PR c++/79143
[official-gcc.git] / gcc / ggc-page.c
blob1aef94ec91f13103178fdc7f9f4cc6bcff94a48a
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "alias.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "memmodel.h"
28 #include "tm_p.h"
29 #include "diagnostic-core.h"
30 #include "flags.h"
31 #include "ggc-internal.h"
32 #include "timevar.h"
33 #include "params.h"
34 #include "cgraph.h"
35 #include "cfgloop.h"
36 #include "plugin.h"
38 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
39 file open. Prefer either to valloc. */
40 #ifdef HAVE_MMAP_ANON
41 # undef HAVE_MMAP_DEV_ZERO
42 # define USING_MMAP
43 #endif
45 #ifdef HAVE_MMAP_DEV_ZERO
46 # define USING_MMAP
47 #endif
49 #ifndef USING_MMAP
50 #define USING_MALLOC_PAGE_GROUPS
51 #endif
53 #if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \
54 && defined(USING_MMAP)
55 # define USING_MADVISE
56 #endif
58 /* Strategy:
60 This garbage-collecting allocator allocates objects on one of a set
61 of pages. Each page can allocate objects of a single size only;
62 available sizes are powers of two starting at four bytes. The size
63 of an allocation request is rounded up to the next power of two
64 (`order'), and satisfied from the appropriate page.
66 Each page is recorded in a page-entry, which also maintains an
67 in-use bitmap of object positions on the page. This allows the
68 allocation state of a particular object to be flipped without
69 touching the page itself.
71 Each page-entry also has a context depth, which is used to track
72 pushing and popping of allocation contexts. Only objects allocated
73 in the current (highest-numbered) context may be collected.
75 Page entries are arranged in an array of singly-linked lists. The
76 array is indexed by the allocation size, in bits, of the pages on
77 it; i.e. all pages on a list allocate objects of the same size.
78 Pages are ordered on the list such that all non-full pages precede
79 all full pages, with non-full pages arranged in order of decreasing
80 context depth.
82 Empty pages (of all orders) are kept on a single page cache list,
83 and are considered first when new pages are required; they are
84 deallocated at the start of the next collection if they haven't
85 been recycled by then. */
87 /* Define GGC_DEBUG_LEVEL to print debugging information.
88 0: No debugging output.
89 1: GC statistics only.
90 2: Page-entry allocations/deallocations as well.
91 3: Object allocations as well.
92 4: Object marks as well. */
93 #define GGC_DEBUG_LEVEL (0)
95 #ifndef HOST_BITS_PER_PTR
96 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
97 #endif
100 /* A two-level tree is used to look up the page-entry for a given
101 pointer. Two chunks of the pointer's bits are extracted to index
102 the first and second levels of the tree, as follows:
104 HOST_PAGE_SIZE_BITS
105 32 | |
106 msb +----------------+----+------+------+ lsb
107 | | |
108 PAGE_L1_BITS |
110 PAGE_L2_BITS
112 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
113 pages are aligned on system page boundaries. The next most
114 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
115 index values in the lookup table, respectively.
117 For 32-bit architectures and the settings below, there are no
118 leftover bits. For architectures with wider pointers, the lookup
119 tree points to a list of pages, which must be scanned to find the
120 correct one. */
122 #define PAGE_L1_BITS (8)
123 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
124 #define PAGE_L1_SIZE ((uintptr_t) 1 << PAGE_L1_BITS)
125 #define PAGE_L2_SIZE ((uintptr_t) 1 << PAGE_L2_BITS)
127 #define LOOKUP_L1(p) \
128 (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
130 #define LOOKUP_L2(p) \
131 (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
133 /* The number of objects per allocation page, for objects on a page of
134 the indicated ORDER. */
135 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
137 /* The number of objects in P. */
138 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
140 /* The size of an object on a page of the indicated ORDER. */
141 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
143 /* For speed, we avoid doing a general integer divide to locate the
144 offset in the allocation bitmap, by precalculating numbers M, S
145 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
146 within the page which is evenly divisible by the object size Z. */
147 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
148 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
149 #define OFFSET_TO_BIT(OFFSET, ORDER) \
150 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
152 /* We use this structure to determine the alignment required for
153 allocations. For power-of-two sized allocations, that's not a
154 problem, but it does matter for odd-sized allocations.
155 We do not care about alignment for floating-point types. */
157 struct max_alignment {
158 char c;
159 union {
160 int64_t i;
161 void *p;
162 } u;
165 /* The biggest alignment required. */
167 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
170 /* The number of extra orders, not corresponding to power-of-two sized
171 objects. */
173 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
175 #define RTL_SIZE(NSLOTS) \
176 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
178 #define TREE_EXP_SIZE(OPS) \
179 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
181 /* The Ith entry is the maximum size of an object to be stored in the
182 Ith extra order. Adding a new entry to this array is the *only*
183 thing you need to do to add a new special allocation size. */
185 static const size_t extra_order_size_table[] = {
186 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
187 There are a lot of structures with these sizes and explicitly
188 listing them risks orders being dropped because they changed size. */
189 MAX_ALIGNMENT * 3,
190 MAX_ALIGNMENT * 5,
191 MAX_ALIGNMENT * 6,
192 MAX_ALIGNMENT * 7,
193 MAX_ALIGNMENT * 9,
194 MAX_ALIGNMENT * 10,
195 MAX_ALIGNMENT * 11,
196 MAX_ALIGNMENT * 12,
197 MAX_ALIGNMENT * 13,
198 MAX_ALIGNMENT * 14,
199 MAX_ALIGNMENT * 15,
200 sizeof (struct tree_decl_non_common),
201 sizeof (struct tree_field_decl),
202 sizeof (struct tree_parm_decl),
203 sizeof (struct tree_var_decl),
204 sizeof (struct tree_type_non_common),
205 sizeof (struct function),
206 sizeof (struct basic_block_def),
207 sizeof (struct cgraph_node),
208 sizeof (struct loop),
211 /* The total number of orders. */
213 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
215 /* Compute the smallest nonnegative number which when added to X gives
216 a multiple of F. */
218 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
220 /* Round X to next multiple of the page size */
222 #define PAGE_ALIGN(x) ROUND_UP ((x), G.pagesize)
224 /* The Ith entry is the number of objects on a page or order I. */
226 static unsigned objects_per_page_table[NUM_ORDERS];
228 /* The Ith entry is the size of an object on a page of order I. */
230 static size_t object_size_table[NUM_ORDERS];
232 /* The Ith entry is a pair of numbers (mult, shift) such that
233 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
234 for all k evenly divisible by OBJECT_SIZE(I). */
236 static struct
238 size_t mult;
239 unsigned int shift;
241 inverse_table[NUM_ORDERS];
243 /* A page_entry records the status of an allocation page. This
244 structure is dynamically sized to fit the bitmap in_use_p. */
245 struct page_entry
247 /* The next page-entry with objects of the same size, or NULL if
248 this is the last page-entry. */
249 struct page_entry *next;
251 /* The previous page-entry with objects of the same size, or NULL if
252 this is the first page-entry. The PREV pointer exists solely to
253 keep the cost of ggc_free manageable. */
254 struct page_entry *prev;
256 /* The number of bytes allocated. (This will always be a multiple
257 of the host system page size.) */
258 size_t bytes;
260 /* The address at which the memory is allocated. */
261 char *page;
263 #ifdef USING_MALLOC_PAGE_GROUPS
264 /* Back pointer to the page group this page came from. */
265 struct page_group *group;
266 #endif
268 /* This is the index in the by_depth varray where this page table
269 can be found. */
270 unsigned long index_by_depth;
272 /* Context depth of this page. */
273 unsigned short context_depth;
275 /* The number of free objects remaining on this page. */
276 unsigned short num_free_objects;
278 /* A likely candidate for the bit position of a free object for the
279 next allocation from this page. */
280 unsigned short next_bit_hint;
282 /* The lg of size of objects allocated from this page. */
283 unsigned char order;
285 /* Discarded page? */
286 bool discarded;
288 /* A bit vector indicating whether or not objects are in use. The
289 Nth bit is one if the Nth object on this page is allocated. This
290 array is dynamically sized. */
291 unsigned long in_use_p[1];
294 #ifdef USING_MALLOC_PAGE_GROUPS
295 /* A page_group describes a large allocation from malloc, from which
296 we parcel out aligned pages. */
297 struct page_group
299 /* A linked list of all extant page groups. */
300 struct page_group *next;
302 /* The address we received from malloc. */
303 char *allocation;
305 /* The size of the block. */
306 size_t alloc_size;
308 /* A bitmask of pages in use. */
309 unsigned int in_use;
311 #endif
313 #if HOST_BITS_PER_PTR <= 32
315 /* On 32-bit hosts, we use a two level page table, as pictured above. */
316 typedef page_entry **page_table[PAGE_L1_SIZE];
318 #else
320 /* On 64-bit hosts, we use the same two level page tables plus a linked
321 list that disambiguates the top 32-bits. There will almost always be
322 exactly one entry in the list. */
323 typedef struct page_table_chain
325 struct page_table_chain *next;
326 size_t high_bits;
327 page_entry **table[PAGE_L1_SIZE];
328 } *page_table;
330 #endif
332 class finalizer
334 public:
335 finalizer (void *addr, void (*f)(void *)) : m_addr (addr), m_function (f) {}
337 void *addr () const { return m_addr; }
339 void call () const { m_function (m_addr); }
341 private:
342 void *m_addr;
343 void (*m_function)(void *);
346 class vec_finalizer
348 public:
349 vec_finalizer (uintptr_t addr, void (*f)(void *), size_t s, size_t n) :
350 m_addr (addr), m_function (f), m_object_size (s), m_n_objects (n) {}
352 void call () const
354 for (size_t i = 0; i < m_n_objects; i++)
355 m_function (reinterpret_cast<void *> (m_addr + (i * m_object_size)));
358 void *addr () const { return reinterpret_cast<void *> (m_addr); }
360 private:
361 uintptr_t m_addr;
362 void (*m_function)(void *);
363 size_t m_object_size;
364 size_t m_n_objects;
367 #ifdef ENABLE_GC_ALWAYS_COLLECT
368 /* List of free objects to be verified as actually free on the
369 next collection. */
370 struct free_object
372 void *object;
373 struct free_object *next;
375 #endif
377 /* The rest of the global variables. */
378 static struct ggc_globals
380 /* The Nth element in this array is a page with objects of size 2^N.
381 If there are any pages with free objects, they will be at the
382 head of the list. NULL if there are no page-entries for this
383 object size. */
384 page_entry *pages[NUM_ORDERS];
386 /* The Nth element in this array is the last page with objects of
387 size 2^N. NULL if there are no page-entries for this object
388 size. */
389 page_entry *page_tails[NUM_ORDERS];
391 /* Lookup table for associating allocation pages with object addresses. */
392 page_table lookup;
394 /* The system's page size. */
395 size_t pagesize;
396 size_t lg_pagesize;
398 /* Bytes currently allocated. */
399 size_t allocated;
401 /* Bytes currently allocated at the end of the last collection. */
402 size_t allocated_last_gc;
404 /* Total amount of memory mapped. */
405 size_t bytes_mapped;
407 /* Bit N set if any allocations have been done at context depth N. */
408 unsigned long context_depth_allocations;
410 /* Bit N set if any collections have been done at context depth N. */
411 unsigned long context_depth_collections;
413 /* The current depth in the context stack. */
414 unsigned short context_depth;
416 /* A file descriptor open to /dev/zero for reading. */
417 #if defined (HAVE_MMAP_DEV_ZERO)
418 int dev_zero_fd;
419 #endif
421 /* A cache of free system pages. */
422 page_entry *free_pages;
424 #ifdef USING_MALLOC_PAGE_GROUPS
425 page_group *page_groups;
426 #endif
428 /* The file descriptor for debugging output. */
429 FILE *debug_file;
431 /* Current number of elements in use in depth below. */
432 unsigned int depth_in_use;
434 /* Maximum number of elements that can be used before resizing. */
435 unsigned int depth_max;
437 /* Each element of this array is an index in by_depth where the given
438 depth starts. This structure is indexed by that given depth we
439 are interested in. */
440 unsigned int *depth;
442 /* Current number of elements in use in by_depth below. */
443 unsigned int by_depth_in_use;
445 /* Maximum number of elements that can be used before resizing. */
446 unsigned int by_depth_max;
448 /* Each element of this array is a pointer to a page_entry, all
449 page_entries can be found in here by increasing depth.
450 index_by_depth in the page_entry is the index into this data
451 structure where that page_entry can be found. This is used to
452 speed up finding all page_entries at a particular depth. */
453 page_entry **by_depth;
455 /* Each element is a pointer to the saved in_use_p bits, if any,
456 zero otherwise. We allocate them all together, to enable a
457 better runtime data access pattern. */
458 unsigned long **save_in_use;
460 /* Finalizers for single objects. The first index is collection_depth. */
461 vec<vec<finalizer> > finalizers;
463 /* Finalizers for vectors of objects. */
464 vec<vec<vec_finalizer> > vec_finalizers;
466 #ifdef ENABLE_GC_ALWAYS_COLLECT
467 /* List of free objects to be verified as actually free on the
468 next collection. */
469 struct free_object *free_object_list;
470 #endif
472 struct
474 /* Total GC-allocated memory. */
475 unsigned long long total_allocated;
476 /* Total overhead for GC-allocated memory. */
477 unsigned long long total_overhead;
479 /* Total allocations and overhead for sizes less than 32, 64 and 128.
480 These sizes are interesting because they are typical cache line
481 sizes. */
483 unsigned long long total_allocated_under32;
484 unsigned long long total_overhead_under32;
486 unsigned long long total_allocated_under64;
487 unsigned long long total_overhead_under64;
489 unsigned long long total_allocated_under128;
490 unsigned long long total_overhead_under128;
492 /* The allocations for each of the allocation orders. */
493 unsigned long long total_allocated_per_order[NUM_ORDERS];
495 /* The overhead for each of the allocation orders. */
496 unsigned long long total_overhead_per_order[NUM_ORDERS];
497 } stats;
498 } G;
500 /* True if a gc is currently taking place. */
502 static bool in_gc = false;
504 /* The size in bytes required to maintain a bitmap for the objects
505 on a page-entry. */
506 #define BITMAP_SIZE(Num_objects) \
507 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof (long))
509 /* Allocate pages in chunks of this size, to throttle calls to memory
510 allocation routines. The first page is used, the rest go onto the
511 free list. This cannot be larger than HOST_BITS_PER_INT for the
512 in_use bitmask for page_group. Hosts that need a different value
513 can override this by defining GGC_QUIRE_SIZE explicitly. */
514 #ifndef GGC_QUIRE_SIZE
515 # ifdef USING_MMAP
516 # define GGC_QUIRE_SIZE 512 /* 2MB for 4K pages */
517 # else
518 # define GGC_QUIRE_SIZE 16
519 # endif
520 #endif
522 /* Initial guess as to how many page table entries we might need. */
523 #define INITIAL_PTE_COUNT 128
525 static int ggc_allocated_p (const void *);
526 static page_entry *lookup_page_table_entry (const void *);
527 static void set_page_table_entry (void *, page_entry *);
528 #ifdef USING_MMAP
529 static char *alloc_anon (char *, size_t, bool check);
530 #endif
531 #ifdef USING_MALLOC_PAGE_GROUPS
532 static size_t page_group_index (char *, char *);
533 static void set_page_group_in_use (page_group *, char *);
534 static void clear_page_group_in_use (page_group *, char *);
535 #endif
536 static struct page_entry * alloc_page (unsigned);
537 static void free_page (struct page_entry *);
538 static void release_pages (void);
539 static void clear_marks (void);
540 static void sweep_pages (void);
541 static void ggc_recalculate_in_use_p (page_entry *);
542 static void compute_inverse (unsigned);
543 static inline void adjust_depth (void);
544 static void move_ptes_to_front (int, int);
546 void debug_print_page_list (int);
547 static void push_depth (unsigned int);
548 static void push_by_depth (page_entry *, unsigned long *);
550 /* Push an entry onto G.depth. */
552 inline static void
553 push_depth (unsigned int i)
555 if (G.depth_in_use >= G.depth_max)
557 G.depth_max *= 2;
558 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
560 G.depth[G.depth_in_use++] = i;
563 /* Push an entry onto G.by_depth and G.save_in_use. */
565 inline static void
566 push_by_depth (page_entry *p, unsigned long *s)
568 if (G.by_depth_in_use >= G.by_depth_max)
570 G.by_depth_max *= 2;
571 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
572 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
573 G.by_depth_max);
575 G.by_depth[G.by_depth_in_use] = p;
576 G.save_in_use[G.by_depth_in_use++] = s;
579 #if (GCC_VERSION < 3001)
580 #define prefetch(X) ((void) X)
581 #else
582 #define prefetch(X) __builtin_prefetch (X)
583 #endif
585 #define save_in_use_p_i(__i) \
586 (G.save_in_use[__i])
587 #define save_in_use_p(__p) \
588 (save_in_use_p_i (__p->index_by_depth))
590 /* Returns nonzero if P was allocated in GC'able memory. */
592 static inline int
593 ggc_allocated_p (const void *p)
595 page_entry ***base;
596 size_t L1, L2;
598 #if HOST_BITS_PER_PTR <= 32
599 base = &G.lookup[0];
600 #else
601 page_table table = G.lookup;
602 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
603 while (1)
605 if (table == NULL)
606 return 0;
607 if (table->high_bits == high_bits)
608 break;
609 table = table->next;
611 base = &table->table[0];
612 #endif
614 /* Extract the level 1 and 2 indices. */
615 L1 = LOOKUP_L1 (p);
616 L2 = LOOKUP_L2 (p);
618 return base[L1] && base[L1][L2];
621 /* Traverse the page table and find the entry for a page.
622 Die (probably) if the object wasn't allocated via GC. */
624 static inline page_entry *
625 lookup_page_table_entry (const void *p)
627 page_entry ***base;
628 size_t L1, L2;
630 #if HOST_BITS_PER_PTR <= 32
631 base = &G.lookup[0];
632 #else
633 page_table table = G.lookup;
634 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
635 while (table->high_bits != high_bits)
636 table = table->next;
637 base = &table->table[0];
638 #endif
640 /* Extract the level 1 and 2 indices. */
641 L1 = LOOKUP_L1 (p);
642 L2 = LOOKUP_L2 (p);
644 return base[L1][L2];
647 /* Set the page table entry for a page. */
649 static void
650 set_page_table_entry (void *p, page_entry *entry)
652 page_entry ***base;
653 size_t L1, L2;
655 #if HOST_BITS_PER_PTR <= 32
656 base = &G.lookup[0];
657 #else
658 page_table table;
659 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
660 for (table = G.lookup; table; table = table->next)
661 if (table->high_bits == high_bits)
662 goto found;
664 /* Not found -- allocate a new table. */
665 table = XCNEW (struct page_table_chain);
666 table->next = G.lookup;
667 table->high_bits = high_bits;
668 G.lookup = table;
669 found:
670 base = &table->table[0];
671 #endif
673 /* Extract the level 1 and 2 indices. */
674 L1 = LOOKUP_L1 (p);
675 L2 = LOOKUP_L2 (p);
677 if (base[L1] == NULL)
678 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
680 base[L1][L2] = entry;
683 /* Prints the page-entry for object size ORDER, for debugging. */
685 DEBUG_FUNCTION void
686 debug_print_page_list (int order)
688 page_entry *p;
689 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
690 (void *) G.page_tails[order]);
691 p = G.pages[order];
692 while (p != NULL)
694 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
695 p->num_free_objects);
696 p = p->next;
698 printf ("NULL\n");
699 fflush (stdout);
702 #ifdef USING_MMAP
703 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
704 (if non-null). The ifdef structure here is intended to cause a
705 compile error unless exactly one of the HAVE_* is defined. */
707 static inline char *
708 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check)
710 #ifdef HAVE_MMAP_ANON
711 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
712 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
713 #endif
714 #ifdef HAVE_MMAP_DEV_ZERO
715 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
716 MAP_PRIVATE, G.dev_zero_fd, 0);
717 #endif
719 if (page == (char *) MAP_FAILED)
721 if (!check)
722 return NULL;
723 perror ("virtual memory exhausted");
724 exit (FATAL_EXIT_CODE);
727 /* Remember that we allocated this memory. */
728 G.bytes_mapped += size;
730 /* Pretend we don't have access to the allocated pages. We'll enable
731 access to smaller pieces of the area in ggc_internal_alloc. Discard the
732 handle to avoid handle leak. */
733 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
735 return page;
737 #endif
738 #ifdef USING_MALLOC_PAGE_GROUPS
739 /* Compute the index for this page into the page group. */
741 static inline size_t
742 page_group_index (char *allocation, char *page)
744 return (size_t) (page - allocation) >> G.lg_pagesize;
747 /* Set and clear the in_use bit for this page in the page group. */
749 static inline void
750 set_page_group_in_use (page_group *group, char *page)
752 group->in_use |= 1 << page_group_index (group->allocation, page);
755 static inline void
756 clear_page_group_in_use (page_group *group, char *page)
758 group->in_use &= ~(1 << page_group_index (group->allocation, page));
760 #endif
762 /* Allocate a new page for allocating objects of size 2^ORDER,
763 and return an entry for it. The entry is not added to the
764 appropriate page_table list. */
766 static inline struct page_entry *
767 alloc_page (unsigned order)
769 struct page_entry *entry, *p, **pp;
770 char *page;
771 size_t num_objects;
772 size_t bitmap_size;
773 size_t page_entry_size;
774 size_t entry_size;
775 #ifdef USING_MALLOC_PAGE_GROUPS
776 page_group *group;
777 #endif
779 num_objects = OBJECTS_PER_PAGE (order);
780 bitmap_size = BITMAP_SIZE (num_objects + 1);
781 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
782 entry_size = num_objects * OBJECT_SIZE (order);
783 if (entry_size < G.pagesize)
784 entry_size = G.pagesize;
785 entry_size = PAGE_ALIGN (entry_size);
787 entry = NULL;
788 page = NULL;
790 /* Check the list of free pages for one we can use. */
791 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
792 if (p->bytes == entry_size)
793 break;
795 if (p != NULL)
797 if (p->discarded)
798 G.bytes_mapped += p->bytes;
799 p->discarded = false;
801 /* Recycle the allocated memory from this page ... */
802 *pp = p->next;
803 page = p->page;
805 #ifdef USING_MALLOC_PAGE_GROUPS
806 group = p->group;
807 #endif
809 /* ... and, if possible, the page entry itself. */
810 if (p->order == order)
812 entry = p;
813 memset (entry, 0, page_entry_size);
815 else
816 free (p);
818 #ifdef USING_MMAP
819 else if (entry_size == G.pagesize)
821 /* We want just one page. Allocate a bunch of them and put the
822 extras on the freelist. (Can only do this optimization with
823 mmap for backing store.) */
824 struct page_entry *e, *f = G.free_pages;
825 int i, entries = GGC_QUIRE_SIZE;
827 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false);
828 if (page == NULL)
830 page = alloc_anon (NULL, G.pagesize, true);
831 entries = 1;
834 /* This loop counts down so that the chain will be in ascending
835 memory order. */
836 for (i = entries - 1; i >= 1; i--)
838 e = XCNEWVAR (struct page_entry, page_entry_size);
839 e->order = order;
840 e->bytes = G.pagesize;
841 e->page = page + (i << G.lg_pagesize);
842 e->next = f;
843 f = e;
846 G.free_pages = f;
848 else
849 page = alloc_anon (NULL, entry_size, true);
850 #endif
851 #ifdef USING_MALLOC_PAGE_GROUPS
852 else
854 /* Allocate a large block of memory and serve out the aligned
855 pages therein. This results in much less memory wastage
856 than the traditional implementation of valloc. */
858 char *allocation, *a, *enda;
859 size_t alloc_size, head_slop, tail_slop;
860 int multiple_pages = (entry_size == G.pagesize);
862 if (multiple_pages)
863 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
864 else
865 alloc_size = entry_size + G.pagesize - 1;
866 allocation = XNEWVEC (char, alloc_size);
868 page = (char *) (((uintptr_t) allocation + G.pagesize - 1) & -G.pagesize);
869 head_slop = page - allocation;
870 if (multiple_pages)
871 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
872 else
873 tail_slop = alloc_size - entry_size - head_slop;
874 enda = allocation + alloc_size - tail_slop;
876 /* We allocated N pages, which are likely not aligned, leaving
877 us with N-1 usable pages. We plan to place the page_group
878 structure somewhere in the slop. */
879 if (head_slop >= sizeof (page_group))
880 group = (page_group *)page - 1;
881 else
883 /* We magically got an aligned allocation. Too bad, we have
884 to waste a page anyway. */
885 if (tail_slop == 0)
887 enda -= G.pagesize;
888 tail_slop += G.pagesize;
890 gcc_assert (tail_slop >= sizeof (page_group));
891 group = (page_group *)enda;
892 tail_slop -= sizeof (page_group);
895 /* Remember that we allocated this memory. */
896 group->next = G.page_groups;
897 group->allocation = allocation;
898 group->alloc_size = alloc_size;
899 group->in_use = 0;
900 G.page_groups = group;
901 G.bytes_mapped += alloc_size;
903 /* If we allocated multiple pages, put the rest on the free list. */
904 if (multiple_pages)
906 struct page_entry *e, *f = G.free_pages;
907 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
909 e = XCNEWVAR (struct page_entry, page_entry_size);
910 e->order = order;
911 e->bytes = G.pagesize;
912 e->page = a;
913 e->group = group;
914 e->next = f;
915 f = e;
917 G.free_pages = f;
920 #endif
922 if (entry == NULL)
923 entry = XCNEWVAR (struct page_entry, page_entry_size);
925 entry->bytes = entry_size;
926 entry->page = page;
927 entry->context_depth = G.context_depth;
928 entry->order = order;
929 entry->num_free_objects = num_objects;
930 entry->next_bit_hint = 1;
932 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
934 #ifdef USING_MALLOC_PAGE_GROUPS
935 entry->group = group;
936 set_page_group_in_use (group, page);
937 #endif
939 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
940 increment the hint. */
941 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
942 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
944 set_page_table_entry (page, entry);
946 if (GGC_DEBUG_LEVEL >= 2)
947 fprintf (G.debug_file,
948 "Allocating page at %p, object size=%lu, data %p-%p\n",
949 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
950 page + entry_size - 1);
952 return entry;
955 /* Adjust the size of G.depth so that no index greater than the one
956 used by the top of the G.by_depth is used. */
958 static inline void
959 adjust_depth (void)
961 page_entry *top;
963 if (G.by_depth_in_use)
965 top = G.by_depth[G.by_depth_in_use-1];
967 /* Peel back indices in depth that index into by_depth, so that
968 as new elements are added to by_depth, we note the indices
969 of those elements, if they are for new context depths. */
970 while (G.depth_in_use > (size_t)top->context_depth+1)
971 --G.depth_in_use;
975 /* For a page that is no longer needed, put it on the free page list. */
977 static void
978 free_page (page_entry *entry)
980 if (GGC_DEBUG_LEVEL >= 2)
981 fprintf (G.debug_file,
982 "Deallocating page at %p, data %p-%p\n", (void *) entry,
983 entry->page, entry->page + entry->bytes - 1);
985 /* Mark the page as inaccessible. Discard the handle to avoid handle
986 leak. */
987 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
989 set_page_table_entry (entry->page, NULL);
991 #ifdef USING_MALLOC_PAGE_GROUPS
992 clear_page_group_in_use (entry->group, entry->page);
993 #endif
995 if (G.by_depth_in_use > 1)
997 page_entry *top = G.by_depth[G.by_depth_in_use-1];
998 int i = entry->index_by_depth;
1000 /* We cannot free a page from a context deeper than the current
1001 one. */
1002 gcc_assert (entry->context_depth == top->context_depth);
1004 /* Put top element into freed slot. */
1005 G.by_depth[i] = top;
1006 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
1007 top->index_by_depth = i;
1009 --G.by_depth_in_use;
1011 adjust_depth ();
1013 entry->next = G.free_pages;
1014 G.free_pages = entry;
1017 /* Release the free page cache to the system. */
1019 static void
1020 release_pages (void)
1022 #ifdef USING_MADVISE
1023 page_entry *p, *start_p;
1024 char *start;
1025 size_t len;
1026 size_t mapped_len;
1027 page_entry *next, *prev, *newprev;
1028 size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize;
1030 /* First free larger continuous areas to the OS.
1031 This allows other allocators to grab these areas if needed.
1032 This is only done on larger chunks to avoid fragmentation.
1033 This does not always work because the free_pages list is only
1034 approximately sorted. */
1036 p = G.free_pages;
1037 prev = NULL;
1038 while (p)
1040 start = p->page;
1041 start_p = p;
1042 len = 0;
1043 mapped_len = 0;
1044 newprev = prev;
1045 while (p && p->page == start + len)
1047 len += p->bytes;
1048 if (!p->discarded)
1049 mapped_len += p->bytes;
1050 newprev = p;
1051 p = p->next;
1053 if (len >= free_unit)
1055 while (start_p != p)
1057 next = start_p->next;
1058 free (start_p);
1059 start_p = next;
1061 munmap (start, len);
1062 if (prev)
1063 prev->next = p;
1064 else
1065 G.free_pages = p;
1066 G.bytes_mapped -= mapped_len;
1067 continue;
1069 prev = newprev;
1072 /* Now give back the fragmented pages to the OS, but keep the address
1073 space to reuse it next time. */
1075 for (p = G.free_pages; p; )
1077 if (p->discarded)
1079 p = p->next;
1080 continue;
1082 start = p->page;
1083 len = p->bytes;
1084 start_p = p;
1085 p = p->next;
1086 while (p && p->page == start + len)
1088 len += p->bytes;
1089 p = p->next;
1091 /* Give the page back to the kernel, but don't free the mapping.
1092 This avoids fragmentation in the virtual memory map of the
1093 process. Next time we can reuse it by just touching it. */
1094 madvise (start, len, MADV_DONTNEED);
1095 /* Don't count those pages as mapped to not touch the garbage collector
1096 unnecessarily. */
1097 G.bytes_mapped -= len;
1098 while (start_p != p)
1100 start_p->discarded = true;
1101 start_p = start_p->next;
1104 #endif
1105 #if defined(USING_MMAP) && !defined(USING_MADVISE)
1106 page_entry *p, *next;
1107 char *start;
1108 size_t len;
1110 /* Gather up adjacent pages so they are unmapped together. */
1111 p = G.free_pages;
1113 while (p)
1115 start = p->page;
1116 next = p->next;
1117 len = p->bytes;
1118 free (p);
1119 p = next;
1121 while (p && p->page == start + len)
1123 next = p->next;
1124 len += p->bytes;
1125 free (p);
1126 p = next;
1129 munmap (start, len);
1130 G.bytes_mapped -= len;
1133 G.free_pages = NULL;
1134 #endif
1135 #ifdef USING_MALLOC_PAGE_GROUPS
1136 page_entry **pp, *p;
1137 page_group **gp, *g;
1139 /* Remove all pages from free page groups from the list. */
1140 pp = &G.free_pages;
1141 while ((p = *pp) != NULL)
1142 if (p->group->in_use == 0)
1144 *pp = p->next;
1145 free (p);
1147 else
1148 pp = &p->next;
1150 /* Remove all free page groups, and release the storage. */
1151 gp = &G.page_groups;
1152 while ((g = *gp) != NULL)
1153 if (g->in_use == 0)
1155 *gp = g->next;
1156 G.bytes_mapped -= g->alloc_size;
1157 free (g->allocation);
1159 else
1160 gp = &g->next;
1161 #endif
1164 /* This table provides a fast way to determine ceil(log_2(size)) for
1165 allocation requests. The minimum allocation size is eight bytes. */
1166 #define NUM_SIZE_LOOKUP 512
1167 static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1169 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1170 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1171 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1172 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1173 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1174 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1175 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1176 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1177 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1178 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1179 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1180 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1181 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1182 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1183 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1184 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1185 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1186 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1187 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1188 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1189 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1190 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1191 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1192 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1193 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1194 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1195 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1196 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1197 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1198 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1199 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1200 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1203 /* For a given size of memory requested for allocation, return the
1204 actual size that is going to be allocated, as well as the size
1205 order. */
1207 static void
1208 ggc_round_alloc_size_1 (size_t requested_size,
1209 size_t *size_order,
1210 size_t *alloced_size)
1212 size_t order, object_size;
1214 if (requested_size < NUM_SIZE_LOOKUP)
1216 order = size_lookup[requested_size];
1217 object_size = OBJECT_SIZE (order);
1219 else
1221 order = 10;
1222 while (requested_size > (object_size = OBJECT_SIZE (order)))
1223 order++;
1226 if (size_order)
1227 *size_order = order;
1228 if (alloced_size)
1229 *alloced_size = object_size;
1232 /* For a given size of memory requested for allocation, return the
1233 actual size that is going to be allocated. */
1235 size_t
1236 ggc_round_alloc_size (size_t requested_size)
1238 size_t size = 0;
1240 ggc_round_alloc_size_1 (requested_size, NULL, &size);
1241 return size;
1244 /* Push a finalizer onto the appropriate vec. */
1246 static void
1247 add_finalizer (void *result, void (*f)(void *), size_t s, size_t n)
1249 if (f == NULL)
1250 /* No finalizer. */;
1251 else if (n == 1)
1253 finalizer fin (result, f);
1254 G.finalizers[G.context_depth].safe_push (fin);
1256 else
1258 vec_finalizer fin (reinterpret_cast<uintptr_t> (result), f, s, n);
1259 G.vec_finalizers[G.context_depth].safe_push (fin);
1263 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1265 void *
1266 ggc_internal_alloc (size_t size, void (*f)(void *), size_t s, size_t n
1267 MEM_STAT_DECL)
1269 size_t order, word, bit, object_offset, object_size;
1270 struct page_entry *entry;
1271 void *result;
1273 ggc_round_alloc_size_1 (size, &order, &object_size);
1275 /* If there are non-full pages for this size allocation, they are at
1276 the head of the list. */
1277 entry = G.pages[order];
1279 /* If there is no page for this object size, or all pages in this
1280 context are full, allocate a new page. */
1281 if (entry == NULL || entry->num_free_objects == 0)
1283 struct page_entry *new_entry;
1284 new_entry = alloc_page (order);
1286 new_entry->index_by_depth = G.by_depth_in_use;
1287 push_by_depth (new_entry, 0);
1289 /* We can skip context depths, if we do, make sure we go all the
1290 way to the new depth. */
1291 while (new_entry->context_depth >= G.depth_in_use)
1292 push_depth (G.by_depth_in_use-1);
1294 /* If this is the only entry, it's also the tail. If it is not
1295 the only entry, then we must update the PREV pointer of the
1296 ENTRY (G.pages[order]) to point to our new page entry. */
1297 if (entry == NULL)
1298 G.page_tails[order] = new_entry;
1299 else
1300 entry->prev = new_entry;
1302 /* Put new pages at the head of the page list. By definition the
1303 entry at the head of the list always has a NULL pointer. */
1304 new_entry->next = entry;
1305 new_entry->prev = NULL;
1306 entry = new_entry;
1307 G.pages[order] = new_entry;
1309 /* For a new page, we know the word and bit positions (in the
1310 in_use bitmap) of the first available object -- they're zero. */
1311 new_entry->next_bit_hint = 1;
1312 word = 0;
1313 bit = 0;
1314 object_offset = 0;
1316 else
1318 /* First try to use the hint left from the previous allocation
1319 to locate a clear bit in the in-use bitmap. We've made sure
1320 that the one-past-the-end bit is always set, so if the hint
1321 has run over, this test will fail. */
1322 unsigned hint = entry->next_bit_hint;
1323 word = hint / HOST_BITS_PER_LONG;
1324 bit = hint % HOST_BITS_PER_LONG;
1326 /* If the hint didn't work, scan the bitmap from the beginning. */
1327 if ((entry->in_use_p[word] >> bit) & 1)
1329 word = bit = 0;
1330 while (~entry->in_use_p[word] == 0)
1331 ++word;
1333 #if GCC_VERSION >= 3004
1334 bit = __builtin_ctzl (~entry->in_use_p[word]);
1335 #else
1336 while ((entry->in_use_p[word] >> bit) & 1)
1337 ++bit;
1338 #endif
1340 hint = word * HOST_BITS_PER_LONG + bit;
1343 /* Next time, try the next bit. */
1344 entry->next_bit_hint = hint + 1;
1346 object_offset = hint * object_size;
1349 /* Set the in-use bit. */
1350 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1352 /* Keep a running total of the number of free objects. If this page
1353 fills up, we may have to move it to the end of the list if the
1354 next page isn't full. If the next page is full, all subsequent
1355 pages are full, so there's no need to move it. */
1356 if (--entry->num_free_objects == 0
1357 && entry->next != NULL
1358 && entry->next->num_free_objects > 0)
1360 /* We have a new head for the list. */
1361 G.pages[order] = entry->next;
1363 /* We are moving ENTRY to the end of the page table list.
1364 The new page at the head of the list will have NULL in
1365 its PREV field and ENTRY will have NULL in its NEXT field. */
1366 entry->next->prev = NULL;
1367 entry->next = NULL;
1369 /* Append ENTRY to the tail of the list. */
1370 entry->prev = G.page_tails[order];
1371 G.page_tails[order]->next = entry;
1372 G.page_tails[order] = entry;
1375 /* Calculate the object's address. */
1376 result = entry->page + object_offset;
1377 if (GATHER_STATISTICS)
1378 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1379 result FINAL_PASS_MEM_STAT);
1381 #ifdef ENABLE_GC_CHECKING
1382 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1383 exact same semantics in presence of memory bugs, regardless of
1384 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1385 handle to avoid handle leak. */
1386 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1388 /* `Poison' the entire allocated object, including any padding at
1389 the end. */
1390 memset (result, 0xaf, object_size);
1392 /* Make the bytes after the end of the object unaccessible. Discard the
1393 handle to avoid handle leak. */
1394 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1395 object_size - size));
1396 #endif
1398 /* Tell Valgrind that the memory is there, but its content isn't
1399 defined. The bytes at the end of the object are still marked
1400 unaccessible. */
1401 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1403 /* Keep track of how many bytes are being allocated. This
1404 information is used in deciding when to collect. */
1405 G.allocated += object_size;
1407 /* For timevar statistics. */
1408 timevar_ggc_mem_total += object_size;
1410 if (f)
1411 add_finalizer (result, f, s, n);
1413 if (GATHER_STATISTICS)
1415 size_t overhead = object_size - size;
1417 G.stats.total_overhead += overhead;
1418 G.stats.total_allocated += object_size;
1419 G.stats.total_overhead_per_order[order] += overhead;
1420 G.stats.total_allocated_per_order[order] += object_size;
1422 if (size <= 32)
1424 G.stats.total_overhead_under32 += overhead;
1425 G.stats.total_allocated_under32 += object_size;
1427 if (size <= 64)
1429 G.stats.total_overhead_under64 += overhead;
1430 G.stats.total_allocated_under64 += object_size;
1432 if (size <= 128)
1434 G.stats.total_overhead_under128 += overhead;
1435 G.stats.total_allocated_under128 += object_size;
1439 if (GGC_DEBUG_LEVEL >= 3)
1440 fprintf (G.debug_file,
1441 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1442 (unsigned long) size, (unsigned long) object_size, result,
1443 (void *) entry);
1445 return result;
1448 /* Mark function for strings. */
1450 void
1451 gt_ggc_m_S (const void *p)
1453 page_entry *entry;
1454 unsigned bit, word;
1455 unsigned long mask;
1456 unsigned long offset;
1458 if (!p || !ggc_allocated_p (p))
1459 return;
1461 /* Look up the page on which the object is alloced. . */
1462 entry = lookup_page_table_entry (p);
1463 gcc_assert (entry);
1465 /* Calculate the index of the object on the page; this is its bit
1466 position in the in_use_p bitmap. Note that because a char* might
1467 point to the middle of an object, we need special code here to
1468 make sure P points to the start of an object. */
1469 offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1470 if (offset)
1472 /* Here we've seen a char* which does not point to the beginning
1473 of an allocated object. We assume it points to the middle of
1474 a STRING_CST. */
1475 gcc_assert (offset == offsetof (struct tree_string, str));
1476 p = ((const char *) p) - offset;
1477 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
1478 return;
1481 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1482 word = bit / HOST_BITS_PER_LONG;
1483 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1485 /* If the bit was previously set, skip it. */
1486 if (entry->in_use_p[word] & mask)
1487 return;
1489 /* Otherwise set it, and decrement the free object count. */
1490 entry->in_use_p[word] |= mask;
1491 entry->num_free_objects -= 1;
1493 if (GGC_DEBUG_LEVEL >= 4)
1494 fprintf (G.debug_file, "Marking %p\n", p);
1496 return;
1500 /* User-callable entry points for marking string X. */
1502 void
1503 gt_ggc_mx (const char *& x)
1505 gt_ggc_m_S (x);
1508 void
1509 gt_ggc_mx (unsigned char *& x)
1511 gt_ggc_m_S (x);
1514 void
1515 gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED)
1519 /* If P is not marked, marks it and return false. Otherwise return true.
1520 P must have been allocated by the GC allocator; it mustn't point to
1521 static objects, stack variables, or memory allocated with malloc. */
1524 ggc_set_mark (const void *p)
1526 page_entry *entry;
1527 unsigned bit, word;
1528 unsigned long mask;
1530 /* Look up the page on which the object is alloced. If the object
1531 wasn't allocated by the collector, we'll probably die. */
1532 entry = lookup_page_table_entry (p);
1533 gcc_assert (entry);
1535 /* Calculate the index of the object on the page; this is its bit
1536 position in the in_use_p bitmap. */
1537 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1538 word = bit / HOST_BITS_PER_LONG;
1539 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1541 /* If the bit was previously set, skip it. */
1542 if (entry->in_use_p[word] & mask)
1543 return 1;
1545 /* Otherwise set it, and decrement the free object count. */
1546 entry->in_use_p[word] |= mask;
1547 entry->num_free_objects -= 1;
1549 if (GGC_DEBUG_LEVEL >= 4)
1550 fprintf (G.debug_file, "Marking %p\n", p);
1552 return 0;
1555 /* Return 1 if P has been marked, zero otherwise.
1556 P must have been allocated by the GC allocator; it mustn't point to
1557 static objects, stack variables, or memory allocated with malloc. */
1560 ggc_marked_p (const void *p)
1562 page_entry *entry;
1563 unsigned bit, word;
1564 unsigned long mask;
1566 /* Look up the page on which the object is alloced. If the object
1567 wasn't allocated by the collector, we'll probably die. */
1568 entry = lookup_page_table_entry (p);
1569 gcc_assert (entry);
1571 /* Calculate the index of the object on the page; this is its bit
1572 position in the in_use_p bitmap. */
1573 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1574 word = bit / HOST_BITS_PER_LONG;
1575 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1577 return (entry->in_use_p[word] & mask) != 0;
1580 /* Return the size of the gc-able object P. */
1582 size_t
1583 ggc_get_size (const void *p)
1585 page_entry *pe = lookup_page_table_entry (p);
1586 return OBJECT_SIZE (pe->order);
1589 /* Release the memory for object P. */
1591 void
1592 ggc_free (void *p)
1594 if (in_gc)
1595 return;
1597 page_entry *pe = lookup_page_table_entry (p);
1598 size_t order = pe->order;
1599 size_t size = OBJECT_SIZE (order);
1601 if (GATHER_STATISTICS)
1602 ggc_free_overhead (p);
1604 if (GGC_DEBUG_LEVEL >= 3)
1605 fprintf (G.debug_file,
1606 "Freeing object, actual size=%lu, at %p on %p\n",
1607 (unsigned long) size, p, (void *) pe);
1609 #ifdef ENABLE_GC_CHECKING
1610 /* Poison the data, to indicate the data is garbage. */
1611 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1612 memset (p, 0xa5, size);
1613 #endif
1614 /* Let valgrind know the object is free. */
1615 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1617 #ifdef ENABLE_GC_ALWAYS_COLLECT
1618 /* In the completely-anal-checking mode, we do *not* immediately free
1619 the data, but instead verify that the data is *actually* not
1620 reachable the next time we collect. */
1622 struct free_object *fo = XNEW (struct free_object);
1623 fo->object = p;
1624 fo->next = G.free_object_list;
1625 G.free_object_list = fo;
1627 #else
1629 unsigned int bit_offset, word, bit;
1631 G.allocated -= size;
1633 /* Mark the object not-in-use. */
1634 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1635 word = bit_offset / HOST_BITS_PER_LONG;
1636 bit = bit_offset % HOST_BITS_PER_LONG;
1637 pe->in_use_p[word] &= ~(1UL << bit);
1639 if (pe->num_free_objects++ == 0)
1641 page_entry *p, *q;
1643 /* If the page is completely full, then it's supposed to
1644 be after all pages that aren't. Since we've freed one
1645 object from a page that was full, we need to move the
1646 page to the head of the list.
1648 PE is the node we want to move. Q is the previous node
1649 and P is the next node in the list. */
1650 q = pe->prev;
1651 if (q && q->num_free_objects == 0)
1653 p = pe->next;
1655 q->next = p;
1657 /* If PE was at the end of the list, then Q becomes the
1658 new end of the list. If PE was not the end of the
1659 list, then we need to update the PREV field for P. */
1660 if (!p)
1661 G.page_tails[order] = q;
1662 else
1663 p->prev = q;
1665 /* Move PE to the head of the list. */
1666 pe->next = G.pages[order];
1667 pe->prev = NULL;
1668 G.pages[order]->prev = pe;
1669 G.pages[order] = pe;
1672 /* Reset the hint bit to point to the only free object. */
1673 pe->next_bit_hint = bit_offset;
1676 #endif
1679 /* Subroutine of init_ggc which computes the pair of numbers used to
1680 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1682 This algorithm is taken from Granlund and Montgomery's paper
1683 "Division by Invariant Integers using Multiplication"
1684 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1685 constants). */
1687 static void
1688 compute_inverse (unsigned order)
1690 size_t size, inv;
1691 unsigned int e;
1693 size = OBJECT_SIZE (order);
1694 e = 0;
1695 while (size % 2 == 0)
1697 e++;
1698 size >>= 1;
1701 inv = size;
1702 while (inv * size != 1)
1703 inv = inv * (2 - inv*size);
1705 DIV_MULT (order) = inv;
1706 DIV_SHIFT (order) = e;
1709 /* Initialize the ggc-mmap allocator. */
1710 void
1711 init_ggc (void)
1713 static bool init_p = false;
1714 unsigned order;
1716 if (init_p)
1717 return;
1718 init_p = true;
1720 G.pagesize = getpagesize ();
1721 G.lg_pagesize = exact_log2 (G.pagesize);
1723 #ifdef HAVE_MMAP_DEV_ZERO
1724 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1725 if (G.dev_zero_fd == -1)
1726 internal_error ("open /dev/zero: %m");
1727 #endif
1729 #if 0
1730 G.debug_file = fopen ("ggc-mmap.debug", "w");
1731 #else
1732 G.debug_file = stdout;
1733 #endif
1735 #ifdef USING_MMAP
1736 /* StunOS has an amazing off-by-one error for the first mmap allocation
1737 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1738 believe, is an unaligned page allocation, which would cause us to
1739 hork badly if we tried to use it. */
1741 char *p = alloc_anon (NULL, G.pagesize, true);
1742 struct page_entry *e;
1743 if ((uintptr_t)p & (G.pagesize - 1))
1745 /* How losing. Discard this one and try another. If we still
1746 can't get something useful, give up. */
1748 p = alloc_anon (NULL, G.pagesize, true);
1749 gcc_assert (!((uintptr_t)p & (G.pagesize - 1)));
1752 /* We have a good page, might as well hold onto it... */
1753 e = XCNEW (struct page_entry);
1754 e->bytes = G.pagesize;
1755 e->page = p;
1756 e->next = G.free_pages;
1757 G.free_pages = e;
1759 #endif
1761 /* Initialize the object size table. */
1762 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1763 object_size_table[order] = (size_t) 1 << order;
1764 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1766 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1768 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1769 so that we're sure of getting aligned memory. */
1770 s = ROUND_UP (s, MAX_ALIGNMENT);
1771 object_size_table[order] = s;
1774 /* Initialize the objects-per-page and inverse tables. */
1775 for (order = 0; order < NUM_ORDERS; ++order)
1777 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1778 if (objects_per_page_table[order] == 0)
1779 objects_per_page_table[order] = 1;
1780 compute_inverse (order);
1783 /* Reset the size_lookup array to put appropriately sized objects in
1784 the special orders. All objects bigger than the previous power
1785 of two, but no greater than the special size, should go in the
1786 new order. */
1787 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1789 int o;
1790 int i;
1792 i = OBJECT_SIZE (order);
1793 if (i >= NUM_SIZE_LOOKUP)
1794 continue;
1796 for (o = size_lookup[i]; o == size_lookup [i]; --i)
1797 size_lookup[i] = order;
1800 G.depth_in_use = 0;
1801 G.depth_max = 10;
1802 G.depth = XNEWVEC (unsigned int, G.depth_max);
1804 G.by_depth_in_use = 0;
1805 G.by_depth_max = INITIAL_PTE_COUNT;
1806 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1807 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1809 /* Allocate space for the depth 0 finalizers. */
1810 G.finalizers.safe_push (vNULL);
1811 G.vec_finalizers.safe_push (vNULL);
1812 gcc_assert (G.finalizers.length() == 1);
1815 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1816 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1818 static void
1819 ggc_recalculate_in_use_p (page_entry *p)
1821 unsigned int i;
1822 size_t num_objects;
1824 /* Because the past-the-end bit in in_use_p is always set, we
1825 pretend there is one additional object. */
1826 num_objects = OBJECTS_IN_PAGE (p) + 1;
1828 /* Reset the free object count. */
1829 p->num_free_objects = num_objects;
1831 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1832 for (i = 0;
1833 i < CEIL (BITMAP_SIZE (num_objects),
1834 sizeof (*p->in_use_p));
1835 ++i)
1837 unsigned long j;
1839 /* Something is in use if it is marked, or if it was in use in a
1840 context further down the context stack. */
1841 p->in_use_p[i] |= save_in_use_p (p)[i];
1843 /* Decrement the free object count for every object allocated. */
1844 for (j = p->in_use_p[i]; j; j >>= 1)
1845 p->num_free_objects -= (j & 1);
1848 gcc_assert (p->num_free_objects < num_objects);
1851 /* Unmark all objects. */
1853 static void
1854 clear_marks (void)
1856 unsigned order;
1858 for (order = 2; order < NUM_ORDERS; order++)
1860 page_entry *p;
1862 for (p = G.pages[order]; p != NULL; p = p->next)
1864 size_t num_objects = OBJECTS_IN_PAGE (p);
1865 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1867 /* The data should be page-aligned. */
1868 gcc_assert (!((uintptr_t) p->page & (G.pagesize - 1)));
1870 /* Pages that aren't in the topmost context are not collected;
1871 nevertheless, we need their in-use bit vectors to store GC
1872 marks. So, back them up first. */
1873 if (p->context_depth < G.context_depth)
1875 if (! save_in_use_p (p))
1876 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
1877 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1880 /* Reset reset the number of free objects and clear the
1881 in-use bits. These will be adjusted by mark_obj. */
1882 p->num_free_objects = num_objects;
1883 memset (p->in_use_p, 0, bitmap_size);
1885 /* Make sure the one-past-the-end bit is always set. */
1886 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1887 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1892 /* Check if any blocks with a registered finalizer have become unmarked. If so
1893 run the finalizer and unregister it because the block is about to be freed.
1894 Note that no garantee is made about what order finalizers will run in so
1895 touching other objects in gc memory is extremely unwise. */
1897 static void
1898 ggc_handle_finalizers ()
1900 unsigned dlen = G.finalizers.length();
1901 for (unsigned d = G.context_depth; d < dlen; ++d)
1903 vec<finalizer> &v = G.finalizers[d];
1904 unsigned length = v.length ();
1905 for (unsigned int i = 0; i < length;)
1907 finalizer &f = v[i];
1908 if (!ggc_marked_p (f.addr ()))
1910 f.call ();
1911 v.unordered_remove (i);
1912 length--;
1914 else
1915 i++;
1919 gcc_assert (dlen == G.vec_finalizers.length());
1920 for (unsigned d = G.context_depth; d < dlen; ++d)
1922 vec<vec_finalizer> &vv = G.vec_finalizers[d];
1923 unsigned length = vv.length ();
1924 for (unsigned int i = 0; i < length;)
1926 vec_finalizer &f = vv[i];
1927 if (!ggc_marked_p (f.addr ()))
1929 f.call ();
1930 vv.unordered_remove (i);
1931 length--;
1933 else
1934 i++;
1939 /* Free all empty pages. Partially empty pages need no attention
1940 because the `mark' bit doubles as an `unused' bit. */
1942 static void
1943 sweep_pages (void)
1945 unsigned order;
1947 for (order = 2; order < NUM_ORDERS; order++)
1949 /* The last page-entry to consider, regardless of entries
1950 placed at the end of the list. */
1951 page_entry * const last = G.page_tails[order];
1953 size_t num_objects;
1954 size_t live_objects;
1955 page_entry *p, *previous;
1956 int done;
1958 p = G.pages[order];
1959 if (p == NULL)
1960 continue;
1962 previous = NULL;
1965 page_entry *next = p->next;
1967 /* Loop until all entries have been examined. */
1968 done = (p == last);
1970 num_objects = OBJECTS_IN_PAGE (p);
1972 /* Add all live objects on this page to the count of
1973 allocated memory. */
1974 live_objects = num_objects - p->num_free_objects;
1976 G.allocated += OBJECT_SIZE (order) * live_objects;
1978 /* Only objects on pages in the topmost context should get
1979 collected. */
1980 if (p->context_depth < G.context_depth)
1983 /* Remove the page if it's empty. */
1984 else if (live_objects == 0)
1986 /* If P was the first page in the list, then NEXT
1987 becomes the new first page in the list, otherwise
1988 splice P out of the forward pointers. */
1989 if (! previous)
1990 G.pages[order] = next;
1991 else
1992 previous->next = next;
1994 /* Splice P out of the back pointers too. */
1995 if (next)
1996 next->prev = previous;
1998 /* Are we removing the last element? */
1999 if (p == G.page_tails[order])
2000 G.page_tails[order] = previous;
2001 free_page (p);
2002 p = previous;
2005 /* If the page is full, move it to the end. */
2006 else if (p->num_free_objects == 0)
2008 /* Don't move it if it's already at the end. */
2009 if (p != G.page_tails[order])
2011 /* Move p to the end of the list. */
2012 p->next = NULL;
2013 p->prev = G.page_tails[order];
2014 G.page_tails[order]->next = p;
2016 /* Update the tail pointer... */
2017 G.page_tails[order] = p;
2019 /* ... and the head pointer, if necessary. */
2020 if (! previous)
2021 G.pages[order] = next;
2022 else
2023 previous->next = next;
2025 /* And update the backpointer in NEXT if necessary. */
2026 if (next)
2027 next->prev = previous;
2029 p = previous;
2033 /* If we've fallen through to here, it's a page in the
2034 topmost context that is neither full nor empty. Such a
2035 page must precede pages at lesser context depth in the
2036 list, so move it to the head. */
2037 else if (p != G.pages[order])
2039 previous->next = p->next;
2041 /* Update the backchain in the next node if it exists. */
2042 if (p->next)
2043 p->next->prev = previous;
2045 /* Move P to the head of the list. */
2046 p->next = G.pages[order];
2047 p->prev = NULL;
2048 G.pages[order]->prev = p;
2050 /* Update the head pointer. */
2051 G.pages[order] = p;
2053 /* Are we moving the last element? */
2054 if (G.page_tails[order] == p)
2055 G.page_tails[order] = previous;
2056 p = previous;
2059 previous = p;
2060 p = next;
2062 while (! done);
2064 /* Now, restore the in_use_p vectors for any pages from contexts
2065 other than the current one. */
2066 for (p = G.pages[order]; p; p = p->next)
2067 if (p->context_depth != G.context_depth)
2068 ggc_recalculate_in_use_p (p);
2072 #ifdef ENABLE_GC_CHECKING
2073 /* Clobber all free objects. */
2075 static void
2076 poison_pages (void)
2078 unsigned order;
2080 for (order = 2; order < NUM_ORDERS; order++)
2082 size_t size = OBJECT_SIZE (order);
2083 page_entry *p;
2085 for (p = G.pages[order]; p != NULL; p = p->next)
2087 size_t num_objects;
2088 size_t i;
2090 if (p->context_depth != G.context_depth)
2091 /* Since we don't do any collection for pages in pushed
2092 contexts, there's no need to do any poisoning. And
2093 besides, the IN_USE_P array isn't valid until we pop
2094 contexts. */
2095 continue;
2097 num_objects = OBJECTS_IN_PAGE (p);
2098 for (i = 0; i < num_objects; i++)
2100 size_t word, bit;
2101 word = i / HOST_BITS_PER_LONG;
2102 bit = i % HOST_BITS_PER_LONG;
2103 if (((p->in_use_p[word] >> bit) & 1) == 0)
2105 char *object = p->page + i * size;
2107 /* Keep poison-by-write when we expect to use Valgrind,
2108 so the exact same memory semantics is kept, in case
2109 there are memory errors. We override this request
2110 below. */
2111 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
2112 size));
2113 memset (object, 0xa5, size);
2115 /* Drop the handle to avoid handle leak. */
2116 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
2122 #else
2123 #define poison_pages()
2124 #endif
2126 #ifdef ENABLE_GC_ALWAYS_COLLECT
2127 /* Validate that the reportedly free objects actually are. */
2129 static void
2130 validate_free_objects (void)
2132 struct free_object *f, *next, *still_free = NULL;
2134 for (f = G.free_object_list; f ; f = next)
2136 page_entry *pe = lookup_page_table_entry (f->object);
2137 size_t bit, word;
2139 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
2140 word = bit / HOST_BITS_PER_LONG;
2141 bit = bit % HOST_BITS_PER_LONG;
2142 next = f->next;
2144 /* Make certain it isn't visible from any root. Notice that we
2145 do this check before sweep_pages merges save_in_use_p. */
2146 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
2148 /* If the object comes from an outer context, then retain the
2149 free_object entry, so that we can verify that the address
2150 isn't live on the stack in some outer context. */
2151 if (pe->context_depth != G.context_depth)
2153 f->next = still_free;
2154 still_free = f;
2156 else
2157 free (f);
2160 G.free_object_list = still_free;
2162 #else
2163 #define validate_free_objects()
2164 #endif
2166 /* Top level mark-and-sweep routine. */
2168 void
2169 ggc_collect (void)
2171 /* Avoid frequent unnecessary work by skipping collection if the
2172 total allocations haven't expanded much since the last
2173 collection. */
2174 float allocated_last_gc =
2175 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
2177 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
2178 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
2179 return;
2181 timevar_push (TV_GC);
2182 if (!quiet_flag)
2183 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
2184 if (GGC_DEBUG_LEVEL >= 2)
2185 fprintf (G.debug_file, "BEGIN COLLECTING\n");
2187 /* Zero the total allocated bytes. This will be recalculated in the
2188 sweep phase. */
2189 G.allocated = 0;
2191 /* Release the pages we freed the last time we collected, but didn't
2192 reuse in the interim. */
2193 release_pages ();
2195 /* Indicate that we've seen collections at this context depth. */
2196 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
2198 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2200 in_gc = true;
2201 clear_marks ();
2202 ggc_mark_roots ();
2203 ggc_handle_finalizers ();
2205 if (GATHER_STATISTICS)
2206 ggc_prune_overhead_list ();
2208 poison_pages ();
2209 validate_free_objects ();
2210 sweep_pages ();
2212 in_gc = false;
2213 G.allocated_last_gc = G.allocated;
2215 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2217 timevar_pop (TV_GC);
2219 if (!quiet_flag)
2220 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
2221 if (GGC_DEBUG_LEVEL >= 2)
2222 fprintf (G.debug_file, "END COLLECTING\n");
2225 /* Assume that all GGC memory is reachable and grow the limits for next collection.
2226 With checking, trigger GGC so -Q compilation outputs how much of memory really is
2227 reachable. */
2229 void
2230 ggc_grow (void)
2232 if (!flag_checking)
2233 G.allocated_last_gc = MAX (G.allocated_last_gc,
2234 G.allocated);
2235 else
2236 ggc_collect ();
2237 if (!quiet_flag)
2238 fprintf (stderr, " {GC start %luk} ", (unsigned long) G.allocated / 1024);
2241 /* Print allocation statistics. */
2242 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
2243 ? (x) \
2244 : ((x) < 1024*1024*10 \
2245 ? (x) / 1024 \
2246 : (x) / (1024*1024))))
2247 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
2249 void
2250 ggc_print_statistics (void)
2252 struct ggc_statistics stats;
2253 unsigned int i;
2254 size_t total_overhead = 0;
2256 /* Clear the statistics. */
2257 memset (&stats, 0, sizeof (stats));
2259 /* Make sure collection will really occur. */
2260 G.allocated_last_gc = 0;
2262 /* Collect and print the statistics common across collectors. */
2263 ggc_print_common_statistics (stderr, &stats);
2265 /* Release free pages so that we will not count the bytes allocated
2266 there as part of the total allocated memory. */
2267 release_pages ();
2269 /* Collect some information about the various sizes of
2270 allocation. */
2271 fprintf (stderr,
2272 "Memory still allocated at the end of the compilation process\n");
2273 fprintf (stderr, "%-8s %10s %10s %10s\n",
2274 "Size", "Allocated", "Used", "Overhead");
2275 for (i = 0; i < NUM_ORDERS; ++i)
2277 page_entry *p;
2278 size_t allocated;
2279 size_t in_use;
2280 size_t overhead;
2282 /* Skip empty entries. */
2283 if (!G.pages[i])
2284 continue;
2286 overhead = allocated = in_use = 0;
2288 /* Figure out the total number of bytes allocated for objects of
2289 this size, and how many of them are actually in use. Also figure
2290 out how much memory the page table is using. */
2291 for (p = G.pages[i]; p; p = p->next)
2293 allocated += p->bytes;
2294 in_use +=
2295 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2297 overhead += (sizeof (page_entry) - sizeof (long)
2298 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2300 fprintf (stderr, "%-8lu %10lu%c %10lu%c %10lu%c\n",
2301 (unsigned long) OBJECT_SIZE (i),
2302 SCALE (allocated), STAT_LABEL (allocated),
2303 SCALE (in_use), STAT_LABEL (in_use),
2304 SCALE (overhead), STAT_LABEL (overhead));
2305 total_overhead += overhead;
2307 fprintf (stderr, "%-8s %10lu%c %10lu%c %10lu%c\n", "Total",
2308 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2309 SCALE (G.allocated), STAT_LABEL (G.allocated),
2310 SCALE (total_overhead), STAT_LABEL (total_overhead));
2312 if (GATHER_STATISTICS)
2314 fprintf (stderr, "\nTotal allocations and overheads during "
2315 "the compilation process\n");
2317 fprintf (stderr, "Total Overhead: %10"
2318 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead);
2319 fprintf (stderr, "Total Allocated: %10"
2320 HOST_LONG_LONG_FORMAT "d\n",
2321 G.stats.total_allocated);
2323 fprintf (stderr, "Total Overhead under 32B: %10"
2324 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead_under32);
2325 fprintf (stderr, "Total Allocated under 32B: %10"
2326 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_allocated_under32);
2327 fprintf (stderr, "Total Overhead under 64B: %10"
2328 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead_under64);
2329 fprintf (stderr, "Total Allocated under 64B: %10"
2330 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_allocated_under64);
2331 fprintf (stderr, "Total Overhead under 128B: %10"
2332 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead_under128);
2333 fprintf (stderr, "Total Allocated under 128B: %10"
2334 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_allocated_under128);
2336 for (i = 0; i < NUM_ORDERS; i++)
2337 if (G.stats.total_allocated_per_order[i])
2339 fprintf (stderr, "Total Overhead page size %9lu: %10"
2340 HOST_LONG_LONG_FORMAT "d\n",
2341 (unsigned long) OBJECT_SIZE (i),
2342 G.stats.total_overhead_per_order[i]);
2343 fprintf (stderr, "Total Allocated page size %9lu: %10"
2344 HOST_LONG_LONG_FORMAT "d\n",
2345 (unsigned long) OBJECT_SIZE (i),
2346 G.stats.total_allocated_per_order[i]);
2351 struct ggc_pch_ondisk
2353 unsigned totals[NUM_ORDERS];
2356 struct ggc_pch_data
2358 struct ggc_pch_ondisk d;
2359 uintptr_t base[NUM_ORDERS];
2360 size_t written[NUM_ORDERS];
2363 struct ggc_pch_data *
2364 init_ggc_pch (void)
2366 return XCNEW (struct ggc_pch_data);
2369 void
2370 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2371 size_t size, bool is_string ATTRIBUTE_UNUSED)
2373 unsigned order;
2375 if (size < NUM_SIZE_LOOKUP)
2376 order = size_lookup[size];
2377 else
2379 order = 10;
2380 while (size > OBJECT_SIZE (order))
2381 order++;
2384 d->d.totals[order]++;
2387 size_t
2388 ggc_pch_total_size (struct ggc_pch_data *d)
2390 size_t a = 0;
2391 unsigned i;
2393 for (i = 0; i < NUM_ORDERS; i++)
2394 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2395 return a;
2398 void
2399 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2401 uintptr_t a = (uintptr_t) base;
2402 unsigned i;
2404 for (i = 0; i < NUM_ORDERS; i++)
2406 d->base[i] = a;
2407 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2412 char *
2413 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2414 size_t size, bool is_string ATTRIBUTE_UNUSED)
2416 unsigned order;
2417 char *result;
2419 if (size < NUM_SIZE_LOOKUP)
2420 order = size_lookup[size];
2421 else
2423 order = 10;
2424 while (size > OBJECT_SIZE (order))
2425 order++;
2428 result = (char *) d->base[order];
2429 d->base[order] += OBJECT_SIZE (order);
2430 return result;
2433 void
2434 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2435 FILE *f ATTRIBUTE_UNUSED)
2437 /* Nothing to do. */
2440 void
2441 ggc_pch_write_object (struct ggc_pch_data *d,
2442 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2443 size_t size, bool is_string ATTRIBUTE_UNUSED)
2445 unsigned order;
2446 static const char emptyBytes[256] = { 0 };
2448 if (size < NUM_SIZE_LOOKUP)
2449 order = size_lookup[size];
2450 else
2452 order = 10;
2453 while (size > OBJECT_SIZE (order))
2454 order++;
2457 if (fwrite (x, size, 1, f) != 1)
2458 fatal_error (input_location, "can%'t write PCH file: %m");
2460 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2461 object out to OBJECT_SIZE(order). This happens for strings. */
2463 if (size != OBJECT_SIZE (order))
2465 unsigned padding = OBJECT_SIZE (order) - size;
2467 /* To speed small writes, we use a nulled-out array that's larger
2468 than most padding requests as the source for our null bytes. This
2469 permits us to do the padding with fwrite() rather than fseek(), and
2470 limits the chance the OS may try to flush any outstanding writes. */
2471 if (padding <= sizeof (emptyBytes))
2473 if (fwrite (emptyBytes, 1, padding, f) != padding)
2474 fatal_error (input_location, "can%'t write PCH file");
2476 else
2478 /* Larger than our buffer? Just default to fseek. */
2479 if (fseek (f, padding, SEEK_CUR) != 0)
2480 fatal_error (input_location, "can%'t write PCH file");
2484 d->written[order]++;
2485 if (d->written[order] == d->d.totals[order]
2486 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2487 G.pagesize),
2488 SEEK_CUR) != 0)
2489 fatal_error (input_location, "can%'t write PCH file: %m");
2492 void
2493 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2495 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2496 fatal_error (input_location, "can%'t write PCH file: %m");
2497 free (d);
2500 /* Move the PCH PTE entries just added to the end of by_depth, to the
2501 front. */
2503 static void
2504 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2506 unsigned i;
2508 /* First, we swap the new entries to the front of the varrays. */
2509 page_entry **new_by_depth;
2510 unsigned long **new_save_in_use;
2512 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2513 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2515 memcpy (&new_by_depth[0],
2516 &G.by_depth[count_old_page_tables],
2517 count_new_page_tables * sizeof (void *));
2518 memcpy (&new_by_depth[count_new_page_tables],
2519 &G.by_depth[0],
2520 count_old_page_tables * sizeof (void *));
2521 memcpy (&new_save_in_use[0],
2522 &G.save_in_use[count_old_page_tables],
2523 count_new_page_tables * sizeof (void *));
2524 memcpy (&new_save_in_use[count_new_page_tables],
2525 &G.save_in_use[0],
2526 count_old_page_tables * sizeof (void *));
2528 free (G.by_depth);
2529 free (G.save_in_use);
2531 G.by_depth = new_by_depth;
2532 G.save_in_use = new_save_in_use;
2534 /* Now update all the index_by_depth fields. */
2535 for (i = G.by_depth_in_use; i > 0; --i)
2537 page_entry *p = G.by_depth[i-1];
2538 p->index_by_depth = i-1;
2541 /* And last, we update the depth pointers in G.depth. The first
2542 entry is already 0, and context 0 entries always start at index
2543 0, so there is nothing to update in the first slot. We need a
2544 second slot, only if we have old ptes, and if we do, they start
2545 at index count_new_page_tables. */
2546 if (count_old_page_tables)
2547 push_depth (count_new_page_tables);
2550 void
2551 ggc_pch_read (FILE *f, void *addr)
2553 struct ggc_pch_ondisk d;
2554 unsigned i;
2555 char *offs = (char *) addr;
2556 unsigned long count_old_page_tables;
2557 unsigned long count_new_page_tables;
2559 count_old_page_tables = G.by_depth_in_use;
2561 /* We've just read in a PCH file. So, every object that used to be
2562 allocated is now free. */
2563 clear_marks ();
2564 #ifdef ENABLE_GC_CHECKING
2565 poison_pages ();
2566 #endif
2567 /* Since we free all the allocated objects, the free list becomes
2568 useless. Validate it now, which will also clear it. */
2569 validate_free_objects ();
2571 /* No object read from a PCH file should ever be freed. So, set the
2572 context depth to 1, and set the depth of all the currently-allocated
2573 pages to be 1 too. PCH pages will have depth 0. */
2574 gcc_assert (!G.context_depth);
2575 G.context_depth = 1;
2576 /* Allocate space for the depth 1 finalizers. */
2577 G.finalizers.safe_push (vNULL);
2578 G.vec_finalizers.safe_push (vNULL);
2579 gcc_assert (G.finalizers.length() == 2);
2580 for (i = 0; i < NUM_ORDERS; i++)
2582 page_entry *p;
2583 for (p = G.pages[i]; p != NULL; p = p->next)
2584 p->context_depth = G.context_depth;
2587 /* Allocate the appropriate page-table entries for the pages read from
2588 the PCH file. */
2589 if (fread (&d, sizeof (d), 1, f) != 1)
2590 fatal_error (input_location, "can%'t read PCH file: %m");
2592 for (i = 0; i < NUM_ORDERS; i++)
2594 struct page_entry *entry;
2595 char *pte;
2596 size_t bytes;
2597 size_t num_objs;
2598 size_t j;
2600 if (d.totals[i] == 0)
2601 continue;
2603 bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i));
2604 num_objs = bytes / OBJECT_SIZE (i);
2605 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2606 - sizeof (long)
2607 + BITMAP_SIZE (num_objs + 1)));
2608 entry->bytes = bytes;
2609 entry->page = offs;
2610 entry->context_depth = 0;
2611 offs += bytes;
2612 entry->num_free_objects = 0;
2613 entry->order = i;
2615 for (j = 0;
2616 j + HOST_BITS_PER_LONG <= num_objs + 1;
2617 j += HOST_BITS_PER_LONG)
2618 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2619 for (; j < num_objs + 1; j++)
2620 entry->in_use_p[j / HOST_BITS_PER_LONG]
2621 |= 1L << (j % HOST_BITS_PER_LONG);
2623 for (pte = entry->page;
2624 pte < entry->page + entry->bytes;
2625 pte += G.pagesize)
2626 set_page_table_entry (pte, entry);
2628 if (G.page_tails[i] != NULL)
2629 G.page_tails[i]->next = entry;
2630 else
2631 G.pages[i] = entry;
2632 G.page_tails[i] = entry;
2634 /* We start off by just adding all the new information to the
2635 end of the varrays, later, we will move the new information
2636 to the front of the varrays, as the PCH page tables are at
2637 context 0. */
2638 push_by_depth (entry, 0);
2641 /* Now, we update the various data structures that speed page table
2642 handling. */
2643 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2645 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2647 /* Update the statistics. */
2648 G.allocated = G.allocated_last_gc = offs - (char *)addr;