parser,
8874 /*template_keyword_p=*/false,
8875 /*check_dependency_p=*/true,
8876 &template_p,
8877 /*declarator_p=*/false);
8878 /* If the next token isn't a `,' or a `>', then this argument wasn't
8879 really finished. */
8880 if (!cp_parser_next_token_ends_template_argument_p (parser))
8881 cp_parser_error (parser, "expected template-argument");
8882 if (!cp_parser_error_occurred (parser))
8884 /* Figure out what is being referred to. If the id-expression
8885 was for a class template specialization, then we will have a
8886 TYPE_DECL at this point. There is no need to do name lookup
8887 at this point in that case. */
8888 if (TREE_CODE (argument) != TYPE_DECL)
8889 argument = cp_parser_lookup_name (parser, argument,
8890 /*is_type=*/false,
8891 /*is_template=*/template_p,
8892 /*is_namespace=*/false,
8893 /*check_dependency=*/true);
8894 if (TREE_CODE (argument) != TEMPLATE_DECL
8895 && TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
8896 cp_parser_error (parser, "expected template-name");
8898 if (cp_parser_parse_definitely (parser))
8899 return argument;
8900 /* It must be a non-type argument. There permitted cases are given
8901 in [temp.arg.nontype]:
8903 -- an integral constant-expression of integral or enumeration
8904 type; or
8906 -- the name of a non-type template-parameter; or
8908 -- the name of an object or function with external linkage...
8910 -- the address of an object or function with external linkage...
8912 -- a pointer to member... */
8913 /* Look for a non-type template parameter. */
8914 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
8916 cp_parser_parse_tentatively (parser);
8917 argument = cp_parser_primary_expression (parser,
8918 &idk,
8919 &qualifying_class);
8920 if (TREE_CODE (argument) != TEMPLATE_PARM_INDEX
8921 || !cp_parser_next_token_ends_template_argument_p (parser))
8922 cp_parser_simulate_error (parser);
8923 if (cp_parser_parse_definitely (parser))
8924 return argument;
8926 /* If the next token is "&", the argument must be the address of an
8927 object or function with external linkage. */
8928 address_p = cp_lexer_next_token_is (parser->lexer, CPP_AND);
8929 if (address_p)
8930 cp_lexer_consume_token (parser->lexer);
8931 /* See if we might have an id-expression. */
8932 token = cp_lexer_peek_token (parser->lexer);
8933 if (token->type == CPP_NAME
8934 || token->keyword == RID_OPERATOR
8935 || token->type == CPP_SCOPE
8936 || token->type == CPP_TEMPLATE_ID
8937 || token->type == CPP_NESTED_NAME_SPECIFIER)
8939 cp_parser_parse_tentatively (parser);
8940 argument = cp_parser_primary_expression (parser,
8941 &idk,
8942 &qualifying_class);
8943 if (cp_parser_error_occurred (parser)
8944 || !cp_parser_next_token_ends_template_argument_p (parser))
8945 cp_parser_abort_tentative_parse (parser);
8946 else
8948 if (qualifying_class)
8949 argument = finish_qualified_id_expr (qualifying_class,
8950 argument,
8951 /*done=*/true,
8952 address_p);
8953 if (TREE_CODE (argument) == VAR_DECL)
8955 /* A variable without external linkage might still be a
8956 valid constant-expression, so no error is issued here
8957 if the external-linkage check fails. */
8958 if (!DECL_EXTERNAL_LINKAGE_P (argument))
8959 cp_parser_simulate_error (parser);
8961 else if (is_overloaded_fn (argument))
8962 /* All overloaded functions are allowed; if the external
8963 linkage test does not pass, an error will be issued
8964 later. */
8966 else if (address_p
8967 && (TREE_CODE (argument) == OFFSET_REF
8968 || TREE_CODE (argument) == SCOPE_REF))
8969 /* A pointer-to-member. */
8971 else
8972 cp_parser_simulate_error (parser);
8974 if (cp_parser_parse_definitely (parser))
8976 if (address_p)
8977 argument = build_x_unary_op (ADDR_EXPR, argument);
8978 return argument;
8982 /* If the argument started with "&", there are no other valid
8983 alternatives at this point. */
8984 if (address_p)
8986 cp_parser_error (parser, "invalid non-type template argument");
8987 return error_mark_node;
8989 /* If the argument wasn't successfully parsed as a type-id followed
8990 by '>>', the argument can only be a constant expression now.
8991 Otherwise, we try parsing the constant-expression tentatively,
8992 because the argument could really be a type-id. */
8993 if (maybe_type_id)
8994 cp_parser_parse_tentatively (parser);
8995 argument = cp_parser_constant_expression (parser,
8996 /*allow_non_constant_p=*/false,
8997 /*non_constant_p=*/NULL);
8998 argument = fold_non_dependent_expr (argument);
8999 if (!maybe_type_id)
9000 return argument;
9001 if (!cp_parser_next_token_ends_template_argument_p (parser))
9002 cp_parser_error (parser, "expected template-argument");
9003 if (cp_parser_parse_definitely (parser))
9004 return argument;
9005 /* We did our best to parse the argument as a non type-id, but that
9006 was the only alternative that matched (albeit with a '>' after
9007 it). We can assume it's just a typo from the user, and a
9008 diagnostic will then be issued. */
9009 return cp_parser_type_id (parser);
9012 /* Parse an explicit-instantiation.
9014 explicit-instantiation:
9015 template declaration
9017 Although the standard says `declaration', what it really means is:
9019 explicit-instantiation:
9020 template decl-specifier-seq [opt] declarator [opt] ;
9022 Things like `template int S<int>::i = 5, int S<double>::j;' are not
9023 supposed to be allowed. A defect report has been filed about this
9024 issue.
9026 GNU Extension:
9028 explicit-instantiation:
9029 storage-class-specifier template
9030 decl-specifier-seq [opt] declarator [opt] ;
9031 function-specifier template
9032 decl-specifier-seq [opt] declarator [opt] ; */
9034 static void
9035 cp_parser_explicit_instantiation (cp_parser* parser)
9037 int declares_class_or_enum;
9038 cp_decl_specifier_seq decl_specifiers;
9039 tree extension_specifier = NULL_TREE;
9041 /* Look for an (optional) storage-class-specifier or
9042 function-specifier. */
9043 if (cp_parser_allow_gnu_extensions_p (parser))
9045 extension_specifier
9046 = cp_parser_storage_class_specifier_opt (parser);
9047 if (!extension_specifier)
9048 extension_specifier
9049 = cp_parser_function_specifier_opt (parser,
9050 /*decl_specs=*/NULL);
9053 /* Look for the `template' keyword. */
9054 cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
9055 /* Let the front end know that we are processing an explicit
9056 instantiation. */
9057 begin_explicit_instantiation ();
9058 /* [temp.explicit] says that we are supposed to ignore access
9059 control while processing explicit instantiation directives. */
9060 push_deferring_access_checks (dk_no_check);
9061 /* Parse a decl-specifier-seq. */
9062 cp_parser_decl_specifier_seq (parser,
9063 CP_PARSER_FLAGS_OPTIONAL,
9064 &decl_specifiers,
9065 &declares_class_or_enum);
9066 /* If there was exactly one decl-specifier, and it declared a class,
9067 and there's no declarator, then we have an explicit type
9068 instantiation. */
9069 if (declares_class_or_enum && cp_parser_declares_only_class_p (parser))
9071 tree type;
9073 type = check_tag_decl (&decl_specifiers);
9074 /* Turn access control back on for names used during
9075 template instantiation. */
9076 pop_deferring_access_checks ();
9077 if (type)
9078 do_type_instantiation (type, extension_specifier, /*complain=*/1);
9080 else
9082 cp_declarator *declarator;
9083 tree decl;
9085 /* Parse the declarator. */
9086 declarator
9087 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
9088 /*ctor_dtor_or_conv_p=*/NULL,
9089 /*parenthesized_p=*/NULL);
9090 cp_parser_check_for_definition_in_return_type (declarator,
9091 declares_class_or_enum);
9092 if (declarator != cp_error_declarator)
9094 decl = grokdeclarator (declarator, &decl_specifiers,
9095 NORMAL, 0, NULL);
9096 /* Turn access control back on for names used during
9097 template instantiation. */
9098 pop_deferring_access_checks ();
9099 /* Do the explicit instantiation. */
9100 do_decl_instantiation (decl, extension_specifier);
9102 else
9104 pop_deferring_access_checks ();
9105 /* Skip the body of the explicit instantiation. */
9106 cp_parser_skip_to_end_of_statement (parser);
9109 /* We're done with the instantiation. */
9110 end_explicit_instantiation ();
9112 cp_parser_consume_semicolon_at_end_of_statement (parser);
9115 /* Parse an explicit-specialization.
9117 explicit-specialization:
9118 template < > declaration
9120 Although the standard says `declaration', what it really means is:
9122 explicit-specialization:
9123 template <> decl-specifier [opt] init-declarator [opt] ;
9124 template <> function-definition
9125 template <> explicit-specialization
9126 template <> template-declaration */
9128 static void
9129 cp_parser_explicit_specialization (cp_parser* parser)
9131 /* Look for the `template' keyword. */
9132 cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
9133 /* Look for the `<'. */
9134 cp_parser_require (parser, CPP_LESS, "`<'");
9135 /* Look for the `>'. */
9136 cp_parser_require (parser, CPP_GREATER, "`>'");
9137 /* We have processed another parameter list. */
9138 ++parser->num_template_parameter_lists;
9139 /* Let the front end know that we are beginning a specialization. */
9140 begin_specialization ();
9142 /* If the next keyword is `template', we need to figure out whether
9143 or not we're looking a template-declaration. */
9144 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
9146 if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_LESS
9147 && cp_lexer_peek_nth_token (parser->lexer, 3)->type != CPP_GREATER)
9148 cp_parser_template_declaration_after_export (parser,
9149 /*member_p=*/false);
9150 else
9151 cp_parser_explicit_specialization (parser);
9153 else
9154 /* Parse the dependent declaration. */
9155 cp_parser_single_declaration (parser,
9156 /*member_p=*/false,
9157 /*friend_p=*/NULL);
9159 /* We're done with the specialization. */
9160 end_specialization ();
9161 /* We're done with this parameter list. */
9162 --parser->num_template_parameter_lists;
9165 /* Parse a type-specifier.
9167 type-specifier:
9168 simple-type-specifier
9169 class-specifier
9170 enum-specifier
9171 elaborated-type-specifier
9172 cv-qualifier
9174 GNU Extension:
9176 type-specifier:
9177 __complex__
9179 Returns a representation of the type-specifier. For a
9180 class-specifier, enum-specifier, or elaborated-type-specifier, a
9181 TREE_TYPE is returned; otherwise, a TYPE_DECL is returned.
9183 If IS_FRIEND is TRUE then this type-specifier is being declared a
9184 `friend'. If IS_DECLARATION is TRUE, then this type-specifier is
9185 appearing in a decl-specifier-seq.
9187 If DECLARES_CLASS_OR_ENUM is non-NULL, and the type-specifier is a
9188 class-specifier, enum-specifier, or elaborated-type-specifier, then
9189 *DECLARES_CLASS_OR_ENUM is set to a nonzero value. The value is 1
9190 if a type is declared; 2 if it is defined. Otherwise, it is set to
9191 zero.
9193 If IS_CV_QUALIFIER is non-NULL, and the type-specifier is a
9194 cv-qualifier, then IS_CV_QUALIFIER is set to TRUE. Otherwise, it
9195 is set to FALSE. */
9197 static tree
9198 cp_parser_type_specifier (cp_parser* parser,
9199 cp_parser_flags flags,
9200 cp_decl_specifier_seq *decl_specs,
9201 bool is_declaration,
9202 int* declares_class_or_enum,
9203 bool* is_cv_qualifier)
9205 tree type_spec = NULL_TREE;
9206 cp_token *token;
9207 enum rid keyword;
9208 cp_decl_spec ds = ds_last;
9210 /* Assume this type-specifier does not declare a new type. */
9211 if (declares_class_or_enum)
9212 *declares_class_or_enum = 0;
9213 /* And that it does not specify a cv-qualifier. */
9214 if (is_cv_qualifier)
9215 *is_cv_qualifier = false;
9216 /* Peek at the next token. */
9217 token = cp_lexer_peek_token (parser->lexer);
9219 /* If we're looking at a keyword, we can use that to guide the
9220 production we choose. */
9221 keyword = token->keyword;
9222 switch (keyword)
9224 /* Any of these indicate either a class-specifier, or an
9225 elaborated-type-specifier. */
9226 case RID_CLASS:
9227 case RID_STRUCT:
9228 case RID_UNION:
9229 case RID_ENUM:
9230 /* Parse tentatively so that we can back up if we don't find a
9231 class-specifier or enum-specifier. */
9232 cp_parser_parse_tentatively (parser);
9233 /* Look for the class-specifier or enum-specifier. */
9234 if (keyword == RID_ENUM)
9235 type_spec = cp_parser_enum_specifier (parser);
9236 else
9237 type_spec = cp_parser_class_specifier (parser);
9239 /* If that worked, we're done. */
9240 if (cp_parser_parse_definitely (parser))
9242 if (declares_class_or_enum)
9243 *declares_class_or_enum = 2;
9244 if (decl_specs)
9245 cp_parser_set_decl_spec_type (decl_specs,
9246 type_spec,
9247 /*user_defined_p=*/true);
9248 return type_spec;
9251 /* Fall through. */
9253 case RID_TYPENAME:
9254 /* Look for an elaborated-type-specifier. */
9255 type_spec
9256 = (cp_parser_elaborated_type_specifier
9257 (parser,
9258 decl_specs && decl_specs->specs[(int) ds_friend],
9259 is_declaration));
9260 /* We're declaring a class or enum -- unless we're using
9261 `typename'. */
9262 if (declares_class_or_enum && keyword != RID_TYPENAME)
9263 *declares_class_or_enum = 1;
9264 if (decl_specs)
9265 cp_parser_set_decl_spec_type (decl_specs,
9266 type_spec,
9267 /*user_defined_p=*/true);
9268 return type_spec;
9270 case RID_CONST:
9271 ds = ds_const;
9272 if (is_cv_qualifier)
9273 *is_cv_qualifier = true;
9274 break;
9276 case RID_VOLATILE:
9277 ds = ds_volatile;
9278 if (is_cv_qualifier)
9279 *is_cv_qualifier = true;
9280 break;
9282 case RID_RESTRICT:
9283 ds = ds_restrict;
9284 if (is_cv_qualifier)
9285 *is_cv_qualifier = true;
9286 break;
9288 case RID_COMPLEX:
9289 /* The `__complex__' keyword is a GNU extension. */
9290 ds = ds_complex;
9291 break;
9293 default:
9294 break;
9297 /* Handle simple keywords. */
9298 if (ds != ds_last)
9300 if (decl_specs)
9302 ++decl_specs->specs[(int)ds];
9303 decl_specs->any_specifiers_p = true;
9305 return cp_lexer_consume_token (parser->lexer)->value;
9308 /* If we do not already have a type-specifier, assume we are looking
9309 at a simple-type-specifier. */
9310 type_spec = cp_parser_simple_type_specifier (parser,
9311 decl_specs,
9312 flags);
9314 /* If we didn't find a type-specifier, and a type-specifier was not
9315 optional in this context, issue an error message. */
9316 if (!type_spec && !(flags & CP_PARSER_FLAGS_OPTIONAL))
9318 cp_parser_error (parser, "expected type specifier");
9319 return error_mark_node;
9322 return type_spec;
9325 /* Parse a simple-type-specifier.
9327 simple-type-specifier:
9328 :: [opt] nested-name-specifier [opt] type-name
9329 :: [opt] nested-name-specifier template template-id
9330 char
9331 wchar_t
9332 bool
9333 short
9335 long
9336 signed
9337 unsigned
9338 float
9339 double
9340 void
9342 GNU Extension:
9344 simple-type-specifier:
9345 __typeof__ unary-expression
9346 __typeof__ ( type-id )
9348 Returns the indicated TYPE_DECL. If DECL_SPECS is not NULL, it is
9349 appropriately updated. */
9351 static tree
9352 cp_parser_simple_type_specifier (cp_parser* parser,
9353 cp_decl_specifier_seq *decl_specs,
9354 cp_parser_flags flags)
9356 tree type = NULL_TREE;
9357 cp_token *token;
9359 /* Peek at the next token. */
9360 token = cp_lexer_peek_token (parser->lexer);
9362 /* If we're looking at a keyword, things are easy. */
9363 switch (token->keyword)
9365 case RID_CHAR:
9366 if (decl_specs)
9367 decl_specs->explicit_char_p = true;
9368 type = char_type_node;
9369 break;
9370 case RID_WCHAR:
9371 type = wchar_type_node;
9372 break;
9373 case RID_BOOL:
9374 type = boolean_type_node;
9375 break;
9376 case RID_SHORT:
9377 if (decl_specs)
9378 ++decl_specs->specs[(int) ds_short];
9379 type = short_integer_type_node;
9380 break;
9381 case RID_INT:
9382 if (decl_specs)
9383 decl_specs->explicit_int_p = true;
9384 type = integer_type_node;
9385 break;
9386 case RID_LONG:
9387 if (decl_specs)
9388 ++decl_specs->specs[(int) ds_long];
9389 type = long_integer_type_node;
9390 break;
9391 case RID_SIGNED:
9392 if (decl_specs)
9393 ++decl_specs->specs[(int) ds_signed];
9394 type = integer_type_node;
9395 break;
9396 case RID_UNSIGNED:
9397 if (decl_specs)
9398 ++decl_specs->specs[(int) ds_unsigned];
9399 type = unsigned_type_node;
9400 break;
9401 case RID_FLOAT:
9402 type = float_type_node;
9403 break;
9404 case RID_DOUBLE:
9405 type = double_type_node;
9406 break;
9407 case RID_VOID:
9408 type = void_type_node;
9409 break;
9411 case RID_TYPEOF:
9412 /* Consume the `typeof' token. */
9413 cp_lexer_consume_token (parser->lexer);
9414 /* Parse the operand to `typeof'. */
9415 type = cp_parser_sizeof_operand (parser, RID_TYPEOF);
9416 /* If it is not already a TYPE, take its type. */
9417 if (!TYPE_P (type))
9418 type = finish_typeof (type);
9420 if (decl_specs)
9421 cp_parser_set_decl_spec_type (decl_specs, type,
9422 /*user_defined_p=*/true);
9424 return type;
9426 default:
9427 break;
9430 /* If the type-specifier was for a built-in type, we're done. */
9431 if (type)
9433 tree id;
9435 /* Record the type. */
9436 if (decl_specs
9437 && (token->keyword != RID_SIGNED
9438 && token->keyword != RID_UNSIGNED
9439 && token->keyword != RID_SHORT
9440 && token->keyword != RID_LONG))
9441 cp_parser_set_decl_spec_type (decl_specs,
9442 type,
9443 /*user_defined=*/false);
9444 if (decl_specs)
9445 decl_specs->any_specifiers_p = true;
9447 /* Consume the token. */
9448 id = cp_lexer_consume_token (parser->lexer)->value;
9450 /* There is no valid C++ program where a non-template type is
9451 followed by a "<". That usually indicates that the user thought
9452 that the type was a template. */
9453 cp_parser_check_for_invalid_template_id (parser, type);
9455 return TYPE_NAME (type);
9458 /* The type-specifier must be a user-defined type. */
9459 if (!(flags & CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES))
9461 bool qualified_p;
9462 bool global_p;
9464 /* Don't gobble tokens or issue error messages if this is an
9465 optional type-specifier. */
9466 if (flags & CP_PARSER_FLAGS_OPTIONAL)
9467 cp_parser_parse_tentatively (parser);
9469 /* Look for the optional `::' operator. */
9470 global_p
9471 = (cp_parser_global_scope_opt (parser,
9472 /*current_scope_valid_p=*/false)
9473 != NULL_TREE);
9474 /* Look for the nested-name specifier. */
9475 qualified_p
9476 = (cp_parser_nested_name_specifier_opt (parser,
9477 /*typename_keyword_p=*/false,
9478 /*check_dependency_p=*/true,
9479 /*type_p=*/false,
9480 /*is_declaration=*/false)
9481 != NULL_TREE);
9482 /* If we have seen a nested-name-specifier, and the next token
9483 is `template', then we are using the template-id production. */
9484 if (parser->scope
9485 && cp_parser_optional_template_keyword (parser))
9487 /* Look for the template-id. */
9488 type = cp_parser_template_id (parser,
9489 /*template_keyword_p=*/true,
9490 /*check_dependency_p=*/true,
9491 /*is_declaration=*/false);
9492 /* If the template-id did not name a type, we are out of
9493 luck. */
9494 if (TREE_CODE (type) != TYPE_DECL)
9496 cp_parser_error (parser, "expected template-id for type");
9497 type = NULL_TREE;
9500 /* Otherwise, look for a type-name. */
9501 else
9502 type = cp_parser_type_name (parser);
9503 /* Keep track of all name-lookups performed in class scopes. */
9504 if (type
9505 && !global_p
9506 && !qualified_p
9507 && TREE_CODE (type) == TYPE_DECL
9508 && TREE_CODE (DECL_NAME (type)) == IDENTIFIER_NODE)
9509 maybe_note_name_used_in_class (DECL_NAME (type), type);
9510 /* If it didn't work out, we don't have a TYPE. */
9511 if ((flags & CP_PARSER_FLAGS_OPTIONAL)
9512 && !cp_parser_parse_definitely (parser))
9513 type = NULL_TREE;
9514 if (type && decl_specs)
9515 cp_parser_set_decl_spec_type (decl_specs, type,
9516 /*user_defined=*/true);
9519 /* If we didn't get a type-name, issue an error message. */
9520 if (!type && !(flags & CP_PARSER_FLAGS_OPTIONAL))
9522 cp_parser_error (parser, "expected type-name");
9523 return error_mark_node;
9526 /* There is no valid C++ program where a non-template type is
9527 followed by a "<". That usually indicates that the user thought
9528 that the type was a template. */
9529 if (type && type != error_mark_node)
9530 cp_parser_check_for_invalid_template_id (parser, TREE_TYPE (type));
9532 return type;
9535 /* Parse a type-name.
9537 type-name:
9538 class-name
9539 enum-name
9540 typedef-name
9542 enum-name:
9543 identifier
9545 typedef-name:
9546 identifier
9548 Returns a TYPE_DECL for the the type. */
9550 static tree
9551 cp_parser_type_name (cp_parser* parser)
9553 tree type_decl;
9554 tree identifier;
9556 /* We can't know yet whether it is a class-name or not. */
9557 cp_parser_parse_tentatively (parser);
9558 /* Try a class-name. */
9559 type_decl = cp_parser_class_name (parser,
9560 /*typename_keyword_p=*/false,
9561 /*template_keyword_p=*/false,
9562 /*type_p=*/false,
9563 /*check_dependency_p=*/true,
9564 /*class_head_p=*/false,
9565 /*is_declaration=*/false);
9566 /* If it's not a class-name, keep looking. */
9567 if (!cp_parser_parse_definitely (parser))
9569 /* It must be a typedef-name or an enum-name. */
9570 identifier = cp_parser_identifier (parser);
9571 if (identifier == error_mark_node)
9572 return error_mark_node;
9574 /* Look up the type-name. */
9575 type_decl = cp_parser_lookup_name_simple (parser, identifier);
9576 /* Issue an error if we did not find a type-name. */
9577 if (TREE_CODE (type_decl) != TYPE_DECL)
9579 if (!cp_parser_simulate_error (parser))
9580 cp_parser_name_lookup_error (parser, identifier, type_decl,
9581 "is not a type");
9582 type_decl = error_mark_node;
9584 /* Remember that the name was used in the definition of the
9585 current class so that we can check later to see if the
9586 meaning would have been different after the class was
9587 entirely defined. */
9588 else if (type_decl != error_mark_node
9589 && !parser->scope)
9590 maybe_note_name_used_in_class (identifier, type_decl);
9593 return type_decl;
9597 /* Parse an elaborated-type-specifier. Note that the grammar given
9598 here incorporates the resolution to DR68.
9600 elaborated-type-specifier:
9601 class-key :: [opt] nested-name-specifier [opt] identifier
9602 class-key :: [opt] nested-name-specifier [opt] template [opt] template-id
9603 enum :: [opt] nested-name-specifier [opt] identifier
9604 typename :: [opt] nested-name-specifier identifier
9605 typename :: [opt] nested-name-specifier template [opt]
9606 template-id
9608 GNU extension:
9610 elaborated-type-specifier:
9611 class-key attributes :: [opt] nested-name-specifier [opt] identifier
9612 class-key attributes :: [opt] nested-name-specifier [opt]
9613 template [opt] template-id
9614 enum attributes :: [opt] nested-name-specifier [opt] identifier
9616 If IS_FRIEND is TRUE, then this elaborated-type-specifier is being
9617 declared `friend'. If IS_DECLARATION is TRUE, then this
9618 elaborated-type-specifier appears in a decl-specifiers-seq, i.e.,
9619 something is being declared.
9621 Returns the TYPE specified. */
9623 static tree
9624 cp_parser_elaborated_type_specifier (cp_parser* parser,
9625 bool is_friend,
9626 bool is_declaration)
9628 enum tag_types tag_type;
9629 tree identifier;
9630 tree type = NULL_TREE;
9631 tree attributes = NULL_TREE;
9633 /* See if we're looking at the `enum' keyword. */
9634 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ENUM))
9636 /* Consume the `enum' token. */
9637 cp_lexer_consume_token (parser->lexer);
9638 /* Remember that it's an enumeration type. */
9639 tag_type = enum_type;
9640 /* Parse the attributes. */
9641 attributes = cp_parser_attributes_opt (parser);
9643 /* Or, it might be `typename'. */
9644 else if (cp_lexer_next_token_is_keyword (parser->lexer,
9645 RID_TYPENAME))
9647 /* Consume the `typename' token. */
9648 cp_lexer_consume_token (parser->lexer);
9649 /* Remember that it's a `typename' type. */
9650 tag_type = typename_type;
9651 /* The `typename' keyword is only allowed in templates. */
9652 if (!processing_template_decl)
9653 pedwarn ("using `typename' outside of template");
9655 /* Otherwise it must be a class-key. */
9656 else
9658 tag_type = cp_parser_class_key (parser);
9659 if (tag_type == none_type)
9660 return error_mark_node;
9661 /* Parse the attributes. */
9662 attributes = cp_parser_attributes_opt (parser);
9665 /* Look for the `::' operator. */
9666 cp_parser_global_scope_opt (parser,
9667 /*current_scope_valid_p=*/false);
9668 /* Look for the nested-name-specifier. */
9669 if (tag_type == typename_type)
9671 if (cp_parser_nested_name_specifier (parser,
9672 /*typename_keyword_p=*/true,
9673 /*check_dependency_p=*/true,
9674 /*type_p=*/true,
9675 is_declaration)
9676 == error_mark_node)
9677 return error_mark_node;
9679 else
9680 /* Even though `typename' is not present, the proposed resolution
9681 to Core Issue 180 says that in `class A<T>::B', `B' should be
9682 considered a type-name, even if `A<T>' is dependent. */
9683 cp_parser_nested_name_specifier_opt (parser,
9684 /*typename_keyword_p=*/true,
9685 /*check_dependency_p=*/true,
9686 /*type_p=*/true,
9687 is_declaration);
9688 /* For everything but enumeration types, consider a template-id. */
9689 if (tag_type != enum_type)
9691 bool template_p = false;
9692 tree decl;
9694 /* Allow the `template' keyword. */
9695 template_p = cp_parser_optional_template_keyword (parser);
9696 /* If we didn't see `template', we don't know if there's a
9697 template-id or not. */
9698 if (!template_p)
9699 cp_parser_parse_tentatively (parser);
9700 /* Parse the template-id. */
9701 decl = cp_parser_template_id (parser, template_p,
9702 /*check_dependency_p=*/true,
9703 is_declaration);
9704 /* If we didn't find a template-id, look for an ordinary
9705 identifier. */
9706 if (!template_p && !cp_parser_parse_definitely (parser))
9708 /* If DECL is a TEMPLATE_ID_EXPR, and the `typename' keyword is
9709 in effect, then we must assume that, upon instantiation, the
9710 template will correspond to a class. */
9711 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
9712 && tag_type == typename_type)
9713 type = make_typename_type (parser->scope, decl,
9714 /*complain=*/1);
9715 else
9716 type = TREE_TYPE (decl);
9719 /* For an enumeration type, consider only a plain identifier. */
9720 if (!type)
9722 identifier = cp_parser_identifier (parser);
9724 if (identifier == error_mark_node)
9726 parser->scope = NULL_TREE;
9727 return error_mark_node;
9730 /* For a `typename', we needn't call xref_tag. */
9731 if (tag_type == typename_type)
9732 return cp_parser_make_typename_type (parser, parser->scope,
9733 identifier);
9734 /* Look up a qualified name in the usual way. */
9735 if (parser->scope)
9737 tree decl;
9739 /* In an elaborated-type-specifier, names are assumed to name
9740 types, so we set IS_TYPE to TRUE when calling
9741 cp_parser_lookup_name. */
9742 decl = cp_parser_lookup_name (parser, identifier,
9743 /*is_type=*/true,
9744 /*is_template=*/false,
9745 /*is_namespace=*/false,
9746 /*check_dependency=*/true);
9748 /* If we are parsing friend declaration, DECL may be a
9749 TEMPLATE_DECL tree node here. However, we need to check
9750 whether this TEMPLATE_DECL results in valid code. Consider
9751 the following example:
9753 namespace N {
9754 template <class T> class C {};
9756 class X {
9757 template <class T> friend class N::C; // #1, valid code
9759 template <class T> class Y {
9760 friend class N::C; // #2, invalid code
9763 For both case #1 and #2, we arrive at a TEMPLATE_DECL after
9764 name lookup of `N::C'. We see that friend declaration must
9765 be template for the code to be valid. Note that
9766 processing_template_decl does not work here since it is
9767 always 1 for the above two cases. */
9769 decl = (cp_parser_maybe_treat_template_as_class
9770 (decl, /*tag_name_p=*/is_friend
9771 && parser->num_template_parameter_lists));
9773 if (TREE_CODE (decl) != TYPE_DECL)
9775 error ("expected type-name");
9776 return error_mark_node;
9779 if (TREE_CODE (TREE_TYPE (decl)) != TYPENAME_TYPE)
9780 check_elaborated_type_specifier
9781 (tag_type, decl,
9782 (parser->num_template_parameter_lists
9783 || DECL_SELF_REFERENCE_P (decl)));
9785 type = TREE_TYPE (decl);
9787 else
9789 /* An elaborated-type-specifier sometimes introduces a new type and
9790 sometimes names an existing type. Normally, the rule is that it
9791 introduces a new type only if there is not an existing type of
9792 the same name already in scope. For example, given:
9794 struct S {};
9795 void f() { struct S s; }
9797 the `struct S' in the body of `f' is the same `struct S' as in
9798 the global scope; the existing definition is used. However, if
9799 there were no global declaration, this would introduce a new
9800 local class named `S'.
9802 An exception to this rule applies to the following code:
9804 namespace N { struct S; }
9806 Here, the elaborated-type-specifier names a new type
9807 unconditionally; even if there is already an `S' in the
9808 containing scope this declaration names a new type.
9809 This exception only applies if the elaborated-type-specifier
9810 forms the complete declaration:
9812 [class.name]
9814 A declaration consisting solely of `class-key identifier ;' is
9815 either a redeclaration of the name in the current scope or a
9816 forward declaration of the identifier as a class name. It
9817 introduces the name into the current scope.
9819 We are in this situation precisely when the next token is a `;'.
9821 An exception to the exception is that a `friend' declaration does
9822 *not* name a new type; i.e., given:
9824 struct S { friend struct T; };
9826 `T' is not a new type in the scope of `S'.
9828 Also, `new struct S' or `sizeof (struct S)' never results in the
9829 definition of a new type; a new type can only be declared in a
9830 declaration context. */
9832 /* Warn about attributes. They are ignored. */
9833 if (attributes)
9834 warning ("type attributes are honored only at type definition");
9836 type = xref_tag (tag_type, identifier,
9837 (is_friend
9838 || !is_declaration
9839 || cp_lexer_next_token_is_not (parser->lexer,
9840 CPP_SEMICOLON)),
9841 parser->num_template_parameter_lists);
9844 if (tag_type != enum_type)
9845 cp_parser_check_class_key (tag_type, type);
9847 /* A "<" cannot follow an elaborated type specifier. If that
9848 happens, the user was probably trying to form a template-id. */
9849 cp_parser_check_for_invalid_template_id (parser, type);
9851 return type;
9854 /* Parse an enum-specifier.
9856 enum-specifier:
9857 enum identifier [opt] { enumerator-list [opt] }
9859 Returns an ENUM_TYPE representing the enumeration. */
9861 static tree
9862 cp_parser_enum_specifier (cp_parser* parser)
9864 cp_token *token;
9865 tree identifier = NULL_TREE;
9866 tree type;
9868 /* Look for the `enum' keyword. */
9869 if (!cp_parser_require_keyword (parser, RID_ENUM, "`enum'"))
9870 return error_mark_node;
9871 /* Peek at the next token. */
9872 token = cp_lexer_peek_token (parser->lexer);
9874 /* See if it is an identifier. */
9875 if (token->type == CPP_NAME)
9876 identifier = cp_parser_identifier (parser);
9878 /* Look for the `{'. */
9879 if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
9880 return error_mark_node;
9882 /* At this point, we're going ahead with the enum-specifier, even
9883 if some other problem occurs. */
9884 cp_parser_commit_to_tentative_parse (parser);
9886 /* Issue an error message if type-definitions are forbidden here. */
9887 cp_parser_check_type_definition (parser);
9889 /* Create the new type. */
9890 type = start_enum (identifier ? identifier : make_anon_name ());
9892 /* Peek at the next token. */
9893 token = cp_lexer_peek_token (parser->lexer);
9894 /* If it's not a `}', then there are some enumerators. */
9895 if (token->type != CPP_CLOSE_BRACE)
9896 cp_parser_enumerator_list (parser, type);
9897 /* Look for the `}'. */
9898 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
9900 /* Finish up the enumeration. */
9901 finish_enum (type);
9903 return type;
9906 /* Parse an enumerator-list. The enumerators all have the indicated
9907 TYPE.
9909 enumerator-list:
9910 enumerator-definition
9911 enumerator-list , enumerator-definition */
9913 static void
9914 cp_parser_enumerator_list (cp_parser* parser, tree type)
9916 while (true)
9918 cp_token *token;
9920 /* Parse an enumerator-definition. */
9921 cp_parser_enumerator_definition (parser, type);
9922 /* Peek at the next token. */
9923 token = cp_lexer_peek_token (parser->lexer);
9924 /* If it's not a `,', then we've reached the end of the
9925 list. */
9926 if (token->type != CPP_COMMA)
9927 break;
9928 /* Otherwise, consume the `,' and keep going. */
9929 cp_lexer_consume_token (parser->lexer);
9930 /* If the next token is a `}', there is a trailing comma. */
9931 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
9933 if (pedantic && !in_system_header)
9934 pedwarn ("comma at end of enumerator list");
9935 break;
9940 /* Parse an enumerator-definition. The enumerator has the indicated
9941 TYPE.
9943 enumerator-definition:
9944 enumerator
9945 enumerator = constant-expression
9947 enumerator:
9948 identifier */
9950 static void
9951 cp_parser_enumerator_definition (cp_parser* parser, tree type)
9953 cp_token *token;
9954 tree identifier;
9955 tree value;
9957 /* Look for the identifier. */
9958 identifier = cp_parser_identifier (parser);
9959 if (identifier == error_mark_node)
9960 return;
9962 /* Peek at the next token. */
9963 token = cp_lexer_peek_token (parser->lexer);
9964 /* If it's an `=', then there's an explicit value. */
9965 if (token->type == CPP_EQ)
9967 /* Consume the `=' token. */
9968 cp_lexer_consume_token (parser->lexer);
9969 /* Parse the value. */
9970 value = cp_parser_constant_expression (parser,
9971 /*allow_non_constant_p=*/false,
9972 NULL);
9974 else
9975 value = NULL_TREE;
9977 /* Create the enumerator. */
9978 build_enumerator (identifier, value, type);
9981 /* Parse a namespace-name.
9983 namespace-name:
9984 original-namespace-name
9985 namespace-alias
9987 Returns the NAMESPACE_DECL for the namespace. */
9989 static tree
9990 cp_parser_namespace_name (cp_parser* parser)
9992 tree identifier;
9993 tree namespace_decl;
9995 /* Get the name of the namespace. */
9996 identifier = cp_parser_identifier (parser);
9997 if (identifier == error_mark_node)
9998 return error_mark_node;
10000 /* Look up the identifier in the currently active scope. Look only
10001 for namespaces, due to:
10003 [basic.lookup.udir]
10005 When looking up a namespace-name in a using-directive or alias
10006 definition, only namespace names are considered.
10008 And:
10010 [basic.lookup.qual]
10012 During the lookup of a name preceding the :: scope resolution
10013 operator, object, function, and enumerator names are ignored.
10015 (Note that cp_parser_class_or_namespace_name only calls this
10016 function if the token after the name is the scope resolution
10017 operator.) */
10018 namespace_decl = cp_parser_lookup_name (parser, identifier,
10019 /*is_type=*/false,
10020 /*is_template=*/false,
10021 /*is_namespace=*/true,
10022 /*check_dependency=*/true);
10023 /* If it's not a namespace, issue an error. */
10024 if (namespace_decl == error_mark_node
10025 || TREE_CODE (namespace_decl) != NAMESPACE_DECL)
10027 cp_parser_error (parser, "expected namespace-name");
10028 namespace_decl = error_mark_node;
10031 return namespace_decl;
10034 /* Parse a namespace-definition.
10036 namespace-definition:
10037 named-namespace-definition
10038 unnamed-namespace-definition
10040 named-namespace-definition:
10041 original-namespace-definition
10042 extension-namespace-definition
10044 original-namespace-definition:
10045 namespace identifier { namespace-body }
10047 extension-namespace-definition:
10048 namespace original-namespace-name { namespace-body }
10050 unnamed-namespace-definition:
10051 namespace { namespace-body } */
10053 static void
10054 cp_parser_namespace_definition (cp_parser* parser)
10056 tree identifier;
10058 /* Look for the `namespace' keyword. */
10059 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10061 /* Get the name of the namespace. We do not attempt to distinguish
10062 between an original-namespace-definition and an
10063 extension-namespace-definition at this point. The semantic
10064 analysis routines are responsible for that. */
10065 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
10066 identifier = cp_parser_identifier (parser);
10067 else
10068 identifier = NULL_TREE;
10070 /* Look for the `{' to start the namespace. */
10071 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
10072 /* Start the namespace. */
10073 push_namespace (identifier);
10074 /* Parse the body of the namespace. */
10075 cp_parser_namespace_body (parser);
10076 /* Finish the namespace. */
10077 pop_namespace ();
10078 /* Look for the final `}'. */
10079 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
10082 /* Parse a namespace-body.
10084 namespace-body:
10085 declaration-seq [opt] */
10087 static void
10088 cp_parser_namespace_body (cp_parser* parser)
10090 cp_parser_declaration_seq_opt (parser);
10093 /* Parse a namespace-alias-definition.
10095 namespace-alias-definition:
10096 namespace identifier = qualified-namespace-specifier ; */
10098 static void
10099 cp_parser_namespace_alias_definition (cp_parser* parser)
10101 tree identifier;
10102 tree namespace_specifier;
10104 /* Look for the `namespace' keyword. */
10105 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10106 /* Look for the identifier. */
10107 identifier = cp_parser_identifier (parser);
10108 if (identifier == error_mark_node)
10109 return;
10110 /* Look for the `=' token. */
10111 cp_parser_require (parser, CPP_EQ, "`='");
10112 /* Look for the qualified-namespace-specifier. */
10113 namespace_specifier
10114 = cp_parser_qualified_namespace_specifier (parser);
10115 /* Look for the `;' token. */
10116 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10118 /* Register the alias in the symbol table. */
10119 do_namespace_alias (identifier, namespace_specifier);
10122 /* Parse a qualified-namespace-specifier.
10124 qualified-namespace-specifier:
10125 :: [opt] nested-name-specifier [opt] namespace-name
10127 Returns a NAMESPACE_DECL corresponding to the specified
10128 namespace. */
10130 static tree
10131 cp_parser_qualified_namespace_specifier (cp_parser* parser)
10133 /* Look for the optional `::'. */
10134 cp_parser_global_scope_opt (parser,
10135 /*current_scope_valid_p=*/false);
10137 /* Look for the optional nested-name-specifier. */
10138 cp_parser_nested_name_specifier_opt (parser,
10139 /*typename_keyword_p=*/false,
10140 /*check_dependency_p=*/true,
10141 /*type_p=*/false,
10142 /*is_declaration=*/true);
10144 return cp_parser_namespace_name (parser);
10147 /* Parse a using-declaration.
10149 using-declaration:
10150 using typename [opt] :: [opt] nested-name-specifier unqualified-id ;
10151 using :: unqualified-id ; */
10153 static void
10154 cp_parser_using_declaration (cp_parser* parser)
10156 cp_token *token;
10157 bool typename_p = false;
10158 bool global_scope_p;
10159 tree decl;
10160 tree identifier;
10161 tree scope;
10162 tree qscope;
10164 /* Look for the `using' keyword. */
10165 cp_parser_require_keyword (parser, RID_USING, "`using'");
10167 /* Peek at the next token. */
10168 token = cp_lexer_peek_token (parser->lexer);
10169 /* See if it's `typename'. */
10170 if (token->keyword == RID_TYPENAME)
10172 /* Remember that we've seen it. */
10173 typename_p = true;
10174 /* Consume the `typename' token. */
10175 cp_lexer_consume_token (parser->lexer);
10178 /* Look for the optional global scope qualification. */
10179 global_scope_p
10180 = (cp_parser_global_scope_opt (parser,
10181 /*current_scope_valid_p=*/false)
10182 != NULL_TREE);
10184 /* If we saw `typename', or didn't see `::', then there must be a
10185 nested-name-specifier present. */
10186 if (typename_p || !global_scope_p)
10187 qscope = cp_parser_nested_name_specifier (parser, typename_p,
10188 /*check_dependency_p=*/true,
10189 /*type_p=*/false,
10190 /*is_declaration=*/true);
10191 /* Otherwise, we could be in either of the two productions. In that
10192 case, treat the nested-name-specifier as optional. */
10193 else
10194 qscope = cp_parser_nested_name_specifier_opt (parser,
10195 /*typename_keyword_p=*/false,
10196 /*check_dependency_p=*/true,
10197 /*type_p=*/false,
10198 /*is_declaration=*/true);
10199 if (!qscope)
10200 qscope = global_namespace;
10202 /* Parse the unqualified-id. */
10203 identifier = cp_parser_unqualified_id (parser,
10204 /*template_keyword_p=*/false,
10205 /*check_dependency_p=*/true,
10206 /*declarator_p=*/true);
10208 /* The function we call to handle a using-declaration is different
10209 depending on what scope we are in. */
10210 if (identifier == error_mark_node)
10212 else if (TREE_CODE (identifier) != IDENTIFIER_NODE
10213 && TREE_CODE (identifier) != BIT_NOT_EXPR)
10214 /* [namespace.udecl]
10216 A using declaration shall not name a template-id. */
10217 error ("a template-id may not appear in a using-declaration");
10218 else
10220 scope = current_scope ();
10221 if (scope && TYPE_P (scope))
10223 /* Create the USING_DECL. */
10224 decl = do_class_using_decl (build_nt (SCOPE_REF,
10225 parser->scope,
10226 identifier));
10227 /* Add it to the list of members in this class. */
10228 finish_member_declaration (decl);
10230 else
10232 decl = cp_parser_lookup_name_simple (parser, identifier);
10233 if (decl == error_mark_node)
10234 cp_parser_name_lookup_error (parser, identifier, decl, NULL);
10235 else if (scope)
10236 do_local_using_decl (decl, qscope, identifier);
10237 else
10238 do_toplevel_using_decl (decl, qscope, identifier);
10242 /* Look for the final `;'. */
10243 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10246 /* Parse a using-directive.
10248 using-directive:
10249 using namespace :: [opt] nested-name-specifier [opt]
10250 namespace-name ; */
10252 static void
10253 cp_parser_using_directive (cp_parser* parser)
10255 tree namespace_decl;
10256 tree attribs;
10258 /* Look for the `using' keyword. */
10259 cp_parser_require_keyword (parser, RID_USING, "`using'");
10260 /* And the `namespace' keyword. */
10261 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10262 /* Look for the optional `::' operator. */
10263 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
10264 /* And the optional nested-name-specifier. */
10265 cp_parser_nested_name_specifier_opt (parser,
10266 /*typename_keyword_p=*/false,
10267 /*check_dependency_p=*/true,
10268 /*type_p=*/false,
10269 /*is_declaration=*/true);
10270 /* Get the namespace being used. */
10271 namespace_decl = cp_parser_namespace_name (parser);
10272 /* And any specified attributes. */
10273 attribs = cp_parser_attributes_opt (parser);
10274 /* Update the symbol table. */
10275 parse_using_directive (namespace_decl, attribs);
10276 /* Look for the final `;'. */
10277 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10280 /* Parse an asm-definition.
10282 asm-definition:
10283 asm ( string-literal ) ;
10285 GNU Extension:
10287 asm-definition:
10288 asm volatile [opt] ( string-literal ) ;
10289 asm volatile [opt] ( string-literal : asm-operand-list [opt] ) ;
10290 asm volatile [opt] ( string-literal : asm-operand-list [opt]
10291 : asm-operand-list [opt] ) ;
10292 asm volatile [opt] ( string-literal : asm-operand-list [opt]
10293 : asm-operand-list [opt]
10294 : asm-operand-list [opt] ) ; */
10296 static void
10297 cp_parser_asm_definition (cp_parser* parser)
10299 cp_token *token;
10300 tree string;
10301 tree outputs = NULL_TREE;
10302 tree inputs = NULL_TREE;
10303 tree clobbers = NULL_TREE;
10304 tree asm_stmt;
10305 bool volatile_p = false;
10306 bool extended_p = false;
10308 /* Look for the `asm' keyword. */
10309 cp_parser_require_keyword (parser, RID_ASM, "`asm'");
10310 /* See if the next token is `volatile'. */
10311 if (cp_parser_allow_gnu_extensions_p (parser)
10312 && cp_lexer_next_token_is_keyword (parser->lexer, RID_VOLATILE))
10314 /* Remember that we saw the `volatile' keyword. */
10315 volatile_p = true;
10316 /* Consume the token. */
10317 cp_lexer_consume_token (parser->lexer);
10319 /* Look for the opening `('. */
10320 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
10321 /* Look for the string. */
10322 c_lex_string_translate = 0;
10323 token = cp_parser_require (parser, CPP_STRING, "asm body");
10324 if (!token)
10325 goto finish;
10326 string = token->value;
10327 /* If we're allowing GNU extensions, check for the extended assembly
10328 syntax. Unfortunately, the `:' tokens need not be separated by
10329 a space in C, and so, for compatibility, we tolerate that here
10330 too. Doing that means that we have to treat the `::' operator as
10331 two `:' tokens. */
10332 if (cp_parser_allow_gnu_extensions_p (parser)
10333 && at_function_scope_p ()
10334 && (cp_lexer_next_token_is (parser->lexer, CPP_COLON)
10335 || cp_lexer_next_token_is (parser->lexer, CPP_SCOPE)))
10337 bool inputs_p = false;
10338 bool clobbers_p = false;
10340 /* The extended syntax was used. */
10341 extended_p = true;
10343 /* Look for outputs. */
10344 if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10346 /* Consume the `:'. */
10347 cp_lexer_consume_token (parser->lexer);
10348 /* Parse the output-operands. */
10349 if (cp_lexer_next_token_is_not (parser->lexer,
10350 CPP_COLON)
10351 && cp_lexer_next_token_is_not (parser->lexer,
10352 CPP_SCOPE)
10353 && cp_lexer_next_token_is_not (parser->lexer,
10354 CPP_CLOSE_PAREN))
10355 outputs = cp_parser_asm_operand_list (parser);
10357 /* If the next token is `::', there are no outputs, and the
10358 next token is the beginning of the inputs. */
10359 else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
10361 /* Consume the `::' token. */
10362 cp_lexer_consume_token (parser->lexer);
10363 /* The inputs are coming next. */
10364 inputs_p = true;
10367 /* Look for inputs. */
10368 if (inputs_p
10369 || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10371 if (!inputs_p)
10372 /* Consume the `:'. */
10373 cp_lexer_consume_token (parser->lexer);
10374 /* Parse the output-operands. */
10375 if (cp_lexer_next_token_is_not (parser->lexer,
10376 CPP_COLON)
10377 && cp_lexer_next_token_is_not (parser->lexer,
10378 CPP_SCOPE)
10379 && cp_lexer_next_token_is_not (parser->lexer,
10380 CPP_CLOSE_PAREN))
10381 inputs = cp_parser_asm_operand_list (parser);
10383 else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
10384 /* The clobbers are coming next. */
10385 clobbers_p = true;
10387 /* Look for clobbers. */
10388 if (clobbers_p
10389 || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10391 if (!clobbers_p)
10392 /* Consume the `:'. */
10393 cp_lexer_consume_token (parser->lexer);
10394 /* Parse the clobbers. */
10395 if (cp_lexer_next_token_is_not (parser->lexer,
10396 CPP_CLOSE_PAREN))
10397 clobbers = cp_parser_asm_clobber_list (parser);
10400 /* Look for the closing `)'. */
10401 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
10402 cp_parser_skip_to_closing_parenthesis (parser, true, false,
10403 /*consume_paren=*/true);
10404 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10406 /* Create the ASM_EXPR. */
10407 if (at_function_scope_p ())
10409 asm_stmt = finish_asm_stmt (volatile_p, string, outputs,
10410 inputs, clobbers);
10411 /* If the extended syntax was not used, mark the ASM_EXPR. */
10412 if (!extended_p)
10413 ASM_INPUT_P (asm_stmt) = 1;
10415 else
10416 assemble_asm (string);
10418 finish:
10419 c_lex_string_translate = 1;
10422 /* Declarators [gram.dcl.decl] */
10424 /* Parse an init-declarator.
10426 init-declarator:
10427 declarator initializer [opt]
10429 GNU Extension:
10431 init-declarator:
10432 declarator asm-specification [opt] attributes [opt] initializer [opt]
10434 function-definition:
10435 decl-specifier-seq [opt] declarator ctor-initializer [opt]
10436 function-body
10437 decl-specifier-seq [opt] declarator function-try-block
10439 GNU Extension:
10441 function-definition:
10442 __extension__ function-definition
10444 The DECL_SPECIFIERS and PREFIX_ATTRIBUTES apply to this declarator.
10445 Returns a representation of the entity declared. If MEMBER_P is TRUE,
10446 then this declarator appears in a class scope. The new DECL created
10447 by this declarator is returned.
10449 If FUNCTION_DEFINITION_ALLOWED_P then we handle the declarator and
10450 for a function-definition here as well. If the declarator is a
10451 declarator for a function-definition, *FUNCTION_DEFINITION_P will
10452 be TRUE upon return. By that point, the function-definition will
10453 have been completely parsed.
10455 FUNCTION_DEFINITION_P may be NULL if FUNCTION_DEFINITION_ALLOWED_P
10456 is FALSE. */
10458 static tree
10459 cp_parser_init_declarator (cp_parser* parser,
10460 cp_decl_specifier_seq *decl_specifiers,
10461 bool function_definition_allowed_p,
10462 bool member_p,
10463 int declares_class_or_enum,
10464 bool* function_definition_p)
10466 cp_token *token;
10467 cp_declarator *declarator;
10468 tree prefix_attributes;
10469 tree attributes;
10470 tree asm_specification;
10471 tree initializer;
10472 tree decl = NULL_TREE;
10473 tree scope;
10474 bool is_initialized;
10475 bool is_parenthesized_init;
10476 bool is_non_constant_init;
10477 int ctor_dtor_or_conv_p;
10478 bool friend_p;
10479 bool pop_p = false;
10481 /* Gather the attributes that were provided with the
10482 decl-specifiers. */
10483 prefix_attributes = decl_specifiers->attributes;
10485 /* Assume that this is not the declarator for a function
10486 definition. */
10487 if (function_definition_p)
10488 *function_definition_p = false;
10490 /* Defer access checks while parsing the declarator; we cannot know
10491 what names are accessible until we know what is being
10492 declared. */
10493 resume_deferring_access_checks ();
10495 /* Parse the declarator. */
10496 declarator
10497 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
10498 &ctor_dtor_or_conv_p,
10499 /*parenthesized_p=*/NULL);
10500 /* Gather up the deferred checks. */
10501 stop_deferring_access_checks ();
10503 /* If the DECLARATOR was erroneous, there's no need to go
10504 further. */
10505 if (declarator == cp_error_declarator)
10506 return error_mark_node;
10508 cp_parser_check_for_definition_in_return_type (declarator,
10509 declares_class_or_enum);
10511 /* Figure out what scope the entity declared by the DECLARATOR is
10512 located in. `grokdeclarator' sometimes changes the scope, so
10513 we compute it now. */
10514 scope = get_scope_of_declarator (declarator);
10516 /* If we're allowing GNU extensions, look for an asm-specification
10517 and attributes. */
10518 if (cp_parser_allow_gnu_extensions_p (parser))
10520 /* Look for an asm-specification. */
10521 asm_specification = cp_parser_asm_specification_opt (parser);
10522 /* And attributes. */
10523 attributes = cp_parser_attributes_opt (parser);
10525 else
10527 asm_specification = NULL_TREE;
10528 attributes = NULL_TREE;
10531 /* Peek at the next token. */
10532 token = cp_lexer_peek_token (parser->lexer);
10533 /* Check to see if the token indicates the start of a
10534 function-definition. */
10535 if (cp_parser_token_starts_function_definition_p (token))
10537 if (!function_definition_allowed_p)
10539 /* If a function-definition should not appear here, issue an
10540 error message. */
10541 cp_parser_error (parser,
10542 "a function-definition is not allowed here");
10543 return error_mark_node;
10545 else
10547 /* Neither attributes nor an asm-specification are allowed
10548 on a function-definition. */
10549 if (asm_specification)
10550 error ("an asm-specification is not allowed on a function-definition");
10551 if (attributes)
10552 error ("attributes are not allowed on a function-definition");
10553 /* This is a function-definition. */
10554 *function_definition_p = true;
10556 /* Parse the function definition. */
10557 if (member_p)
10558 decl = cp_parser_save_member_function_body (parser,
10559 decl_specifiers,
10560 declarator,
10561 prefix_attributes);
10562 else
10563 decl
10564 = (cp_parser_function_definition_from_specifiers_and_declarator
10565 (parser, decl_specifiers, prefix_attributes, declarator));
10567 return decl;
10571 /* [dcl.dcl]
10573 Only in function declarations for constructors, destructors, and
10574 type conversions can the decl-specifier-seq be omitted.
10576 We explicitly postpone this check past the point where we handle
10577 function-definitions because we tolerate function-definitions
10578 that are missing their return types in some modes. */
10579 if (!decl_specifiers->any_specifiers_p && ctor_dtor_or_conv_p <= 0)
10581 cp_parser_error (parser,
10582 "expected constructor, destructor, or type conversion");
10583 return error_mark_node;
10586 /* An `=' or an `(' indicates an initializer. */
10587 is_initialized = (token->type == CPP_EQ
10588 || token->type == CPP_OPEN_PAREN);
10589 /* If the init-declarator isn't initialized and isn't followed by a
10590 `,' or `;', it's not a valid init-declarator. */
10591 if (!is_initialized
10592 && token->type != CPP_COMMA
10593 && token->type != CPP_SEMICOLON)
10595 cp_parser_error (parser, "expected init-declarator");
10596 return error_mark_node;
10599 /* Because start_decl has side-effects, we should only call it if we
10600 know we're going ahead. By this point, we know that we cannot
10601 possibly be looking at any other construct. */
10602 cp_parser_commit_to_tentative_parse (parser);
10604 /* If the decl specifiers were bad, issue an error now that we're
10605 sure this was intended to be a declarator. Then continue
10606 declaring the variable(s), as int, to try to cut down on further
10607 errors. */
10608 if (decl_specifiers->any_specifiers_p
10609 && decl_specifiers->type == error_mark_node)
10611 cp_parser_error (parser, "invalid type in declaration");
10612 decl_specifiers->type = integer_type_node;
10615 /* Check to see whether or not this declaration is a friend. */
10616 friend_p = cp_parser_friend_p (decl_specifiers);
10618 /* Check that the number of template-parameter-lists is OK. */
10619 if (!cp_parser_check_declarator_template_parameters (parser, declarator))
10620 return error_mark_node;
10622 /* Enter the newly declared entry in the symbol table. If we're
10623 processing a declaration in a class-specifier, we wait until
10624 after processing the initializer. */
10625 if (!member_p)
10627 if (parser->in_unbraced_linkage_specification_p)
10629 decl_specifiers->storage_class = sc_extern;
10630 have_extern_spec = false;
10632 decl = start_decl (declarator, decl_specifiers,
10633 is_initialized, attributes, prefix_attributes);
10636 /* Enter the SCOPE. That way unqualified names appearing in the
10637 initializer will be looked up in SCOPE. */
10638 if (scope)
10639 pop_p = push_scope (scope);
10641 /* Perform deferred access control checks, now that we know in which
10642 SCOPE the declared entity resides. */
10643 if (!member_p && decl)
10645 tree saved_current_function_decl = NULL_TREE;
10647 /* If the entity being declared is a function, pretend that we
10648 are in its scope. If it is a `friend', it may have access to
10649 things that would not otherwise be accessible. */
10650 if (TREE_CODE (decl) == FUNCTION_DECL)
10652 saved_current_function_decl = current_function_decl;
10653 current_function_decl = decl;
10656 /* Perform the access control checks for the declarator and the
10657 the decl-specifiers. */
10658 perform_deferred_access_checks ();
10660 /* Restore the saved value. */
10661 if (TREE_CODE (decl) == FUNCTION_DECL)
10662 current_function_decl = saved_current_function_decl;
10665 /* Parse the initializer. */
10666 if (is_initialized)
10667 initializer = cp_parser_initializer (parser,
10668 &is_parenthesized_init,
10669 &is_non_constant_init);
10670 else
10672 initializer = NULL_TREE;
10673 is_parenthesized_init = false;
10674 is_non_constant_init = true;
10677 /* The old parser allows attributes to appear after a parenthesized
10678 initializer. Mark Mitchell proposed removing this functionality
10679 on the GCC mailing lists on 2002-08-13. This parser accepts the
10680 attributes -- but ignores them. */
10681 if (cp_parser_allow_gnu_extensions_p (parser) && is_parenthesized_init)
10682 if (cp_parser_attributes_opt (parser))
10683 warning ("attributes after parenthesized initializer ignored");
10685 /* Leave the SCOPE, now that we have processed the initializer. It
10686 is important to do this before calling cp_finish_decl because it
10687 makes decisions about whether to create DECL_EXPRs or not based
10688 on the current scope. */
10689 if (pop_p)
10690 pop_scope (scope);
10692 /* For an in-class declaration, use `grokfield' to create the
10693 declaration. */
10694 if (member_p)
10696 decl = grokfield (declarator, decl_specifiers,
10697 initializer, /*asmspec=*/NULL_TREE,
10698 /*attributes=*/NULL_TREE);
10699 if (decl && TREE_CODE (decl) == FUNCTION_DECL)
10700 cp_parser_save_default_args (parser, decl);
10703 /* Finish processing the declaration. But, skip friend
10704 declarations. */
10705 if (!friend_p && decl)
10706 cp_finish_decl (decl,
10707 initializer,
10708 asm_specification,
10709 /* If the initializer is in parentheses, then this is
10710 a direct-initialization, which means that an
10711 `explicit' constructor is OK. Otherwise, an
10712 `explicit' constructor cannot be used. */
10713 ((is_parenthesized_init || !is_initialized)
10714 ? 0 : LOOKUP_ONLYCONVERTING));
10716 /* Remember whether or not variables were initialized by
10717 constant-expressions. */
10718 if (decl && TREE_CODE (decl) == VAR_DECL
10719 && is_initialized && !is_non_constant_init)
10720 DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = true;
10722 return decl;
10725 /* Parse a declarator.
10727 declarator:
10728 direct-declarator
10729 ptr-operator declarator
10731 abstract-declarator:
10732 ptr-operator abstract-declarator [opt]
10733 direct-abstract-declarator
10735 GNU Extensions:
10737 declarator:
10738 attributes [opt] direct-declarator
10739 attributes [opt] ptr-operator declarator
10741 abstract-declarator:
10742 attributes [opt] ptr-operator abstract-declarator [opt]
10743 attributes [opt] direct-abstract-declarator
10745 If CTOR_DTOR_OR_CONV_P is not NULL, *CTOR_DTOR_OR_CONV_P is used to
10746 detect constructor, destructor or conversion operators. It is set
10747 to -1 if the declarator is a name, and +1 if it is a
10748 function. Otherwise it is set to zero. Usually you just want to
10749 test for >0, but internally the negative value is used.
10751 (The reason for CTOR_DTOR_OR_CONV_P is that a declaration must have
10752 a decl-specifier-seq unless it declares a constructor, destructor,
10753 or conversion. It might seem that we could check this condition in
10754 semantic analysis, rather than parsing, but that makes it difficult
10755 to handle something like `f()'. We want to notice that there are
10756 no decl-specifiers, and therefore realize that this is an
10757 expression, not a declaration.)
10759 If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to true iff
10760 the declarator is a direct-declarator of the form "(...)". */
10762 static cp_declarator *
10763 cp_parser_declarator (cp_parser* parser,
10764 cp_parser_declarator_kind dcl_kind,
10765 int* ctor_dtor_or_conv_p,
10766 bool* parenthesized_p)
10768 cp_token *token;
10769 cp_declarator *declarator;
10770 enum tree_code code;
10771 cp_cv_quals cv_quals;
10772 tree class_type;
10773 tree attributes = NULL_TREE;
10775 /* Assume this is not a constructor, destructor, or type-conversion
10776 operator. */
10777 if (ctor_dtor_or_conv_p)
10778 *ctor_dtor_or_conv_p = 0;
10780 if (cp_parser_allow_gnu_extensions_p (parser))
10781 attributes = cp_parser_attributes_opt (parser);
10783 /* Peek at the next token. */
10784 token = cp_lexer_peek_token (parser->lexer);
10786 /* Check for the ptr-operator production. */
10787 cp_parser_parse_tentatively (parser);
10788 /* Parse the ptr-operator. */
10789 code = cp_parser_ptr_operator (parser,
10790 &class_type,
10791 &cv_quals);
10792 /* If that worked, then we have a ptr-operator. */
10793 if (cp_parser_parse_definitely (parser))
10795 /* If a ptr-operator was found, then this declarator was not
10796 parenthesized. */
10797 if (parenthesized_p)
10798 *parenthesized_p = true;
10799 /* The dependent declarator is optional if we are parsing an
10800 abstract-declarator. */
10801 if (dcl_kind != CP_PARSER_DECLARATOR_NAMED)
10802 cp_parser_parse_tentatively (parser);
10804 /* Parse the dependent declarator. */
10805 declarator = cp_parser_declarator (parser, dcl_kind,
10806 /*ctor_dtor_or_conv_p=*/NULL,
10807 /*parenthesized_p=*/NULL);
10809 /* If we are parsing an abstract-declarator, we must handle the
10810 case where the dependent declarator is absent. */
10811 if (dcl_kind != CP_PARSER_DECLARATOR_NAMED
10812 && !cp_parser_parse_definitely (parser))
10813 declarator = NULL;
10815 /* Build the representation of the ptr-operator. */
10816 if (class_type)
10817 declarator = make_ptrmem_declarator (cv_quals,
10818 class_type,
10819 declarator);
10820 else if (code == INDIRECT_REF)
10821 declarator = make_pointer_declarator (cv_quals, declarator);
10822 else
10823 declarator = make_reference_declarator (cv_quals, declarator);
10825 /* Everything else is a direct-declarator. */
10826 else
10828 if (parenthesized_p)
10829 *parenthesized_p = cp_lexer_next_token_is (parser->lexer,
10830 CPP_OPEN_PAREN);
10831 declarator = cp_parser_direct_declarator (parser, dcl_kind,
10832 ctor_dtor_or_conv_p);
10835 if (attributes && declarator != cp_error_declarator)
10836 declarator->attributes = attributes;
10838 return declarator;
10841 /* Parse a direct-declarator or direct-abstract-declarator.
10843 direct-declarator:
10844 declarator-id
10845 direct-declarator ( parameter-declaration-clause )
10846 cv-qualifier-seq [opt]
10847 exception-specification [opt]
10848 direct-declarator [ constant-expression [opt] ]
10849 ( declarator )
10851 direct-abstract-declarator:
10852 direct-abstract-declarator [opt]
10853 ( parameter-declaration-clause )
10854 cv-qualifier-seq [opt]
10855 exception-specification [opt]
10856 direct-abstract-declarator [opt] [ constant-expression [opt] ]
10857 ( abstract-declarator )
10859 Returns a representation of the declarator. DCL_KIND is
10860 CP_PARSER_DECLARATOR_ABSTRACT, if we are parsing a
10861 direct-abstract-declarator. It is CP_PARSER_DECLARATOR_NAMED, if
10862 we are parsing a direct-declarator. It is
10863 CP_PARSER_DECLARATOR_EITHER, if we can accept either - in the case
10864 of ambiguity we prefer an abstract declarator, as per
10865 [dcl.ambig.res]. CTOR_DTOR_OR_CONV_P is as for
10866 cp_parser_declarator. */
10868 static cp_declarator *
10869 cp_parser_direct_declarator (cp_parser* parser,
10870 cp_parser_declarator_kind dcl_kind,
10871 int* ctor_dtor_or_conv_p)
10873 cp_token *token;
10874 cp_declarator *declarator = NULL;
10875 tree scope = NULL_TREE;
10876 bool saved_default_arg_ok_p = parser->default_arg_ok_p;
10877 bool saved_in_declarator_p = parser->in_declarator_p;
10878 bool first = true;
10879 bool pop_p = false;
10881 while (true)
10883 /* Peek at the next token. */
10884 token = cp_lexer_peek_token (parser->lexer);
10885 if (token->type == CPP_OPEN_PAREN)
10887 /* This is either a parameter-declaration-clause, or a
10888 parenthesized declarator. When we know we are parsing a
10889 named declarator, it must be a parenthesized declarator
10890 if FIRST is true. For instance, `(int)' is a
10891 parameter-declaration-clause, with an omitted
10892 direct-abstract-declarator. But `((*))', is a
10893 parenthesized abstract declarator. Finally, when T is a
10894 template parameter `(T)' is a
10895 parameter-declaration-clause, and not a parenthesized
10896 named declarator.
10898 We first try and parse a parameter-declaration-clause,
10899 and then try a nested declarator (if FIRST is true).
10901 It is not an error for it not to be a
10902 parameter-declaration-clause, even when FIRST is
10903 false. Consider,
10905 int i (int);
10906 int i (3);
10908 The first is the declaration of a function while the
10909 second is a the definition of a variable, including its
10910 initializer.
10912 Having seen only the parenthesis, we cannot know which of
10913 these two alternatives should be selected. Even more
10914 complex are examples like:
10916 int i (int (a));
10917 int i (int (3));
10919 The former is a function-declaration; the latter is a
10920 variable initialization.
10922 Thus again, we try a parameter-declaration-clause, and if
10923 that fails, we back out and return. */
10925 if (!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
10927 cp_parameter_declarator *params;
10928 unsigned saved_num_template_parameter_lists;
10930 cp_parser_parse_tentatively (parser);
10932 /* Consume the `('. */
10933 cp_lexer_consume_token (parser->lexer);
10934 if (first)
10936 /* If this is going to be an abstract declarator, we're
10937 in a declarator and we can't have default args. */
10938 parser->default_arg_ok_p = false;
10939 parser->in_declarator_p = true;
10942 /* Inside the function parameter list, surrounding
10943 template-parameter-lists do not apply. */
10944 saved_num_template_parameter_lists
10945 = parser->num_template_parameter_lists;
10946 parser->num_template_parameter_lists = 0;
10948 /* Parse the parameter-declaration-clause. */
10949 params = cp_parser_parameter_declaration_clause (parser);
10951 parser->num_template_parameter_lists
10952 = saved_num_template_parameter_lists;
10954 /* If all went well, parse the cv-qualifier-seq and the
10955 exception-specification. */
10956 if (cp_parser_parse_definitely (parser))
10958 cp_cv_quals cv_quals;
10959 tree exception_specification;
10961 if (ctor_dtor_or_conv_p)
10962 *ctor_dtor_or_conv_p = *ctor_dtor_or_conv_p < 0;
10963 first = false;
10964 /* Consume the `)'. */
10965 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
10967 /* Parse the cv-qualifier-seq. */
10968 cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
10969 /* And the exception-specification. */
10970 exception_specification
10971 = cp_parser_exception_specification_opt (parser);
10973 /* Create the function-declarator. */
10974 declarator = make_call_declarator (declarator,
10975 params,
10976 cv_quals,
10977 exception_specification);
10978 /* Any subsequent parameter lists are to do with
10979 return type, so are not those of the declared
10980 function. */
10981 parser->default_arg_ok_p = false;
10983 /* Repeat the main loop. */
10984 continue;
10988 /* If this is the first, we can try a parenthesized
10989 declarator. */
10990 if (first)
10992 bool saved_in_type_id_in_expr_p;
10994 parser->default_arg_ok_p = saved_default_arg_ok_p;
10995 parser->in_declarator_p = saved_in_declarator_p;
10997 /* Consume the `('. */
10998 cp_lexer_consume_token (parser->lexer);
10999 /* Parse the nested declarator. */
11000 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
11001 parser->in_type_id_in_expr_p = true;
11002 declarator
11003 = cp_parser_declarator (parser, dcl_kind, ctor_dtor_or_conv_p,
11004 /*parenthesized_p=*/NULL);
11005 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
11006 first = false;
11007 /* Expect a `)'. */
11008 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
11009 declarator = cp_error_declarator;
11010 if (declarator == cp_error_declarator)
11011 break;
11013 goto handle_declarator;
11015 /* Otherwise, we must be done. */
11016 else
11017 break;
11019 else if ((!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
11020 && token->type == CPP_OPEN_SQUARE)
11022 /* Parse an array-declarator. */
11023 tree bounds;
11025 if (ctor_dtor_or_conv_p)
11026 *ctor_dtor_or_conv_p = 0;
11028 first = false;
11029 parser->default_arg_ok_p = false;
11030 parser->in_declarator_p = true;
11031 /* Consume the `['. */
11032 cp_lexer_consume_token (parser->lexer);
11033 /* Peek at the next token. */
11034 token = cp_lexer_peek_token (parser->lexer);
11035 /* If the next token is `]', then there is no
11036 constant-expression. */
11037 if (token->type != CPP_CLOSE_SQUARE)
11039 bool non_constant_p;
11041 bounds
11042 = cp_parser_constant_expression (parser,
11043 /*allow_non_constant=*/true,
11044 &non_constant_p);
11045 if (!non_constant_p)
11046 bounds = fold_non_dependent_expr (bounds);
11048 else
11049 bounds = NULL_TREE;
11050 /* Look for the closing `]'. */
11051 if (!cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'"))
11053 declarator = cp_error_declarator;
11054 break;
11057 declarator = make_array_declarator (declarator, bounds);
11059 else if (first && dcl_kind != CP_PARSER_DECLARATOR_ABSTRACT)
11061 tree id;
11063 /* Parse a declarator-id */
11064 if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
11065 cp_parser_parse_tentatively (parser);
11066 id = cp_parser_declarator_id (parser);
11067 if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
11069 if (!cp_parser_parse_definitely (parser))
11070 id = error_mark_node;
11071 else if (TREE_CODE (id) != IDENTIFIER_NODE)
11073 cp_parser_error (parser, "expected unqualified-id");
11074 id = error_mark_node;
11078 if (id == error_mark_node)
11080 declarator = cp_error_declarator;
11081 break;
11084 if (TREE_CODE (id) == SCOPE_REF && !current_scope ())
11086 tree scope = TREE_OPERAND (id, 0);
11088 /* In the declaration of a member of a template class
11089 outside of the class itself, the SCOPE will sometimes
11090 be a TYPENAME_TYPE. For example, given:
11092 template <typename T>
11093 int S<T>::R::i = 3;
11095 the SCOPE will be a TYPENAME_TYPE for `S<T>::R'. In
11096 this context, we must resolve S<T>::R to an ordinary
11097 type, rather than a typename type.
11099 The reason we normally avoid resolving TYPENAME_TYPEs
11100 is that a specialization of `S' might render
11101 `S<T>::R' not a type. However, if `S' is
11102 specialized, then this `i' will not be used, so there
11103 is no harm in resolving the types here. */
11104 if (TREE_CODE (scope) == TYPENAME_TYPE)
11106 tree type;
11108 /* Resolve the TYPENAME_TYPE. */
11109 type = resolve_typename_type (scope,
11110 /*only_current_p=*/false);
11111 /* If that failed, the declarator is invalid. */
11112 if (type == error_mark_node)
11113 error ("`%T::%D' is not a type",
11114 TYPE_CONTEXT (scope),
11115 TYPE_IDENTIFIER (scope));
11116 /* Build a new DECLARATOR. */
11117 id = build_nt (SCOPE_REF, type, TREE_OPERAND (id, 1));
11121 declarator = make_id_declarator (id);
11122 if (id)
11124 tree class_type;
11125 tree unqualified_name;
11127 if (TREE_CODE (id) == SCOPE_REF
11128 && CLASS_TYPE_P (TREE_OPERAND (id, 0)))
11130 class_type = TREE_OPERAND (id, 0);
11131 unqualified_name = TREE_OPERAND (id, 1);
11133 else
11135 class_type = current_class_type;
11136 unqualified_name = id;
11139 if (class_type)
11141 if (TREE_CODE (unqualified_name) == BIT_NOT_EXPR)
11142 declarator->u.id.sfk = sfk_destructor;
11143 else if (IDENTIFIER_TYPENAME_P (unqualified_name))
11144 declarator->u.id.sfk = sfk_conversion;
11145 else if (constructor_name_p (unqualified_name,
11146 class_type)
11147 || (TREE_CODE (unqualified_name) == TYPE_DECL
11148 && same_type_p (TREE_TYPE (unqualified_name),
11149 class_type)))
11150 declarator->u.id.sfk = sfk_constructor;
11152 if (ctor_dtor_or_conv_p && declarator->u.id.sfk != sfk_none)
11153 *ctor_dtor_or_conv_p = -1;
11154 if (TREE_CODE (id) == SCOPE_REF
11155 && TREE_CODE (unqualified_name) == TYPE_DECL
11156 && CLASSTYPE_USE_TEMPLATE (TREE_TYPE (unqualified_name)))
11158 error ("invalid use of constructor as a template");
11159 inform ("use `%T::%D' instead of `%T::%T' to name the "
11160 "constructor in a qualified name", class_type,
11161 DECL_NAME (TYPE_TI_TEMPLATE (class_type)),
11162 class_type, class_type);
11167 handle_declarator:;
11168 scope = get_scope_of_declarator (declarator);
11169 if (scope)
11170 /* Any names that appear after the declarator-id for a
11171 member are looked up in the containing scope. */
11172 pop_p = push_scope (scope);
11173 parser->in_declarator_p = true;
11174 if ((ctor_dtor_or_conv_p && *ctor_dtor_or_conv_p)
11175 || (declarator && declarator->kind == cdk_id))
11176 /* Default args are only allowed on function
11177 declarations. */
11178 parser->default_arg_ok_p = saved_default_arg_ok_p;
11179 else
11180 parser->default_arg_ok_p = false;
11182 first = false;
11184 /* We're done. */
11185 else
11186 break;
11189 /* For an abstract declarator, we might wind up with nothing at this
11190 point. That's an error; the declarator is not optional. */
11191 if (!declarator)
11192 cp_parser_error (parser, "expected declarator");
11194 /* If we entered a scope, we must exit it now. */
11195 if (pop_p)
11196 pop_scope (scope);
11198 parser->default_arg_ok_p = saved_default_arg_ok_p;
11199 parser->in_declarator_p = saved_in_declarator_p;
11201 return declarator;
11204 /* Parse a ptr-operator.
11206 ptr-operator:
11207 * cv-qualifier-seq [opt]
11209 :: [opt] nested-name-specifier * cv-qualifier-seq [opt]
11211 GNU Extension:
11213 ptr-operator:
11214 & cv-qualifier-seq [opt]
11216 Returns INDIRECT_REF if a pointer, or pointer-to-member, was used.
11217 Returns ADDR_EXPR if a reference was used. In the case of a
11218 pointer-to-member, *TYPE is filled in with the TYPE containing the
11219 member. *CV_QUALS is filled in with the cv-qualifier-seq, or
11220 TYPE_UNQUALIFIED, if there are no cv-qualifiers. Returns
11221 ERROR_MARK if an error occurred. */
11223 static enum tree_code
11224 cp_parser_ptr_operator (cp_parser* parser,
11225 tree* type,
11226 cp_cv_quals *cv_quals)
11228 enum tree_code code = ERROR_MARK;
11229 cp_token *token;
11231 /* Assume that it's not a pointer-to-member. */
11232 *type = NULL_TREE;
11233 /* And that there are no cv-qualifiers. */
11234 *cv_quals = TYPE_UNQUALIFIED;
11236 /* Peek at the next token. */
11237 token = cp_lexer_peek_token (parser->lexer);
11238 /* If it's a `*' or `&' we have a pointer or reference. */
11239 if (token->type == CPP_MULT || token->type == CPP_AND)
11241 /* Remember which ptr-operator we were processing. */
11242 code = (token->type == CPP_AND ? ADDR_EXPR : INDIRECT_REF);
11244 /* Consume the `*' or `&'. */
11245 cp_lexer_consume_token (parser->lexer);
11247 /* A `*' can be followed by a cv-qualifier-seq, and so can a
11248 `&', if we are allowing GNU extensions. (The only qualifier
11249 that can legally appear after `&' is `restrict', but that is
11250 enforced during semantic analysis. */
11251 if (code == INDIRECT_REF
11252 || cp_parser_allow_gnu_extensions_p (parser))
11253 *cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11255 else
11257 /* Try the pointer-to-member case. */
11258 cp_parser_parse_tentatively (parser);
11259 /* Look for the optional `::' operator. */
11260 cp_parser_global_scope_opt (parser,
11261 /*current_scope_valid_p=*/false);
11262 /* Look for the nested-name specifier. */
11263 cp_parser_nested_name_specifier (parser,
11264 /*typename_keyword_p=*/false,
11265 /*check_dependency_p=*/true,
11266 /*type_p=*/false,
11267 /*is_declaration=*/false);
11268 /* If we found it, and the next token is a `*', then we are
11269 indeed looking at a pointer-to-member operator. */
11270 if (!cp_parser_error_occurred (parser)
11271 && cp_parser_require (parser, CPP_MULT, "`*'"))
11273 /* The type of which the member is a member is given by the
11274 current SCOPE. */
11275 *type = parser->scope;
11276 /* The next name will not be qualified. */
11277 parser->scope = NULL_TREE;
11278 parser->qualifying_scope = NULL_TREE;
11279 parser->object_scope = NULL_TREE;
11280 /* Indicate that the `*' operator was used. */
11281 code = INDIRECT_REF;
11282 /* Look for the optional cv-qualifier-seq. */
11283 *cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11285 /* If that didn't work we don't have a ptr-operator. */
11286 if (!cp_parser_parse_definitely (parser))
11287 cp_parser_error (parser, "expected ptr-operator");
11290 return code;
11293 /* Parse an (optional) cv-qualifier-seq.
11295 cv-qualifier-seq:
11296 cv-qualifier cv-qualifier-seq [opt]
11298 cv-qualifier:
11299 const
11300 volatile
11302 GNU Extension:
11304 cv-qualifier:
11305 __restrict__
11307 Returns a bitmask representing the cv-qualifiers. */
11309 static cp_cv_quals
11310 cp_parser_cv_qualifier_seq_opt (cp_parser* parser)
11312 cp_cv_quals cv_quals = TYPE_UNQUALIFIED;
11314 while (true)
11316 cp_token *token;
11317 cp_cv_quals cv_qualifier;
11319 /* Peek at the next token. */
11320 token = cp_lexer_peek_token (parser->lexer);
11321 /* See if it's a cv-qualifier. */
11322 switch (token->keyword)
11324 case RID_CONST:
11325 cv_qualifier = TYPE_QUAL_CONST;
11326 break;
11328 case RID_VOLATILE:
11329 cv_qualifier = TYPE_QUAL_VOLATILE;
11330 break;
11332 case RID_RESTRICT:
11333 cv_qualifier = TYPE_QUAL_RESTRICT;
11334 break;
11336 default:
11337 cv_qualifier = TYPE_UNQUALIFIED;
11338 break;
11341 if (!cv_qualifier)
11342 break;
11344 if (cv_quals & cv_qualifier)
11346 error ("duplicate cv-qualifier");
11347 cp_lexer_purge_token (parser->lexer);
11349 else
11351 cp_lexer_consume_token (parser->lexer);
11352 cv_quals |= cv_qualifier;
11356 return cv_quals;
11359 /* Parse a declarator-id.
11361 declarator-id:
11362 id-expression
11363 :: [opt] nested-name-specifier [opt] type-name
11365 In the `id-expression' case, the value returned is as for
11366 cp_parser_id_expression if the id-expression was an unqualified-id.
11367 If the id-expression was a qualified-id, then a SCOPE_REF is
11368 returned. The first operand is the scope (either a NAMESPACE_DECL
11369 or TREE_TYPE), but the second is still just a representation of an
11370 unqualified-id. */
11372 static tree
11373 cp_parser_declarator_id (cp_parser* parser)
11375 tree id_expression;
11377 /* The expression must be an id-expression. Assume that qualified
11378 names are the names of types so that:
11380 template <class T>
11381 int S<T>::R::i = 3;
11383 will work; we must treat `S<T>::R' as the name of a type.
11384 Similarly, assume that qualified names are templates, where
11385 required, so that:
11387 template <class T>
11388 int S<T>::R<T>::i = 3;
11390 will work, too. */
11391 id_expression = cp_parser_id_expression (parser,
11392 /*template_keyword_p=*/false,
11393 /*check_dependency_p=*/false,
11394 /*template_p=*/NULL,
11395 /*declarator_p=*/true);
11396 /* If the name was qualified, create a SCOPE_REF to represent
11397 that. */
11398 if (parser->scope)
11400 id_expression = build_nt (SCOPE_REF, parser->scope, id_expression);
11401 parser->scope = NULL_TREE;
11404 return id_expression;
11407 /* Parse a type-id.
11409 type-id:
11410 type-specifier-seq abstract-declarator [opt]
11412 Returns the TYPE specified. */
11414 static tree
11415 cp_parser_type_id (cp_parser* parser)
11417 cp_decl_specifier_seq type_specifier_seq;
11418 cp_declarator *abstract_declarator;
11420 /* Parse the type-specifier-seq. */
11421 cp_parser_type_specifier_seq (parser, &type_specifier_seq);
11422 if (type_specifier_seq.type == error_mark_node)
11423 return error_mark_node;
11425 /* There might or might not be an abstract declarator. */
11426 cp_parser_parse_tentatively (parser);
11427 /* Look for the declarator. */
11428 abstract_declarator
11429 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_ABSTRACT, NULL,
11430 /*parenthesized_p=*/NULL);
11431 /* Check to see if there really was a declarator. */
11432 if (!cp_parser_parse_definitely (parser))
11433 abstract_declarator = NULL;
11435 return groktypename (&type_specifier_seq, abstract_declarator);
11438 /* Parse a type-specifier-seq.
11440 type-specifier-seq:
11441 type-specifier type-specifier-seq [opt]
11443 GNU extension:
11445 type-specifier-seq:
11446 attributes type-specifier-seq [opt]
11448 Sets *TYPE_SPECIFIER_SEQ to represent the sequence. */
11450 static void
11451 cp_parser_type_specifier_seq (cp_parser* parser,
11452 cp_decl_specifier_seq *type_specifier_seq)
11454 bool seen_type_specifier = false;
11456 /* Clear the TYPE_SPECIFIER_SEQ. */
11457 clear_decl_specs (type_specifier_seq);
11459 /* Parse the type-specifiers and attributes. */
11460 while (true)
11462 tree type_specifier;
11464 /* Check for attributes first. */
11465 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE))
11467 type_specifier_seq->attributes =
11468 chainon (type_specifier_seq->attributes,
11469 cp_parser_attributes_opt (parser));
11470 continue;
11473 /* Look for the type-specifier. */
11474 type_specifier = cp_parser_type_specifier (parser,
11475 CP_PARSER_FLAGS_OPTIONAL,
11476 type_specifier_seq,
11477 /*is_declaration=*/false,
11478 NULL,
11479 NULL);
11480 /* If the first type-specifier could not be found, this is not a
11481 type-specifier-seq at all. */
11482 if (!seen_type_specifier && !type_specifier)
11484 cp_parser_error (parser, "expected type-specifier");
11485 type_specifier_seq->type = error_mark_node;
11486 return;
11488 /* If subsequent type-specifiers could not be found, the
11489 type-specifier-seq is complete. */
11490 else if (seen_type_specifier && !type_specifier)
11491 break;
11493 seen_type_specifier = true;
11496 return;
11499 /* Parse a parameter-declaration-clause.
11501 parameter-declaration-clause:
11502 parameter-declaration-list [opt] ... [opt]
11503 parameter-declaration-list , ...
11505 Returns a representation for the parameter declarations. A return
11506 value of NULL indicates a parameter-declaration-clause consisting
11507 only of an ellipsis. */
11509 static cp_parameter_declarator *
11510 cp_parser_parameter_declaration_clause (cp_parser* parser)
11512 cp_parameter_declarator *parameters;
11513 cp_token *token;
11514 bool ellipsis_p;
11515 bool is_error;
11517 /* Peek at the next token. */
11518 token = cp_lexer_peek_token (parser->lexer);
11519 /* Check for trivial parameter-declaration-clauses. */
11520 if (token->type == CPP_ELLIPSIS)
11522 /* Consume the `...' token. */
11523 cp_lexer_consume_token (parser->lexer);
11524 return NULL;
11526 else if (token->type == CPP_CLOSE_PAREN)
11527 /* There are no parameters. */
11529 #ifndef NO_IMPLICIT_EXTERN_C
11530 if (in_system_header && current_class_type == NULL
11531 && current_lang_name == lang_name_c)
11532 return NULL;
11533 else
11534 #endif
11535 return no_parameters;
11537 /* Check for `(void)', too, which is a special case. */
11538 else if (token->keyword == RID_VOID
11539 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
11540 == CPP_CLOSE_PAREN))
11542 /* Consume the `void' token. */
11543 cp_lexer_consume_token (parser->lexer);
11544 /* There are no parameters. */
11545 return no_parameters;
11548 /* Parse the parameter-declaration-list. */
11549 parameters = cp_parser_parameter_declaration_list (parser, &is_error);
11550 /* If a parse error occurred while parsing the
11551 parameter-declaration-list, then the entire
11552 parameter-declaration-clause is erroneous. */
11553 if (is_error)
11554 return NULL;
11556 /* Peek at the next token. */
11557 token = cp_lexer_peek_token (parser->lexer);
11558 /* If it's a `,', the clause should terminate with an ellipsis. */
11559 if (token->type == CPP_COMMA)
11561 /* Consume the `,'. */
11562 cp_lexer_consume_token (parser->lexer);
11563 /* Expect an ellipsis. */
11564 ellipsis_p
11565 = (cp_parser_require (parser, CPP_ELLIPSIS, "`...'") != NULL);
11567 /* It might also be `...' if the optional trailing `,' was
11568 omitted. */
11569 else if (token->type == CPP_ELLIPSIS)
11571 /* Consume the `...' token. */
11572 cp_lexer_consume_token (parser->lexer);
11573 /* And remember that we saw it. */
11574 ellipsis_p = true;
11576 else
11577 ellipsis_p = false;
11579 /* Finish the parameter list. */
11580 if (parameters && ellipsis_p)
11581 parameters->ellipsis_p = true;
11583 return parameters;
11586 /* Parse a parameter-declaration-list.
11588 parameter-declaration-list:
11589 parameter-declaration
11590 parameter-declaration-list , parameter-declaration
11592 Returns a representation of the parameter-declaration-list, as for
11593 cp_parser_parameter_declaration_clause. However, the
11594 `void_list_node' is never appended to the list. Upon return,
11595 *IS_ERROR will be true iff an error occurred. */
11597 static cp_parameter_declarator *
11598 cp_parser_parameter_declaration_list (cp_parser* parser, bool *is_error)
11600 cp_parameter_declarator *parameters = NULL;
11601 cp_parameter_declarator **tail = &parameters;
11603 /* Assume all will go well. */
11604 *is_error = false;
11606 /* Look for more parameters. */
11607 while (true)
11609 cp_parameter_declarator *parameter;
11610 bool parenthesized_p;
11611 /* Parse the parameter. */
11612 parameter
11613 = cp_parser_parameter_declaration (parser,
11614 /*template_parm_p=*/false,
11615 &parenthesized_p);
11617 /* If a parse error occurred parsing the parameter declaration,
11618 then the entire parameter-declaration-list is erroneous. */
11619 if (!parameter)
11621 *is_error = true;
11622 parameters = NULL;
11623 break;
11625 /* Add the new parameter to the list. */
11626 *tail = parameter;
11627 tail = &parameter->next;
11629 /* Peek at the next token. */
11630 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN)
11631 || cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
11632 /* The parameter-declaration-list is complete. */
11633 break;
11634 else if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
11636 cp_token *token;
11638 /* Peek at the next token. */
11639 token = cp_lexer_peek_nth_token (parser->lexer, 2);
11640 /* If it's an ellipsis, then the list is complete. */
11641 if (token->type == CPP_ELLIPSIS)
11642 break;
11643 /* Otherwise, there must be more parameters. Consume the
11644 `,'. */
11645 cp_lexer_consume_token (parser->lexer);
11646 /* When parsing something like:
11648 int i(float f, double d)
11650 we can tell after seeing the declaration for "f" that we
11651 are not looking at an initialization of a variable "i",
11652 but rather at the declaration of a function "i".
11654 Due to the fact that the parsing of template arguments
11655 (as specified to a template-id) requires backtracking we
11656 cannot use this technique when inside a template argument
11657 list. */
11658 if (!parser->in_template_argument_list_p
11659 && !parser->in_type_id_in_expr_p
11660 && cp_parser_parsing_tentatively (parser)
11661 && !cp_parser_committed_to_tentative_parse (parser)
11662 /* However, a parameter-declaration of the form
11663 "foat(f)" (which is a valid declaration of a
11664 parameter "f") can also be interpreted as an
11665 expression (the conversion of "f" to "float"). */
11666 && !parenthesized_p)
11667 cp_parser_commit_to_tentative_parse (parser);
11669 else
11671 cp_parser_error (parser, "expected `,' or `...'");
11672 if (!cp_parser_parsing_tentatively (parser)
11673 || cp_parser_committed_to_tentative_parse (parser))
11674 cp_parser_skip_to_closing_parenthesis (parser,
11675 /*recovering=*/true,
11676 /*or_comma=*/false,
11677 /*consume_paren=*/false);
11678 break;
11682 return parameters;
11685 /* Parse a parameter declaration.
11687 parameter-declaration:
11688 decl-specifier-seq declarator
11689 decl-specifier-seq declarator = assignment-expression
11690 decl-specifier-seq abstract-declarator [opt]
11691 decl-specifier-seq abstract-declarator [opt] = assignment-expression
11693 If TEMPLATE_PARM_P is TRUE, then this parameter-declaration
11694 declares a template parameter. (In that case, a non-nested `>'
11695 token encountered during the parsing of the assignment-expression
11696 is not interpreted as a greater-than operator.)
11698 Returns a representation of the parameter, or NULL if an error
11699 occurs. If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to
11700 true iff the declarator is of the form "(p)". */
11702 static cp_parameter_declarator *
11703 cp_parser_parameter_declaration (cp_parser *parser,
11704 bool template_parm_p,
11705 bool *parenthesized_p)
11707 int declares_class_or_enum;
11708 bool greater_than_is_operator_p;
11709 cp_decl_specifier_seq decl_specifiers;
11710 cp_declarator *declarator;
11711 tree default_argument;
11712 cp_token *token;
11713 const char *saved_message;
11715 /* In a template parameter, `>' is not an operator.
11717 [temp.param]
11719 When parsing a default template-argument for a non-type
11720 template-parameter, the first non-nested `>' is taken as the end
11721 of the template parameter-list rather than a greater-than
11722 operator. */
11723 greater_than_is_operator_p = !template_parm_p;
11725 /* Type definitions may not appear in parameter types. */
11726 saved_message = parser->type_definition_forbidden_message;
11727 parser->type_definition_forbidden_message
11728 = "types may not be defined in parameter types";
11730 /* Parse the declaration-specifiers. */
11731 cp_parser_decl_specifier_seq (parser,
11732 CP_PARSER_FLAGS_NONE,
11733 &decl_specifiers,
11734 &declares_class_or_enum);
11735 /* If an error occurred, there's no reason to attempt to parse the
11736 rest of the declaration. */
11737 if (cp_parser_error_occurred (parser))
11739 parser->type_definition_forbidden_message = saved_message;
11740 return NULL;
11743 /* Peek at the next token. */
11744 token = cp_lexer_peek_token (parser->lexer);
11745 /* If the next token is a `)', `,', `=', `>', or `...', then there
11746 is no declarator. */
11747 if (token->type == CPP_CLOSE_PAREN
11748 || token->type == CPP_COMMA
11749 || token->type == CPP_EQ
11750 || token->type == CPP_ELLIPSIS
11751 || token->type == CPP_GREATER)
11753 declarator = NULL;
11754 if (parenthesized_p)
11755 *parenthesized_p = false;
11757 /* Otherwise, there should be a declarator. */
11758 else
11760 bool saved_default_arg_ok_p = parser->default_arg_ok_p;
11761 parser->default_arg_ok_p = false;
11763 /* After seeing a decl-specifier-seq, if the next token is not a
11764 "(", there is no possibility that the code is a valid
11765 expression. Therefore, if parsing tentatively, we commit at
11766 this point. */
11767 if (!parser->in_template_argument_list_p
11768 /* In an expression context, having seen:
11770 (int((char ...
11772 we cannot be sure whether we are looking at a
11773 function-type (taking a "char" as a parameter) or a cast
11774 of some object of type "char" to "int". */
11775 && !parser->in_type_id_in_expr_p
11776 && cp_parser_parsing_tentatively (parser)
11777 && !cp_parser_committed_to_tentative_parse (parser)
11778 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
11779 cp_parser_commit_to_tentative_parse (parser);
11780 /* Parse the declarator. */
11781 declarator = cp_parser_declarator (parser,
11782 CP_PARSER_DECLARATOR_EITHER,
11783 /*ctor_dtor_or_conv_p=*/NULL,
11784 parenthesized_p);
11785 parser->default_arg_ok_p = saved_default_arg_ok_p;
11786 /* After the declarator, allow more attributes. */
11787 decl_specifiers.attributes
11788 = chainon (decl_specifiers.attributes,
11789 cp_parser_attributes_opt (parser));
11792 /* The restriction on defining new types applies only to the type
11793 of the parameter, not to the default argument. */
11794 parser->type_definition_forbidden_message = saved_message;
11796 /* If the next token is `=', then process a default argument. */
11797 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
11799 bool saved_greater_than_is_operator_p;
11800 /* Consume the `='. */
11801 cp_lexer_consume_token (parser->lexer);
11803 /* If we are defining a class, then the tokens that make up the
11804 default argument must be saved and processed later. */
11805 if (!template_parm_p && at_class_scope_p ()
11806 && TYPE_BEING_DEFINED (current_class_type))
11808 unsigned depth = 0;
11810 /* Create a DEFAULT_ARG to represented the unparsed default
11811 argument. */
11812 default_argument = make_node (DEFAULT_ARG);
11813 DEFARG_TOKENS (default_argument) = cp_token_cache_new ();
11815 /* Add tokens until we have processed the entire default
11816 argument. */
11817 while (true)
11819 bool done = false;
11820 cp_token *token;
11822 /* Peek at the next token. */
11823 token = cp_lexer_peek_token (parser->lexer);
11824 /* What we do depends on what token we have. */
11825 switch (token->type)
11827 /* In valid code, a default argument must be
11828 immediately followed by a `,' `)', or `...'. */
11829 case CPP_COMMA:
11830 case CPP_CLOSE_PAREN:
11831 case CPP_ELLIPSIS:
11832 /* If we run into a non-nested `;', `}', or `]',
11833 then the code is invalid -- but the default
11834 argument is certainly over. */
11835 case CPP_SEMICOLON:
11836 case CPP_CLOSE_BRACE:
11837 case CPP_CLOSE_SQUARE:
11838 if (depth == 0)
11839 done = true;
11840 /* Update DEPTH, if necessary. */
11841 else if (token->type == CPP_CLOSE_PAREN
11842 || token->type == CPP_CLOSE_BRACE
11843 || token->type == CPP_CLOSE_SQUARE)
11844 --depth;
11845 break;
11847 case CPP_OPEN_PAREN:
11848 case CPP_OPEN_SQUARE:
11849 case CPP_OPEN_BRACE:
11850 ++depth;
11851 break;
11853 case CPP_GREATER:
11854 /* If we see a non-nested `>', and `>' is not an
11855 operator, then it marks the end of the default
11856 argument. */
11857 if (!depth && !greater_than_is_operator_p)
11858 done = true;
11859 break;
11861 /* If we run out of tokens, issue an error message. */
11862 case CPP_EOF:
11863 error ("file ends in default argument");
11864 done = true;
11865 break;
11867 case CPP_NAME:
11868 case CPP_SCOPE:
11869 /* In these cases, we should look for template-ids.
11870 For example, if the default argument is
11871 `X<int, double>()', we need to do name lookup to
11872 figure out whether or not `X' is a template; if
11873 so, the `,' does not end the default argument.
11875 That is not yet done. */
11876 break;
11878 default:
11879 break;
11882 /* If we've reached the end, stop. */
11883 if (done)
11884 break;
11886 /* Add the token to the token block. */
11887 token = cp_lexer_consume_token (parser->lexer);
11888 cp_token_cache_push_token (DEFARG_TOKENS (default_argument),
11889 token);
11892 /* Outside of a class definition, we can just parse the
11893 assignment-expression. */
11894 else
11896 bool saved_local_variables_forbidden_p;
11898 /* Make sure that PARSER->GREATER_THAN_IS_OPERATOR_P is
11899 set correctly. */
11900 saved_greater_than_is_operator_p
11901 = parser->greater_than_is_operator_p;
11902 parser->greater_than_is_operator_p = greater_than_is_operator_p;
11903 /* Local variable names (and the `this' keyword) may not
11904 appear in a default argument. */
11905 saved_local_variables_forbidden_p
11906 = parser->local_variables_forbidden_p;
11907 parser->local_variables_forbidden_p = true;
11908 /* Parse the assignment-expression. */
11909 default_argument = cp_parser_assignment_expression (parser);
11910 /* Restore saved state. */
11911 parser->greater_than_is_operator_p
11912 = saved_greater_than_is_operator_p;
11913 parser->local_variables_forbidden_p
11914 = saved_local_variables_forbidden_p;
11916 if (!parser->default_arg_ok_p)
11918 if (!flag_pedantic_errors)
11919 warning ("deprecated use of default argument for parameter of non-function");
11920 else
11922 error ("default arguments are only permitted for function parameters");
11923 default_argument = NULL_TREE;
11927 else
11928 default_argument = NULL_TREE;
11930 return make_parameter_declarator (&decl_specifiers,
11931 declarator,
11932 default_argument);
11935 /* Parse a function-body.
11937 function-body:
11938 compound_statement */
11940 static void
11941 cp_parser_function_body (cp_parser *parser)
11943 cp_parser_compound_statement (parser, NULL, false);
11946 /* Parse a ctor-initializer-opt followed by a function-body. Return
11947 true if a ctor-initializer was present. */
11949 static bool
11950 cp_parser_ctor_initializer_opt_and_function_body (cp_parser *parser)
11952 tree body;
11953 bool ctor_initializer_p;
11955 /* Begin the function body. */
11956 body = begin_function_body ();
11957 /* Parse the optional ctor-initializer. */
11958 ctor_initializer_p = cp_parser_ctor_initializer_opt (parser);
11959 /* Parse the function-body. */
11960 cp_parser_function_body (parser);
11961 /* Finish the function body. */
11962 finish_function_body (body);
11964 return ctor_initializer_p;
11967 /* Parse an initializer.
11969 initializer:
11970 = initializer-clause
11971 ( expression-list )
11973 Returns a expression representing the initializer. If no
11974 initializer is present, NULL_TREE is returned.
11976 *IS_PARENTHESIZED_INIT is set to TRUE if the `( expression-list )'
11977 production is used, and zero otherwise. *IS_PARENTHESIZED_INIT is
11978 set to FALSE if there is no initializer present. If there is an
11979 initializer, and it is not a constant-expression, *NON_CONSTANT_P
11980 is set to true; otherwise it is set to false. */
11982 static tree
11983 cp_parser_initializer (cp_parser* parser, bool* is_parenthesized_init,
11984 bool* non_constant_p)
11986 cp_token *token;
11987 tree init;
11989 /* Peek at the next token. */
11990 token = cp_lexer_peek_token (parser->lexer);
11992 /* Let our caller know whether or not this initializer was
11993 parenthesized. */
11994 *is_parenthesized_init = (token->type == CPP_OPEN_PAREN);
11995 /* Assume that the initializer is constant. */
11996 *non_constant_p = false;
11998 if (token->type == CPP_EQ)
12000 /* Consume the `='. */
12001 cp_lexer_consume_token (parser->lexer);
12002 /* Parse the initializer-clause. */
12003 init = cp_parser_initializer_clause (parser, non_constant_p);
12005 else if (token->type == CPP_OPEN_PAREN)
12006 init = cp_parser_parenthesized_expression_list (parser, false,
12007 non_constant_p);
12008 else
12010 /* Anything else is an error. */
12011 cp_parser_error (parser, "expected initializer");
12012 init = error_mark_node;
12015 return init;
12018 /* Parse an initializer-clause.
12020 initializer-clause:
12021 assignment-expression
12022 { initializer-list , [opt] }
12025 Returns an expression representing the initializer.
12027 If the `assignment-expression' production is used the value
12028 returned is simply a representation for the expression.
12030 Otherwise, a CONSTRUCTOR is returned. The CONSTRUCTOR_ELTS will be
12031 the elements of the initializer-list (or NULL_TREE, if the last
12032 production is used). The TREE_TYPE for the CONSTRUCTOR will be
12033 NULL_TREE. There is no way to detect whether or not the optional
12034 trailing `,' was provided. NON_CONSTANT_P is as for
12035 cp_parser_initializer. */
12037 static tree
12038 cp_parser_initializer_clause (cp_parser* parser, bool* non_constant_p)
12040 tree initializer;
12042 /* If it is not a `{', then we are looking at an
12043 assignment-expression. */
12044 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
12046 initializer
12047 = cp_parser_constant_expression (parser,
12048 /*allow_non_constant_p=*/true,
12049 non_constant_p);
12050 if (!*non_constant_p)
12051 initializer = fold_non_dependent_expr (initializer);
12053 else
12055 /* Consume the `{' token. */
12056 cp_lexer_consume_token (parser->lexer);
12057 /* Create a CONSTRUCTOR to represent the braced-initializer. */
12058 initializer = make_node (CONSTRUCTOR);
12059 /* If it's not a `}', then there is a non-trivial initializer. */
12060 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
12062 /* Parse the initializer list. */
12063 CONSTRUCTOR_ELTS (initializer)
12064 = cp_parser_initializer_list (parser, non_constant_p);
12065 /* A trailing `,' token is allowed. */
12066 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
12067 cp_lexer_consume_token (parser->lexer);
12069 /* Now, there should be a trailing `}'. */
12070 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
12073 return initializer;
12076 /* Parse an initializer-list.
12078 initializer-list:
12079 initializer-clause
12080 initializer-list , initializer-clause
12082 GNU Extension:
12084 initializer-list:
12085 identifier : initializer-clause
12086 initializer-list, identifier : initializer-clause
12088 Returns a TREE_LIST. The TREE_VALUE of each node is an expression
12089 for the initializer. If the TREE_PURPOSE is non-NULL, it is the
12090 IDENTIFIER_NODE naming the field to initialize. NON_CONSTANT_P is
12091 as for cp_parser_initializer. */
12093 static tree
12094 cp_parser_initializer_list (cp_parser* parser, bool* non_constant_p)
12096 tree initializers = NULL_TREE;
12098 /* Assume all of the expressions are constant. */
12099 *non_constant_p = false;
12101 /* Parse the rest of the list. */
12102 while (true)
12104 cp_token *token;
12105 tree identifier;
12106 tree initializer;
12107 bool clause_non_constant_p;
12109 /* If the next token is an identifier and the following one is a
12110 colon, we are looking at the GNU designated-initializer
12111 syntax. */
12112 if (cp_parser_allow_gnu_extensions_p (parser)
12113 && cp_lexer_next_token_is (parser->lexer, CPP_NAME)
12114 && cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_COLON)
12116 /* Consume the identifier. */
12117 identifier = cp_lexer_consume_token (parser->lexer)->value;
12118 /* Consume the `:'. */
12119 cp_lexer_consume_token (parser->lexer);
12121 else
12122 identifier = NULL_TREE;
12124 /* Parse the initializer. */
12125 initializer = cp_parser_initializer_clause (parser,
12126 &clause_non_constant_p);
12127 /* If any clause is non-constant, so is the entire initializer. */
12128 if (clause_non_constant_p)
12129 *non_constant_p = true;
12130 /* Add it to the list. */
12131 initializers = tree_cons (identifier, initializer, initializers);
12133 /* If the next token is not a comma, we have reached the end of
12134 the list. */
12135 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
12136 break;
12138 /* Peek at the next token. */
12139 token = cp_lexer_peek_nth_token (parser->lexer, 2);
12140 /* If the next token is a `}', then we're still done. An
12141 initializer-clause can have a trailing `,' after the
12142 initializer-list and before the closing `}'. */
12143 if (token->type == CPP_CLOSE_BRACE)
12144 break;
12146 /* Consume the `,' token. */
12147 cp_lexer_consume_token (parser->lexer);
12150 /* The initializers were built up in reverse order, so we need to
12151 reverse them now. */
12152 return nreverse (initializers);
12155 /* Classes [gram.class] */
12157 /* Parse a class-name.
12159 class-name:
12160 identifier
12161 template-id
12163 TYPENAME_KEYWORD_P is true iff the `typename' keyword has been used
12164 to indicate that names looked up in dependent types should be
12165 assumed to be types. TEMPLATE_KEYWORD_P is true iff the `template'
12166 keyword has been used to indicate that the name that appears next
12167 is a template. TYPE_P is true iff the next name should be treated
12168 as class-name, even if it is declared to be some other kind of name
12169 as well. If CHECK_DEPENDENCY_P is FALSE, names are looked up in
12170 dependent scopes. If CLASS_HEAD_P is TRUE, this class is the class
12171 being defined in a class-head.
12173 Returns the TYPE_DECL representing the class. */
12175 static tree
12176 cp_parser_class_name (cp_parser *parser,
12177 bool typename_keyword_p,
12178 bool template_keyword_p,
12179 bool type_p,
12180 bool check_dependency_p,
12181 bool class_head_p,
12182 bool is_declaration)
12184 tree decl;
12185 tree scope;
12186 bool typename_p;
12187 cp_token *token;
12189 /* All class-names start with an identifier. */
12190 token = cp_lexer_peek_token (parser->lexer);
12191 if (token->type != CPP_NAME && token->type != CPP_TEMPLATE_ID)
12193 cp_parser_error (parser, "expected class-name");
12194 return error_mark_node;
12197 /* PARSER->SCOPE can be cleared when parsing the template-arguments
12198 to a template-id, so we save it here. */
12199 scope = parser->scope;
12200 if (scope == error_mark_node)
12201 return error_mark_node;
12203 /* Any name names a type if we're following the `typename' keyword
12204 in a qualified name where the enclosing scope is type-dependent. */
12205 typename_p = (typename_keyword_p && scope && TYPE_P (scope)
12206 && dependent_type_p (scope));
12207 /* Handle the common case (an identifier, but not a template-id)
12208 efficiently. */
12209 if (token->type == CPP_NAME
12210 && !cp_parser_nth_token_starts_template_argument_list_p (parser, 2))
12212 tree identifier;
12214 /* Look for the identifier. */
12215 identifier = cp_parser_identifier (parser);
12216 /* If the next token isn't an identifier, we are certainly not
12217 looking at a class-name. */
12218 if (identifier == error_mark_node)
12219 decl = error_mark_node;
12220 /* If we know this is a type-name, there's no need to look it
12221 up. */
12222 else if (typename_p)
12223 decl = identifier;
12224 else
12226 /* If the next token is a `::', then the name must be a type
12227 name.
12229 [basic.lookup.qual]
12231 During the lookup for a name preceding the :: scope
12232 resolution operator, object, function, and enumerator
12233 names are ignored. */
12234 if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
12235 type_p = true;
12236 /* Look up the name. */
12237 decl = cp_parser_lookup_name (parser, identifier,
12238 type_p,
12239 /*is_template=*/false,
12240 /*is_namespace=*/false,
12241 check_dependency_p);
12244 else
12246 /* Try a template-id. */
12247 decl = cp_parser_template_id (parser, template_keyword_p,
12248 check_dependency_p,
12249 is_declaration);
12250 if (decl == error_mark_node)
12251 return error_mark_node;
12254 decl = cp_parser_maybe_treat_template_as_class (decl, class_head_p);
12256 /* If this is a typename, create a TYPENAME_TYPE. */
12257 if (typename_p && decl != error_mark_node)
12259 decl = make_typename_type (scope, decl, /*complain=*/1);
12260 if (decl != error_mark_node)
12261 decl = TYPE_NAME (decl);
12264 /* Check to see that it is really the name of a class. */
12265 if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
12266 && TREE_CODE (TREE_OPERAND (decl, 0)) == IDENTIFIER_NODE
12267 && cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
12268 /* Situations like this:
12270 template <typename T> struct A {
12271 typename T::template X<int>::I i;
12274 are problematic. Is `T::template X<int>' a class-name? The
12275 standard does not seem to be definitive, but there is no other
12276 valid interpretation of the following `::'. Therefore, those
12277 names are considered class-names. */
12278 decl = TYPE_NAME (make_typename_type (scope, decl, tf_error));
12279 else if (decl == error_mark_node
12280 || TREE_CODE (decl) != TYPE_DECL
12281 || !IS_AGGR_TYPE (TREE_TYPE (decl)))
12283 cp_parser_error (parser, "expected class-name");
12284 return error_mark_node;
12287 return decl;
12290 /* Parse a class-specifier.
12292 class-specifier:
12293 class-head { member-specification [opt] }
12295 Returns the TREE_TYPE representing the class. */
12297 static tree
12298 cp_parser_class_specifier (cp_parser* parser)
12300 cp_token *token;
12301 tree type;
12302 tree attributes = NULL_TREE;
12303 int has_trailing_semicolon;
12304 bool nested_name_specifier_p;
12305 unsigned saved_num_template_parameter_lists;
12306 bool pop_p = false;
12308 push_deferring_access_checks (dk_no_deferred);
12310 /* Parse the class-head. */
12311 type = cp_parser_class_head (parser,
12312 &nested_name_specifier_p,
12313 &attributes);
12314 /* If the class-head was a semantic disaster, skip the entire body
12315 of the class. */
12316 if (!type)
12318 cp_parser_skip_to_end_of_block_or_statement (parser);
12319 pop_deferring_access_checks ();
12320 return error_mark_node;
12323 /* Look for the `{'. */
12324 if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
12326 pop_deferring_access_checks ();
12327 return error_mark_node;
12330 /* Issue an error message if type-definitions are forbidden here. */
12331 cp_parser_check_type_definition (parser);
12332 /* Remember that we are defining one more class. */
12333 ++parser->num_classes_being_defined;
12334 /* Inside the class, surrounding template-parameter-lists do not
12335 apply. */
12336 saved_num_template_parameter_lists
12337 = parser->num_template_parameter_lists;
12338 parser->num_template_parameter_lists = 0;
12340 /* Start the class. */
12341 if (nested_name_specifier_p)
12342 pop_p = push_scope (CP_DECL_CONTEXT (TYPE_MAIN_DECL (type)));
12343 type = begin_class_definition (type);
12345 if (type == error_mark_node)
12346 /* If the type is erroneous, skip the entire body of the class. */
12347 cp_parser_skip_to_closing_brace (parser);
12348 else
12349 /* Parse the member-specification. */
12350 cp_parser_member_specification_opt (parser);
12352 /* Look for the trailing `}'. */
12353 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
12354 /* We get better error messages by noticing a common problem: a
12355 missing trailing `;'. */
12356 token = cp_lexer_peek_token (parser->lexer);
12357 has_trailing_semicolon = (token->type == CPP_SEMICOLON);
12358 /* Look for trailing attributes to apply to this class. */
12359 if (cp_parser_allow_gnu_extensions_p (parser))
12361 tree sub_attr = cp_parser_attributes_opt (parser);
12362 attributes = chainon (attributes, sub_attr);
12364 if (type != error_mark_node)
12365 type = finish_struct (type, attributes);
12366 if (pop_p)
12367 pop_scope (CP_DECL_CONTEXT (TYPE_MAIN_DECL (type)));
12368 /* If this class is not itself within the scope of another class,
12369 then we need to parse the bodies of all of the queued function
12370 definitions. Note that the queued functions defined in a class
12371 are not always processed immediately following the
12372 class-specifier for that class. Consider:
12374 struct A {
12375 struct B { void f() { sizeof (A); } };
12378 If `f' were processed before the processing of `A' were
12379 completed, there would be no way to compute the size of `A'.
12380 Note that the nesting we are interested in here is lexical --
12381 not the semantic nesting given by TYPE_CONTEXT. In particular,
12382 for:
12384 struct A { struct B; };
12385 struct A::B { void f() { } };
12387 there is no need to delay the parsing of `A::B::f'. */
12388 if (--parser->num_classes_being_defined == 0)
12390 tree queue_entry;
12391 tree fn;
12392 tree class_type;
12393 bool pop_p;
12395 /* In a first pass, parse default arguments to the functions.
12396 Then, in a second pass, parse the bodies of the functions.
12397 This two-phased approach handles cases like:
12399 struct S {
12400 void f() { g(); }
12401 void g(int i = 3);
12405 class_type = NULL_TREE;
12406 pop_p = false;
12407 for (TREE_PURPOSE (parser->unparsed_functions_queues)
12408 = nreverse (TREE_PURPOSE (parser->unparsed_functions_queues));
12409 (queue_entry = TREE_PURPOSE (parser->unparsed_functions_queues));
12410 TREE_PURPOSE (parser->unparsed_functions_queues)
12411 = TREE_CHAIN (TREE_PURPOSE (parser->unparsed_functions_queues)))
12413 fn = TREE_VALUE (queue_entry);
12414 /* If there are default arguments that have not yet been processed,
12415 take care of them now. */
12416 if (class_type != TREE_PURPOSE (queue_entry))
12418 if (pop_p)
12419 pop_scope (class_type);
12420 class_type = TREE_PURPOSE (queue_entry);
12421 pop_p = push_scope (class_type);
12423 /* Make sure that any template parameters are in scope. */
12424 maybe_begin_member_template_processing (fn);
12425 /* Parse the default argument expressions. */
12426 cp_parser_late_parsing_default_args (parser, fn);
12427 /* Remove any template parameters from the symbol table. */
12428 maybe_end_member_template_processing ();
12430 if (pop_p)
12431 pop_scope (class_type);
12432 /* Now parse the body of the functions. */
12433 for (TREE_VALUE (parser->unparsed_functions_queues)
12434 = nreverse (TREE_VALUE (parser->unparsed_functions_queues));
12435 (queue_entry = TREE_VALUE (parser->unparsed_functions_queues));
12436 TREE_VALUE (parser->unparsed_functions_queues)
12437 = TREE_CHAIN (TREE_VALUE (parser->unparsed_functions_queues)))
12439 /* Figure out which function we need to process. */
12440 fn = TREE_VALUE (queue_entry);
12442 /* A hack to prevent garbage collection. */
12443 function_depth++;
12445 /* Parse the function. */
12446 cp_parser_late_parsing_for_member (parser, fn);
12447 function_depth--;
12451 /* Put back any saved access checks. */
12452 pop_deferring_access_checks ();
12454 /* Restore the count of active template-parameter-lists. */
12455 parser->num_template_parameter_lists
12456 = saved_num_template_parameter_lists;
12458 return type;
12461 /* Parse a class-head.
12463 class-head:
12464 class-key identifier [opt] base-clause [opt]
12465 class-key nested-name-specifier identifier base-clause [opt]
12466 class-key nested-name-specifier [opt] template-id
12467 base-clause [opt]
12469 GNU Extensions:
12470 class-key attributes identifier [opt] base-clause [opt]
12471 class-key attributes nested-name-specifier identifier base-clause [opt]
12472 class-key attributes nested-name-specifier [opt] template-id
12473 base-clause [opt]
12475 Returns the TYPE of the indicated class. Sets
12476 *NESTED_NAME_SPECIFIER_P to TRUE iff one of the productions
12477 involving a nested-name-specifier was used, and FALSE otherwise.
12479 Returns NULL_TREE if the class-head is syntactically valid, but
12480 semantically invalid in a way that means we should skip the entire
12481 body of the class. */
12483 static tree
12484 cp_parser_class_head (cp_parser* parser,
12485 bool* nested_name_specifier_p,
12486 tree *attributes_p)
12488 tree nested_name_specifier;
12489 enum tag_types class_key;
12490 tree id = NULL_TREE;
12491 tree type = NULL_TREE;
12492 tree attributes;
12493 bool template_id_p = false;
12494 bool qualified_p = false;
12495 bool invalid_nested_name_p = false;
12496 bool invalid_explicit_specialization_p = false;
12497 bool pop_p = false;
12498 unsigned num_templates;
12499 tree bases;
12501 /* Assume no nested-name-specifier will be present. */
12502 *nested_name_specifier_p = false;
12503 /* Assume no template parameter lists will be used in defining the
12504 type. */
12505 num_templates = 0;
12507 /* Look for the class-key. */
12508 class_key = cp_parser_class_key (parser);
12509 if (class_key == none_type)
12510 return error_mark_node;
12512 /* Parse the attributes. */
12513 attributes = cp_parser_attributes_opt (parser);
12515 /* If the next token is `::', that is invalid -- but sometimes
12516 people do try to write:
12518 struct ::S {};
12520 Handle this gracefully by accepting the extra qualifier, and then
12521 issuing an error about it later if this really is a
12522 class-head. If it turns out just to be an elaborated type
12523 specifier, remain silent. */
12524 if (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false))
12525 qualified_p = true;
12527 push_deferring_access_checks (dk_no_check);
12529 /* Determine the name of the class. Begin by looking for an
12530 optional nested-name-specifier. */
12531 nested_name_specifier
12532 = cp_parser_nested_name_specifier_opt (parser,
12533 /*typename_keyword_p=*/false,
12534 /*check_dependency_p=*/false,
12535 /*type_p=*/false,
12536 /*is_declaration=*/false);
12537 /* If there was a nested-name-specifier, then there *must* be an
12538 identifier. */
12539 if (nested_name_specifier)
12541 /* Although the grammar says `identifier', it really means
12542 `class-name' or `template-name'. You are only allowed to
12543 define a class that has already been declared with this
12544 syntax.
12546 The proposed resolution for Core Issue 180 says that whever
12547 you see `class T::X' you should treat `X' as a type-name.
12549 It is OK to define an inaccessible class; for example:
12551 class A { class B; };
12552 class A::B {};
12554 We do not know if we will see a class-name, or a
12555 template-name. We look for a class-name first, in case the
12556 class-name is a template-id; if we looked for the
12557 template-name first we would stop after the template-name. */
12558 cp_parser_parse_tentatively (parser);
12559 type = cp_parser_class_name (parser,
12560 /*typename_keyword_p=*/false,
12561 /*template_keyword_p=*/false,
12562 /*type_p=*/true,
12563 /*check_dependency_p=*/false,
12564 /*class_head_p=*/true,
12565 /*is_declaration=*/false);
12566 /* If that didn't work, ignore the nested-name-specifier. */
12567 if (!cp_parser_parse_definitely (parser))
12569 invalid_nested_name_p = true;
12570 id = cp_parser_identifier (parser);
12571 if (id == error_mark_node)
12572 id = NULL_TREE;
12574 /* If we could not find a corresponding TYPE, treat this
12575 declaration like an unqualified declaration. */
12576 if (type == error_mark_node)
12577 nested_name_specifier = NULL_TREE;
12578 /* Otherwise, count the number of templates used in TYPE and its
12579 containing scopes. */
12580 else
12582 tree scope;
12584 for (scope = TREE_TYPE (type);
12585 scope && TREE_CODE (scope) != NAMESPACE_DECL;
12586 scope = (TYPE_P (scope)
12587 ? TYPE_CONTEXT (scope)
12588 : DECL_CONTEXT (scope)))
12589 if (TYPE_P (scope)
12590 && CLASS_TYPE_P (scope)
12591 && CLASSTYPE_TEMPLATE_INFO (scope)
12592 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope))
12593 && !CLASSTYPE_TEMPLATE_SPECIALIZATION (scope))
12594 ++num_templates;
12597 /* Otherwise, the identifier is optional. */
12598 else
12600 /* We don't know whether what comes next is a template-id,
12601 an identifier, or nothing at all. */
12602 cp_parser_parse_tentatively (parser);
12603 /* Check for a template-id. */
12604 id = cp_parser_template_id (parser,
12605 /*template_keyword_p=*/false,
12606 /*check_dependency_p=*/true,
12607 /*is_declaration=*/true);
12608 /* If that didn't work, it could still be an identifier. */
12609 if (!cp_parser_parse_definitely (parser))
12611 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
12612 id = cp_parser_identifier (parser);
12613 else
12614 id = NULL_TREE;
12616 else
12618 template_id_p = true;
12619 ++num_templates;
12623 pop_deferring_access_checks ();
12625 if (id)
12626 cp_parser_check_for_invalid_template_id (parser, id);
12628 /* If it's not a `:' or a `{' then we can't really be looking at a
12629 class-head, since a class-head only appears as part of a
12630 class-specifier. We have to detect this situation before calling
12631 xref_tag, since that has irreversible side-effects. */
12632 if (!cp_parser_next_token_starts_class_definition_p (parser))
12634 cp_parser_error (parser, "expected `{' or `:'");
12635 return error_mark_node;
12638 /* At this point, we're going ahead with the class-specifier, even
12639 if some other problem occurs. */
12640 cp_parser_commit_to_tentative_parse (parser);
12641 /* Issue the error about the overly-qualified name now. */
12642 if (qualified_p)
12643 cp_parser_error (parser,
12644 "global qualification of class name is invalid");
12645 else if (invalid_nested_name_p)
12646 cp_parser_error (parser,
12647 "qualified name does not name a class");
12648 else if (nested_name_specifier)
12650 tree scope;
12651 /* Figure out in what scope the declaration is being placed. */
12652 scope = current_scope ();
12653 if (!scope)
12654 scope = current_namespace;
12655 /* If that scope does not contain the scope in which the
12656 class was originally declared, the program is invalid. */
12657 if (scope && !is_ancestor (scope, nested_name_specifier))
12659 error ("declaration of `%D' in `%D' which does not "
12660 "enclose `%D'", type, scope, nested_name_specifier);
12661 type = NULL_TREE;
12662 goto done;
12664 /* [dcl.meaning]
12666 A declarator-id shall not be qualified exception of the
12667 definition of a ... nested class outside of its class
12668 ... [or] a the definition or explicit instantiation of a
12669 class member of a namespace outside of its namespace. */
12670 if (scope == nested_name_specifier)
12672 pedwarn ("extra qualification ignored");
12673 nested_name_specifier = NULL_TREE;
12674 num_templates = 0;
12677 /* An explicit-specialization must be preceded by "template <>". If
12678 it is not, try to recover gracefully. */
12679 if (at_namespace_scope_p ()
12680 && parser->num_template_parameter_lists == 0
12681 && template_id_p)
12683 error ("an explicit specialization must be preceded by 'template <>'");
12684 invalid_explicit_specialization_p = true;
12685 /* Take the same action that would have been taken by
12686 cp_parser_explicit_specialization. */
12687 ++parser->num_template_parameter_lists;
12688 begin_specialization ();
12690 /* There must be no "return" statements between this point and the
12691 end of this function; set "type "to the correct return value and
12692 use "goto done;" to return. */
12693 /* Make sure that the right number of template parameters were
12694 present. */
12695 if (!cp_parser_check_template_parameters (parser, num_templates))
12697 /* If something went wrong, there is no point in even trying to
12698 process the class-definition. */
12699 type = NULL_TREE;
12700 goto done;
12703 /* Look up the type. */
12704 if (template_id_p)
12706 type = TREE_TYPE (id);
12707 maybe_process_partial_specialization (type);
12709 else if (!nested_name_specifier)
12711 /* If the class was unnamed, create a dummy name. */
12712 if (!id)
12713 id = make_anon_name ();
12714 type = xref_tag (class_key, id, /*globalize=*/false,
12715 parser->num_template_parameter_lists);
12717 else
12719 tree class_type;
12720 bool pop_p = false;
12722 /* Given:
12724 template <typename T> struct S { struct T };
12725 template <typename T> struct S<T>::T { };
12727 we will get a TYPENAME_TYPE when processing the definition of
12728 `S::T'. We need to resolve it to the actual type before we
12729 try to define it. */
12730 if (TREE_CODE (TREE_TYPE (type)) == TYPENAME_TYPE)
12732 class_type = resolve_typename_type (TREE_TYPE (type),
12733 /*only_current_p=*/false);
12734 if (class_type != error_mark_node)
12735 type = TYPE_NAME (class_type);
12736 else
12738 cp_parser_error (parser, "could not resolve typename type");
12739 type = error_mark_node;
12743 maybe_process_partial_specialization (TREE_TYPE (type));
12744 class_type = current_class_type;
12745 /* Enter the scope indicated by the nested-name-specifier. */
12746 if (nested_name_specifier)
12747 pop_p = push_scope (nested_name_specifier);
12748 /* Get the canonical version of this type. */
12749 type = TYPE_MAIN_DECL (TREE_TYPE (type));
12750 if (PROCESSING_REAL_TEMPLATE_DECL_P ()
12751 && !CLASSTYPE_TEMPLATE_SPECIALIZATION (TREE_TYPE (type)))
12752 type = push_template_decl (type);
12753 type = TREE_TYPE (type);
12754 if (nested_name_specifier)
12756 *nested_name_specifier_p = true;
12757 if (pop_p)
12758 pop_scope (nested_name_specifier);
12761 /* Indicate whether this class was declared as a `class' or as a
12762 `struct'. */
12763 if (TREE_CODE (type) == RECORD_TYPE)
12764 CLASSTYPE_DECLARED_CLASS (type) = (class_key == class_type);
12765 cp_parser_check_class_key (class_key, type);
12767 /* Enter the scope containing the class; the names of base classes
12768 should be looked up in that context. For example, given:
12770 struct A { struct B {}; struct C; };
12771 struct A::C : B {};
12773 is valid. */
12774 if (nested_name_specifier)
12775 pop_p = push_scope (nested_name_specifier);
12777 bases = NULL_TREE;
12779 /* Get the list of base-classes, if there is one. */
12780 if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
12781 bases = cp_parser_base_clause (parser);
12783 /* Process the base classes. */
12784 xref_basetypes (type, bases);
12786 /* Leave the scope given by the nested-name-specifier. We will
12787 enter the class scope itself while processing the members. */
12788 if (pop_p)
12789 pop_scope (nested_name_specifier);
12791 done:
12792 if (invalid_explicit_specialization_p)
12794 end_specialization ();
12795 --parser->num_template_parameter_lists;
12797 *attributes_p = attributes;
12798 return type;
12801 /* Parse a class-key.
12803 class-key:
12804 class
12805 struct
12806 union
12808 Returns the kind of class-key specified, or none_type to indicate
12809 error. */
12811 static enum tag_types
12812 cp_parser_class_key (cp_parser* parser)
12814 cp_token *token;
12815 enum tag_types tag_type;
12817 /* Look for the class-key. */
12818 token = cp_parser_require (parser, CPP_KEYWORD, "class-key");
12819 if (!token)
12820 return none_type;
12822 /* Check to see if the TOKEN is a class-key. */
12823 tag_type = cp_parser_token_is_class_key (token);
12824 if (!tag_type)
12825 cp_parser_error (parser, "expected class-key");
12826 return tag_type;
12829 /* Parse an (optional) member-specification.
12831 member-specification:
12832 member-declaration member-specification [opt]
12833 access-specifier : member-specification [opt] */
12835 static void
12836 cp_parser_member_specification_opt (cp_parser* parser)
12838 while (true)
12840 cp_token *token;
12841 enum rid keyword;
12843 /* Peek at the next token. */
12844 token = cp_lexer_peek_token (parser->lexer);
12845 /* If it's a `}', or EOF then we've seen all the members. */
12846 if (token->type == CPP_CLOSE_BRACE || token->type == CPP_EOF)
12847 break;
12849 /* See if this token is a keyword. */
12850 keyword = token->keyword;
12851 switch (keyword)
12853 case RID_PUBLIC:
12854 case RID_PROTECTED:
12855 case RID_PRIVATE:
12856 /* Consume the access-specifier. */
12857 cp_lexer_consume_token (parser->lexer);
12858 /* Remember which access-specifier is active. */
12859 current_access_specifier = token->value;
12860 /* Look for the `:'. */
12861 cp_parser_require (parser, CPP_COLON, "`:'");
12862 break;
12864 default:
12865 /* Otherwise, the next construction must be a
12866 member-declaration. */
12867 cp_parser_member_declaration (parser);
12872 /* Parse a member-declaration.
12874 member-declaration:
12875 decl-specifier-seq [opt] member-declarator-list [opt] ;
12876 function-definition ; [opt]
12877 :: [opt] nested-name-specifier template [opt] unqualified-id ;
12878 using-declaration
12879 template-declaration
12881 member-declarator-list:
12882 member-declarator
12883 member-declarator-list , member-declarator
12885 member-declarator:
12886 declarator pure-specifier [opt]
12887 declarator constant-initializer [opt]
12888 identifier [opt] : constant-expression
12890 GNU Extensions:
12892 member-declaration:
12893 __extension__ member-declaration
12895 member-declarator:
12896 declarator attributes [opt] pure-specifier [opt]
12897 declarator attributes [opt] constant-initializer [opt]
12898 identifier [opt] attributes [opt] : constant-expression */
12900 static void
12901 cp_parser_member_declaration (cp_parser* parser)
12903 cp_decl_specifier_seq decl_specifiers;
12904 tree prefix_attributes;
12905 tree decl;
12906 int declares_class_or_enum;
12907 bool friend_p;
12908 cp_token *token;
12909 int saved_pedantic;
12911 /* Check for the `__extension__' keyword. */
12912 if (cp_parser_extension_opt (parser, &saved_pedantic))
12914 /* Recurse. */
12915 cp_parser_member_declaration (parser);
12916 /* Restore the old value of the PEDANTIC flag. */
12917 pedantic = saved_pedantic;
12919 return;
12922 /* Check for a template-declaration. */
12923 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
12925 /* Parse the template-declaration. */
12926 cp_parser_template_declaration (parser, /*member_p=*/true);
12928 return;
12931 /* Check for a using-declaration. */
12932 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_USING))
12934 /* Parse the using-declaration. */
12935 cp_parser_using_declaration (parser);
12937 return;
12940 /* Parse the decl-specifier-seq. */
12941 cp_parser_decl_specifier_seq (parser,
12942 CP_PARSER_FLAGS_OPTIONAL,
12943 &decl_specifiers,
12944 &declares_class_or_enum);
12945 prefix_attributes = decl_specifiers.attributes;
12946 decl_specifiers.attributes = NULL_TREE;
12947 /* Check for an invalid type-name. */
12948 if (cp_parser_parse_and_diagnose_invalid_type_name (parser))
12949 return;
12950 /* If there is no declarator, then the decl-specifier-seq should
12951 specify a type. */
12952 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
12954 /* If there was no decl-specifier-seq, and the next token is a
12955 `;', then we have something like:
12957 struct S { ; };
12959 [class.mem]
12961 Each member-declaration shall declare at least one member
12962 name of the class. */
12963 if (!decl_specifiers.any_specifiers_p)
12965 if (pedantic)
12966 pedwarn ("extra semicolon");
12968 else
12970 tree type;
12972 /* See if this declaration is a friend. */
12973 friend_p = cp_parser_friend_p (&decl_specifiers);
12974 /* If there were decl-specifiers, check to see if there was
12975 a class-declaration. */
12976 type = check_tag_decl (&decl_specifiers);
12977 /* Nested classes have already been added to the class, but
12978 a `friend' needs to be explicitly registered. */
12979 if (friend_p)
12981 /* If the `friend' keyword was present, the friend must
12982 be introduced with a class-key. */
12983 if (!declares_class_or_enum)
12984 error ("a class-key must be used when declaring a friend");
12985 /* In this case:
12987 template <typename T> struct A {
12988 friend struct A<T>::B;
12991 A<T>::B will be represented by a TYPENAME_TYPE, and
12992 therefore not recognized by check_tag_decl. */
12993 if (!type
12994 && decl_specifiers.type
12995 && TYPE_P (decl_specifiers.type))
12996 type = decl_specifiers.type;
12997 if (!type || !TYPE_P (type))
12998 error ("friend declaration does not name a class or "
12999 "function");
13000 else
13001 make_friend_class (current_class_type, type,
13002 /*complain=*/true);
13004 /* If there is no TYPE, an error message will already have
13005 been issued. */
13006 else if (!type || type == error_mark_node)
13008 /* An anonymous aggregate has to be handled specially; such
13009 a declaration really declares a data member (with a
13010 particular type), as opposed to a nested class. */
13011 else if (ANON_AGGR_TYPE_P (type))
13013 /* Remove constructors and such from TYPE, now that we
13014 know it is an anonymous aggregate. */
13015 fixup_anonymous_aggr (type);
13016 /* And make the corresponding data member. */
13017 decl = build_decl (FIELD_DECL, NULL_TREE, type);
13018 /* Add it to the class. */
13019 finish_member_declaration (decl);
13021 else
13022 cp_parser_check_access_in_redeclaration (TYPE_NAME (type));
13025 else
13027 /* See if these declarations will be friends. */
13028 friend_p = cp_parser_friend_p (&decl_specifiers);
13030 /* Keep going until we hit the `;' at the end of the
13031 declaration. */
13032 while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
13034 tree attributes = NULL_TREE;
13035 tree first_attribute;
13037 /* Peek at the next token. */
13038 token = cp_lexer_peek_token (parser->lexer);
13040 /* Check for a bitfield declaration. */
13041 if (token->type == CPP_COLON
13042 || (token->type == CPP_NAME
13043 && cp_lexer_peek_nth_token (parser->lexer, 2)->type
13044 == CPP_COLON))
13046 tree identifier;
13047 tree width;
13049 /* Get the name of the bitfield. Note that we cannot just
13050 check TOKEN here because it may have been invalidated by
13051 the call to cp_lexer_peek_nth_token above. */
13052 if (cp_lexer_peek_token (parser->lexer)->type != CPP_COLON)
13053 identifier = cp_parser_identifier (parser);
13054 else
13055 identifier = NULL_TREE;
13057 /* Consume the `:' token. */
13058 cp_lexer_consume_token (parser->lexer);
13059 /* Get the width of the bitfield. */
13060 width
13061 = cp_parser_constant_expression (parser,
13062 /*allow_non_constant=*/false,
13063 NULL);
13065 /* Look for attributes that apply to the bitfield. */
13066 attributes = cp_parser_attributes_opt (parser);
13067 /* Remember which attributes are prefix attributes and
13068 which are not. */
13069 first_attribute = attributes;
13070 /* Combine the attributes. */
13071 attributes = chainon (prefix_attributes, attributes);
13073 /* Create the bitfield declaration. */
13074 decl = grokbitfield (identifier
13075 ? make_id_declarator (identifier)
13076 : NULL,
13077 &decl_specifiers,
13078 width);
13079 /* Apply the attributes. */
13080 cplus_decl_attributes (&decl, attributes, /*flags=*/0);
13082 else
13084 cp_declarator *declarator;
13085 tree initializer;
13086 tree asm_specification;
13087 int ctor_dtor_or_conv_p;
13089 /* Parse the declarator. */
13090 declarator
13091 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
13092 &ctor_dtor_or_conv_p,
13093 /*parenthesized_p=*/NULL);
13095 /* If something went wrong parsing the declarator, make sure
13096 that we at least consume some tokens. */
13097 if (declarator == cp_error_declarator)
13099 /* Skip to the end of the statement. */
13100 cp_parser_skip_to_end_of_statement (parser);
13101 /* If the next token is not a semicolon, that is
13102 probably because we just skipped over the body of
13103 a function. So, we consume a semicolon if
13104 present, but do not issue an error message if it
13105 is not present. */
13106 if (cp_lexer_next_token_is (parser->lexer,
13107 CPP_SEMICOLON))
13108 cp_lexer_consume_token (parser->lexer);
13109 return;
13112 cp_parser_check_for_definition_in_return_type
13113 (declarator, declares_class_or_enum);
13115 /* Look for an asm-specification. */
13116 asm_specification = cp_parser_asm_specification_opt (parser);
13117 /* Look for attributes that apply to the declaration. */
13118 attributes = cp_parser_attributes_opt (parser);
13119 /* Remember which attributes are prefix attributes and
13120 which are not. */
13121 first_attribute = attributes;
13122 /* Combine the attributes. */
13123 attributes = chainon (prefix_attributes, attributes);
13125 /* If it's an `=', then we have a constant-initializer or a
13126 pure-specifier. It is not correct to parse the
13127 initializer before registering the member declaration
13128 since the member declaration should be in scope while
13129 its initializer is processed. However, the rest of the
13130 front end does not yet provide an interface that allows
13131 us to handle this correctly. */
13132 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
13134 /* In [class.mem]:
13136 A pure-specifier shall be used only in the declaration of
13137 a virtual function.
13139 A member-declarator can contain a constant-initializer
13140 only if it declares a static member of integral or
13141 enumeration type.
13143 Therefore, if the DECLARATOR is for a function, we look
13144 for a pure-specifier; otherwise, we look for a
13145 constant-initializer. When we call `grokfield', it will
13146 perform more stringent semantics checks. */
13147 if (declarator->kind == cdk_function)
13148 initializer = cp_parser_pure_specifier (parser);
13149 else
13150 /* Parse the initializer. */
13151 initializer = cp_parser_constant_initializer (parser);
13153 /* Otherwise, there is no initializer. */
13154 else
13155 initializer = NULL_TREE;
13157 /* See if we are probably looking at a function
13158 definition. We are certainly not looking at at a
13159 member-declarator. Calling `grokfield' has
13160 side-effects, so we must not do it unless we are sure
13161 that we are looking at a member-declarator. */
13162 if (cp_parser_token_starts_function_definition_p
13163 (cp_lexer_peek_token (parser->lexer)))
13165 /* The grammar does not allow a pure-specifier to be
13166 used when a member function is defined. (It is
13167 possible that this fact is an oversight in the
13168 standard, since a pure function may be defined
13169 outside of the class-specifier. */
13170 if (initializer)
13171 error ("pure-specifier on function-definition");
13172 decl = cp_parser_save_member_function_body (parser,
13173 &decl_specifiers,
13174 declarator,
13175 attributes);
13176 /* If the member was not a friend, declare it here. */
13177 if (!friend_p)
13178 finish_member_declaration (decl);
13179 /* Peek at the next token. */
13180 token = cp_lexer_peek_token (parser->lexer);
13181 /* If the next token is a semicolon, consume it. */
13182 if (token->type == CPP_SEMICOLON)
13183 cp_lexer_consume_token (parser->lexer);
13184 return;
13186 else
13188 /* Create the declaration. */
13189 decl = grokfield (declarator, &decl_specifiers,
13190 initializer, asm_specification,
13191 attributes);
13192 /* Any initialization must have been from a
13193 constant-expression. */
13194 if (decl && TREE_CODE (decl) == VAR_DECL && initializer)
13195 DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = 1;
13199 /* Reset PREFIX_ATTRIBUTES. */
13200 while (attributes && TREE_CHAIN (attributes) != first_attribute)
13201 attributes = TREE_CHAIN (attributes);
13202 if (attributes)
13203 TREE_CHAIN (attributes) = NULL_TREE;
13205 /* If there is any qualification still in effect, clear it
13206 now; we will be starting fresh with the next declarator. */
13207 parser->scope = NULL_TREE;
13208 parser->qualifying_scope = NULL_TREE;
13209 parser->object_scope = NULL_TREE;
13210 /* If it's a `,', then there are more declarators. */
13211 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
13212 cp_lexer_consume_token (parser->lexer);
13213 /* If the next token isn't a `;', then we have a parse error. */
13214 else if (cp_lexer_next_token_is_not (parser->lexer,
13215 CPP_SEMICOLON))
13217 cp_parser_error (parser, "expected `;'");
13218 /* Skip tokens until we find a `;'. */
13219 cp_parser_skip_to_end_of_statement (parser);
13221 break;
13224 if (decl)
13226 /* Add DECL to the list of members. */
13227 if (!friend_p)
13228 finish_member_declaration (decl);
13230 if (TREE_CODE (decl) == FUNCTION_DECL)
13231 cp_parser_save_default_args (parser, decl);
13236 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
13239 /* Parse a pure-specifier.
13241 pure-specifier:
13244 Returns INTEGER_ZERO_NODE if a pure specifier is found.
13245 Otherwise, ERROR_MARK_NODE is returned. */
13247 static tree
13248 cp_parser_pure_specifier (cp_parser* parser)
13250 cp_token *token;
13252 /* Look for the `=' token. */
13253 if (!cp_parser_require (parser, CPP_EQ, "`='"))
13254 return error_mark_node;
13255 /* Look for the `0' token. */
13256 token = cp_parser_require (parser, CPP_NUMBER, "`0'");
13257 /* Unfortunately, this will accept `0L' and `0x00' as well. We need
13258 to get information from the lexer about how the number was
13259 spelled in order to fix this problem. */
13260 if (!token || !integer_zerop (token->value))
13261 return error_mark_node;
13263 return integer_zero_node;
13266 /* Parse a constant-initializer.
13268 constant-initializer:
13269 = constant-expression
13271 Returns a representation of the constant-expression. */
13273 static tree
13274 cp_parser_constant_initializer (cp_parser* parser)
13276 /* Look for the `=' token. */
13277 if (!cp_parser_require (parser, CPP_EQ, "`='"))
13278 return error_mark_node;
13280 /* It is invalid to write:
13282 struct S { static const int i = { 7 }; };
13285 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
13287 cp_parser_error (parser,
13288 "a brace-enclosed initializer is not allowed here");
13289 /* Consume the opening brace. */
13290 cp_lexer_consume_token (parser->lexer);
13291 /* Skip the initializer. */
13292 cp_parser_skip_to_closing_brace (parser);
13293 /* Look for the trailing `}'. */
13294 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
13296 return error_mark_node;
13299 return cp_parser_constant_expression (parser,
13300 /*allow_non_constant=*/false,
13301 NULL);
13304 /* Derived classes [gram.class.derived] */
13306 /* Parse a base-clause.
13308 base-clause:
13309 : base-specifier-list
13311 base-specifier-list:
13312 base-specifier
13313 base-specifier-list , base-specifier
13315 Returns a TREE_LIST representing the base-classes, in the order in
13316 which they were declared. The representation of each node is as
13317 described by cp_parser_base_specifier.
13319 In the case that no bases are specified, this function will return
13320 NULL_TREE, not ERROR_MARK_NODE. */
13322 static tree
13323 cp_parser_base_clause (cp_parser* parser)
13325 tree bases = NULL_TREE;
13327 /* Look for the `:' that begins the list. */
13328 cp_parser_require (parser, CPP_COLON, "`:'");
13330 /* Scan the base-specifier-list. */
13331 while (true)
13333 cp_token *token;
13334 tree base;
13336 /* Look for the base-specifier. */
13337 base = cp_parser_base_specifier (parser);
13338 /* Add BASE to the front of the list. */
13339 if (base != error_mark_node)
13341 TREE_CHAIN (base) = bases;
13342 bases = base;
13344 /* Peek at the next token. */
13345 token = cp_lexer_peek_token (parser->lexer);
13346 /* If it's not a comma, then the list is complete. */
13347 if (token->type != CPP_COMMA)
13348 break;
13349 /* Consume the `,'. */
13350 cp_lexer_consume_token (parser->lexer);
13353 /* PARSER->SCOPE may still be non-NULL at this point, if the last
13354 base class had a qualified name. However, the next name that
13355 appears is certainly not qualified. */
13356 parser->scope = NULL_TREE;
13357 parser->qualifying_scope = NULL_TREE;
13358 parser->object_scope = NULL_TREE;
13360 return nreverse (bases);
13363 /* Parse a base-specifier.
13365 base-specifier:
13366 :: [opt] nested-name-specifier [opt] class-name
13367 virtual access-specifier [opt] :: [opt] nested-name-specifier
13368 [opt] class-name
13369 access-specifier virtual [opt] :: [opt] nested-name-specifier
13370 [opt] class-name
13372 Returns a TREE_LIST. The TREE_PURPOSE will be one of
13373 ACCESS_{DEFAULT,PUBLIC,PROTECTED,PRIVATE}_[VIRTUAL]_NODE to
13374 indicate the specifiers provided. The TREE_VALUE will be a TYPE
13375 (or the ERROR_MARK_NODE) indicating the type that was specified. */
13377 static tree
13378 cp_parser_base_specifier (cp_parser* parser)
13380 cp_token *token;
13381 bool done = false;
13382 bool virtual_p = false;
13383 bool duplicate_virtual_error_issued_p = false;
13384 bool duplicate_access_error_issued_p = false;
13385 bool class_scope_p, template_p;
13386 tree access = access_default_node;
13387 tree type;
13389 /* Process the optional `virtual' and `access-specifier'. */
13390 while (!done)
13392 /* Peek at the next token. */
13393 token = cp_lexer_peek_token (parser->lexer);
13394 /* Process `virtual'. */
13395 switch (token->keyword)
13397 case RID_VIRTUAL:
13398 /* If `virtual' appears more than once, issue an error. */
13399 if (virtual_p && !duplicate_virtual_error_issued_p)
13401 cp_parser_error (parser,
13402 "`virtual' specified more than once in base-specified");
13403 duplicate_virtual_error_issued_p = true;
13406 virtual_p = true;
13408 /* Consume the `virtual' token. */
13409 cp_lexer_consume_token (parser->lexer);
13411 break;
13413 case RID_PUBLIC:
13414 case RID_PROTECTED:
13415 case RID_PRIVATE:
13416 /* If more than one access specifier appears, issue an
13417 error. */
13418 if (access != access_default_node
13419 && !duplicate_access_error_issued_p)
13421 cp_parser_error (parser,
13422 "more than one access specifier in base-specified");
13423 duplicate_access_error_issued_p = true;
13426 access = ridpointers[(int) token->keyword];
13428 /* Consume the access-specifier. */
13429 cp_lexer_consume_token (parser->lexer);
13431 break;
13433 default:
13434 done = true;
13435 break;
13438 /* It is not uncommon to see programs mechanically, erroneously, use
13439 the 'typename' keyword to denote (dependent) qualified types
13440 as base classes. */
13441 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
13443 if (!processing_template_decl)
13444 error ("keyword `typename' not allowed outside of templates");
13445 else
13446 error ("keyword `typename' not allowed in this context "
13447 "(the base class is implicitly a type)");
13448 cp_lexer_consume_token (parser->lexer);
13451 /* Look for the optional `::' operator. */
13452 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
13453 /* Look for the nested-name-specifier. The simplest way to
13454 implement:
13456 [temp.res]
13458 The keyword `typename' is not permitted in a base-specifier or
13459 mem-initializer; in these contexts a qualified name that
13460 depends on a template-parameter is implicitly assumed to be a
13461 type name.
13463 is to pretend that we have seen the `typename' keyword at this
13464 point. */
13465 cp_parser_nested_name_specifier_opt (parser,
13466 /*typename_keyword_p=*/true,
13467 /*check_dependency_p=*/true,
13468 /*type_p=*/true,
13469 /*is_declaration=*/true);
13470 /* If the base class is given by a qualified name, assume that names
13471 we see are type names or templates, as appropriate. */
13472 class_scope_p = (parser->scope && TYPE_P (parser->scope));
13473 template_p = class_scope_p && cp_parser_optional_template_keyword (parser);
13475 /* Finally, look for the class-name. */
13476 type = cp_parser_class_name (parser,
13477 class_scope_p,
13478 template_p,
13479 /*type_p=*/true,
13480 /*check_dependency_p=*/true,
13481 /*class_head_p=*/false,
13482 /*is_declaration=*/true);
13484 if (type == error_mark_node)
13485 return error_mark_node;
13487 return finish_base_specifier (TREE_TYPE (type), access, virtual_p);
13490 /* Exception handling [gram.exception] */
13492 /* Parse an (optional) exception-specification.
13494 exception-specification:
13495 throw ( type-id-list [opt] )
13497 Returns a TREE_LIST representing the exception-specification. The
13498 TREE_VALUE of each node is a type. */
13500 static tree
13501 cp_parser_exception_specification_opt (cp_parser* parser)
13503 cp_token *token;
13504 tree type_id_list;
13506 /* Peek at the next token. */
13507 token = cp_lexer_peek_token (parser->lexer);
13508 /* If it's not `throw', then there's no exception-specification. */
13509 if (!cp_parser_is_keyword (token, RID_THROW))
13510 return NULL_TREE;
13512 /* Consume the `throw'. */
13513 cp_lexer_consume_token (parser->lexer);
13515 /* Look for the `('. */
13516 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13518 /* Peek at the next token. */
13519 token = cp_lexer_peek_token (parser->lexer);
13520 /* If it's not a `)', then there is a type-id-list. */
13521 if (token->type != CPP_CLOSE_PAREN)
13523 const char *saved_message;
13525 /* Types may not be defined in an exception-specification. */
13526 saved_message = parser->type_definition_forbidden_message;
13527 parser->type_definition_forbidden_message
13528 = "types may not be defined in an exception-specification";
13529 /* Parse the type-id-list. */
13530 type_id_list = cp_parser_type_id_list (parser);
13531 /* Restore the saved message. */
13532 parser->type_definition_forbidden_message = saved_message;
13534 else
13535 type_id_list = empty_except_spec;
13537 /* Look for the `)'. */
13538 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13540 return type_id_list;
13543 /* Parse an (optional) type-id-list.
13545 type-id-list:
13546 type-id
13547 type-id-list , type-id
13549 Returns a TREE_LIST. The TREE_VALUE of each node is a TYPE,
13550 in the order that the types were presented. */
13552 static tree
13553 cp_parser_type_id_list (cp_parser* parser)
13555 tree types = NULL_TREE;
13557 while (true)
13559 cp_token *token;
13560 tree type;
13562 /* Get the next type-id. */
13563 type = cp_parser_type_id (parser);
13564 /* Add it to the list. */
13565 types = add_exception_specifier (types, type, /*complain=*/1);
13566 /* Peek at the next token. */
13567 token = cp_lexer_peek_token (parser->lexer);
13568 /* If it is not a `,', we are done. */
13569 if (token->type != CPP_COMMA)
13570 break;
13571 /* Consume the `,'. */
13572 cp_lexer_consume_token (parser->lexer);
13575 return nreverse (types);
13578 /* Parse a try-block.
13580 try-block:
13581 try compound-statement handler-seq */
13583 static tree
13584 cp_parser_try_block (cp_parser* parser)
13586 tree try_block;
13588 cp_parser_require_keyword (parser, RID_TRY, "`try'");
13589 try_block = begin_try_block ();
13590 cp_parser_compound_statement (parser, NULL, true);
13591 finish_try_block (try_block);
13592 cp_parser_handler_seq (parser);
13593 finish_handler_sequence (try_block);
13595 return try_block;
13598 /* Parse a function-try-block.
13600 function-try-block:
13601 try ctor-initializer [opt] function-body handler-seq */
13603 static bool
13604 cp_parser_function_try_block (cp_parser* parser)
13606 tree try_block;
13607 bool ctor_initializer_p;
13609 /* Look for the `try' keyword. */
13610 if (!cp_parser_require_keyword (parser, RID_TRY, "`try'"))
13611 return false;
13612 /* Let the rest of the front-end know where we are. */
13613 try_block = begin_function_try_block ();
13614 /* Parse the function-body. */
13615 ctor_initializer_p
13616 = cp_parser_ctor_initializer_opt_and_function_body (parser);
13617 /* We're done with the `try' part. */
13618 finish_function_try_block (try_block);
13619 /* Parse the handlers. */
13620 cp_parser_handler_seq (parser);
13621 /* We're done with the handlers. */
13622 finish_function_handler_sequence (try_block);
13624 return ctor_initializer_p;
13627 /* Parse a handler-seq.
13629 handler-seq:
13630 handler handler-seq [opt] */
13632 static void
13633 cp_parser_handler_seq (cp_parser* parser)
13635 while (true)
13637 cp_token *token;
13639 /* Parse the handler. */
13640 cp_parser_handler (parser);
13641 /* Peek at the next token. */
13642 token = cp_lexer_peek_token (parser->lexer);
13643 /* If it's not `catch' then there are no more handlers. */
13644 if (!cp_parser_is_keyword (token, RID_CATCH))
13645 break;
13649 /* Parse a handler.
13651 handler:
13652 catch ( exception-declaration ) compound-statement */
13654 static void
13655 cp_parser_handler (cp_parser* parser)
13657 tree handler;
13658 tree declaration;
13660 cp_parser_require_keyword (parser, RID_CATCH, "`catch'");
13661 handler = begin_handler ();
13662 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13663 declaration = cp_parser_exception_declaration (parser);
13664 finish_handler_parms (declaration, handler);
13665 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13666 cp_parser_compound_statement (parser, NULL, false);
13667 finish_handler (handler);
13670 /* Parse an exception-declaration.
13672 exception-declaration:
13673 type-specifier-seq declarator
13674 type-specifier-seq abstract-declarator
13675 type-specifier-seq
13678 Returns a VAR_DECL for the declaration, or NULL_TREE if the
13679 ellipsis variant is used. */
13681 static tree
13682 cp_parser_exception_declaration (cp_parser* parser)
13684 tree decl;
13685 cp_decl_specifier_seq type_specifiers;
13686 cp_declarator *declarator;
13687 const char *saved_message;
13689 /* If it's an ellipsis, it's easy to handle. */
13690 if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
13692 /* Consume the `...' token. */
13693 cp_lexer_consume_token (parser->lexer);
13694 return NULL_TREE;
13697 /* Types may not be defined in exception-declarations. */
13698 saved_message = parser->type_definition_forbidden_message;
13699 parser->type_definition_forbidden_message
13700 = "types may not be defined in exception-declarations";
13702 /* Parse the type-specifier-seq. */
13703 cp_parser_type_specifier_seq (parser, &type_specifiers);
13704 /* If it's a `)', then there is no declarator. */
13705 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN))
13706 declarator = NULL;
13707 else
13708 declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_EITHER,
13709 /*ctor_dtor_or_conv_p=*/NULL,
13710 /*parenthesized_p=*/NULL);
13712 /* Restore the saved message. */
13713 parser->type_definition_forbidden_message = saved_message;
13715 if (type_specifiers.any_specifiers_p)
13717 decl = grokdeclarator (declarator, &type_specifiers, CATCHPARM, 1, NULL);
13718 if (decl == NULL_TREE)
13719 error ("invalid catch parameter");
13721 else
13722 decl = NULL_TREE;
13724 return decl;
13727 /* Parse a throw-expression.
13729 throw-expression:
13730 throw assignment-expression [opt]
13732 Returns a THROW_EXPR representing the throw-expression. */
13734 static tree
13735 cp_parser_throw_expression (cp_parser* parser)
13737 tree expression;
13738 cp_token* token;
13740 cp_parser_require_keyword (parser, RID_THROW, "`throw'");
13741 token = cp_lexer_peek_token (parser->lexer);
13742 /* Figure out whether or not there is an assignment-expression
13743 following the "throw" keyword. */
13744 if (token->type == CPP_COMMA
13745 || token->type == CPP_SEMICOLON
13746 || token->type == CPP_CLOSE_PAREN
13747 || token->type == CPP_CLOSE_SQUARE
13748 || token->type == CPP_CLOSE_BRACE
13749 || token->type == CPP_COLON)
13750 expression = NULL_TREE;
13751 else
13752 expression = cp_parser_assignment_expression (parser);
13754 return build_throw (expression);
13757 /* GNU Extensions */
13759 /* Parse an (optional) asm-specification.
13761 asm-specification:
13762 asm ( string-literal )
13764 If the asm-specification is present, returns a STRING_CST
13765 corresponding to the string-literal. Otherwise, returns
13766 NULL_TREE. */
13768 static tree
13769 cp_parser_asm_specification_opt (cp_parser* parser)
13771 cp_token *token;
13772 tree asm_specification;
13774 /* Peek at the next token. */
13775 token = cp_lexer_peek_token (parser->lexer);
13776 /* If the next token isn't the `asm' keyword, then there's no
13777 asm-specification. */
13778 if (!cp_parser_is_keyword (token, RID_ASM))
13779 return NULL_TREE;
13781 /* Consume the `asm' token. */
13782 cp_lexer_consume_token (parser->lexer);
13783 /* Look for the `('. */
13784 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13786 /* Look for the string-literal. */
13787 token = cp_parser_require (parser, CPP_STRING, "string-literal");
13788 if (token)
13789 asm_specification = token->value;
13790 else
13791 asm_specification = NULL_TREE;
13793 /* Look for the `)'. */
13794 cp_parser_require (parser, CPP_CLOSE_PAREN, "`('");
13796 return asm_specification;
13799 /* Parse an asm-operand-list.
13801 asm-operand-list:
13802 asm-operand
13803 asm-operand-list , asm-operand
13805 asm-operand:
13806 string-literal ( expression )
13807 [ string-literal ] string-literal ( expression )
13809 Returns a TREE_LIST representing the operands. The TREE_VALUE of
13810 each node is the expression. The TREE_PURPOSE is itself a
13811 TREE_LIST whose TREE_PURPOSE is a STRING_CST for the bracketed
13812 string-literal (or NULL_TREE if not present) and whose TREE_VALUE
13813 is a STRING_CST for the string literal before the parenthesis. */
13815 static tree
13816 cp_parser_asm_operand_list (cp_parser* parser)
13818 tree asm_operands = NULL_TREE;
13820 while (true)
13822 tree string_literal;
13823 tree expression;
13824 tree name;
13825 cp_token *token;
13827 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
13829 /* Consume the `[' token. */
13830 cp_lexer_consume_token (parser->lexer);
13831 /* Read the operand name. */
13832 name = cp_parser_identifier (parser);
13833 if (name != error_mark_node)
13834 name = build_string (IDENTIFIER_LENGTH (name),
13835 IDENTIFIER_POINTER (name));
13836 /* Look for the closing `]'. */
13837 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
13839 else
13840 name = NULL_TREE;
13841 /* Look for the string-literal. */
13842 token = cp_parser_require (parser, CPP_STRING, "string-literal");
13843 string_literal = token ? token->value : error_mark_node;
13844 c_lex_string_translate = 1;
13845 /* Look for the `('. */
13846 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13847 /* Parse the expression. */
13848 expression = cp_parser_expression (parser);
13849 /* Look for the `)'. */
13850 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13851 c_lex_string_translate = 0;
13852 /* Add this operand to the list. */
13853 asm_operands = tree_cons (build_tree_list (name, string_literal),
13854 expression,
13855 asm_operands);
13856 /* If the next token is not a `,', there are no more
13857 operands. */
13858 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
13859 break;
13860 /* Consume the `,'. */
13861 cp_lexer_consume_token (parser->lexer);
13864 return nreverse (asm_operands);
13867 /* Parse an asm-clobber-list.
13869 asm-clobber-list:
13870 string-literal
13871 asm-clobber-list , string-literal
13873 Returns a TREE_LIST, indicating the clobbers in the order that they
13874 appeared. The TREE_VALUE of each node is a STRING_CST. */
13876 static tree
13877 cp_parser_asm_clobber_list (cp_parser* parser)
13879 tree clobbers = NULL_TREE;
13881 while (true)
13883 cp_token *token;
13884 tree string_literal;
13886 /* Look for the string literal. */
13887 token = cp_parser_require (parser, CPP_STRING, "string-literal");
13888 string_literal = token ? token->value : error_mark_node;
13889 /* Add it to the list. */
13890 clobbers = tree_cons (NULL_TREE, string_literal, clobbers);
13891 /* If the next token is not a `,', then the list is
13892 complete. */
13893 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
13894 break;
13895 /* Consume the `,' token. */
13896 cp_lexer_consume_token (parser->lexer);
13899 return clobbers;
13902 /* Parse an (optional) series of attributes.
13904 attributes:
13905 attributes attribute
13907 attribute:
13908 __attribute__ (( attribute-list [opt] ))
13910 The return value is as for cp_parser_attribute_list. */
13912 static tree
13913 cp_parser_attributes_opt (cp_parser* parser)
13915 tree attributes = NULL_TREE;
13917 while (true)
13919 cp_token *token;
13920 tree attribute_list;
13922 /* Peek at the next token. */
13923 token = cp_lexer_peek_token (parser->lexer);
13924 /* If it's not `__attribute__', then we're done. */
13925 if (token->keyword != RID_ATTRIBUTE)
13926 break;
13928 /* Consume the `__attribute__' keyword. */
13929 cp_lexer_consume_token (parser->lexer);
13930 /* Look for the two `(' tokens. */
13931 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13932 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13934 /* Peek at the next token. */
13935 token = cp_lexer_peek_token (parser->lexer);
13936 if (token->type != CPP_CLOSE_PAREN)
13937 /* Parse the attribute-list. */
13938 attribute_list = cp_parser_attribute_list (parser);
13939 else
13940 /* If the next token is a `)', then there is no attribute
13941 list. */
13942 attribute_list = NULL;
13944 /* Look for the two `)' tokens. */
13945 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13946 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13948 /* Add these new attributes to the list. */
13949 attributes = chainon (attributes, attribute_list);
13952 return attributes;
13955 /* Parse an attribute-list.
13957 attribute-list:
13958 attribute
13959 attribute-list , attribute
13961 attribute:
13962 identifier
13963 identifier ( identifier )
13964 identifier ( identifier , expression-list )
13965 identifier ( expression-list )
13967 Returns a TREE_LIST. Each node corresponds to an attribute. THe
13968 TREE_PURPOSE of each node is the identifier indicating which
13969 attribute is in use. The TREE_VALUE represents the arguments, if
13970 any. */
13972 static tree
13973 cp_parser_attribute_list (cp_parser* parser)
13975 tree attribute_list = NULL_TREE;
13977 c_lex_string_translate = 0;
13978 while (true)
13980 cp_token *token;
13981 tree identifier;
13982 tree attribute;
13984 /* Look for the identifier. We also allow keywords here; for
13985 example `__attribute__ ((const))' is legal. */
13986 token = cp_lexer_peek_token (parser->lexer);
13987 if (token->type != CPP_NAME
13988 && token->type != CPP_KEYWORD)
13989 return error_mark_node;
13990 /* Consume the token. */
13991 token = cp_lexer_consume_token (parser->lexer);
13993 /* Save away the identifier that indicates which attribute this is. */
13994 identifier = token->value;
13995 attribute = build_tree_list (identifier, NULL_TREE);
13997 /* Peek at the next token. */
13998 token = cp_lexer_peek_token (parser->lexer);
13999 /* If it's an `(', then parse the attribute arguments. */
14000 if (token->type == CPP_OPEN_PAREN)
14002 tree arguments;
14004 arguments = (cp_parser_parenthesized_expression_list
14005 (parser, true, /*non_constant_p=*/NULL));
14006 /* Save the identifier and arguments away. */
14007 TREE_VALUE (attribute) = arguments;
14010 /* Add this attribute to the list. */
14011 TREE_CHAIN (attribute) = attribute_list;
14012 attribute_list = attribute;
14014 /* Now, look for more attributes. */
14015 token = cp_lexer_peek_token (parser->lexer);
14016 /* If the next token isn't a `,', we're done. */
14017 if (token->type != CPP_COMMA)
14018 break;
14020 /* Consume the comma and keep going. */
14021 cp_lexer_consume_token (parser->lexer);
14023 c_lex_string_translate = 1;
14025 /* We built up the list in reverse order. */
14026 return nreverse (attribute_list);
14029 /* Parse an optional `__extension__' keyword. Returns TRUE if it is
14030 present, and FALSE otherwise. *SAVED_PEDANTIC is set to the
14031 current value of the PEDANTIC flag, regardless of whether or not
14032 the `__extension__' keyword is present. The caller is responsible
14033 for restoring the value of the PEDANTIC flag. */
14035 static bool
14036 cp_parser_extension_opt (cp_parser* parser, int* saved_pedantic)
14038 /* Save the old value of the PEDANTIC flag. */
14039 *saved_pedantic = pedantic;
14041 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXTENSION))
14043 /* Consume the `__extension__' token. */
14044 cp_lexer_consume_token (parser->lexer);
14045 /* We're not being pedantic while the `__extension__' keyword is
14046 in effect. */
14047 pedantic = 0;
14049 return true;
14052 return false;
14055 /* Parse a label declaration.
14057 label-declaration:
14058 __label__ label-declarator-seq ;
14060 label-declarator-seq:
14061 identifier , label-declarator-seq
14062 identifier */
14064 static void
14065 cp_parser_label_declaration (cp_parser* parser)
14067 /* Look for the `__label__' keyword. */
14068 cp_parser_require_keyword (parser, RID_LABEL, "`__label__'");
14070 while (true)
14072 tree identifier;
14074 /* Look for an identifier. */
14075 identifier = cp_parser_identifier (parser);
14076 /* Declare it as a lobel. */
14077 finish_label_decl (identifier);
14078 /* If the next token is a `;', stop. */
14079 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
14080 break;
14081 /* Look for the `,' separating the label declarations. */
14082 cp_parser_require (parser, CPP_COMMA, "`,'");
14085 /* Look for the final `;'. */
14086 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
14089 /* Support Functions */
14091 /* Looks up NAME in the current scope, as given by PARSER->SCOPE.
14092 NAME should have one of the representations used for an
14093 id-expression. If NAME is the ERROR_MARK_NODE, the ERROR_MARK_NODE
14094 is returned. If PARSER->SCOPE is a dependent type, then a
14095 SCOPE_REF is returned.
14097 If NAME is a TEMPLATE_ID_EXPR, then it will be immediately
14098 returned; the name was already resolved when the TEMPLATE_ID_EXPR
14099 was formed. Abstractly, such entities should not be passed to this
14100 function, because they do not need to be looked up, but it is
14101 simpler to check for this special case here, rather than at the
14102 call-sites.
14104 In cases not explicitly covered above, this function returns a
14105 DECL, OVERLOAD, or baselink representing the result of the lookup.
14106 If there was no entity with the indicated NAME, the ERROR_MARK_NODE
14107 is returned.
14109 If IS_TYPE is TRUE, bindings that do not refer to types are
14110 ignored.
14112 If IS_TEMPLATE is TRUE, bindings that do not refer to templates are
14113 ignored.
14115 If IS_NAMESPACE is TRUE, bindings that do not refer to namespaces
14116 are ignored.
14118 If CHECK_DEPENDENCY is TRUE, names are not looked up in dependent
14119 types. */
14121 static tree
14122 cp_parser_lookup_name (cp_parser *parser, tree name,
14123 bool is_type, bool is_template, bool is_namespace,
14124 bool check_dependency)
14126 tree decl;
14127 tree object_type = parser->context->object_type;
14129 /* Now that we have looked up the name, the OBJECT_TYPE (if any) is
14130 no longer valid. Note that if we are parsing tentatively, and
14131 the parse fails, OBJECT_TYPE will be automatically restored. */
14132 parser->context->object_type = NULL_TREE;
14134 if (name == error_mark_node)
14135 return error_mark_node;
14137 /* A template-id has already been resolved; there is no lookup to
14138 do. */
14139 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
14140 return name;
14141 if (BASELINK_P (name))
14143 my_friendly_assert ((TREE_CODE (BASELINK_FUNCTIONS (name))
14144 == TEMPLATE_ID_EXPR),
14145 20020909);
14146 return name;
14149 /* A BIT_NOT_EXPR is used to represent a destructor. By this point,
14150 it should already have been checked to make sure that the name
14151 used matches the type being destroyed. */
14152 if (TREE_CODE (name) == BIT_NOT_EXPR)
14154 tree type;
14156 /* Figure out to which type this destructor applies. */
14157 if (parser->scope)
14158 type = parser->scope;
14159 else if (object_type)
14160 type = object_type;
14161 else
14162 type = current_class_type;
14163 /* If that's not a class type, there is no destructor. */
14164 if (!type || !CLASS_TYPE_P (type))
14165 return error_mark_node;
14166 if (!CLASSTYPE_DESTRUCTORS (type))
14167 return error_mark_node;
14168 /* If it was a class type, return the destructor. */
14169 return CLASSTYPE_DESTRUCTORS (type);
14172 /* By this point, the NAME should be an ordinary identifier. If
14173 the id-expression was a qualified name, the qualifying scope is
14174 stored in PARSER->SCOPE at this point. */
14175 my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE,
14176 20000619);
14178 /* Perform the lookup. */
14179 if (parser->scope)
14181 bool dependent_p;
14183 if (parser->scope == error_mark_node)
14184 return error_mark_node;
14186 /* If the SCOPE is dependent, the lookup must be deferred until
14187 the template is instantiated -- unless we are explicitly
14188 looking up names in uninstantiated templates. Even then, we
14189 cannot look up the name if the scope is not a class type; it
14190 might, for example, be a template type parameter. */
14191 dependent_p = (TYPE_P (parser->scope)
14192 && !(parser->in_declarator_p
14193 && currently_open_class (parser->scope))
14194 && dependent_type_p (parser->scope));
14195 if ((check_dependency || !CLASS_TYPE_P (parser->scope))
14196 && dependent_p)
14198 if (is_type)
14199 /* The resolution to Core Issue 180 says that `struct A::B'
14200 should be considered a type-name, even if `A' is
14201 dependent. */
14202 decl = TYPE_NAME (make_typename_type (parser->scope,
14203 name,
14204 /*complain=*/1));
14205 else if (is_template)
14206 decl = make_unbound_class_template (parser->scope,
14207 name,
14208 /*complain=*/1);
14209 else
14210 decl = build_nt (SCOPE_REF, parser->scope, name);
14212 else
14214 bool pop_p = false;
14216 /* If PARSER->SCOPE is a dependent type, then it must be a
14217 class type, and we must not be checking dependencies;
14218 otherwise, we would have processed this lookup above. So
14219 that PARSER->SCOPE is not considered a dependent base by
14220 lookup_member, we must enter the scope here. */
14221 if (dependent_p)
14222 pop_p = push_scope (parser->scope);
14223 /* If the PARSER->SCOPE is a a template specialization, it
14224 may be instantiated during name lookup. In that case,
14225 errors may be issued. Even if we rollback the current
14226 tentative parse, those errors are valid. */
14227 decl = lookup_qualified_name (parser->scope, name, is_type,
14228 /*complain=*/true);
14229 if (pop_p)
14230 pop_scope (parser->scope);
14232 parser->qualifying_scope = parser->scope;
14233 parser->object_scope = NULL_TREE;
14235 else if (object_type)
14237 tree object_decl = NULL_TREE;
14238 /* Look up the name in the scope of the OBJECT_TYPE, unless the
14239 OBJECT_TYPE is not a class. */
14240 if (CLASS_TYPE_P (object_type))
14241 /* If the OBJECT_TYPE is a template specialization, it may
14242 be instantiated during name lookup. In that case, errors
14243 may be issued. Even if we rollback the current tentative
14244 parse, those errors are valid. */
14245 object_decl = lookup_member (object_type,
14246 name,
14247 /*protect=*/0, is_type);
14248 /* Look it up in the enclosing context, too. */
14249 decl = lookup_name_real (name, is_type, /*nonclass=*/0,
14250 /*block_p=*/true, is_namespace,
14251 /*flags=*/0);
14252 parser->object_scope = object_type;
14253 parser->qualifying_scope = NULL_TREE;
14254 if (object_decl)
14255 decl = object_decl;
14257 else
14259 decl = lookup_name_real (name, is_type, /*nonclass=*/0,
14260 /*block_p=*/true, is_namespace,
14261 /*flags=*/0);
14262 parser->qualifying_scope = NULL_TREE;
14263 parser->object_scope = NULL_TREE;
14266 /* If the lookup failed, let our caller know. */
14267 if (!decl
14268 || decl == error_mark_node
14269 || (TREE_CODE (decl) == FUNCTION_DECL
14270 && DECL_ANTICIPATED (decl)))
14271 return error_mark_node;
14273 /* If it's a TREE_LIST, the result of the lookup was ambiguous. */
14274 if (TREE_CODE (decl) == TREE_LIST)
14276 /* The error message we have to print is too complicated for
14277 cp_parser_error, so we incorporate its actions directly. */
14278 if (!cp_parser_simulate_error (parser))
14280 error ("reference to `%D' is ambiguous", name);
14281 print_candidates (decl);
14283 return error_mark_node;
14286 my_friendly_assert (DECL_P (decl)
14287 || TREE_CODE (decl) == OVERLOAD
14288 || TREE_CODE (decl) == SCOPE_REF
14289 || TREE_CODE (decl) == UNBOUND_CLASS_TEMPLATE
14290 || BASELINK_P (decl),
14291 20000619);
14293 /* If we have resolved the name of a member declaration, check to
14294 see if the declaration is accessible. When the name resolves to
14295 set of overloaded functions, accessibility is checked when
14296 overload resolution is done.
14298 During an explicit instantiation, access is not checked at all,
14299 as per [temp.explicit]. */
14300 if (DECL_P (decl))
14301 check_accessibility_of_qualified_id (decl, object_type, parser->scope);
14303 return decl;
14306 /* Like cp_parser_lookup_name, but for use in the typical case where
14307 CHECK_ACCESS is TRUE, IS_TYPE is FALSE, IS_TEMPLATE is FALSE,
14308 IS_NAMESPACE is FALSE, and CHECK_DEPENDENCY is TRUE. */
14310 static tree
14311 cp_parser_lookup_name_simple (cp_parser* parser, tree name)
14313 return cp_parser_lookup_name (parser, name,
14314 /*is_type=*/false,
14315 /*is_template=*/false,
14316 /*is_namespace=*/false,
14317 /*check_dependency=*/true);
14320 /* If DECL is a TEMPLATE_DECL that can be treated like a TYPE_DECL in
14321 the current context, return the TYPE_DECL. If TAG_NAME_P is
14322 true, the DECL indicates the class being defined in a class-head,
14323 or declared in an elaborated-type-specifier.
14325 Otherwise, return DECL. */
14327 static tree
14328 cp_parser_maybe_treat_template_as_class (tree decl, bool tag_name_p)
14330 /* If the TEMPLATE_DECL is being declared as part of a class-head,
14331 the translation from TEMPLATE_DECL to TYPE_DECL occurs:
14333 struct A {
14334 template <typename T> struct B;
14337 template <typename T> struct A::B {};
14339 Similarly, in a elaborated-type-specifier:
14341 namespace N { struct X{}; }
14343 struct A {
14344 template <typename T> friend struct N::X;
14347 However, if the DECL refers to a class type, and we are in
14348 the scope of the class, then the name lookup automatically
14349 finds the TYPE_DECL created by build_self_reference rather
14350 than a TEMPLATE_DECL. For example, in:
14352 template <class T> struct S {
14353 S s;
14356 there is no need to handle such case. */
14358 if (DECL_CLASS_TEMPLATE_P (decl) && tag_name_p)
14359 return DECL_TEMPLATE_RESULT (decl);
14361 return decl;
14364 /* If too many, or too few, template-parameter lists apply to the
14365 declarator, issue an error message. Returns TRUE if all went well,
14366 and FALSE otherwise. */
14368 static bool
14369 cp_parser_check_declarator_template_parameters (cp_parser* parser,
14370 cp_declarator *declarator)
14372 unsigned num_templates;
14374 /* We haven't seen any classes that involve template parameters yet. */
14375 num_templates = 0;
14377 switch (declarator->kind)
14379 case cdk_id:
14380 if (TREE_CODE (declarator->u.id.name) == SCOPE_REF)
14382 tree scope;
14383 tree member;
14385 scope = TREE_OPERAND (declarator->u.id.name, 0);
14386 member = TREE_OPERAND (declarator->u.id.name, 1);
14388 while (scope && CLASS_TYPE_P (scope))
14390 /* You're supposed to have one `template <...>'
14391 for every template class, but you don't need one
14392 for a full specialization. For example:
14394 template <class T> struct S{};
14395 template <> struct S<int> { void f(); };
14396 void S<int>::f () {}
14398 is correct; there shouldn't be a `template <>' for
14399 the definition of `S<int>::f'. */
14400 if (CLASSTYPE_TEMPLATE_INFO (scope)
14401 && (CLASSTYPE_TEMPLATE_INSTANTIATION (scope)
14402 || uses_template_parms (CLASSTYPE_TI_ARGS (scope)))
14403 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope)))
14404 ++num_templates;
14406 scope = TYPE_CONTEXT (scope);
14410 /* If the DECLARATOR has the form `X<y>' then it uses one
14411 additional level of template parameters. */
14412 if (TREE_CODE (declarator->u.id.name) == TEMPLATE_ID_EXPR)
14413 ++num_templates;
14415 return cp_parser_check_template_parameters (parser,
14416 num_templates);
14418 case cdk_function:
14419 case cdk_array:
14420 case cdk_pointer:
14421 case cdk_reference:
14422 case cdk_ptrmem:
14423 return (cp_parser_check_declarator_template_parameters
14424 (parser, declarator->declarator));
14426 case cdk_error:
14427 return true;
14429 default:
14430 abort ();
14431 return false;
14435 /* NUM_TEMPLATES were used in the current declaration. If that is
14436 invalid, return FALSE and issue an error messages. Otherwise,
14437 return TRUE. */
14439 static bool
14440 cp_parser_check_template_parameters (cp_parser* parser,
14441 unsigned num_templates)
14443 /* If there are more template classes than parameter lists, we have
14444 something like:
14446 template <class T> void S<T>::R<T>::f (); */
14447 if (parser->num_template_parameter_lists < num_templates)
14449 error ("too few template-parameter-lists");
14450 return false;
14452 /* If there are the same number of template classes and parameter
14453 lists, that's OK. */
14454 if (parser->num_template_parameter_lists == num_templates)
14455 return true;
14456 /* If there are more, but only one more, then we are referring to a
14457 member template. That's OK too. */
14458 if (parser->num_template_parameter_lists == num_templates + 1)
14459 return true;
14460 /* Otherwise, there are too many template parameter lists. We have
14461 something like:
14463 template <class T> template <class U> void S::f(); */
14464 error ("too many template-parameter-lists");
14465 return false;
14468 /* Parse a binary-expression of the general form:
14470 binary-expression:
14471 <expr>
14472 binary-expression <token> <expr>
14474 The TOKEN_TREE_MAP maps <token> types to <expr> codes. FN is used
14475 to parser the <expr>s. If the first production is used, then the
14476 value returned by FN is returned directly. Otherwise, a node with
14477 the indicated EXPR_TYPE is returned, with operands corresponding to
14478 the two sub-expressions. */
14480 static tree
14481 cp_parser_binary_expression (cp_parser* parser,
14482 const cp_parser_token_tree_map token_tree_map,
14483 cp_parser_expression_fn fn)
14485 tree lhs;
14487 /* Parse the first expression. */
14488 lhs = (*fn) (parser);
14489 /* Now, look for more expressions. */
14490 while (true)
14492 cp_token *token;
14493 const cp_parser_token_tree_map_node *map_node;
14494 tree rhs;
14496 /* Peek at the next token. */
14497 token = cp_lexer_peek_token (parser->lexer);
14498 /* If the token is `>', and that's not an operator at the
14499 moment, then we're done. */
14500 if (token->type == CPP_GREATER
14501 && !parser->greater_than_is_operator_p)
14502 break;
14503 /* If we find one of the tokens we want, build the corresponding
14504 tree representation. */
14505 for (map_node = token_tree_map;
14506 map_node->token_type != CPP_EOF;
14507 ++map_node)
14508 if (map_node->token_type == token->type)
14510 /* Assume that an overloaded operator will not be used. */
14511 bool overloaded_p = false;
14513 /* Consume the operator token. */
14514 cp_lexer_consume_token (parser->lexer);
14515 /* Parse the right-hand side of the expression. */
14516 rhs = (*fn) (parser);
14517 /* Build the binary tree node. */
14518 lhs = build_x_binary_op (map_node->tree_type, lhs, rhs,
14519 &overloaded_p);
14520 /* If the binary operator required the use of an
14521 overloaded operator, then this expression cannot be an
14522 integral constant-expression. An overloaded operator
14523 can be used even if both operands are otherwise
14524 permissible in an integral constant-expression if at
14525 least one of the operands is of enumeration type. */
14526 if (overloaded_p
14527 && (cp_parser_non_integral_constant_expression
14528 (parser, "calls to overloaded operators")))
14529 lhs = error_mark_node;
14530 break;
14533 /* If the token wasn't one of the ones we want, we're done. */
14534 if (map_node->token_type == CPP_EOF)
14535 break;
14538 return lhs;
14541 /* Parse an optional `::' token indicating that the following name is
14542 from the global namespace. If so, PARSER->SCOPE is set to the
14543 GLOBAL_NAMESPACE. Otherwise, PARSER->SCOPE is set to NULL_TREE,
14544 unless CURRENT_SCOPE_VALID_P is TRUE, in which case it is left alone.
14545 Returns the new value of PARSER->SCOPE, if the `::' token is
14546 present, and NULL_TREE otherwise. */
14548 static tree
14549 cp_parser_global_scope_opt (cp_parser* parser, bool current_scope_valid_p)
14551 cp_token *token;
14553 /* Peek at the next token. */
14554 token = cp_lexer_peek_token (parser->lexer);
14555 /* If we're looking at a `::' token then we're starting from the
14556 global namespace, not our current location. */
14557 if (token->type == CPP_SCOPE)
14559 /* Consume the `::' token. */
14560 cp_lexer_consume_token (parser->lexer);
14561 /* Set the SCOPE so that we know where to start the lookup. */
14562 parser->scope = global_namespace;
14563 parser->qualifying_scope = global_namespace;
14564 parser->object_scope = NULL_TREE;
14566 return parser->scope;
14568 else if (!current_scope_valid_p)
14570 parser->scope = NULL_TREE;
14571 parser->qualifying_scope = NULL_TREE;
14572 parser->object_scope = NULL_TREE;
14575 return NULL_TREE;
14578 /* Returns TRUE if the upcoming token sequence is the start of a
14579 constructor declarator. If FRIEND_P is true, the declarator is
14580 preceded by the `friend' specifier. */
14582 static bool
14583 cp_parser_constructor_declarator_p (cp_parser *parser, bool friend_p)
14585 bool constructor_p;
14586 tree type_decl = NULL_TREE;
14587 bool nested_name_p;
14588 cp_token *next_token;
14590 /* The common case is that this is not a constructor declarator, so
14591 try to avoid doing lots of work if at all possible. It's not
14592 valid declare a constructor at function scope. */
14593 if (at_function_scope_p ())
14594 return false;
14595 /* And only certain tokens can begin a constructor declarator. */
14596 next_token = cp_lexer_peek_token (parser->lexer);
14597 if (next_token->type != CPP_NAME
14598 && next_token->type != CPP_SCOPE
14599 && next_token->type != CPP_NESTED_NAME_SPECIFIER
14600 && next_token->type != CPP_TEMPLATE_ID)
14601 return false;
14603 /* Parse tentatively; we are going to roll back all of the tokens
14604 consumed here. */
14605 cp_parser_parse_tentatively (parser);
14606 /* Assume that we are looking at a constructor declarator. */
14607 constructor_p = true;
14609 /* Look for the optional `::' operator. */
14610 cp_parser_global_scope_opt (parser,
14611 /*current_scope_valid_p=*/false);
14612 /* Look for the nested-name-specifier. */
14613 nested_name_p
14614 = (cp_parser_nested_name_specifier_opt (parser,
14615 /*typename_keyword_p=*/false,
14616 /*check_dependency_p=*/false,
14617 /*type_p=*/false,
14618 /*is_declaration=*/false)
14619 != NULL_TREE);
14620 /* Outside of a class-specifier, there must be a
14621 nested-name-specifier. */
14622 if (!nested_name_p &&
14623 (!at_class_scope_p () || !TYPE_BEING_DEFINED (current_class_type)
14624 || friend_p))
14625 constructor_p = false;
14626 /* If we still think that this might be a constructor-declarator,
14627 look for a class-name. */
14628 if (constructor_p)
14630 /* If we have:
14632 template <typename T> struct S { S(); };
14633 template <typename T> S<T>::S ();
14635 we must recognize that the nested `S' names a class.
14636 Similarly, for:
14638 template <typename T> S<T>::S<T> ();
14640 we must recognize that the nested `S' names a template. */
14641 type_decl = cp_parser_class_name (parser,
14642 /*typename_keyword_p=*/false,
14643 /*template_keyword_p=*/false,
14644 /*type_p=*/false,
14645 /*check_dependency_p=*/false,
14646 /*class_head_p=*/false,
14647 /*is_declaration=*/false);
14648 /* If there was no class-name, then this is not a constructor. */
14649 constructor_p = !cp_parser_error_occurred (parser);
14652 /* If we're still considering a constructor, we have to see a `(',
14653 to begin the parameter-declaration-clause, followed by either a
14654 `)', an `...', or a decl-specifier. We need to check for a
14655 type-specifier to avoid being fooled into thinking that:
14657 S::S (f) (int);
14659 is a constructor. (It is actually a function named `f' that
14660 takes one parameter (of type `int') and returns a value of type
14661 `S::S'. */
14662 if (constructor_p
14663 && cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
14665 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN)
14666 && cp_lexer_next_token_is_not (parser->lexer, CPP_ELLIPSIS)
14667 /* A parameter declaration begins with a decl-specifier,
14668 which is either the "attribute" keyword, a storage class
14669 specifier, or (usually) a type-specifier. */
14670 && !cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE)
14671 && !cp_parser_storage_class_specifier_opt (parser))
14673 tree type;
14674 bool pop_p = false;
14675 unsigned saved_num_template_parameter_lists;
14677 /* Names appearing in the type-specifier should be looked up
14678 in the scope of the class. */
14679 if (current_class_type)
14680 type = NULL_TREE;
14681 else
14683 type = TREE_TYPE (type_decl);
14684 if (TREE_CODE (type) == TYPENAME_TYPE)
14686 type = resolve_typename_type (type,
14687 /*only_current_p=*/false);
14688 if (type == error_mark_node)
14690 cp_parser_abort_tentative_parse (parser);
14691 return false;
14694 pop_p = push_scope (type);
14697 /* Inside the constructor parameter list, surrounding
14698 template-parameter-lists do not apply. */
14699 saved_num_template_parameter_lists
14700 = parser->num_template_parameter_lists;
14701 parser->num_template_parameter_lists = 0;
14703 /* Look for the type-specifier. */
14704 cp_parser_type_specifier (parser,
14705 CP_PARSER_FLAGS_NONE,
14706 /*decl_specs=*/NULL,
14707 /*is_declarator=*/true,
14708 /*declares_class_or_enum=*/NULL,
14709 /*is_cv_qualifier=*/NULL);
14711 parser->num_template_parameter_lists
14712 = saved_num_template_parameter_lists;
14714 /* Leave the scope of the class. */
14715 if (pop_p)
14716 pop_scope (type);
14718 constructor_p = !cp_parser_error_occurred (parser);
14721 else
14722 constructor_p = false;
14723 /* We did not really want to consume any tokens. */
14724 cp_parser_abort_tentative_parse (parser);
14726 return constructor_p;
14729 /* Parse the definition of the function given by the DECL_SPECIFIERS,
14730 ATTRIBUTES, and DECLARATOR. The access checks have been deferred;
14731 they must be performed once we are in the scope of the function.
14733 Returns the function defined. */
14735 static tree
14736 cp_parser_function_definition_from_specifiers_and_declarator
14737 (cp_parser* parser,
14738 cp_decl_specifier_seq *decl_specifiers,
14739 tree attributes,
14740 const cp_declarator *declarator)
14742 tree fn;
14743 bool success_p;
14745 /* Begin the function-definition. */
14746 success_p = start_function (decl_specifiers, declarator, attributes);
14748 /* The things we're about to see are not directly qualified by any
14749 template headers we've seen thus far. */
14750 reset_specialization ();
14752 /* If there were names looked up in the decl-specifier-seq that we
14753 did not check, check them now. We must wait until we are in the
14754 scope of the function to perform the checks, since the function
14755 might be a friend. */
14756 perform_deferred_access_checks ();
14758 if (!success_p)
14760 /* Skip the entire function. */
14761 error ("invalid function declaration");
14762 cp_parser_skip_to_end_of_block_or_statement (parser);
14763 fn = error_mark_node;
14765 else
14766 fn = cp_parser_function_definition_after_declarator (parser,
14767 /*inline_p=*/false);
14769 return fn;
14772 /* Parse the part of a function-definition that follows the
14773 declarator. INLINE_P is TRUE iff this function is an inline
14774 function defined with a class-specifier.
14776 Returns the function defined. */
14778 static tree
14779 cp_parser_function_definition_after_declarator (cp_parser* parser,
14780 bool inline_p)
14782 tree fn;
14783 bool ctor_initializer_p = false;
14784 bool saved_in_unbraced_linkage_specification_p;
14785 unsigned saved_num_template_parameter_lists;
14787 /* If the next token is `return', then the code may be trying to
14788 make use of the "named return value" extension that G++ used to
14789 support. */
14790 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_RETURN))
14792 /* Consume the `return' keyword. */
14793 cp_lexer_consume_token (parser->lexer);
14794 /* Look for the identifier that indicates what value is to be
14795 returned. */
14796 cp_parser_identifier (parser);
14797 /* Issue an error message. */
14798 error ("named return values are no longer supported");
14799 /* Skip tokens until we reach the start of the function body. */
14800 while (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE)
14801 && cp_lexer_next_token_is_not (parser->lexer, CPP_EOF))
14802 cp_lexer_consume_token (parser->lexer);
14804 /* The `extern' in `extern "C" void f () { ... }' does not apply to
14805 anything declared inside `f'. */
14806 saved_in_unbraced_linkage_specification_p
14807 = parser->in_unbraced_linkage_specification_p;
14808 parser->in_unbraced_linkage_specification_p = false;
14809 /* Inside the function, surrounding template-parameter-lists do not
14810 apply. */
14811 saved_num_template_parameter_lists
14812 = parser->num_template_parameter_lists;
14813 parser->num_template_parameter_lists = 0;
14814 /* If the next token is `try', then we are looking at a
14815 function-try-block. */
14816 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TRY))
14817 ctor_initializer_p = cp_parser_function_try_block (parser);
14818 /* A function-try-block includes the function-body, so we only do
14819 this next part if we're not processing a function-try-block. */
14820 else
14821 ctor_initializer_p
14822 = cp_parser_ctor_initializer_opt_and_function_body (parser);
14824 /* Finish the function. */
14825 fn = finish_function ((ctor_initializer_p ? 1 : 0) |
14826 (inline_p ? 2 : 0));
14827 /* Generate code for it, if necessary. */
14828 expand_or_defer_fn (fn);
14829 /* Restore the saved values. */
14830 parser->in_unbraced_linkage_specification_p
14831 = saved_in_unbraced_linkage_specification_p;
14832 parser->num_template_parameter_lists
14833 = saved_num_template_parameter_lists;
14835 return fn;
14838 /* Parse a template-declaration, assuming that the `export' (and
14839 `extern') keywords, if present, has already been scanned. MEMBER_P
14840 is as for cp_parser_template_declaration. */
14842 static void
14843 cp_parser_template_declaration_after_export (cp_parser* parser, bool member_p)
14845 tree decl = NULL_TREE;
14846 tree parameter_list;
14847 bool friend_p = false;
14849 /* Look for the `template' keyword. */
14850 if (!cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'"))
14851 return;
14853 /* And the `<'. */
14854 if (!cp_parser_require (parser, CPP_LESS, "`<'"))
14855 return;
14857 /* If the next token is `>', then we have an invalid
14858 specialization. Rather than complain about an invalid template
14859 parameter, issue an error message here. */
14860 if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
14862 cp_parser_error (parser, "invalid explicit specialization");
14863 begin_specialization ();
14864 parameter_list = NULL_TREE;
14866 else
14868 /* Parse the template parameters. */
14869 begin_template_parm_list ();
14870 parameter_list = cp_parser_template_parameter_list (parser);
14871 parameter_list = end_template_parm_list (parameter_list);
14874 /* Look for the `>'. */
14875 cp_parser_skip_until_found (parser, CPP_GREATER, "`>'");
14876 /* We just processed one more parameter list. */
14877 ++parser->num_template_parameter_lists;
14878 /* If the next token is `template', there are more template
14879 parameters. */
14880 if (cp_lexer_next_token_is_keyword (parser->lexer,
14881 RID_TEMPLATE))
14882 cp_parser_template_declaration_after_export (parser, member_p);
14883 else
14885 /* There are no access checks when parsing a template, as we do not
14886 know if a specialization will be a friend. */
14887 push_deferring_access_checks (dk_no_check);
14889 decl = cp_parser_single_declaration (parser,
14890 member_p,
14891 &friend_p);
14893 pop_deferring_access_checks ();
14895 /* If this is a member template declaration, let the front
14896 end know. */
14897 if (member_p && !friend_p && decl)
14899 if (TREE_CODE (decl) == TYPE_DECL)
14900 cp_parser_check_access_in_redeclaration (decl);
14902 decl = finish_member_template_decl (decl);
14904 else if (friend_p && decl && TREE_CODE (decl) == TYPE_DECL)
14905 make_friend_class (current_class_type, TREE_TYPE (decl),
14906 /*complain=*/true);
14908 /* We are done with the current parameter list. */
14909 --parser->num_template_parameter_lists;
14911 /* Finish up. */
14912 finish_template_decl (parameter_list);
14914 /* Register member declarations. */
14915 if (member_p && !friend_p && decl && !DECL_CLASS_TEMPLATE_P (decl))
14916 finish_member_declaration (decl);
14918 /* If DECL is a function template, we must return to parse it later.
14919 (Even though there is no definition, there might be default
14920 arguments that need handling.) */
14921 if (member_p && decl
14922 && (TREE_CODE (decl) == FUNCTION_DECL
14923 || DECL_FUNCTION_TEMPLATE_P (decl)))
14924 TREE_VALUE (parser->unparsed_functions_queues)
14925 = tree_cons (NULL_TREE, decl,
14926 TREE_VALUE (parser->unparsed_functions_queues));
14929 /* Parse a `decl-specifier-seq [opt] init-declarator [opt] ;' or
14930 `function-definition' sequence. MEMBER_P is true, this declaration
14931 appears in a class scope.
14933 Returns the DECL for the declared entity. If FRIEND_P is non-NULL,
14934 *FRIEND_P is set to TRUE iff the declaration is a friend. */
14936 static tree
14937 cp_parser_single_declaration (cp_parser* parser,
14938 bool member_p,
14939 bool* friend_p)
14941 int declares_class_or_enum;
14942 tree decl = NULL_TREE;
14943 cp_decl_specifier_seq decl_specifiers;
14944 bool function_definition_p = false;
14946 /* Defer access checks until we know what is being declared. */
14947 push_deferring_access_checks (dk_deferred);
14949 /* Try the `decl-specifier-seq [opt] init-declarator [opt]'
14950 alternative. */
14951 cp_parser_decl_specifier_seq (parser,
14952 CP_PARSER_FLAGS_OPTIONAL,
14953 &decl_specifiers,
14954 &declares_class_or_enum);
14955 if (friend_p)
14956 *friend_p = cp_parser_friend_p (&decl_specifiers);
14957 /* Gather up the access checks that occurred the
14958 decl-specifier-seq. */
14959 stop_deferring_access_checks ();
14961 /* Check for the declaration of a template class. */
14962 if (declares_class_or_enum)
14964 if (cp_parser_declares_only_class_p (parser))
14966 decl = shadow_tag (&decl_specifiers);
14967 if (decl && decl != error_mark_node)
14968 decl = TYPE_NAME (decl);
14969 else
14970 decl = error_mark_node;
14973 else
14974 decl = NULL_TREE;
14975 /* If it's not a template class, try for a template function. If
14976 the next token is a `;', then this declaration does not declare
14977 anything. But, if there were errors in the decl-specifiers, then
14978 the error might well have come from an attempted class-specifier.
14979 In that case, there's no need to warn about a missing declarator. */
14980 if (!decl
14981 && (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)
14982 || decl_specifiers.type != error_mark_node))
14983 decl = cp_parser_init_declarator (parser,
14984 &decl_specifiers,
14985 /*function_definition_allowed_p=*/true,
14986 member_p,
14987 declares_class_or_enum,
14988 &function_definition_p);
14990 pop_deferring_access_checks ();
14992 /* Clear any current qualification; whatever comes next is the start
14993 of something new. */
14994 parser->scope = NULL_TREE;
14995 parser->qualifying_scope = NULL_TREE;
14996 parser->object_scope = NULL_TREE;
14997 /* Look for a trailing `;' after the declaration. */
14998 if (!function_definition_p
14999 && !cp_parser_require (parser, CPP_SEMICOLON, "`;'"))
15000 cp_parser_skip_to_end_of_block_or_statement (parser);
15002 return decl;
15005 /* Parse a cast-expression that is not the operand of a unary "&". */
15007 static tree
15008 cp_parser_simple_cast_expression (cp_parser *parser)
15010 return cp_parser_cast_expression (parser, /*address_p=*/false);
15013 /* Parse a functional cast to TYPE. Returns an expression
15014 representing the cast. */
15016 static tree
15017 cp_parser_functional_cast (cp_parser* parser, tree type)
15019 tree expression_list;
15020 tree cast;
15022 expression_list
15023 = cp_parser_parenthesized_expression_list (parser, false,
15024 /*non_constant_p=*/NULL);
15026 cast = build_functional_cast (type, expression_list);
15027 /* [expr.const]/1: In an integral constant expression "only type
15028 conversions to integral or enumeration type can be used". */
15029 if (cast != error_mark_node && !type_dependent_expression_p (type)
15030 && !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (type)))
15032 if (cp_parser_non_integral_constant_expression
15033 (parser, "a call to a constructor"))
15034 return error_mark_node;
15036 return cast;
15039 /* Save the tokens that make up the body of a member function defined
15040 in a class-specifier. The DECL_SPECIFIERS and DECLARATOR have
15041 already been parsed. The ATTRIBUTES are any GNU "__attribute__"
15042 specifiers applied to the declaration. Returns the FUNCTION_DECL
15043 for the member function. */
15045 static tree
15046 cp_parser_save_member_function_body (cp_parser* parser,
15047 cp_decl_specifier_seq *decl_specifiers,
15048 cp_declarator *declarator,
15049 tree attributes)
15051 cp_token_cache *cache;
15052 tree fn;
15054 /* Create the function-declaration. */
15055 fn = start_method (decl_specifiers, declarator, attributes);
15056 /* If something went badly wrong, bail out now. */
15057 if (fn == error_mark_node)
15059 /* If there's a function-body, skip it. */
15060 if (cp_parser_token_starts_function_definition_p
15061 (cp_lexer_peek_token (parser->lexer)))
15062 cp_parser_skip_to_end_of_block_or_statement (parser);
15063 return error_mark_node;
15066 /* Remember it, if there default args to post process. */
15067 cp_parser_save_default_args (parser, fn);
15069 /* Create a token cache. */
15070 cache = cp_token_cache_new ();
15071 /* Save away the tokens that make up the body of the
15072 function. */
15073 cp_parser_cache_group (parser, cache, CPP_CLOSE_BRACE, /*depth=*/0);
15074 /* Handle function try blocks. */
15075 while (cp_lexer_next_token_is_keyword (parser->lexer, RID_CATCH))
15076 cp_parser_cache_group (parser, cache, CPP_CLOSE_BRACE, /*depth=*/0);
15078 /* Save away the inline definition; we will process it when the
15079 class is complete. */
15080 DECL_PENDING_INLINE_INFO (fn) = cache;
15081 DECL_PENDING_INLINE_P (fn) = 1;
15083 /* We need to know that this was defined in the class, so that
15084 friend templates are handled correctly. */
15085 DECL_INITIALIZED_IN_CLASS_P (fn) = 1;
15087 /* We're done with the inline definition. */
15088 finish_method (fn);
15090 /* Add FN to the queue of functions to be parsed later. */
15091 TREE_VALUE (parser->unparsed_functions_queues)
15092 = tree_cons (NULL_TREE, fn,
15093 TREE_VALUE (parser->unparsed_functions_queues));
15095 return fn;
15098 /* Parse a template-argument-list, as well as the trailing ">" (but
15099 not the opening ">"). See cp_parser_template_argument_list for the
15100 return value. */
15102 static tree
15103 cp_parser_enclosed_template_argument_list (cp_parser* parser)
15105 tree arguments;
15106 tree saved_scope;
15107 tree saved_qualifying_scope;
15108 tree saved_object_scope;
15109 bool saved_greater_than_is_operator_p;
15111 /* [temp.names]
15113 When parsing a template-id, the first non-nested `>' is taken as
15114 the end of the template-argument-list rather than a greater-than
15115 operator. */
15116 saved_greater_than_is_operator_p
15117 = parser->greater_than_is_operator_p;
15118 parser->greater_than_is_operator_p = false;
15119 /* Parsing the argument list may modify SCOPE, so we save it
15120 here. */
15121 saved_scope = parser->scope;
15122 saved_qualifying_scope = parser->qualifying_scope;
15123 saved_object_scope = parser->object_scope;
15124 /* Parse the template-argument-list itself. */
15125 if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
15126 arguments = NULL_TREE;
15127 else
15128 arguments = cp_parser_template_argument_list (parser);
15129 /* Look for the `>' that ends the template-argument-list. If we find
15130 a '>>' instead, it's probably just a typo. */
15131 if (cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
15133 if (!saved_greater_than_is_operator_p)
15135 /* If we're in a nested template argument list, the '>>' has to be
15136 a typo for '> >'. We emit the error message, but we continue
15137 parsing and we push a '>' as next token, so that the argument
15138 list will be parsed correctly.. */
15139 cp_token* token;
15140 error ("`>>' should be `> >' within a nested template argument list");
15141 token = cp_lexer_peek_token (parser->lexer);
15142 token->type = CPP_GREATER;
15144 else
15146 /* If this is not a nested template argument list, the '>>' is
15147 a typo for '>'. Emit an error message and continue. */
15148 error ("spurious `>>', use `>' to terminate a template argument list");
15149 cp_lexer_consume_token (parser->lexer);
15152 else if (!cp_parser_require (parser, CPP_GREATER, "`>'"))
15153 error ("missing `>' to terminate the template argument list");
15154 /* The `>' token might be a greater-than operator again now. */
15155 parser->greater_than_is_operator_p
15156 = saved_greater_than_is_operator_p;
15157 /* Restore the SAVED_SCOPE. */
15158 parser->scope = saved_scope;
15159 parser->qualifying_scope = saved_qualifying_scope;
15160 parser->object_scope = saved_object_scope;
15162 return arguments;
15165 /* MEMBER_FUNCTION is a member function, or a friend. If default
15166 arguments, or the body of the function have not yet been parsed,
15167 parse them now. */
15169 static void
15170 cp_parser_late_parsing_for_member (cp_parser* parser, tree member_function)
15172 cp_lexer *saved_lexer;
15174 /* If this member is a template, get the underlying
15175 FUNCTION_DECL. */
15176 if (DECL_FUNCTION_TEMPLATE_P (member_function))
15177 member_function = DECL_TEMPLATE_RESULT (member_function);
15179 /* There should not be any class definitions in progress at this
15180 point; the bodies of members are only parsed outside of all class
15181 definitions. */
15182 my_friendly_assert (parser->num_classes_being_defined == 0, 20010816);
15183 /* While we're parsing the member functions we might encounter more
15184 classes. We want to handle them right away, but we don't want
15185 them getting mixed up with functions that are currently in the
15186 queue. */
15187 parser->unparsed_functions_queues
15188 = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
15190 /* Make sure that any template parameters are in scope. */
15191 maybe_begin_member_template_processing (member_function);
15193 /* If the body of the function has not yet been parsed, parse it
15194 now. */
15195 if (DECL_PENDING_INLINE_P (member_function))
15197 tree function_scope;
15198 cp_token_cache *tokens;
15200 /* The function is no longer pending; we are processing it. */
15201 tokens = DECL_PENDING_INLINE_INFO (member_function);
15202 DECL_PENDING_INLINE_INFO (member_function) = NULL;
15203 DECL_PENDING_INLINE_P (member_function) = 0;
15204 /* If this was an inline function in a local class, enter the scope
15205 of the containing function. */
15206 function_scope = decl_function_context (member_function);
15207 if (function_scope)
15208 push_function_context_to (function_scope);
15210 /* Save away the current lexer. */
15211 saved_lexer = parser->lexer;
15212 /* Make a new lexer to feed us the tokens saved for this function. */
15213 parser->lexer = cp_lexer_new_from_tokens (tokens);
15214 parser->lexer->next = saved_lexer;
15216 /* Set the current source position to be the location of the first
15217 token in the saved inline body. */
15218 cp_lexer_peek_token (parser->lexer);
15220 /* Let the front end know that we going to be defining this
15221 function. */
15222 start_preparsed_function (member_function, NULL_TREE,
15223 SF_PRE_PARSED | SF_INCLASS_INLINE);
15225 /* Now, parse the body of the function. */
15226 cp_parser_function_definition_after_declarator (parser,
15227 /*inline_p=*/true);
15229 /* Leave the scope of the containing function. */
15230 if (function_scope)
15231 pop_function_context_from (function_scope);
15232 /* Restore the lexer. */
15233 parser->lexer = saved_lexer;
15236 /* Remove any template parameters from the symbol table. */
15237 maybe_end_member_template_processing ();
15239 /* Restore the queue. */
15240 parser->unparsed_functions_queues
15241 = TREE_CHAIN (parser->unparsed_functions_queues);
15244 /* If DECL contains any default args, remember it on the unparsed
15245 functions queue. */
15247 static void
15248 cp_parser_save_default_args (cp_parser* parser, tree decl)
15250 tree probe;
15252 for (probe = TYPE_ARG_TYPES (TREE_TYPE (decl));
15253 probe;
15254 probe = TREE_CHAIN (probe))
15255 if (TREE_PURPOSE (probe))
15257 TREE_PURPOSE (parser->unparsed_functions_queues)
15258 = tree_cons (current_class_type, decl,
15259 TREE_PURPOSE (parser->unparsed_functions_queues));
15260 break;
15262 return;
15265 /* FN is a FUNCTION_DECL which may contains a parameter with an
15266 unparsed DEFAULT_ARG. Parse the default args now. This function
15267 assumes that the current scope is the scope in which the default
15268 argument should be processed. */
15270 static void
15271 cp_parser_late_parsing_default_args (cp_parser *parser, tree fn)
15273 cp_lexer *saved_lexer;
15274 cp_token_cache *tokens;
15275 bool saved_local_variables_forbidden_p;
15276 tree parameters;
15278 /* While we're parsing the default args, we might (due to the
15279 statement expression extension) encounter more classes. We want
15280 to handle them right away, but we don't want them getting mixed
15281 up with default args that are currently in the queue. */
15282 parser->unparsed_functions_queues
15283 = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
15285 for (parameters = TYPE_ARG_TYPES (TREE_TYPE (fn));
15286 parameters;
15287 parameters = TREE_CHAIN (parameters))
15289 if (!TREE_PURPOSE (parameters)
15290 || TREE_CODE (TREE_PURPOSE (parameters)) != DEFAULT_ARG)
15291 continue;
15293 /* Save away the current lexer. */
15294 saved_lexer = parser->lexer;
15295 /* Create a new one, using the tokens we have saved. */
15296 tokens = DEFARG_TOKENS (TREE_PURPOSE (parameters));
15297 parser->lexer = cp_lexer_new_from_tokens (tokens);
15299 /* Set the current source position to be the location of the
15300 first token in the default argument. */
15301 cp_lexer_peek_token (parser->lexer);
15303 /* Local variable names (and the `this' keyword) may not appear
15304 in a default argument. */
15305 saved_local_variables_forbidden_p = parser->local_variables_forbidden_p;
15306 parser->local_variables_forbidden_p = true;
15307 /* Parse the assignment-expression. */
15308 TREE_PURPOSE (parameters) = cp_parser_assignment_expression (parser);
15310 /* If the token stream has not been completely used up, then
15311 there was extra junk after the end of the default
15312 argument. */
15313 if (!cp_lexer_next_token_is (parser->lexer, CPP_EOF))
15314 cp_parser_error (parser, "expected `,'");
15316 /* Restore saved state. */
15317 parser->lexer = saved_lexer;
15318 parser->local_variables_forbidden_p = saved_local_variables_forbidden_p;
15321 /* Restore the queue. */
15322 parser->unparsed_functions_queues
15323 = TREE_CHAIN (parser->unparsed_functions_queues);
15326 /* Parse the operand of `sizeof' (or a similar operator). Returns
15327 either a TYPE or an expression, depending on the form of the
15328 input. The KEYWORD indicates which kind of expression we have
15329 encountered. */
15331 static tree
15332 cp_parser_sizeof_operand (cp_parser* parser, enum rid keyword)
15334 static const char *format;
15335 tree expr = NULL_TREE;
15336 const char *saved_message;
15337 bool saved_integral_constant_expression_p;
15339 /* Initialize FORMAT the first time we get here. */
15340 if (!format)
15341 format = "types may not be defined in `%s' expressions";
15343 /* Types cannot be defined in a `sizeof' expression. Save away the
15344 old message. */
15345 saved_message = parser->type_definition_forbidden_message;
15346 /* And create the new one. */
15347 parser->type_definition_forbidden_message
15348 = xmalloc (strlen (format)
15349 + strlen (IDENTIFIER_POINTER (ridpointers[keyword]))
15350 + 1 /* `\0' */);
15351 sprintf ((char *) parser->type_definition_forbidden_message,
15352 format, IDENTIFIER_POINTER (ridpointers[keyword]));
15354 /* The restrictions on constant-expressions do not apply inside
15355 sizeof expressions. */
15356 saved_integral_constant_expression_p = parser->integral_constant_expression_p;
15357 parser->integral_constant_expression_p = false;
15359 /* Do not actually evaluate the expression. */
15360 ++skip_evaluation;
15361 /* If it's a `(', then we might be looking at the type-id
15362 construction. */
15363 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
15365 tree type;
15366 bool saved_in_type_id_in_expr_p;
15368 /* We can't be sure yet whether we're looking at a type-id or an
15369 expression. */
15370 cp_parser_parse_tentatively (parser);
15371 /* Consume the `('. */
15372 cp_lexer_consume_token (parser->lexer);
15373 /* Parse the type-id. */
15374 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
15375 parser->in_type_id_in_expr_p = true;
15376 type = cp_parser_type_id (parser);
15377 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
15378 /* Now, look for the trailing `)'. */
15379 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
15380 /* If all went well, then we're done. */
15381 if (cp_parser_parse_definitely (parser))
15383 cp_decl_specifier_seq decl_specs;
15385 /* Build a trivial decl-specifier-seq. */
15386 clear_decl_specs (&decl_specs);
15387 decl_specs.type = type;
15389 /* Call grokdeclarator to figure out what type this is. */
15390 expr = grokdeclarator (NULL,
15391 &decl_specs,
15392 TYPENAME,
15393 /*initialized=*/0,
15394 /*attrlist=*/NULL);
15398 /* If the type-id production did not work out, then we must be
15399 looking at the unary-expression production. */
15400 if (!expr)
15401 expr = cp_parser_unary_expression (parser, /*address_p=*/false);
15402 /* Go back to evaluating expressions. */
15403 --skip_evaluation;
15405 /* Free the message we created. */
15406 free ((char *) parser->type_definition_forbidden_message);
15407 /* And restore the old one. */
15408 parser->type_definition_forbidden_message = saved_message;
15409 parser->integral_constant_expression_p = saved_integral_constant_expression_p;
15411 return expr;
15414 /* If the current declaration has no declarator, return true. */
15416 static bool
15417 cp_parser_declares_only_class_p (cp_parser *parser)
15419 /* If the next token is a `;' or a `,' then there is no
15420 declarator. */
15421 return (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
15422 || cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
15425 /* Update the DECL_SPECS to reflect the STORAGE_CLASS. */
15427 static void
15428 cp_parser_set_storage_class (cp_decl_specifier_seq *decl_specs,
15429 cp_storage_class storage_class)
15431 if (decl_specs->storage_class != sc_none)
15432 decl_specs->multiple_storage_classes_p = true;
15433 else
15434 decl_specs->storage_class = storage_class;
15437 /* Update the DECL_SPECS to reflect the TYPE_SPEC. If USER_DEFINED_P
15438 is true, the type is a user-defined type; otherwise it is a
15439 built-in type specified by a keyword. */
15441 static void
15442 cp_parser_set_decl_spec_type (cp_decl_specifier_seq *decl_specs,
15443 tree type_spec,
15444 bool user_defined_p)
15446 decl_specs->any_specifiers_p = true;
15448 /* If the user tries to redeclare a built-in type (with, for example,
15449 in "typedef int wchar_t;") we remember that this is what
15450 happened. In system headers, we ignore these declarations so
15451 that G++ can work with system headers that are not C++-safe. */
15452 if (decl_specs->specs[(int) ds_typedef]
15453 && !user_defined_p
15454 && (decl_specs->type
15455 || decl_specs->specs[(int) ds_long]
15456 || decl_specs->specs[(int) ds_short]
15457 || decl_specs->specs[(int) ds_unsigned]
15458 || decl_specs->specs[(int) ds_signed]))
15460 decl_specs->redefined_builtin_type = type_spec;
15461 if (!decl_specs->type)
15463 decl_specs->type = type_spec;
15464 decl_specs->user_defined_type_p = false;
15467 else if (decl_specs->type)
15468 decl_specs->multiple_types_p = true;
15469 else
15471 decl_specs->type = type_spec;
15472 decl_specs->user_defined_type_p = user_defined_p;
15473 decl_specs->redefined_builtin_type = NULL_TREE;
15477 /* DECL_SPECIFIERS is the representation of a decl-specifier-seq.
15478 Returns TRUE iff `friend' appears among the DECL_SPECIFIERS. */
15480 static bool
15481 cp_parser_friend_p (const cp_decl_specifier_seq *decl_specifiers)
15483 return decl_specifiers->specs[(int) ds_friend] != 0;
15486 /* If the next token is of the indicated TYPE, consume it. Otherwise,
15487 issue an error message indicating that TOKEN_DESC was expected.
15489 Returns the token consumed, if the token had the appropriate type.
15490 Otherwise, returns NULL. */
15492 static cp_token *
15493 cp_parser_require (cp_parser* parser,
15494 enum cpp_ttype type,
15495 const char* token_desc)
15497 if (cp_lexer_next_token_is (parser->lexer, type))
15498 return cp_lexer_consume_token (parser->lexer);
15499 else
15501 /* Output the MESSAGE -- unless we're parsing tentatively. */
15502 if (!cp_parser_simulate_error (parser))
15504 char *message = concat ("expected ", token_desc, NULL);
15505 cp_parser_error (parser, message);
15506 free (message);
15508 return NULL;
15512 /* Like cp_parser_require, except that tokens will be skipped until
15513 the desired token is found. An error message is still produced if
15514 the next token is not as expected. */
15516 static void
15517 cp_parser_skip_until_found (cp_parser* parser,
15518 enum cpp_ttype type,
15519 const char* token_desc)
15521 cp_token *token;
15522 unsigned nesting_depth = 0;
15524 if (cp_parser_require (parser, type, token_desc))
15525 return;
15527 /* Skip tokens until the desired token is found. */
15528 while (true)
15530 /* Peek at the next token. */
15531 token = cp_lexer_peek_token (parser->lexer);
15532 /* If we've reached the token we want, consume it and
15533 stop. */
15534 if (token->type == type && !nesting_depth)
15536 cp_lexer_consume_token (parser->lexer);
15537 return;
15539 /* If we've run out of tokens, stop. */
15540 if (token->type == CPP_EOF)
15541 return;
15542 if (token->type == CPP_OPEN_BRACE
15543 || token->type == CPP_OPEN_PAREN
15544 || token->type == CPP_OPEN_SQUARE)
15545 ++nesting_depth;
15546 else if (token->type == CPP_CLOSE_BRACE
15547 || token->type == CPP_CLOSE_PAREN
15548 || token->type == CPP_CLOSE_SQUARE)
15550 if (nesting_depth-- == 0)
15551 return;
15553 /* Consume this token. */
15554 cp_lexer_consume_token (parser->lexer);
15558 /* If the next token is the indicated keyword, consume it. Otherwise,
15559 issue an error message indicating that TOKEN_DESC was expected.
15561 Returns the token consumed, if the token had the appropriate type.
15562 Otherwise, returns NULL. */
15564 static cp_token *
15565 cp_parser_require_keyword (cp_parser* parser,
15566 enum rid keyword,
15567 const char* token_desc)
15569 cp_token *token = cp_parser_require (parser, CPP_KEYWORD, token_desc);
15571 if (token && token->keyword != keyword)
15573 dyn_string_t error_msg;
15575 /* Format the error message. */
15576 error_msg = dyn_string_new (0);
15577 dyn_string_append_cstr (error_msg, "expected ");
15578 dyn_string_append_cstr (error_msg, token_desc);
15579 cp_parser_error (parser, error_msg->s);
15580 dyn_string_delete (error_msg);
15581 return NULL;
15584 return token;
15587 /* Returns TRUE iff TOKEN is a token that can begin the body of a
15588 function-definition. */
15590 static bool
15591 cp_parser_token_starts_function_definition_p (cp_token* token)
15593 return (/* An ordinary function-body begins with an `{'. */
15594 token->type == CPP_OPEN_BRACE
15595 /* A ctor-initializer begins with a `:'. */
15596 || token->type == CPP_COLON
15597 /* A function-try-block begins with `try'. */
15598 || token->keyword == RID_TRY
15599 /* The named return value extension begins with `return'. */
15600 || token->keyword == RID_RETURN);
15603 /* Returns TRUE iff the next token is the ":" or "{" beginning a class
15604 definition. */
15606 static bool
15607 cp_parser_next_token_starts_class_definition_p (cp_parser *parser)
15609 cp_token *token;
15611 token = cp_lexer_peek_token (parser->lexer);
15612 return (token->type == CPP_OPEN_BRACE || token->type == CPP_COLON);
15615 /* Returns TRUE iff the next token is the "," or ">" ending a
15616 template-argument. ">>" is also accepted (after the full
15617 argument was parsed) because it's probably a typo for "> >",
15618 and there is a specific diagnostic for this. */
15620 static bool
15621 cp_parser_next_token_ends_template_argument_p (cp_parser *parser)
15623 cp_token *token;
15625 token = cp_lexer_peek_token (parser->lexer);
15626 return (token->type == CPP_COMMA || token->type == CPP_GREATER
15627 || token->type == CPP_RSHIFT);
15630 /* Returns TRUE iff the n-th token is a ">", or the n-th is a "[" and the
15631 (n+1)-th is a ":" (which is a possible digraph typo for "< ::"). */
15633 static bool
15634 cp_parser_nth_token_starts_template_argument_list_p (cp_parser * parser,
15635 size_t n)
15637 cp_token *token;
15639 token = cp_lexer_peek_nth_token (parser->lexer, n);
15640 if (token->type == CPP_LESS)
15641 return true;
15642 /* Check for the sequence `<::' in the original code. It would be lexed as
15643 `[:', where `[' is a digraph, and there is no whitespace before
15644 `:'. */
15645 if (token->type == CPP_OPEN_SQUARE && token->flags & DIGRAPH)
15647 cp_token *token2;
15648 token2 = cp_lexer_peek_nth_token (parser->lexer, n+1);
15649 if (token2->type == CPP_COLON && !(token2->flags & PREV_WHITE))
15650 return true;
15652 return false;
15655 /* Returns the kind of tag indicated by TOKEN, if it is a class-key,
15656 or none_type otherwise. */
15658 static enum tag_types
15659 cp_parser_token_is_class_key (cp_token* token)
15661 switch (token->keyword)
15663 case RID_CLASS:
15664 return class_type;
15665 case RID_STRUCT:
15666 return record_type;
15667 case RID_UNION:
15668 return union_type;
15670 default:
15671 return none_type;
15675 /* Issue an error message if the CLASS_KEY does not match the TYPE. */
15677 static void
15678 cp_parser_check_class_key (enum tag_types class_key, tree type)
15680 if ((TREE_CODE (type) == UNION_TYPE) != (class_key == union_type))
15681 pedwarn ("`%s' tag used in naming `%#T'",
15682 class_key == union_type ? "union"
15683 : class_key == record_type ? "struct" : "class",
15684 type);
15687 /* Issue an error message if DECL is redeclared with different
15688 access than its original declaration [class.access.spec/3].
15689 This applies to nested classes and nested class templates.
15690 [class.mem/1]. */
15692 static void cp_parser_check_access_in_redeclaration (tree decl)
15694 if (!CLASS_TYPE_P (TREE_TYPE (decl)))
15695 return;
15697 if ((TREE_PRIVATE (decl)
15698 != (current_access_specifier == access_private_node))
15699 || (TREE_PROTECTED (decl)
15700 != (current_access_specifier == access_protected_node)))
15701 error ("%D redeclared with different access", decl);
15704 /* Look for the `template' keyword, as a syntactic disambiguator.
15705 Return TRUE iff it is present, in which case it will be
15706 consumed. */
15708 static bool
15709 cp_parser_optional_template_keyword (cp_parser *parser)
15711 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
15713 /* The `template' keyword can only be used within templates;
15714 outside templates the parser can always figure out what is a
15715 template and what is not. */
15716 if (!processing_template_decl)
15718 error ("`template' (as a disambiguator) is only allowed "
15719 "within templates");
15720 /* If this part of the token stream is rescanned, the same
15721 error message would be generated. So, we purge the token
15722 from the stream. */
15723 cp_lexer_purge_token (parser->lexer);
15724 return false;
15726 else
15728 /* Consume the `template' keyword. */
15729 cp_lexer_consume_token (parser->lexer);
15730 return true;
15734 return false;
15737 /* The next token is a CPP_NESTED_NAME_SPECIFIER. Consume the token,
15738 set PARSER->SCOPE, and perform other related actions. */
15740 static void
15741 cp_parser_pre_parsed_nested_name_specifier (cp_parser *parser)
15743 tree value;
15744 tree check;
15746 /* Get the stored value. */
15747 value = cp_lexer_consume_token (parser->lexer)->value;
15748 /* Perform any access checks that were deferred. */
15749 for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
15750 perform_or_defer_access_check (TREE_PURPOSE (check), TREE_VALUE (check));
15751 /* Set the scope from the stored value. */
15752 parser->scope = TREE_VALUE (value);
15753 parser->qualifying_scope = TREE_TYPE (value);
15754 parser->object_scope = NULL_TREE;
15757 /* Add tokens to CACHE until a non-nested END token appears. */
15759 static void
15760 cp_parser_cache_group_1 (cp_parser *parser,
15761 cp_token_cache *cache,
15762 enum cpp_ttype end,
15763 unsigned depth)
15765 while (true)
15767 cp_token *token;
15769 /* Abort a parenthesized expression if we encounter a brace. */
15770 if ((end == CPP_CLOSE_PAREN || depth == 0)
15771 && cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
15772 return;
15773 /* If we've reached the end of the file, stop. */
15774 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
15775 return;
15776 /* Consume the next token. */
15777 token = cp_lexer_consume_token (parser->lexer);
15778 /* Add this token to the tokens we are saving. */
15779 cp_token_cache_push_token (cache, token);
15780 /* See if it starts a new group. */
15781 if (token->type == CPP_OPEN_BRACE)
15783 cp_parser_cache_group_1 (parser, cache, CPP_CLOSE_BRACE, depth + 1);
15784 if (depth == 0)
15785 return;
15787 else if (token->type == CPP_OPEN_PAREN)
15788 cp_parser_cache_group_1 (parser, cache, CPP_CLOSE_PAREN, depth + 1);
15789 else if (token->type == end)
15790 return;
15794 /* Convenient interface for cp_parser_cache_group_1 that makes sure we
15795 preserve string tokens in both translated and untranslated
15796 forms. */
15798 static void
15799 cp_parser_cache_group (cp_parser *parser,
15800 cp_token_cache *cache,
15801 enum cpp_ttype end,
15802 unsigned depth)
15804 int saved_c_lex_string_translate;
15806 saved_c_lex_string_translate = c_lex_string_translate;
15807 c_lex_string_translate = -1;
15809 cp_parser_cache_group_1 (parser, cache, end, depth);
15811 c_lex_string_translate = saved_c_lex_string_translate;
15815 /* Begin parsing tentatively. We always save tokens while parsing
15816 tentatively so that if the tentative parsing fails we can restore the
15817 tokens. */
15819 static void
15820 cp_parser_parse_tentatively (cp_parser* parser)
15822 /* Enter a new parsing context. */
15823 parser->context = cp_parser_context_new (parser->context);
15824 /* Begin saving tokens. */
15825 cp_lexer_save_tokens (parser->lexer);
15826 /* In order to avoid repetitive access control error messages,
15827 access checks are queued up until we are no longer parsing
15828 tentatively. */
15829 push_deferring_access_checks (dk_deferred);
15832 /* Commit to the currently active tentative parse. */
15834 static void
15835 cp_parser_commit_to_tentative_parse (cp_parser* parser)
15837 cp_parser_context *context;
15838 cp_lexer *lexer;
15840 /* Mark all of the levels as committed. */
15841 lexer = parser->lexer;
15842 for (context = parser->context; context->next; context = context->next)
15844 if (context->status == CP_PARSER_STATUS_KIND_COMMITTED)
15845 break;
15846 context->status = CP_PARSER_STATUS_KIND_COMMITTED;
15847 while (!cp_lexer_saving_tokens (lexer))
15848 lexer = lexer->next;
15849 cp_lexer_commit_tokens (lexer);
15853 /* Abort the currently active tentative parse. All consumed tokens
15854 will be rolled back, and no diagnostics will be issued. */
15856 static void
15857 cp_parser_abort_tentative_parse (cp_parser* parser)
15859 cp_parser_simulate_error (parser);
15860 /* Now, pretend that we want to see if the construct was
15861 successfully parsed. */
15862 cp_parser_parse_definitely (parser);
15865 /* Stop parsing tentatively. If a parse error has occurred, restore the
15866 token stream. Otherwise, commit to the tokens we have consumed.
15867 Returns true if no error occurred; false otherwise. */
15869 static bool
15870 cp_parser_parse_definitely (cp_parser* parser)
15872 bool error_occurred;
15873 cp_parser_context *context;
15875 /* Remember whether or not an error occurred, since we are about to
15876 destroy that information. */
15877 error_occurred = cp_parser_error_occurred (parser);
15878 /* Remove the topmost context from the stack. */
15879 context = parser->context;
15880 parser->context = context->next;
15881 /* If no parse errors occurred, commit to the tentative parse. */
15882 if (!error_occurred)
15884 /* Commit to the tokens read tentatively, unless that was
15885 already done. */
15886 if (context->status != CP_PARSER_STATUS_KIND_COMMITTED)
15887 cp_lexer_commit_tokens (parser->lexer);
15889 pop_to_parent_deferring_access_checks ();
15891 /* Otherwise, if errors occurred, roll back our state so that things
15892 are just as they were before we began the tentative parse. */
15893 else
15895 cp_lexer_rollback_tokens (parser->lexer);
15896 pop_deferring_access_checks ();
15898 /* Add the context to the front of the free list. */
15899 context->next = cp_parser_context_free_list;
15900 cp_parser_context_free_list = context;
15902 return !error_occurred;
15905 /* Returns true if we are parsing tentatively -- but have decided that
15906 we will stick with this tentative parse, even if errors occur. */
15908 static bool
15909 cp_parser_committed_to_tentative_parse (cp_parser* parser)
15911 return (cp_parser_parsing_tentatively (parser)
15912 && parser->context->status == CP_PARSER_STATUS_KIND_COMMITTED);
15915 /* Returns nonzero iff an error has occurred during the most recent
15916 tentative parse. */
15918 static bool
15919 cp_parser_error_occurred (cp_parser* parser)
15921 return (cp_parser_parsing_tentatively (parser)
15922 && parser->context->status == CP_PARSER_STATUS_KIND_ERROR);
15925 /* Returns nonzero if GNU extensions are allowed. */
15927 static bool
15928 cp_parser_allow_gnu_extensions_p (cp_parser* parser)
15930 return parser->allow_gnu_extensions_p;
15934 /* The parser. */
15936 static GTY (()) cp_parser *the_parser;
15938 /* External interface. */
15940 /* Parse one entire translation unit. */
15942 void
15943 c_parse_file (void)
15945 bool error_occurred;
15946 static bool already_called = false;
15948 if (already_called)
15950 sorry ("inter-module optimizations not implemented for C++");
15951 return;
15953 already_called = true;
15955 the_parser = cp_parser_new ();
15956 push_deferring_access_checks (flag_access_control
15957 ? dk_no_deferred : dk_no_check);
15958 error_occurred = cp_parser_translation_unit (the_parser);
15959 the_parser = NULL;
15962 /* This variable must be provided by every front end. */
15964 int yydebug;
15966 #include "gt-cp-parser.h"