1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
27 /* Include insn-config.h before expr.h so that HAVE_conditional_move
28 is properly defined. */
29 #include "insn-config.h"
42 /* Each optab contains info on how this target machine
43 can perform a particular operation
44 for all sizes and kinds of operands.
46 The operation to be performed is often specified
47 by passing one of these optabs as an argument.
49 See expr.h for documentation of these optabs. */
51 optab optab_table
[OTI_MAX
];
53 rtx libfunc_table
[LTI_MAX
];
55 /* Tables of patterns for extending one integer mode to another. */
56 enum insn_code extendtab
[MAX_MACHINE_MODE
][MAX_MACHINE_MODE
][2];
58 /* Tables of patterns for converting between fixed and floating point. */
59 enum insn_code fixtab
[NUM_MACHINE_MODES
][NUM_MACHINE_MODES
][2];
60 enum insn_code fixtrunctab
[NUM_MACHINE_MODES
][NUM_MACHINE_MODES
][2];
61 enum insn_code floattab
[NUM_MACHINE_MODES
][NUM_MACHINE_MODES
][2];
63 /* Contains the optab used for each rtx code. */
64 optab code_to_optab
[NUM_RTX_CODE
+ 1];
66 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
67 gives the gen_function to make a branch to test that condition. */
69 rtxfun bcc_gen_fctn
[NUM_RTX_CODE
];
71 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
72 gives the insn code to make a store-condition insn
73 to test that condition. */
75 enum insn_code setcc_gen_code
[NUM_RTX_CODE
];
77 #ifdef HAVE_conditional_move
78 /* Indexed by the machine mode, gives the insn code to make a conditional
79 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
80 setcc_gen_code to cut down on the number of named patterns. Consider a day
81 when a lot more rtx codes are conditional (eg: for the ARM). */
83 enum insn_code movcc_gen_code
[NUM_MACHINE_MODES
];
86 static int add_equal_note
PARAMS ((rtx
, rtx
, enum rtx_code
, rtx
, rtx
));
87 static rtx widen_operand
PARAMS ((rtx
, enum machine_mode
,
88 enum machine_mode
, int, int));
89 static int expand_cmplxdiv_straight
PARAMS ((rtx
, rtx
, rtx
, rtx
,
90 rtx
, rtx
, enum machine_mode
,
91 int, enum optab_methods
,
92 enum mode_class
, optab
));
93 static int expand_cmplxdiv_wide
PARAMS ((rtx
, rtx
, rtx
, rtx
,
94 rtx
, rtx
, enum machine_mode
,
95 int, enum optab_methods
,
96 enum mode_class
, optab
));
97 static enum insn_code can_fix_p
PARAMS ((enum machine_mode
, enum machine_mode
,
99 static enum insn_code can_float_p
PARAMS ((enum machine_mode
, enum machine_mode
,
101 static rtx ftruncify
PARAMS ((rtx
));
102 static optab init_optab
PARAMS ((enum rtx_code
));
103 static void init_libfuncs
PARAMS ((optab
, int, int, const char *, int));
104 static void init_integral_libfuncs
PARAMS ((optab
, const char *, int));
105 static void init_floating_libfuncs
PARAMS ((optab
, const char *, int));
106 #ifdef HAVE_conditional_trap
107 static void init_traps
PARAMS ((void));
109 static void emit_cmp_and_jump_insn_1
PARAMS ((rtx
, rtx
, enum machine_mode
,
110 enum rtx_code
, int, rtx
));
111 static void prepare_float_lib_cmp
PARAMS ((rtx
*, rtx
*, enum rtx_code
*,
112 enum machine_mode
*, int *));
114 /* Add a REG_EQUAL note to the last insn in SEQ. TARGET is being set to
115 the result of operation CODE applied to OP0 (and OP1 if it is a binary
118 If the last insn does not set TARGET, don't do anything, but return 1.
120 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
121 don't add the REG_EQUAL note but return 0. Our caller can then try
122 again, ensuring that TARGET is not one of the operands. */
125 add_equal_note (seq
, target
, code
, op0
, op1
)
135 if ((GET_RTX_CLASS (code
) != '1' && GET_RTX_CLASS (code
) != '2'
136 && GET_RTX_CLASS (code
) != 'c' && GET_RTX_CLASS (code
) != '<')
137 || GET_CODE (seq
) != SEQUENCE
138 || (set
= single_set (XVECEXP (seq
, 0, XVECLEN (seq
, 0) - 1))) == 0
139 || GET_CODE (target
) == ZERO_EXTRACT
140 || (! rtx_equal_p (SET_DEST (set
), target
)
141 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the
143 && (GET_CODE (SET_DEST (set
)) != STRICT_LOW_PART
144 || ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set
), 0)),
148 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
149 besides the last insn. */
150 if (reg_overlap_mentioned_p (target
, op0
)
151 || (op1
&& reg_overlap_mentioned_p (target
, op1
)))
152 for (i
= XVECLEN (seq
, 0) - 2; i
>= 0; i
--)
153 if (reg_set_p (target
, XVECEXP (seq
, 0, i
)))
156 if (GET_RTX_CLASS (code
) == '1')
157 note
= gen_rtx_fmt_e (code
, GET_MODE (target
), copy_rtx (op0
));
159 note
= gen_rtx_fmt_ee (code
, GET_MODE (target
), copy_rtx (op0
), copy_rtx (op1
));
161 set_unique_reg_note (XVECEXP (seq
, 0, XVECLEN (seq
, 0) - 1), REG_EQUAL
, note
);
166 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
167 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
168 not actually do a sign-extend or zero-extend, but can leave the
169 higher-order bits of the result rtx undefined, for example, in the case
170 of logical operations, but not right shifts. */
173 widen_operand (op
, mode
, oldmode
, unsignedp
, no_extend
)
175 enum machine_mode mode
, oldmode
;
181 /* If we must extend do so. If OP is either a constant or a SUBREG
182 for a promoted object, also extend since it will be more efficient to
185 || GET_MODE (op
) == VOIDmode
186 || (GET_CODE (op
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (op
)))
187 return convert_modes (mode
, oldmode
, op
, unsignedp
);
189 /* If MODE is no wider than a single word, we return a paradoxical
191 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
192 return gen_rtx_SUBREG (mode
, force_reg (GET_MODE (op
), op
), 0);
194 /* Otherwise, get an object of MODE, clobber it, and set the low-order
197 result
= gen_reg_rtx (mode
);
198 emit_insn (gen_rtx_CLOBBER (VOIDmode
, result
));
199 emit_move_insn (gen_lowpart (GET_MODE (op
), result
), op
);
203 /* Generate code to perform a straightforward complex divide. */
206 expand_cmplxdiv_straight (real0
, real1
, imag0
, imag1
, realr
, imagr
, submode
,
207 unsignedp
, methods
, class, binoptab
)
208 rtx real0
, real1
, imag0
, imag1
, realr
, imagr
;
209 enum machine_mode submode
;
211 enum optab_methods methods
;
212 enum mode_class
class;
219 optab this_add_optab
= add_optab
;
220 optab this_sub_optab
= sub_optab
;
221 optab this_neg_optab
= neg_optab
;
222 optab this_mul_optab
= smul_optab
;
224 if (binoptab
== sdivv_optab
)
226 this_add_optab
= addv_optab
;
227 this_sub_optab
= subv_optab
;
228 this_neg_optab
= negv_optab
;
229 this_mul_optab
= smulv_optab
;
232 /* Don't fetch these from memory more than once. */
233 real0
= force_reg (submode
, real0
);
234 real1
= force_reg (submode
, real1
);
237 imag0
= force_reg (submode
, imag0
);
239 imag1
= force_reg (submode
, imag1
);
241 /* Divisor: c*c + d*d. */
242 temp1
= expand_binop (submode
, this_mul_optab
, real1
, real1
,
243 NULL_RTX
, unsignedp
, methods
);
245 temp2
= expand_binop (submode
, this_mul_optab
, imag1
, imag1
,
246 NULL_RTX
, unsignedp
, methods
);
248 if (temp1
== 0 || temp2
== 0)
251 divisor
= expand_binop (submode
, this_add_optab
, temp1
, temp2
,
252 NULL_RTX
, unsignedp
, methods
);
258 /* Mathematically, ((a)(c-id))/divisor. */
259 /* Computationally, (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)). */
261 /* Calculate the dividend. */
262 real_t
= expand_binop (submode
, this_mul_optab
, real0
, real1
,
263 NULL_RTX
, unsignedp
, methods
);
265 imag_t
= expand_binop (submode
, this_mul_optab
, real0
, imag1
,
266 NULL_RTX
, unsignedp
, methods
);
268 if (real_t
== 0 || imag_t
== 0)
271 imag_t
= expand_unop (submode
, this_neg_optab
, imag_t
,
272 NULL_RTX
, unsignedp
);
276 /* Mathematically, ((a+ib)(c-id))/divider. */
277 /* Calculate the dividend. */
278 temp1
= expand_binop (submode
, this_mul_optab
, real0
, real1
,
279 NULL_RTX
, unsignedp
, methods
);
281 temp2
= expand_binop (submode
, this_mul_optab
, imag0
, imag1
,
282 NULL_RTX
, unsignedp
, methods
);
284 if (temp1
== 0 || temp2
== 0)
287 real_t
= expand_binop (submode
, this_add_optab
, temp1
, temp2
,
288 NULL_RTX
, unsignedp
, methods
);
290 temp1
= expand_binop (submode
, this_mul_optab
, imag0
, real1
,
291 NULL_RTX
, unsignedp
, methods
);
293 temp2
= expand_binop (submode
, this_mul_optab
, real0
, imag1
,
294 NULL_RTX
, unsignedp
, methods
);
296 if (temp1
== 0 || temp2
== 0)
299 imag_t
= expand_binop (submode
, this_sub_optab
, temp1
, temp2
,
300 NULL_RTX
, unsignedp
, methods
);
302 if (real_t
== 0 || imag_t
== 0)
306 if (class == MODE_COMPLEX_FLOAT
)
307 res
= expand_binop (submode
, binoptab
, real_t
, divisor
,
308 realr
, unsignedp
, methods
);
310 res
= expand_divmod (0, TRUNC_DIV_EXPR
, submode
,
311 real_t
, divisor
, realr
, unsignedp
);
317 emit_move_insn (realr
, res
);
319 if (class == MODE_COMPLEX_FLOAT
)
320 res
= expand_binop (submode
, binoptab
, imag_t
, divisor
,
321 imagr
, unsignedp
, methods
);
323 res
= expand_divmod (0, TRUNC_DIV_EXPR
, submode
,
324 imag_t
, divisor
, imagr
, unsignedp
);
330 emit_move_insn (imagr
, res
);
335 /* Generate code to perform a wide-input-range-acceptable complex divide. */
338 expand_cmplxdiv_wide (real0
, real1
, imag0
, imag1
, realr
, imagr
, submode
,
339 unsignedp
, methods
, class, binoptab
)
340 rtx real0
, real1
, imag0
, imag1
, realr
, imagr
;
341 enum machine_mode submode
;
343 enum optab_methods methods
;
344 enum mode_class
class;
349 rtx temp1
, temp2
, lab1
, lab2
;
350 enum machine_mode mode
;
353 optab this_add_optab
= add_optab
;
354 optab this_sub_optab
= sub_optab
;
355 optab this_neg_optab
= neg_optab
;
356 optab this_mul_optab
= smul_optab
;
358 if (binoptab
== sdivv_optab
)
360 this_add_optab
= addv_optab
;
361 this_sub_optab
= subv_optab
;
362 this_neg_optab
= negv_optab
;
363 this_mul_optab
= smulv_optab
;
366 /* Don't fetch these from memory more than once. */
367 real0
= force_reg (submode
, real0
);
368 real1
= force_reg (submode
, real1
);
371 imag0
= force_reg (submode
, imag0
);
373 imag1
= force_reg (submode
, imag1
);
375 /* XXX What's an "unsigned" complex number? */
383 temp1
= expand_abs (submode
, real1
, NULL_RTX
, unsignedp
, 1);
384 temp2
= expand_abs (submode
, imag1
, NULL_RTX
, unsignedp
, 1);
387 if (temp1
== 0 || temp2
== 0)
390 mode
= GET_MODE (temp1
);
391 align
= GET_MODE_ALIGNMENT (mode
);
392 lab1
= gen_label_rtx ();
393 emit_cmp_and_jump_insns (temp1
, temp2
, LT
, NULL_RTX
,
394 mode
, unsignedp
, align
, lab1
);
396 /* |c| >= |d|; use ratio d/c to scale dividend and divisor. */
398 if (class == MODE_COMPLEX_FLOAT
)
399 ratio
= expand_binop (submode
, binoptab
, imag1
, real1
,
400 NULL_RTX
, unsignedp
, methods
);
402 ratio
= expand_divmod (0, TRUNC_DIV_EXPR
, submode
,
403 imag1
, real1
, NULL_RTX
, unsignedp
);
408 /* Calculate divisor. */
410 temp1
= expand_binop (submode
, this_mul_optab
, imag1
, ratio
,
411 NULL_RTX
, unsignedp
, methods
);
416 divisor
= expand_binop (submode
, this_add_optab
, temp1
, real1
,
417 NULL_RTX
, unsignedp
, methods
);
422 /* Calculate dividend. */
428 /* Compute a / (c+id) as a / (c+d(d/c)) + i (-a(d/c)) / (c+d(d/c)). */
430 imag_t
= expand_binop (submode
, this_mul_optab
, real0
, ratio
,
431 NULL_RTX
, unsignedp
, methods
);
436 imag_t
= expand_unop (submode
, this_neg_optab
, imag_t
,
437 NULL_RTX
, unsignedp
);
439 if (real_t
== 0 || imag_t
== 0)
444 /* Compute (a+ib)/(c+id) as
445 (a+b(d/c))/(c+d(d/c) + i(b-a(d/c))/(c+d(d/c)). */
447 temp1
= expand_binop (submode
, this_mul_optab
, imag0
, ratio
,
448 NULL_RTX
, unsignedp
, methods
);
453 real_t
= expand_binop (submode
, this_add_optab
, temp1
, real0
,
454 NULL_RTX
, unsignedp
, methods
);
456 temp1
= expand_binop (submode
, this_mul_optab
, real0
, ratio
,
457 NULL_RTX
, unsignedp
, methods
);
462 imag_t
= expand_binop (submode
, this_sub_optab
, imag0
, temp1
,
463 NULL_RTX
, unsignedp
, methods
);
465 if (real_t
== 0 || imag_t
== 0)
469 if (class == MODE_COMPLEX_FLOAT
)
470 res
= expand_binop (submode
, binoptab
, real_t
, divisor
,
471 realr
, unsignedp
, methods
);
473 res
= expand_divmod (0, TRUNC_DIV_EXPR
, submode
,
474 real_t
, divisor
, realr
, unsignedp
);
480 emit_move_insn (realr
, res
);
482 if (class == MODE_COMPLEX_FLOAT
)
483 res
= expand_binop (submode
, binoptab
, imag_t
, divisor
,
484 imagr
, unsignedp
, methods
);
486 res
= expand_divmod (0, TRUNC_DIV_EXPR
, submode
,
487 imag_t
, divisor
, imagr
, unsignedp
);
493 emit_move_insn (imagr
, res
);
495 lab2
= gen_label_rtx ();
496 emit_jump_insn (gen_jump (lab2
));
501 /* |d| > |c|; use ratio c/d to scale dividend and divisor. */
503 if (class == MODE_COMPLEX_FLOAT
)
504 ratio
= expand_binop (submode
, binoptab
, real1
, imag1
,
505 NULL_RTX
, unsignedp
, methods
);
507 ratio
= expand_divmod (0, TRUNC_DIV_EXPR
, submode
,
508 real1
, imag1
, NULL_RTX
, unsignedp
);
513 /* Calculate divisor. */
515 temp1
= expand_binop (submode
, this_mul_optab
, real1
, ratio
,
516 NULL_RTX
, unsignedp
, methods
);
521 divisor
= expand_binop (submode
, this_add_optab
, temp1
, imag1
,
522 NULL_RTX
, unsignedp
, methods
);
527 /* Calculate dividend. */
531 /* Compute a / (c+id) as a(c/d) / (c(c/d)+d) + i (-a) / (c(c/d)+d). */
533 real_t
= expand_binop (submode
, this_mul_optab
, real0
, ratio
,
534 NULL_RTX
, unsignedp
, methods
);
536 imag_t
= expand_unop (submode
, this_neg_optab
, real0
,
537 NULL_RTX
, unsignedp
);
539 if (real_t
== 0 || imag_t
== 0)
544 /* Compute (a+ib)/(c+id) as
545 (a(c/d)+b)/(c(c/d)+d) + i (b(c/d)-a)/(c(c/d)+d). */
547 temp1
= expand_binop (submode
, this_mul_optab
, real0
, ratio
,
548 NULL_RTX
, unsignedp
, methods
);
553 real_t
= expand_binop (submode
, this_add_optab
, temp1
, imag0
,
554 NULL_RTX
, unsignedp
, methods
);
556 temp1
= expand_binop (submode
, this_mul_optab
, imag0
, ratio
,
557 NULL_RTX
, unsignedp
, methods
);
562 imag_t
= expand_binop (submode
, this_sub_optab
, temp1
, real0
,
563 NULL_RTX
, unsignedp
, methods
);
565 if (real_t
== 0 || imag_t
== 0)
569 if (class == MODE_COMPLEX_FLOAT
)
570 res
= expand_binop (submode
, binoptab
, real_t
, divisor
,
571 realr
, unsignedp
, methods
);
573 res
= expand_divmod (0, TRUNC_DIV_EXPR
, submode
,
574 real_t
, divisor
, realr
, unsignedp
);
580 emit_move_insn (realr
, res
);
582 if (class == MODE_COMPLEX_FLOAT
)
583 res
= expand_binop (submode
, binoptab
, imag_t
, divisor
,
584 imagr
, unsignedp
, methods
);
586 res
= expand_divmod (0, TRUNC_DIV_EXPR
, submode
,
587 imag_t
, divisor
, imagr
, unsignedp
);
593 emit_move_insn (imagr
, res
);
600 /* Generate code to perform an operation specified by BINOPTAB
601 on operands OP0 and OP1, with result having machine-mode MODE.
603 UNSIGNEDP is for the case where we have to widen the operands
604 to perform the operation. It says to use zero-extension.
606 If TARGET is nonzero, the value
607 is generated there, if it is convenient to do so.
608 In all cases an rtx is returned for the locus of the value;
609 this may or may not be TARGET. */
612 expand_binop (mode
, binoptab
, op0
, op1
, target
, unsignedp
, methods
)
613 enum machine_mode mode
;
618 enum optab_methods methods
;
620 enum optab_methods next_methods
621 = (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
622 ? OPTAB_WIDEN
: methods
);
623 enum mode_class
class;
624 enum machine_mode wider_mode
;
626 int commutative_op
= 0;
627 int shift_op
= (binoptab
->code
== ASHIFT
628 || binoptab
->code
== ASHIFTRT
629 || binoptab
->code
== LSHIFTRT
630 || binoptab
->code
== ROTATE
631 || binoptab
->code
== ROTATERT
);
632 rtx entry_last
= get_last_insn ();
635 class = GET_MODE_CLASS (mode
);
637 op0
= protect_from_queue (op0
, 0);
638 op1
= protect_from_queue (op1
, 0);
640 target
= protect_from_queue (target
, 1);
644 op0
= force_not_mem (op0
);
645 op1
= force_not_mem (op1
);
648 /* If subtracting an integer constant, convert this into an addition of
649 the negated constant. */
651 if (binoptab
== sub_optab
&& GET_CODE (op1
) == CONST_INT
)
653 op1
= negate_rtx (mode
, op1
);
654 binoptab
= add_optab
;
657 /* If we are inside an appropriately-short loop and one operand is an
658 expensive constant, force it into a register. */
659 if (CONSTANT_P (op0
) && preserve_subexpressions_p ()
660 && rtx_cost (op0
, binoptab
->code
) > COSTS_N_INSNS (1))
661 op0
= force_reg (mode
, op0
);
663 if (CONSTANT_P (op1
) && preserve_subexpressions_p ()
664 && ! shift_op
&& rtx_cost (op1
, binoptab
->code
) > COSTS_N_INSNS (1))
665 op1
= force_reg (mode
, op1
);
667 /* Record where to delete back to if we backtrack. */
668 last
= get_last_insn ();
670 /* If operation is commutative,
671 try to make the first operand a register.
672 Even better, try to make it the same as the target.
673 Also try to make the last operand a constant. */
674 if (GET_RTX_CLASS (binoptab
->code
) == 'c'
675 || binoptab
== smul_widen_optab
676 || binoptab
== umul_widen_optab
677 || binoptab
== smul_highpart_optab
678 || binoptab
== umul_highpart_optab
)
682 if (((target
== 0 || GET_CODE (target
) == REG
)
683 ? ((GET_CODE (op1
) == REG
684 && GET_CODE (op0
) != REG
)
686 : rtx_equal_p (op1
, target
))
687 || GET_CODE (op0
) == CONST_INT
)
695 /* If we can do it with a three-operand insn, do so. */
697 if (methods
!= OPTAB_MUST_WIDEN
698 && binoptab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
700 int icode
= (int) binoptab
->handlers
[(int) mode
].insn_code
;
701 enum machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
702 enum machine_mode mode1
= insn_data
[icode
].operand
[2].mode
;
704 rtx xop0
= op0
, xop1
= op1
;
709 temp
= gen_reg_rtx (mode
);
711 /* If it is a commutative operator and the modes would match
712 if we would swap the operands, we can save the conversions. */
715 if (GET_MODE (op0
) != mode0
&& GET_MODE (op1
) != mode1
716 && GET_MODE (op0
) == mode1
&& GET_MODE (op1
) == mode0
)
720 tmp
= op0
; op0
= op1
; op1
= tmp
;
721 tmp
= xop0
; xop0
= xop1
; xop1
= tmp
;
725 /* In case the insn wants input operands in modes different from
726 the result, convert the operands. It would seem that we
727 don't need to convert CONST_INTs, but we do, so that they're
728 a properly sign-extended for their modes; we choose the
729 widest mode between mode and mode[01], so that, in a widening
730 operation, we call convert_modes with different FROM and TO
731 modes, which ensures the value is sign-extended. Shift
732 operations are an exception, because the second operand needs
733 not be extended to the mode of the result. */
735 if (GET_MODE (op0
) != mode0
736 && mode0
!= VOIDmode
)
737 xop0
= convert_modes (mode0
,
738 GET_MODE (op0
) != VOIDmode
740 : GET_MODE_SIZE (mode
) > GET_MODE_SIZE (mode0
)
745 if (GET_MODE (xop1
) != mode1
746 && mode1
!= VOIDmode
)
747 xop1
= convert_modes (mode1
,
748 GET_MODE (op1
) != VOIDmode
750 : (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (mode1
)
756 /* Now, if insn's predicates don't allow our operands, put them into
759 if (! (*insn_data
[icode
].operand
[1].predicate
) (xop0
, mode0
)
760 && mode0
!= VOIDmode
)
761 xop0
= copy_to_mode_reg (mode0
, xop0
);
763 if (! (*insn_data
[icode
].operand
[2].predicate
) (xop1
, mode1
)
764 && mode1
!= VOIDmode
)
765 xop1
= copy_to_mode_reg (mode1
, xop1
);
767 if (! (*insn_data
[icode
].operand
[0].predicate
) (temp
, mode
))
768 temp
= gen_reg_rtx (mode
);
770 pat
= GEN_FCN (icode
) (temp
, xop0
, xop1
);
773 /* If PAT is a multi-insn sequence, try to add an appropriate
774 REG_EQUAL note to it. If we can't because TEMP conflicts with an
775 operand, call ourselves again, this time without a target. */
776 if (GET_CODE (pat
) == SEQUENCE
777 && ! add_equal_note (pat
, temp
, binoptab
->code
, xop0
, xop1
))
779 delete_insns_since (last
);
780 return expand_binop (mode
, binoptab
, op0
, op1
, NULL_RTX
,
788 delete_insns_since (last
);
791 /* If this is a multiply, see if we can do a widening operation that
792 takes operands of this mode and makes a wider mode. */
794 if (binoptab
== smul_optab
&& GET_MODE_WIDER_MODE (mode
) != VOIDmode
795 && (((unsignedp
? umul_widen_optab
: smul_widen_optab
)
796 ->handlers
[(int) GET_MODE_WIDER_MODE (mode
)].insn_code
)
797 != CODE_FOR_nothing
))
799 temp
= expand_binop (GET_MODE_WIDER_MODE (mode
),
800 unsignedp
? umul_widen_optab
: smul_widen_optab
,
801 op0
, op1
, NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
805 if (GET_MODE_CLASS (mode
) == MODE_INT
)
806 return gen_lowpart (mode
, temp
);
808 return convert_to_mode (mode
, temp
, unsignedp
);
812 /* Look for a wider mode of the same class for which we think we
813 can open-code the operation. Check for a widening multiply at the
814 wider mode as well. */
816 if ((class == MODE_INT
|| class == MODE_FLOAT
|| class == MODE_COMPLEX_FLOAT
)
817 && methods
!= OPTAB_DIRECT
&& methods
!= OPTAB_LIB
)
818 for (wider_mode
= GET_MODE_WIDER_MODE (mode
); wider_mode
!= VOIDmode
;
819 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
821 if (binoptab
->handlers
[(int) wider_mode
].insn_code
!= CODE_FOR_nothing
822 || (binoptab
== smul_optab
823 && GET_MODE_WIDER_MODE (wider_mode
) != VOIDmode
824 && (((unsignedp
? umul_widen_optab
: smul_widen_optab
)
825 ->handlers
[(int) GET_MODE_WIDER_MODE (wider_mode
)].insn_code
)
826 != CODE_FOR_nothing
)))
828 rtx xop0
= op0
, xop1
= op1
;
831 /* For certain integer operations, we need not actually extend
832 the narrow operands, as long as we will truncate
833 the results to the same narrowness. */
835 if ((binoptab
== ior_optab
|| binoptab
== and_optab
836 || binoptab
== xor_optab
837 || binoptab
== add_optab
|| binoptab
== sub_optab
838 || binoptab
== smul_optab
|| binoptab
== ashl_optab
)
839 && class == MODE_INT
)
842 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
, no_extend
);
844 /* The second operand of a shift must always be extended. */
845 xop1
= widen_operand (xop1
, wider_mode
, mode
, unsignedp
,
846 no_extend
&& binoptab
!= ashl_optab
);
848 temp
= expand_binop (wider_mode
, binoptab
, xop0
, xop1
, NULL_RTX
,
849 unsignedp
, OPTAB_DIRECT
);
852 if (class != MODE_INT
)
855 target
= gen_reg_rtx (mode
);
856 convert_move (target
, temp
, 0);
860 return gen_lowpart (mode
, temp
);
863 delete_insns_since (last
);
867 /* These can be done a word at a time. */
868 if ((binoptab
== and_optab
|| binoptab
== ior_optab
|| binoptab
== xor_optab
)
870 && GET_MODE_SIZE (mode
) > UNITS_PER_WORD
871 && binoptab
->handlers
[(int) word_mode
].insn_code
!= CODE_FOR_nothing
)
877 /* If TARGET is the same as one of the operands, the REG_EQUAL note
878 won't be accurate, so use a new target. */
879 if (target
== 0 || target
== op0
|| target
== op1
)
880 target
= gen_reg_rtx (mode
);
884 /* Do the actual arithmetic. */
885 for (i
= 0; i
< GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
; i
++)
887 rtx target_piece
= operand_subword (target
, i
, 1, mode
);
888 rtx x
= expand_binop (word_mode
, binoptab
,
889 operand_subword_force (op0
, i
, mode
),
890 operand_subword_force (op1
, i
, mode
),
891 target_piece
, unsignedp
, next_methods
);
896 if (target_piece
!= x
)
897 emit_move_insn (target_piece
, x
);
900 insns
= get_insns ();
903 if (i
== GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
)
905 if (binoptab
->code
!= UNKNOWN
)
907 = gen_rtx_fmt_ee (binoptab
->code
, mode
,
908 copy_rtx (op0
), copy_rtx (op1
));
912 emit_no_conflict_block (insns
, target
, op0
, op1
, equiv_value
);
917 /* Synthesize double word shifts from single word shifts. */
918 if ((binoptab
== lshr_optab
|| binoptab
== ashl_optab
919 || binoptab
== ashr_optab
)
921 && GET_CODE (op1
) == CONST_INT
922 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
923 && binoptab
->handlers
[(int) word_mode
].insn_code
!= CODE_FOR_nothing
924 && ashl_optab
->handlers
[(int) word_mode
].insn_code
!= CODE_FOR_nothing
925 && lshr_optab
->handlers
[(int) word_mode
].insn_code
!= CODE_FOR_nothing
)
927 rtx insns
, inter
, equiv_value
;
928 rtx into_target
, outof_target
;
929 rtx into_input
, outof_input
;
930 int shift_count
, left_shift
, outof_word
;
932 /* If TARGET is the same as one of the operands, the REG_EQUAL note
933 won't be accurate, so use a new target. */
934 if (target
== 0 || target
== op0
|| target
== op1
)
935 target
= gen_reg_rtx (mode
);
939 shift_count
= INTVAL (op1
);
941 /* OUTOF_* is the word we are shifting bits away from, and
942 INTO_* is the word that we are shifting bits towards, thus
943 they differ depending on the direction of the shift and
946 left_shift
= binoptab
== ashl_optab
;
947 outof_word
= left_shift
^ ! WORDS_BIG_ENDIAN
;
949 outof_target
= operand_subword (target
, outof_word
, 1, mode
);
950 into_target
= operand_subword (target
, 1 - outof_word
, 1, mode
);
952 outof_input
= operand_subword_force (op0
, outof_word
, mode
);
953 into_input
= operand_subword_force (op0
, 1 - outof_word
, mode
);
955 if (shift_count
>= BITS_PER_WORD
)
957 inter
= expand_binop (word_mode
, binoptab
,
959 GEN_INT (shift_count
- BITS_PER_WORD
),
960 into_target
, unsignedp
, next_methods
);
962 if (inter
!= 0 && inter
!= into_target
)
963 emit_move_insn (into_target
, inter
);
965 /* For a signed right shift, we must fill the word we are shifting
966 out of with copies of the sign bit. Otherwise it is zeroed. */
967 if (inter
!= 0 && binoptab
!= ashr_optab
)
968 inter
= CONST0_RTX (word_mode
);
970 inter
= expand_binop (word_mode
, binoptab
,
972 GEN_INT (BITS_PER_WORD
- 1),
973 outof_target
, unsignedp
, next_methods
);
975 if (inter
!= 0 && inter
!= outof_target
)
976 emit_move_insn (outof_target
, inter
);
981 optab reverse_unsigned_shift
, unsigned_shift
;
983 /* For a shift of less then BITS_PER_WORD, to compute the carry,
984 we must do a logical shift in the opposite direction of the
987 reverse_unsigned_shift
= (left_shift
? lshr_optab
: ashl_optab
);
989 /* For a shift of less than BITS_PER_WORD, to compute the word
990 shifted towards, we need to unsigned shift the orig value of
993 unsigned_shift
= (left_shift
? ashl_optab
: lshr_optab
);
995 carries
= expand_binop (word_mode
, reverse_unsigned_shift
,
997 GEN_INT (BITS_PER_WORD
- shift_count
),
998 0, unsignedp
, next_methods
);
1003 inter
= expand_binop (word_mode
, unsigned_shift
, into_input
,
1004 op1
, 0, unsignedp
, next_methods
);
1007 inter
= expand_binop (word_mode
, ior_optab
, carries
, inter
,
1008 into_target
, unsignedp
, next_methods
);
1010 if (inter
!= 0 && inter
!= into_target
)
1011 emit_move_insn (into_target
, inter
);
1014 inter
= expand_binop (word_mode
, binoptab
, outof_input
,
1015 op1
, outof_target
, unsignedp
, next_methods
);
1017 if (inter
!= 0 && inter
!= outof_target
)
1018 emit_move_insn (outof_target
, inter
);
1021 insns
= get_insns ();
1026 if (binoptab
->code
!= UNKNOWN
)
1027 equiv_value
= gen_rtx_fmt_ee (binoptab
->code
, mode
, op0
, op1
);
1031 emit_no_conflict_block (insns
, target
, op0
, op1
, equiv_value
);
1036 /* Synthesize double word rotates from single word shifts. */
1037 if ((binoptab
== rotl_optab
|| binoptab
== rotr_optab
)
1038 && class == MODE_INT
1039 && GET_CODE (op1
) == CONST_INT
1040 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
1041 && ashl_optab
->handlers
[(int) word_mode
].insn_code
!= CODE_FOR_nothing
1042 && lshr_optab
->handlers
[(int) word_mode
].insn_code
!= CODE_FOR_nothing
)
1044 rtx insns
, equiv_value
;
1045 rtx into_target
, outof_target
;
1046 rtx into_input
, outof_input
;
1048 int shift_count
, left_shift
, outof_word
;
1050 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1051 won't be accurate, so use a new target. */
1052 if (target
== 0 || target
== op0
|| target
== op1
)
1053 target
= gen_reg_rtx (mode
);
1057 shift_count
= INTVAL (op1
);
1059 /* OUTOF_* is the word we are shifting bits away from, and
1060 INTO_* is the word that we are shifting bits towards, thus
1061 they differ depending on the direction of the shift and
1062 WORDS_BIG_ENDIAN. */
1064 left_shift
= (binoptab
== rotl_optab
);
1065 outof_word
= left_shift
^ ! WORDS_BIG_ENDIAN
;
1067 outof_target
= operand_subword (target
, outof_word
, 1, mode
);
1068 into_target
= operand_subword (target
, 1 - outof_word
, 1, mode
);
1070 outof_input
= operand_subword_force (op0
, outof_word
, mode
);
1071 into_input
= operand_subword_force (op0
, 1 - outof_word
, mode
);
1073 if (shift_count
== BITS_PER_WORD
)
1075 /* This is just a word swap. */
1076 emit_move_insn (outof_target
, into_input
);
1077 emit_move_insn (into_target
, outof_input
);
1082 rtx into_temp1
, into_temp2
, outof_temp1
, outof_temp2
;
1083 rtx first_shift_count
, second_shift_count
;
1084 optab reverse_unsigned_shift
, unsigned_shift
;
1086 reverse_unsigned_shift
= (left_shift
^ (shift_count
< BITS_PER_WORD
)
1087 ? lshr_optab
: ashl_optab
);
1089 unsigned_shift
= (left_shift
^ (shift_count
< BITS_PER_WORD
)
1090 ? ashl_optab
: lshr_optab
);
1092 if (shift_count
> BITS_PER_WORD
)
1094 first_shift_count
= GEN_INT (shift_count
- BITS_PER_WORD
);
1095 second_shift_count
= GEN_INT (2*BITS_PER_WORD
- shift_count
);
1099 first_shift_count
= GEN_INT (BITS_PER_WORD
- shift_count
);
1100 second_shift_count
= GEN_INT (shift_count
);
1103 into_temp1
= expand_binop (word_mode
, unsigned_shift
,
1104 outof_input
, first_shift_count
,
1105 NULL_RTX
, unsignedp
, next_methods
);
1106 into_temp2
= expand_binop (word_mode
, reverse_unsigned_shift
,
1107 into_input
, second_shift_count
,
1108 into_target
, unsignedp
, next_methods
);
1110 if (into_temp1
!= 0 && into_temp2
!= 0)
1111 inter
= expand_binop (word_mode
, ior_optab
, into_temp1
, into_temp2
,
1112 into_target
, unsignedp
, next_methods
);
1116 if (inter
!= 0 && inter
!= into_target
)
1117 emit_move_insn (into_target
, inter
);
1119 outof_temp1
= expand_binop (word_mode
, unsigned_shift
,
1120 into_input
, first_shift_count
,
1121 NULL_RTX
, unsignedp
, next_methods
);
1122 outof_temp2
= expand_binop (word_mode
, reverse_unsigned_shift
,
1123 outof_input
, second_shift_count
,
1124 outof_target
, unsignedp
, next_methods
);
1126 if (inter
!= 0 && outof_temp1
!= 0 && outof_temp2
!= 0)
1127 inter
= expand_binop (word_mode
, ior_optab
,
1128 outof_temp1
, outof_temp2
,
1129 outof_target
, unsignedp
, next_methods
);
1131 if (inter
!= 0 && inter
!= outof_target
)
1132 emit_move_insn (outof_target
, inter
);
1135 insns
= get_insns ();
1140 if (binoptab
->code
!= UNKNOWN
)
1141 equiv_value
= gen_rtx_fmt_ee (binoptab
->code
, mode
, op0
, op1
);
1145 /* We can't make this a no conflict block if this is a word swap,
1146 because the word swap case fails if the input and output values
1147 are in the same register. */
1148 if (shift_count
!= BITS_PER_WORD
)
1149 emit_no_conflict_block (insns
, target
, op0
, op1
, equiv_value
);
1158 /* These can be done a word at a time by propagating carries. */
1159 if ((binoptab
== add_optab
|| binoptab
== sub_optab
)
1160 && class == MODE_INT
1161 && GET_MODE_SIZE (mode
) >= 2 * UNITS_PER_WORD
1162 && binoptab
->handlers
[(int) word_mode
].insn_code
!= CODE_FOR_nothing
)
1165 rtx carry_tmp
= gen_reg_rtx (word_mode
);
1166 optab otheroptab
= binoptab
== add_optab
? sub_optab
: add_optab
;
1167 unsigned int nwords
= GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
;
1168 rtx carry_in
= NULL_RTX
, carry_out
= NULL_RTX
;
1171 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1172 value is one of those, use it. Otherwise, use 1 since it is the
1173 one easiest to get. */
1174 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1175 int normalizep
= STORE_FLAG_VALUE
;
1180 /* Prepare the operands. */
1181 xop0
= force_reg (mode
, op0
);
1182 xop1
= force_reg (mode
, op1
);
1184 if (target
== 0 || GET_CODE (target
) != REG
1185 || target
== xop0
|| target
== xop1
)
1186 target
= gen_reg_rtx (mode
);
1188 /* Indicate for flow that the entire target reg is being set. */
1189 if (GET_CODE (target
) == REG
)
1190 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
1192 /* Do the actual arithmetic. */
1193 for (i
= 0; i
< nwords
; i
++)
1195 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
1196 rtx target_piece
= operand_subword (target
, index
, 1, mode
);
1197 rtx op0_piece
= operand_subword_force (xop0
, index
, mode
);
1198 rtx op1_piece
= operand_subword_force (xop1
, index
, mode
);
1201 /* Main add/subtract of the input operands. */
1202 x
= expand_binop (word_mode
, binoptab
,
1203 op0_piece
, op1_piece
,
1204 target_piece
, unsignedp
, next_methods
);
1210 /* Store carry from main add/subtract. */
1211 carry_out
= gen_reg_rtx (word_mode
);
1212 carry_out
= emit_store_flag_force (carry_out
,
1213 (binoptab
== add_optab
1216 word_mode
, 1, normalizep
);
1221 /* Add/subtract previous carry to main result. */
1222 x
= expand_binop (word_mode
,
1223 normalizep
== 1 ? binoptab
: otheroptab
,
1225 target_piece
, 1, next_methods
);
1228 else if (target_piece
!= x
)
1229 emit_move_insn (target_piece
, x
);
1233 /* THIS CODE HAS NOT BEEN TESTED. */
1234 /* Get out carry from adding/subtracting carry in. */
1235 carry_tmp
= emit_store_flag_force (carry_tmp
,
1236 binoptab
== add_optab
1239 word_mode
, 1, normalizep
);
1241 /* Logical-ior the two poss. carry together. */
1242 carry_out
= expand_binop (word_mode
, ior_optab
,
1243 carry_out
, carry_tmp
,
1244 carry_out
, 0, next_methods
);
1250 carry_in
= carry_out
;
1253 if (i
== GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
)
1255 if (mov_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
1257 rtx temp
= emit_move_insn (target
, target
);
1259 set_unique_reg_note (temp
,
1261 gen_rtx_fmt_ee (binoptab
->code
, mode
,
1270 delete_insns_since (last
);
1273 /* If we want to multiply two two-word values and have normal and widening
1274 multiplies of single-word values, we can do this with three smaller
1275 multiplications. Note that we do not make a REG_NO_CONFLICT block here
1276 because we are not operating on one word at a time.
1278 The multiplication proceeds as follows:
1279 _______________________
1280 [__op0_high_|__op0_low__]
1281 _______________________
1282 * [__op1_high_|__op1_low__]
1283 _______________________________________________
1284 _______________________
1285 (1) [__op0_low__*__op1_low__]
1286 _______________________
1287 (2a) [__op0_low__*__op1_high_]
1288 _______________________
1289 (2b) [__op0_high_*__op1_low__]
1290 _______________________
1291 (3) [__op0_high_*__op1_high_]
1294 This gives a 4-word result. Since we are only interested in the
1295 lower 2 words, partial result (3) and the upper words of (2a) and
1296 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1297 calculated using non-widening multiplication.
1299 (1), however, needs to be calculated with an unsigned widening
1300 multiplication. If this operation is not directly supported we
1301 try using a signed widening multiplication and adjust the result.
1302 This adjustment works as follows:
1304 If both operands are positive then no adjustment is needed.
1306 If the operands have different signs, for example op0_low < 0 and
1307 op1_low >= 0, the instruction treats the most significant bit of
1308 op0_low as a sign bit instead of a bit with significance
1309 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1310 with 2**BITS_PER_WORD - op0_low, and two's complements the
1311 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1314 Similarly, if both operands are negative, we need to add
1315 (op0_low + op1_low) * 2**BITS_PER_WORD.
1317 We use a trick to adjust quickly. We logically shift op0_low right
1318 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1319 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1320 logical shift exists, we do an arithmetic right shift and subtract
1323 if (binoptab
== smul_optab
1324 && class == MODE_INT
1325 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
1326 && smul_optab
->handlers
[(int) word_mode
].insn_code
!= CODE_FOR_nothing
1327 && add_optab
->handlers
[(int) word_mode
].insn_code
!= CODE_FOR_nothing
1328 && ((umul_widen_optab
->handlers
[(int) mode
].insn_code
1329 != CODE_FOR_nothing
)
1330 || (smul_widen_optab
->handlers
[(int) mode
].insn_code
1331 != CODE_FOR_nothing
)))
1333 int low
= (WORDS_BIG_ENDIAN
? 1 : 0);
1334 int high
= (WORDS_BIG_ENDIAN
? 0 : 1);
1335 rtx op0_high
= operand_subword_force (op0
, high
, mode
);
1336 rtx op0_low
= operand_subword_force (op0
, low
, mode
);
1337 rtx op1_high
= operand_subword_force (op1
, high
, mode
);
1338 rtx op1_low
= operand_subword_force (op1
, low
, mode
);
1340 rtx op0_xhigh
= NULL_RTX
;
1341 rtx op1_xhigh
= NULL_RTX
;
1343 /* If the target is the same as one of the inputs, don't use it. This
1344 prevents problems with the REG_EQUAL note. */
1345 if (target
== op0
|| target
== op1
1346 || (target
!= 0 && GET_CODE (target
) != REG
))
1349 /* Multiply the two lower words to get a double-word product.
1350 If unsigned widening multiplication is available, use that;
1351 otherwise use the signed form and compensate. */
1353 if (umul_widen_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
1355 product
= expand_binop (mode
, umul_widen_optab
, op0_low
, op1_low
,
1356 target
, 1, OPTAB_DIRECT
);
1358 /* If we didn't succeed, delete everything we did so far. */
1360 delete_insns_since (last
);
1362 op0_xhigh
= op0_high
, op1_xhigh
= op1_high
;
1366 && smul_widen_optab
->handlers
[(int) mode
].insn_code
1367 != CODE_FOR_nothing
)
1369 rtx wordm1
= GEN_INT (BITS_PER_WORD
- 1);
1370 product
= expand_binop (mode
, smul_widen_optab
, op0_low
, op1_low
,
1371 target
, 1, OPTAB_DIRECT
);
1372 op0_xhigh
= expand_binop (word_mode
, lshr_optab
, op0_low
, wordm1
,
1373 NULL_RTX
, 1, next_methods
);
1375 op0_xhigh
= expand_binop (word_mode
, add_optab
, op0_high
,
1376 op0_xhigh
, op0_xhigh
, 0, next_methods
);
1379 op0_xhigh
= expand_binop (word_mode
, ashr_optab
, op0_low
, wordm1
,
1380 NULL_RTX
, 0, next_methods
);
1382 op0_xhigh
= expand_binop (word_mode
, sub_optab
, op0_high
,
1383 op0_xhigh
, op0_xhigh
, 0,
1387 op1_xhigh
= expand_binop (word_mode
, lshr_optab
, op1_low
, wordm1
,
1388 NULL_RTX
, 1, next_methods
);
1390 op1_xhigh
= expand_binop (word_mode
, add_optab
, op1_high
,
1391 op1_xhigh
, op1_xhigh
, 0, next_methods
);
1394 op1_xhigh
= expand_binop (word_mode
, ashr_optab
, op1_low
, wordm1
,
1395 NULL_RTX
, 0, next_methods
);
1397 op1_xhigh
= expand_binop (word_mode
, sub_optab
, op1_high
,
1398 op1_xhigh
, op1_xhigh
, 0,
1403 /* If we have been able to directly compute the product of the
1404 low-order words of the operands and perform any required adjustments
1405 of the operands, we proceed by trying two more multiplications
1406 and then computing the appropriate sum.
1408 We have checked above that the required addition is provided.
1409 Full-word addition will normally always succeed, especially if
1410 it is provided at all, so we don't worry about its failure. The
1411 multiplication may well fail, however, so we do handle that. */
1413 if (product
&& op0_xhigh
&& op1_xhigh
)
1415 rtx product_high
= operand_subword (product
, high
, 1, mode
);
1416 rtx temp
= expand_binop (word_mode
, binoptab
, op0_low
, op1_xhigh
,
1417 NULL_RTX
, 0, OPTAB_DIRECT
);
1420 temp
= expand_binop (word_mode
, add_optab
, temp
, product_high
,
1421 product_high
, 0, next_methods
);
1423 if (temp
!= 0 && temp
!= product_high
)
1424 emit_move_insn (product_high
, temp
);
1427 temp
= expand_binop (word_mode
, binoptab
, op1_low
, op0_xhigh
,
1428 NULL_RTX
, 0, OPTAB_DIRECT
);
1431 temp
= expand_binop (word_mode
, add_optab
, temp
,
1432 product_high
, product_high
,
1435 if (temp
!= 0 && temp
!= product_high
)
1436 emit_move_insn (product_high
, temp
);
1440 if (mov_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
1442 temp
= emit_move_insn (product
, product
);
1443 set_unique_reg_note (temp
,
1445 gen_rtx_fmt_ee (MULT
, mode
,
1454 /* If we get here, we couldn't do it for some reason even though we
1455 originally thought we could. Delete anything we've emitted in
1458 delete_insns_since (last
);
1461 /* We need to open-code the complex type operations: '+, -, * and /' */
1463 /* At this point we allow operations between two similar complex
1464 numbers, and also if one of the operands is not a complex number
1465 but rather of MODE_FLOAT or MODE_INT. However, the caller
1466 must make sure that the MODE of the non-complex operand matches
1467 the SUBMODE of the complex operand. */
1469 if (class == MODE_COMPLEX_FLOAT
|| class == MODE_COMPLEX_INT
)
1471 rtx real0
= 0, imag0
= 0;
1472 rtx real1
= 0, imag1
= 0;
1473 rtx realr
, imagr
, res
;
1478 /* Find the correct mode for the real and imaginary parts */
1479 enum machine_mode submode
1480 = mode_for_size (GET_MODE_UNIT_SIZE (mode
) * BITS_PER_UNIT
,
1481 class == MODE_COMPLEX_INT
? MODE_INT
: MODE_FLOAT
,
1484 if (submode
== BLKmode
)
1488 target
= gen_reg_rtx (mode
);
1492 realr
= gen_realpart (submode
, target
);
1493 imagr
= gen_imagpart (submode
, target
);
1495 if (GET_MODE (op0
) == mode
)
1497 real0
= gen_realpart (submode
, op0
);
1498 imag0
= gen_imagpart (submode
, op0
);
1503 if (GET_MODE (op1
) == mode
)
1505 real1
= gen_realpart (submode
, op1
);
1506 imag1
= gen_imagpart (submode
, op1
);
1511 if (real0
== 0 || real1
== 0 || ! (imag0
!= 0|| imag1
!= 0))
1514 switch (binoptab
->code
)
1517 /* (a+ib) + (c+id) = (a+c) + i(b+d) */
1519 /* (a+ib) - (c+id) = (a-c) + i(b-d) */
1520 res
= expand_binop (submode
, binoptab
, real0
, real1
,
1521 realr
, unsignedp
, methods
);
1525 else if (res
!= realr
)
1526 emit_move_insn (realr
, res
);
1529 res
= expand_binop (submode
, binoptab
, imag0
, imag1
,
1530 imagr
, unsignedp
, methods
);
1533 else if (binoptab
->code
== MINUS
)
1534 res
= expand_unop (submode
,
1535 binoptab
== subv_optab
? negv_optab
: neg_optab
,
1536 imag1
, imagr
, unsignedp
);
1542 else if (res
!= imagr
)
1543 emit_move_insn (imagr
, res
);
1549 /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1555 /* Don't fetch these from memory more than once. */
1556 real0
= force_reg (submode
, real0
);
1557 real1
= force_reg (submode
, real1
);
1558 imag0
= force_reg (submode
, imag0
);
1559 imag1
= force_reg (submode
, imag1
);
1561 temp1
= expand_binop (submode
, binoptab
, real0
, real1
, NULL_RTX
,
1562 unsignedp
, methods
);
1564 temp2
= expand_binop (submode
, binoptab
, imag0
, imag1
, NULL_RTX
,
1565 unsignedp
, methods
);
1567 if (temp1
== 0 || temp2
== 0)
1572 binoptab
== smulv_optab
? subv_optab
: sub_optab
,
1573 temp1
, temp2
, realr
, unsignedp
, methods
));
1577 else if (res
!= realr
)
1578 emit_move_insn (realr
, res
);
1580 temp1
= expand_binop (submode
, binoptab
, real0
, imag1
,
1581 NULL_RTX
, unsignedp
, methods
);
1583 temp2
= expand_binop (submode
, binoptab
, real1
, imag0
,
1584 NULL_RTX
, unsignedp
, methods
);
1586 if (temp1
== 0 || temp2
== 0)
1591 binoptab
== smulv_optab
? addv_optab
: add_optab
,
1592 temp1
, temp2
, imagr
, unsignedp
, methods
));
1596 else if (res
!= imagr
)
1597 emit_move_insn (imagr
, res
);
1603 /* Don't fetch these from memory more than once. */
1604 real0
= force_reg (submode
, real0
);
1605 real1
= force_reg (submode
, real1
);
1607 res
= expand_binop (submode
, binoptab
, real0
, real1
,
1608 realr
, unsignedp
, methods
);
1611 else if (res
!= realr
)
1612 emit_move_insn (realr
, res
);
1615 res
= expand_binop (submode
, binoptab
,
1616 real1
, imag0
, imagr
, unsignedp
, methods
);
1618 res
= expand_binop (submode
, binoptab
,
1619 real0
, imag1
, imagr
, unsignedp
, methods
);
1623 else if (res
!= imagr
)
1624 emit_move_insn (imagr
, res
);
1631 /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
1635 /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
1637 /* Don't fetch these from memory more than once. */
1638 real1
= force_reg (submode
, real1
);
1640 /* Simply divide the real and imaginary parts by `c' */
1641 if (class == MODE_COMPLEX_FLOAT
)
1642 res
= expand_binop (submode
, binoptab
, real0
, real1
,
1643 realr
, unsignedp
, methods
);
1645 res
= expand_divmod (0, TRUNC_DIV_EXPR
, submode
,
1646 real0
, real1
, realr
, unsignedp
);
1650 else if (res
!= realr
)
1651 emit_move_insn (realr
, res
);
1653 if (class == MODE_COMPLEX_FLOAT
)
1654 res
= expand_binop (submode
, binoptab
, imag0
, real1
,
1655 imagr
, unsignedp
, methods
);
1657 res
= expand_divmod (0, TRUNC_DIV_EXPR
, submode
,
1658 imag0
, real1
, imagr
, unsignedp
);
1662 else if (res
!= imagr
)
1663 emit_move_insn (imagr
, res
);
1669 switch (flag_complex_divide_method
)
1672 ok
= expand_cmplxdiv_straight (real0
, real1
, imag0
, imag1
,
1673 realr
, imagr
, submode
,
1679 ok
= expand_cmplxdiv_wide (real0
, real1
, imag0
, imag1
,
1680 realr
, imagr
, submode
,
1700 if (binoptab
->code
!= UNKNOWN
)
1702 = gen_rtx_fmt_ee (binoptab
->code
, mode
,
1703 copy_rtx (op0
), copy_rtx (op1
));
1707 emit_no_conflict_block (seq
, target
, op0
, op1
, equiv_value
);
1713 /* It can't be open-coded in this mode.
1714 Use a library call if one is available and caller says that's ok. */
1716 if (binoptab
->handlers
[(int) mode
].libfunc
1717 && (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
))
1721 enum machine_mode op1_mode
= mode
;
1728 op1_mode
= word_mode
;
1729 /* Specify unsigned here,
1730 since negative shift counts are meaningless. */
1731 op1x
= convert_to_mode (word_mode
, op1
, 1);
1734 if (GET_MODE (op0
) != VOIDmode
1735 && GET_MODE (op0
) != mode
)
1736 op0
= convert_to_mode (mode
, op0
, unsignedp
);
1738 /* Pass 1 for NO_QUEUE so we don't lose any increments
1739 if the libcall is cse'd or moved. */
1740 value
= emit_library_call_value (binoptab
->handlers
[(int) mode
].libfunc
,
1741 NULL_RTX
, LCT_CONST
, mode
, 2,
1742 op0
, mode
, op1x
, op1_mode
);
1744 insns
= get_insns ();
1747 target
= gen_reg_rtx (mode
);
1748 emit_libcall_block (insns
, target
, value
,
1749 gen_rtx_fmt_ee (binoptab
->code
, mode
, op0
, op1
));
1754 delete_insns_since (last
);
1756 /* It can't be done in this mode. Can we do it in a wider mode? */
1758 if (! (methods
== OPTAB_WIDEN
|| methods
== OPTAB_LIB_WIDEN
1759 || methods
== OPTAB_MUST_WIDEN
))
1761 /* Caller says, don't even try. */
1762 delete_insns_since (entry_last
);
1766 /* Compute the value of METHODS to pass to recursive calls.
1767 Don't allow widening to be tried recursively. */
1769 methods
= (methods
== OPTAB_LIB_WIDEN
? OPTAB_LIB
: OPTAB_DIRECT
);
1771 /* Look for a wider mode of the same class for which it appears we can do
1774 if (class == MODE_INT
|| class == MODE_FLOAT
|| class == MODE_COMPLEX_FLOAT
)
1776 for (wider_mode
= GET_MODE_WIDER_MODE (mode
); wider_mode
!= VOIDmode
;
1777 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
1779 if ((binoptab
->handlers
[(int) wider_mode
].insn_code
1780 != CODE_FOR_nothing
)
1781 || (methods
== OPTAB_LIB
1782 && binoptab
->handlers
[(int) wider_mode
].libfunc
))
1784 rtx xop0
= op0
, xop1
= op1
;
1787 /* For certain integer operations, we need not actually extend
1788 the narrow operands, as long as we will truncate
1789 the results to the same narrowness. */
1791 if ((binoptab
== ior_optab
|| binoptab
== and_optab
1792 || binoptab
== xor_optab
1793 || binoptab
== add_optab
|| binoptab
== sub_optab
1794 || binoptab
== smul_optab
|| binoptab
== ashl_optab
)
1795 && class == MODE_INT
)
1798 xop0
= widen_operand (xop0
, wider_mode
, mode
,
1799 unsignedp
, no_extend
);
1801 /* The second operand of a shift must always be extended. */
1802 xop1
= widen_operand (xop1
, wider_mode
, mode
, unsignedp
,
1803 no_extend
&& binoptab
!= ashl_optab
);
1805 temp
= expand_binop (wider_mode
, binoptab
, xop0
, xop1
, NULL_RTX
,
1806 unsignedp
, methods
);
1809 if (class != MODE_INT
)
1812 target
= gen_reg_rtx (mode
);
1813 convert_move (target
, temp
, 0);
1817 return gen_lowpart (mode
, temp
);
1820 delete_insns_since (last
);
1825 delete_insns_since (entry_last
);
1829 /* Expand a binary operator which has both signed and unsigned forms.
1830 UOPTAB is the optab for unsigned operations, and SOPTAB is for
1833 If we widen unsigned operands, we may use a signed wider operation instead
1834 of an unsigned wider operation, since the result would be the same. */
1837 sign_expand_binop (mode
, uoptab
, soptab
, op0
, op1
, target
, unsignedp
, methods
)
1838 enum machine_mode mode
;
1839 optab uoptab
, soptab
;
1840 rtx op0
, op1
, target
;
1842 enum optab_methods methods
;
1845 optab direct_optab
= unsignedp
? uoptab
: soptab
;
1846 struct optab wide_soptab
;
1848 /* Do it without widening, if possible. */
1849 temp
= expand_binop (mode
, direct_optab
, op0
, op1
, target
,
1850 unsignedp
, OPTAB_DIRECT
);
1851 if (temp
|| methods
== OPTAB_DIRECT
)
1854 /* Try widening to a signed int. Make a fake signed optab that
1855 hides any signed insn for direct use. */
1856 wide_soptab
= *soptab
;
1857 wide_soptab
.handlers
[(int) mode
].insn_code
= CODE_FOR_nothing
;
1858 wide_soptab
.handlers
[(int) mode
].libfunc
= 0;
1860 temp
= expand_binop (mode
, &wide_soptab
, op0
, op1
, target
,
1861 unsignedp
, OPTAB_WIDEN
);
1863 /* For unsigned operands, try widening to an unsigned int. */
1864 if (temp
== 0 && unsignedp
)
1865 temp
= expand_binop (mode
, uoptab
, op0
, op1
, target
,
1866 unsignedp
, OPTAB_WIDEN
);
1867 if (temp
|| methods
== OPTAB_WIDEN
)
1870 /* Use the right width lib call if that exists. */
1871 temp
= expand_binop (mode
, direct_optab
, op0
, op1
, target
, unsignedp
, OPTAB_LIB
);
1872 if (temp
|| methods
== OPTAB_LIB
)
1875 /* Must widen and use a lib call, use either signed or unsigned. */
1876 temp
= expand_binop (mode
, &wide_soptab
, op0
, op1
, target
,
1877 unsignedp
, methods
);
1881 return expand_binop (mode
, uoptab
, op0
, op1
, target
,
1882 unsignedp
, methods
);
1886 /* Generate code to perform an operation specified by BINOPTAB
1887 on operands OP0 and OP1, with two results to TARG1 and TARG2.
1888 We assume that the order of the operands for the instruction
1889 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
1890 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
1892 Either TARG0 or TARG1 may be zero, but what that means is that
1893 the result is not actually wanted. We will generate it into
1894 a dummy pseudo-reg and discard it. They may not both be zero.
1896 Returns 1 if this operation can be performed; 0 if not. */
1899 expand_twoval_binop (binoptab
, op0
, op1
, targ0
, targ1
, unsignedp
)
1905 enum machine_mode mode
= GET_MODE (targ0
? targ0
: targ1
);
1906 enum mode_class
class;
1907 enum machine_mode wider_mode
;
1908 rtx entry_last
= get_last_insn ();
1911 class = GET_MODE_CLASS (mode
);
1913 op0
= protect_from_queue (op0
, 0);
1914 op1
= protect_from_queue (op1
, 0);
1918 op0
= force_not_mem (op0
);
1919 op1
= force_not_mem (op1
);
1922 /* If we are inside an appropriately-short loop and one operand is an
1923 expensive constant, force it into a register. */
1924 if (CONSTANT_P (op0
) && preserve_subexpressions_p ()
1925 && rtx_cost (op0
, binoptab
->code
) > COSTS_N_INSNS (1))
1926 op0
= force_reg (mode
, op0
);
1928 if (CONSTANT_P (op1
) && preserve_subexpressions_p ()
1929 && rtx_cost (op1
, binoptab
->code
) > COSTS_N_INSNS (1))
1930 op1
= force_reg (mode
, op1
);
1933 targ0
= protect_from_queue (targ0
, 1);
1935 targ0
= gen_reg_rtx (mode
);
1937 targ1
= protect_from_queue (targ1
, 1);
1939 targ1
= gen_reg_rtx (mode
);
1941 /* Record where to go back to if we fail. */
1942 last
= get_last_insn ();
1944 if (binoptab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
1946 int icode
= (int) binoptab
->handlers
[(int) mode
].insn_code
;
1947 enum machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
1948 enum machine_mode mode1
= insn_data
[icode
].operand
[2].mode
;
1950 rtx xop0
= op0
, xop1
= op1
;
1952 /* In case this insn wants input operands in modes different from the
1953 result, convert the operands. */
1954 if (GET_MODE (op0
) != VOIDmode
&& GET_MODE (op0
) != mode0
)
1955 xop0
= convert_to_mode (mode0
, xop0
, unsignedp
);
1957 if (GET_MODE (op1
) != VOIDmode
&& GET_MODE (op1
) != mode1
)
1958 xop1
= convert_to_mode (mode1
, xop1
, unsignedp
);
1960 /* Now, if insn doesn't accept these operands, put them into pseudos. */
1961 if (! (*insn_data
[icode
].operand
[1].predicate
) (xop0
, mode0
))
1962 xop0
= copy_to_mode_reg (mode0
, xop0
);
1964 if (! (*insn_data
[icode
].operand
[2].predicate
) (xop1
, mode1
))
1965 xop1
= copy_to_mode_reg (mode1
, xop1
);
1967 /* We could handle this, but we should always be called with a pseudo
1968 for our targets and all insns should take them as outputs. */
1969 if (! (*insn_data
[icode
].operand
[0].predicate
) (targ0
, mode
)
1970 || ! (*insn_data
[icode
].operand
[3].predicate
) (targ1
, mode
))
1973 pat
= GEN_FCN (icode
) (targ0
, xop0
, xop1
, targ1
);
1980 delete_insns_since (last
);
1983 /* It can't be done in this mode. Can we do it in a wider mode? */
1985 if (class == MODE_INT
|| class == MODE_FLOAT
|| class == MODE_COMPLEX_FLOAT
)
1987 for (wider_mode
= GET_MODE_WIDER_MODE (mode
); wider_mode
!= VOIDmode
;
1988 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
1990 if (binoptab
->handlers
[(int) wider_mode
].insn_code
1991 != CODE_FOR_nothing
)
1993 register rtx t0
= gen_reg_rtx (wider_mode
);
1994 register rtx t1
= gen_reg_rtx (wider_mode
);
1996 if (expand_twoval_binop (binoptab
,
1997 convert_modes (wider_mode
, mode
, op0
,
1999 convert_modes (wider_mode
, mode
, op1
,
2003 convert_move (targ0
, t0
, unsignedp
);
2004 convert_move (targ1
, t1
, unsignedp
);
2008 delete_insns_since (last
);
2013 delete_insns_since (entry_last
);
2017 /* Generate code to perform an operation specified by UNOPTAB
2018 on operand OP0, with result having machine-mode MODE.
2020 UNSIGNEDP is for the case where we have to widen the operands
2021 to perform the operation. It says to use zero-extension.
2023 If TARGET is nonzero, the value
2024 is generated there, if it is convenient to do so.
2025 In all cases an rtx is returned for the locus of the value;
2026 this may or may not be TARGET. */
2029 expand_unop (mode
, unoptab
, op0
, target
, unsignedp
)
2030 enum machine_mode mode
;
2036 enum mode_class
class;
2037 enum machine_mode wider_mode
;
2039 rtx last
= get_last_insn ();
2042 class = GET_MODE_CLASS (mode
);
2044 op0
= protect_from_queue (op0
, 0);
2048 op0
= force_not_mem (op0
);
2052 target
= protect_from_queue (target
, 1);
2054 if (unoptab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
2056 int icode
= (int) unoptab
->handlers
[(int) mode
].insn_code
;
2057 enum machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
2063 temp
= gen_reg_rtx (mode
);
2065 if (GET_MODE (xop0
) != VOIDmode
2066 && GET_MODE (xop0
) != mode0
)
2067 xop0
= convert_to_mode (mode0
, xop0
, unsignedp
);
2069 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2071 if (! (*insn_data
[icode
].operand
[1].predicate
) (xop0
, mode0
))
2072 xop0
= copy_to_mode_reg (mode0
, xop0
);
2074 if (! (*insn_data
[icode
].operand
[0].predicate
) (temp
, mode
))
2075 temp
= gen_reg_rtx (mode
);
2077 pat
= GEN_FCN (icode
) (temp
, xop0
);
2080 if (GET_CODE (pat
) == SEQUENCE
2081 && ! add_equal_note (pat
, temp
, unoptab
->code
, xop0
, NULL_RTX
))
2083 delete_insns_since (last
);
2084 return expand_unop (mode
, unoptab
, op0
, NULL_RTX
, unsignedp
);
2092 delete_insns_since (last
);
2095 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2097 if (class == MODE_INT
|| class == MODE_FLOAT
|| class == MODE_COMPLEX_FLOAT
)
2098 for (wider_mode
= GET_MODE_WIDER_MODE (mode
); wider_mode
!= VOIDmode
;
2099 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2101 if (unoptab
->handlers
[(int) wider_mode
].insn_code
!= CODE_FOR_nothing
)
2105 /* For certain operations, we need not actually extend
2106 the narrow operand, as long as we will truncate the
2107 results to the same narrowness. */
2109 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
,
2110 (unoptab
== neg_optab
2111 || unoptab
== one_cmpl_optab
)
2112 && class == MODE_INT
);
2114 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
2119 if (class != MODE_INT
)
2122 target
= gen_reg_rtx (mode
);
2123 convert_move (target
, temp
, 0);
2127 return gen_lowpart (mode
, temp
);
2130 delete_insns_since (last
);
2134 /* These can be done a word at a time. */
2135 if (unoptab
== one_cmpl_optab
2136 && class == MODE_INT
2137 && GET_MODE_SIZE (mode
) > UNITS_PER_WORD
2138 && unoptab
->handlers
[(int) word_mode
].insn_code
!= CODE_FOR_nothing
)
2143 if (target
== 0 || target
== op0
)
2144 target
= gen_reg_rtx (mode
);
2148 /* Do the actual arithmetic. */
2149 for (i
= 0; i
< GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
; i
++)
2151 rtx target_piece
= operand_subword (target
, i
, 1, mode
);
2152 rtx x
= expand_unop (word_mode
, unoptab
,
2153 operand_subword_force (op0
, i
, mode
),
2154 target_piece
, unsignedp
);
2155 if (target_piece
!= x
)
2156 emit_move_insn (target_piece
, x
);
2159 insns
= get_insns ();
2162 emit_no_conflict_block (insns
, target
, op0
, NULL_RTX
,
2163 gen_rtx_fmt_e (unoptab
->code
, mode
,
2168 /* Open-code the complex negation operation. */
2169 else if (unoptab
->code
== NEG
2170 && (class == MODE_COMPLEX_FLOAT
|| class == MODE_COMPLEX_INT
))
2176 /* Find the correct mode for the real and imaginary parts */
2177 enum machine_mode submode
2178 = mode_for_size (GET_MODE_UNIT_SIZE (mode
) * BITS_PER_UNIT
,
2179 class == MODE_COMPLEX_INT
? MODE_INT
: MODE_FLOAT
,
2182 if (submode
== BLKmode
)
2186 target
= gen_reg_rtx (mode
);
2190 target_piece
= gen_imagpart (submode
, target
);
2191 x
= expand_unop (submode
, unoptab
,
2192 gen_imagpart (submode
, op0
),
2193 target_piece
, unsignedp
);
2194 if (target_piece
!= x
)
2195 emit_move_insn (target_piece
, x
);
2197 target_piece
= gen_realpart (submode
, target
);
2198 x
= expand_unop (submode
, unoptab
,
2199 gen_realpart (submode
, op0
),
2200 target_piece
, unsignedp
);
2201 if (target_piece
!= x
)
2202 emit_move_insn (target_piece
, x
);
2207 emit_no_conflict_block (seq
, target
, op0
, 0,
2208 gen_rtx_fmt_e (unoptab
->code
, mode
,
2213 /* Now try a library call in this mode. */
2214 if (unoptab
->handlers
[(int) mode
].libfunc
)
2221 /* Pass 1 for NO_QUEUE so we don't lose any increments
2222 if the libcall is cse'd or moved. */
2223 value
= emit_library_call_value (unoptab
->handlers
[(int) mode
].libfunc
,
2224 NULL_RTX
, LCT_CONST
, mode
, 1, op0
, mode
);
2225 insns
= get_insns ();
2228 target
= gen_reg_rtx (mode
);
2229 emit_libcall_block (insns
, target
, value
,
2230 gen_rtx_fmt_e (unoptab
->code
, mode
, op0
));
2235 /* It can't be done in this mode. Can we do it in a wider mode? */
2237 if (class == MODE_INT
|| class == MODE_FLOAT
|| class == MODE_COMPLEX_FLOAT
)
2239 for (wider_mode
= GET_MODE_WIDER_MODE (mode
); wider_mode
!= VOIDmode
;
2240 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2242 if ((unoptab
->handlers
[(int) wider_mode
].insn_code
2243 != CODE_FOR_nothing
)
2244 || unoptab
->handlers
[(int) wider_mode
].libfunc
)
2248 /* For certain operations, we need not actually extend
2249 the narrow operand, as long as we will truncate the
2250 results to the same narrowness. */
2252 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
,
2253 (unoptab
== neg_optab
2254 || unoptab
== one_cmpl_optab
)
2255 && class == MODE_INT
);
2257 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
2262 if (class != MODE_INT
)
2265 target
= gen_reg_rtx (mode
);
2266 convert_move (target
, temp
, 0);
2270 return gen_lowpart (mode
, temp
);
2273 delete_insns_since (last
);
2278 /* If there is no negate operation, try doing a subtract from zero.
2279 The US Software GOFAST library needs this. */
2280 if (unoptab
->code
== NEG
)
2283 temp
= expand_binop (mode
,
2284 unoptab
== negv_optab
? subv_optab
: sub_optab
,
2285 CONST0_RTX (mode
), op0
,
2286 target
, unsignedp
, OPTAB_LIB_WIDEN
);
2294 /* Emit code to compute the absolute value of OP0, with result to
2295 TARGET if convenient. (TARGET may be 0.) The return value says
2296 where the result actually is to be found.
2298 MODE is the mode of the operand; the mode of the result is
2299 different but can be deduced from MODE.
2304 expand_abs (mode
, op0
, target
, result_unsignedp
, safe
)
2305 enum machine_mode mode
;
2308 int result_unsignedp
;
2314 result_unsignedp
= 1;
2316 /* First try to do it with a special abs instruction. */
2317 temp
= expand_unop (mode
, result_unsignedp
? abs_optab
: absv_optab
,
2322 /* If we have a MAX insn, we can do this as MAX (x, -x). */
2323 if (smax_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
2325 rtx last
= get_last_insn ();
2327 temp
= expand_unop (mode
, neg_optab
, op0
, NULL_RTX
, 0);
2329 temp
= expand_binop (mode
, smax_optab
, op0
, temp
, target
, 0,
2335 delete_insns_since (last
);
2338 /* If this machine has expensive jumps, we can do integer absolute
2339 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
2340 where W is the width of MODE. */
2342 if (GET_MODE_CLASS (mode
) == MODE_INT
&& BRANCH_COST
>= 2)
2344 rtx extended
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
2345 size_int (GET_MODE_BITSIZE (mode
) - 1),
2348 temp
= expand_binop (mode
, xor_optab
, extended
, op0
, target
, 0,
2351 temp
= expand_binop (mode
, result_unsignedp
? sub_optab
: subv_optab
,
2352 temp
, extended
, target
, 0, OPTAB_LIB_WIDEN
);
2358 /* If that does not win, use conditional jump and negate. */
2360 /* It is safe to use the target if it is the same
2361 as the source if this is also a pseudo register */
2362 if (op0
== target
&& GET_CODE (op0
) == REG
2363 && REGNO (op0
) >= FIRST_PSEUDO_REGISTER
)
2366 op1
= gen_label_rtx ();
2367 if (target
== 0 || ! safe
2368 || GET_MODE (target
) != mode
2369 || (GET_CODE (target
) == MEM
&& MEM_VOLATILE_P (target
))
2370 || (GET_CODE (target
) == REG
2371 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
2372 target
= gen_reg_rtx (mode
);
2374 emit_move_insn (target
, op0
);
2377 /* If this mode is an integer too wide to compare properly,
2378 compare word by word. Rely on CSE to optimize constant cases. */
2379 if (GET_MODE_CLASS (mode
) == MODE_INT
2380 && ! can_compare_p (GE
, mode
, ccp_jump
))
2381 do_jump_by_parts_greater_rtx (mode
, 0, target
, const0_rtx
,
2384 do_compare_rtx_and_jump (target
, CONST0_RTX (mode
), GE
, 0, mode
,
2385 NULL_RTX
, 0, NULL_RTX
, op1
);
2387 op0
= expand_unop (mode
, result_unsignedp
? neg_optab
: negv_optab
,
2390 emit_move_insn (target
, op0
);
2396 /* Emit code to compute the absolute value of OP0, with result to
2397 TARGET if convenient. (TARGET may be 0.) The return value says
2398 where the result actually is to be found.
2400 MODE is the mode of the operand; the mode of the result is
2401 different but can be deduced from MODE.
2403 UNSIGNEDP is relevant for complex integer modes. */
2406 expand_complex_abs (mode
, op0
, target
, unsignedp
)
2407 enum machine_mode mode
;
2412 enum mode_class
class = GET_MODE_CLASS (mode
);
2413 enum machine_mode wider_mode
;
2415 rtx entry_last
= get_last_insn ();
2418 optab this_abs_optab
;
2420 /* Find the correct mode for the real and imaginary parts. */
2421 enum machine_mode submode
2422 = mode_for_size (GET_MODE_UNIT_SIZE (mode
) * BITS_PER_UNIT
,
2423 class == MODE_COMPLEX_INT
? MODE_INT
: MODE_FLOAT
,
2426 if (submode
== BLKmode
)
2429 op0
= protect_from_queue (op0
, 0);
2433 op0
= force_not_mem (op0
);
2436 last
= get_last_insn ();
2439 target
= protect_from_queue (target
, 1);
2441 this_abs_optab
= ! unsignedp
&& flag_trapv
2442 && (GET_MODE_CLASS(mode
) == MODE_INT
)
2443 ? absv_optab
: abs_optab
;
2445 if (this_abs_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
2447 int icode
= (int) this_abs_optab
->handlers
[(int) mode
].insn_code
;
2448 enum machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
2454 temp
= gen_reg_rtx (submode
);
2456 if (GET_MODE (xop0
) != VOIDmode
2457 && GET_MODE (xop0
) != mode0
)
2458 xop0
= convert_to_mode (mode0
, xop0
, unsignedp
);
2460 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2462 if (! (*insn_data
[icode
].operand
[1].predicate
) (xop0
, mode0
))
2463 xop0
= copy_to_mode_reg (mode0
, xop0
);
2465 if (! (*insn_data
[icode
].operand
[0].predicate
) (temp
, submode
))
2466 temp
= gen_reg_rtx (submode
);
2468 pat
= GEN_FCN (icode
) (temp
, xop0
);
2471 if (GET_CODE (pat
) == SEQUENCE
2472 && ! add_equal_note (pat
, temp
, this_abs_optab
->code
, xop0
,
2475 delete_insns_since (last
);
2476 return expand_unop (mode
, this_abs_optab
, op0
, NULL_RTX
,
2485 delete_insns_since (last
);
2488 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2490 for (wider_mode
= GET_MODE_WIDER_MODE (mode
); wider_mode
!= VOIDmode
;
2491 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2493 if (this_abs_optab
->handlers
[(int) wider_mode
].insn_code
2494 != CODE_FOR_nothing
)
2498 xop0
= convert_modes (wider_mode
, mode
, xop0
, unsignedp
);
2499 temp
= expand_complex_abs (wider_mode
, xop0
, NULL_RTX
, unsignedp
);
2503 if (class != MODE_COMPLEX_INT
)
2506 target
= gen_reg_rtx (submode
);
2507 convert_move (target
, temp
, 0);
2511 return gen_lowpart (submode
, temp
);
2514 delete_insns_since (last
);
2518 /* Open-code the complex absolute-value operation
2519 if we can open-code sqrt. Otherwise it's not worth while. */
2520 if (sqrt_optab
->handlers
[(int) submode
].insn_code
!= CODE_FOR_nothing
2523 rtx real
, imag
, total
;
2525 real
= gen_realpart (submode
, op0
);
2526 imag
= gen_imagpart (submode
, op0
);
2528 /* Square both parts. */
2529 real
= expand_mult (submode
, real
, real
, NULL_RTX
, 0);
2530 imag
= expand_mult (submode
, imag
, imag
, NULL_RTX
, 0);
2532 /* Sum the parts. */
2533 total
= expand_binop (submode
, add_optab
, real
, imag
, NULL_RTX
,
2534 0, OPTAB_LIB_WIDEN
);
2536 /* Get sqrt in TARGET. Set TARGET to where the result is. */
2537 target
= expand_unop (submode
, sqrt_optab
, total
, target
, 0);
2539 delete_insns_since (last
);
2544 /* Now try a library call in this mode. */
2545 if (this_abs_optab
->handlers
[(int) mode
].libfunc
)
2552 /* Pass 1 for NO_QUEUE so we don't lose any increments
2553 if the libcall is cse'd or moved. */
2554 value
= emit_library_call_value (abs_optab
->handlers
[(int) mode
].libfunc
,
2555 NULL_RTX
, LCT_CONST
, submode
, 1, op0
, mode
);
2556 insns
= get_insns ();
2559 target
= gen_reg_rtx (submode
);
2560 emit_libcall_block (insns
, target
, value
,
2561 gen_rtx_fmt_e (this_abs_optab
->code
, mode
, op0
));
2566 /* It can't be done in this mode. Can we do it in a wider mode? */
2568 for (wider_mode
= GET_MODE_WIDER_MODE (mode
); wider_mode
!= VOIDmode
;
2569 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
2571 if ((this_abs_optab
->handlers
[(int) wider_mode
].insn_code
2572 != CODE_FOR_nothing
)
2573 || this_abs_optab
->handlers
[(int) wider_mode
].libfunc
)
2577 xop0
= convert_modes (wider_mode
, mode
, xop0
, unsignedp
);
2579 temp
= expand_complex_abs (wider_mode
, xop0
, NULL_RTX
, unsignedp
);
2583 if (class != MODE_COMPLEX_INT
)
2586 target
= gen_reg_rtx (submode
);
2587 convert_move (target
, temp
, 0);
2591 return gen_lowpart (submode
, temp
);
2594 delete_insns_since (last
);
2598 delete_insns_since (entry_last
);
2602 /* Generate an instruction whose insn-code is INSN_CODE,
2603 with two operands: an output TARGET and an input OP0.
2604 TARGET *must* be nonzero, and the output is always stored there.
2605 CODE is an rtx code such that (CODE OP0) is an rtx that describes
2606 the value that is stored into TARGET. */
2609 emit_unop_insn (icode
, target
, op0
, code
)
2616 enum machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
2619 temp
= target
= protect_from_queue (target
, 1);
2621 op0
= protect_from_queue (op0
, 0);
2623 /* Sign and zero extension from memory is often done specially on
2624 RISC machines, so forcing into a register here can pessimize
2626 if (flag_force_mem
&& code
!= SIGN_EXTEND
&& code
!= ZERO_EXTEND
)
2627 op0
= force_not_mem (op0
);
2629 /* Now, if insn does not accept our operands, put them into pseudos. */
2631 if (! (*insn_data
[icode
].operand
[1].predicate
) (op0
, mode0
))
2632 op0
= copy_to_mode_reg (mode0
, op0
);
2634 if (! (*insn_data
[icode
].operand
[0].predicate
) (temp
, GET_MODE (temp
))
2635 || (flag_force_mem
&& GET_CODE (temp
) == MEM
))
2636 temp
= gen_reg_rtx (GET_MODE (temp
));
2638 pat
= GEN_FCN (icode
) (temp
, op0
);
2640 if (GET_CODE (pat
) == SEQUENCE
&& code
!= UNKNOWN
)
2641 add_equal_note (pat
, temp
, code
, op0
, NULL_RTX
);
2646 emit_move_insn (target
, temp
);
2649 /* Emit code to perform a series of operations on a multi-word quantity, one
2652 Such a block is preceded by a CLOBBER of the output, consists of multiple
2653 insns, each setting one word of the output, and followed by a SET copying
2654 the output to itself.
2656 Each of the insns setting words of the output receives a REG_NO_CONFLICT
2657 note indicating that it doesn't conflict with the (also multi-word)
2658 inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
2661 INSNS is a block of code generated to perform the operation, not including
2662 the CLOBBER and final copy. All insns that compute intermediate values
2663 are first emitted, followed by the block as described above.
2665 TARGET, OP0, and OP1 are the output and inputs of the operations,
2666 respectively. OP1 may be zero for a unary operation.
2668 EQUIV, if non-zero, is an expression to be placed into a REG_EQUAL note
2671 If TARGET is not a register, INSNS is simply emitted with no special
2672 processing. Likewise if anything in INSNS is not an INSN or if
2673 there is a libcall block inside INSNS.
2675 The final insn emitted is returned. */
2678 emit_no_conflict_block (insns
, target
, op0
, op1
, equiv
)
2684 rtx prev
, next
, first
, last
, insn
;
2686 if (GET_CODE (target
) != REG
|| reload_in_progress
)
2687 return emit_insns (insns
);
2689 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
2690 if (GET_CODE (insn
) != INSN
2691 || find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
2692 return emit_insns (insns
);
2694 /* First emit all insns that do not store into words of the output and remove
2695 these from the list. */
2696 for (insn
= insns
; insn
; insn
= next
)
2701 next
= NEXT_INSN (insn
);
2703 if (GET_CODE (PATTERN (insn
)) == SET
|| GET_CODE (PATTERN (insn
)) == USE
2704 || GET_CODE (PATTERN (insn
)) == CLOBBER
)
2705 set
= PATTERN (insn
);
2706 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
2708 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
2709 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
2711 set
= XVECEXP (PATTERN (insn
), 0, i
);
2719 if (! reg_overlap_mentioned_p (target
, SET_DEST (set
)))
2721 if (PREV_INSN (insn
))
2722 NEXT_INSN (PREV_INSN (insn
)) = next
;
2727 PREV_INSN (next
) = PREV_INSN (insn
);
2733 prev
= get_last_insn ();
2735 /* Now write the CLOBBER of the output, followed by the setting of each
2736 of the words, followed by the final copy. */
2737 if (target
!= op0
&& target
!= op1
)
2738 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
2740 for (insn
= insns
; insn
; insn
= next
)
2742 next
= NEXT_INSN (insn
);
2745 if (op1
&& GET_CODE (op1
) == REG
)
2746 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT
, op1
,
2749 if (op0
&& GET_CODE (op0
) == REG
)
2750 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT
, op0
,
2754 if (mov_optab
->handlers
[(int) GET_MODE (target
)].insn_code
2755 != CODE_FOR_nothing
)
2757 last
= emit_move_insn (target
, target
);
2759 set_unique_reg_note (last
, REG_EQUAL
, equiv
);
2763 last
= get_last_insn ();
2765 /* Remove any existing REG_EQUAL note from "last", or else it will
2766 be mistaken for a note referring to the full contents of the
2767 alleged libcall value when found together with the REG_RETVAL
2768 note added below. An existing note can come from an insn
2769 expansion at "last". */
2770 remove_note (last
, find_reg_note (last
, REG_EQUAL
, NULL_RTX
));
2774 first
= get_insns ();
2776 first
= NEXT_INSN (prev
);
2778 /* Encapsulate the block so it gets manipulated as a unit. */
2779 REG_NOTES (first
) = gen_rtx_INSN_LIST (REG_LIBCALL
, last
,
2781 REG_NOTES (last
) = gen_rtx_INSN_LIST (REG_RETVAL
, first
, REG_NOTES (last
));
2786 /* Emit code to make a call to a constant function or a library call.
2788 INSNS is a list containing all insns emitted in the call.
2789 These insns leave the result in RESULT. Our block is to copy RESULT
2790 to TARGET, which is logically equivalent to EQUIV.
2792 We first emit any insns that set a pseudo on the assumption that these are
2793 loading constants into registers; doing so allows them to be safely cse'ed
2794 between blocks. Then we emit all the other insns in the block, followed by
2795 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
2796 note with an operand of EQUIV.
2798 Moving assignments to pseudos outside of the block is done to improve
2799 the generated code, but is not required to generate correct code,
2800 hence being unable to move an assignment is not grounds for not making
2801 a libcall block. There are two reasons why it is safe to leave these
2802 insns inside the block: First, we know that these pseudos cannot be
2803 used in generated RTL outside the block since they are created for
2804 temporary purposes within the block. Second, CSE will not record the
2805 values of anything set inside a libcall block, so we know they must
2806 be dead at the end of the block.
2808 Except for the first group of insns (the ones setting pseudos), the
2809 block is delimited by REG_RETVAL and REG_LIBCALL notes. */
2812 emit_libcall_block (insns
, target
, result
, equiv
)
2818 rtx final_dest
= target
;
2819 rtx prev
, next
, first
, last
, insn
;
2821 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
2822 into a MEM later. Protect the libcall block from this change. */
2823 if (! REG_P (target
) || REG_USERVAR_P (target
))
2824 target
= gen_reg_rtx (GET_MODE (target
));
2826 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
2827 reg note to indicate that this call cannot throw or execute a nonlocal
2828 goto (unless there is already a REG_EH_REGION note, in which case
2831 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
2832 if (GET_CODE (insn
) == CALL_INSN
)
2834 rtx note
= find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
);
2837 XEXP (note
, 0) = GEN_INT (-1);
2839 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_EH_REGION
, GEN_INT (-1),
2843 /* First emit all insns that set pseudos. Remove them from the list as
2844 we go. Avoid insns that set pseudos which were referenced in previous
2845 insns. These can be generated by move_by_pieces, for example,
2846 to update an address. Similarly, avoid insns that reference things
2847 set in previous insns. */
2849 for (insn
= insns
; insn
; insn
= next
)
2851 rtx set
= single_set (insn
);
2853 next
= NEXT_INSN (insn
);
2855 if (set
!= 0 && GET_CODE (SET_DEST (set
)) == REG
2856 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
2858 || ((! INSN_P(insns
)
2859 || ! reg_mentioned_p (SET_DEST (set
), PATTERN (insns
)))
2860 && ! reg_used_between_p (SET_DEST (set
), insns
, insn
)
2861 && ! modified_in_p (SET_SRC (set
), insns
)
2862 && ! modified_between_p (SET_SRC (set
), insns
, insn
))))
2864 if (PREV_INSN (insn
))
2865 NEXT_INSN (PREV_INSN (insn
)) = next
;
2870 PREV_INSN (next
) = PREV_INSN (insn
);
2876 prev
= get_last_insn ();
2878 /* Write the remaining insns followed by the final copy. */
2880 for (insn
= insns
; insn
; insn
= next
)
2882 next
= NEXT_INSN (insn
);
2887 last
= emit_move_insn (target
, result
);
2888 if (mov_optab
->handlers
[(int) GET_MODE (target
)].insn_code
2889 != CODE_FOR_nothing
)
2890 set_unique_reg_note (last
, REG_EQUAL
, copy_rtx (equiv
));
2893 /* Remove any existing REG_EQUAL note from "last", or else it will
2894 be mistaken for a note referring to the full contents of the
2895 libcall value when found together with the REG_RETVAL note added
2896 below. An existing note can come from an insn expansion at
2898 remove_note (last
, find_reg_note (last
, REG_EQUAL
, NULL_RTX
));
2901 if (final_dest
!= target
)
2902 emit_move_insn (final_dest
, target
);
2905 first
= get_insns ();
2907 first
= NEXT_INSN (prev
);
2909 /* Encapsulate the block so it gets manipulated as a unit. */
2910 REG_NOTES (first
) = gen_rtx_INSN_LIST (REG_LIBCALL
, last
,
2912 REG_NOTES (last
) = gen_rtx_INSN_LIST (REG_RETVAL
, first
, REG_NOTES (last
));
2915 /* Generate code to store zero in X. */
2921 emit_move_insn (x
, const0_rtx
);
2924 /* Generate code to store 1 in X
2925 assuming it contains zero beforehand. */
2928 emit_0_to_1_insn (x
)
2931 emit_move_insn (x
, const1_rtx
);
2934 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
2935 PURPOSE describes how this comparison will be used. CODE is the rtx
2936 comparison code we will be using.
2938 ??? Actually, CODE is slightly weaker than that. A target is still
2939 required to implement all of the normal bcc operations, but not
2940 required to implement all (or any) of the unordered bcc operations. */
2943 can_compare_p (code
, mode
, purpose
)
2945 enum machine_mode mode
;
2946 enum can_compare_purpose purpose
;
2950 if (cmp_optab
->handlers
[(int)mode
].insn_code
!= CODE_FOR_nothing
)
2952 if (purpose
== ccp_jump
)
2953 return bcc_gen_fctn
[(int)code
] != NULL
;
2954 else if (purpose
== ccp_store_flag
)
2955 return setcc_gen_code
[(int)code
] != CODE_FOR_nothing
;
2957 /* There's only one cmov entry point, and it's allowed to fail. */
2960 if (purpose
== ccp_jump
2961 && cbranch_optab
->handlers
[(int)mode
].insn_code
!= CODE_FOR_nothing
)
2963 if (purpose
== ccp_cmov
2964 && cmov_optab
->handlers
[(int)mode
].insn_code
!= CODE_FOR_nothing
)
2966 if (purpose
== ccp_store_flag
2967 && cstore_optab
->handlers
[(int)mode
].insn_code
!= CODE_FOR_nothing
)
2970 mode
= GET_MODE_WIDER_MODE (mode
);
2972 while (mode
!= VOIDmode
);
2977 /* This function is called when we are going to emit a compare instruction that
2978 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
2980 *PMODE is the mode of the inputs (in case they are const_int).
2981 *PUNSIGNEDP nonzero says that the operands are unsigned;
2982 this matters if they need to be widened.
2984 If they have mode BLKmode, then SIZE specifies the size of both operands,
2985 and ALIGN specifies the known shared alignment of the operands.
2987 This function performs all the setup necessary so that the caller only has
2988 to emit a single comparison insn. This setup can involve doing a BLKmode
2989 comparison or emitting a library call to perform the comparison if no insn
2990 is available to handle it.
2991 The values which are passed in through pointers can be modified; the caller
2992 should perform the comparison on the modified values. */
2995 prepare_cmp_insn (px
, py
, pcomparison
, size
, pmode
, punsignedp
, align
,
2998 enum rtx_code
*pcomparison
;
3000 enum machine_mode
*pmode
;
3002 int align ATTRIBUTE_UNUSED
;
3003 enum can_compare_purpose purpose
;
3005 enum machine_mode mode
= *pmode
;
3006 rtx x
= *px
, y
= *py
;
3007 int unsignedp
= *punsignedp
;
3008 enum mode_class
class;
3009 rtx opalign ATTRIBUTE_UNUSED
= GEN_INT (align
/ BITS_PER_UNIT
);;
3011 class = GET_MODE_CLASS (mode
);
3013 /* They could both be VOIDmode if both args are immediate constants,
3014 but we should fold that at an earlier stage.
3015 With no special code here, this will call abort,
3016 reminding the programmer to implement such folding. */
3018 if (mode
!= BLKmode
&& flag_force_mem
)
3020 x
= force_not_mem (x
);
3021 y
= force_not_mem (y
);
3024 /* If we are inside an appropriately-short loop and one operand is an
3025 expensive constant, force it into a register. */
3026 if (CONSTANT_P (x
) && preserve_subexpressions_p ()
3027 && rtx_cost (x
, COMPARE
) > COSTS_N_INSNS (1))
3028 x
= force_reg (mode
, x
);
3030 if (CONSTANT_P (y
) && preserve_subexpressions_p ()
3031 && rtx_cost (y
, COMPARE
) > COSTS_N_INSNS (1))
3032 y
= force_reg (mode
, y
);
3035 /* Abort if we have a non-canonical comparison. The RTL documentation
3036 states that canonical comparisons are required only for targets which
3038 if (CONSTANT_P (x
) && ! CONSTANT_P (y
))
3042 /* Don't let both operands fail to indicate the mode. */
3043 if (GET_MODE (x
) == VOIDmode
&& GET_MODE (y
) == VOIDmode
)
3044 x
= force_reg (mode
, x
);
3046 /* Handle all BLKmode compares. */
3048 if (mode
== BLKmode
)
3051 enum machine_mode result_mode
;
3054 x
= protect_from_queue (x
, 0);
3055 y
= protect_from_queue (y
, 0);
3059 #ifdef HAVE_cmpstrqi
3061 && GET_CODE (size
) == CONST_INT
3062 && INTVAL (size
) < (1 << GET_MODE_BITSIZE (QImode
)))
3064 result_mode
= insn_data
[(int) CODE_FOR_cmpstrqi
].operand
[0].mode
;
3065 result
= gen_reg_rtx (result_mode
);
3066 emit_insn (gen_cmpstrqi (result
, x
, y
, size
, opalign
));
3070 #ifdef HAVE_cmpstrhi
3072 && GET_CODE (size
) == CONST_INT
3073 && INTVAL (size
) < (1 << GET_MODE_BITSIZE (HImode
)))
3075 result_mode
= insn_data
[(int) CODE_FOR_cmpstrhi
].operand
[0].mode
;
3076 result
= gen_reg_rtx (result_mode
);
3077 emit_insn (gen_cmpstrhi (result
, x
, y
, size
, opalign
));
3081 #ifdef HAVE_cmpstrsi
3084 result_mode
= insn_data
[(int) CODE_FOR_cmpstrsi
].operand
[0].mode
;
3085 result
= gen_reg_rtx (result_mode
);
3086 size
= protect_from_queue (size
, 0);
3087 emit_insn (gen_cmpstrsi (result
, x
, y
,
3088 convert_to_mode (SImode
, size
, 1),
3094 #ifdef TARGET_MEM_FUNCTIONS
3095 emit_library_call (memcmp_libfunc
, LCT_PURE_MAKE_BLOCK
,
3096 TYPE_MODE (integer_type_node
), 3,
3097 XEXP (x
, 0), Pmode
, XEXP (y
, 0), Pmode
,
3098 convert_to_mode (TYPE_MODE (sizetype
), size
,
3099 TREE_UNSIGNED (sizetype
)),
3100 TYPE_MODE (sizetype
));
3102 emit_library_call (bcmp_libfunc
, LCT_PURE_MAKE_BLOCK
,
3103 TYPE_MODE (integer_type_node
), 3,
3104 XEXP (x
, 0), Pmode
, XEXP (y
, 0), Pmode
,
3105 convert_to_mode (TYPE_MODE (integer_type_node
),
3107 TREE_UNSIGNED (integer_type_node
)),
3108 TYPE_MODE (integer_type_node
));
3111 /* Immediately move the result of the libcall into a pseudo
3112 register so reload doesn't clobber the value if it needs
3113 the return register for a spill reg. */
3114 result
= gen_reg_rtx (TYPE_MODE (integer_type_node
));
3115 result_mode
= TYPE_MODE (integer_type_node
);
3116 emit_move_insn (result
,
3117 hard_libcall_value (result_mode
));
3121 *pmode
= result_mode
;
3127 if (can_compare_p (*pcomparison
, mode
, purpose
))
3130 /* Handle a lib call just for the mode we are using. */
3132 if (cmp_optab
->handlers
[(int) mode
].libfunc
&& class != MODE_FLOAT
)
3134 rtx libfunc
= cmp_optab
->handlers
[(int) mode
].libfunc
;
3137 /* If we want unsigned, and this mode has a distinct unsigned
3138 comparison routine, use that. */
3139 if (unsignedp
&& ucmp_optab
->handlers
[(int) mode
].libfunc
)
3140 libfunc
= ucmp_optab
->handlers
[(int) mode
].libfunc
;
3142 emit_library_call (libfunc
, 1,
3143 word_mode
, 2, x
, mode
, y
, mode
);
3145 /* Immediately move the result of the libcall into a pseudo
3146 register so reload doesn't clobber the value if it needs
3147 the return register for a spill reg. */
3148 result
= gen_reg_rtx (word_mode
);
3149 emit_move_insn (result
, hard_libcall_value (word_mode
));
3151 /* Integer comparison returns a result that must be compared against 1,
3152 so that even if we do an unsigned compare afterward,
3153 there is still a value that can represent the result "less than". */
3160 if (class == MODE_FLOAT
)
3161 prepare_float_lib_cmp (px
, py
, pcomparison
, pmode
, punsignedp
);
3167 /* Before emitting an insn with code ICODE, make sure that X, which is going
3168 to be used for operand OPNUM of the insn, is converted from mode MODE to
3169 WIDER_MODE (UNSIGNEDP determines whether it is a unsigned conversion), and
3170 that it is accepted by the operand predicate. Return the new value. */
3173 prepare_operand (icode
, x
, opnum
, mode
, wider_mode
, unsignedp
)
3177 enum machine_mode mode
, wider_mode
;
3180 x
= protect_from_queue (x
, 0);
3182 if (mode
!= wider_mode
)
3183 x
= convert_modes (wider_mode
, mode
, x
, unsignedp
);
3185 if (! (*insn_data
[icode
].operand
[opnum
].predicate
)
3186 (x
, insn_data
[icode
].operand
[opnum
].mode
))
3187 x
= copy_to_mode_reg (insn_data
[icode
].operand
[opnum
].mode
, x
);
3191 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3192 we can do the comparison.
3193 The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
3194 be NULL_RTX which indicates that only a comparison is to be generated. */
3197 emit_cmp_and_jump_insn_1 (x
, y
, mode
, comparison
, unsignedp
, label
)
3199 enum machine_mode mode
;
3200 enum rtx_code comparison
;
3204 rtx test
= gen_rtx_fmt_ee (comparison
, mode
, x
, y
);
3205 enum mode_class
class = GET_MODE_CLASS (mode
);
3206 enum machine_mode wider_mode
= mode
;
3208 /* Try combined insns first. */
3211 enum insn_code icode
;
3212 PUT_MODE (test
, wider_mode
);
3216 icode
= cbranch_optab
->handlers
[(int)wider_mode
].insn_code
;
3218 if (icode
!= CODE_FOR_nothing
3219 && (*insn_data
[icode
].operand
[0].predicate
) (test
, wider_mode
))
3221 x
= prepare_operand (icode
, x
, 1, mode
, wider_mode
, unsignedp
);
3222 y
= prepare_operand (icode
, y
, 2, mode
, wider_mode
, unsignedp
);
3223 emit_jump_insn (GEN_FCN (icode
) (test
, x
, y
, label
));
3228 /* Handle some compares against zero. */
3229 icode
= (int) tst_optab
->handlers
[(int) wider_mode
].insn_code
;
3230 if (y
== CONST0_RTX (mode
) && icode
!= CODE_FOR_nothing
)
3232 x
= prepare_operand (icode
, x
, 0, mode
, wider_mode
, unsignedp
);
3233 emit_insn (GEN_FCN (icode
) (x
));
3235 emit_jump_insn ((*bcc_gen_fctn
[(int) comparison
]) (label
));
3239 /* Handle compares for which there is a directly suitable insn. */
3241 icode
= (int) cmp_optab
->handlers
[(int) wider_mode
].insn_code
;
3242 if (icode
!= CODE_FOR_nothing
)
3244 x
= prepare_operand (icode
, x
, 0, mode
, wider_mode
, unsignedp
);
3245 y
= prepare_operand (icode
, y
, 1, mode
, wider_mode
, unsignedp
);
3246 emit_insn (GEN_FCN (icode
) (x
, y
));
3248 emit_jump_insn ((*bcc_gen_fctn
[(int) comparison
]) (label
));
3252 if (class != MODE_INT
&& class != MODE_FLOAT
3253 && class != MODE_COMPLEX_FLOAT
)
3256 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
);
3257 } while (wider_mode
!= VOIDmode
);
3262 /* Generate code to compare X with Y so that the condition codes are
3263 set and to jump to LABEL if the condition is true. If X is a
3264 constant and Y is not a constant, then the comparison is swapped to
3265 ensure that the comparison RTL has the canonical form.
3267 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3268 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
3269 the proper branch condition code.
3271 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y,
3272 and ALIGN specifies the known shared alignment of X and Y.
3274 MODE is the mode of the inputs (in case they are const_int).
3276 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
3277 be passed unchanged to emit_cmp_insn, then potentially converted into an
3278 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
3281 emit_cmp_and_jump_insns (x
, y
, comparison
, size
, mode
, unsignedp
, align
, label
)
3283 enum rtx_code comparison
;
3285 enum machine_mode mode
;
3293 if (swap_commutative_operands_p (x
, y
))
3295 /* Swap operands and condition to ensure canonical RTL. */
3298 comparison
= swap_condition (comparison
);
3307 /* If OP0 is still a constant, then both X and Y must be constants. Force
3308 X into a register to avoid aborting in emit_cmp_insn due to non-canonical
3310 if (CONSTANT_P (op0
))
3311 op0
= force_reg (mode
, op0
);
3316 comparison
= unsigned_condition (comparison
);
3317 prepare_cmp_insn (&op0
, &op1
, &comparison
, size
, &mode
, &unsignedp
, align
,
3319 emit_cmp_and_jump_insn_1 (op0
, op1
, mode
, comparison
, unsignedp
, label
);
3322 /* Like emit_cmp_and_jump_insns, but generate only the comparison. */
3325 emit_cmp_insn (x
, y
, comparison
, size
, mode
, unsignedp
, align
)
3327 enum rtx_code comparison
;
3329 enum machine_mode mode
;
3333 emit_cmp_and_jump_insns (x
, y
, comparison
, size
, mode
, unsignedp
, align
, 0);
3336 /* Emit a library call comparison between floating point X and Y.
3337 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
3340 prepare_float_lib_cmp (px
, py
, pcomparison
, pmode
, punsignedp
)
3342 enum rtx_code
*pcomparison
;
3343 enum machine_mode
*pmode
;
3346 enum rtx_code comparison
= *pcomparison
;
3347 rtx x
= *px
= protect_from_queue (*px
, 0);
3348 rtx y
= *py
= protect_from_queue (*py
, 0);
3349 enum machine_mode mode
= GET_MODE (x
);
3357 libfunc
= eqhf2_libfunc
;
3361 libfunc
= nehf2_libfunc
;
3365 libfunc
= gthf2_libfunc
;
3369 libfunc
= gehf2_libfunc
;
3373 libfunc
= lthf2_libfunc
;
3377 libfunc
= lehf2_libfunc
;
3381 libfunc
= unordhf2_libfunc
;
3387 else if (mode
== SFmode
)
3391 libfunc
= eqsf2_libfunc
;
3395 libfunc
= nesf2_libfunc
;
3399 libfunc
= gtsf2_libfunc
;
3403 libfunc
= gesf2_libfunc
;
3407 libfunc
= ltsf2_libfunc
;
3411 libfunc
= lesf2_libfunc
;
3415 libfunc
= unordsf2_libfunc
;
3421 else if (mode
== DFmode
)
3425 libfunc
= eqdf2_libfunc
;
3429 libfunc
= nedf2_libfunc
;
3433 libfunc
= gtdf2_libfunc
;
3437 libfunc
= gedf2_libfunc
;
3441 libfunc
= ltdf2_libfunc
;
3445 libfunc
= ledf2_libfunc
;
3449 libfunc
= unorddf2_libfunc
;
3455 else if (mode
== XFmode
)
3459 libfunc
= eqxf2_libfunc
;
3463 libfunc
= nexf2_libfunc
;
3467 libfunc
= gtxf2_libfunc
;
3471 libfunc
= gexf2_libfunc
;
3475 libfunc
= ltxf2_libfunc
;
3479 libfunc
= lexf2_libfunc
;
3483 libfunc
= unordxf2_libfunc
;
3489 else if (mode
== TFmode
)
3493 libfunc
= eqtf2_libfunc
;
3497 libfunc
= netf2_libfunc
;
3501 libfunc
= gttf2_libfunc
;
3505 libfunc
= getf2_libfunc
;
3509 libfunc
= lttf2_libfunc
;
3513 libfunc
= letf2_libfunc
;
3517 libfunc
= unordtf2_libfunc
;
3525 enum machine_mode wider_mode
;
3527 for (wider_mode
= GET_MODE_WIDER_MODE (mode
); wider_mode
!= VOIDmode
;
3528 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
3530 if ((cmp_optab
->handlers
[(int) wider_mode
].insn_code
3531 != CODE_FOR_nothing
)
3532 || (cmp_optab
->handlers
[(int) wider_mode
].libfunc
!= 0))
3534 x
= protect_from_queue (x
, 0);
3535 y
= protect_from_queue (y
, 0);
3536 *px
= convert_to_mode (wider_mode
, x
, 0);
3537 *py
= convert_to_mode (wider_mode
, y
, 0);
3538 prepare_float_lib_cmp (px
, py
, pcomparison
, pmode
, punsignedp
);
3548 emit_library_call (libfunc
, LCT_CONST_MAKE_BLOCK
, word_mode
, 2, x
, mode
, y
,
3551 /* Immediately move the result of the libcall into a pseudo
3552 register so reload doesn't clobber the value if it needs
3553 the return register for a spill reg. */
3554 result
= gen_reg_rtx (word_mode
);
3555 emit_move_insn (result
, hard_libcall_value (word_mode
));
3559 if (comparison
== UNORDERED
)
3561 #ifdef FLOAT_LIB_COMPARE_RETURNS_BOOL
3562 else if (FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
))
3568 /* Generate code to indirectly jump to a location given in the rtx LOC. */
3571 emit_indirect_jump (loc
)
3574 if (! ((*insn_data
[(int)CODE_FOR_indirect_jump
].operand
[0].predicate
)
3576 loc
= copy_to_mode_reg (Pmode
, loc
);
3578 emit_jump_insn (gen_indirect_jump (loc
));
3582 #ifdef HAVE_conditional_move
3584 /* Emit a conditional move instruction if the machine supports one for that
3585 condition and machine mode.
3587 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
3588 the mode to use should they be constants. If it is VOIDmode, they cannot
3591 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
3592 should be stored there. MODE is the mode to use should they be constants.
3593 If it is VOIDmode, they cannot both be constants.
3595 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
3596 is not supported. */
3599 emit_conditional_move (target
, code
, op0
, op1
, cmode
, op2
, op3
, mode
,
3604 enum machine_mode cmode
;
3606 enum machine_mode mode
;
3609 rtx tem
, subtarget
, comparison
, insn
;
3610 enum insn_code icode
;
3611 enum rtx_code reversed
;
3613 /* If one operand is constant, make it the second one. Only do this
3614 if the other operand is not constant as well. */
3616 if (swap_commutative_operands_p (op0
, op1
))
3621 code
= swap_condition (code
);
3624 /* get_condition will prefer to generate LT and GT even if the old
3625 comparison was against zero, so undo that canonicalization here since
3626 comparisons against zero are cheaper. */
3627 if (code
== LT
&& GET_CODE (op1
) == CONST_INT
&& INTVAL (op1
) == 1)
3628 code
= LE
, op1
= const0_rtx
;
3629 else if (code
== GT
&& GET_CODE (op1
) == CONST_INT
&& INTVAL (op1
) == -1)
3630 code
= GE
, op1
= const0_rtx
;
3632 if (cmode
== VOIDmode
)
3633 cmode
= GET_MODE (op0
);
3635 if (swap_commutative_operands_p (op2
, op3
)
3636 && ((reversed
= reversed_comparison_code_parts (code
, op0
, op1
, NULL
))
3645 if (mode
== VOIDmode
)
3646 mode
= GET_MODE (op2
);
3648 icode
= movcc_gen_code
[mode
];
3650 if (icode
== CODE_FOR_nothing
)
3655 op2
= force_not_mem (op2
);
3656 op3
= force_not_mem (op3
);
3660 target
= protect_from_queue (target
, 1);
3662 target
= gen_reg_rtx (mode
);
3668 op2
= protect_from_queue (op2
, 0);
3669 op3
= protect_from_queue (op3
, 0);
3671 /* If the insn doesn't accept these operands, put them in pseudos. */
3673 if (! (*insn_data
[icode
].operand
[0].predicate
)
3674 (subtarget
, insn_data
[icode
].operand
[0].mode
))
3675 subtarget
= gen_reg_rtx (insn_data
[icode
].operand
[0].mode
);
3677 if (! (*insn_data
[icode
].operand
[2].predicate
)
3678 (op2
, insn_data
[icode
].operand
[2].mode
))
3679 op2
= copy_to_mode_reg (insn_data
[icode
].operand
[2].mode
, op2
);
3681 if (! (*insn_data
[icode
].operand
[3].predicate
)
3682 (op3
, insn_data
[icode
].operand
[3].mode
))
3683 op3
= copy_to_mode_reg (insn_data
[icode
].operand
[3].mode
, op3
);
3685 /* Everything should now be in the suitable form, so emit the compare insn
3686 and then the conditional move. */
3689 = compare_from_rtx (op0
, op1
, code
, unsignedp
, cmode
, NULL_RTX
, 0);
3691 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
3692 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
3693 return NULL and let the caller figure out how best to deal with this
3695 if (GET_CODE (comparison
) != code
)
3698 insn
= GEN_FCN (icode
) (subtarget
, comparison
, op2
, op3
);
3700 /* If that failed, then give up. */
3706 if (subtarget
!= target
)
3707 convert_move (target
, subtarget
, 0);
3712 /* Return non-zero if a conditional move of mode MODE is supported.
3714 This function is for combine so it can tell whether an insn that looks
3715 like a conditional move is actually supported by the hardware. If we
3716 guess wrong we lose a bit on optimization, but that's it. */
3717 /* ??? sparc64 supports conditionally moving integers values based on fp
3718 comparisons, and vice versa. How do we handle them? */
3721 can_conditionally_move_p (mode
)
3722 enum machine_mode mode
;
3724 if (movcc_gen_code
[mode
] != CODE_FOR_nothing
)
3730 #endif /* HAVE_conditional_move */
3732 /* These three functions generate an insn body and return it
3733 rather than emitting the insn.
3735 They do not protect from queued increments,
3736 because they may be used 1) in protect_from_queue itself
3737 and 2) in other passes where there is no queue. */
3739 /* Generate and return an insn body to add Y to X. */
3742 gen_add2_insn (x
, y
)
3745 int icode
= (int) add_optab
->handlers
[(int) GET_MODE (x
)].insn_code
;
3747 if (! ((*insn_data
[icode
].operand
[0].predicate
)
3748 (x
, insn_data
[icode
].operand
[0].mode
))
3749 || ! ((*insn_data
[icode
].operand
[1].predicate
)
3750 (x
, insn_data
[icode
].operand
[1].mode
))
3751 || ! ((*insn_data
[icode
].operand
[2].predicate
)
3752 (y
, insn_data
[icode
].operand
[2].mode
)))
3755 return (GEN_FCN (icode
) (x
, x
, y
));
3759 have_add2_insn (mode
)
3760 enum machine_mode mode
;
3762 return add_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
;
3765 /* Generate and return an insn body to subtract Y from X. */
3768 gen_sub2_insn (x
, y
)
3771 int icode
= (int) sub_optab
->handlers
[(int) GET_MODE (x
)].insn_code
;
3773 if (! ((*insn_data
[icode
].operand
[0].predicate
)
3774 (x
, insn_data
[icode
].operand
[0].mode
))
3775 || ! ((*insn_data
[icode
].operand
[1].predicate
)
3776 (x
, insn_data
[icode
].operand
[1].mode
))
3777 || ! ((*insn_data
[icode
].operand
[2].predicate
)
3778 (y
, insn_data
[icode
].operand
[2].mode
)))
3781 return (GEN_FCN (icode
) (x
, x
, y
));
3785 have_sub2_insn (mode
)
3786 enum machine_mode mode
;
3788 return sub_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
;
3791 /* Generate the body of an instruction to copy Y into X.
3792 It may be a SEQUENCE, if one insn isn't enough. */
3795 gen_move_insn (x
, y
)
3798 register enum machine_mode mode
= GET_MODE (x
);
3799 enum insn_code insn_code
;
3802 if (mode
== VOIDmode
)
3803 mode
= GET_MODE (y
);
3805 insn_code
= mov_optab
->handlers
[(int) mode
].insn_code
;
3807 /* Handle MODE_CC modes: If we don't have a special move insn for this mode,
3808 find a mode to do it in. If we have a movcc, use it. Otherwise,
3809 find the MODE_INT mode of the same width. */
3811 if (GET_MODE_CLASS (mode
) == MODE_CC
&& insn_code
== CODE_FOR_nothing
)
3813 enum machine_mode tmode
= VOIDmode
;
3817 && mov_optab
->handlers
[(int) CCmode
].insn_code
!= CODE_FOR_nothing
)
3820 for (tmode
= QImode
; tmode
!= VOIDmode
;
3821 tmode
= GET_MODE_WIDER_MODE (tmode
))
3822 if (GET_MODE_SIZE (tmode
) == GET_MODE_SIZE (mode
))
3825 if (tmode
== VOIDmode
)
3828 /* Get X and Y in TMODE. We can't use gen_lowpart here because it
3829 may call change_address which is not appropriate if we were
3830 called when a reload was in progress. We don't have to worry
3831 about changing the address since the size in bytes is supposed to
3832 be the same. Copy the MEM to change the mode and move any
3833 substitutions from the old MEM to the new one. */
3835 if (reload_in_progress
)
3837 x
= gen_lowpart_common (tmode
, x1
);
3838 if (x
== 0 && GET_CODE (x1
) == MEM
)
3840 x
= gen_rtx_MEM (tmode
, XEXP (x1
, 0));
3841 MEM_COPY_ATTRIBUTES (x
, x1
);
3842 copy_replacements (x1
, x
);
3845 y
= gen_lowpart_common (tmode
, y1
);
3846 if (y
== 0 && GET_CODE (y1
) == MEM
)
3848 y
= gen_rtx_MEM (tmode
, XEXP (y1
, 0));
3849 MEM_COPY_ATTRIBUTES (y
, y1
);
3850 copy_replacements (y1
, y
);
3855 x
= gen_lowpart (tmode
, x
);
3856 y
= gen_lowpart (tmode
, y
);
3859 insn_code
= mov_optab
->handlers
[(int) tmode
].insn_code
;
3860 return (GEN_FCN (insn_code
) (x
, y
));
3864 emit_move_insn_1 (x
, y
);
3865 seq
= gen_sequence ();
3870 /* Return the insn code used to extend FROM_MODE to TO_MODE.
3871 UNSIGNEDP specifies zero-extension instead of sign-extension. If
3872 no such operation exists, CODE_FOR_nothing will be returned. */
3875 can_extend_p (to_mode
, from_mode
, unsignedp
)
3876 enum machine_mode to_mode
, from_mode
;
3879 return extendtab
[(int) to_mode
][(int) from_mode
][unsignedp
!= 0];
3882 /* Generate the body of an insn to extend Y (with mode MFROM)
3883 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
3886 gen_extend_insn (x
, y
, mto
, mfrom
, unsignedp
)
3888 enum machine_mode mto
, mfrom
;
3891 return (GEN_FCN (extendtab
[(int) mto
][(int) mfrom
][unsignedp
!= 0]) (x
, y
));
3894 /* can_fix_p and can_float_p say whether the target machine
3895 can directly convert a given fixed point type to
3896 a given floating point type, or vice versa.
3897 The returned value is the CODE_FOR_... value to use,
3898 or CODE_FOR_nothing if these modes cannot be directly converted.
3900 *TRUNCP_PTR is set to 1 if it is necessary to output
3901 an explicit FTRUNC insn before the fix insn; otherwise 0. */
3903 static enum insn_code
3904 can_fix_p (fixmode
, fltmode
, unsignedp
, truncp_ptr
)
3905 enum machine_mode fltmode
, fixmode
;
3910 if (fixtrunctab
[(int) fltmode
][(int) fixmode
][unsignedp
!= 0]
3911 != CODE_FOR_nothing
)
3912 return fixtrunctab
[(int) fltmode
][(int) fixmode
][unsignedp
!= 0];
3914 if (ftrunc_optab
->handlers
[(int) fltmode
].insn_code
!= CODE_FOR_nothing
)
3917 return fixtab
[(int) fltmode
][(int) fixmode
][unsignedp
!= 0];
3919 return CODE_FOR_nothing
;
3922 static enum insn_code
3923 can_float_p (fltmode
, fixmode
, unsignedp
)
3924 enum machine_mode fixmode
, fltmode
;
3927 return floattab
[(int) fltmode
][(int) fixmode
][unsignedp
!= 0];
3930 /* Generate code to convert FROM to floating point
3931 and store in TO. FROM must be fixed point and not VOIDmode.
3932 UNSIGNEDP nonzero means regard FROM as unsigned.
3933 Normally this is done by correcting the final value
3934 if it is negative. */
3937 expand_float (to
, from
, unsignedp
)
3941 enum insn_code icode
;
3942 register rtx target
= to
;
3943 enum machine_mode fmode
, imode
;
3945 /* Crash now, because we won't be able to decide which mode to use. */
3946 if (GET_MODE (from
) == VOIDmode
)
3949 /* Look for an insn to do the conversion. Do it in the specified
3950 modes if possible; otherwise convert either input, output or both to
3951 wider mode. If the integer mode is wider than the mode of FROM,
3952 we can do the conversion signed even if the input is unsigned. */
3954 for (imode
= GET_MODE (from
); imode
!= VOIDmode
;
3955 imode
= GET_MODE_WIDER_MODE (imode
))
3956 for (fmode
= GET_MODE (to
); fmode
!= VOIDmode
;
3957 fmode
= GET_MODE_WIDER_MODE (fmode
))
3959 int doing_unsigned
= unsignedp
;
3961 if (fmode
!= GET_MODE (to
)
3962 && significand_size (fmode
) < GET_MODE_BITSIZE (GET_MODE (from
)))
3965 icode
= can_float_p (fmode
, imode
, unsignedp
);
3966 if (icode
== CODE_FOR_nothing
&& imode
!= GET_MODE (from
) && unsignedp
)
3967 icode
= can_float_p (fmode
, imode
, 0), doing_unsigned
= 0;
3969 if (icode
!= CODE_FOR_nothing
)
3971 to
= protect_from_queue (to
, 1);
3972 from
= protect_from_queue (from
, 0);
3974 if (imode
!= GET_MODE (from
))
3975 from
= convert_to_mode (imode
, from
, unsignedp
);
3977 if (fmode
!= GET_MODE (to
))
3978 target
= gen_reg_rtx (fmode
);
3980 emit_unop_insn (icode
, target
, from
,
3981 doing_unsigned
? UNSIGNED_FLOAT
: FLOAT
);
3984 convert_move (to
, target
, 0);
3989 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3991 /* Unsigned integer, and no way to convert directly.
3992 Convert as signed, then conditionally adjust the result. */
3995 rtx label
= gen_label_rtx ();
3997 REAL_VALUE_TYPE offset
;
4001 to
= protect_from_queue (to
, 1);
4002 from
= protect_from_queue (from
, 0);
4005 from
= force_not_mem (from
);
4007 /* Look for a usable floating mode FMODE wider than the source and at
4008 least as wide as the target. Using FMODE will avoid rounding woes
4009 with unsigned values greater than the signed maximum value. */
4011 for (fmode
= GET_MODE (to
); fmode
!= VOIDmode
;
4012 fmode
= GET_MODE_WIDER_MODE (fmode
))
4013 if (GET_MODE_BITSIZE (GET_MODE (from
)) < GET_MODE_BITSIZE (fmode
)
4014 && can_float_p (fmode
, GET_MODE (from
), 0) != CODE_FOR_nothing
)
4017 if (fmode
== VOIDmode
)
4019 /* There is no such mode. Pretend the target is wide enough. */
4020 fmode
= GET_MODE (to
);
4022 /* Avoid double-rounding when TO is narrower than FROM. */
4023 if ((significand_size (fmode
) + 1)
4024 < GET_MODE_BITSIZE (GET_MODE (from
)))
4027 rtx neglabel
= gen_label_rtx ();
4029 /* Don't use TARGET if it isn't a register, is a hard register,
4030 or is the wrong mode. */
4031 if (GET_CODE (target
) != REG
4032 || REGNO (target
) < FIRST_PSEUDO_REGISTER
4033 || GET_MODE (target
) != fmode
)
4034 target
= gen_reg_rtx (fmode
);
4036 imode
= GET_MODE (from
);
4037 do_pending_stack_adjust ();
4039 /* Test whether the sign bit is set. */
4040 emit_cmp_and_jump_insns (from
, const0_rtx
, LT
, NULL_RTX
, imode
,
4043 /* The sign bit is not set. Convert as signed. */
4044 expand_float (target
, from
, 0);
4045 emit_jump_insn (gen_jump (label
));
4048 /* The sign bit is set.
4049 Convert to a usable (positive signed) value by shifting right
4050 one bit, while remembering if a nonzero bit was shifted
4051 out; i.e., compute (from & 1) | (from >> 1). */
4053 emit_label (neglabel
);
4054 temp
= expand_binop (imode
, and_optab
, from
, const1_rtx
,
4055 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4056 temp1
= expand_shift (RSHIFT_EXPR
, imode
, from
, integer_one_node
,
4058 temp
= expand_binop (imode
, ior_optab
, temp
, temp1
, temp
, 1,
4060 expand_float (target
, temp
, 0);
4062 /* Multiply by 2 to undo the shift above. */
4063 temp
= expand_binop (fmode
, add_optab
, target
, target
,
4064 target
, 0, OPTAB_LIB_WIDEN
);
4066 emit_move_insn (target
, temp
);
4068 do_pending_stack_adjust ();
4074 /* If we are about to do some arithmetic to correct for an
4075 unsigned operand, do it in a pseudo-register. */
4077 if (GET_MODE (to
) != fmode
4078 || GET_CODE (to
) != REG
|| REGNO (to
) < FIRST_PSEUDO_REGISTER
)
4079 target
= gen_reg_rtx (fmode
);
4081 /* Convert as signed integer to floating. */
4082 expand_float (target
, from
, 0);
4084 /* If FROM is negative (and therefore TO is negative),
4085 correct its value by 2**bitwidth. */
4087 do_pending_stack_adjust ();
4088 emit_cmp_and_jump_insns (from
, const0_rtx
, GE
, NULL_RTX
, GET_MODE (from
),
4091 /* On SCO 3.2.1, ldexp rejects values outside [0.5, 1).
4092 Rather than setting up a dconst_dot_5, let's hope SCO
4094 offset
= REAL_VALUE_LDEXP (dconst1
, GET_MODE_BITSIZE (GET_MODE (from
)));
4095 temp
= expand_binop (fmode
, add_optab
, target
,
4096 CONST_DOUBLE_FROM_REAL_VALUE (offset
, fmode
),
4097 target
, 0, OPTAB_LIB_WIDEN
);
4099 emit_move_insn (target
, temp
);
4101 do_pending_stack_adjust ();
4107 /* No hardware instruction available; call a library routine to convert from
4108 SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */
4114 to
= protect_from_queue (to
, 1);
4115 from
= protect_from_queue (from
, 0);
4117 if (GET_MODE_SIZE (GET_MODE (from
)) < GET_MODE_SIZE (SImode
))
4118 from
= convert_to_mode (SImode
, from
, unsignedp
);
4121 from
= force_not_mem (from
);
4123 if (GET_MODE (to
) == SFmode
)
4125 if (GET_MODE (from
) == SImode
)
4126 libfcn
= floatsisf_libfunc
;
4127 else if (GET_MODE (from
) == DImode
)
4128 libfcn
= floatdisf_libfunc
;
4129 else if (GET_MODE (from
) == TImode
)
4130 libfcn
= floattisf_libfunc
;
4134 else if (GET_MODE (to
) == DFmode
)
4136 if (GET_MODE (from
) == SImode
)
4137 libfcn
= floatsidf_libfunc
;
4138 else if (GET_MODE (from
) == DImode
)
4139 libfcn
= floatdidf_libfunc
;
4140 else if (GET_MODE (from
) == TImode
)
4141 libfcn
= floattidf_libfunc
;
4145 else if (GET_MODE (to
) == XFmode
)
4147 if (GET_MODE (from
) == SImode
)
4148 libfcn
= floatsixf_libfunc
;
4149 else if (GET_MODE (from
) == DImode
)
4150 libfcn
= floatdixf_libfunc
;
4151 else if (GET_MODE (from
) == TImode
)
4152 libfcn
= floattixf_libfunc
;
4156 else if (GET_MODE (to
) == TFmode
)
4158 if (GET_MODE (from
) == SImode
)
4159 libfcn
= floatsitf_libfunc
;
4160 else if (GET_MODE (from
) == DImode
)
4161 libfcn
= floatditf_libfunc
;
4162 else if (GET_MODE (from
) == TImode
)
4163 libfcn
= floattitf_libfunc
;
4172 value
= emit_library_call_value (libfcn
, NULL_RTX
, LCT_CONST
,
4173 GET_MODE (to
), 1, from
,
4175 insns
= get_insns ();
4178 emit_libcall_block (insns
, target
, value
,
4179 gen_rtx_FLOAT (GET_MODE (to
), from
));
4184 /* Copy result to requested destination
4185 if we have been computing in a temp location. */
4189 if (GET_MODE (target
) == GET_MODE (to
))
4190 emit_move_insn (to
, target
);
4192 convert_move (to
, target
, 0);
4196 /* expand_fix: generate code to convert FROM to fixed point
4197 and store in TO. FROM must be floating point. */
4203 rtx temp
= gen_reg_rtx (GET_MODE (x
));
4204 return expand_unop (GET_MODE (x
), ftrunc_optab
, x
, temp
, 0);
4208 expand_fix (to
, from
, unsignedp
)
4209 register rtx to
, from
;
4212 enum insn_code icode
;
4213 register rtx target
= to
;
4214 enum machine_mode fmode
, imode
;
4218 /* We first try to find a pair of modes, one real and one integer, at
4219 least as wide as FROM and TO, respectively, in which we can open-code
4220 this conversion. If the integer mode is wider than the mode of TO,
4221 we can do the conversion either signed or unsigned. */
4223 for (imode
= GET_MODE (to
); imode
!= VOIDmode
;
4224 imode
= GET_MODE_WIDER_MODE (imode
))
4225 for (fmode
= GET_MODE (from
); fmode
!= VOIDmode
;
4226 fmode
= GET_MODE_WIDER_MODE (fmode
))
4228 int doing_unsigned
= unsignedp
;
4230 icode
= can_fix_p (imode
, fmode
, unsignedp
, &must_trunc
);
4231 if (icode
== CODE_FOR_nothing
&& imode
!= GET_MODE (to
) && unsignedp
)
4232 icode
= can_fix_p (imode
, fmode
, 0, &must_trunc
), doing_unsigned
= 0;
4234 if (icode
!= CODE_FOR_nothing
)
4236 to
= protect_from_queue (to
, 1);
4237 from
= protect_from_queue (from
, 0);
4239 if (fmode
!= GET_MODE (from
))
4240 from
= convert_to_mode (fmode
, from
, 0);
4243 from
= ftruncify (from
);
4245 if (imode
!= GET_MODE (to
))
4246 target
= gen_reg_rtx (imode
);
4248 emit_unop_insn (icode
, target
, from
,
4249 doing_unsigned
? UNSIGNED_FIX
: FIX
);
4251 convert_move (to
, target
, unsignedp
);
4256 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4257 /* For an unsigned conversion, there is one more way to do it.
4258 If we have a signed conversion, we generate code that compares
4259 the real value to the largest representable positive number. If if
4260 is smaller, the conversion is done normally. Otherwise, subtract
4261 one plus the highest signed number, convert, and add it back.
4263 We only need to check all real modes, since we know we didn't find
4264 anything with a wider integer mode. */
4266 if (unsignedp
&& GET_MODE_BITSIZE (GET_MODE (to
)) <= HOST_BITS_PER_WIDE_INT
)
4267 for (fmode
= GET_MODE (from
); fmode
!= VOIDmode
;
4268 fmode
= GET_MODE_WIDER_MODE (fmode
))
4269 /* Make sure we won't lose significant bits doing this. */
4270 if (GET_MODE_BITSIZE (fmode
) > GET_MODE_BITSIZE (GET_MODE (to
))
4271 && CODE_FOR_nothing
!= can_fix_p (GET_MODE (to
), fmode
, 0,
4275 REAL_VALUE_TYPE offset
;
4276 rtx limit
, lab1
, lab2
, insn
;
4278 bitsize
= GET_MODE_BITSIZE (GET_MODE (to
));
4279 offset
= REAL_VALUE_LDEXP (dconst1
, bitsize
- 1);
4280 limit
= CONST_DOUBLE_FROM_REAL_VALUE (offset
, fmode
);
4281 lab1
= gen_label_rtx ();
4282 lab2
= gen_label_rtx ();
4285 to
= protect_from_queue (to
, 1);
4286 from
= protect_from_queue (from
, 0);
4289 from
= force_not_mem (from
);
4291 if (fmode
!= GET_MODE (from
))
4292 from
= convert_to_mode (fmode
, from
, 0);
4294 /* See if we need to do the subtraction. */
4295 do_pending_stack_adjust ();
4296 emit_cmp_and_jump_insns (from
, limit
, GE
, NULL_RTX
, GET_MODE (from
),
4299 /* If not, do the signed "fix" and branch around fixup code. */
4300 expand_fix (to
, from
, 0);
4301 emit_jump_insn (gen_jump (lab2
));
4304 /* Otherwise, subtract 2**(N-1), convert to signed number,
4305 then add 2**(N-1). Do the addition using XOR since this
4306 will often generate better code. */
4308 target
= expand_binop (GET_MODE (from
), sub_optab
, from
, limit
,
4309 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4310 expand_fix (to
, target
, 0);
4311 target
= expand_binop (GET_MODE (to
), xor_optab
, to
,
4312 GEN_INT (trunc_int_for_mode
4313 ((HOST_WIDE_INT
) 1 << (bitsize
- 1),
4315 to
, 1, OPTAB_LIB_WIDEN
);
4318 emit_move_insn (to
, target
);
4322 if (mov_optab
->handlers
[(int) GET_MODE (to
)].insn_code
4323 != CODE_FOR_nothing
)
4325 /* Make a place for a REG_NOTE and add it. */
4326 insn
= emit_move_insn (to
, to
);
4327 set_unique_reg_note (insn
,
4329 gen_rtx_fmt_e (UNSIGNED_FIX
,
4338 /* We can't do it with an insn, so use a library call. But first ensure
4339 that the mode of TO is at least as wide as SImode, since those are the
4340 only library calls we know about. */
4342 if (GET_MODE_SIZE (GET_MODE (to
)) < GET_MODE_SIZE (SImode
))
4344 target
= gen_reg_rtx (SImode
);
4346 expand_fix (target
, from
, unsignedp
);
4348 else if (GET_MODE (from
) == SFmode
)
4350 if (GET_MODE (to
) == SImode
)
4351 libfcn
= unsignedp
? fixunssfsi_libfunc
: fixsfsi_libfunc
;
4352 else if (GET_MODE (to
) == DImode
)
4353 libfcn
= unsignedp
? fixunssfdi_libfunc
: fixsfdi_libfunc
;
4354 else if (GET_MODE (to
) == TImode
)
4355 libfcn
= unsignedp
? fixunssfti_libfunc
: fixsfti_libfunc
;
4359 else if (GET_MODE (from
) == DFmode
)
4361 if (GET_MODE (to
) == SImode
)
4362 libfcn
= unsignedp
? fixunsdfsi_libfunc
: fixdfsi_libfunc
;
4363 else if (GET_MODE (to
) == DImode
)
4364 libfcn
= unsignedp
? fixunsdfdi_libfunc
: fixdfdi_libfunc
;
4365 else if (GET_MODE (to
) == TImode
)
4366 libfcn
= unsignedp
? fixunsdfti_libfunc
: fixdfti_libfunc
;
4370 else if (GET_MODE (from
) == XFmode
)
4372 if (GET_MODE (to
) == SImode
)
4373 libfcn
= unsignedp
? fixunsxfsi_libfunc
: fixxfsi_libfunc
;
4374 else if (GET_MODE (to
) == DImode
)
4375 libfcn
= unsignedp
? fixunsxfdi_libfunc
: fixxfdi_libfunc
;
4376 else if (GET_MODE (to
) == TImode
)
4377 libfcn
= unsignedp
? fixunsxfti_libfunc
: fixxfti_libfunc
;
4381 else if (GET_MODE (from
) == TFmode
)
4383 if (GET_MODE (to
) == SImode
)
4384 libfcn
= unsignedp
? fixunstfsi_libfunc
: fixtfsi_libfunc
;
4385 else if (GET_MODE (to
) == DImode
)
4386 libfcn
= unsignedp
? fixunstfdi_libfunc
: fixtfdi_libfunc
;
4387 else if (GET_MODE (to
) == TImode
)
4388 libfcn
= unsignedp
? fixunstfti_libfunc
: fixtfti_libfunc
;
4400 to
= protect_from_queue (to
, 1);
4401 from
= protect_from_queue (from
, 0);
4404 from
= force_not_mem (from
);
4408 value
= emit_library_call_value (libfcn
, NULL_RTX
, LCT_CONST
,
4409 GET_MODE (to
), 1, from
,
4411 insns
= get_insns ();
4414 emit_libcall_block (insns
, target
, value
,
4415 gen_rtx_fmt_e (unsignedp
? UNSIGNED_FIX
: FIX
,
4416 GET_MODE (to
), from
));
4421 if (GET_MODE (to
) == GET_MODE (target
))
4422 emit_move_insn (to
, target
);
4424 convert_move (to
, target
, 0);
4433 optab op
= (optab
) xmalloc (sizeof (struct optab
));
4435 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
4437 op
->handlers
[i
].insn_code
= CODE_FOR_nothing
;
4438 op
->handlers
[i
].libfunc
= 0;
4441 if (code
!= UNKNOWN
)
4442 code_to_optab
[(int) code
] = op
;
4447 /* Initialize the libfunc fields of an entire group of entries in some
4448 optab. Each entry is set equal to a string consisting of a leading
4449 pair of underscores followed by a generic operation name followed by
4450 a mode name (downshifted to lower case) followed by a single character
4451 representing the number of operands for the given operation (which is
4452 usually one of the characters '2', '3', or '4').
4454 OPTABLE is the table in which libfunc fields are to be initialized.
4455 FIRST_MODE is the first machine mode index in the given optab to
4457 LAST_MODE is the last machine mode index in the given optab to
4459 OPNAME is the generic (string) name of the operation.
4460 SUFFIX is the character which specifies the number of operands for
4461 the given generic operation.
4465 init_libfuncs (optable
, first_mode
, last_mode
, opname
, suffix
)
4466 register optab optable
;
4467 register int first_mode
;
4468 register int last_mode
;
4469 register const char *opname
;
4470 register int suffix
;
4473 register unsigned opname_len
= strlen (opname
);
4475 for (mode
= first_mode
; (int) mode
<= (int) last_mode
;
4476 mode
= (enum machine_mode
) ((int) mode
+ 1))
4478 register const char *mname
= GET_MODE_NAME(mode
);
4479 register unsigned mname_len
= strlen (mname
);
4480 register char *libfunc_name
= alloca (2 + opname_len
+ mname_len
+ 1 + 1);
4482 register const char *q
;
4487 for (q
= opname
; *q
; )
4489 for (q
= mname
; *q
; q
++)
4490 *p
++ = TOLOWER (*q
);
4494 optable
->handlers
[(int) mode
].libfunc
4495 = gen_rtx_SYMBOL_REF (Pmode
, ggc_alloc_string (libfunc_name
,
4500 /* Initialize the libfunc fields of an entire group of entries in some
4501 optab which correspond to all integer mode operations. The parameters
4502 have the same meaning as similarly named ones for the `init_libfuncs'
4503 routine. (See above). */
4506 init_integral_libfuncs (optable
, opname
, suffix
)
4507 register optab optable
;
4508 register const char *opname
;
4509 register int suffix
;
4511 init_libfuncs (optable
, SImode
, TImode
, opname
, suffix
);
4514 /* Initialize the libfunc fields of an entire group of entries in some
4515 optab which correspond to all real mode operations. The parameters
4516 have the same meaning as similarly named ones for the `init_libfuncs'
4517 routine. (See above). */
4520 init_floating_libfuncs (optable
, opname
, suffix
)
4521 register optab optable
;
4522 register const char *opname
;
4523 register int suffix
;
4525 init_libfuncs (optable
, SFmode
, TFmode
, opname
, suffix
);
4529 init_one_libfunc (name
)
4530 register const char *name
;
4532 name
= ggc_strdup (name
);
4534 return gen_rtx_SYMBOL_REF (Pmode
, name
);
4537 /* Mark ARG (which is really an OPTAB *) for GC. */
4543 optab o
= *(optab
*) arg
;
4546 for (i
= 0; i
< NUM_MACHINE_MODES
; ++i
)
4547 ggc_mark_rtx (o
->handlers
[i
].libfunc
);
4550 /* Call this once to initialize the contents of the optabs
4551 appropriately for the current target machine. */
4556 unsigned int i
, j
, k
;
4558 /* Start by initializing all tables to contain CODE_FOR_nothing. */
4560 for (i
= 0; i
< ARRAY_SIZE (fixtab
); i
++)
4561 for (j
= 0; j
< ARRAY_SIZE (fixtab
[0]); j
++)
4562 for (k
= 0; k
< ARRAY_SIZE (fixtab
[0][0]); k
++)
4563 fixtab
[i
][j
][k
] = CODE_FOR_nothing
;
4565 for (i
= 0; i
< ARRAY_SIZE (fixtrunctab
); i
++)
4566 for (j
= 0; j
< ARRAY_SIZE (fixtrunctab
[0]); j
++)
4567 for (k
= 0; k
< ARRAY_SIZE (fixtrunctab
[0][0]); k
++)
4568 fixtrunctab
[i
][j
][k
] = CODE_FOR_nothing
;
4570 for (i
= 0; i
< ARRAY_SIZE (floattab
); i
++)
4571 for (j
= 0; j
< ARRAY_SIZE (floattab
[0]); j
++)
4572 for (k
= 0; k
< ARRAY_SIZE (floattab
[0][0]); k
++)
4573 floattab
[i
][j
][k
] = CODE_FOR_nothing
;
4575 for (i
= 0; i
< ARRAY_SIZE (extendtab
); i
++)
4576 for (j
= 0; j
< ARRAY_SIZE (extendtab
[0]); j
++)
4577 for (k
= 0; k
< ARRAY_SIZE (extendtab
[0][0]); k
++)
4578 extendtab
[i
][j
][k
] = CODE_FOR_nothing
;
4580 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
4581 setcc_gen_code
[i
] = CODE_FOR_nothing
;
4583 #ifdef HAVE_conditional_move
4584 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
4585 movcc_gen_code
[i
] = CODE_FOR_nothing
;
4588 add_optab
= init_optab (PLUS
);
4589 addv_optab
= init_optab (PLUS
);
4590 sub_optab
= init_optab (MINUS
);
4591 subv_optab
= init_optab (MINUS
);
4592 smul_optab
= init_optab (MULT
);
4593 smulv_optab
= init_optab (MULT
);
4594 smul_highpart_optab
= init_optab (UNKNOWN
);
4595 umul_highpart_optab
= init_optab (UNKNOWN
);
4596 smul_widen_optab
= init_optab (UNKNOWN
);
4597 umul_widen_optab
= init_optab (UNKNOWN
);
4598 sdiv_optab
= init_optab (DIV
);
4599 sdivv_optab
= init_optab (DIV
);
4600 sdivmod_optab
= init_optab (UNKNOWN
);
4601 udiv_optab
= init_optab (UDIV
);
4602 udivmod_optab
= init_optab (UNKNOWN
);
4603 smod_optab
= init_optab (MOD
);
4604 umod_optab
= init_optab (UMOD
);
4605 flodiv_optab
= init_optab (DIV
);
4606 ftrunc_optab
= init_optab (UNKNOWN
);
4607 and_optab
= init_optab (AND
);
4608 ior_optab
= init_optab (IOR
);
4609 xor_optab
= init_optab (XOR
);
4610 ashl_optab
= init_optab (ASHIFT
);
4611 ashr_optab
= init_optab (ASHIFTRT
);
4612 lshr_optab
= init_optab (LSHIFTRT
);
4613 rotl_optab
= init_optab (ROTATE
);
4614 rotr_optab
= init_optab (ROTATERT
);
4615 smin_optab
= init_optab (SMIN
);
4616 smax_optab
= init_optab (SMAX
);
4617 umin_optab
= init_optab (UMIN
);
4618 umax_optab
= init_optab (UMAX
);
4619 mov_optab
= init_optab (UNKNOWN
);
4620 movstrict_optab
= init_optab (UNKNOWN
);
4621 cmp_optab
= init_optab (UNKNOWN
);
4622 ucmp_optab
= init_optab (UNKNOWN
);
4623 tst_optab
= init_optab (UNKNOWN
);
4624 neg_optab
= init_optab (NEG
);
4625 negv_optab
= init_optab (NEG
);
4626 abs_optab
= init_optab (ABS
);
4627 absv_optab
= init_optab (ABS
);
4628 one_cmpl_optab
= init_optab (NOT
);
4629 ffs_optab
= init_optab (FFS
);
4630 sqrt_optab
= init_optab (SQRT
);
4631 sin_optab
= init_optab (UNKNOWN
);
4632 cos_optab
= init_optab (UNKNOWN
);
4633 strlen_optab
= init_optab (UNKNOWN
);
4634 cbranch_optab
= init_optab (UNKNOWN
);
4635 cmov_optab
= init_optab (UNKNOWN
);
4636 cstore_optab
= init_optab (UNKNOWN
);
4638 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
4640 movstr_optab
[i
] = CODE_FOR_nothing
;
4641 clrstr_optab
[i
] = CODE_FOR_nothing
;
4643 #ifdef HAVE_SECONDARY_RELOADS
4644 reload_in_optab
[i
] = reload_out_optab
[i
] = CODE_FOR_nothing
;
4648 /* Fill in the optabs with the insns we support. */
4651 #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
4652 /* This flag says the same insns that convert to a signed fixnum
4653 also convert validly to an unsigned one. */
4654 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
4655 for (j
= 0; j
< NUM_MACHINE_MODES
; j
++)
4656 fixtrunctab
[i
][j
][1] = fixtrunctab
[i
][j
][0];
4659 /* Initialize the optabs with the names of the library functions. */
4660 init_integral_libfuncs (add_optab
, "add", '3');
4661 init_floating_libfuncs (add_optab
, "add", '3');
4662 init_integral_libfuncs (addv_optab
, "addv", '3');
4663 init_floating_libfuncs (addv_optab
, "add", '3');
4664 init_integral_libfuncs (sub_optab
, "sub", '3');
4665 init_floating_libfuncs (sub_optab
, "sub", '3');
4666 init_integral_libfuncs (subv_optab
, "subv", '3');
4667 init_floating_libfuncs (subv_optab
, "sub", '3');
4668 init_integral_libfuncs (smul_optab
, "mul", '3');
4669 init_floating_libfuncs (smul_optab
, "mul", '3');
4670 init_integral_libfuncs (smulv_optab
, "mulv", '3');
4671 init_floating_libfuncs (smulv_optab
, "mul", '3');
4672 init_integral_libfuncs (sdiv_optab
, "div", '3');
4673 init_integral_libfuncs (sdivv_optab
, "divv", '3');
4674 init_integral_libfuncs (udiv_optab
, "udiv", '3');
4675 init_integral_libfuncs (sdivmod_optab
, "divmod", '4');
4676 init_integral_libfuncs (udivmod_optab
, "udivmod", '4');
4677 init_integral_libfuncs (smod_optab
, "mod", '3');
4678 init_integral_libfuncs (umod_optab
, "umod", '3');
4679 init_floating_libfuncs (flodiv_optab
, "div", '3');
4680 init_floating_libfuncs (ftrunc_optab
, "ftrunc", '2');
4681 init_integral_libfuncs (and_optab
, "and", '3');
4682 init_integral_libfuncs (ior_optab
, "ior", '3');
4683 init_integral_libfuncs (xor_optab
, "xor", '3');
4684 init_integral_libfuncs (ashl_optab
, "ashl", '3');
4685 init_integral_libfuncs (ashr_optab
, "ashr", '3');
4686 init_integral_libfuncs (lshr_optab
, "lshr", '3');
4687 init_integral_libfuncs (smin_optab
, "min", '3');
4688 init_floating_libfuncs (smin_optab
, "min", '3');
4689 init_integral_libfuncs (smax_optab
, "max", '3');
4690 init_floating_libfuncs (smax_optab
, "max", '3');
4691 init_integral_libfuncs (umin_optab
, "umin", '3');
4692 init_integral_libfuncs (umax_optab
, "umax", '3');
4693 init_integral_libfuncs (neg_optab
, "neg", '2');
4694 init_floating_libfuncs (neg_optab
, "neg", '2');
4695 init_integral_libfuncs (negv_optab
, "negv", '2');
4696 init_floating_libfuncs (negv_optab
, "neg", '2');
4697 init_integral_libfuncs (one_cmpl_optab
, "one_cmpl", '2');
4698 init_integral_libfuncs (ffs_optab
, "ffs", '2');
4700 /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
4701 init_integral_libfuncs (cmp_optab
, "cmp", '2');
4702 init_integral_libfuncs (ucmp_optab
, "ucmp", '2');
4703 init_floating_libfuncs (cmp_optab
, "cmp", '2');
4705 #ifdef MULSI3_LIBCALL
4706 smul_optab
->handlers
[(int) SImode
].libfunc
4707 = init_one_libfunc (MULSI3_LIBCALL
);
4709 #ifdef MULDI3_LIBCALL
4710 smul_optab
->handlers
[(int) DImode
].libfunc
4711 = init_one_libfunc (MULDI3_LIBCALL
);
4714 #ifdef DIVSI3_LIBCALL
4715 sdiv_optab
->handlers
[(int) SImode
].libfunc
4716 = init_one_libfunc (DIVSI3_LIBCALL
);
4718 #ifdef DIVDI3_LIBCALL
4719 sdiv_optab
->handlers
[(int) DImode
].libfunc
4720 = init_one_libfunc (DIVDI3_LIBCALL
);
4723 #ifdef UDIVSI3_LIBCALL
4724 udiv_optab
->handlers
[(int) SImode
].libfunc
4725 = init_one_libfunc (UDIVSI3_LIBCALL
);
4727 #ifdef UDIVDI3_LIBCALL
4728 udiv_optab
->handlers
[(int) DImode
].libfunc
4729 = init_one_libfunc (UDIVDI3_LIBCALL
);
4732 #ifdef MODSI3_LIBCALL
4733 smod_optab
->handlers
[(int) SImode
].libfunc
4734 = init_one_libfunc (MODSI3_LIBCALL
);
4736 #ifdef MODDI3_LIBCALL
4737 smod_optab
->handlers
[(int) DImode
].libfunc
4738 = init_one_libfunc (MODDI3_LIBCALL
);
4741 #ifdef UMODSI3_LIBCALL
4742 umod_optab
->handlers
[(int) SImode
].libfunc
4743 = init_one_libfunc (UMODSI3_LIBCALL
);
4745 #ifdef UMODDI3_LIBCALL
4746 umod_optab
->handlers
[(int) DImode
].libfunc
4747 = init_one_libfunc (UMODDI3_LIBCALL
);
4750 /* Use cabs for DC complex abs, since systems generally have cabs.
4751 Don't define any libcall for SCmode, so that cabs will be used. */
4752 abs_optab
->handlers
[(int) DCmode
].libfunc
4753 = init_one_libfunc ("cabs");
4755 /* The ffs function operates on `int'. */
4756 ffs_optab
->handlers
[(int) mode_for_size (INT_TYPE_SIZE
, MODE_INT
, 0)].libfunc
4757 = init_one_libfunc ("ffs");
4759 extendsfdf2_libfunc
= init_one_libfunc ("__extendsfdf2");
4760 extendsfxf2_libfunc
= init_one_libfunc ("__extendsfxf2");
4761 extendsftf2_libfunc
= init_one_libfunc ("__extendsftf2");
4762 extenddfxf2_libfunc
= init_one_libfunc ("__extenddfxf2");
4763 extenddftf2_libfunc
= init_one_libfunc ("__extenddftf2");
4765 truncdfsf2_libfunc
= init_one_libfunc ("__truncdfsf2");
4766 truncxfsf2_libfunc
= init_one_libfunc ("__truncxfsf2");
4767 trunctfsf2_libfunc
= init_one_libfunc ("__trunctfsf2");
4768 truncxfdf2_libfunc
= init_one_libfunc ("__truncxfdf2");
4769 trunctfdf2_libfunc
= init_one_libfunc ("__trunctfdf2");
4771 memcpy_libfunc
= init_one_libfunc ("memcpy");
4772 memmove_libfunc
= init_one_libfunc ("memmove");
4773 bcopy_libfunc
= init_one_libfunc ("bcopy");
4774 memcmp_libfunc
= init_one_libfunc ("memcmp");
4775 bcmp_libfunc
= init_one_libfunc ("__gcc_bcmp");
4776 memset_libfunc
= init_one_libfunc ("memset");
4777 bzero_libfunc
= init_one_libfunc ("bzero");
4779 unwind_resume_libfunc
= init_one_libfunc (USING_SJLJ_EXCEPTIONS
4780 ? "_Unwind_SjLj_Resume"
4781 : "_Unwind_Resume");
4782 #ifndef DONT_USE_BUILTIN_SETJMP
4783 setjmp_libfunc
= init_one_libfunc ("__builtin_setjmp");
4784 longjmp_libfunc
= init_one_libfunc ("__builtin_longjmp");
4786 setjmp_libfunc
= init_one_libfunc ("setjmp");
4787 longjmp_libfunc
= init_one_libfunc ("longjmp");
4789 unwind_sjlj_register_libfunc
= init_one_libfunc ("_Unwind_SjLj_Register");
4790 unwind_sjlj_unregister_libfunc
4791 = init_one_libfunc ("_Unwind_SjLj_Unregister");
4793 eqhf2_libfunc
= init_one_libfunc ("__eqhf2");
4794 nehf2_libfunc
= init_one_libfunc ("__nehf2");
4795 gthf2_libfunc
= init_one_libfunc ("__gthf2");
4796 gehf2_libfunc
= init_one_libfunc ("__gehf2");
4797 lthf2_libfunc
= init_one_libfunc ("__lthf2");
4798 lehf2_libfunc
= init_one_libfunc ("__lehf2");
4799 unordhf2_libfunc
= init_one_libfunc ("__unordhf2");
4801 eqsf2_libfunc
= init_one_libfunc ("__eqsf2");
4802 nesf2_libfunc
= init_one_libfunc ("__nesf2");
4803 gtsf2_libfunc
= init_one_libfunc ("__gtsf2");
4804 gesf2_libfunc
= init_one_libfunc ("__gesf2");
4805 ltsf2_libfunc
= init_one_libfunc ("__ltsf2");
4806 lesf2_libfunc
= init_one_libfunc ("__lesf2");
4807 unordsf2_libfunc
= init_one_libfunc ("__unordsf2");
4809 eqdf2_libfunc
= init_one_libfunc ("__eqdf2");
4810 nedf2_libfunc
= init_one_libfunc ("__nedf2");
4811 gtdf2_libfunc
= init_one_libfunc ("__gtdf2");
4812 gedf2_libfunc
= init_one_libfunc ("__gedf2");
4813 ltdf2_libfunc
= init_one_libfunc ("__ltdf2");
4814 ledf2_libfunc
= init_one_libfunc ("__ledf2");
4815 unorddf2_libfunc
= init_one_libfunc ("__unorddf2");
4817 eqxf2_libfunc
= init_one_libfunc ("__eqxf2");
4818 nexf2_libfunc
= init_one_libfunc ("__nexf2");
4819 gtxf2_libfunc
= init_one_libfunc ("__gtxf2");
4820 gexf2_libfunc
= init_one_libfunc ("__gexf2");
4821 ltxf2_libfunc
= init_one_libfunc ("__ltxf2");
4822 lexf2_libfunc
= init_one_libfunc ("__lexf2");
4823 unordxf2_libfunc
= init_one_libfunc ("__unordxf2");
4825 eqtf2_libfunc
= init_one_libfunc ("__eqtf2");
4826 netf2_libfunc
= init_one_libfunc ("__netf2");
4827 gttf2_libfunc
= init_one_libfunc ("__gttf2");
4828 getf2_libfunc
= init_one_libfunc ("__getf2");
4829 lttf2_libfunc
= init_one_libfunc ("__lttf2");
4830 letf2_libfunc
= init_one_libfunc ("__letf2");
4831 unordtf2_libfunc
= init_one_libfunc ("__unordtf2");
4833 floatsisf_libfunc
= init_one_libfunc ("__floatsisf");
4834 floatdisf_libfunc
= init_one_libfunc ("__floatdisf");
4835 floattisf_libfunc
= init_one_libfunc ("__floattisf");
4837 floatsidf_libfunc
= init_one_libfunc ("__floatsidf");
4838 floatdidf_libfunc
= init_one_libfunc ("__floatdidf");
4839 floattidf_libfunc
= init_one_libfunc ("__floattidf");
4841 floatsixf_libfunc
= init_one_libfunc ("__floatsixf");
4842 floatdixf_libfunc
= init_one_libfunc ("__floatdixf");
4843 floattixf_libfunc
= init_one_libfunc ("__floattixf");
4845 floatsitf_libfunc
= init_one_libfunc ("__floatsitf");
4846 floatditf_libfunc
= init_one_libfunc ("__floatditf");
4847 floattitf_libfunc
= init_one_libfunc ("__floattitf");
4849 fixsfsi_libfunc
= init_one_libfunc ("__fixsfsi");
4850 fixsfdi_libfunc
= init_one_libfunc ("__fixsfdi");
4851 fixsfti_libfunc
= init_one_libfunc ("__fixsfti");
4853 fixdfsi_libfunc
= init_one_libfunc ("__fixdfsi");
4854 fixdfdi_libfunc
= init_one_libfunc ("__fixdfdi");
4855 fixdfti_libfunc
= init_one_libfunc ("__fixdfti");
4857 fixxfsi_libfunc
= init_one_libfunc ("__fixxfsi");
4858 fixxfdi_libfunc
= init_one_libfunc ("__fixxfdi");
4859 fixxfti_libfunc
= init_one_libfunc ("__fixxfti");
4861 fixtfsi_libfunc
= init_one_libfunc ("__fixtfsi");
4862 fixtfdi_libfunc
= init_one_libfunc ("__fixtfdi");
4863 fixtfti_libfunc
= init_one_libfunc ("__fixtfti");
4865 fixunssfsi_libfunc
= init_one_libfunc ("__fixunssfsi");
4866 fixunssfdi_libfunc
= init_one_libfunc ("__fixunssfdi");
4867 fixunssfti_libfunc
= init_one_libfunc ("__fixunssfti");
4869 fixunsdfsi_libfunc
= init_one_libfunc ("__fixunsdfsi");
4870 fixunsdfdi_libfunc
= init_one_libfunc ("__fixunsdfdi");
4871 fixunsdfti_libfunc
= init_one_libfunc ("__fixunsdfti");
4873 fixunsxfsi_libfunc
= init_one_libfunc ("__fixunsxfsi");
4874 fixunsxfdi_libfunc
= init_one_libfunc ("__fixunsxfdi");
4875 fixunsxfti_libfunc
= init_one_libfunc ("__fixunsxfti");
4877 fixunstfsi_libfunc
= init_one_libfunc ("__fixunstfsi");
4878 fixunstfdi_libfunc
= init_one_libfunc ("__fixunstfdi");
4879 fixunstfti_libfunc
= init_one_libfunc ("__fixunstfti");
4881 /* For check-memory-usage. */
4882 chkr_check_addr_libfunc
= init_one_libfunc ("chkr_check_addr");
4883 chkr_set_right_libfunc
= init_one_libfunc ("chkr_set_right");
4884 chkr_copy_bitmap_libfunc
= init_one_libfunc ("chkr_copy_bitmap");
4885 chkr_check_exec_libfunc
= init_one_libfunc ("chkr_check_exec");
4886 chkr_check_str_libfunc
= init_one_libfunc ("chkr_check_str");
4888 /* For function entry/exit instrumentation. */
4889 profile_function_entry_libfunc
4890 = init_one_libfunc ("__cyg_profile_func_enter");
4891 profile_function_exit_libfunc
4892 = init_one_libfunc ("__cyg_profile_func_exit");
4894 #ifdef HAVE_conditional_trap
4898 #ifdef INIT_TARGET_OPTABS
4899 /* Allow the target to add more libcalls or rename some, etc. */
4903 /* Add these GC roots. */
4904 ggc_add_root (optab_table
, OTI_MAX
, sizeof(optab
), mark_optab
);
4905 ggc_add_rtx_root (libfunc_table
, LTI_MAX
);
4908 #ifdef HAVE_conditional_trap
4909 /* The insn generating function can not take an rtx_code argument.
4910 TRAP_RTX is used as an rtx argument. Its code is replaced with
4911 the code to be used in the trap insn and all other fields are
4913 static rtx trap_rtx
;
4918 if (HAVE_conditional_trap
)
4920 trap_rtx
= gen_rtx_fmt_ee (EQ
, VOIDmode
, NULL_RTX
, NULL_RTX
);
4921 ggc_add_rtx_root (&trap_rtx
, 1);
4926 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
4927 CODE. Return 0 on failure. */
4930 gen_cond_trap (code
, op1
, op2
, tcode
)
4931 enum rtx_code code ATTRIBUTE_UNUSED
;
4932 rtx op1
, op2 ATTRIBUTE_UNUSED
, tcode ATTRIBUTE_UNUSED
;
4934 enum machine_mode mode
= GET_MODE (op1
);
4936 if (mode
== VOIDmode
)
4939 #ifdef HAVE_conditional_trap
4940 if (HAVE_conditional_trap
4941 && cmp_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
4945 emit_insn (GEN_FCN (cmp_optab
->handlers
[(int) mode
].insn_code
) (op1
, op2
));
4946 PUT_CODE (trap_rtx
, code
);
4947 insn
= gen_conditional_trap (trap_rtx
, tcode
);
4951 insn
= gen_sequence ();