PR c++/79143
[official-gcc.git] / gcc / postreload.c
blobe721f2f867da3eb268bc72e3e0f2c5f8686a2fd2
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
36 #include "cfgrtl.h"
37 #include "cfgbuild.h"
38 #include "cfgcleanup.h"
39 #include "reload.h"
40 #include "cselib.h"
41 #include "tree-pass.h"
42 #include "dbgcnt.h"
44 static int reload_cse_noop_set_p (rtx);
45 static bool reload_cse_simplify (rtx_insn *, rtx);
46 static void reload_cse_regs_1 (void);
47 static int reload_cse_simplify_set (rtx, rtx_insn *);
48 static int reload_cse_simplify_operands (rtx_insn *, rtx);
50 static void reload_combine (void);
51 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
52 static void reload_combine_note_store (rtx, const_rtx, void *);
54 static bool reload_cse_move2add (rtx_insn *);
55 static void move2add_note_store (rtx, const_rtx, void *);
57 /* Call cse / combine like post-reload optimization phases.
58 FIRST is the first instruction. */
60 static void
61 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
63 bool moves_converted;
64 reload_cse_regs_1 ();
65 reload_combine ();
66 moves_converted = reload_cse_move2add (first);
67 if (flag_expensive_optimizations)
69 if (moves_converted)
70 reload_combine ();
71 reload_cse_regs_1 ();
75 /* See whether a single set SET is a noop. */
76 static int
77 reload_cse_noop_set_p (rtx set)
79 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
80 return 0;
82 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
85 /* Try to simplify INSN. Return true if the CFG may have changed. */
86 static bool
87 reload_cse_simplify (rtx_insn *insn, rtx testreg)
89 rtx body = PATTERN (insn);
90 basic_block insn_bb = BLOCK_FOR_INSN (insn);
91 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
93 /* If NO_FUNCTION_CSE has been set by the target, then we should not try
94 to cse function calls. */
95 if (NO_FUNCTION_CSE && CALL_P (insn))
96 return false;
98 if (GET_CODE (body) == SET)
100 int count = 0;
102 /* Simplify even if we may think it is a no-op.
103 We may think a memory load of a value smaller than WORD_SIZE
104 is redundant because we haven't taken into account possible
105 implicit extension. reload_cse_simplify_set() will bring
106 this out, so it's safer to simplify before we delete. */
107 count += reload_cse_simplify_set (body, insn);
109 if (!count && reload_cse_noop_set_p (body))
111 if (check_for_inc_dec (insn))
112 delete_insn_and_edges (insn);
113 /* We're done with this insn. */
114 goto done;
117 if (count > 0)
118 apply_change_group ();
119 else
120 reload_cse_simplify_operands (insn, testreg);
122 else if (GET_CODE (body) == PARALLEL)
124 int i;
125 int count = 0;
126 rtx value = NULL_RTX;
128 /* Registers mentioned in the clobber list for an asm cannot be reused
129 within the body of the asm. Invalidate those registers now so that
130 we don't try to substitute values for them. */
131 if (asm_noperands (body) >= 0)
133 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
135 rtx part = XVECEXP (body, 0, i);
136 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
137 cselib_invalidate_rtx (XEXP (part, 0));
141 /* If every action in a PARALLEL is a noop, we can delete
142 the entire PARALLEL. */
143 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
145 rtx part = XVECEXP (body, 0, i);
146 if (GET_CODE (part) == SET)
148 if (! reload_cse_noop_set_p (part))
149 break;
150 if (REG_P (SET_DEST (part))
151 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
153 if (value)
154 break;
155 value = SET_DEST (part);
158 else if (GET_CODE (part) != CLOBBER
159 && GET_CODE (part) != USE)
160 break;
163 if (i < 0)
165 if (check_for_inc_dec (insn))
166 delete_insn_and_edges (insn);
167 /* We're done with this insn. */
168 goto done;
171 /* It's not a no-op, but we can try to simplify it. */
172 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
173 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
174 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
176 if (count > 0)
177 apply_change_group ();
178 else
179 reload_cse_simplify_operands (insn, testreg);
182 done:
183 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
186 /* Do a very simple CSE pass over the hard registers.
188 This function detects no-op moves where we happened to assign two
189 different pseudo-registers to the same hard register, and then
190 copied one to the other. Reload will generate a useless
191 instruction copying a register to itself.
193 This function also detects cases where we load a value from memory
194 into two different registers, and (if memory is more expensive than
195 registers) changes it to simply copy the first register into the
196 second register.
198 Another optimization is performed that scans the operands of each
199 instruction to see whether the value is already available in a
200 hard register. It then replaces the operand with the hard register
201 if possible, much like an optional reload would. */
203 static void
204 reload_cse_regs_1 (void)
206 bool cfg_changed = false;
207 basic_block bb;
208 rtx_insn *insn;
209 rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
211 cselib_init (CSELIB_RECORD_MEMORY);
212 init_alias_analysis ();
214 FOR_EACH_BB_FN (bb, cfun)
215 FOR_BB_INSNS (bb, insn)
217 if (INSN_P (insn))
218 cfg_changed |= reload_cse_simplify (insn, testreg);
220 cselib_process_insn (insn);
223 /* Clean up. */
224 end_alias_analysis ();
225 cselib_finish ();
226 if (cfg_changed)
227 cleanup_cfg (0);
230 /* Try to simplify a single SET instruction. SET is the set pattern.
231 INSN is the instruction it came from.
232 This function only handles one case: if we set a register to a value
233 which is not a register, we try to find that value in some other register
234 and change the set into a register copy. */
236 static int
237 reload_cse_simplify_set (rtx set, rtx_insn *insn)
239 int did_change = 0;
240 int dreg;
241 rtx src;
242 reg_class_t dclass;
243 int old_cost;
244 cselib_val *val;
245 struct elt_loc_list *l;
246 enum rtx_code extend_op = UNKNOWN;
247 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
249 dreg = true_regnum (SET_DEST (set));
250 if (dreg < 0)
251 return 0;
253 src = SET_SRC (set);
254 if (side_effects_p (src) || true_regnum (src) >= 0)
255 return 0;
257 dclass = REGNO_REG_CLASS (dreg);
259 /* When replacing a memory with a register, we need to honor assumptions
260 that combine made wrt the contents of sign bits. We'll do this by
261 generating an extend instruction instead of a reg->reg copy. Thus
262 the destination must be a register that we can widen. */
263 if (MEM_P (src)
264 && (extend_op = load_extend_op (GET_MODE (src))) != UNKNOWN
265 && !REG_P (SET_DEST (set)))
266 return 0;
268 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
269 if (! val)
270 return 0;
272 /* If memory loads are cheaper than register copies, don't change them. */
273 if (MEM_P (src))
274 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
275 else if (REG_P (src))
276 old_cost = register_move_cost (GET_MODE (src),
277 REGNO_REG_CLASS (REGNO (src)), dclass);
278 else
279 old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
281 for (l = val->locs; l; l = l->next)
283 rtx this_rtx = l->loc;
284 int this_cost;
286 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
288 if (extend_op != UNKNOWN)
290 wide_int result;
292 if (!CONST_SCALAR_INT_P (this_rtx))
293 continue;
295 switch (extend_op)
297 case ZERO_EXTEND:
298 result = wide_int::from (rtx_mode_t (this_rtx,
299 GET_MODE (src)),
300 BITS_PER_WORD, UNSIGNED);
301 break;
302 case SIGN_EXTEND:
303 result = wide_int::from (rtx_mode_t (this_rtx,
304 GET_MODE (src)),
305 BITS_PER_WORD, SIGNED);
306 break;
307 default:
308 gcc_unreachable ();
310 this_rtx = immed_wide_int_const (result, word_mode);
313 this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
315 else if (REG_P (this_rtx))
317 if (extend_op != UNKNOWN)
319 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
320 this_cost = set_src_cost (this_rtx, word_mode, speed);
322 else
323 this_cost = register_move_cost (GET_MODE (this_rtx),
324 REGNO_REG_CLASS (REGNO (this_rtx)),
325 dclass);
327 else
328 continue;
330 /* If equal costs, prefer registers over anything else. That
331 tends to lead to smaller instructions on some machines. */
332 if (this_cost < old_cost
333 || (this_cost == old_cost
334 && REG_P (this_rtx)
335 && !REG_P (SET_SRC (set))))
337 if (extend_op != UNKNOWN
338 #ifdef CANNOT_CHANGE_MODE_CLASS
339 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
340 word_mode,
341 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
342 #endif
345 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
346 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
347 validate_change (insn, &SET_DEST (set), wide_dest, 1);
350 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
351 old_cost = this_cost, did_change = 1;
355 return did_change;
358 /* Try to replace operands in INSN with equivalent values that are already
359 in registers. This can be viewed as optional reloading.
361 For each non-register operand in the insn, see if any hard regs are
362 known to be equivalent to that operand. Record the alternatives which
363 can accept these hard registers. Among all alternatives, select the
364 ones which are better or equal to the one currently matching, where
365 "better" is in terms of '?' and '!' constraints. Among the remaining
366 alternatives, select the one which replaces most operands with
367 hard registers. */
369 static int
370 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
372 int i, j;
374 /* For each operand, all registers that are equivalent to it. */
375 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
377 const char *constraints[MAX_RECOG_OPERANDS];
379 /* Vector recording how bad an alternative is. */
380 int *alternative_reject;
381 /* Vector recording how many registers can be introduced by choosing
382 this alternative. */
383 int *alternative_nregs;
384 /* Array of vectors recording, for each operand and each alternative,
385 which hard register to substitute, or -1 if the operand should be
386 left as it is. */
387 int *op_alt_regno[MAX_RECOG_OPERANDS];
388 /* Array of alternatives, sorted in order of decreasing desirability. */
389 int *alternative_order;
391 extract_constrain_insn (insn);
393 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
394 return 0;
396 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
397 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
398 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
399 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
400 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
402 /* For each operand, find out which regs are equivalent. */
403 for (i = 0; i < recog_data.n_operands; i++)
405 cselib_val *v;
406 struct elt_loc_list *l;
407 rtx op;
409 CLEAR_HARD_REG_SET (equiv_regs[i]);
411 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
412 right, so avoid the problem here. Likewise if we have a constant
413 and the insn pattern doesn't tell us the mode we need. */
414 if (LABEL_P (recog_data.operand[i])
415 || (CONSTANT_P (recog_data.operand[i])
416 && recog_data.operand_mode[i] == VOIDmode))
417 continue;
419 op = recog_data.operand[i];
420 if (MEM_P (op) && load_extend_op (GET_MODE (op)) != UNKNOWN)
422 rtx set = single_set (insn);
424 /* We might have multiple sets, some of which do implicit
425 extension. Punt on this for now. */
426 if (! set)
427 continue;
428 /* If the destination is also a MEM or a STRICT_LOW_PART, no
429 extension applies.
430 Also, if there is an explicit extension, we don't have to
431 worry about an implicit one. */
432 else if (MEM_P (SET_DEST (set))
433 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
434 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
435 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
436 ; /* Continue ordinary processing. */
437 #ifdef CANNOT_CHANGE_MODE_CLASS
438 /* If the register cannot change mode to word_mode, it follows that
439 it cannot have been used in word_mode. */
440 else if (REG_P (SET_DEST (set))
441 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
442 word_mode,
443 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
444 ; /* Continue ordinary processing. */
445 #endif
446 /* If this is a straight load, make the extension explicit. */
447 else if (REG_P (SET_DEST (set))
448 && recog_data.n_operands == 2
449 && SET_SRC (set) == op
450 && SET_DEST (set) == recog_data.operand[1-i])
452 validate_change (insn, recog_data.operand_loc[i],
453 gen_rtx_fmt_e (load_extend_op (GET_MODE (op)),
454 word_mode, op),
456 validate_change (insn, recog_data.operand_loc[1-i],
457 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
459 if (! apply_change_group ())
460 return 0;
461 return reload_cse_simplify_operands (insn, testreg);
463 else
464 /* ??? There might be arithmetic operations with memory that are
465 safe to optimize, but is it worth the trouble? */
466 continue;
469 if (side_effects_p (op))
470 continue;
471 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
472 if (! v)
473 continue;
475 for (l = v->locs; l; l = l->next)
476 if (REG_P (l->loc))
477 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
480 alternative_mask preferred = get_preferred_alternatives (insn);
481 for (i = 0; i < recog_data.n_operands; i++)
483 machine_mode mode;
484 int regno;
485 const char *p;
487 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
488 for (j = 0; j < recog_data.n_alternatives; j++)
489 op_alt_regno[i][j] = -1;
491 p = constraints[i] = recog_data.constraints[i];
492 mode = recog_data.operand_mode[i];
494 /* Add the reject values for each alternative given by the constraints
495 for this operand. */
496 j = 0;
497 while (*p != '\0')
499 char c = *p++;
500 if (c == ',')
501 j++;
502 else if (c == '?')
503 alternative_reject[j] += 3;
504 else if (c == '!')
505 alternative_reject[j] += 300;
508 /* We won't change operands which are already registers. We
509 also don't want to modify output operands. */
510 regno = true_regnum (recog_data.operand[i]);
511 if (regno >= 0
512 || constraints[i][0] == '='
513 || constraints[i][0] == '+')
514 continue;
516 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
518 enum reg_class rclass = NO_REGS;
520 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
521 continue;
523 set_mode_and_regno (testreg, mode, regno);
525 /* We found a register equal to this operand. Now look for all
526 alternatives that can accept this register and have not been
527 assigned a register they can use yet. */
528 j = 0;
529 p = constraints[i];
530 for (;;)
532 char c = *p;
534 switch (c)
536 case 'g':
537 rclass = reg_class_subunion[rclass][GENERAL_REGS];
538 break;
540 default:
541 rclass
542 = (reg_class_subunion
543 [rclass]
544 [reg_class_for_constraint (lookup_constraint (p))]);
545 break;
547 case ',': case '\0':
548 /* See if REGNO fits this alternative, and set it up as the
549 replacement register if we don't have one for this
550 alternative yet and the operand being replaced is not
551 a cheap CONST_INT. */
552 if (op_alt_regno[i][j] == -1
553 && TEST_BIT (preferred, j)
554 && reg_fits_class_p (testreg, rclass, 0, mode)
555 && (!CONST_INT_P (recog_data.operand[i])
556 || (set_src_cost (recog_data.operand[i], mode,
557 optimize_bb_for_speed_p
558 (BLOCK_FOR_INSN (insn)))
559 > set_src_cost (testreg, mode,
560 optimize_bb_for_speed_p
561 (BLOCK_FOR_INSN (insn))))))
563 alternative_nregs[j]++;
564 op_alt_regno[i][j] = regno;
566 j++;
567 rclass = NO_REGS;
568 break;
570 p += CONSTRAINT_LEN (c, p);
572 if (c == '\0')
573 break;
578 /* Record all alternatives which are better or equal to the currently
579 matching one in the alternative_order array. */
580 for (i = j = 0; i < recog_data.n_alternatives; i++)
581 if (alternative_reject[i] <= alternative_reject[which_alternative])
582 alternative_order[j++] = i;
583 recog_data.n_alternatives = j;
585 /* Sort it. Given a small number of alternatives, a dumb algorithm
586 won't hurt too much. */
587 for (i = 0; i < recog_data.n_alternatives - 1; i++)
589 int best = i;
590 int best_reject = alternative_reject[alternative_order[i]];
591 int best_nregs = alternative_nregs[alternative_order[i]];
593 for (j = i + 1; j < recog_data.n_alternatives; j++)
595 int this_reject = alternative_reject[alternative_order[j]];
596 int this_nregs = alternative_nregs[alternative_order[j]];
598 if (this_reject < best_reject
599 || (this_reject == best_reject && this_nregs > best_nregs))
601 best = j;
602 best_reject = this_reject;
603 best_nregs = this_nregs;
607 std::swap (alternative_order[best], alternative_order[i]);
610 /* Substitute the operands as determined by op_alt_regno for the best
611 alternative. */
612 j = alternative_order[0];
614 for (i = 0; i < recog_data.n_operands; i++)
616 machine_mode mode = recog_data.operand_mode[i];
617 if (op_alt_regno[i][j] == -1)
618 continue;
620 validate_change (insn, recog_data.operand_loc[i],
621 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
624 for (i = recog_data.n_dups - 1; i >= 0; i--)
626 int op = recog_data.dup_num[i];
627 machine_mode mode = recog_data.operand_mode[op];
629 if (op_alt_regno[op][j] == -1)
630 continue;
632 validate_change (insn, recog_data.dup_loc[i],
633 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
636 return apply_change_group ();
639 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
640 addressing now.
641 This code might also be useful when reload gave up on reg+reg addressing
642 because of clashes between the return register and INDEX_REG_CLASS. */
644 /* The maximum number of uses of a register we can keep track of to
645 replace them with reg+reg addressing. */
646 #define RELOAD_COMBINE_MAX_USES 16
648 /* Describes a recorded use of a register. */
649 struct reg_use
651 /* The insn where a register has been used. */
652 rtx_insn *insn;
653 /* Points to the memory reference enclosing the use, if any, NULL_RTX
654 otherwise. */
655 rtx containing_mem;
656 /* Location of the register within INSN. */
657 rtx *usep;
658 /* The reverse uid of the insn. */
659 int ruid;
662 /* If the register is used in some unknown fashion, USE_INDEX is negative.
663 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
664 indicates where it is first set or clobbered.
665 Otherwise, USE_INDEX is the index of the last encountered use of the
666 register (which is first among these we have seen since we scan backwards).
667 USE_RUID indicates the first encountered, i.e. last, of these uses.
668 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
669 with a constant offset; OFFSET contains this constant in that case.
670 STORE_RUID is always meaningful if we only want to use a value in a
671 register in a different place: it denotes the next insn in the insn
672 stream (i.e. the last encountered) that sets or clobbers the register.
673 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
674 static struct
676 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
677 rtx offset;
678 int use_index;
679 int store_ruid;
680 int real_store_ruid;
681 int use_ruid;
682 bool all_offsets_match;
683 } reg_state[FIRST_PSEUDO_REGISTER];
685 /* Reverse linear uid. This is increased in reload_combine while scanning
686 the instructions from last to first. It is used to set last_label_ruid
687 and the store_ruid / use_ruid fields in reg_state. */
688 static int reload_combine_ruid;
690 /* The RUID of the last label we encountered in reload_combine. */
691 static int last_label_ruid;
693 /* The RUID of the last jump we encountered in reload_combine. */
694 static int last_jump_ruid;
696 /* The register numbers of the first and last index register. A value of
697 -1 in LAST_INDEX_REG indicates that we've previously computed these
698 values and found no suitable index registers. */
699 static int first_index_reg = -1;
700 static int last_index_reg;
702 #define LABEL_LIVE(LABEL) \
703 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
705 /* Subroutine of reload_combine_split_ruids, called to fix up a single
706 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
708 static inline void
709 reload_combine_split_one_ruid (int *pruid, int split_ruid)
711 if (*pruid > split_ruid)
712 (*pruid)++;
715 /* Called when we insert a new insn in a position we've already passed in
716 the scan. Examine all our state, increasing all ruids that are higher
717 than SPLIT_RUID by one in order to make room for a new insn. */
719 static void
720 reload_combine_split_ruids (int split_ruid)
722 unsigned i;
724 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
725 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
726 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
728 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
730 int j, idx = reg_state[i].use_index;
731 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
732 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
733 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
734 split_ruid);
735 if (idx < 0)
736 continue;
737 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
739 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
740 split_ruid);
745 /* Called when we are about to rescan a previously encountered insn with
746 reload_combine_note_use after modifying some part of it. This clears all
747 information about uses in that particular insn. */
749 static void
750 reload_combine_purge_insn_uses (rtx_insn *insn)
752 unsigned i;
754 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
756 int j, k, idx = reg_state[i].use_index;
757 if (idx < 0)
758 continue;
759 j = k = RELOAD_COMBINE_MAX_USES;
760 while (j-- > idx)
762 if (reg_state[i].reg_use[j].insn != insn)
764 k--;
765 if (k != j)
766 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
769 reg_state[i].use_index = k;
773 /* Called when we need to forget about all uses of REGNO after an insn
774 which is identified by RUID. */
776 static void
777 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
779 int j, k, idx = reg_state[regno].use_index;
780 if (idx < 0)
781 return;
782 j = k = RELOAD_COMBINE_MAX_USES;
783 while (j-- > idx)
785 if (reg_state[regno].reg_use[j].ruid >= ruid)
787 k--;
788 if (k != j)
789 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
792 reg_state[regno].use_index = k;
795 /* Find the use of REGNO with the ruid that is highest among those
796 lower than RUID_LIMIT, and return it if it is the only use of this
797 reg in the insn. Return NULL otherwise. */
799 static struct reg_use *
800 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
802 int i, best_ruid = 0;
803 int use_idx = reg_state[regno].use_index;
804 struct reg_use *retval;
806 if (use_idx < 0)
807 return NULL;
808 retval = NULL;
809 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
811 struct reg_use *use = reg_state[regno].reg_use + i;
812 int this_ruid = use->ruid;
813 if (this_ruid >= ruid_limit)
814 continue;
815 if (this_ruid > best_ruid)
817 best_ruid = this_ruid;
818 retval = use;
820 else if (this_ruid == best_ruid)
821 retval = NULL;
823 if (last_label_ruid >= best_ruid)
824 return NULL;
825 return retval;
828 /* After we've moved an add insn, fix up any debug insns that occur
829 between the old location of the add and the new location. REG is
830 the destination register of the add insn; REPLACEMENT is the
831 SET_SRC of the add. FROM and TO specify the range in which we
832 should make this change on debug insns. */
834 static void
835 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
837 rtx_insn *insn;
838 for (insn = from; insn != to; insn = NEXT_INSN (insn))
840 rtx t;
842 if (!DEBUG_INSN_P (insn))
843 continue;
845 t = INSN_VAR_LOCATION_LOC (insn);
846 t = simplify_replace_rtx (t, reg, replacement);
847 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
851 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
852 with SRC in the insn described by USE, taking costs into account. Return
853 true if we made the replacement. */
855 static bool
856 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
858 rtx_insn *use_insn = use->insn;
859 rtx mem = use->containing_mem;
860 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
862 if (mem != NULL_RTX)
864 addr_space_t as = MEM_ADDR_SPACE (mem);
865 rtx oldaddr = XEXP (mem, 0);
866 rtx newaddr = NULL_RTX;
867 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
868 int new_cost;
870 newaddr = simplify_replace_rtx (oldaddr, reg, src);
871 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
873 XEXP (mem, 0) = newaddr;
874 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
875 XEXP (mem, 0) = oldaddr;
876 if (new_cost <= old_cost
877 && validate_change (use_insn,
878 &XEXP (mem, 0), newaddr, 0))
879 return true;
882 else
884 rtx new_set = single_set (use_insn);
885 if (new_set
886 && REG_P (SET_DEST (new_set))
887 && GET_CODE (SET_SRC (new_set)) == PLUS
888 && REG_P (XEXP (SET_SRC (new_set), 0))
889 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
891 rtx new_src;
892 machine_mode mode = GET_MODE (SET_DEST (new_set));
893 int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
895 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
896 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
898 if (set_src_cost (new_src, mode, speed) <= old_cost
899 && validate_change (use_insn, &SET_SRC (new_set),
900 new_src, 0))
901 return true;
904 return false;
907 /* Called by reload_combine when scanning INSN. This function tries to detect
908 patterns where a constant is added to a register, and the result is used
909 in an address.
910 Return true if no further processing is needed on INSN; false if it wasn't
911 recognized and should be handled normally. */
913 static bool
914 reload_combine_recognize_const_pattern (rtx_insn *insn)
916 int from_ruid = reload_combine_ruid;
917 rtx set, pat, reg, src, addreg;
918 unsigned int regno;
919 struct reg_use *use;
920 bool must_move_add;
921 rtx_insn *add_moved_after_insn = NULL;
922 int add_moved_after_ruid = 0;
923 int clobbered_regno = -1;
925 set = single_set (insn);
926 if (set == NULL_RTX)
927 return false;
929 reg = SET_DEST (set);
930 src = SET_SRC (set);
931 if (!REG_P (reg)
932 || REG_NREGS (reg) != 1
933 || GET_MODE (reg) != Pmode
934 || reg == stack_pointer_rtx)
935 return false;
937 regno = REGNO (reg);
939 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
940 uses of REG1 inside an address, or inside another add insn. If
941 possible and profitable, merge the addition into subsequent
942 uses. */
943 if (GET_CODE (src) != PLUS
944 || !REG_P (XEXP (src, 0))
945 || !CONSTANT_P (XEXP (src, 1)))
946 return false;
948 addreg = XEXP (src, 0);
949 must_move_add = rtx_equal_p (reg, addreg);
951 pat = PATTERN (insn);
952 if (must_move_add && set != pat)
954 /* We have to be careful when moving the add; apart from the
955 single_set there may also be clobbers. Recognize one special
956 case, that of one clobber alongside the set (likely a clobber
957 of the CC register). */
958 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
959 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
960 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
961 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
962 return false;
963 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
968 use = reload_combine_closest_single_use (regno, from_ruid);
970 if (use)
971 /* Start the search for the next use from here. */
972 from_ruid = use->ruid;
974 if (use && GET_MODE (*use->usep) == Pmode)
976 bool delete_add = false;
977 rtx_insn *use_insn = use->insn;
978 int use_ruid = use->ruid;
980 /* Avoid moving the add insn past a jump. */
981 if (must_move_add && use_ruid <= last_jump_ruid)
982 break;
984 /* If the add clobbers another hard reg in parallel, don't move
985 it past a real set of this hard reg. */
986 if (must_move_add && clobbered_regno >= 0
987 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
988 break;
990 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
991 if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
992 break;
994 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
995 /* Avoid moving a use of ADDREG past a point where it is stored. */
996 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
997 break;
999 /* We also must not move the addition past an insn that sets
1000 the same register, unless we can combine two add insns. */
1001 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1003 if (use->containing_mem == NULL_RTX)
1004 delete_add = true;
1005 else
1006 break;
1009 if (try_replace_in_use (use, reg, src))
1011 reload_combine_purge_insn_uses (use_insn);
1012 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1013 use_ruid, NULL_RTX);
1015 if (delete_add)
1017 fixup_debug_insns (reg, src, insn, use_insn);
1018 delete_insn (insn);
1019 return true;
1021 if (must_move_add)
1023 add_moved_after_insn = use_insn;
1024 add_moved_after_ruid = use_ruid;
1026 continue;
1029 /* If we get here, we couldn't handle this use. */
1030 if (must_move_add)
1031 break;
1033 while (use);
1035 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1036 /* Process the add normally. */
1037 return false;
1039 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1041 reorder_insns (insn, insn, add_moved_after_insn);
1042 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1043 reload_combine_split_ruids (add_moved_after_ruid - 1);
1044 reload_combine_note_use (&PATTERN (insn), insn,
1045 add_moved_after_ruid, NULL_RTX);
1046 reg_state[regno].store_ruid = add_moved_after_ruid;
1048 return true;
1051 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1052 can handle and improve. Return true if no further processing is needed on
1053 INSN; false if it wasn't recognized and should be handled normally. */
1055 static bool
1056 reload_combine_recognize_pattern (rtx_insn *insn)
1058 rtx set, reg, src;
1060 set = single_set (insn);
1061 if (set == NULL_RTX)
1062 return false;
1064 reg = SET_DEST (set);
1065 src = SET_SRC (set);
1066 if (!REG_P (reg) || REG_NREGS (reg) != 1)
1067 return false;
1069 unsigned int regno = REGNO (reg);
1070 machine_mode mode = GET_MODE (reg);
1072 if (reg_state[regno].use_index < 0
1073 || reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES)
1074 return false;
1076 for (int i = reg_state[regno].use_index;
1077 i < RELOAD_COMBINE_MAX_USES; i++)
1079 struct reg_use *use = reg_state[regno].reg_use + i;
1080 if (GET_MODE (*use->usep) != mode)
1081 return false;
1084 /* Look for (set (REGX) (CONST_INT))
1085 (set (REGX) (PLUS (REGX) (REGY)))
1087 ... (MEM (REGX)) ...
1088 and convert it to
1089 (set (REGZ) (CONST_INT))
1091 ... (MEM (PLUS (REGZ) (REGY)))... .
1093 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1094 and that we know all uses of REGX before it dies.
1095 Also, explicitly check that REGX != REGY; our life information
1096 does not yet show whether REGY changes in this insn. */
1098 if (GET_CODE (src) == PLUS
1099 && reg_state[regno].all_offsets_match
1100 && last_index_reg != -1
1101 && REG_P (XEXP (src, 1))
1102 && rtx_equal_p (XEXP (src, 0), reg)
1103 && !rtx_equal_p (XEXP (src, 1), reg)
1104 && last_label_ruid < reg_state[regno].use_ruid)
1106 rtx base = XEXP (src, 1);
1107 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1108 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1109 rtx index_reg = NULL_RTX;
1110 rtx reg_sum = NULL_RTX;
1111 int i;
1113 /* Now we need to set INDEX_REG to an index register (denoted as
1114 REGZ in the illustration above) and REG_SUM to the expression
1115 register+register that we want to use to substitute uses of REG
1116 (typically in MEMs) with. First check REG and BASE for being
1117 index registers; we can use them even if they are not dead. */
1118 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1119 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1120 REGNO (base)))
1122 index_reg = reg;
1123 reg_sum = src;
1125 else
1127 /* Otherwise, look for a free index register. Since we have
1128 checked above that neither REG nor BASE are index registers,
1129 if we find anything at all, it will be different from these
1130 two registers. */
1131 for (i = first_index_reg; i <= last_index_reg; i++)
1133 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1134 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1135 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1136 && (call_used_regs[i] || df_regs_ever_live_p (i))
1137 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1138 && !fixed_regs[i] && !global_regs[i]
1139 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1140 && targetm.hard_regno_scratch_ok (i))
1142 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1143 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1144 break;
1149 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1150 (REGY), i.e. BASE, is not clobbered before the last use we'll
1151 create. */
1152 if (reg_sum
1153 && prev_set
1154 && CONST_INT_P (SET_SRC (prev_set))
1155 && rtx_equal_p (SET_DEST (prev_set), reg)
1156 && (reg_state[REGNO (base)].store_ruid
1157 <= reg_state[regno].use_ruid))
1159 /* Change destination register and, if necessary, the constant
1160 value in PREV, the constant loading instruction. */
1161 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1162 if (reg_state[regno].offset != const0_rtx)
1163 validate_change (prev,
1164 &SET_SRC (prev_set),
1165 GEN_INT (INTVAL (SET_SRC (prev_set))
1166 + INTVAL (reg_state[regno].offset)),
1169 /* Now for every use of REG that we have recorded, replace REG
1170 with REG_SUM. */
1171 for (i = reg_state[regno].use_index;
1172 i < RELOAD_COMBINE_MAX_USES; i++)
1173 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1174 reg_state[regno].reg_use[i].usep,
1175 /* Each change must have its own
1176 replacement. */
1177 reg_sum, 1);
1179 if (apply_change_group ())
1181 struct reg_use *lowest_ruid = NULL;
1183 /* For every new use of REG_SUM, we have to record the use
1184 of BASE therein, i.e. operand 1. */
1185 for (i = reg_state[regno].use_index;
1186 i < RELOAD_COMBINE_MAX_USES; i++)
1188 struct reg_use *use = reg_state[regno].reg_use + i;
1189 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1190 use->ruid, use->containing_mem);
1191 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1192 lowest_ruid = use;
1195 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1197 /* Delete the reg-reg addition. */
1198 delete_insn (insn);
1200 if (reg_state[regno].offset != const0_rtx
1201 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1202 are now invalid. */
1203 && remove_reg_equal_equiv_notes (prev))
1204 df_notes_rescan (prev);
1206 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1207 return true;
1211 return false;
1214 static void
1215 reload_combine (void)
1217 rtx_insn *insn, *prev;
1218 basic_block bb;
1219 unsigned int r;
1220 int min_labelno, n_labels;
1221 HARD_REG_SET ever_live_at_start, *label_live;
1223 /* To avoid wasting too much time later searching for an index register,
1224 determine the minimum and maximum index register numbers. */
1225 if (INDEX_REG_CLASS == NO_REGS)
1226 last_index_reg = -1;
1227 else if (first_index_reg == -1 && last_index_reg == 0)
1229 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1230 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1232 if (first_index_reg == -1)
1233 first_index_reg = r;
1235 last_index_reg = r;
1238 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1239 to -1 so we'll know to quit early the next time we get here. */
1240 if (first_index_reg == -1)
1242 last_index_reg = -1;
1243 return;
1247 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1248 information is a bit fuzzy immediately after reload, but it's
1249 still good enough to determine which registers are live at a jump
1250 destination. */
1251 min_labelno = get_first_label_num ();
1252 n_labels = max_label_num () - min_labelno;
1253 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1254 CLEAR_HARD_REG_SET (ever_live_at_start);
1256 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1258 insn = BB_HEAD (bb);
1259 if (LABEL_P (insn))
1261 HARD_REG_SET live;
1262 bitmap live_in = df_get_live_in (bb);
1264 REG_SET_TO_HARD_REG_SET (live, live_in);
1265 compute_use_by_pseudos (&live, live_in);
1266 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1267 IOR_HARD_REG_SET (ever_live_at_start, live);
1271 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1272 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1273 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1275 reg_state[r].store_ruid = 0;
1276 reg_state[r].real_store_ruid = 0;
1277 if (fixed_regs[r])
1278 reg_state[r].use_index = -1;
1279 else
1280 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1283 for (insn = get_last_insn (); insn; insn = prev)
1285 bool control_flow_insn;
1286 rtx note;
1288 prev = PREV_INSN (insn);
1290 /* We cannot do our optimization across labels. Invalidating all the use
1291 information we have would be costly, so we just note where the label
1292 is and then later disable any optimization that would cross it. */
1293 if (LABEL_P (insn))
1294 last_label_ruid = reload_combine_ruid;
1295 else if (BARRIER_P (insn))
1297 /* Crossing a barrier resets all the use information. */
1298 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1299 if (! fixed_regs[r])
1300 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1302 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1303 /* Optimizations across insns being marked as volatile must be
1304 prevented. All the usage information is invalidated
1305 here. */
1306 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1307 if (! fixed_regs[r]
1308 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1309 reg_state[r].use_index = -1;
1311 if (! NONDEBUG_INSN_P (insn))
1312 continue;
1314 reload_combine_ruid++;
1316 control_flow_insn = control_flow_insn_p (insn);
1317 if (control_flow_insn)
1318 last_jump_ruid = reload_combine_ruid;
1320 if (reload_combine_recognize_const_pattern (insn)
1321 || reload_combine_recognize_pattern (insn))
1322 continue;
1324 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1326 if (CALL_P (insn))
1328 rtx link;
1329 HARD_REG_SET used_regs;
1331 get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
1333 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1334 if (TEST_HARD_REG_BIT (used_regs, r))
1336 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1337 reg_state[r].store_ruid = reload_combine_ruid;
1340 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1341 link = XEXP (link, 1))
1343 rtx setuse = XEXP (link, 0);
1344 rtx usage_rtx = XEXP (setuse, 0);
1345 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1346 && REG_P (usage_rtx))
1348 unsigned int end_regno = END_REGNO (usage_rtx);
1349 for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
1350 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1352 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1353 reg_state[i].store_ruid = reload_combine_ruid;
1355 else
1356 reg_state[i].use_index = -1;
1361 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1363 /* Non-spill registers might be used at the call destination in
1364 some unknown fashion, so we have to mark the unknown use. */
1365 HARD_REG_SET *live;
1367 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1368 && JUMP_LABEL (insn))
1370 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1371 live = NULL;
1372 else
1373 live = &LABEL_LIVE (JUMP_LABEL (insn));
1375 else
1376 live = &ever_live_at_start;
1378 if (live)
1379 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1380 if (TEST_HARD_REG_BIT (*live, r))
1381 reg_state[r].use_index = -1;
1384 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1385 NULL_RTX);
1387 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1389 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1391 int regno = REGNO (XEXP (note, 0));
1392 reg_state[regno].store_ruid = reload_combine_ruid;
1393 reg_state[regno].real_store_ruid = reload_combine_ruid;
1394 reg_state[regno].use_index = -1;
1399 free (label_live);
1402 /* Check if DST is a register or a subreg of a register; if it is,
1403 update store_ruid, real_store_ruid and use_index in the reg_state
1404 structure accordingly. Called via note_stores from reload_combine. */
1406 static void
1407 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1409 int regno = 0;
1410 int i;
1411 machine_mode mode = GET_MODE (dst);
1413 if (GET_CODE (dst) == SUBREG)
1415 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1416 GET_MODE (SUBREG_REG (dst)),
1417 SUBREG_BYTE (dst),
1418 GET_MODE (dst));
1419 dst = SUBREG_REG (dst);
1422 /* Some targets do argument pushes without adding REG_INC notes. */
1424 if (MEM_P (dst))
1426 dst = XEXP (dst, 0);
1427 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1428 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1429 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1431 unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1432 for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
1434 /* We could probably do better, but for now mark the register
1435 as used in an unknown fashion and set/clobbered at this
1436 insn. */
1437 reg_state[i].use_index = -1;
1438 reg_state[i].store_ruid = reload_combine_ruid;
1439 reg_state[i].real_store_ruid = reload_combine_ruid;
1442 else
1443 return;
1446 if (!REG_P (dst))
1447 return;
1448 regno += REGNO (dst);
1450 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1451 careful with registers / register parts that are not full words.
1452 Similarly for ZERO_EXTRACT. */
1453 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1454 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1456 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1458 reg_state[i].use_index = -1;
1459 reg_state[i].store_ruid = reload_combine_ruid;
1460 reg_state[i].real_store_ruid = reload_combine_ruid;
1463 else
1465 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1467 reg_state[i].store_ruid = reload_combine_ruid;
1468 if (GET_CODE (set) == SET)
1469 reg_state[i].real_store_ruid = reload_combine_ruid;
1470 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1475 /* XP points to a piece of rtl that has to be checked for any uses of
1476 registers.
1477 *XP is the pattern of INSN, or a part of it.
1478 Called from reload_combine, and recursively by itself. */
1479 static void
1480 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1482 rtx x = *xp;
1483 enum rtx_code code = x->code;
1484 const char *fmt;
1485 int i, j;
1486 rtx offset = const0_rtx; /* For the REG case below. */
1488 switch (code)
1490 case SET:
1491 if (REG_P (SET_DEST (x)))
1493 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1494 return;
1496 break;
1498 case USE:
1499 /* If this is the USE of a return value, we can't change it. */
1500 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1502 /* Mark the return register as used in an unknown fashion. */
1503 rtx reg = XEXP (x, 0);
1504 unsigned int end_regno = END_REGNO (reg);
1505 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1506 reg_state[regno].use_index = -1;
1507 return;
1509 break;
1511 case CLOBBER:
1512 if (REG_P (SET_DEST (x)))
1514 /* No spurious CLOBBERs of pseudo registers may remain. */
1515 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1516 return;
1518 break;
1520 case PLUS:
1521 /* We are interested in (plus (reg) (const_int)) . */
1522 if (!REG_P (XEXP (x, 0))
1523 || !CONST_INT_P (XEXP (x, 1)))
1524 break;
1525 offset = XEXP (x, 1);
1526 x = XEXP (x, 0);
1527 /* Fall through. */
1528 case REG:
1530 int regno = REGNO (x);
1531 int use_index;
1532 int nregs;
1534 /* No spurious USEs of pseudo registers may remain. */
1535 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1537 nregs = REG_NREGS (x);
1539 /* We can't substitute into multi-hard-reg uses. */
1540 if (nregs > 1)
1542 while (--nregs >= 0)
1543 reg_state[regno + nregs].use_index = -1;
1544 return;
1547 /* We may be called to update uses in previously seen insns.
1548 Don't add uses beyond the last store we saw. */
1549 if (ruid < reg_state[regno].store_ruid)
1550 return;
1552 /* If this register is already used in some unknown fashion, we
1553 can't do anything.
1554 If we decrement the index from zero to -1, we can't store more
1555 uses, so this register becomes used in an unknown fashion. */
1556 use_index = --reg_state[regno].use_index;
1557 if (use_index < 0)
1558 return;
1560 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1562 /* This is the first use of this register we have seen since we
1563 marked it as dead. */
1564 reg_state[regno].offset = offset;
1565 reg_state[regno].all_offsets_match = true;
1566 reg_state[regno].use_ruid = ruid;
1568 else
1570 if (reg_state[regno].use_ruid > ruid)
1571 reg_state[regno].use_ruid = ruid;
1573 if (! rtx_equal_p (offset, reg_state[regno].offset))
1574 reg_state[regno].all_offsets_match = false;
1577 reg_state[regno].reg_use[use_index].insn = insn;
1578 reg_state[regno].reg_use[use_index].ruid = ruid;
1579 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1580 reg_state[regno].reg_use[use_index].usep = xp;
1581 return;
1584 case MEM:
1585 containing_mem = x;
1586 break;
1588 default:
1589 break;
1592 /* Recursively process the components of X. */
1593 fmt = GET_RTX_FORMAT (code);
1594 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1596 if (fmt[i] == 'e')
1597 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1598 else if (fmt[i] == 'E')
1600 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1601 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1602 containing_mem);
1607 /* See if we can reduce the cost of a constant by replacing a move
1608 with an add. We track situations in which a register is set to a
1609 constant or to a register plus a constant. */
1610 /* We cannot do our optimization across labels. Invalidating all the
1611 information about register contents we have would be costly, so we
1612 use move2add_last_label_luid to note where the label is and then
1613 later disable any optimization that would cross it.
1614 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1615 are only valid if reg_set_luid[n] is greater than
1616 move2add_last_label_luid.
1617 For a set that established a new (potential) base register with
1618 non-constant value, we use move2add_luid from the place where the
1619 setting insn is encountered; registers based off that base then
1620 get the same reg_set_luid. Constants all get
1621 move2add_last_label_luid + 1 as their reg_set_luid. */
1622 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1624 /* If reg_base_reg[n] is negative, register n has been set to
1625 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1626 If reg_base_reg[n] is non-negative, register n has been set to the
1627 sum of reg_offset[n] and the value of register reg_base_reg[n]
1628 before reg_set_luid[n], calculated in mode reg_mode[n] .
1629 For multi-hard-register registers, all but the first one are
1630 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1631 marks it as invalid. */
1632 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1633 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1634 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1635 static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1637 /* move2add_luid is linearly increased while scanning the instructions
1638 from first to last. It is used to set reg_set_luid in
1639 reload_cse_move2add and move2add_note_store. */
1640 static int move2add_luid;
1642 /* move2add_last_label_luid is set whenever a label is found. Labels
1643 invalidate all previously collected reg_offset data. */
1644 static int move2add_last_label_luid;
1646 /* ??? We don't know how zero / sign extension is handled, hence we
1647 can't go from a narrower to a wider mode. */
1648 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1649 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1650 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1651 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1653 /* Record that REG is being set to a value with the mode of REG. */
1655 static void
1656 move2add_record_mode (rtx reg)
1658 int regno, nregs;
1659 machine_mode mode = GET_MODE (reg);
1661 if (GET_CODE (reg) == SUBREG)
1663 regno = subreg_regno (reg);
1664 nregs = subreg_nregs (reg);
1666 else if (REG_P (reg))
1668 regno = REGNO (reg);
1669 nregs = REG_NREGS (reg);
1671 else
1672 gcc_unreachable ();
1673 for (int i = nregs - 1; i > 0; i--)
1674 reg_mode[regno + i] = BLKmode;
1675 reg_mode[regno] = mode;
1678 /* Record that REG is being set to the sum of SYM and OFF. */
1680 static void
1681 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1683 int regno = REGNO (reg);
1685 move2add_record_mode (reg);
1686 reg_set_luid[regno] = move2add_luid;
1687 reg_base_reg[regno] = -1;
1688 reg_symbol_ref[regno] = sym;
1689 reg_offset[regno] = INTVAL (off);
1692 /* Check if REGNO contains a valid value in MODE. */
1694 static bool
1695 move2add_valid_value_p (int regno, machine_mode mode)
1697 if (reg_set_luid[regno] <= move2add_last_label_luid)
1698 return false;
1700 if (mode != reg_mode[regno])
1702 if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
1703 return false;
1704 /* The value loaded into regno in reg_mode[regno] is also valid in
1705 mode after truncation only if (REG:mode regno) is the lowpart of
1706 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1707 regno of the lowpart might be different. */
1708 int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
1709 s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
1710 if (s_off != 0)
1711 /* We could in principle adjust regno, check reg_mode[regno] to be
1712 BLKmode, and return s_off to the caller (vs. -1 for failure),
1713 but we currently have no callers that could make use of this
1714 information. */
1715 return false;
1718 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1719 if (reg_mode[regno + i] != BLKmode)
1720 return false;
1721 return true;
1724 /* This function is called with INSN that sets REG to (SYM + OFF),
1725 while REG is known to already have value (SYM + offset).
1726 This function tries to change INSN into an add instruction
1727 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1728 It also updates the information about REG's known value.
1729 Return true if we made a change. */
1731 static bool
1732 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1734 rtx pat = PATTERN (insn);
1735 rtx src = SET_SRC (pat);
1736 int regno = REGNO (reg);
1737 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
1738 GET_MODE (reg));
1739 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1740 bool changed = false;
1742 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1743 use (set (reg) (reg)) instead.
1744 We don't delete this insn, nor do we convert it into a
1745 note, to avoid losing register notes or the return
1746 value flag. jump2 already knows how to get rid of
1747 no-op moves. */
1748 if (new_src == const0_rtx)
1750 /* If the constants are different, this is a
1751 truncation, that, if turned into (set (reg)
1752 (reg)), would be discarded. Maybe we should
1753 try a truncMN pattern? */
1754 if (INTVAL (off) == reg_offset [regno])
1755 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1757 else
1759 struct full_rtx_costs oldcst, newcst;
1760 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1762 get_full_set_rtx_cost (pat, &oldcst);
1763 SET_SRC (pat) = tem;
1764 get_full_set_rtx_cost (pat, &newcst);
1765 SET_SRC (pat) = src;
1767 if (costs_lt_p (&newcst, &oldcst, speed)
1768 && have_add2_insn (reg, new_src))
1769 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1770 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1772 machine_mode narrow_mode;
1773 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1774 narrow_mode != VOIDmode
1775 && narrow_mode != GET_MODE (reg);
1776 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1778 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1779 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1780 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1782 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1783 rtx narrow_src = gen_int_mode (INTVAL (off),
1784 narrow_mode);
1785 rtx new_set
1786 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
1787 narrow_reg),
1788 narrow_src);
1789 get_full_set_rtx_cost (new_set, &newcst);
1790 if (costs_lt_p (&newcst, &oldcst, speed))
1792 changed = validate_change (insn, &PATTERN (insn),
1793 new_set, 0);
1794 if (changed)
1795 break;
1801 move2add_record_sym_value (reg, sym, off);
1802 return changed;
1806 /* This function is called with INSN that sets REG to (SYM + OFF),
1807 but REG doesn't have known value (SYM + offset). This function
1808 tries to find another register which is known to already have
1809 value (SYM + offset) and change INSN into an add instruction
1810 (set (REG) (plus (the found register) (OFF - offset))) if such
1811 a register is found. It also updates the information about
1812 REG's known value.
1813 Return true iff we made a change. */
1815 static bool
1816 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1818 rtx pat = PATTERN (insn);
1819 rtx src = SET_SRC (pat);
1820 int regno = REGNO (reg);
1821 int min_regno = 0;
1822 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1823 int i;
1824 bool changed = false;
1825 struct full_rtx_costs oldcst, newcst, mincst;
1826 rtx plus_expr;
1828 init_costs_to_max (&mincst);
1829 get_full_set_rtx_cost (pat, &oldcst);
1831 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1832 SET_SRC (pat) = plus_expr;
1834 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1835 if (move2add_valid_value_p (i, GET_MODE (reg))
1836 && reg_base_reg[i] < 0
1837 && reg_symbol_ref[i] != NULL_RTX
1838 && rtx_equal_p (sym, reg_symbol_ref[i]))
1840 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1841 GET_MODE (reg));
1842 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1843 use (set (reg) (reg)) instead.
1844 We don't delete this insn, nor do we convert it into a
1845 note, to avoid losing register notes or the return
1846 value flag. jump2 already knows how to get rid of
1847 no-op moves. */
1848 if (new_src == const0_rtx)
1850 init_costs_to_zero (&mincst);
1851 min_regno = i;
1852 break;
1854 else
1856 XEXP (plus_expr, 1) = new_src;
1857 get_full_set_rtx_cost (pat, &newcst);
1859 if (costs_lt_p (&newcst, &mincst, speed))
1861 mincst = newcst;
1862 min_regno = i;
1866 SET_SRC (pat) = src;
1868 if (costs_lt_p (&mincst, &oldcst, speed))
1870 rtx tem;
1872 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1873 if (i != min_regno)
1875 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1876 GET_MODE (reg));
1877 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1879 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1880 changed = true;
1882 reg_set_luid[regno] = move2add_luid;
1883 move2add_record_sym_value (reg, sym, off);
1884 return changed;
1887 /* Convert move insns with constant inputs to additions if they are cheaper.
1888 Return true if any changes were made. */
1889 static bool
1890 reload_cse_move2add (rtx_insn *first)
1892 int i;
1893 rtx_insn *insn;
1894 bool changed = false;
1896 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1898 reg_set_luid[i] = 0;
1899 reg_offset[i] = 0;
1900 reg_base_reg[i] = 0;
1901 reg_symbol_ref[i] = NULL_RTX;
1902 reg_mode[i] = VOIDmode;
1905 move2add_last_label_luid = 0;
1906 move2add_luid = 2;
1907 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1909 rtx pat, note;
1911 if (LABEL_P (insn))
1913 move2add_last_label_luid = move2add_luid;
1914 /* We're going to increment move2add_luid twice after a
1915 label, so that we can use move2add_last_label_luid + 1 as
1916 the luid for constants. */
1917 move2add_luid++;
1918 continue;
1920 if (! INSN_P (insn))
1921 continue;
1922 pat = PATTERN (insn);
1923 /* For simplicity, we only perform this optimization on
1924 straightforward SETs. */
1925 if (GET_CODE (pat) == SET
1926 && REG_P (SET_DEST (pat)))
1928 rtx reg = SET_DEST (pat);
1929 int regno = REGNO (reg);
1930 rtx src = SET_SRC (pat);
1932 /* Check if we have valid information on the contents of this
1933 register in the mode of REG. */
1934 if (move2add_valid_value_p (regno, GET_MODE (reg))
1935 && dbg_cnt (cse2_move2add))
1937 /* Try to transform (set (REGX) (CONST_INT A))
1939 (set (REGX) (CONST_INT B))
1941 (set (REGX) (CONST_INT A))
1943 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1945 (set (REGX) (CONST_INT A))
1947 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1950 if (CONST_INT_P (src)
1951 && reg_base_reg[regno] < 0
1952 && reg_symbol_ref[regno] == NULL_RTX)
1954 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1955 continue;
1958 /* Try to transform (set (REGX) (REGY))
1959 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1961 (set (REGX) (REGY))
1962 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1964 (set (REGX) (REGY))
1965 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1967 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1968 else if (REG_P (src)
1969 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1970 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1971 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
1973 rtx_insn *next = next_nonnote_nondebug_insn (insn);
1974 rtx set = NULL_RTX;
1975 if (next)
1976 set = single_set (next);
1977 if (set
1978 && SET_DEST (set) == reg
1979 && GET_CODE (SET_SRC (set)) == PLUS
1980 && XEXP (SET_SRC (set), 0) == reg
1981 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
1983 rtx src3 = XEXP (SET_SRC (set), 1);
1984 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
1985 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1986 HOST_WIDE_INT regno_offset = reg_offset[regno];
1987 rtx new_src =
1988 gen_int_mode (added_offset
1989 + base_offset
1990 - regno_offset,
1991 GET_MODE (reg));
1992 bool success = false;
1993 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1995 if (new_src == const0_rtx)
1996 /* See above why we create (set (reg) (reg)) here. */
1997 success
1998 = validate_change (next, &SET_SRC (set), reg, 0);
1999 else
2001 rtx old_src = SET_SRC (set);
2002 struct full_rtx_costs oldcst, newcst;
2003 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
2005 get_full_set_rtx_cost (set, &oldcst);
2006 SET_SRC (set) = tem;
2007 get_full_set_src_cost (tem, GET_MODE (reg), &newcst);
2008 SET_SRC (set) = old_src;
2009 costs_add_n_insns (&oldcst, 1);
2011 if (costs_lt_p (&newcst, &oldcst, speed)
2012 && have_add2_insn (reg, new_src))
2014 rtx newpat = gen_rtx_SET (reg, tem);
2015 success
2016 = validate_change (next, &PATTERN (next),
2017 newpat, 0);
2020 if (success)
2021 delete_insn (insn);
2022 changed |= success;
2023 insn = next;
2024 move2add_record_mode (reg);
2025 reg_offset[regno]
2026 = trunc_int_for_mode (added_offset + base_offset,
2027 GET_MODE (reg));
2028 continue;
2033 /* Try to transform
2034 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2036 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2038 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2040 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2041 if ((GET_CODE (src) == SYMBOL_REF
2042 || (GET_CODE (src) == CONST
2043 && GET_CODE (XEXP (src, 0)) == PLUS
2044 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2045 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2046 && dbg_cnt (cse2_move2add))
2048 rtx sym, off;
2050 if (GET_CODE (src) == SYMBOL_REF)
2052 sym = src;
2053 off = const0_rtx;
2055 else
2057 sym = XEXP (XEXP (src, 0), 0);
2058 off = XEXP (XEXP (src, 0), 1);
2061 /* If the reg already contains the value which is sum of
2062 sym and some constant value, we can use an add2 insn. */
2063 if (move2add_valid_value_p (regno, GET_MODE (reg))
2064 && reg_base_reg[regno] < 0
2065 && reg_symbol_ref[regno] != NULL_RTX
2066 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2067 changed |= move2add_use_add2_insn (reg, sym, off, insn);
2069 /* Otherwise, we have to find a register whose value is sum
2070 of sym and some constant value. */
2071 else
2072 changed |= move2add_use_add3_insn (reg, sym, off, insn);
2074 continue;
2078 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2080 if (REG_NOTE_KIND (note) == REG_INC
2081 && REG_P (XEXP (note, 0)))
2083 /* Reset the information about this register. */
2084 int regno = REGNO (XEXP (note, 0));
2085 if (regno < FIRST_PSEUDO_REGISTER)
2087 move2add_record_mode (XEXP (note, 0));
2088 reg_mode[regno] = VOIDmode;
2092 note_stores (PATTERN (insn), move2add_note_store, insn);
2094 /* If INSN is a conditional branch, we try to extract an
2095 implicit set out of it. */
2096 if (any_condjump_p (insn))
2098 rtx cnd = fis_get_condition (insn);
2100 if (cnd != NULL_RTX
2101 && GET_CODE (cnd) == NE
2102 && REG_P (XEXP (cnd, 0))
2103 && !reg_set_p (XEXP (cnd, 0), insn)
2104 /* The following two checks, which are also in
2105 move2add_note_store, are intended to reduce the
2106 number of calls to gen_rtx_SET to avoid memory
2107 allocation if possible. */
2108 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2109 && REG_NREGS (XEXP (cnd, 0)) == 1
2110 && CONST_INT_P (XEXP (cnd, 1)))
2112 rtx implicit_set =
2113 gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
2114 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2118 /* If this is a CALL_INSN, all call used registers are stored with
2119 unknown values. */
2120 if (CALL_P (insn))
2122 rtx link;
2124 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2126 if (call_used_regs[i])
2127 /* Reset the information about this register. */
2128 reg_mode[i] = VOIDmode;
2131 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
2132 link = XEXP (link, 1))
2134 rtx setuse = XEXP (link, 0);
2135 rtx usage_rtx = XEXP (setuse, 0);
2136 if (GET_CODE (setuse) == CLOBBER
2137 && REG_P (usage_rtx))
2139 unsigned int end_regno = END_REGNO (usage_rtx);
2140 for (unsigned int r = REGNO (usage_rtx); r < end_regno; ++r)
2141 /* Reset the information about this register. */
2142 reg_mode[r] = VOIDmode;
2147 return changed;
2150 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2151 contains SET.
2152 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2153 Called from reload_cse_move2add via note_stores. */
2155 static void
2156 move2add_note_store (rtx dst, const_rtx set, void *data)
2158 rtx_insn *insn = (rtx_insn *) data;
2159 unsigned int regno = 0;
2160 machine_mode mode = GET_MODE (dst);
2162 /* Some targets do argument pushes without adding REG_INC notes. */
2164 if (MEM_P (dst))
2166 dst = XEXP (dst, 0);
2167 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2168 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2169 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
2170 return;
2173 if (GET_CODE (dst) == SUBREG)
2174 regno = subreg_regno (dst);
2175 else if (REG_P (dst))
2176 regno = REGNO (dst);
2177 else
2178 return;
2180 if (SCALAR_INT_MODE_P (mode)
2181 && GET_CODE (set) == SET)
2183 rtx note, sym = NULL_RTX;
2184 rtx off;
2186 note = find_reg_equal_equiv_note (insn);
2187 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2189 sym = XEXP (note, 0);
2190 off = const0_rtx;
2192 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2193 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2194 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2195 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2197 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2198 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2201 if (sym != NULL_RTX)
2203 move2add_record_sym_value (dst, sym, off);
2204 return;
2208 if (SCALAR_INT_MODE_P (mode)
2209 && GET_CODE (set) == SET
2210 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2211 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2213 rtx src = SET_SRC (set);
2214 rtx base_reg;
2215 unsigned HOST_WIDE_INT offset;
2216 int base_regno;
2218 switch (GET_CODE (src))
2220 case PLUS:
2221 if (REG_P (XEXP (src, 0)))
2223 base_reg = XEXP (src, 0);
2225 if (CONST_INT_P (XEXP (src, 1)))
2226 offset = UINTVAL (XEXP (src, 1));
2227 else if (REG_P (XEXP (src, 1))
2228 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2230 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2231 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2232 offset = reg_offset[REGNO (XEXP (src, 1))];
2233 /* Maybe the first register is known to be a
2234 constant. */
2235 else if (move2add_valid_value_p (REGNO (base_reg), mode)
2236 && reg_base_reg[REGNO (base_reg)] < 0
2237 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2239 offset = reg_offset[REGNO (base_reg)];
2240 base_reg = XEXP (src, 1);
2242 else
2243 goto invalidate;
2245 else
2246 goto invalidate;
2248 break;
2251 goto invalidate;
2253 case REG:
2254 base_reg = src;
2255 offset = 0;
2256 break;
2258 case CONST_INT:
2259 /* Start tracking the register as a constant. */
2260 reg_base_reg[regno] = -1;
2261 reg_symbol_ref[regno] = NULL_RTX;
2262 reg_offset[regno] = INTVAL (SET_SRC (set));
2263 /* We assign the same luid to all registers set to constants. */
2264 reg_set_luid[regno] = move2add_last_label_luid + 1;
2265 move2add_record_mode (dst);
2266 return;
2268 default:
2269 goto invalidate;
2272 base_regno = REGNO (base_reg);
2273 /* If information about the base register is not valid, set it
2274 up as a new base register, pretending its value is known
2275 starting from the current insn. */
2276 if (!move2add_valid_value_p (base_regno, mode))
2278 reg_base_reg[base_regno] = base_regno;
2279 reg_symbol_ref[base_regno] = NULL_RTX;
2280 reg_offset[base_regno] = 0;
2281 reg_set_luid[base_regno] = move2add_luid;
2282 gcc_assert (GET_MODE (base_reg) == mode);
2283 move2add_record_mode (base_reg);
2286 /* Copy base information from our base register. */
2287 reg_set_luid[regno] = reg_set_luid[base_regno];
2288 reg_base_reg[regno] = reg_base_reg[base_regno];
2289 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2291 /* Compute the sum of the offsets or constants. */
2292 reg_offset[regno]
2293 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2295 move2add_record_mode (dst);
2297 else
2299 invalidate:
2300 /* Invalidate the contents of the register. */
2301 move2add_record_mode (dst);
2302 reg_mode[regno] = VOIDmode;
2306 namespace {
2308 const pass_data pass_data_postreload_cse =
2310 RTL_PASS, /* type */
2311 "postreload", /* name */
2312 OPTGROUP_NONE, /* optinfo_flags */
2313 TV_RELOAD_CSE_REGS, /* tv_id */
2314 0, /* properties_required */
2315 0, /* properties_provided */
2316 0, /* properties_destroyed */
2317 0, /* todo_flags_start */
2318 TODO_df_finish, /* todo_flags_finish */
2321 class pass_postreload_cse : public rtl_opt_pass
2323 public:
2324 pass_postreload_cse (gcc::context *ctxt)
2325 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2328 /* opt_pass methods: */
2329 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2331 virtual unsigned int execute (function *);
2333 }; // class pass_postreload_cse
2335 unsigned int
2336 pass_postreload_cse::execute (function *fun)
2338 if (!dbg_cnt (postreload_cse))
2339 return 0;
2341 /* Do a very simple CSE pass over just the hard registers. */
2342 reload_cse_regs (get_insns ());
2343 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2344 Remove any EH edges associated with them. */
2345 if (fun->can_throw_non_call_exceptions
2346 && purge_all_dead_edges ())
2347 cleanup_cfg (0);
2349 return 0;
2352 } // anon namespace
2354 rtl_opt_pass *
2355 make_pass_postreload_cse (gcc::context *ctxt)
2357 return new pass_postreload_cse (ctxt);