PR c++/79143
[official-gcc.git] / gcc / tree-sra.c
blob02453d3ed9adcf2400124f039e6131df3e897828
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2008-2017 Free Software Foundation, Inc.
5 Contributed by Martin Jambor <mjambor@suse.cz>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
24 twice, once in the early stages of compilation (early SRA) and once in the
25 late stages (late SRA). The aim of both is to turn references to scalar
26 parts of aggregates into uses of independent scalar variables.
28 The two passes are nearly identical, the only difference is that early SRA
29 does not scalarize unions which are used as the result in a GIMPLE_RETURN
30 statement because together with inlining this can lead to weird type
31 conversions.
33 Both passes operate in four stages:
35 1. The declarations that have properties which make them candidates for
36 scalarization are identified in function find_var_candidates(). The
37 candidates are stored in candidate_bitmap.
39 2. The function body is scanned. In the process, declarations which are
40 used in a manner that prevent their scalarization are removed from the
41 candidate bitmap. More importantly, for every access into an aggregate,
42 an access structure (struct access) is created by create_access() and
43 stored in a vector associated with the aggregate. Among other
44 information, the aggregate declaration, the offset and size of the access
45 and its type are stored in the structure.
47 On a related note, assign_link structures are created for every assign
48 statement between candidate aggregates and attached to the related
49 accesses.
51 3. The vectors of accesses are analyzed. They are first sorted according to
52 their offset and size and then scanned for partially overlapping accesses
53 (i.e. those which overlap but one is not entirely within another). Such
54 an access disqualifies the whole aggregate from being scalarized.
56 If there is no such inhibiting overlap, a representative access structure
57 is chosen for every unique combination of offset and size. Afterwards,
58 the pass builds a set of trees from these structures, in which children
59 of an access are within their parent (in terms of offset and size).
61 Then accesses are propagated whenever possible (i.e. in cases when it
62 does not create a partially overlapping access) across assign_links from
63 the right hand side to the left hand side.
65 Then the set of trees for each declaration is traversed again and those
66 accesses which should be replaced by a scalar are identified.
68 4. The function is traversed again, and for every reference into an
69 aggregate that has some component which is about to be scalarized,
70 statements are amended and new statements are created as necessary.
71 Finally, if a parameter got scalarized, the scalar replacements are
72 initialized with values from respective parameter aggregates. */
74 #include "config.h"
75 #include "system.h"
76 #include "coretypes.h"
77 #include "backend.h"
78 #include "target.h"
79 #include "rtl.h"
80 #include "tree.h"
81 #include "gimple.h"
82 #include "predict.h"
83 #include "alloc-pool.h"
84 #include "tree-pass.h"
85 #include "ssa.h"
86 #include "cgraph.h"
87 #include "gimple-pretty-print.h"
88 #include "alias.h"
89 #include "fold-const.h"
90 #include "tree-eh.h"
91 #include "stor-layout.h"
92 #include "gimplify.h"
93 #include "gimple-iterator.h"
94 #include "gimplify-me.h"
95 #include "gimple-walk.h"
96 #include "tree-cfg.h"
97 #include "tree-dfa.h"
98 #include "tree-ssa.h"
99 #include "symbol-summary.h"
100 #include "ipa-prop.h"
101 #include "params.h"
102 #include "dbgcnt.h"
103 #include "tree-inline.h"
104 #include "ipa-inline.h"
105 #include "ipa-utils.h"
106 #include "builtins.h"
108 /* Enumeration of all aggregate reductions we can do. */
109 enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */
110 SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
111 SRA_MODE_INTRA }; /* late intraprocedural SRA */
113 /* Global variable describing which aggregate reduction we are performing at
114 the moment. */
115 static enum sra_mode sra_mode;
117 struct assign_link;
119 /* ACCESS represents each access to an aggregate variable (as a whole or a
120 part). It can also represent a group of accesses that refer to exactly the
121 same fragment of an aggregate (i.e. those that have exactly the same offset
122 and size). Such representatives for a single aggregate, once determined,
123 are linked in a linked list and have the group fields set.
125 Moreover, when doing intraprocedural SRA, a tree is built from those
126 representatives (by the means of first_child and next_sibling pointers), in
127 which all items in a subtree are "within" the root, i.e. their offset is
128 greater or equal to offset of the root and offset+size is smaller or equal
129 to offset+size of the root. Children of an access are sorted by offset.
131 Note that accesses to parts of vector and complex number types always
132 represented by an access to the whole complex number or a vector. It is a
133 duty of the modifying functions to replace them appropriately. */
135 struct access
137 /* Values returned by `get_ref_base_and_extent' for each component reference
138 If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
139 `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
140 HOST_WIDE_INT offset;
141 HOST_WIDE_INT size;
142 tree base;
144 /* Expression. It is context dependent so do not use it to create new
145 expressions to access the original aggregate. See PR 42154 for a
146 testcase. */
147 tree expr;
148 /* Type. */
149 tree type;
151 /* The statement this access belongs to. */
152 gimple *stmt;
154 /* Next group representative for this aggregate. */
155 struct access *next_grp;
157 /* Pointer to the group representative. Pointer to itself if the struct is
158 the representative. */
159 struct access *group_representative;
161 /* If this access has any children (in terms of the definition above), this
162 points to the first one. */
163 struct access *first_child;
165 /* In intraprocedural SRA, pointer to the next sibling in the access tree as
166 described above. In IPA-SRA this is a pointer to the next access
167 belonging to the same group (having the same representative). */
168 struct access *next_sibling;
170 /* Pointers to the first and last element in the linked list of assign
171 links. */
172 struct assign_link *first_link, *last_link;
174 /* Pointer to the next access in the work queue. */
175 struct access *next_queued;
177 /* Replacement variable for this access "region." Never to be accessed
178 directly, always only by the means of get_access_replacement() and only
179 when grp_to_be_replaced flag is set. */
180 tree replacement_decl;
182 /* Is this access an access to a non-addressable field? */
183 unsigned non_addressable : 1;
185 /* Is this access made in reverse storage order? */
186 unsigned reverse : 1;
188 /* Is this particular access write access? */
189 unsigned write : 1;
191 /* Is this access currently in the work queue? */
192 unsigned grp_queued : 1;
194 /* Does this group contain a write access? This flag is propagated down the
195 access tree. */
196 unsigned grp_write : 1;
198 /* Does this group contain a read access? This flag is propagated down the
199 access tree. */
200 unsigned grp_read : 1;
202 /* Does this group contain a read access that comes from an assignment
203 statement? This flag is propagated down the access tree. */
204 unsigned grp_assignment_read : 1;
206 /* Does this group contain a write access that comes from an assignment
207 statement? This flag is propagated down the access tree. */
208 unsigned grp_assignment_write : 1;
210 /* Does this group contain a read access through a scalar type? This flag is
211 not propagated in the access tree in any direction. */
212 unsigned grp_scalar_read : 1;
214 /* Does this group contain a write access through a scalar type? This flag
215 is not propagated in the access tree in any direction. */
216 unsigned grp_scalar_write : 1;
218 /* Is this access an artificial one created to scalarize some record
219 entirely? */
220 unsigned grp_total_scalarization : 1;
222 /* Other passes of the analysis use this bit to make function
223 analyze_access_subtree create scalar replacements for this group if
224 possible. */
225 unsigned grp_hint : 1;
227 /* Is the subtree rooted in this access fully covered by scalar
228 replacements? */
229 unsigned grp_covered : 1;
231 /* If set to true, this access and all below it in an access tree must not be
232 scalarized. */
233 unsigned grp_unscalarizable_region : 1;
235 /* Whether data have been written to parts of the aggregate covered by this
236 access which is not to be scalarized. This flag is propagated up in the
237 access tree. */
238 unsigned grp_unscalarized_data : 1;
240 /* Does this access and/or group contain a write access through a
241 BIT_FIELD_REF? */
242 unsigned grp_partial_lhs : 1;
244 /* Set when a scalar replacement should be created for this variable. */
245 unsigned grp_to_be_replaced : 1;
247 /* Set when we want a replacement for the sole purpose of having it in
248 generated debug statements. */
249 unsigned grp_to_be_debug_replaced : 1;
251 /* Should TREE_NO_WARNING of a replacement be set? */
252 unsigned grp_no_warning : 1;
254 /* Is it possible that the group refers to data which might be (directly or
255 otherwise) modified? */
256 unsigned grp_maybe_modified : 1;
258 /* Set when this is a representative of a pointer to scalar (i.e. by
259 reference) parameter which we consider for turning into a plain scalar
260 (i.e. a by value parameter). */
261 unsigned grp_scalar_ptr : 1;
263 /* Set when we discover that this pointer is not safe to dereference in the
264 caller. */
265 unsigned grp_not_necessarilly_dereferenced : 1;
268 typedef struct access *access_p;
271 /* Alloc pool for allocating access structures. */
272 static object_allocator<struct access> access_pool ("SRA accesses");
274 /* A structure linking lhs and rhs accesses from an aggregate assignment. They
275 are used to propagate subaccesses from rhs to lhs as long as they don't
276 conflict with what is already there. */
277 struct assign_link
279 struct access *lacc, *racc;
280 struct assign_link *next;
283 /* Alloc pool for allocating assign link structures. */
284 static object_allocator<assign_link> assign_link_pool ("SRA links");
286 /* Base (tree) -> Vector (vec<access_p> *) map. */
287 static hash_map<tree, auto_vec<access_p> > *base_access_vec;
289 /* Candidate hash table helpers. */
291 struct uid_decl_hasher : nofree_ptr_hash <tree_node>
293 static inline hashval_t hash (const tree_node *);
294 static inline bool equal (const tree_node *, const tree_node *);
297 /* Hash a tree in a uid_decl_map. */
299 inline hashval_t
300 uid_decl_hasher::hash (const tree_node *item)
302 return item->decl_minimal.uid;
305 /* Return true if the DECL_UID in both trees are equal. */
307 inline bool
308 uid_decl_hasher::equal (const tree_node *a, const tree_node *b)
310 return (a->decl_minimal.uid == b->decl_minimal.uid);
313 /* Set of candidates. */
314 static bitmap candidate_bitmap;
315 static hash_table<uid_decl_hasher> *candidates;
317 /* For a candidate UID return the candidates decl. */
319 static inline tree
320 candidate (unsigned uid)
322 tree_node t;
323 t.decl_minimal.uid = uid;
324 return candidates->find_with_hash (&t, static_cast <hashval_t> (uid));
327 /* Bitmap of candidates which we should try to entirely scalarize away and
328 those which cannot be (because they are and need be used as a whole). */
329 static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap;
331 /* Bitmap of candidates in the constant pool, which cannot be scalarized
332 because this would produce non-constant expressions (e.g. Ada). */
333 static bitmap disqualified_constants;
335 /* Obstack for creation of fancy names. */
336 static struct obstack name_obstack;
338 /* Head of a linked list of accesses that need to have its subaccesses
339 propagated to their assignment counterparts. */
340 static struct access *work_queue_head;
342 /* Number of parameters of the analyzed function when doing early ipa SRA. */
343 static int func_param_count;
345 /* scan_function sets the following to true if it encounters a call to
346 __builtin_apply_args. */
347 static bool encountered_apply_args;
349 /* Set by scan_function when it finds a recursive call. */
350 static bool encountered_recursive_call;
352 /* Set by scan_function when it finds a recursive call with less actual
353 arguments than formal parameters.. */
354 static bool encountered_unchangable_recursive_call;
356 /* This is a table in which for each basic block and parameter there is a
357 distance (offset + size) in that parameter which is dereferenced and
358 accessed in that BB. */
359 static HOST_WIDE_INT *bb_dereferences;
360 /* Bitmap of BBs that can cause the function to "stop" progressing by
361 returning, throwing externally, looping infinitely or calling a function
362 which might abort etc.. */
363 static bitmap final_bbs;
365 /* Representative of no accesses at all. */
366 static struct access no_accesses_representant;
368 /* Predicate to test the special value. */
370 static inline bool
371 no_accesses_p (struct access *access)
373 return access == &no_accesses_representant;
376 /* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
377 representative fields are dumped, otherwise those which only describe the
378 individual access are. */
380 static struct
382 /* Number of processed aggregates is readily available in
383 analyze_all_variable_accesses and so is not stored here. */
385 /* Number of created scalar replacements. */
386 int replacements;
388 /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
389 expression. */
390 int exprs;
392 /* Number of statements created by generate_subtree_copies. */
393 int subtree_copies;
395 /* Number of statements created by load_assign_lhs_subreplacements. */
396 int subreplacements;
398 /* Number of times sra_modify_assign has deleted a statement. */
399 int deleted;
401 /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
402 RHS reparately due to type conversions or nonexistent matching
403 references. */
404 int separate_lhs_rhs_handling;
406 /* Number of parameters that were removed because they were unused. */
407 int deleted_unused_parameters;
409 /* Number of scalars passed as parameters by reference that have been
410 converted to be passed by value. */
411 int scalar_by_ref_to_by_val;
413 /* Number of aggregate parameters that were replaced by one or more of their
414 components. */
415 int aggregate_params_reduced;
417 /* Numbber of components created when splitting aggregate parameters. */
418 int param_reductions_created;
419 } sra_stats;
421 static void
422 dump_access (FILE *f, struct access *access, bool grp)
424 fprintf (f, "access { ");
425 fprintf (f, "base = (%d)'", DECL_UID (access->base));
426 print_generic_expr (f, access->base, 0);
427 fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
428 fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
429 fprintf (f, ", expr = ");
430 print_generic_expr (f, access->expr, 0);
431 fprintf (f, ", type = ");
432 print_generic_expr (f, access->type, 0);
433 fprintf (f, ", non_addressable = %d, reverse = %d",
434 access->non_addressable, access->reverse);
435 if (grp)
436 fprintf (f, ", grp_read = %d, grp_write = %d, grp_assignment_read = %d, "
437 "grp_assignment_write = %d, grp_scalar_read = %d, "
438 "grp_scalar_write = %d, grp_total_scalarization = %d, "
439 "grp_hint = %d, grp_covered = %d, "
440 "grp_unscalarizable_region = %d, grp_unscalarized_data = %d, "
441 "grp_partial_lhs = %d, grp_to_be_replaced = %d, "
442 "grp_to_be_debug_replaced = %d, grp_maybe_modified = %d, "
443 "grp_not_necessarilly_dereferenced = %d\n",
444 access->grp_read, access->grp_write, access->grp_assignment_read,
445 access->grp_assignment_write, access->grp_scalar_read,
446 access->grp_scalar_write, access->grp_total_scalarization,
447 access->grp_hint, access->grp_covered,
448 access->grp_unscalarizable_region, access->grp_unscalarized_data,
449 access->grp_partial_lhs, access->grp_to_be_replaced,
450 access->grp_to_be_debug_replaced, access->grp_maybe_modified,
451 access->grp_not_necessarilly_dereferenced);
452 else
453 fprintf (f, ", write = %d, grp_total_scalarization = %d, "
454 "grp_partial_lhs = %d\n",
455 access->write, access->grp_total_scalarization,
456 access->grp_partial_lhs);
459 /* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
461 static void
462 dump_access_tree_1 (FILE *f, struct access *access, int level)
466 int i;
468 for (i = 0; i < level; i++)
469 fputs ("* ", dump_file);
471 dump_access (f, access, true);
473 if (access->first_child)
474 dump_access_tree_1 (f, access->first_child, level + 1);
476 access = access->next_sibling;
478 while (access);
481 /* Dump all access trees for a variable, given the pointer to the first root in
482 ACCESS. */
484 static void
485 dump_access_tree (FILE *f, struct access *access)
487 for (; access; access = access->next_grp)
488 dump_access_tree_1 (f, access, 0);
491 /* Return true iff ACC is non-NULL and has subaccesses. */
493 static inline bool
494 access_has_children_p (struct access *acc)
496 return acc && acc->first_child;
499 /* Return true iff ACC is (partly) covered by at least one replacement. */
501 static bool
502 access_has_replacements_p (struct access *acc)
504 struct access *child;
505 if (acc->grp_to_be_replaced)
506 return true;
507 for (child = acc->first_child; child; child = child->next_sibling)
508 if (access_has_replacements_p (child))
509 return true;
510 return false;
513 /* Return a vector of pointers to accesses for the variable given in BASE or
514 NULL if there is none. */
516 static vec<access_p> *
517 get_base_access_vector (tree base)
519 return base_access_vec->get (base);
522 /* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
523 in ACCESS. Return NULL if it cannot be found. */
525 static struct access *
526 find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
527 HOST_WIDE_INT size)
529 while (access && (access->offset != offset || access->size != size))
531 struct access *child = access->first_child;
533 while (child && (child->offset + child->size <= offset))
534 child = child->next_sibling;
535 access = child;
538 return access;
541 /* Return the first group representative for DECL or NULL if none exists. */
543 static struct access *
544 get_first_repr_for_decl (tree base)
546 vec<access_p> *access_vec;
548 access_vec = get_base_access_vector (base);
549 if (!access_vec)
550 return NULL;
552 return (*access_vec)[0];
555 /* Find an access representative for the variable BASE and given OFFSET and
556 SIZE. Requires that access trees have already been built. Return NULL if
557 it cannot be found. */
559 static struct access *
560 get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
561 HOST_WIDE_INT size)
563 struct access *access;
565 access = get_first_repr_for_decl (base);
566 while (access && (access->offset + access->size <= offset))
567 access = access->next_grp;
568 if (!access)
569 return NULL;
571 return find_access_in_subtree (access, offset, size);
574 /* Add LINK to the linked list of assign links of RACC. */
575 static void
576 add_link_to_rhs (struct access *racc, struct assign_link *link)
578 gcc_assert (link->racc == racc);
580 if (!racc->first_link)
582 gcc_assert (!racc->last_link);
583 racc->first_link = link;
585 else
586 racc->last_link->next = link;
588 racc->last_link = link;
589 link->next = NULL;
592 /* Move all link structures in their linked list in OLD_RACC to the linked list
593 in NEW_RACC. */
594 static void
595 relink_to_new_repr (struct access *new_racc, struct access *old_racc)
597 if (!old_racc->first_link)
599 gcc_assert (!old_racc->last_link);
600 return;
603 if (new_racc->first_link)
605 gcc_assert (!new_racc->last_link->next);
606 gcc_assert (!old_racc->last_link || !old_racc->last_link->next);
608 new_racc->last_link->next = old_racc->first_link;
609 new_racc->last_link = old_racc->last_link;
611 else
613 gcc_assert (!new_racc->last_link);
615 new_racc->first_link = old_racc->first_link;
616 new_racc->last_link = old_racc->last_link;
618 old_racc->first_link = old_racc->last_link = NULL;
621 /* Add ACCESS to the work queue (which is actually a stack). */
623 static void
624 add_access_to_work_queue (struct access *access)
626 if (!access->grp_queued)
628 gcc_assert (!access->next_queued);
629 access->next_queued = work_queue_head;
630 access->grp_queued = 1;
631 work_queue_head = access;
635 /* Pop an access from the work queue, and return it, assuming there is one. */
637 static struct access *
638 pop_access_from_work_queue (void)
640 struct access *access = work_queue_head;
642 work_queue_head = access->next_queued;
643 access->next_queued = NULL;
644 access->grp_queued = 0;
645 return access;
649 /* Allocate necessary structures. */
651 static void
652 sra_initialize (void)
654 candidate_bitmap = BITMAP_ALLOC (NULL);
655 candidates = new hash_table<uid_decl_hasher>
656 (vec_safe_length (cfun->local_decls) / 2);
657 should_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
658 cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
659 disqualified_constants = BITMAP_ALLOC (NULL);
660 gcc_obstack_init (&name_obstack);
661 base_access_vec = new hash_map<tree, auto_vec<access_p> >;
662 memset (&sra_stats, 0, sizeof (sra_stats));
663 encountered_apply_args = false;
664 encountered_recursive_call = false;
665 encountered_unchangable_recursive_call = false;
668 /* Deallocate all general structures. */
670 static void
671 sra_deinitialize (void)
673 BITMAP_FREE (candidate_bitmap);
674 delete candidates;
675 candidates = NULL;
676 BITMAP_FREE (should_scalarize_away_bitmap);
677 BITMAP_FREE (cannot_scalarize_away_bitmap);
678 BITMAP_FREE (disqualified_constants);
679 access_pool.release ();
680 assign_link_pool.release ();
681 obstack_free (&name_obstack, NULL);
683 delete base_access_vec;
686 /* Return true if DECL is a VAR_DECL in the constant pool, false otherwise. */
688 static bool constant_decl_p (tree decl)
690 return VAR_P (decl) && DECL_IN_CONSTANT_POOL (decl);
693 /* Remove DECL from candidates for SRA and write REASON to the dump file if
694 there is one. */
695 static void
696 disqualify_candidate (tree decl, const char *reason)
698 if (bitmap_clear_bit (candidate_bitmap, DECL_UID (decl)))
699 candidates->remove_elt_with_hash (decl, DECL_UID (decl));
700 if (constant_decl_p (decl))
701 bitmap_set_bit (disqualified_constants, DECL_UID (decl));
703 if (dump_file && (dump_flags & TDF_DETAILS))
705 fprintf (dump_file, "! Disqualifying ");
706 print_generic_expr (dump_file, decl, 0);
707 fprintf (dump_file, " - %s\n", reason);
711 /* Return true iff the type contains a field or an element which does not allow
712 scalarization. */
714 static bool
715 type_internals_preclude_sra_p (tree type, const char **msg)
717 tree fld;
718 tree et;
720 switch (TREE_CODE (type))
722 case RECORD_TYPE:
723 case UNION_TYPE:
724 case QUAL_UNION_TYPE:
725 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
726 if (TREE_CODE (fld) == FIELD_DECL)
728 tree ft = TREE_TYPE (fld);
730 if (TREE_THIS_VOLATILE (fld))
732 *msg = "volatile structure field";
733 return true;
735 if (!DECL_FIELD_OFFSET (fld))
737 *msg = "no structure field offset";
738 return true;
740 if (!DECL_SIZE (fld))
742 *msg = "zero structure field size";
743 return true;
745 if (!tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld)))
747 *msg = "structure field offset not fixed";
748 return true;
750 if (!tree_fits_uhwi_p (DECL_SIZE (fld)))
752 *msg = "structure field size not fixed";
753 return true;
755 if (!tree_fits_shwi_p (bit_position (fld)))
757 *msg = "structure field size too big";
758 return true;
760 if (AGGREGATE_TYPE_P (ft)
761 && int_bit_position (fld) % BITS_PER_UNIT != 0)
763 *msg = "structure field is bit field";
764 return true;
767 if (AGGREGATE_TYPE_P (ft) && type_internals_preclude_sra_p (ft, msg))
768 return true;
771 return false;
773 case ARRAY_TYPE:
774 et = TREE_TYPE (type);
776 if (TYPE_VOLATILE (et))
778 *msg = "element type is volatile";
779 return true;
782 if (AGGREGATE_TYPE_P (et) && type_internals_preclude_sra_p (et, msg))
783 return true;
785 return false;
787 default:
788 return false;
792 /* If T is an SSA_NAME, return NULL if it is not a default def or return its
793 base variable if it is. Return T if it is not an SSA_NAME. */
795 static tree
796 get_ssa_base_param (tree t)
798 if (TREE_CODE (t) == SSA_NAME)
800 if (SSA_NAME_IS_DEFAULT_DEF (t))
801 return SSA_NAME_VAR (t);
802 else
803 return NULL_TREE;
805 return t;
808 /* Mark a dereference of BASE of distance DIST in a basic block tht STMT
809 belongs to, unless the BB has already been marked as a potentially
810 final. */
812 static void
813 mark_parm_dereference (tree base, HOST_WIDE_INT dist, gimple *stmt)
815 basic_block bb = gimple_bb (stmt);
816 int idx, parm_index = 0;
817 tree parm;
819 if (bitmap_bit_p (final_bbs, bb->index))
820 return;
822 for (parm = DECL_ARGUMENTS (current_function_decl);
823 parm && parm != base;
824 parm = DECL_CHAIN (parm))
825 parm_index++;
827 gcc_assert (parm_index < func_param_count);
829 idx = bb->index * func_param_count + parm_index;
830 if (bb_dereferences[idx] < dist)
831 bb_dereferences[idx] = dist;
834 /* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
835 the three fields. Also add it to the vector of accesses corresponding to
836 the base. Finally, return the new access. */
838 static struct access *
839 create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size)
841 struct access *access = access_pool.allocate ();
843 memset (access, 0, sizeof (struct access));
844 access->base = base;
845 access->offset = offset;
846 access->size = size;
848 base_access_vec->get_or_insert (base).safe_push (access);
850 return access;
853 static bool maybe_add_sra_candidate (tree);
855 /* Create and insert access for EXPR. Return created access, or NULL if it is
856 not possible. Also scan for uses of constant pool as we go along and add
857 to candidates. */
859 static struct access *
860 create_access (tree expr, gimple *stmt, bool write)
862 struct access *access;
863 HOST_WIDE_INT offset, size, max_size;
864 tree base = expr;
865 bool reverse, ptr, unscalarizable_region = false;
867 base = get_ref_base_and_extent (expr, &offset, &size, &max_size, &reverse);
869 if (sra_mode == SRA_MODE_EARLY_IPA
870 && TREE_CODE (base) == MEM_REF)
872 base = get_ssa_base_param (TREE_OPERAND (base, 0));
873 if (!base)
874 return NULL;
875 ptr = true;
877 else
878 ptr = false;
880 /* For constant-pool entries, check we can substitute the constant value. */
881 if (constant_decl_p (base)
882 && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA))
884 gcc_assert (!bitmap_bit_p (disqualified_constants, DECL_UID (base)));
885 if (expr != base
886 && !is_gimple_reg_type (TREE_TYPE (expr))
887 && dump_file && (dump_flags & TDF_DETAILS))
889 /* This occurs in Ada with accesses to ARRAY_RANGE_REFs,
890 and elements of multidimensional arrays (which are
891 multi-element arrays in their own right). */
892 fprintf (dump_file, "Allowing non-reg-type load of part"
893 " of constant-pool entry: ");
894 print_generic_expr (dump_file, expr, 0);
896 maybe_add_sra_candidate (base);
899 if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
900 return NULL;
902 if (sra_mode == SRA_MODE_EARLY_IPA)
904 if (size < 0 || size != max_size)
906 disqualify_candidate (base, "Encountered a variable sized access.");
907 return NULL;
909 if (TREE_CODE (expr) == COMPONENT_REF
910 && DECL_BIT_FIELD (TREE_OPERAND (expr, 1)))
912 disqualify_candidate (base, "Encountered a bit-field access.");
913 return NULL;
915 gcc_checking_assert ((offset % BITS_PER_UNIT) == 0);
917 if (ptr)
918 mark_parm_dereference (base, offset + size, stmt);
920 else
922 if (size != max_size)
924 size = max_size;
925 unscalarizable_region = true;
927 if (size < 0)
929 disqualify_candidate (base, "Encountered an unconstrained access.");
930 return NULL;
934 access = create_access_1 (base, offset, size);
935 access->expr = expr;
936 access->type = TREE_TYPE (expr);
937 access->write = write;
938 access->grp_unscalarizable_region = unscalarizable_region;
939 access->stmt = stmt;
940 access->reverse = reverse;
942 if (TREE_CODE (expr) == COMPONENT_REF
943 && DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1)))
944 access->non_addressable = 1;
946 return access;
950 /* Return true iff TYPE is scalarizable - i.e. a RECORD_TYPE or fixed-length
951 ARRAY_TYPE with fields that are either of gimple register types (excluding
952 bit-fields) or (recursively) scalarizable types. */
954 static bool
955 scalarizable_type_p (tree type)
957 gcc_assert (!is_gimple_reg_type (type));
958 if (type_contains_placeholder_p (type))
959 return false;
961 switch (TREE_CODE (type))
963 case RECORD_TYPE:
964 for (tree fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
965 if (TREE_CODE (fld) == FIELD_DECL)
967 tree ft = TREE_TYPE (fld);
969 if (DECL_BIT_FIELD (fld))
970 return false;
972 if (!is_gimple_reg_type (ft)
973 && !scalarizable_type_p (ft))
974 return false;
977 return true;
979 case ARRAY_TYPE:
981 if (TYPE_DOMAIN (type) == NULL_TREE
982 || !tree_fits_shwi_p (TYPE_SIZE (type))
983 || !tree_fits_shwi_p (TYPE_SIZE (TREE_TYPE (type)))
984 || (tree_to_shwi (TYPE_SIZE (TREE_TYPE (type))) <= 0)
985 || !tree_fits_shwi_p (TYPE_MIN_VALUE (TYPE_DOMAIN (type))))
986 return false;
987 if (tree_to_shwi (TYPE_SIZE (type)) == 0
988 && TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL_TREE)
989 /* Zero-element array, should not prevent scalarization. */
991 else if ((tree_to_shwi (TYPE_SIZE (type)) <= 0)
992 || !tree_fits_shwi_p (TYPE_MAX_VALUE (TYPE_DOMAIN (type))))
993 /* Variable-length array, do not allow scalarization. */
994 return false;
996 tree elem = TREE_TYPE (type);
997 if (!is_gimple_reg_type (elem)
998 && !scalarizable_type_p (elem))
999 return false;
1000 return true;
1002 default:
1003 return false;
1007 static void scalarize_elem (tree, HOST_WIDE_INT, HOST_WIDE_INT, bool, tree, tree);
1009 /* Create total_scalarization accesses for all scalar fields of a member
1010 of type DECL_TYPE conforming to scalarizable_type_p. BASE
1011 must be the top-most VAR_DECL representing the variable; within that,
1012 OFFSET locates the member and REF must be the memory reference expression for
1013 the member. */
1015 static void
1016 completely_scalarize (tree base, tree decl_type, HOST_WIDE_INT offset, tree ref)
1018 switch (TREE_CODE (decl_type))
1020 case RECORD_TYPE:
1021 for (tree fld = TYPE_FIELDS (decl_type); fld; fld = DECL_CHAIN (fld))
1022 if (TREE_CODE (fld) == FIELD_DECL)
1024 HOST_WIDE_INT pos = offset + int_bit_position (fld);
1025 tree ft = TREE_TYPE (fld);
1026 tree nref = build3 (COMPONENT_REF, ft, ref, fld, NULL_TREE);
1028 scalarize_elem (base, pos, tree_to_uhwi (DECL_SIZE (fld)),
1029 TYPE_REVERSE_STORAGE_ORDER (decl_type),
1030 nref, ft);
1032 break;
1033 case ARRAY_TYPE:
1035 tree elemtype = TREE_TYPE (decl_type);
1036 tree elem_size = TYPE_SIZE (elemtype);
1037 gcc_assert (elem_size && tree_fits_shwi_p (elem_size));
1038 HOST_WIDE_INT el_size = tree_to_shwi (elem_size);
1039 gcc_assert (el_size > 0);
1041 tree minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (decl_type));
1042 gcc_assert (TREE_CODE (minidx) == INTEGER_CST);
1043 tree maxidx = TYPE_MAX_VALUE (TYPE_DOMAIN (decl_type));
1044 /* Skip (some) zero-length arrays; others have MAXIDX == MINIDX - 1. */
1045 if (maxidx)
1047 gcc_assert (TREE_CODE (maxidx) == INTEGER_CST);
1048 tree domain = TYPE_DOMAIN (decl_type);
1049 /* MINIDX and MAXIDX are inclusive, and must be interpreted in
1050 DOMAIN (e.g. signed int, whereas min/max may be size_int). */
1051 offset_int idx = wi::to_offset (minidx);
1052 offset_int max = wi::to_offset (maxidx);
1053 if (!TYPE_UNSIGNED (domain))
1055 idx = wi::sext (idx, TYPE_PRECISION (domain));
1056 max = wi::sext (max, TYPE_PRECISION (domain));
1058 for (int el_off = offset; idx <= max; ++idx)
1060 tree nref = build4 (ARRAY_REF, elemtype,
1061 ref,
1062 wide_int_to_tree (domain, idx),
1063 NULL_TREE, NULL_TREE);
1064 scalarize_elem (base, el_off, el_size,
1065 TYPE_REVERSE_STORAGE_ORDER (decl_type),
1066 nref, elemtype);
1067 el_off += el_size;
1071 break;
1072 default:
1073 gcc_unreachable ();
1077 /* Create total_scalarization accesses for a member of type TYPE, which must
1078 satisfy either is_gimple_reg_type or scalarizable_type_p. BASE must be the
1079 top-most VAR_DECL representing the variable; within that, POS and SIZE locate
1080 the member, REVERSE gives its torage order. and REF must be the reference
1081 expression for it. */
1083 static void
1084 scalarize_elem (tree base, HOST_WIDE_INT pos, HOST_WIDE_INT size, bool reverse,
1085 tree ref, tree type)
1087 if (is_gimple_reg_type (type))
1089 struct access *access = create_access_1 (base, pos, size);
1090 access->expr = ref;
1091 access->type = type;
1092 access->grp_total_scalarization = 1;
1093 access->reverse = reverse;
1094 /* Accesses for intraprocedural SRA can have their stmt NULL. */
1096 else
1097 completely_scalarize (base, type, pos, ref);
1100 /* Create a total_scalarization access for VAR as a whole. VAR must be of a
1101 RECORD_TYPE or ARRAY_TYPE conforming to scalarizable_type_p. */
1103 static void
1104 create_total_scalarization_access (tree var)
1106 HOST_WIDE_INT size = tree_to_uhwi (DECL_SIZE (var));
1107 struct access *access;
1109 access = create_access_1 (var, 0, size);
1110 access->expr = var;
1111 access->type = TREE_TYPE (var);
1112 access->grp_total_scalarization = 1;
1115 /* Return true if REF has an VIEW_CONVERT_EXPR somewhere in it. */
1117 static inline bool
1118 contains_view_convert_expr_p (const_tree ref)
1120 while (handled_component_p (ref))
1122 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
1123 return true;
1124 ref = TREE_OPERAND (ref, 0);
1127 return false;
1130 /* Search the given tree for a declaration by skipping handled components and
1131 exclude it from the candidates. */
1133 static void
1134 disqualify_base_of_expr (tree t, const char *reason)
1136 t = get_base_address (t);
1137 if (sra_mode == SRA_MODE_EARLY_IPA
1138 && TREE_CODE (t) == MEM_REF)
1139 t = get_ssa_base_param (TREE_OPERAND (t, 0));
1141 if (t && DECL_P (t))
1142 disqualify_candidate (t, reason);
1145 /* Scan expression EXPR and create access structures for all accesses to
1146 candidates for scalarization. Return the created access or NULL if none is
1147 created. */
1149 static struct access *
1150 build_access_from_expr_1 (tree expr, gimple *stmt, bool write)
1152 struct access *ret = NULL;
1153 bool partial_ref;
1155 if (TREE_CODE (expr) == BIT_FIELD_REF
1156 || TREE_CODE (expr) == IMAGPART_EXPR
1157 || TREE_CODE (expr) == REALPART_EXPR)
1159 expr = TREE_OPERAND (expr, 0);
1160 partial_ref = true;
1162 else
1163 partial_ref = false;
1165 /* We need to dive through V_C_Es in order to get the size of its parameter
1166 and not the result type. Ada produces such statements. We are also
1167 capable of handling the topmost V_C_E but not any of those buried in other
1168 handled components. */
1169 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR && !storage_order_barrier_p (expr))
1170 expr = TREE_OPERAND (expr, 0);
1172 if (contains_view_convert_expr_p (expr))
1174 disqualify_base_of_expr (expr, "V_C_E under a different handled "
1175 "component.");
1176 return NULL;
1178 if (TREE_THIS_VOLATILE (expr))
1180 disqualify_base_of_expr (expr, "part of a volatile reference.");
1181 return NULL;
1184 switch (TREE_CODE (expr))
1186 case MEM_REF:
1187 if (TREE_CODE (TREE_OPERAND (expr, 0)) != ADDR_EXPR
1188 && sra_mode != SRA_MODE_EARLY_IPA)
1189 return NULL;
1190 /* fall through */
1191 case VAR_DECL:
1192 case PARM_DECL:
1193 case RESULT_DECL:
1194 case COMPONENT_REF:
1195 case ARRAY_REF:
1196 case ARRAY_RANGE_REF:
1197 ret = create_access (expr, stmt, write);
1198 break;
1200 default:
1201 break;
1204 if (write && partial_ref && ret)
1205 ret->grp_partial_lhs = 1;
1207 return ret;
1210 /* Scan expression EXPR and create access structures for all accesses to
1211 candidates for scalarization. Return true if any access has been inserted.
1212 STMT must be the statement from which the expression is taken, WRITE must be
1213 true if the expression is a store and false otherwise. */
1215 static bool
1216 build_access_from_expr (tree expr, gimple *stmt, bool write)
1218 struct access *access;
1220 access = build_access_from_expr_1 (expr, stmt, write);
1221 if (access)
1223 /* This means the aggregate is accesses as a whole in a way other than an
1224 assign statement and thus cannot be removed even if we had a scalar
1225 replacement for everything. */
1226 if (cannot_scalarize_away_bitmap)
1227 bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base));
1228 return true;
1230 return false;
1233 /* Return the single non-EH successor edge of BB or NULL if there is none or
1234 more than one. */
1236 static edge
1237 single_non_eh_succ (basic_block bb)
1239 edge e, res = NULL;
1240 edge_iterator ei;
1242 FOR_EACH_EDGE (e, ei, bb->succs)
1243 if (!(e->flags & EDGE_EH))
1245 if (res)
1246 return NULL;
1247 res = e;
1250 return res;
1253 /* Disqualify LHS and RHS for scalarization if STMT has to terminate its BB and
1254 there is no alternative spot where to put statements SRA might need to
1255 generate after it. The spot we are looking for is an edge leading to a
1256 single non-EH successor, if it exists and is indeed single. RHS may be
1257 NULL, in that case ignore it. */
1259 static bool
1260 disqualify_if_bad_bb_terminating_stmt (gimple *stmt, tree lhs, tree rhs)
1262 if ((sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1263 && stmt_ends_bb_p (stmt))
1265 if (single_non_eh_succ (gimple_bb (stmt)))
1266 return false;
1268 disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
1269 if (rhs)
1270 disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
1271 return true;
1273 return false;
1276 /* Scan expressions occurring in STMT, create access structures for all accesses
1277 to candidates for scalarization and remove those candidates which occur in
1278 statements or expressions that prevent them from being split apart. Return
1279 true if any access has been inserted. */
1281 static bool
1282 build_accesses_from_assign (gimple *stmt)
1284 tree lhs, rhs;
1285 struct access *lacc, *racc;
1287 if (!gimple_assign_single_p (stmt)
1288 /* Scope clobbers don't influence scalarization. */
1289 || gimple_clobber_p (stmt))
1290 return false;
1292 lhs = gimple_assign_lhs (stmt);
1293 rhs = gimple_assign_rhs1 (stmt);
1295 if (disqualify_if_bad_bb_terminating_stmt (stmt, lhs, rhs))
1296 return false;
1298 racc = build_access_from_expr_1 (rhs, stmt, false);
1299 lacc = build_access_from_expr_1 (lhs, stmt, true);
1301 if (lacc)
1303 lacc->grp_assignment_write = 1;
1304 if (storage_order_barrier_p (rhs))
1305 lacc->grp_unscalarizable_region = 1;
1308 if (racc)
1310 racc->grp_assignment_read = 1;
1311 if (should_scalarize_away_bitmap && !gimple_has_volatile_ops (stmt)
1312 && !is_gimple_reg_type (racc->type))
1313 bitmap_set_bit (should_scalarize_away_bitmap, DECL_UID (racc->base));
1314 if (storage_order_barrier_p (lhs))
1315 racc->grp_unscalarizable_region = 1;
1318 if (lacc && racc
1319 && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1320 && !lacc->grp_unscalarizable_region
1321 && !racc->grp_unscalarizable_region
1322 && AGGREGATE_TYPE_P (TREE_TYPE (lhs))
1323 && lacc->size == racc->size
1324 && useless_type_conversion_p (lacc->type, racc->type))
1326 struct assign_link *link;
1328 link = assign_link_pool.allocate ();
1329 memset (link, 0, sizeof (struct assign_link));
1331 link->lacc = lacc;
1332 link->racc = racc;
1334 add_link_to_rhs (racc, link);
1337 return lacc || racc;
1340 /* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
1341 GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
1343 static bool
1344 asm_visit_addr (gimple *, tree op, tree, void *)
1346 op = get_base_address (op);
1347 if (op
1348 && DECL_P (op))
1349 disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
1351 return false;
1354 /* Return true iff callsite CALL has at least as many actual arguments as there
1355 are formal parameters of the function currently processed by IPA-SRA and
1356 that their types match. */
1358 static inline bool
1359 callsite_arguments_match_p (gimple *call)
1361 if (gimple_call_num_args (call) < (unsigned) func_param_count)
1362 return false;
1364 tree parm;
1365 int i;
1366 for (parm = DECL_ARGUMENTS (current_function_decl), i = 0;
1367 parm;
1368 parm = DECL_CHAIN (parm), i++)
1370 tree arg = gimple_call_arg (call, i);
1371 if (!useless_type_conversion_p (TREE_TYPE (parm), TREE_TYPE (arg)))
1372 return false;
1374 return true;
1377 /* Scan function and look for interesting expressions and create access
1378 structures for them. Return true iff any access is created. */
1380 static bool
1381 scan_function (void)
1383 basic_block bb;
1384 bool ret = false;
1386 FOR_EACH_BB_FN (bb, cfun)
1388 gimple_stmt_iterator gsi;
1389 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1391 gimple *stmt = gsi_stmt (gsi);
1392 tree t;
1393 unsigned i;
1395 if (final_bbs && stmt_can_throw_external (stmt))
1396 bitmap_set_bit (final_bbs, bb->index);
1397 switch (gimple_code (stmt))
1399 case GIMPLE_RETURN:
1400 t = gimple_return_retval (as_a <greturn *> (stmt));
1401 if (t != NULL_TREE)
1402 ret |= build_access_from_expr (t, stmt, false);
1403 if (final_bbs)
1404 bitmap_set_bit (final_bbs, bb->index);
1405 break;
1407 case GIMPLE_ASSIGN:
1408 ret |= build_accesses_from_assign (stmt);
1409 break;
1411 case GIMPLE_CALL:
1412 for (i = 0; i < gimple_call_num_args (stmt); i++)
1413 ret |= build_access_from_expr (gimple_call_arg (stmt, i),
1414 stmt, false);
1416 if (sra_mode == SRA_MODE_EARLY_IPA)
1418 tree dest = gimple_call_fndecl (stmt);
1419 int flags = gimple_call_flags (stmt);
1421 if (dest)
1423 if (DECL_BUILT_IN_CLASS (dest) == BUILT_IN_NORMAL
1424 && DECL_FUNCTION_CODE (dest) == BUILT_IN_APPLY_ARGS)
1425 encountered_apply_args = true;
1426 if (recursive_call_p (current_function_decl, dest))
1428 encountered_recursive_call = true;
1429 if (!callsite_arguments_match_p (stmt))
1430 encountered_unchangable_recursive_call = true;
1434 if (final_bbs
1435 && (flags & (ECF_CONST | ECF_PURE)) == 0)
1436 bitmap_set_bit (final_bbs, bb->index);
1439 t = gimple_call_lhs (stmt);
1440 if (t && !disqualify_if_bad_bb_terminating_stmt (stmt, t, NULL))
1441 ret |= build_access_from_expr (t, stmt, true);
1442 break;
1444 case GIMPLE_ASM:
1446 gasm *asm_stmt = as_a <gasm *> (stmt);
1447 walk_stmt_load_store_addr_ops (asm_stmt, NULL, NULL, NULL,
1448 asm_visit_addr);
1449 if (final_bbs)
1450 bitmap_set_bit (final_bbs, bb->index);
1452 for (i = 0; i < gimple_asm_ninputs (asm_stmt); i++)
1454 t = TREE_VALUE (gimple_asm_input_op (asm_stmt, i));
1455 ret |= build_access_from_expr (t, asm_stmt, false);
1457 for (i = 0; i < gimple_asm_noutputs (asm_stmt); i++)
1459 t = TREE_VALUE (gimple_asm_output_op (asm_stmt, i));
1460 ret |= build_access_from_expr (t, asm_stmt, true);
1463 break;
1465 default:
1466 break;
1471 return ret;
1474 /* Helper of QSORT function. There are pointers to accesses in the array. An
1475 access is considered smaller than another if it has smaller offset or if the
1476 offsets are the same but is size is bigger. */
1478 static int
1479 compare_access_positions (const void *a, const void *b)
1481 const access_p *fp1 = (const access_p *) a;
1482 const access_p *fp2 = (const access_p *) b;
1483 const access_p f1 = *fp1;
1484 const access_p f2 = *fp2;
1486 if (f1->offset != f2->offset)
1487 return f1->offset < f2->offset ? -1 : 1;
1489 if (f1->size == f2->size)
1491 if (f1->type == f2->type)
1492 return 0;
1493 /* Put any non-aggregate type before any aggregate type. */
1494 else if (!is_gimple_reg_type (f1->type)
1495 && is_gimple_reg_type (f2->type))
1496 return 1;
1497 else if (is_gimple_reg_type (f1->type)
1498 && !is_gimple_reg_type (f2->type))
1499 return -1;
1500 /* Put any complex or vector type before any other scalar type. */
1501 else if (TREE_CODE (f1->type) != COMPLEX_TYPE
1502 && TREE_CODE (f1->type) != VECTOR_TYPE
1503 && (TREE_CODE (f2->type) == COMPLEX_TYPE
1504 || TREE_CODE (f2->type) == VECTOR_TYPE))
1505 return 1;
1506 else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
1507 || TREE_CODE (f1->type) == VECTOR_TYPE)
1508 && TREE_CODE (f2->type) != COMPLEX_TYPE
1509 && TREE_CODE (f2->type) != VECTOR_TYPE)
1510 return -1;
1511 /* Put the integral type with the bigger precision first. */
1512 else if (INTEGRAL_TYPE_P (f1->type)
1513 && INTEGRAL_TYPE_P (f2->type))
1514 return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type);
1515 /* Put any integral type with non-full precision last. */
1516 else if (INTEGRAL_TYPE_P (f1->type)
1517 && (TREE_INT_CST_LOW (TYPE_SIZE (f1->type))
1518 != TYPE_PRECISION (f1->type)))
1519 return 1;
1520 else if (INTEGRAL_TYPE_P (f2->type)
1521 && (TREE_INT_CST_LOW (TYPE_SIZE (f2->type))
1522 != TYPE_PRECISION (f2->type)))
1523 return -1;
1524 /* Stabilize the sort. */
1525 return TYPE_UID (f1->type) - TYPE_UID (f2->type);
1528 /* We want the bigger accesses first, thus the opposite operator in the next
1529 line: */
1530 return f1->size > f2->size ? -1 : 1;
1534 /* Append a name of the declaration to the name obstack. A helper function for
1535 make_fancy_name. */
1537 static void
1538 make_fancy_decl_name (tree decl)
1540 char buffer[32];
1542 tree name = DECL_NAME (decl);
1543 if (name)
1544 obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
1545 IDENTIFIER_LENGTH (name));
1546 else
1548 sprintf (buffer, "D%u", DECL_UID (decl));
1549 obstack_grow (&name_obstack, buffer, strlen (buffer));
1553 /* Helper for make_fancy_name. */
1555 static void
1556 make_fancy_name_1 (tree expr)
1558 char buffer[32];
1559 tree index;
1561 if (DECL_P (expr))
1563 make_fancy_decl_name (expr);
1564 return;
1567 switch (TREE_CODE (expr))
1569 case COMPONENT_REF:
1570 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1571 obstack_1grow (&name_obstack, '$');
1572 make_fancy_decl_name (TREE_OPERAND (expr, 1));
1573 break;
1575 case ARRAY_REF:
1576 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1577 obstack_1grow (&name_obstack, '$');
1578 /* Arrays with only one element may not have a constant as their
1579 index. */
1580 index = TREE_OPERAND (expr, 1);
1581 if (TREE_CODE (index) != INTEGER_CST)
1582 break;
1583 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
1584 obstack_grow (&name_obstack, buffer, strlen (buffer));
1585 break;
1587 case ADDR_EXPR:
1588 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1589 break;
1591 case MEM_REF:
1592 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1593 if (!integer_zerop (TREE_OPERAND (expr, 1)))
1595 obstack_1grow (&name_obstack, '$');
1596 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC,
1597 TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));
1598 obstack_grow (&name_obstack, buffer, strlen (buffer));
1600 break;
1602 case BIT_FIELD_REF:
1603 case REALPART_EXPR:
1604 case IMAGPART_EXPR:
1605 gcc_unreachable (); /* we treat these as scalars. */
1606 break;
1607 default:
1608 break;
1612 /* Create a human readable name for replacement variable of ACCESS. */
1614 static char *
1615 make_fancy_name (tree expr)
1617 make_fancy_name_1 (expr);
1618 obstack_1grow (&name_obstack, '\0');
1619 return XOBFINISH (&name_obstack, char *);
1622 /* Construct a MEM_REF that would reference a part of aggregate BASE of type
1623 EXP_TYPE at the given OFFSET and with storage order REVERSE. If BASE is
1624 something for which get_addr_base_and_unit_offset returns NULL, gsi must
1625 be non-NULL and is used to insert new statements either before or below
1626 the current one as specified by INSERT_AFTER. This function is not capable
1627 of handling bitfields. */
1629 tree
1630 build_ref_for_offset (location_t loc, tree base, HOST_WIDE_INT offset,
1631 bool reverse, tree exp_type, gimple_stmt_iterator *gsi,
1632 bool insert_after)
1634 tree prev_base = base;
1635 tree off;
1636 tree mem_ref;
1637 HOST_WIDE_INT base_offset;
1638 unsigned HOST_WIDE_INT misalign;
1639 unsigned int align;
1641 gcc_checking_assert (offset % BITS_PER_UNIT == 0);
1642 get_object_alignment_1 (base, &align, &misalign);
1643 base = get_addr_base_and_unit_offset (base, &base_offset);
1645 /* get_addr_base_and_unit_offset returns NULL for references with a variable
1646 offset such as array[var_index]. */
1647 if (!base)
1649 gassign *stmt;
1650 tree tmp, addr;
1652 gcc_checking_assert (gsi);
1653 tmp = make_ssa_name (build_pointer_type (TREE_TYPE (prev_base)));
1654 addr = build_fold_addr_expr (unshare_expr (prev_base));
1655 STRIP_USELESS_TYPE_CONVERSION (addr);
1656 stmt = gimple_build_assign (tmp, addr);
1657 gimple_set_location (stmt, loc);
1658 if (insert_after)
1659 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
1660 else
1661 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1663 off = build_int_cst (reference_alias_ptr_type (prev_base),
1664 offset / BITS_PER_UNIT);
1665 base = tmp;
1667 else if (TREE_CODE (base) == MEM_REF)
1669 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1670 base_offset + offset / BITS_PER_UNIT);
1671 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
1672 base = unshare_expr (TREE_OPERAND (base, 0));
1674 else
1676 off = build_int_cst (reference_alias_ptr_type (prev_base),
1677 base_offset + offset / BITS_PER_UNIT);
1678 base = build_fold_addr_expr (unshare_expr (base));
1681 misalign = (misalign + offset) & (align - 1);
1682 if (misalign != 0)
1683 align = least_bit_hwi (misalign);
1684 if (align != TYPE_ALIGN (exp_type))
1685 exp_type = build_aligned_type (exp_type, align);
1687 mem_ref = fold_build2_loc (loc, MEM_REF, exp_type, base, off);
1688 REF_REVERSE_STORAGE_ORDER (mem_ref) = reverse;
1689 if (TREE_THIS_VOLATILE (prev_base))
1690 TREE_THIS_VOLATILE (mem_ref) = 1;
1691 if (TREE_SIDE_EFFECTS (prev_base))
1692 TREE_SIDE_EFFECTS (mem_ref) = 1;
1693 return mem_ref;
1696 /* Construct a memory reference to a part of an aggregate BASE at the given
1697 OFFSET and of the same type as MODEL. In case this is a reference to a
1698 bit-field, the function will replicate the last component_ref of model's
1699 expr to access it. GSI and INSERT_AFTER have the same meaning as in
1700 build_ref_for_offset. */
1702 static tree
1703 build_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
1704 struct access *model, gimple_stmt_iterator *gsi,
1705 bool insert_after)
1707 if (TREE_CODE (model->expr) == COMPONENT_REF
1708 && DECL_BIT_FIELD (TREE_OPERAND (model->expr, 1)))
1710 /* This access represents a bit-field. */
1711 tree t, exp_type, fld = TREE_OPERAND (model->expr, 1);
1713 offset -= int_bit_position (fld);
1714 exp_type = TREE_TYPE (TREE_OPERAND (model->expr, 0));
1715 t = build_ref_for_offset (loc, base, offset, model->reverse, exp_type,
1716 gsi, insert_after);
1717 /* The flag will be set on the record type. */
1718 REF_REVERSE_STORAGE_ORDER (t) = 0;
1719 return fold_build3_loc (loc, COMPONENT_REF, TREE_TYPE (fld), t, fld,
1720 NULL_TREE);
1722 else
1723 return
1724 build_ref_for_offset (loc, base, offset, model->reverse, model->type,
1725 gsi, insert_after);
1728 /* Attempt to build a memory reference that we could but into a gimple
1729 debug_bind statement. Similar to build_ref_for_model but punts if it has to
1730 create statements and return s NULL instead. This function also ignores
1731 alignment issues and so its results should never end up in non-debug
1732 statements. */
1734 static tree
1735 build_debug_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
1736 struct access *model)
1738 HOST_WIDE_INT base_offset;
1739 tree off;
1741 if (TREE_CODE (model->expr) == COMPONENT_REF
1742 && DECL_BIT_FIELD (TREE_OPERAND (model->expr, 1)))
1743 return NULL_TREE;
1745 base = get_addr_base_and_unit_offset (base, &base_offset);
1746 if (!base)
1747 return NULL_TREE;
1748 if (TREE_CODE (base) == MEM_REF)
1750 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1751 base_offset + offset / BITS_PER_UNIT);
1752 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
1753 base = unshare_expr (TREE_OPERAND (base, 0));
1755 else
1757 off = build_int_cst (reference_alias_ptr_type (base),
1758 base_offset + offset / BITS_PER_UNIT);
1759 base = build_fold_addr_expr (unshare_expr (base));
1762 return fold_build2_loc (loc, MEM_REF, model->type, base, off);
1765 /* Construct a memory reference consisting of component_refs and array_refs to
1766 a part of an aggregate *RES (which is of type TYPE). The requested part
1767 should have type EXP_TYPE at be the given OFFSET. This function might not
1768 succeed, it returns true when it does and only then *RES points to something
1769 meaningful. This function should be used only to build expressions that we
1770 might need to present to user (e.g. in warnings). In all other situations,
1771 build_ref_for_model or build_ref_for_offset should be used instead. */
1773 static bool
1774 build_user_friendly_ref_for_offset (tree *res, tree type, HOST_WIDE_INT offset,
1775 tree exp_type)
1777 while (1)
1779 tree fld;
1780 tree tr_size, index, minidx;
1781 HOST_WIDE_INT el_size;
1783 if (offset == 0 && exp_type
1784 && types_compatible_p (exp_type, type))
1785 return true;
1787 switch (TREE_CODE (type))
1789 case UNION_TYPE:
1790 case QUAL_UNION_TYPE:
1791 case RECORD_TYPE:
1792 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
1794 HOST_WIDE_INT pos, size;
1795 tree tr_pos, expr, *expr_ptr;
1797 if (TREE_CODE (fld) != FIELD_DECL)
1798 continue;
1800 tr_pos = bit_position (fld);
1801 if (!tr_pos || !tree_fits_uhwi_p (tr_pos))
1802 continue;
1803 pos = tree_to_uhwi (tr_pos);
1804 gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
1805 tr_size = DECL_SIZE (fld);
1806 if (!tr_size || !tree_fits_uhwi_p (tr_size))
1807 continue;
1808 size = tree_to_uhwi (tr_size);
1809 if (size == 0)
1811 if (pos != offset)
1812 continue;
1814 else if (pos > offset || (pos + size) <= offset)
1815 continue;
1817 expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
1818 NULL_TREE);
1819 expr_ptr = &expr;
1820 if (build_user_friendly_ref_for_offset (expr_ptr, TREE_TYPE (fld),
1821 offset - pos, exp_type))
1823 *res = expr;
1824 return true;
1827 return false;
1829 case ARRAY_TYPE:
1830 tr_size = TYPE_SIZE (TREE_TYPE (type));
1831 if (!tr_size || !tree_fits_uhwi_p (tr_size))
1832 return false;
1833 el_size = tree_to_uhwi (tr_size);
1835 minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1836 if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0)
1837 return false;
1838 index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
1839 if (!integer_zerop (minidx))
1840 index = int_const_binop (PLUS_EXPR, index, minidx);
1841 *res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
1842 NULL_TREE, NULL_TREE);
1843 offset = offset % el_size;
1844 type = TREE_TYPE (type);
1845 break;
1847 default:
1848 if (offset != 0)
1849 return false;
1851 if (exp_type)
1852 return false;
1853 else
1854 return true;
1859 /* Return true iff TYPE is stdarg va_list type. */
1861 static inline bool
1862 is_va_list_type (tree type)
1864 return TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (va_list_type_node);
1867 /* Print message to dump file why a variable was rejected. */
1869 static void
1870 reject (tree var, const char *msg)
1872 if (dump_file && (dump_flags & TDF_DETAILS))
1874 fprintf (dump_file, "Rejected (%d): %s: ", DECL_UID (var), msg);
1875 print_generic_expr (dump_file, var, 0);
1876 fprintf (dump_file, "\n");
1880 /* Return true if VAR is a candidate for SRA. */
1882 static bool
1883 maybe_add_sra_candidate (tree var)
1885 tree type = TREE_TYPE (var);
1886 const char *msg;
1887 tree_node **slot;
1889 if (!AGGREGATE_TYPE_P (type))
1891 reject (var, "not aggregate");
1892 return false;
1894 /* Allow constant-pool entries (that "need to live in memory")
1895 unless we are doing IPA SRA. */
1896 if (needs_to_live_in_memory (var)
1897 && (sra_mode == SRA_MODE_EARLY_IPA || !constant_decl_p (var)))
1899 reject (var, "needs to live in memory");
1900 return false;
1902 if (TREE_THIS_VOLATILE (var))
1904 reject (var, "is volatile");
1905 return false;
1907 if (!COMPLETE_TYPE_P (type))
1909 reject (var, "has incomplete type");
1910 return false;
1912 if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
1914 reject (var, "type size not fixed");
1915 return false;
1917 if (tree_to_uhwi (TYPE_SIZE (type)) == 0)
1919 reject (var, "type size is zero");
1920 return false;
1922 if (type_internals_preclude_sra_p (type, &msg))
1924 reject (var, msg);
1925 return false;
1927 if (/* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
1928 we also want to schedule it rather late. Thus we ignore it in
1929 the early pass. */
1930 (sra_mode == SRA_MODE_EARLY_INTRA
1931 && is_va_list_type (type)))
1933 reject (var, "is va_list");
1934 return false;
1937 bitmap_set_bit (candidate_bitmap, DECL_UID (var));
1938 slot = candidates->find_slot_with_hash (var, DECL_UID (var), INSERT);
1939 *slot = var;
1941 if (dump_file && (dump_flags & TDF_DETAILS))
1943 fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
1944 print_generic_expr (dump_file, var, 0);
1945 fprintf (dump_file, "\n");
1948 return true;
1951 /* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
1952 those with type which is suitable for scalarization. */
1954 static bool
1955 find_var_candidates (void)
1957 tree var, parm;
1958 unsigned int i;
1959 bool ret = false;
1961 for (parm = DECL_ARGUMENTS (current_function_decl);
1962 parm;
1963 parm = DECL_CHAIN (parm))
1964 ret |= maybe_add_sra_candidate (parm);
1966 FOR_EACH_LOCAL_DECL (cfun, i, var)
1968 if (!VAR_P (var))
1969 continue;
1971 ret |= maybe_add_sra_candidate (var);
1974 return ret;
1977 /* Sort all accesses for the given variable, check for partial overlaps and
1978 return NULL if there are any. If there are none, pick a representative for
1979 each combination of offset and size and create a linked list out of them.
1980 Return the pointer to the first representative and make sure it is the first
1981 one in the vector of accesses. */
1983 static struct access *
1984 sort_and_splice_var_accesses (tree var)
1986 int i, j, access_count;
1987 struct access *res, **prev_acc_ptr = &res;
1988 vec<access_p> *access_vec;
1989 bool first = true;
1990 HOST_WIDE_INT low = -1, high = 0;
1992 access_vec = get_base_access_vector (var);
1993 if (!access_vec)
1994 return NULL;
1995 access_count = access_vec->length ();
1997 /* Sort by <OFFSET, SIZE>. */
1998 access_vec->qsort (compare_access_positions);
2000 i = 0;
2001 while (i < access_count)
2003 struct access *access = (*access_vec)[i];
2004 bool grp_write = access->write;
2005 bool grp_read = !access->write;
2006 bool grp_scalar_write = access->write
2007 && is_gimple_reg_type (access->type);
2008 bool grp_scalar_read = !access->write
2009 && is_gimple_reg_type (access->type);
2010 bool grp_assignment_read = access->grp_assignment_read;
2011 bool grp_assignment_write = access->grp_assignment_write;
2012 bool multiple_scalar_reads = false;
2013 bool total_scalarization = access->grp_total_scalarization;
2014 bool grp_partial_lhs = access->grp_partial_lhs;
2015 bool first_scalar = is_gimple_reg_type (access->type);
2016 bool unscalarizable_region = access->grp_unscalarizable_region;
2018 if (first || access->offset >= high)
2020 first = false;
2021 low = access->offset;
2022 high = access->offset + access->size;
2024 else if (access->offset > low && access->offset + access->size > high)
2025 return NULL;
2026 else
2027 gcc_assert (access->offset >= low
2028 && access->offset + access->size <= high);
2030 j = i + 1;
2031 while (j < access_count)
2033 struct access *ac2 = (*access_vec)[j];
2034 if (ac2->offset != access->offset || ac2->size != access->size)
2035 break;
2036 if (ac2->write)
2038 grp_write = true;
2039 grp_scalar_write = (grp_scalar_write
2040 || is_gimple_reg_type (ac2->type));
2042 else
2044 grp_read = true;
2045 if (is_gimple_reg_type (ac2->type))
2047 if (grp_scalar_read)
2048 multiple_scalar_reads = true;
2049 else
2050 grp_scalar_read = true;
2053 grp_assignment_read |= ac2->grp_assignment_read;
2054 grp_assignment_write |= ac2->grp_assignment_write;
2055 grp_partial_lhs |= ac2->grp_partial_lhs;
2056 unscalarizable_region |= ac2->grp_unscalarizable_region;
2057 total_scalarization |= ac2->grp_total_scalarization;
2058 relink_to_new_repr (access, ac2);
2060 /* If there are both aggregate-type and scalar-type accesses with
2061 this combination of size and offset, the comparison function
2062 should have put the scalars first. */
2063 gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
2064 ac2->group_representative = access;
2065 j++;
2068 i = j;
2070 access->group_representative = access;
2071 access->grp_write = grp_write;
2072 access->grp_read = grp_read;
2073 access->grp_scalar_read = grp_scalar_read;
2074 access->grp_scalar_write = grp_scalar_write;
2075 access->grp_assignment_read = grp_assignment_read;
2076 access->grp_assignment_write = grp_assignment_write;
2077 access->grp_hint = total_scalarization
2078 || (multiple_scalar_reads && !constant_decl_p (var));
2079 access->grp_total_scalarization = total_scalarization;
2080 access->grp_partial_lhs = grp_partial_lhs;
2081 access->grp_unscalarizable_region = unscalarizable_region;
2082 if (access->first_link)
2083 add_access_to_work_queue (access);
2085 *prev_acc_ptr = access;
2086 prev_acc_ptr = &access->next_grp;
2089 gcc_assert (res == (*access_vec)[0]);
2090 return res;
2093 /* Create a variable for the given ACCESS which determines the type, name and a
2094 few other properties. Return the variable declaration and store it also to
2095 ACCESS->replacement. */
2097 static tree
2098 create_access_replacement (struct access *access)
2100 tree repl;
2102 if (access->grp_to_be_debug_replaced)
2104 repl = create_tmp_var_raw (access->type);
2105 DECL_CONTEXT (repl) = current_function_decl;
2107 else
2108 /* Drop any special alignment on the type if it's not on the main
2109 variant. This avoids issues with weirdo ABIs like AAPCS. */
2110 repl = create_tmp_var (build_qualified_type
2111 (TYPE_MAIN_VARIANT (access->type),
2112 TYPE_QUALS (access->type)), "SR");
2113 if (TREE_CODE (access->type) == COMPLEX_TYPE
2114 || TREE_CODE (access->type) == VECTOR_TYPE)
2116 if (!access->grp_partial_lhs)
2117 DECL_GIMPLE_REG_P (repl) = 1;
2119 else if (access->grp_partial_lhs
2120 && is_gimple_reg_type (access->type))
2121 TREE_ADDRESSABLE (repl) = 1;
2123 DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
2124 DECL_ARTIFICIAL (repl) = 1;
2125 DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
2127 if (DECL_NAME (access->base)
2128 && !DECL_IGNORED_P (access->base)
2129 && !DECL_ARTIFICIAL (access->base))
2131 char *pretty_name = make_fancy_name (access->expr);
2132 tree debug_expr = unshare_expr_without_location (access->expr), d;
2133 bool fail = false;
2135 DECL_NAME (repl) = get_identifier (pretty_name);
2136 DECL_NAMELESS (repl) = 1;
2137 obstack_free (&name_obstack, pretty_name);
2139 /* Get rid of any SSA_NAMEs embedded in debug_expr,
2140 as DECL_DEBUG_EXPR isn't considered when looking for still
2141 used SSA_NAMEs and thus they could be freed. All debug info
2142 generation cares is whether something is constant or variable
2143 and that get_ref_base_and_extent works properly on the
2144 expression. It cannot handle accesses at a non-constant offset
2145 though, so just give up in those cases. */
2146 for (d = debug_expr;
2147 !fail && (handled_component_p (d) || TREE_CODE (d) == MEM_REF);
2148 d = TREE_OPERAND (d, 0))
2149 switch (TREE_CODE (d))
2151 case ARRAY_REF:
2152 case ARRAY_RANGE_REF:
2153 if (TREE_OPERAND (d, 1)
2154 && TREE_CODE (TREE_OPERAND (d, 1)) != INTEGER_CST)
2155 fail = true;
2156 if (TREE_OPERAND (d, 3)
2157 && TREE_CODE (TREE_OPERAND (d, 3)) != INTEGER_CST)
2158 fail = true;
2159 /* FALLTHRU */
2160 case COMPONENT_REF:
2161 if (TREE_OPERAND (d, 2)
2162 && TREE_CODE (TREE_OPERAND (d, 2)) != INTEGER_CST)
2163 fail = true;
2164 break;
2165 case MEM_REF:
2166 if (TREE_CODE (TREE_OPERAND (d, 0)) != ADDR_EXPR)
2167 fail = true;
2168 else
2169 d = TREE_OPERAND (d, 0);
2170 break;
2171 default:
2172 break;
2174 if (!fail)
2176 SET_DECL_DEBUG_EXPR (repl, debug_expr);
2177 DECL_HAS_DEBUG_EXPR_P (repl) = 1;
2179 if (access->grp_no_warning)
2180 TREE_NO_WARNING (repl) = 1;
2181 else
2182 TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base);
2184 else
2185 TREE_NO_WARNING (repl) = 1;
2187 if (dump_file)
2189 if (access->grp_to_be_debug_replaced)
2191 fprintf (dump_file, "Created a debug-only replacement for ");
2192 print_generic_expr (dump_file, access->base, 0);
2193 fprintf (dump_file, " offset: %u, size: %u\n",
2194 (unsigned) access->offset, (unsigned) access->size);
2196 else
2198 fprintf (dump_file, "Created a replacement for ");
2199 print_generic_expr (dump_file, access->base, 0);
2200 fprintf (dump_file, " offset: %u, size: %u: ",
2201 (unsigned) access->offset, (unsigned) access->size);
2202 print_generic_expr (dump_file, repl, 0);
2203 fprintf (dump_file, "\n");
2206 sra_stats.replacements++;
2208 return repl;
2211 /* Return ACCESS scalar replacement, which must exist. */
2213 static inline tree
2214 get_access_replacement (struct access *access)
2216 gcc_checking_assert (access->replacement_decl);
2217 return access->replacement_decl;
2221 /* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
2222 linked list along the way. Stop when *ACCESS is NULL or the access pointed
2223 to it is not "within" the root. Return false iff some accesses partially
2224 overlap. */
2226 static bool
2227 build_access_subtree (struct access **access)
2229 struct access *root = *access, *last_child = NULL;
2230 HOST_WIDE_INT limit = root->offset + root->size;
2232 *access = (*access)->next_grp;
2233 while (*access && (*access)->offset + (*access)->size <= limit)
2235 if (!last_child)
2236 root->first_child = *access;
2237 else
2238 last_child->next_sibling = *access;
2239 last_child = *access;
2241 if (!build_access_subtree (access))
2242 return false;
2245 if (*access && (*access)->offset < limit)
2246 return false;
2248 return true;
2251 /* Build a tree of access representatives, ACCESS is the pointer to the first
2252 one, others are linked in a list by the next_grp field. Return false iff
2253 some accesses partially overlap. */
2255 static bool
2256 build_access_trees (struct access *access)
2258 while (access)
2260 struct access *root = access;
2262 if (!build_access_subtree (&access))
2263 return false;
2264 root->next_grp = access;
2266 return true;
2269 /* Return true if expr contains some ARRAY_REFs into a variable bounded
2270 array. */
2272 static bool
2273 expr_with_var_bounded_array_refs_p (tree expr)
2275 while (handled_component_p (expr))
2277 if (TREE_CODE (expr) == ARRAY_REF
2278 && !tree_fits_shwi_p (array_ref_low_bound (expr)))
2279 return true;
2280 expr = TREE_OPERAND (expr, 0);
2282 return false;
2285 /* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
2286 both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set all
2287 sorts of access flags appropriately along the way, notably always set
2288 grp_read and grp_assign_read according to MARK_READ and grp_write when
2289 MARK_WRITE is true.
2291 Creating a replacement for a scalar access is considered beneficial if its
2292 grp_hint is set (this means we are either attempting total scalarization or
2293 there is more than one direct read access) or according to the following
2294 table:
2296 Access written to through a scalar type (once or more times)
2298 | Written to in an assignment statement
2300 | | Access read as scalar _once_
2301 | | |
2302 | | | Read in an assignment statement
2303 | | | |
2304 | | | | Scalarize Comment
2305 -----------------------------------------------------------------------------
2306 0 0 0 0 No access for the scalar
2307 0 0 0 1 No access for the scalar
2308 0 0 1 0 No Single read - won't help
2309 0 0 1 1 No The same case
2310 0 1 0 0 No access for the scalar
2311 0 1 0 1 No access for the scalar
2312 0 1 1 0 Yes s = *g; return s.i;
2313 0 1 1 1 Yes The same case as above
2314 1 0 0 0 No Won't help
2315 1 0 0 1 Yes s.i = 1; *g = s;
2316 1 0 1 0 Yes s.i = 5; g = s.i;
2317 1 0 1 1 Yes The same case as above
2318 1 1 0 0 No Won't help.
2319 1 1 0 1 Yes s.i = 1; *g = s;
2320 1 1 1 0 Yes s = *g; return s.i;
2321 1 1 1 1 Yes Any of the above yeses */
2323 static bool
2324 analyze_access_subtree (struct access *root, struct access *parent,
2325 bool allow_replacements)
2327 struct access *child;
2328 HOST_WIDE_INT limit = root->offset + root->size;
2329 HOST_WIDE_INT covered_to = root->offset;
2330 bool scalar = is_gimple_reg_type (root->type);
2331 bool hole = false, sth_created = false;
2333 if (parent)
2335 if (parent->grp_read)
2336 root->grp_read = 1;
2337 if (parent->grp_assignment_read)
2338 root->grp_assignment_read = 1;
2339 if (parent->grp_write)
2340 root->grp_write = 1;
2341 if (parent->grp_assignment_write)
2342 root->grp_assignment_write = 1;
2343 if (parent->grp_total_scalarization)
2344 root->grp_total_scalarization = 1;
2347 if (root->grp_unscalarizable_region)
2348 allow_replacements = false;
2350 if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
2351 allow_replacements = false;
2353 for (child = root->first_child; child; child = child->next_sibling)
2355 hole |= covered_to < child->offset;
2356 sth_created |= analyze_access_subtree (child, root,
2357 allow_replacements && !scalar);
2359 root->grp_unscalarized_data |= child->grp_unscalarized_data;
2360 root->grp_total_scalarization &= child->grp_total_scalarization;
2361 if (child->grp_covered)
2362 covered_to += child->size;
2363 else
2364 hole = true;
2367 if (allow_replacements && scalar && !root->first_child
2368 && (root->grp_hint
2369 || ((root->grp_scalar_read || root->grp_assignment_read)
2370 && (root->grp_scalar_write || root->grp_assignment_write))))
2372 /* Always create access replacements that cover the whole access.
2373 For integral types this means the precision has to match.
2374 Avoid assumptions based on the integral type kind, too. */
2375 if (INTEGRAL_TYPE_P (root->type)
2376 && (TREE_CODE (root->type) != INTEGER_TYPE
2377 || TYPE_PRECISION (root->type) != root->size)
2378 /* But leave bitfield accesses alone. */
2379 && (TREE_CODE (root->expr) != COMPONENT_REF
2380 || !DECL_BIT_FIELD (TREE_OPERAND (root->expr, 1))))
2382 tree rt = root->type;
2383 gcc_assert ((root->offset % BITS_PER_UNIT) == 0
2384 && (root->size % BITS_PER_UNIT) == 0);
2385 root->type = build_nonstandard_integer_type (root->size,
2386 TYPE_UNSIGNED (rt));
2387 root->expr = build_ref_for_offset (UNKNOWN_LOCATION, root->base,
2388 root->offset, root->reverse,
2389 root->type, NULL, false);
2391 if (dump_file && (dump_flags & TDF_DETAILS))
2393 fprintf (dump_file, "Changing the type of a replacement for ");
2394 print_generic_expr (dump_file, root->base, 0);
2395 fprintf (dump_file, " offset: %u, size: %u ",
2396 (unsigned) root->offset, (unsigned) root->size);
2397 fprintf (dump_file, " to an integer.\n");
2401 root->grp_to_be_replaced = 1;
2402 root->replacement_decl = create_access_replacement (root);
2403 sth_created = true;
2404 hole = false;
2406 else
2408 if (allow_replacements
2409 && scalar && !root->first_child
2410 && (root->grp_scalar_write || root->grp_assignment_write)
2411 && !bitmap_bit_p (cannot_scalarize_away_bitmap,
2412 DECL_UID (root->base)))
2414 gcc_checking_assert (!root->grp_scalar_read
2415 && !root->grp_assignment_read);
2416 sth_created = true;
2417 if (MAY_HAVE_DEBUG_STMTS)
2419 root->grp_to_be_debug_replaced = 1;
2420 root->replacement_decl = create_access_replacement (root);
2424 if (covered_to < limit)
2425 hole = true;
2426 if (scalar || !allow_replacements)
2427 root->grp_total_scalarization = 0;
2430 if (!hole || root->grp_total_scalarization)
2431 root->grp_covered = 1;
2432 else if (root->grp_write || TREE_CODE (root->base) == PARM_DECL
2433 || constant_decl_p (root->base))
2434 root->grp_unscalarized_data = 1; /* not covered and written to */
2435 return sth_created;
2438 /* Analyze all access trees linked by next_grp by the means of
2439 analyze_access_subtree. */
2440 static bool
2441 analyze_access_trees (struct access *access)
2443 bool ret = false;
2445 while (access)
2447 if (analyze_access_subtree (access, NULL, true))
2448 ret = true;
2449 access = access->next_grp;
2452 return ret;
2455 /* Return true iff a potential new child of LACC at offset OFFSET and with size
2456 SIZE would conflict with an already existing one. If exactly such a child
2457 already exists in LACC, store a pointer to it in EXACT_MATCH. */
2459 static bool
2460 child_would_conflict_in_lacc (struct access *lacc, HOST_WIDE_INT norm_offset,
2461 HOST_WIDE_INT size, struct access **exact_match)
2463 struct access *child;
2465 for (child = lacc->first_child; child; child = child->next_sibling)
2467 if (child->offset == norm_offset && child->size == size)
2469 *exact_match = child;
2470 return true;
2473 if (child->offset < norm_offset + size
2474 && child->offset + child->size > norm_offset)
2475 return true;
2478 return false;
2481 /* Create a new child access of PARENT, with all properties just like MODEL
2482 except for its offset and with its grp_write false and grp_read true.
2483 Return the new access or NULL if it cannot be created. Note that this access
2484 is created long after all splicing and sorting, it's not located in any
2485 access vector and is automatically a representative of its group. */
2487 static struct access *
2488 create_artificial_child_access (struct access *parent, struct access *model,
2489 HOST_WIDE_INT new_offset)
2491 struct access **child;
2492 tree expr = parent->base;
2494 gcc_assert (!model->grp_unscalarizable_region);
2496 struct access *access = access_pool.allocate ();
2497 memset (access, 0, sizeof (struct access));
2498 if (!build_user_friendly_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
2499 model->type))
2501 access->grp_no_warning = true;
2502 expr = build_ref_for_model (EXPR_LOCATION (parent->base), parent->base,
2503 new_offset, model, NULL, false);
2506 access->base = parent->base;
2507 access->expr = expr;
2508 access->offset = new_offset;
2509 access->size = model->size;
2510 access->type = model->type;
2511 access->grp_write = true;
2512 access->grp_read = false;
2513 access->reverse = model->reverse;
2515 child = &parent->first_child;
2516 while (*child && (*child)->offset < new_offset)
2517 child = &(*child)->next_sibling;
2519 access->next_sibling = *child;
2520 *child = access;
2522 return access;
2526 /* Propagate all subaccesses of RACC across an assignment link to LACC. Return
2527 true if any new subaccess was created. Additionally, if RACC is a scalar
2528 access but LACC is not, change the type of the latter, if possible. */
2530 static bool
2531 propagate_subaccesses_across_link (struct access *lacc, struct access *racc)
2533 struct access *rchild;
2534 HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
2535 bool ret = false;
2537 if (is_gimple_reg_type (lacc->type)
2538 || lacc->grp_unscalarizable_region
2539 || racc->grp_unscalarizable_region)
2540 return false;
2542 if (is_gimple_reg_type (racc->type))
2544 if (!lacc->first_child && !racc->first_child)
2546 tree t = lacc->base;
2548 lacc->type = racc->type;
2549 if (build_user_friendly_ref_for_offset (&t, TREE_TYPE (t),
2550 lacc->offset, racc->type))
2551 lacc->expr = t;
2552 else
2554 lacc->expr = build_ref_for_model (EXPR_LOCATION (lacc->base),
2555 lacc->base, lacc->offset,
2556 racc, NULL, false);
2557 lacc->grp_no_warning = true;
2560 return false;
2563 for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
2565 struct access *new_acc = NULL;
2566 HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
2568 if (rchild->grp_unscalarizable_region)
2569 continue;
2571 if (child_would_conflict_in_lacc (lacc, norm_offset, rchild->size,
2572 &new_acc))
2574 if (new_acc)
2576 rchild->grp_hint = 1;
2577 new_acc->grp_hint |= new_acc->grp_read;
2578 if (rchild->first_child)
2579 ret |= propagate_subaccesses_across_link (new_acc, rchild);
2581 continue;
2584 rchild->grp_hint = 1;
2585 new_acc = create_artificial_child_access (lacc, rchild, norm_offset);
2586 if (new_acc)
2588 ret = true;
2589 if (racc->first_child)
2590 propagate_subaccesses_across_link (new_acc, rchild);
2594 return ret;
2597 /* Propagate all subaccesses across assignment links. */
2599 static void
2600 propagate_all_subaccesses (void)
2602 while (work_queue_head)
2604 struct access *racc = pop_access_from_work_queue ();
2605 struct assign_link *link;
2607 gcc_assert (racc->first_link);
2609 for (link = racc->first_link; link; link = link->next)
2611 struct access *lacc = link->lacc;
2613 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
2614 continue;
2615 lacc = lacc->group_representative;
2616 if (propagate_subaccesses_across_link (lacc, racc)
2617 && lacc->first_link)
2618 add_access_to_work_queue (lacc);
2623 /* Go through all accesses collected throughout the (intraprocedural) analysis
2624 stage, exclude overlapping ones, identify representatives and build trees
2625 out of them, making decisions about scalarization on the way. Return true
2626 iff there are any to-be-scalarized variables after this stage. */
2628 static bool
2629 analyze_all_variable_accesses (void)
2631 int res = 0;
2632 bitmap tmp = BITMAP_ALLOC (NULL);
2633 bitmap_iterator bi;
2634 unsigned i;
2635 bool optimize_speed_p = !optimize_function_for_size_p (cfun);
2637 enum compiler_param param = optimize_speed_p
2638 ? PARAM_SRA_MAX_SCALARIZATION_SIZE_SPEED
2639 : PARAM_SRA_MAX_SCALARIZATION_SIZE_SIZE;
2641 /* If the user didn't set PARAM_SRA_MAX_SCALARIZATION_SIZE_<...>,
2642 fall back to a target default. */
2643 unsigned HOST_WIDE_INT max_scalarization_size
2644 = global_options_set.x_param_values[param]
2645 ? PARAM_VALUE (param)
2646 : get_move_ratio (optimize_speed_p) * UNITS_PER_WORD;
2648 max_scalarization_size *= BITS_PER_UNIT;
2650 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
2651 if (bitmap_bit_p (should_scalarize_away_bitmap, i)
2652 && !bitmap_bit_p (cannot_scalarize_away_bitmap, i))
2654 tree var = candidate (i);
2656 if (VAR_P (var) && scalarizable_type_p (TREE_TYPE (var)))
2658 if (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (var)))
2659 <= max_scalarization_size)
2661 create_total_scalarization_access (var);
2662 completely_scalarize (var, TREE_TYPE (var), 0, var);
2663 if (dump_file && (dump_flags & TDF_DETAILS))
2665 fprintf (dump_file, "Will attempt to totally scalarize ");
2666 print_generic_expr (dump_file, var, 0);
2667 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2670 else if (dump_file && (dump_flags & TDF_DETAILS))
2672 fprintf (dump_file, "Too big to totally scalarize: ");
2673 print_generic_expr (dump_file, var, 0);
2674 fprintf (dump_file, " (UID: %u)\n", DECL_UID (var));
2679 bitmap_copy (tmp, candidate_bitmap);
2680 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2682 tree var = candidate (i);
2683 struct access *access;
2685 access = sort_and_splice_var_accesses (var);
2686 if (!access || !build_access_trees (access))
2687 disqualify_candidate (var,
2688 "No or inhibitingly overlapping accesses.");
2691 propagate_all_subaccesses ();
2693 bitmap_copy (tmp, candidate_bitmap);
2694 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2696 tree var = candidate (i);
2697 struct access *access = get_first_repr_for_decl (var);
2699 if (analyze_access_trees (access))
2701 res++;
2702 if (dump_file && (dump_flags & TDF_DETAILS))
2704 fprintf (dump_file, "\nAccess trees for ");
2705 print_generic_expr (dump_file, var, 0);
2706 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2707 dump_access_tree (dump_file, access);
2708 fprintf (dump_file, "\n");
2711 else
2712 disqualify_candidate (var, "No scalar replacements to be created.");
2715 BITMAP_FREE (tmp);
2717 if (res)
2719 statistics_counter_event (cfun, "Scalarized aggregates", res);
2720 return true;
2722 else
2723 return false;
2726 /* Generate statements copying scalar replacements of accesses within a subtree
2727 into or out of AGG. ACCESS, all its children, siblings and their children
2728 are to be processed. AGG is an aggregate type expression (can be a
2729 declaration but does not have to be, it can for example also be a mem_ref or
2730 a series of handled components). TOP_OFFSET is the offset of the processed
2731 subtree which has to be subtracted from offsets of individual accesses to
2732 get corresponding offsets for AGG. If CHUNK_SIZE is non-null, copy only
2733 replacements in the interval <start_offset, start_offset + chunk_size>,
2734 otherwise copy all. GSI is a statement iterator used to place the new
2735 statements. WRITE should be true when the statements should write from AGG
2736 to the replacement and false if vice versa. if INSERT_AFTER is true, new
2737 statements will be added after the current statement in GSI, they will be
2738 added before the statement otherwise. */
2740 static void
2741 generate_subtree_copies (struct access *access, tree agg,
2742 HOST_WIDE_INT top_offset,
2743 HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
2744 gimple_stmt_iterator *gsi, bool write,
2745 bool insert_after, location_t loc)
2747 /* Never write anything into constant pool decls. See PR70602. */
2748 if (!write && constant_decl_p (agg))
2749 return;
2752 if (chunk_size && access->offset >= start_offset + chunk_size)
2753 return;
2755 if (access->grp_to_be_replaced
2756 && (chunk_size == 0
2757 || access->offset + access->size > start_offset))
2759 tree expr, repl = get_access_replacement (access);
2760 gassign *stmt;
2762 expr = build_ref_for_model (loc, agg, access->offset - top_offset,
2763 access, gsi, insert_after);
2765 if (write)
2767 if (access->grp_partial_lhs)
2768 expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
2769 !insert_after,
2770 insert_after ? GSI_NEW_STMT
2771 : GSI_SAME_STMT);
2772 stmt = gimple_build_assign (repl, expr);
2774 else
2776 TREE_NO_WARNING (repl) = 1;
2777 if (access->grp_partial_lhs)
2778 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2779 !insert_after,
2780 insert_after ? GSI_NEW_STMT
2781 : GSI_SAME_STMT);
2782 stmt = gimple_build_assign (expr, repl);
2784 gimple_set_location (stmt, loc);
2786 if (insert_after)
2787 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2788 else
2789 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2790 update_stmt (stmt);
2791 sra_stats.subtree_copies++;
2793 else if (write
2794 && access->grp_to_be_debug_replaced
2795 && (chunk_size == 0
2796 || access->offset + access->size > start_offset))
2798 gdebug *ds;
2799 tree drhs = build_debug_ref_for_model (loc, agg,
2800 access->offset - top_offset,
2801 access);
2802 ds = gimple_build_debug_bind (get_access_replacement (access),
2803 drhs, gsi_stmt (*gsi));
2804 if (insert_after)
2805 gsi_insert_after (gsi, ds, GSI_NEW_STMT);
2806 else
2807 gsi_insert_before (gsi, ds, GSI_SAME_STMT);
2810 if (access->first_child)
2811 generate_subtree_copies (access->first_child, agg, top_offset,
2812 start_offset, chunk_size, gsi,
2813 write, insert_after, loc);
2815 access = access->next_sibling;
2817 while (access);
2820 /* Assign zero to all scalar replacements in an access subtree. ACCESS is the
2821 root of the subtree to be processed. GSI is the statement iterator used
2822 for inserting statements which are added after the current statement if
2823 INSERT_AFTER is true or before it otherwise. */
2825 static void
2826 init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
2827 bool insert_after, location_t loc)
2830 struct access *child;
2832 if (access->grp_to_be_replaced)
2834 gassign *stmt;
2836 stmt = gimple_build_assign (get_access_replacement (access),
2837 build_zero_cst (access->type));
2838 if (insert_after)
2839 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2840 else
2841 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2842 update_stmt (stmt);
2843 gimple_set_location (stmt, loc);
2845 else if (access->grp_to_be_debug_replaced)
2847 gdebug *ds
2848 = gimple_build_debug_bind (get_access_replacement (access),
2849 build_zero_cst (access->type),
2850 gsi_stmt (*gsi));
2851 if (insert_after)
2852 gsi_insert_after (gsi, ds, GSI_NEW_STMT);
2853 else
2854 gsi_insert_before (gsi, ds, GSI_SAME_STMT);
2857 for (child = access->first_child; child; child = child->next_sibling)
2858 init_subtree_with_zero (child, gsi, insert_after, loc);
2861 /* Clobber all scalar replacements in an access subtree. ACCESS is the
2862 root of the subtree to be processed. GSI is the statement iterator used
2863 for inserting statements which are added after the current statement if
2864 INSERT_AFTER is true or before it otherwise. */
2866 static void
2867 clobber_subtree (struct access *access, gimple_stmt_iterator *gsi,
2868 bool insert_after, location_t loc)
2871 struct access *child;
2873 if (access->grp_to_be_replaced)
2875 tree rep = get_access_replacement (access);
2876 tree clobber = build_constructor (access->type, NULL);
2877 TREE_THIS_VOLATILE (clobber) = 1;
2878 gimple *stmt = gimple_build_assign (rep, clobber);
2880 if (insert_after)
2881 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2882 else
2883 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2884 update_stmt (stmt);
2885 gimple_set_location (stmt, loc);
2888 for (child = access->first_child; child; child = child->next_sibling)
2889 clobber_subtree (child, gsi, insert_after, loc);
2892 /* Search for an access representative for the given expression EXPR and
2893 return it or NULL if it cannot be found. */
2895 static struct access *
2896 get_access_for_expr (tree expr)
2898 HOST_WIDE_INT offset, size, max_size;
2899 tree base;
2900 bool reverse;
2902 /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
2903 a different size than the size of its argument and we need the latter
2904 one. */
2905 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2906 expr = TREE_OPERAND (expr, 0);
2908 base = get_ref_base_and_extent (expr, &offset, &size, &max_size, &reverse);
2909 if (max_size == -1 || !DECL_P (base))
2910 return NULL;
2912 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
2913 return NULL;
2915 return get_var_base_offset_size_access (base, offset, max_size);
2918 /* Replace the expression EXPR with a scalar replacement if there is one and
2919 generate other statements to do type conversion or subtree copying if
2920 necessary. GSI is used to place newly created statements, WRITE is true if
2921 the expression is being written to (it is on a LHS of a statement or output
2922 in an assembly statement). */
2924 static bool
2925 sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write)
2927 location_t loc;
2928 struct access *access;
2929 tree type, bfr, orig_expr;
2931 if (TREE_CODE (*expr) == BIT_FIELD_REF)
2933 bfr = *expr;
2934 expr = &TREE_OPERAND (*expr, 0);
2936 else
2937 bfr = NULL_TREE;
2939 if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
2940 expr = &TREE_OPERAND (*expr, 0);
2941 access = get_access_for_expr (*expr);
2942 if (!access)
2943 return false;
2944 type = TREE_TYPE (*expr);
2945 orig_expr = *expr;
2947 loc = gimple_location (gsi_stmt (*gsi));
2948 gimple_stmt_iterator alt_gsi = gsi_none ();
2949 if (write && stmt_ends_bb_p (gsi_stmt (*gsi)))
2951 alt_gsi = gsi_start_edge (single_non_eh_succ (gsi_bb (*gsi)));
2952 gsi = &alt_gsi;
2955 if (access->grp_to_be_replaced)
2957 tree repl = get_access_replacement (access);
2958 /* If we replace a non-register typed access simply use the original
2959 access expression to extract the scalar component afterwards.
2960 This happens if scalarizing a function return value or parameter
2961 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
2962 gcc.c-torture/compile/20011217-1.c.
2964 We also want to use this when accessing a complex or vector which can
2965 be accessed as a different type too, potentially creating a need for
2966 type conversion (see PR42196) and when scalarized unions are involved
2967 in assembler statements (see PR42398). */
2968 if (!useless_type_conversion_p (type, access->type))
2970 tree ref;
2972 ref = build_ref_for_model (loc, orig_expr, 0, access, gsi, false);
2974 if (write)
2976 gassign *stmt;
2978 if (access->grp_partial_lhs)
2979 ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
2980 false, GSI_NEW_STMT);
2981 stmt = gimple_build_assign (repl, ref);
2982 gimple_set_location (stmt, loc);
2983 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2985 else
2987 gassign *stmt;
2989 if (access->grp_partial_lhs)
2990 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2991 true, GSI_SAME_STMT);
2992 stmt = gimple_build_assign (ref, repl);
2993 gimple_set_location (stmt, loc);
2994 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2997 else
2998 *expr = repl;
2999 sra_stats.exprs++;
3001 else if (write && access->grp_to_be_debug_replaced)
3003 gdebug *ds = gimple_build_debug_bind (get_access_replacement (access),
3004 NULL_TREE,
3005 gsi_stmt (*gsi));
3006 gsi_insert_after (gsi, ds, GSI_NEW_STMT);
3009 if (access->first_child)
3011 HOST_WIDE_INT start_offset, chunk_size;
3012 if (bfr
3013 && tree_fits_uhwi_p (TREE_OPERAND (bfr, 1))
3014 && tree_fits_uhwi_p (TREE_OPERAND (bfr, 2)))
3016 chunk_size = tree_to_uhwi (TREE_OPERAND (bfr, 1));
3017 start_offset = access->offset
3018 + tree_to_uhwi (TREE_OPERAND (bfr, 2));
3020 else
3021 start_offset = chunk_size = 0;
3023 generate_subtree_copies (access->first_child, orig_expr, access->offset,
3024 start_offset, chunk_size, gsi, write, write,
3025 loc);
3027 return true;
3030 /* Where scalar replacements of the RHS have been written to when a replacement
3031 of a LHS of an assigments cannot be direclty loaded from a replacement of
3032 the RHS. */
3033 enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
3034 SRA_UDH_RIGHT, /* Data flushed to the RHS. */
3035 SRA_UDH_LEFT }; /* Data flushed to the LHS. */
3037 struct subreplacement_assignment_data
3039 /* Offset of the access representing the lhs of the assignment. */
3040 HOST_WIDE_INT left_offset;
3042 /* LHS and RHS of the original assignment. */
3043 tree assignment_lhs, assignment_rhs;
3045 /* Access representing the rhs of the whole assignment. */
3046 struct access *top_racc;
3048 /* Stmt iterator used for statement insertions after the original assignment.
3049 It points to the main GSI used to traverse a BB during function body
3050 modification. */
3051 gimple_stmt_iterator *new_gsi;
3053 /* Stmt iterator used for statement insertions before the original
3054 assignment. Keeps on pointing to the original statement. */
3055 gimple_stmt_iterator old_gsi;
3057 /* Location of the assignment. */
3058 location_t loc;
3060 /* Keeps the information whether we have needed to refresh replacements of
3061 the LHS and from which side of the assignments this takes place. */
3062 enum unscalarized_data_handling refreshed;
3065 /* Store all replacements in the access tree rooted in TOP_RACC either to their
3066 base aggregate if there are unscalarized data or directly to LHS of the
3067 statement that is pointed to by GSI otherwise. */
3069 static void
3070 handle_unscalarized_data_in_subtree (struct subreplacement_assignment_data *sad)
3072 tree src;
3073 if (sad->top_racc->grp_unscalarized_data)
3075 src = sad->assignment_rhs;
3076 sad->refreshed = SRA_UDH_RIGHT;
3078 else
3080 src = sad->assignment_lhs;
3081 sad->refreshed = SRA_UDH_LEFT;
3083 generate_subtree_copies (sad->top_racc->first_child, src,
3084 sad->top_racc->offset, 0, 0,
3085 &sad->old_gsi, false, false, sad->loc);
3088 /* Try to generate statements to load all sub-replacements in an access subtree
3089 formed by children of LACC from scalar replacements in the SAD->top_racc
3090 subtree. If that is not possible, refresh the SAD->top_racc base aggregate
3091 and load the accesses from it. */
3093 static void
3094 load_assign_lhs_subreplacements (struct access *lacc,
3095 struct subreplacement_assignment_data *sad)
3097 for (lacc = lacc->first_child; lacc; lacc = lacc->next_sibling)
3099 HOST_WIDE_INT offset;
3100 offset = lacc->offset - sad->left_offset + sad->top_racc->offset;
3102 if (lacc->grp_to_be_replaced)
3104 struct access *racc;
3105 gassign *stmt;
3106 tree rhs;
3108 racc = find_access_in_subtree (sad->top_racc, offset, lacc->size);
3109 if (racc && racc->grp_to_be_replaced)
3111 rhs = get_access_replacement (racc);
3112 if (!useless_type_conversion_p (lacc->type, racc->type))
3113 rhs = fold_build1_loc (sad->loc, VIEW_CONVERT_EXPR,
3114 lacc->type, rhs);
3116 if (racc->grp_partial_lhs && lacc->grp_partial_lhs)
3117 rhs = force_gimple_operand_gsi (&sad->old_gsi, rhs, true,
3118 NULL_TREE, true, GSI_SAME_STMT);
3120 else
3122 /* No suitable access on the right hand side, need to load from
3123 the aggregate. See if we have to update it first... */
3124 if (sad->refreshed == SRA_UDH_NONE)
3125 handle_unscalarized_data_in_subtree (sad);
3127 if (sad->refreshed == SRA_UDH_LEFT)
3128 rhs = build_ref_for_model (sad->loc, sad->assignment_lhs,
3129 lacc->offset - sad->left_offset,
3130 lacc, sad->new_gsi, true);
3131 else
3132 rhs = build_ref_for_model (sad->loc, sad->assignment_rhs,
3133 lacc->offset - sad->left_offset,
3134 lacc, sad->new_gsi, true);
3135 if (lacc->grp_partial_lhs)
3136 rhs = force_gimple_operand_gsi (sad->new_gsi,
3137 rhs, true, NULL_TREE,
3138 false, GSI_NEW_STMT);
3141 stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
3142 gsi_insert_after (sad->new_gsi, stmt, GSI_NEW_STMT);
3143 gimple_set_location (stmt, sad->loc);
3144 update_stmt (stmt);
3145 sra_stats.subreplacements++;
3147 else
3149 if (sad->refreshed == SRA_UDH_NONE
3150 && lacc->grp_read && !lacc->grp_covered)
3151 handle_unscalarized_data_in_subtree (sad);
3153 if (lacc && lacc->grp_to_be_debug_replaced)
3155 gdebug *ds;
3156 tree drhs;
3157 struct access *racc = find_access_in_subtree (sad->top_racc,
3158 offset,
3159 lacc->size);
3161 if (racc && racc->grp_to_be_replaced)
3163 if (racc->grp_write || constant_decl_p (racc->base))
3164 drhs = get_access_replacement (racc);
3165 else
3166 drhs = NULL;
3168 else if (sad->refreshed == SRA_UDH_LEFT)
3169 drhs = build_debug_ref_for_model (sad->loc, lacc->base,
3170 lacc->offset, lacc);
3171 else if (sad->refreshed == SRA_UDH_RIGHT)
3172 drhs = build_debug_ref_for_model (sad->loc, sad->top_racc->base,
3173 offset, lacc);
3174 else
3175 drhs = NULL_TREE;
3176 if (drhs
3177 && !useless_type_conversion_p (lacc->type, TREE_TYPE (drhs)))
3178 drhs = fold_build1_loc (sad->loc, VIEW_CONVERT_EXPR,
3179 lacc->type, drhs);
3180 ds = gimple_build_debug_bind (get_access_replacement (lacc),
3181 drhs, gsi_stmt (sad->old_gsi));
3182 gsi_insert_after (sad->new_gsi, ds, GSI_NEW_STMT);
3186 if (lacc->first_child)
3187 load_assign_lhs_subreplacements (lacc, sad);
3191 /* Result code for SRA assignment modification. */
3192 enum assignment_mod_result { SRA_AM_NONE, /* nothing done for the stmt */
3193 SRA_AM_MODIFIED, /* stmt changed but not
3194 removed */
3195 SRA_AM_REMOVED }; /* stmt eliminated */
3197 /* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
3198 to the assignment and GSI is the statement iterator pointing at it. Returns
3199 the same values as sra_modify_assign. */
3201 static enum assignment_mod_result
3202 sra_modify_constructor_assign (gimple *stmt, gimple_stmt_iterator *gsi)
3204 tree lhs = gimple_assign_lhs (stmt);
3205 struct access *acc = get_access_for_expr (lhs);
3206 if (!acc)
3207 return SRA_AM_NONE;
3208 location_t loc = gimple_location (stmt);
3210 if (gimple_clobber_p (stmt))
3212 /* Clobber the replacement variable. */
3213 clobber_subtree (acc, gsi, !acc->grp_covered, loc);
3214 /* Remove clobbers of fully scalarized variables, they are dead. */
3215 if (acc->grp_covered)
3217 unlink_stmt_vdef (stmt);
3218 gsi_remove (gsi, true);
3219 release_defs (stmt);
3220 return SRA_AM_REMOVED;
3222 else
3223 return SRA_AM_MODIFIED;
3226 if (CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt)) > 0)
3228 /* I have never seen this code path trigger but if it can happen the
3229 following should handle it gracefully. */
3230 if (access_has_children_p (acc))
3231 generate_subtree_copies (acc->first_child, lhs, acc->offset, 0, 0, gsi,
3232 true, true, loc);
3233 return SRA_AM_MODIFIED;
3236 if (acc->grp_covered)
3238 init_subtree_with_zero (acc, gsi, false, loc);
3239 unlink_stmt_vdef (stmt);
3240 gsi_remove (gsi, true);
3241 release_defs (stmt);
3242 return SRA_AM_REMOVED;
3244 else
3246 init_subtree_with_zero (acc, gsi, true, loc);
3247 return SRA_AM_MODIFIED;
3251 /* Create and return a new suitable default definition SSA_NAME for RACC which
3252 is an access describing an uninitialized part of an aggregate that is being
3253 loaded. */
3255 static tree
3256 get_repl_default_def_ssa_name (struct access *racc)
3258 gcc_checking_assert (!racc->grp_to_be_replaced
3259 && !racc->grp_to_be_debug_replaced);
3260 if (!racc->replacement_decl)
3261 racc->replacement_decl = create_access_replacement (racc);
3262 return get_or_create_ssa_default_def (cfun, racc->replacement_decl);
3265 /* Return true if REF has an VIEW_CONVERT_EXPR or a COMPONENT_REF with a
3266 bit-field field declaration somewhere in it. */
3268 static inline bool
3269 contains_vce_or_bfcref_p (const_tree ref)
3271 while (handled_component_p (ref))
3273 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR
3274 || (TREE_CODE (ref) == COMPONENT_REF
3275 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1))))
3276 return true;
3277 ref = TREE_OPERAND (ref, 0);
3280 return false;
3283 /* Examine both sides of the assignment statement pointed to by STMT, replace
3284 them with a scalare replacement if there is one and generate copying of
3285 replacements if scalarized aggregates have been used in the assignment. GSI
3286 is used to hold generated statements for type conversions and subtree
3287 copying. */
3289 static enum assignment_mod_result
3290 sra_modify_assign (gimple *stmt, gimple_stmt_iterator *gsi)
3292 struct access *lacc, *racc;
3293 tree lhs, rhs;
3294 bool modify_this_stmt = false;
3295 bool force_gimple_rhs = false;
3296 location_t loc;
3297 gimple_stmt_iterator orig_gsi = *gsi;
3299 if (!gimple_assign_single_p (stmt))
3300 return SRA_AM_NONE;
3301 lhs = gimple_assign_lhs (stmt);
3302 rhs = gimple_assign_rhs1 (stmt);
3304 if (TREE_CODE (rhs) == CONSTRUCTOR)
3305 return sra_modify_constructor_assign (stmt, gsi);
3307 if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
3308 || TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
3309 || TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF)
3311 modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (stmt),
3312 gsi, false);
3313 modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (stmt),
3314 gsi, true);
3315 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
3318 lacc = get_access_for_expr (lhs);
3319 racc = get_access_for_expr (rhs);
3320 if (!lacc && !racc)
3321 return SRA_AM_NONE;
3322 /* Avoid modifying initializations of constant-pool replacements. */
3323 if (racc && (racc->replacement_decl == lhs))
3324 return SRA_AM_NONE;
3326 loc = gimple_location (stmt);
3327 if (lacc && lacc->grp_to_be_replaced)
3329 lhs = get_access_replacement (lacc);
3330 gimple_assign_set_lhs (stmt, lhs);
3331 modify_this_stmt = true;
3332 if (lacc->grp_partial_lhs)
3333 force_gimple_rhs = true;
3334 sra_stats.exprs++;
3337 if (racc && racc->grp_to_be_replaced)
3339 rhs = get_access_replacement (racc);
3340 modify_this_stmt = true;
3341 if (racc->grp_partial_lhs)
3342 force_gimple_rhs = true;
3343 sra_stats.exprs++;
3345 else if (racc
3346 && !racc->grp_unscalarized_data
3347 && !racc->grp_unscalarizable_region
3348 && TREE_CODE (lhs) == SSA_NAME
3349 && !access_has_replacements_p (racc))
3351 rhs = get_repl_default_def_ssa_name (racc);
3352 modify_this_stmt = true;
3353 sra_stats.exprs++;
3356 if (modify_this_stmt)
3358 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3360 /* If we can avoid creating a VIEW_CONVERT_EXPR do so.
3361 ??? This should move to fold_stmt which we simply should
3362 call after building a VIEW_CONVERT_EXPR here. */
3363 if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
3364 && !contains_bitfld_component_ref_p (lhs))
3366 lhs = build_ref_for_model (loc, lhs, 0, racc, gsi, false);
3367 gimple_assign_set_lhs (stmt, lhs);
3369 else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs))
3370 && !contains_vce_or_bfcref_p (rhs))
3371 rhs = build_ref_for_model (loc, rhs, 0, lacc, gsi, false);
3373 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3375 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
3376 rhs);
3377 if (is_gimple_reg_type (TREE_TYPE (lhs))
3378 && TREE_CODE (lhs) != SSA_NAME)
3379 force_gimple_rhs = true;
3384 if (lacc && lacc->grp_to_be_debug_replaced)
3386 tree dlhs = get_access_replacement (lacc);
3387 tree drhs = unshare_expr (rhs);
3388 if (!useless_type_conversion_p (TREE_TYPE (dlhs), TREE_TYPE (drhs)))
3390 if (AGGREGATE_TYPE_P (TREE_TYPE (drhs))
3391 && !contains_vce_or_bfcref_p (drhs))
3392 drhs = build_debug_ref_for_model (loc, drhs, 0, lacc);
3393 if (drhs
3394 && !useless_type_conversion_p (TREE_TYPE (dlhs),
3395 TREE_TYPE (drhs)))
3396 drhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR,
3397 TREE_TYPE (dlhs), drhs);
3399 gdebug *ds = gimple_build_debug_bind (dlhs, drhs, stmt);
3400 gsi_insert_before (gsi, ds, GSI_SAME_STMT);
3403 /* From this point on, the function deals with assignments in between
3404 aggregates when at least one has scalar reductions of some of its
3405 components. There are three possible scenarios: Both the LHS and RHS have
3406 to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
3408 In the first case, we would like to load the LHS components from RHS
3409 components whenever possible. If that is not possible, we would like to
3410 read it directly from the RHS (after updating it by storing in it its own
3411 components). If there are some necessary unscalarized data in the LHS,
3412 those will be loaded by the original assignment too. If neither of these
3413 cases happen, the original statement can be removed. Most of this is done
3414 by load_assign_lhs_subreplacements.
3416 In the second case, we would like to store all RHS scalarized components
3417 directly into LHS and if they cover the aggregate completely, remove the
3418 statement too. In the third case, we want the LHS components to be loaded
3419 directly from the RHS (DSE will remove the original statement if it
3420 becomes redundant).
3422 This is a bit complex but manageable when types match and when unions do
3423 not cause confusion in a way that we cannot really load a component of LHS
3424 from the RHS or vice versa (the access representing this level can have
3425 subaccesses that are accessible only through a different union field at a
3426 higher level - different from the one used in the examined expression).
3427 Unions are fun.
3429 Therefore, I specially handle a fourth case, happening when there is a
3430 specific type cast or it is impossible to locate a scalarized subaccess on
3431 the other side of the expression. If that happens, I simply "refresh" the
3432 RHS by storing in it is scalarized components leave the original statement
3433 there to do the copying and then load the scalar replacements of the LHS.
3434 This is what the first branch does. */
3436 if (modify_this_stmt
3437 || gimple_has_volatile_ops (stmt)
3438 || contains_vce_or_bfcref_p (rhs)
3439 || contains_vce_or_bfcref_p (lhs)
3440 || stmt_ends_bb_p (stmt))
3442 /* No need to copy into a constant-pool, it comes pre-initialized. */
3443 if (access_has_children_p (racc) && !constant_decl_p (racc->base))
3444 generate_subtree_copies (racc->first_child, rhs, racc->offset, 0, 0,
3445 gsi, false, false, loc);
3446 if (access_has_children_p (lacc))
3448 gimple_stmt_iterator alt_gsi = gsi_none ();
3449 if (stmt_ends_bb_p (stmt))
3451 alt_gsi = gsi_start_edge (single_non_eh_succ (gsi_bb (*gsi)));
3452 gsi = &alt_gsi;
3454 generate_subtree_copies (lacc->first_child, lhs, lacc->offset, 0, 0,
3455 gsi, true, true, loc);
3457 sra_stats.separate_lhs_rhs_handling++;
3459 /* This gimplification must be done after generate_subtree_copies,
3460 lest we insert the subtree copies in the middle of the gimplified
3461 sequence. */
3462 if (force_gimple_rhs)
3463 rhs = force_gimple_operand_gsi (&orig_gsi, rhs, true, NULL_TREE,
3464 true, GSI_SAME_STMT);
3465 if (gimple_assign_rhs1 (stmt) != rhs)
3467 modify_this_stmt = true;
3468 gimple_assign_set_rhs_from_tree (&orig_gsi, rhs);
3469 gcc_assert (stmt == gsi_stmt (orig_gsi));
3472 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
3474 else
3476 if (access_has_children_p (lacc)
3477 && access_has_children_p (racc)
3478 /* When an access represents an unscalarizable region, it usually
3479 represents accesses with variable offset and thus must not be used
3480 to generate new memory accesses. */
3481 && !lacc->grp_unscalarizable_region
3482 && !racc->grp_unscalarizable_region)
3484 struct subreplacement_assignment_data sad;
3486 sad.left_offset = lacc->offset;
3487 sad.assignment_lhs = lhs;
3488 sad.assignment_rhs = rhs;
3489 sad.top_racc = racc;
3490 sad.old_gsi = *gsi;
3491 sad.new_gsi = gsi;
3492 sad.loc = gimple_location (stmt);
3493 sad.refreshed = SRA_UDH_NONE;
3495 if (lacc->grp_read && !lacc->grp_covered)
3496 handle_unscalarized_data_in_subtree (&sad);
3498 load_assign_lhs_subreplacements (lacc, &sad);
3499 if (sad.refreshed != SRA_UDH_RIGHT)
3501 gsi_next (gsi);
3502 unlink_stmt_vdef (stmt);
3503 gsi_remove (&sad.old_gsi, true);
3504 release_defs (stmt);
3505 sra_stats.deleted++;
3506 return SRA_AM_REMOVED;
3509 else
3511 if (access_has_children_p (racc)
3512 && !racc->grp_unscalarized_data
3513 && TREE_CODE (lhs) != SSA_NAME)
3515 if (dump_file)
3517 fprintf (dump_file, "Removing load: ");
3518 print_gimple_stmt (dump_file, stmt, 0, 0);
3520 generate_subtree_copies (racc->first_child, lhs,
3521 racc->offset, 0, 0, gsi,
3522 false, false, loc);
3523 gcc_assert (stmt == gsi_stmt (*gsi));
3524 unlink_stmt_vdef (stmt);
3525 gsi_remove (gsi, true);
3526 release_defs (stmt);
3527 sra_stats.deleted++;
3528 return SRA_AM_REMOVED;
3530 /* Restore the aggregate RHS from its components so the
3531 prevailing aggregate copy does the right thing. */
3532 if (access_has_children_p (racc))
3533 generate_subtree_copies (racc->first_child, rhs, racc->offset, 0, 0,
3534 gsi, false, false, loc);
3535 /* Re-load the components of the aggregate copy destination.
3536 But use the RHS aggregate to load from to expose more
3537 optimization opportunities. */
3538 if (access_has_children_p (lacc))
3539 generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
3540 0, 0, gsi, true, true, loc);
3543 return SRA_AM_NONE;
3547 /* Set any scalar replacements of values in the constant pool to the initial
3548 value of the constant. (Constant-pool decls like *.LC0 have effectively
3549 been initialized before the program starts, we must do the same for their
3550 replacements.) Thus, we output statements like 'SR.1 = *.LC0[0];' into
3551 the function's entry block. */
3553 static void
3554 initialize_constant_pool_replacements (void)
3556 gimple_seq seq = NULL;
3557 gimple_stmt_iterator gsi = gsi_start (seq);
3558 bitmap_iterator bi;
3559 unsigned i;
3561 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
3563 tree var = candidate (i);
3564 if (!constant_decl_p (var))
3565 continue;
3566 vec<access_p> *access_vec = get_base_access_vector (var);
3567 if (!access_vec)
3568 continue;
3569 for (unsigned i = 0; i < access_vec->length (); i++)
3571 struct access *access = (*access_vec)[i];
3572 if (!access->replacement_decl)
3573 continue;
3574 gassign *stmt
3575 = gimple_build_assign (get_access_replacement (access),
3576 unshare_expr (access->expr));
3577 if (dump_file && (dump_flags & TDF_DETAILS))
3579 fprintf (dump_file, "Generating constant initializer: ");
3580 print_gimple_stmt (dump_file, stmt, 0, 1);
3581 fprintf (dump_file, "\n");
3583 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
3584 update_stmt (stmt);
3588 seq = gsi_seq (gsi);
3589 if (seq)
3590 gsi_insert_seq_on_edge_immediate (
3591 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)), seq);
3594 /* Traverse the function body and all modifications as decided in
3595 analyze_all_variable_accesses. Return true iff the CFG has been
3596 changed. */
3598 static bool
3599 sra_modify_function_body (void)
3601 bool cfg_changed = false;
3602 basic_block bb;
3604 initialize_constant_pool_replacements ();
3606 FOR_EACH_BB_FN (bb, cfun)
3608 gimple_stmt_iterator gsi = gsi_start_bb (bb);
3609 while (!gsi_end_p (gsi))
3611 gimple *stmt = gsi_stmt (gsi);
3612 enum assignment_mod_result assign_result;
3613 bool modified = false, deleted = false;
3614 tree *t;
3615 unsigned i;
3617 switch (gimple_code (stmt))
3619 case GIMPLE_RETURN:
3620 t = gimple_return_retval_ptr (as_a <greturn *> (stmt));
3621 if (*t != NULL_TREE)
3622 modified |= sra_modify_expr (t, &gsi, false);
3623 break;
3625 case GIMPLE_ASSIGN:
3626 assign_result = sra_modify_assign (stmt, &gsi);
3627 modified |= assign_result == SRA_AM_MODIFIED;
3628 deleted = assign_result == SRA_AM_REMOVED;
3629 break;
3631 case GIMPLE_CALL:
3632 /* Operands must be processed before the lhs. */
3633 for (i = 0; i < gimple_call_num_args (stmt); i++)
3635 t = gimple_call_arg_ptr (stmt, i);
3636 modified |= sra_modify_expr (t, &gsi, false);
3639 if (gimple_call_lhs (stmt))
3641 t = gimple_call_lhs_ptr (stmt);
3642 modified |= sra_modify_expr (t, &gsi, true);
3644 break;
3646 case GIMPLE_ASM:
3648 gasm *asm_stmt = as_a <gasm *> (stmt);
3649 for (i = 0; i < gimple_asm_ninputs (asm_stmt); i++)
3651 t = &TREE_VALUE (gimple_asm_input_op (asm_stmt, i));
3652 modified |= sra_modify_expr (t, &gsi, false);
3654 for (i = 0; i < gimple_asm_noutputs (asm_stmt); i++)
3656 t = &TREE_VALUE (gimple_asm_output_op (asm_stmt, i));
3657 modified |= sra_modify_expr (t, &gsi, true);
3660 break;
3662 default:
3663 break;
3666 if (modified)
3668 update_stmt (stmt);
3669 if (maybe_clean_eh_stmt (stmt)
3670 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
3671 cfg_changed = true;
3673 if (!deleted)
3674 gsi_next (&gsi);
3678 gsi_commit_edge_inserts ();
3679 return cfg_changed;
3682 /* Generate statements initializing scalar replacements of parts of function
3683 parameters. */
3685 static void
3686 initialize_parameter_reductions (void)
3688 gimple_stmt_iterator gsi;
3689 gimple_seq seq = NULL;
3690 tree parm;
3692 gsi = gsi_start (seq);
3693 for (parm = DECL_ARGUMENTS (current_function_decl);
3694 parm;
3695 parm = DECL_CHAIN (parm))
3697 vec<access_p> *access_vec;
3698 struct access *access;
3700 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3701 continue;
3702 access_vec = get_base_access_vector (parm);
3703 if (!access_vec)
3704 continue;
3706 for (access = (*access_vec)[0];
3707 access;
3708 access = access->next_grp)
3709 generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true,
3710 EXPR_LOCATION (parm));
3713 seq = gsi_seq (gsi);
3714 if (seq)
3715 gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)), seq);
3718 /* The "main" function of intraprocedural SRA passes. Runs the analysis and if
3719 it reveals there are components of some aggregates to be scalarized, it runs
3720 the required transformations. */
3721 static unsigned int
3722 perform_intra_sra (void)
3724 int ret = 0;
3725 sra_initialize ();
3727 if (!find_var_candidates ())
3728 goto out;
3730 if (!scan_function ())
3731 goto out;
3733 if (!analyze_all_variable_accesses ())
3734 goto out;
3736 if (sra_modify_function_body ())
3737 ret = TODO_update_ssa | TODO_cleanup_cfg;
3738 else
3739 ret = TODO_update_ssa;
3740 initialize_parameter_reductions ();
3742 statistics_counter_event (cfun, "Scalar replacements created",
3743 sra_stats.replacements);
3744 statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
3745 statistics_counter_event (cfun, "Subtree copy stmts",
3746 sra_stats.subtree_copies);
3747 statistics_counter_event (cfun, "Subreplacement stmts",
3748 sra_stats.subreplacements);
3749 statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
3750 statistics_counter_event (cfun, "Separate LHS and RHS handling",
3751 sra_stats.separate_lhs_rhs_handling);
3753 out:
3754 sra_deinitialize ();
3755 return ret;
3758 /* Perform early intraprocedural SRA. */
3759 static unsigned int
3760 early_intra_sra (void)
3762 sra_mode = SRA_MODE_EARLY_INTRA;
3763 return perform_intra_sra ();
3766 /* Perform "late" intraprocedural SRA. */
3767 static unsigned int
3768 late_intra_sra (void)
3770 sra_mode = SRA_MODE_INTRA;
3771 return perform_intra_sra ();
3775 static bool
3776 gate_intra_sra (void)
3778 return flag_tree_sra != 0 && dbg_cnt (tree_sra);
3782 namespace {
3784 const pass_data pass_data_sra_early =
3786 GIMPLE_PASS, /* type */
3787 "esra", /* name */
3788 OPTGROUP_NONE, /* optinfo_flags */
3789 TV_TREE_SRA, /* tv_id */
3790 ( PROP_cfg | PROP_ssa ), /* properties_required */
3791 0, /* properties_provided */
3792 0, /* properties_destroyed */
3793 0, /* todo_flags_start */
3794 TODO_update_ssa, /* todo_flags_finish */
3797 class pass_sra_early : public gimple_opt_pass
3799 public:
3800 pass_sra_early (gcc::context *ctxt)
3801 : gimple_opt_pass (pass_data_sra_early, ctxt)
3804 /* opt_pass methods: */
3805 virtual bool gate (function *) { return gate_intra_sra (); }
3806 virtual unsigned int execute (function *) { return early_intra_sra (); }
3808 }; // class pass_sra_early
3810 } // anon namespace
3812 gimple_opt_pass *
3813 make_pass_sra_early (gcc::context *ctxt)
3815 return new pass_sra_early (ctxt);
3818 namespace {
3820 const pass_data pass_data_sra =
3822 GIMPLE_PASS, /* type */
3823 "sra", /* name */
3824 OPTGROUP_NONE, /* optinfo_flags */
3825 TV_TREE_SRA, /* tv_id */
3826 ( PROP_cfg | PROP_ssa ), /* properties_required */
3827 0, /* properties_provided */
3828 0, /* properties_destroyed */
3829 TODO_update_address_taken, /* todo_flags_start */
3830 TODO_update_ssa, /* todo_flags_finish */
3833 class pass_sra : public gimple_opt_pass
3835 public:
3836 pass_sra (gcc::context *ctxt)
3837 : gimple_opt_pass (pass_data_sra, ctxt)
3840 /* opt_pass methods: */
3841 virtual bool gate (function *) { return gate_intra_sra (); }
3842 virtual unsigned int execute (function *) { return late_intra_sra (); }
3844 }; // class pass_sra
3846 } // anon namespace
3848 gimple_opt_pass *
3849 make_pass_sra (gcc::context *ctxt)
3851 return new pass_sra (ctxt);
3855 /* Return true iff PARM (which must be a parm_decl) is an unused scalar
3856 parameter. */
3858 static bool
3859 is_unused_scalar_param (tree parm)
3861 tree name;
3862 return (is_gimple_reg (parm)
3863 && (!(name = ssa_default_def (cfun, parm))
3864 || has_zero_uses (name)));
3867 /* Scan immediate uses of a default definition SSA name of a parameter PARM and
3868 examine whether there are any direct or otherwise infeasible ones. If so,
3869 return true, otherwise return false. PARM must be a gimple register with a
3870 non-NULL default definition. */
3872 static bool
3873 ptr_parm_has_direct_uses (tree parm)
3875 imm_use_iterator ui;
3876 gimple *stmt;
3877 tree name = ssa_default_def (cfun, parm);
3878 bool ret = false;
3880 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
3882 int uses_ok = 0;
3883 use_operand_p use_p;
3885 if (is_gimple_debug (stmt))
3886 continue;
3888 /* Valid uses include dereferences on the lhs and the rhs. */
3889 if (gimple_has_lhs (stmt))
3891 tree lhs = gimple_get_lhs (stmt);
3892 while (handled_component_p (lhs))
3893 lhs = TREE_OPERAND (lhs, 0);
3894 if (TREE_CODE (lhs) == MEM_REF
3895 && TREE_OPERAND (lhs, 0) == name
3896 && integer_zerop (TREE_OPERAND (lhs, 1))
3897 && types_compatible_p (TREE_TYPE (lhs),
3898 TREE_TYPE (TREE_TYPE (name)))
3899 && !TREE_THIS_VOLATILE (lhs))
3900 uses_ok++;
3902 if (gimple_assign_single_p (stmt))
3904 tree rhs = gimple_assign_rhs1 (stmt);
3905 while (handled_component_p (rhs))
3906 rhs = TREE_OPERAND (rhs, 0);
3907 if (TREE_CODE (rhs) == MEM_REF
3908 && TREE_OPERAND (rhs, 0) == name
3909 && integer_zerop (TREE_OPERAND (rhs, 1))
3910 && types_compatible_p (TREE_TYPE (rhs),
3911 TREE_TYPE (TREE_TYPE (name)))
3912 && !TREE_THIS_VOLATILE (rhs))
3913 uses_ok++;
3915 else if (is_gimple_call (stmt))
3917 unsigned i;
3918 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3920 tree arg = gimple_call_arg (stmt, i);
3921 while (handled_component_p (arg))
3922 arg = TREE_OPERAND (arg, 0);
3923 if (TREE_CODE (arg) == MEM_REF
3924 && TREE_OPERAND (arg, 0) == name
3925 && integer_zerop (TREE_OPERAND (arg, 1))
3926 && types_compatible_p (TREE_TYPE (arg),
3927 TREE_TYPE (TREE_TYPE (name)))
3928 && !TREE_THIS_VOLATILE (arg))
3929 uses_ok++;
3933 /* If the number of valid uses does not match the number of
3934 uses in this stmt there is an unhandled use. */
3935 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
3936 --uses_ok;
3938 if (uses_ok != 0)
3939 ret = true;
3941 if (ret)
3942 BREAK_FROM_IMM_USE_STMT (ui);
3945 return ret;
3948 /* Identify candidates for reduction for IPA-SRA based on their type and mark
3949 them in candidate_bitmap. Note that these do not necessarily include
3950 parameter which are unused and thus can be removed. Return true iff any
3951 such candidate has been found. */
3953 static bool
3954 find_param_candidates (void)
3956 tree parm;
3957 int count = 0;
3958 bool ret = false;
3959 const char *msg;
3961 for (parm = DECL_ARGUMENTS (current_function_decl);
3962 parm;
3963 parm = DECL_CHAIN (parm))
3965 tree type = TREE_TYPE (parm);
3966 tree_node **slot;
3968 count++;
3970 if (TREE_THIS_VOLATILE (parm)
3971 || TREE_ADDRESSABLE (parm)
3972 || (!is_gimple_reg_type (type) && is_va_list_type (type)))
3973 continue;
3975 if (is_unused_scalar_param (parm))
3977 ret = true;
3978 continue;
3981 if (POINTER_TYPE_P (type))
3983 type = TREE_TYPE (type);
3985 if (TREE_CODE (type) == FUNCTION_TYPE
3986 || TYPE_VOLATILE (type)
3987 || (TREE_CODE (type) == ARRAY_TYPE
3988 && TYPE_NONALIASED_COMPONENT (type))
3989 || !is_gimple_reg (parm)
3990 || is_va_list_type (type)
3991 || ptr_parm_has_direct_uses (parm))
3992 continue;
3994 else if (!AGGREGATE_TYPE_P (type))
3995 continue;
3997 if (!COMPLETE_TYPE_P (type)
3998 || !tree_fits_uhwi_p (TYPE_SIZE (type))
3999 || tree_to_uhwi (TYPE_SIZE (type)) == 0
4000 || (AGGREGATE_TYPE_P (type)
4001 && type_internals_preclude_sra_p (type, &msg)))
4002 continue;
4004 bitmap_set_bit (candidate_bitmap, DECL_UID (parm));
4005 slot = candidates->find_slot_with_hash (parm, DECL_UID (parm), INSERT);
4006 *slot = parm;
4008 ret = true;
4009 if (dump_file && (dump_flags & TDF_DETAILS))
4011 fprintf (dump_file, "Candidate (%d): ", DECL_UID (parm));
4012 print_generic_expr (dump_file, parm, 0);
4013 fprintf (dump_file, "\n");
4017 func_param_count = count;
4018 return ret;
4021 /* Callback of walk_aliased_vdefs, marks the access passed as DATA as
4022 maybe_modified. */
4024 static bool
4025 mark_maybe_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
4026 void *data)
4028 struct access *repr = (struct access *) data;
4030 repr->grp_maybe_modified = 1;
4031 return true;
4034 /* Analyze what representatives (in linked lists accessible from
4035 REPRESENTATIVES) can be modified by side effects of statements in the
4036 current function. */
4038 static void
4039 analyze_modified_params (vec<access_p> representatives)
4041 int i;
4043 for (i = 0; i < func_param_count; i++)
4045 struct access *repr;
4047 for (repr = representatives[i];
4048 repr;
4049 repr = repr->next_grp)
4051 struct access *access;
4052 bitmap visited;
4053 ao_ref ar;
4055 if (no_accesses_p (repr))
4056 continue;
4057 if (!POINTER_TYPE_P (TREE_TYPE (repr->base))
4058 || repr->grp_maybe_modified)
4059 continue;
4061 ao_ref_init (&ar, repr->expr);
4062 visited = BITMAP_ALLOC (NULL);
4063 for (access = repr; access; access = access->next_sibling)
4065 /* All accesses are read ones, otherwise grp_maybe_modified would
4066 be trivially set. */
4067 walk_aliased_vdefs (&ar, gimple_vuse (access->stmt),
4068 mark_maybe_modified, repr, &visited);
4069 if (repr->grp_maybe_modified)
4070 break;
4072 BITMAP_FREE (visited);
4077 /* Propagate distances in bb_dereferences in the opposite direction than the
4078 control flow edges, in each step storing the maximum of the current value
4079 and the minimum of all successors. These steps are repeated until the table
4080 stabilizes. Note that BBs which might terminate the functions (according to
4081 final_bbs bitmap) never updated in this way. */
4083 static void
4084 propagate_dereference_distances (void)
4086 basic_block bb;
4088 auto_vec<basic_block> queue (last_basic_block_for_fn (cfun));
4089 queue.quick_push (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4090 FOR_EACH_BB_FN (bb, cfun)
4092 queue.quick_push (bb);
4093 bb->aux = bb;
4096 while (!queue.is_empty ())
4098 edge_iterator ei;
4099 edge e;
4100 bool change = false;
4101 int i;
4103 bb = queue.pop ();
4104 bb->aux = NULL;
4106 if (bitmap_bit_p (final_bbs, bb->index))
4107 continue;
4109 for (i = 0; i < func_param_count; i++)
4111 int idx = bb->index * func_param_count + i;
4112 bool first = true;
4113 HOST_WIDE_INT inh = 0;
4115 FOR_EACH_EDGE (e, ei, bb->succs)
4117 int succ_idx = e->dest->index * func_param_count + i;
4119 if (e->src == EXIT_BLOCK_PTR_FOR_FN (cfun))
4120 continue;
4122 if (first)
4124 first = false;
4125 inh = bb_dereferences [succ_idx];
4127 else if (bb_dereferences [succ_idx] < inh)
4128 inh = bb_dereferences [succ_idx];
4131 if (!first && bb_dereferences[idx] < inh)
4133 bb_dereferences[idx] = inh;
4134 change = true;
4138 if (change && !bitmap_bit_p (final_bbs, bb->index))
4139 FOR_EACH_EDGE (e, ei, bb->preds)
4141 if (e->src->aux)
4142 continue;
4144 e->src->aux = e->src;
4145 queue.quick_push (e->src);
4150 /* Dump a dereferences TABLE with heading STR to file F. */
4152 static void
4153 dump_dereferences_table (FILE *f, const char *str, HOST_WIDE_INT *table)
4155 basic_block bb;
4157 fprintf (dump_file, "%s", str);
4158 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
4159 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
4161 fprintf (f, "%4i %i ", bb->index, bitmap_bit_p (final_bbs, bb->index));
4162 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4164 int i;
4165 for (i = 0; i < func_param_count; i++)
4167 int idx = bb->index * func_param_count + i;
4168 fprintf (f, " %4" HOST_WIDE_INT_PRINT "d", table[idx]);
4171 fprintf (f, "\n");
4173 fprintf (dump_file, "\n");
4176 /* Determine what (parts of) parameters passed by reference that are not
4177 assigned to are not certainly dereferenced in this function and thus the
4178 dereferencing cannot be safely moved to the caller without potentially
4179 introducing a segfault. Mark such REPRESENTATIVES as
4180 grp_not_necessarilly_dereferenced.
4182 The dereferenced maximum "distance," i.e. the offset + size of the accessed
4183 part is calculated rather than simple booleans are calculated for each
4184 pointer parameter to handle cases when only a fraction of the whole
4185 aggregate is allocated (see testsuite/gcc.c-torture/execute/ipa-sra-2.c for
4186 an example).
4188 The maximum dereference distances for each pointer parameter and BB are
4189 already stored in bb_dereference. This routine simply propagates these
4190 values upwards by propagate_dereference_distances and then compares the
4191 distances of individual parameters in the ENTRY BB to the equivalent
4192 distances of each representative of a (fraction of a) parameter. */
4194 static void
4195 analyze_caller_dereference_legality (vec<access_p> representatives)
4197 int i;
4199 if (dump_file && (dump_flags & TDF_DETAILS))
4200 dump_dereferences_table (dump_file,
4201 "Dereference table before propagation:\n",
4202 bb_dereferences);
4204 propagate_dereference_distances ();
4206 if (dump_file && (dump_flags & TDF_DETAILS))
4207 dump_dereferences_table (dump_file,
4208 "Dereference table after propagation:\n",
4209 bb_dereferences);
4211 for (i = 0; i < func_param_count; i++)
4213 struct access *repr = representatives[i];
4214 int idx = ENTRY_BLOCK_PTR_FOR_FN (cfun)->index * func_param_count + i;
4216 if (!repr || no_accesses_p (repr))
4217 continue;
4221 if ((repr->offset + repr->size) > bb_dereferences[idx])
4222 repr->grp_not_necessarilly_dereferenced = 1;
4223 repr = repr->next_grp;
4225 while (repr);
4229 /* Return the representative access for the parameter declaration PARM if it is
4230 a scalar passed by reference which is not written to and the pointer value
4231 is not used directly. Thus, if it is legal to dereference it in the caller
4232 and we can rule out modifications through aliases, such parameter should be
4233 turned into one passed by value. Return NULL otherwise. */
4235 static struct access *
4236 unmodified_by_ref_scalar_representative (tree parm)
4238 int i, access_count;
4239 struct access *repr;
4240 vec<access_p> *access_vec;
4242 access_vec = get_base_access_vector (parm);
4243 gcc_assert (access_vec);
4244 repr = (*access_vec)[0];
4245 if (repr->write)
4246 return NULL;
4247 repr->group_representative = repr;
4249 access_count = access_vec->length ();
4250 for (i = 1; i < access_count; i++)
4252 struct access *access = (*access_vec)[i];
4253 if (access->write)
4254 return NULL;
4255 access->group_representative = repr;
4256 access->next_sibling = repr->next_sibling;
4257 repr->next_sibling = access;
4260 repr->grp_read = 1;
4261 repr->grp_scalar_ptr = 1;
4262 return repr;
4265 /* Return true iff this ACCESS precludes IPA-SRA of the parameter it is
4266 associated with. REQ_ALIGN is the minimum required alignment. */
4268 static bool
4269 access_precludes_ipa_sra_p (struct access *access, unsigned int req_align)
4271 unsigned int exp_align;
4272 /* Avoid issues such as the second simple testcase in PR 42025. The problem
4273 is incompatible assign in a call statement (and possibly even in asm
4274 statements). This can be relaxed by using a new temporary but only for
4275 non-TREE_ADDRESSABLE types and is probably not worth the complexity. (In
4276 intraprocedural SRA we deal with this by keeping the old aggregate around,
4277 something we cannot do in IPA-SRA.) */
4278 if (access->write
4279 && (is_gimple_call (access->stmt)
4280 || gimple_code (access->stmt) == GIMPLE_ASM))
4281 return true;
4283 exp_align = get_object_alignment (access->expr);
4284 if (exp_align < req_align)
4285 return true;
4287 return false;
4291 /* Sort collected accesses for parameter PARM, identify representatives for
4292 each accessed region and link them together. Return NULL if there are
4293 different but overlapping accesses, return the special ptr value meaning
4294 there are no accesses for this parameter if that is the case and return the
4295 first representative otherwise. Set *RO_GRP if there is a group of accesses
4296 with only read (i.e. no write) accesses. */
4298 static struct access *
4299 splice_param_accesses (tree parm, bool *ro_grp)
4301 int i, j, access_count, group_count;
4302 int agg_size, total_size = 0;
4303 struct access *access, *res, **prev_acc_ptr = &res;
4304 vec<access_p> *access_vec;
4306 access_vec = get_base_access_vector (parm);
4307 if (!access_vec)
4308 return &no_accesses_representant;
4309 access_count = access_vec->length ();
4311 access_vec->qsort (compare_access_positions);
4313 i = 0;
4314 total_size = 0;
4315 group_count = 0;
4316 while (i < access_count)
4318 bool modification;
4319 tree a1_alias_type;
4320 access = (*access_vec)[i];
4321 modification = access->write;
4322 if (access_precludes_ipa_sra_p (access, TYPE_ALIGN (access->type)))
4323 return NULL;
4324 a1_alias_type = reference_alias_ptr_type (access->expr);
4326 /* Access is about to become group representative unless we find some
4327 nasty overlap which would preclude us from breaking this parameter
4328 apart. */
4330 j = i + 1;
4331 while (j < access_count)
4333 struct access *ac2 = (*access_vec)[j];
4334 if (ac2->offset != access->offset)
4336 /* All or nothing law for parameters. */
4337 if (access->offset + access->size > ac2->offset)
4338 return NULL;
4339 else
4340 break;
4342 else if (ac2->size != access->size)
4343 return NULL;
4345 if (access_precludes_ipa_sra_p (ac2, TYPE_ALIGN (access->type))
4346 || (ac2->type != access->type
4347 && (TREE_ADDRESSABLE (ac2->type)
4348 || TREE_ADDRESSABLE (access->type)))
4349 || (reference_alias_ptr_type (ac2->expr) != a1_alias_type))
4350 return NULL;
4352 modification |= ac2->write;
4353 ac2->group_representative = access;
4354 ac2->next_sibling = access->next_sibling;
4355 access->next_sibling = ac2;
4356 j++;
4359 group_count++;
4360 access->grp_maybe_modified = modification;
4361 if (!modification)
4362 *ro_grp = true;
4363 *prev_acc_ptr = access;
4364 prev_acc_ptr = &access->next_grp;
4365 total_size += access->size;
4366 i = j;
4369 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4370 agg_size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))));
4371 else
4372 agg_size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (parm)));
4373 if (total_size >= agg_size)
4374 return NULL;
4376 gcc_assert (group_count > 0);
4377 return res;
4380 /* Decide whether parameters with representative accesses given by REPR should
4381 be reduced into components. */
4383 static int
4384 decide_one_param_reduction (struct access *repr)
4386 int total_size, cur_parm_size, agg_size, new_param_count, parm_size_limit;
4387 bool by_ref;
4388 tree parm;
4390 parm = repr->base;
4391 cur_parm_size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (parm)));
4392 gcc_assert (cur_parm_size > 0);
4394 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4396 by_ref = true;
4397 agg_size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))));
4399 else
4401 by_ref = false;
4402 agg_size = cur_parm_size;
4405 if (dump_file)
4407 struct access *acc;
4408 fprintf (dump_file, "Evaluating PARAM group sizes for ");
4409 print_generic_expr (dump_file, parm, 0);
4410 fprintf (dump_file, " (UID: %u): \n", DECL_UID (parm));
4411 for (acc = repr; acc; acc = acc->next_grp)
4412 dump_access (dump_file, acc, true);
4415 total_size = 0;
4416 new_param_count = 0;
4418 for (; repr; repr = repr->next_grp)
4420 gcc_assert (parm == repr->base);
4422 /* Taking the address of a non-addressable field is verboten. */
4423 if (by_ref && repr->non_addressable)
4424 return 0;
4426 /* Do not decompose a non-BLKmode param in a way that would
4427 create BLKmode params. Especially for by-reference passing
4428 (thus, pointer-type param) this is hardly worthwhile. */
4429 if (DECL_MODE (parm) != BLKmode
4430 && TYPE_MODE (repr->type) == BLKmode)
4431 return 0;
4433 if (!by_ref || (!repr->grp_maybe_modified
4434 && !repr->grp_not_necessarilly_dereferenced))
4435 total_size += repr->size;
4436 else
4437 total_size += cur_parm_size;
4439 new_param_count++;
4442 gcc_assert (new_param_count > 0);
4444 if (optimize_function_for_size_p (cfun))
4445 parm_size_limit = cur_parm_size;
4446 else
4447 parm_size_limit = (PARAM_VALUE (PARAM_IPA_SRA_PTR_GROWTH_FACTOR)
4448 * cur_parm_size);
4450 if (total_size < agg_size
4451 && total_size <= parm_size_limit)
4453 if (dump_file)
4454 fprintf (dump_file, " ....will be split into %i components\n",
4455 new_param_count);
4456 return new_param_count;
4458 else
4459 return 0;
4462 /* The order of the following enums is important, we need to do extra work for
4463 UNUSED_PARAMS, BY_VAL_ACCESSES and UNMODIF_BY_REF_ACCESSES. */
4464 enum ipa_splicing_result { NO_GOOD_ACCESS, UNUSED_PARAMS, BY_VAL_ACCESSES,
4465 MODIF_BY_REF_ACCESSES, UNMODIF_BY_REF_ACCESSES };
4467 /* Identify representatives of all accesses to all candidate parameters for
4468 IPA-SRA. Return result based on what representatives have been found. */
4470 static enum ipa_splicing_result
4471 splice_all_param_accesses (vec<access_p> &representatives)
4473 enum ipa_splicing_result result = NO_GOOD_ACCESS;
4474 tree parm;
4475 struct access *repr;
4477 representatives.create (func_param_count);
4479 for (parm = DECL_ARGUMENTS (current_function_decl);
4480 parm;
4481 parm = DECL_CHAIN (parm))
4483 if (is_unused_scalar_param (parm))
4485 representatives.quick_push (&no_accesses_representant);
4486 if (result == NO_GOOD_ACCESS)
4487 result = UNUSED_PARAMS;
4489 else if (POINTER_TYPE_P (TREE_TYPE (parm))
4490 && is_gimple_reg_type (TREE_TYPE (TREE_TYPE (parm)))
4491 && bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
4493 repr = unmodified_by_ref_scalar_representative (parm);
4494 representatives.quick_push (repr);
4495 if (repr)
4496 result = UNMODIF_BY_REF_ACCESSES;
4498 else if (bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
4500 bool ro_grp = false;
4501 repr = splice_param_accesses (parm, &ro_grp);
4502 representatives.quick_push (repr);
4504 if (repr && !no_accesses_p (repr))
4506 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4508 if (ro_grp)
4509 result = UNMODIF_BY_REF_ACCESSES;
4510 else if (result < MODIF_BY_REF_ACCESSES)
4511 result = MODIF_BY_REF_ACCESSES;
4513 else if (result < BY_VAL_ACCESSES)
4514 result = BY_VAL_ACCESSES;
4516 else if (no_accesses_p (repr) && (result == NO_GOOD_ACCESS))
4517 result = UNUSED_PARAMS;
4519 else
4520 representatives.quick_push (NULL);
4523 if (result == NO_GOOD_ACCESS)
4525 representatives.release ();
4526 return NO_GOOD_ACCESS;
4529 return result;
4532 /* Return the index of BASE in PARMS. Abort if it is not found. */
4534 static inline int
4535 get_param_index (tree base, vec<tree> parms)
4537 int i, len;
4539 len = parms.length ();
4540 for (i = 0; i < len; i++)
4541 if (parms[i] == base)
4542 return i;
4543 gcc_unreachable ();
4546 /* Convert the decisions made at the representative level into compact
4547 parameter adjustments. REPRESENTATIVES are pointers to first
4548 representatives of each param accesses, ADJUSTMENTS_COUNT is the expected
4549 final number of adjustments. */
4551 static ipa_parm_adjustment_vec
4552 turn_representatives_into_adjustments (vec<access_p> representatives,
4553 int adjustments_count)
4555 vec<tree> parms;
4556 ipa_parm_adjustment_vec adjustments;
4557 tree parm;
4558 int i;
4560 gcc_assert (adjustments_count > 0);
4561 parms = ipa_get_vector_of_formal_parms (current_function_decl);
4562 adjustments.create (adjustments_count);
4563 parm = DECL_ARGUMENTS (current_function_decl);
4564 for (i = 0; i < func_param_count; i++, parm = DECL_CHAIN (parm))
4566 struct access *repr = representatives[i];
4568 if (!repr || no_accesses_p (repr))
4570 struct ipa_parm_adjustment adj;
4572 memset (&adj, 0, sizeof (adj));
4573 adj.base_index = get_param_index (parm, parms);
4574 adj.base = parm;
4575 if (!repr)
4576 adj.op = IPA_PARM_OP_COPY;
4577 else
4578 adj.op = IPA_PARM_OP_REMOVE;
4579 adj.arg_prefix = "ISRA";
4580 adjustments.quick_push (adj);
4582 else
4584 struct ipa_parm_adjustment adj;
4585 int index = get_param_index (parm, parms);
4587 for (; repr; repr = repr->next_grp)
4589 memset (&adj, 0, sizeof (adj));
4590 gcc_assert (repr->base == parm);
4591 adj.base_index = index;
4592 adj.base = repr->base;
4593 adj.type = repr->type;
4594 adj.alias_ptr_type = reference_alias_ptr_type (repr->expr);
4595 adj.offset = repr->offset;
4596 adj.reverse = repr->reverse;
4597 adj.by_ref = (POINTER_TYPE_P (TREE_TYPE (repr->base))
4598 && (repr->grp_maybe_modified
4599 || repr->grp_not_necessarilly_dereferenced));
4600 adj.arg_prefix = "ISRA";
4601 adjustments.quick_push (adj);
4605 parms.release ();
4606 return adjustments;
4609 /* Analyze the collected accesses and produce a plan what to do with the
4610 parameters in the form of adjustments, NULL meaning nothing. */
4612 static ipa_parm_adjustment_vec
4613 analyze_all_param_acesses (void)
4615 enum ipa_splicing_result repr_state;
4616 bool proceed = false;
4617 int i, adjustments_count = 0;
4618 vec<access_p> representatives;
4619 ipa_parm_adjustment_vec adjustments;
4621 repr_state = splice_all_param_accesses (representatives);
4622 if (repr_state == NO_GOOD_ACCESS)
4623 return ipa_parm_adjustment_vec ();
4625 /* If there are any parameters passed by reference which are not modified
4626 directly, we need to check whether they can be modified indirectly. */
4627 if (repr_state == UNMODIF_BY_REF_ACCESSES)
4629 analyze_caller_dereference_legality (representatives);
4630 analyze_modified_params (representatives);
4633 for (i = 0; i < func_param_count; i++)
4635 struct access *repr = representatives[i];
4637 if (repr && !no_accesses_p (repr))
4639 if (repr->grp_scalar_ptr)
4641 adjustments_count++;
4642 if (repr->grp_not_necessarilly_dereferenced
4643 || repr->grp_maybe_modified)
4644 representatives[i] = NULL;
4645 else
4647 proceed = true;
4648 sra_stats.scalar_by_ref_to_by_val++;
4651 else
4653 int new_components = decide_one_param_reduction (repr);
4655 if (new_components == 0)
4657 representatives[i] = NULL;
4658 adjustments_count++;
4660 else
4662 adjustments_count += new_components;
4663 sra_stats.aggregate_params_reduced++;
4664 sra_stats.param_reductions_created += new_components;
4665 proceed = true;
4669 else
4671 if (no_accesses_p (repr))
4673 proceed = true;
4674 sra_stats.deleted_unused_parameters++;
4676 adjustments_count++;
4680 if (!proceed && dump_file)
4681 fprintf (dump_file, "NOT proceeding to change params.\n");
4683 if (proceed)
4684 adjustments = turn_representatives_into_adjustments (representatives,
4685 adjustments_count);
4686 else
4687 adjustments = ipa_parm_adjustment_vec ();
4689 representatives.release ();
4690 return adjustments;
4693 /* If a parameter replacement identified by ADJ does not yet exist in the form
4694 of declaration, create it and record it, otherwise return the previously
4695 created one. */
4697 static tree
4698 get_replaced_param_substitute (struct ipa_parm_adjustment *adj)
4700 tree repl;
4701 if (!adj->new_ssa_base)
4703 char *pretty_name = make_fancy_name (adj->base);
4705 repl = create_tmp_reg (TREE_TYPE (adj->base), "ISR");
4706 DECL_NAME (repl) = get_identifier (pretty_name);
4707 DECL_NAMELESS (repl) = 1;
4708 obstack_free (&name_obstack, pretty_name);
4710 adj->new_ssa_base = repl;
4712 else
4713 repl = adj->new_ssa_base;
4714 return repl;
4717 /* Find the first adjustment for a particular parameter BASE in a vector of
4718 ADJUSTMENTS which is not a copy_param. Return NULL if there is no such
4719 adjustment. */
4721 static struct ipa_parm_adjustment *
4722 get_adjustment_for_base (ipa_parm_adjustment_vec adjustments, tree base)
4724 int i, len;
4726 len = adjustments.length ();
4727 for (i = 0; i < len; i++)
4729 struct ipa_parm_adjustment *adj;
4731 adj = &adjustments[i];
4732 if (adj->op != IPA_PARM_OP_COPY && adj->base == base)
4733 return adj;
4736 return NULL;
4739 /* If OLD_NAME, which is being defined by statement STMT, is an SSA_NAME of a
4740 parameter which is to be removed because its value is not used, create a new
4741 SSA_NAME relating to a replacement VAR_DECL, replace all uses of the
4742 original with it and return it. If there is no need to re-map, return NULL.
4743 ADJUSTMENTS is a pointer to a vector of IPA-SRA adjustments. */
4745 static tree
4746 replace_removed_params_ssa_names (tree old_name, gimple *stmt,
4747 ipa_parm_adjustment_vec adjustments)
4749 struct ipa_parm_adjustment *adj;
4750 tree decl, repl, new_name;
4752 if (TREE_CODE (old_name) != SSA_NAME)
4753 return NULL;
4755 decl = SSA_NAME_VAR (old_name);
4756 if (decl == NULL_TREE
4757 || TREE_CODE (decl) != PARM_DECL)
4758 return NULL;
4760 adj = get_adjustment_for_base (adjustments, decl);
4761 if (!adj)
4762 return NULL;
4764 repl = get_replaced_param_substitute (adj);
4765 new_name = make_ssa_name (repl, stmt);
4766 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name)
4767 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (old_name);
4769 if (dump_file)
4771 fprintf (dump_file, "replacing an SSA name of a removed param ");
4772 print_generic_expr (dump_file, old_name, 0);
4773 fprintf (dump_file, " with ");
4774 print_generic_expr (dump_file, new_name, 0);
4775 fprintf (dump_file, "\n");
4778 replace_uses_by (old_name, new_name);
4779 return new_name;
4782 /* If the statement STMT contains any expressions that need to replaced with a
4783 different one as noted by ADJUSTMENTS, do so. Handle any potential type
4784 incompatibilities (GSI is used to accommodate conversion statements and must
4785 point to the statement). Return true iff the statement was modified. */
4787 static bool
4788 sra_ipa_modify_assign (gimple *stmt, gimple_stmt_iterator *gsi,
4789 ipa_parm_adjustment_vec adjustments)
4791 tree *lhs_p, *rhs_p;
4792 bool any;
4794 if (!gimple_assign_single_p (stmt))
4795 return false;
4797 rhs_p = gimple_assign_rhs1_ptr (stmt);
4798 lhs_p = gimple_assign_lhs_ptr (stmt);
4800 any = ipa_modify_expr (rhs_p, false, adjustments);
4801 any |= ipa_modify_expr (lhs_p, false, adjustments);
4802 if (any)
4804 tree new_rhs = NULL_TREE;
4806 if (!useless_type_conversion_p (TREE_TYPE (*lhs_p), TREE_TYPE (*rhs_p)))
4808 if (TREE_CODE (*rhs_p) == CONSTRUCTOR)
4810 /* V_C_Es of constructors can cause trouble (PR 42714). */
4811 if (is_gimple_reg_type (TREE_TYPE (*lhs_p)))
4812 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
4813 else
4814 *rhs_p = build_constructor (TREE_TYPE (*lhs_p),
4815 NULL);
4817 else
4818 new_rhs = fold_build1_loc (gimple_location (stmt),
4819 VIEW_CONVERT_EXPR, TREE_TYPE (*lhs_p),
4820 *rhs_p);
4822 else if (REFERENCE_CLASS_P (*rhs_p)
4823 && is_gimple_reg_type (TREE_TYPE (*lhs_p))
4824 && !is_gimple_reg (*lhs_p))
4825 /* This can happen when an assignment in between two single field
4826 structures is turned into an assignment in between two pointers to
4827 scalars (PR 42237). */
4828 new_rhs = *rhs_p;
4830 if (new_rhs)
4832 tree tmp = force_gimple_operand_gsi (gsi, new_rhs, true, NULL_TREE,
4833 true, GSI_SAME_STMT);
4835 gimple_assign_set_rhs_from_tree (gsi, tmp);
4838 return true;
4841 return false;
4844 /* Traverse the function body and all modifications as described in
4845 ADJUSTMENTS. Return true iff the CFG has been changed. */
4847 bool
4848 ipa_sra_modify_function_body (ipa_parm_adjustment_vec adjustments)
4850 bool cfg_changed = false;
4851 basic_block bb;
4853 FOR_EACH_BB_FN (bb, cfun)
4855 gimple_stmt_iterator gsi;
4857 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4859 gphi *phi = as_a <gphi *> (gsi_stmt (gsi));
4860 tree new_lhs, old_lhs = gimple_phi_result (phi);
4861 new_lhs = replace_removed_params_ssa_names (old_lhs, phi, adjustments);
4862 if (new_lhs)
4864 gimple_phi_set_result (phi, new_lhs);
4865 release_ssa_name (old_lhs);
4869 gsi = gsi_start_bb (bb);
4870 while (!gsi_end_p (gsi))
4872 gimple *stmt = gsi_stmt (gsi);
4873 bool modified = false;
4874 tree *t;
4875 unsigned i;
4877 switch (gimple_code (stmt))
4879 case GIMPLE_RETURN:
4880 t = gimple_return_retval_ptr (as_a <greturn *> (stmt));
4881 if (*t != NULL_TREE)
4882 modified |= ipa_modify_expr (t, true, adjustments);
4883 break;
4885 case GIMPLE_ASSIGN:
4886 modified |= sra_ipa_modify_assign (stmt, &gsi, adjustments);
4887 break;
4889 case GIMPLE_CALL:
4890 /* Operands must be processed before the lhs. */
4891 for (i = 0; i < gimple_call_num_args (stmt); i++)
4893 t = gimple_call_arg_ptr (stmt, i);
4894 modified |= ipa_modify_expr (t, true, adjustments);
4897 if (gimple_call_lhs (stmt))
4899 t = gimple_call_lhs_ptr (stmt);
4900 modified |= ipa_modify_expr (t, false, adjustments);
4902 break;
4904 case GIMPLE_ASM:
4906 gasm *asm_stmt = as_a <gasm *> (stmt);
4907 for (i = 0; i < gimple_asm_ninputs (asm_stmt); i++)
4909 t = &TREE_VALUE (gimple_asm_input_op (asm_stmt, i));
4910 modified |= ipa_modify_expr (t, true, adjustments);
4912 for (i = 0; i < gimple_asm_noutputs (asm_stmt); i++)
4914 t = &TREE_VALUE (gimple_asm_output_op (asm_stmt, i));
4915 modified |= ipa_modify_expr (t, false, adjustments);
4918 break;
4920 default:
4921 break;
4924 def_operand_p defp;
4925 ssa_op_iter iter;
4926 FOR_EACH_SSA_DEF_OPERAND (defp, stmt, iter, SSA_OP_DEF)
4928 tree old_def = DEF_FROM_PTR (defp);
4929 if (tree new_def = replace_removed_params_ssa_names (old_def, stmt,
4930 adjustments))
4932 SET_DEF (defp, new_def);
4933 release_ssa_name (old_def);
4934 modified = true;
4938 if (modified)
4940 update_stmt (stmt);
4941 if (maybe_clean_eh_stmt (stmt)
4942 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
4943 cfg_changed = true;
4945 gsi_next (&gsi);
4949 return cfg_changed;
4952 /* Call gimple_debug_bind_reset_value on all debug statements describing
4953 gimple register parameters that are being removed or replaced. */
4955 static void
4956 sra_ipa_reset_debug_stmts (ipa_parm_adjustment_vec adjustments)
4958 int i, len;
4959 gimple_stmt_iterator *gsip = NULL, gsi;
4961 if (MAY_HAVE_DEBUG_STMTS && single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)))
4963 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4964 gsip = &gsi;
4966 len = adjustments.length ();
4967 for (i = 0; i < len; i++)
4969 struct ipa_parm_adjustment *adj;
4970 imm_use_iterator ui;
4971 gimple *stmt;
4972 gdebug *def_temp;
4973 tree name, vexpr, copy = NULL_TREE;
4974 use_operand_p use_p;
4976 adj = &adjustments[i];
4977 if (adj->op == IPA_PARM_OP_COPY || !is_gimple_reg (adj->base))
4978 continue;
4979 name = ssa_default_def (cfun, adj->base);
4980 vexpr = NULL;
4981 if (name)
4982 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
4984 if (gimple_clobber_p (stmt))
4986 gimple_stmt_iterator cgsi = gsi_for_stmt (stmt);
4987 unlink_stmt_vdef (stmt);
4988 gsi_remove (&cgsi, true);
4989 release_defs (stmt);
4990 continue;
4992 /* All other users must have been removed by
4993 ipa_sra_modify_function_body. */
4994 gcc_assert (is_gimple_debug (stmt));
4995 if (vexpr == NULL && gsip != NULL)
4997 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
4998 vexpr = make_node (DEBUG_EXPR_DECL);
4999 def_temp = gimple_build_debug_source_bind (vexpr, adj->base,
5000 NULL);
5001 DECL_ARTIFICIAL (vexpr) = 1;
5002 TREE_TYPE (vexpr) = TREE_TYPE (name);
5003 SET_DECL_MODE (vexpr, DECL_MODE (adj->base));
5004 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
5006 if (vexpr)
5008 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
5009 SET_USE (use_p, vexpr);
5011 else
5012 gimple_debug_bind_reset_value (stmt);
5013 update_stmt (stmt);
5015 /* Create a VAR_DECL for debug info purposes. */
5016 if (!DECL_IGNORED_P (adj->base))
5018 copy = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
5019 VAR_DECL, DECL_NAME (adj->base),
5020 TREE_TYPE (adj->base));
5021 if (DECL_PT_UID_SET_P (adj->base))
5022 SET_DECL_PT_UID (copy, DECL_PT_UID (adj->base));
5023 TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (adj->base);
5024 TREE_READONLY (copy) = TREE_READONLY (adj->base);
5025 TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (adj->base);
5026 DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (adj->base);
5027 DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (adj->base);
5028 DECL_IGNORED_P (copy) = DECL_IGNORED_P (adj->base);
5029 DECL_ABSTRACT_ORIGIN (copy) = DECL_ORIGIN (adj->base);
5030 DECL_SEEN_IN_BIND_EXPR_P (copy) = 1;
5031 SET_DECL_RTL (copy, 0);
5032 TREE_USED (copy) = 1;
5033 DECL_CONTEXT (copy) = current_function_decl;
5034 add_local_decl (cfun, copy);
5035 DECL_CHAIN (copy) =
5036 BLOCK_VARS (DECL_INITIAL (current_function_decl));
5037 BLOCK_VARS (DECL_INITIAL (current_function_decl)) = copy;
5039 if (gsip != NULL && copy && target_for_debug_bind (adj->base))
5041 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
5042 if (vexpr)
5043 def_temp = gimple_build_debug_bind (copy, vexpr, NULL);
5044 else
5045 def_temp = gimple_build_debug_source_bind (copy, adj->base,
5046 NULL);
5047 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
5052 /* Return false if all callers have at least as many actual arguments as there
5053 are formal parameters in the current function and that their types
5054 match. */
5056 static bool
5057 some_callers_have_mismatched_arguments_p (struct cgraph_node *node,
5058 void *data ATTRIBUTE_UNUSED)
5060 struct cgraph_edge *cs;
5061 for (cs = node->callers; cs; cs = cs->next_caller)
5062 if (!cs->call_stmt || !callsite_arguments_match_p (cs->call_stmt))
5063 return true;
5065 return false;
5068 /* Return false if all callers have vuse attached to a call statement. */
5070 static bool
5071 some_callers_have_no_vuse_p (struct cgraph_node *node,
5072 void *data ATTRIBUTE_UNUSED)
5074 struct cgraph_edge *cs;
5075 for (cs = node->callers; cs; cs = cs->next_caller)
5076 if (!cs->call_stmt || !gimple_vuse (cs->call_stmt))
5077 return true;
5079 return false;
5082 /* Convert all callers of NODE. */
5084 static bool
5085 convert_callers_for_node (struct cgraph_node *node,
5086 void *data)
5088 ipa_parm_adjustment_vec *adjustments = (ipa_parm_adjustment_vec *) data;
5089 bitmap recomputed_callers = BITMAP_ALLOC (NULL);
5090 struct cgraph_edge *cs;
5092 for (cs = node->callers; cs; cs = cs->next_caller)
5094 push_cfun (DECL_STRUCT_FUNCTION (cs->caller->decl));
5096 if (dump_file)
5097 fprintf (dump_file, "Adjusting call %s/%i -> %s/%i\n",
5098 xstrdup_for_dump (cs->caller->name ()),
5099 cs->caller->order,
5100 xstrdup_for_dump (cs->callee->name ()),
5101 cs->callee->order);
5103 ipa_modify_call_arguments (cs, cs->call_stmt, *adjustments);
5105 pop_cfun ();
5108 for (cs = node->callers; cs; cs = cs->next_caller)
5109 if (bitmap_set_bit (recomputed_callers, cs->caller->uid)
5110 && gimple_in_ssa_p (DECL_STRUCT_FUNCTION (cs->caller->decl)))
5111 compute_inline_parameters (cs->caller, true);
5112 BITMAP_FREE (recomputed_callers);
5114 return true;
5117 /* Convert all callers of NODE to pass parameters as given in ADJUSTMENTS. */
5119 static void
5120 convert_callers (struct cgraph_node *node, tree old_decl,
5121 ipa_parm_adjustment_vec adjustments)
5123 basic_block this_block;
5125 node->call_for_symbol_and_aliases (convert_callers_for_node,
5126 &adjustments, false);
5128 if (!encountered_recursive_call)
5129 return;
5131 FOR_EACH_BB_FN (this_block, cfun)
5133 gimple_stmt_iterator gsi;
5135 for (gsi = gsi_start_bb (this_block); !gsi_end_p (gsi); gsi_next (&gsi))
5137 gcall *stmt;
5138 tree call_fndecl;
5139 stmt = dyn_cast <gcall *> (gsi_stmt (gsi));
5140 if (!stmt)
5141 continue;
5142 call_fndecl = gimple_call_fndecl (stmt);
5143 if (call_fndecl == old_decl)
5145 if (dump_file)
5146 fprintf (dump_file, "Adjusting recursive call");
5147 gimple_call_set_fndecl (stmt, node->decl);
5148 ipa_modify_call_arguments (NULL, stmt, adjustments);
5153 return;
5156 /* Perform all the modification required in IPA-SRA for NODE to have parameters
5157 as given in ADJUSTMENTS. Return true iff the CFG has been changed. */
5159 static bool
5160 modify_function (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments)
5162 struct cgraph_node *new_node;
5163 bool cfg_changed;
5165 cgraph_edge::rebuild_edges ();
5166 free_dominance_info (CDI_DOMINATORS);
5167 pop_cfun ();
5169 /* This must be done after rebuilding cgraph edges for node above.
5170 Otherwise any recursive calls to node that are recorded in
5171 redirect_callers will be corrupted. */
5172 vec<cgraph_edge *> redirect_callers = node->collect_callers ();
5173 new_node = node->create_version_clone_with_body (redirect_callers, NULL,
5174 NULL, false, NULL, NULL,
5175 "isra");
5176 redirect_callers.release ();
5178 push_cfun (DECL_STRUCT_FUNCTION (new_node->decl));
5179 ipa_modify_formal_parameters (current_function_decl, adjustments);
5180 cfg_changed = ipa_sra_modify_function_body (adjustments);
5181 sra_ipa_reset_debug_stmts (adjustments);
5182 convert_callers (new_node, node->decl, adjustments);
5183 new_node->make_local ();
5184 return cfg_changed;
5187 /* Means of communication between ipa_sra_check_caller and
5188 ipa_sra_preliminary_function_checks. */
5190 struct ipa_sra_check_caller_data
5192 bool has_callers;
5193 bool bad_arg_alignment;
5194 bool has_thunk;
5197 /* If NODE has a caller, mark that fact in DATA which is pointer to
5198 ipa_sra_check_caller_data. Also check all aggregate arguments in all known
5199 calls if they are unit aligned and if not, set the appropriate flag in DATA
5200 too. */
5202 static bool
5203 ipa_sra_check_caller (struct cgraph_node *node, void *data)
5205 if (!node->callers)
5206 return false;
5208 struct ipa_sra_check_caller_data *iscc;
5209 iscc = (struct ipa_sra_check_caller_data *) data;
5210 iscc->has_callers = true;
5212 for (cgraph_edge *cs = node->callers; cs; cs = cs->next_caller)
5214 if (cs->caller->thunk.thunk_p)
5216 iscc->has_thunk = true;
5217 return true;
5219 gimple *call_stmt = cs->call_stmt;
5220 unsigned count = gimple_call_num_args (call_stmt);
5221 for (unsigned i = 0; i < count; i++)
5223 tree arg = gimple_call_arg (call_stmt, i);
5224 if (is_gimple_reg (arg))
5225 continue;
5227 tree offset;
5228 HOST_WIDE_INT bitsize, bitpos;
5229 machine_mode mode;
5230 int unsignedp, reversep, volatilep = 0;
5231 get_inner_reference (arg, &bitsize, &bitpos, &offset, &mode,
5232 &unsignedp, &reversep, &volatilep);
5233 if (bitpos % BITS_PER_UNIT)
5235 iscc->bad_arg_alignment = true;
5236 return true;
5241 return false;
5244 /* Return false the function is apparently unsuitable for IPA-SRA based on it's
5245 attributes, return true otherwise. NODE is the cgraph node of the current
5246 function. */
5248 static bool
5249 ipa_sra_preliminary_function_checks (struct cgraph_node *node)
5251 if (!node->can_be_local_p ())
5253 if (dump_file)
5254 fprintf (dump_file, "Function not local to this compilation unit.\n");
5255 return false;
5258 if (!node->local.can_change_signature)
5260 if (dump_file)
5261 fprintf (dump_file, "Function can not change signature.\n");
5262 return false;
5265 if (!tree_versionable_function_p (node->decl))
5267 if (dump_file)
5268 fprintf (dump_file, "Function is not versionable.\n");
5269 return false;
5272 if (!opt_for_fn (node->decl, optimize)
5273 || !opt_for_fn (node->decl, flag_ipa_sra))
5275 if (dump_file)
5276 fprintf (dump_file, "Function not optimized.\n");
5277 return false;
5280 if (DECL_VIRTUAL_P (current_function_decl))
5282 if (dump_file)
5283 fprintf (dump_file, "Function is a virtual method.\n");
5284 return false;
5287 if ((DECL_ONE_ONLY (node->decl) || DECL_EXTERNAL (node->decl))
5288 && inline_summaries->get (node)->size >= MAX_INLINE_INSNS_AUTO)
5290 if (dump_file)
5291 fprintf (dump_file, "Function too big to be made truly local.\n");
5292 return false;
5295 if (cfun->stdarg)
5297 if (dump_file)
5298 fprintf (dump_file, "Function uses stdarg. \n");
5299 return false;
5302 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
5303 return false;
5305 if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
5307 if (dump_file)
5308 fprintf (dump_file, "Always inline function will be inlined "
5309 "anyway. \n");
5310 return false;
5313 struct ipa_sra_check_caller_data iscc;
5314 memset (&iscc, 0, sizeof(iscc));
5315 node->call_for_symbol_and_aliases (ipa_sra_check_caller, &iscc, true);
5316 if (!iscc.has_callers)
5318 if (dump_file)
5319 fprintf (dump_file,
5320 "Function has no callers in this compilation unit.\n");
5321 return false;
5324 if (iscc.bad_arg_alignment)
5326 if (dump_file)
5327 fprintf (dump_file,
5328 "A function call has an argument with non-unit alignment.\n");
5329 return false;
5332 if (iscc.has_thunk)
5334 if (dump_file)
5335 fprintf (dump_file,
5336 "A has thunk.\n");
5337 return false;
5340 return true;
5343 /* Perform early interprocedural SRA. */
5345 static unsigned int
5346 ipa_early_sra (void)
5348 struct cgraph_node *node = cgraph_node::get (current_function_decl);
5349 ipa_parm_adjustment_vec adjustments;
5350 int ret = 0;
5352 if (!ipa_sra_preliminary_function_checks (node))
5353 return 0;
5355 sra_initialize ();
5356 sra_mode = SRA_MODE_EARLY_IPA;
5358 if (!find_param_candidates ())
5360 if (dump_file)
5361 fprintf (dump_file, "Function has no IPA-SRA candidates.\n");
5362 goto simple_out;
5365 if (node->call_for_symbol_and_aliases
5366 (some_callers_have_mismatched_arguments_p, NULL, true))
5368 if (dump_file)
5369 fprintf (dump_file, "There are callers with insufficient number of "
5370 "arguments or arguments with type mismatches.\n");
5371 goto simple_out;
5374 if (node->call_for_symbol_and_aliases
5375 (some_callers_have_no_vuse_p, NULL, true))
5377 if (dump_file)
5378 fprintf (dump_file, "There are callers with no VUSE attached "
5379 "to a call stmt.\n");
5380 goto simple_out;
5383 bb_dereferences = XCNEWVEC (HOST_WIDE_INT,
5384 func_param_count
5385 * last_basic_block_for_fn (cfun));
5386 final_bbs = BITMAP_ALLOC (NULL);
5388 scan_function ();
5389 if (encountered_apply_args)
5391 if (dump_file)
5392 fprintf (dump_file, "Function calls __builtin_apply_args().\n");
5393 goto out;
5396 if (encountered_unchangable_recursive_call)
5398 if (dump_file)
5399 fprintf (dump_file, "Function calls itself with insufficient "
5400 "number of arguments.\n");
5401 goto out;
5404 adjustments = analyze_all_param_acesses ();
5405 if (!adjustments.exists ())
5406 goto out;
5407 if (dump_file)
5408 ipa_dump_param_adjustments (dump_file, adjustments, current_function_decl);
5410 if (modify_function (node, adjustments))
5411 ret = TODO_update_ssa | TODO_cleanup_cfg;
5412 else
5413 ret = TODO_update_ssa;
5414 adjustments.release ();
5416 statistics_counter_event (cfun, "Unused parameters deleted",
5417 sra_stats.deleted_unused_parameters);
5418 statistics_counter_event (cfun, "Scalar parameters converted to by-value",
5419 sra_stats.scalar_by_ref_to_by_val);
5420 statistics_counter_event (cfun, "Aggregate parameters broken up",
5421 sra_stats.aggregate_params_reduced);
5422 statistics_counter_event (cfun, "Aggregate parameter components created",
5423 sra_stats.param_reductions_created);
5425 out:
5426 BITMAP_FREE (final_bbs);
5427 free (bb_dereferences);
5428 simple_out:
5429 sra_deinitialize ();
5430 return ret;
5433 namespace {
5435 const pass_data pass_data_early_ipa_sra =
5437 GIMPLE_PASS, /* type */
5438 "eipa_sra", /* name */
5439 OPTGROUP_NONE, /* optinfo_flags */
5440 TV_IPA_SRA, /* tv_id */
5441 0, /* properties_required */
5442 0, /* properties_provided */
5443 0, /* properties_destroyed */
5444 0, /* todo_flags_start */
5445 TODO_dump_symtab, /* todo_flags_finish */
5448 class pass_early_ipa_sra : public gimple_opt_pass
5450 public:
5451 pass_early_ipa_sra (gcc::context *ctxt)
5452 : gimple_opt_pass (pass_data_early_ipa_sra, ctxt)
5455 /* opt_pass methods: */
5456 virtual bool gate (function *) { return flag_ipa_sra && dbg_cnt (eipa_sra); }
5457 virtual unsigned int execute (function *) { return ipa_early_sra (); }
5459 }; // class pass_early_ipa_sra
5461 } // anon namespace
5463 gimple_opt_pass *
5464 make_pass_early_ipa_sra (gcc::context *ctxt)
5466 return new pass_early_ipa_sra (ctxt);