PR c++/79143
[official-gcc.git] / gcc / bt-load.c
blob27be6a382c47846e8fd2706da00fde4dff06ca99
1 /* Perform branch target register load optimizations.
2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "df.h"
28 #include "insn-config.h"
29 #include "regs.h"
30 #include "memmodel.h"
31 #include "emit-rtl.h"
32 #include "recog.h"
33 #include "diagnostic-core.h"
34 #include "expr.h"
35 #include "insn-attr.h"
36 #include "tree-pass.h"
37 #include "cfgrtl.h"
38 #include "cfganal.h"
39 #include "cfgcleanup.h"
40 #include "cfgloop.h"
41 #include "rtl-iter.h"
42 #include "fibonacci_heap.h"
44 struct btr_def;
46 /* Target register optimizations - these are performed after reload. */
48 struct btr_def_group
50 btr_def_group *next;
51 rtx src;
52 btr_def *members;
55 struct btr_user
57 btr_user *next;
58 basic_block bb;
59 int luid;
60 rtx_insn *insn;
61 /* If INSN has a single use of a single branch register, then
62 USE points to it within INSN. If there is more than
63 one branch register use, or the use is in some way ambiguous,
64 then USE is NULL. */
65 rtx use;
66 int n_reaching_defs;
67 int first_reaching_def;
68 char other_use_this_block;
71 /* btr_def structs appear on three lists:
72 1. A list of all btr_def structures (head is
73 ALL_BTR_DEFS, linked by the NEXT field).
74 2. A list of branch reg definitions per basic block (head is
75 BB_BTR_DEFS[i], linked by the NEXT_THIS_BB field).
76 3. A list of all branch reg definitions belonging to the same
77 group (head is in a BTR_DEF_GROUP struct, linked by
78 NEXT_THIS_GROUP field). */
80 struct btr_def
82 btr_def *next_this_bb;
83 btr_def *next_this_group;
84 basic_block bb;
85 int luid;
86 rtx_insn *insn;
87 int btr;
88 int cost;
89 /* For a branch register setting insn that has a constant
90 source (i.e. a label), group links together all the
91 insns with the same source. For other branch register
92 setting insns, group is NULL. */
93 btr_def_group *group;
94 btr_user *uses;
95 /* If this def has a reaching use which is not a simple use
96 in a branch instruction, then has_ambiguous_use will be true,
97 and we will not attempt to migrate this definition. */
98 char has_ambiguous_use;
99 /* live_range is an approximation to the true live range for this
100 def/use web, because it records the set of blocks that contain
101 the live range. There could be other live ranges for the same
102 branch register in that set of blocks, either in the block
103 containing the def (before the def), or in a block containing
104 a use (after the use). If there are such other live ranges, then
105 other_btr_uses_before_def or other_btr_uses_after_use must be set true
106 as appropriate. */
107 char other_btr_uses_before_def;
108 char other_btr_uses_after_use;
109 /* We set own_end when we have moved a definition into a dominator.
110 Thus, when a later combination removes this definition again, we know
111 to clear out trs_live_at_end again. */
112 char own_end;
113 bitmap live_range;
116 typedef fibonacci_heap <long, btr_def> btr_heap_t;
117 typedef fibonacci_node <long, btr_def> btr_heap_node_t;
119 static int issue_rate;
121 static int basic_block_freq (const_basic_block);
122 static int insn_sets_btr_p (const rtx_insn *, int, int *);
123 static void find_btr_def_group (btr_def_group **, btr_def *);
124 static btr_def *add_btr_def (btr_heap_t *, basic_block, int, rtx_insn *,
125 unsigned int, int, btr_def_group **);
126 static btr_user *new_btr_user (basic_block, int, rtx_insn *);
127 static void dump_hard_reg_set (HARD_REG_SET);
128 static void dump_btrs_live (int);
129 static void note_other_use_this_block (unsigned int, btr_user *);
130 static void compute_defs_uses_and_gen (btr_heap_t *, btr_def **, btr_user **,
131 sbitmap *, sbitmap *, HARD_REG_SET *);
132 static void compute_kill (sbitmap *, sbitmap *, HARD_REG_SET *);
133 static void compute_out (sbitmap *bb_out, sbitmap *, sbitmap *, int);
134 static void link_btr_uses (btr_def **, btr_user **, sbitmap *, sbitmap *, int);
135 static void build_btr_def_use_webs (btr_heap_t *);
136 static int block_at_edge_of_live_range_p (int, btr_def *);
137 static void clear_btr_from_live_range (btr_def *def);
138 static void add_btr_to_live_range (btr_def *, int);
139 static void augment_live_range (bitmap, HARD_REG_SET *, basic_block,
140 basic_block, int);
141 static int choose_btr (HARD_REG_SET);
142 static void combine_btr_defs (btr_def *, HARD_REG_SET *);
143 static void btr_def_live_range (btr_def *, HARD_REG_SET *);
144 static void move_btr_def (basic_block, int, btr_def *, bitmap, HARD_REG_SET *);
145 static int migrate_btr_def (btr_def *, int);
146 static void migrate_btr_defs (enum reg_class, int);
147 static int can_move_up (const_basic_block, const rtx_insn *, int);
148 static void note_btr_set (rtx, const_rtx, void *);
150 /* The following code performs code motion of target load instructions
151 (instructions that set branch target registers), to move them
152 forward away from the branch instructions and out of loops (or,
153 more generally, from a more frequently executed place to a less
154 frequently executed place).
155 Moving target load instructions further in front of the branch
156 instruction that uses the target register value means that the hardware
157 has a better chance of preloading the instructions at the branch
158 target by the time the branch is reached. This avoids bubbles
159 when a taken branch needs to flush out the pipeline.
160 Moving target load instructions out of loops means they are executed
161 less frequently. */
163 /* An obstack to hold the def-use web data structures built up for
164 migrating branch target load instructions. */
165 static struct obstack migrate_btrl_obstack;
167 /* Array indexed by basic block number, giving the set of registers
168 live in that block. */
169 static HARD_REG_SET *btrs_live;
171 /* Array indexed by basic block number, giving the set of registers live at
172 the end of that block, including any uses by a final jump insn, if any. */
173 static HARD_REG_SET *btrs_live_at_end;
175 /* Set of all target registers that we are willing to allocate. */
176 static HARD_REG_SET all_btrs;
178 /* Provide lower and upper bounds for target register numbers, so that
179 we don't need to search through all the hard registers all the time. */
180 static int first_btr, last_btr;
184 /* Return an estimate of the frequency of execution of block bb. */
185 static int
186 basic_block_freq (const_basic_block bb)
188 return bb->frequency;
191 /* If the rtx at *XP references (sets or reads) any branch target
192 register, return one such register. If EXCLUDEP is set, disregard
193 any references within that location. */
194 static rtx *
195 find_btr_use (rtx *xp, rtx *excludep = 0)
197 subrtx_ptr_iterator::array_type array;
198 FOR_EACH_SUBRTX_PTR (iter, array, xp, NONCONST)
200 rtx *loc = *iter;
201 if (loc == excludep)
202 iter.skip_subrtxes ();
203 else
205 const_rtx x = *loc;
206 if (REG_P (x)
207 && overlaps_hard_reg_set_p (all_btrs, GET_MODE (x), REGNO (x)))
208 return loc;
211 return 0;
214 /* Return true if insn is an instruction that sets a target register.
215 if CHECK_CONST is true, only return true if the source is constant.
216 If such a set is found and REGNO is nonzero, assign the register number
217 of the destination register to *REGNO. */
218 static int
219 insn_sets_btr_p (const rtx_insn *insn, int check_const, int *regno)
221 rtx set;
223 if (NONJUMP_INSN_P (insn)
224 && (set = single_set (insn)))
226 rtx dest = SET_DEST (set);
227 rtx src = SET_SRC (set);
229 if (GET_CODE (dest) == SUBREG)
230 dest = XEXP (dest, 0);
232 if (REG_P (dest)
233 && TEST_HARD_REG_BIT (all_btrs, REGNO (dest)))
235 gcc_assert (!find_btr_use (&src));
237 if (!check_const || CONSTANT_P (src))
239 if (regno)
240 *regno = REGNO (dest);
241 return 1;
245 return 0;
248 /* Find the group that the target register definition DEF belongs
249 to in the list starting with *ALL_BTR_DEF_GROUPS. If no such
250 group exists, create one. Add def to the group. */
251 static void
252 find_btr_def_group (btr_def_group **all_btr_def_groups, btr_def *def)
254 if (insn_sets_btr_p (def->insn, 1, NULL))
256 btr_def_group *this_group;
257 rtx def_src = SET_SRC (single_set (def->insn));
259 /* ?? This linear search is an efficiency concern, particularly
260 as the search will almost always fail to find a match. */
261 for (this_group = *all_btr_def_groups;
262 this_group != NULL;
263 this_group = this_group->next)
264 if (rtx_equal_p (def_src, this_group->src))
265 break;
267 if (!this_group)
269 this_group = XOBNEW (&migrate_btrl_obstack, btr_def_group);
270 this_group->src = def_src;
271 this_group->members = NULL;
272 this_group->next = *all_btr_def_groups;
273 *all_btr_def_groups = this_group;
275 def->group = this_group;
276 def->next_this_group = this_group->members;
277 this_group->members = def;
279 else
280 def->group = NULL;
283 /* Create a new target register definition structure, for a definition in
284 block BB, instruction INSN, and insert it into ALL_BTR_DEFS. Return
285 the new definition. */
286 static btr_def *
287 add_btr_def (btr_heap_t *all_btr_defs, basic_block bb, int insn_luid,
288 rtx_insn *insn,
289 unsigned int dest_reg, int other_btr_uses_before_def,
290 btr_def_group **all_btr_def_groups)
292 btr_def *this_def = XOBNEW (&migrate_btrl_obstack, btr_def);
293 this_def->bb = bb;
294 this_def->luid = insn_luid;
295 this_def->insn = insn;
296 this_def->btr = dest_reg;
297 this_def->cost = basic_block_freq (bb);
298 this_def->has_ambiguous_use = 0;
299 this_def->other_btr_uses_before_def = other_btr_uses_before_def;
300 this_def->other_btr_uses_after_use = 0;
301 this_def->next_this_bb = NULL;
302 this_def->next_this_group = NULL;
303 this_def->uses = NULL;
304 this_def->live_range = NULL;
305 find_btr_def_group (all_btr_def_groups, this_def);
307 all_btr_defs->insert (-this_def->cost, this_def);
309 if (dump_file)
310 fprintf (dump_file,
311 "Found target reg definition: sets %u { bb %d, insn %d }%s priority %d\n",
312 dest_reg, bb->index, INSN_UID (insn),
313 (this_def->group ? "" : ":not const"), this_def->cost);
315 return this_def;
318 /* Create a new target register user structure, for a use in block BB,
319 instruction INSN. Return the new user. */
320 static btr_user *
321 new_btr_user (basic_block bb, int insn_luid, rtx_insn *insn)
323 /* This instruction reads target registers. We need
324 to decide whether we can replace all target register
325 uses easily.
327 rtx *usep = find_btr_use (&PATTERN (insn));
328 rtx use;
329 btr_user *user = NULL;
331 if (usep)
333 int unambiguous_single_use;
335 /* We want to ensure that USE is the only use of a target
336 register in INSN, so that we know that to rewrite INSN to use
337 a different target register, all we have to do is replace USE. */
338 unambiguous_single_use = !find_btr_use (&PATTERN (insn), usep);
339 if (!unambiguous_single_use)
340 usep = NULL;
342 use = usep ? *usep : NULL_RTX;
343 user = XOBNEW (&migrate_btrl_obstack, btr_user);
344 user->bb = bb;
345 user->luid = insn_luid;
346 user->insn = insn;
347 user->use = use;
348 user->other_use_this_block = 0;
349 user->next = NULL;
350 user->n_reaching_defs = 0;
351 user->first_reaching_def = -1;
353 if (dump_file)
355 fprintf (dump_file, "Uses target reg: { bb %d, insn %d }",
356 bb->index, INSN_UID (insn));
358 if (user->use)
359 fprintf (dump_file, ": unambiguous use of reg %d\n",
360 REGNO (user->use));
363 return user;
366 /* Write the contents of S to the dump file. */
367 static void
368 dump_hard_reg_set (HARD_REG_SET s)
370 int reg;
371 for (reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
372 if (TEST_HARD_REG_BIT (s, reg))
373 fprintf (dump_file, " %d", reg);
376 /* Write the set of target regs live in block BB to the dump file. */
377 static void
378 dump_btrs_live (int bb)
380 fprintf (dump_file, "BB%d live:", bb);
381 dump_hard_reg_set (btrs_live[bb]);
382 fprintf (dump_file, "\n");
385 /* REGNO is the number of a branch target register that is being used or
386 set. USERS_THIS_BB is a list of preceding branch target register users;
387 If any of them use the same register, set their other_use_this_block
388 flag. */
389 static void
390 note_other_use_this_block (unsigned int regno, btr_user *users_this_bb)
392 btr_user *user;
394 for (user = users_this_bb; user != NULL; user = user->next)
395 if (user->use && REGNO (user->use) == regno)
396 user->other_use_this_block = 1;
399 struct defs_uses_info {
400 btr_user *users_this_bb;
401 HARD_REG_SET btrs_written_in_block;
402 HARD_REG_SET btrs_live_in_block;
403 sbitmap bb_gen;
404 sbitmap *btr_defset;
407 /* Called via note_stores or directly to register stores into /
408 clobbers of a branch target register DEST that are not recognized as
409 straightforward definitions. DATA points to information about the
410 current basic block that needs updating. */
411 static void
412 note_btr_set (rtx dest, const_rtx set ATTRIBUTE_UNUSED, void *data)
414 defs_uses_info *info = (defs_uses_info *) data;
415 int regno, end_regno;
417 if (!REG_P (dest))
418 return;
419 regno = REGNO (dest);
420 end_regno = END_REGNO (dest);
421 for (; regno < end_regno; regno++)
422 if (TEST_HARD_REG_BIT (all_btrs, regno))
424 note_other_use_this_block (regno, info->users_this_bb);
425 SET_HARD_REG_BIT (info->btrs_written_in_block, regno);
426 SET_HARD_REG_BIT (info->btrs_live_in_block, regno);
427 bitmap_and_compl (info->bb_gen, info->bb_gen,
428 info->btr_defset[regno - first_btr]);
432 static void
433 compute_defs_uses_and_gen (btr_heap_t *all_btr_defs, btr_def **def_array,
434 btr_user **use_array, sbitmap *btr_defset,
435 sbitmap *bb_gen, HARD_REG_SET *btrs_written)
437 /* Scan the code building up the set of all defs and all uses.
438 For each target register, build the set of defs of that register.
439 For each block, calculate the set of target registers
440 written in that block.
441 Also calculate the set of btrs ever live in that block.
443 int i;
444 int insn_luid = 0;
445 btr_def_group *all_btr_def_groups = NULL;
446 defs_uses_info info;
448 bitmap_vector_clear (bb_gen, last_basic_block_for_fn (cfun));
449 for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
451 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
452 int reg;
453 btr_def *defs_this_bb = NULL;
454 rtx_insn *insn;
455 rtx_insn *last;
456 int can_throw = 0;
458 info.users_this_bb = NULL;
459 info.bb_gen = bb_gen[i];
460 info.btr_defset = btr_defset;
462 CLEAR_HARD_REG_SET (info.btrs_live_in_block);
463 CLEAR_HARD_REG_SET (info.btrs_written_in_block);
464 for (reg = first_btr; reg <= last_btr; reg++)
465 if (TEST_HARD_REG_BIT (all_btrs, reg)
466 && REGNO_REG_SET_P (df_get_live_in (bb), reg))
467 SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
469 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
470 insn != last;
471 insn = NEXT_INSN (insn), insn_luid++)
473 if (INSN_P (insn))
475 int regno;
476 int insn_uid = INSN_UID (insn);
478 if (insn_sets_btr_p (insn, 0, &regno))
480 btr_def *def = add_btr_def (
481 all_btr_defs, bb, insn_luid, insn, regno,
482 TEST_HARD_REG_BIT (info.btrs_live_in_block, regno),
483 &all_btr_def_groups);
485 def_array[insn_uid] = def;
486 SET_HARD_REG_BIT (info.btrs_written_in_block, regno);
487 SET_HARD_REG_BIT (info.btrs_live_in_block, regno);
488 bitmap_and_compl (bb_gen[i], bb_gen[i],
489 btr_defset[regno - first_btr]);
490 bitmap_set_bit (bb_gen[i], insn_uid);
491 def->next_this_bb = defs_this_bb;
492 defs_this_bb = def;
493 bitmap_set_bit (btr_defset[regno - first_btr], insn_uid);
494 note_other_use_this_block (regno, info.users_this_bb);
496 /* Check for the blockage emitted by expand_nl_goto_receiver. */
497 else if (cfun->has_nonlocal_label
498 && GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE)
500 btr_user *user;
502 /* Do the equivalent of calling note_other_use_this_block
503 for every target register. */
504 for (user = info.users_this_bb; user != NULL;
505 user = user->next)
506 if (user->use)
507 user->other_use_this_block = 1;
508 IOR_HARD_REG_SET (info.btrs_written_in_block, all_btrs);
509 IOR_HARD_REG_SET (info.btrs_live_in_block, all_btrs);
510 bitmap_clear (info.bb_gen);
512 else
514 if (find_btr_use (&PATTERN (insn)))
516 btr_user *user = new_btr_user (bb, insn_luid, insn);
518 use_array[insn_uid] = user;
519 if (user->use)
520 SET_HARD_REG_BIT (info.btrs_live_in_block,
521 REGNO (user->use));
522 else
524 int reg;
525 for (reg = first_btr; reg <= last_btr; reg++)
526 if (TEST_HARD_REG_BIT (all_btrs, reg)
527 && refers_to_regno_p (reg, user->insn))
529 note_other_use_this_block (reg,
530 info.users_this_bb);
531 SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
533 note_stores (PATTERN (insn), note_btr_set, &info);
535 user->next = info.users_this_bb;
536 info.users_this_bb = user;
538 if (CALL_P (insn))
540 HARD_REG_SET *clobbered = &call_used_reg_set;
541 HARD_REG_SET call_saved;
542 rtx pat = PATTERN (insn);
543 int i;
545 /* Check for sibcall. */
546 if (GET_CODE (pat) == PARALLEL)
547 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
548 if (ANY_RETURN_P (XVECEXP (pat, 0, i)))
550 COMPL_HARD_REG_SET (call_saved,
551 call_used_reg_set);
552 clobbered = &call_saved;
555 for (regno = first_btr; regno <= last_btr; regno++)
556 if (TEST_HARD_REG_BIT (*clobbered, regno))
557 note_btr_set (regno_reg_rtx[regno], NULL_RTX, &info);
563 COPY_HARD_REG_SET (btrs_live[i], info.btrs_live_in_block);
564 COPY_HARD_REG_SET (btrs_written[i], info.btrs_written_in_block);
566 REG_SET_TO_HARD_REG_SET (btrs_live_at_end[i], df_get_live_out (bb));
567 /* If this block ends in a jump insn, add any uses or even clobbers
568 of branch target registers that it might have. */
569 for (insn = BB_END (bb); insn != BB_HEAD (bb) && ! INSN_P (insn); )
570 insn = PREV_INSN (insn);
571 /* ??? for the fall-through edge, it would make sense to insert the
572 btr set on the edge, but that would require to split the block
573 early on so that we can distinguish between dominance from the fall
574 through edge - which can use the call-clobbered registers - from
575 dominance by the throw edge. */
576 if (can_throw_internal (insn))
578 HARD_REG_SET tmp;
580 COPY_HARD_REG_SET (tmp, call_used_reg_set);
581 AND_HARD_REG_SET (tmp, all_btrs);
582 IOR_HARD_REG_SET (btrs_live_at_end[i], tmp);
583 can_throw = 1;
585 if (can_throw || JUMP_P (insn))
587 int regno;
589 for (regno = first_btr; regno <= last_btr; regno++)
590 if (refers_to_regno_p (regno, insn))
591 SET_HARD_REG_BIT (btrs_live_at_end[i], regno);
594 if (dump_file)
595 dump_btrs_live (i);
599 static void
600 compute_kill (sbitmap *bb_kill, sbitmap *btr_defset,
601 HARD_REG_SET *btrs_written)
603 int i;
604 int regno;
606 /* For each basic block, form the set BB_KILL - the set
607 of definitions that the block kills. */
608 bitmap_vector_clear (bb_kill, last_basic_block_for_fn (cfun));
609 for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
611 for (regno = first_btr; regno <= last_btr; regno++)
612 if (TEST_HARD_REG_BIT (all_btrs, regno)
613 && TEST_HARD_REG_BIT (btrs_written[i], regno))
614 bitmap_ior (bb_kill[i], bb_kill[i],
615 btr_defset[regno - first_btr]);
619 static void
620 compute_out (sbitmap *bb_out, sbitmap *bb_gen, sbitmap *bb_kill, int max_uid)
622 /* Perform iterative dataflow:
623 Initially, for all blocks, BB_OUT = BB_GEN.
624 For each block,
625 BB_IN = union over predecessors of BB_OUT(pred)
626 BB_OUT = (BB_IN - BB_KILL) + BB_GEN
627 Iterate until the bb_out sets stop growing. */
628 int i;
629 int changed;
630 auto_sbitmap bb_in (max_uid);
632 for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
633 bitmap_copy (bb_out[i], bb_gen[i]);
635 changed = 1;
636 while (changed)
638 changed = 0;
639 for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
641 bitmap_union_of_preds (bb_in, bb_out, BASIC_BLOCK_FOR_FN (cfun, i));
642 changed |= bitmap_ior_and_compl (bb_out[i], bb_gen[i],
643 bb_in, bb_kill[i]);
648 static void
649 link_btr_uses (btr_def **def_array, btr_user **use_array, sbitmap *bb_out,
650 sbitmap *btr_defset, int max_uid)
652 int i;
653 auto_sbitmap reaching_defs (max_uid);
655 /* Link uses to the uses lists of all of their reaching defs.
656 Count up the number of reaching defs of each use. */
657 for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
659 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
660 rtx_insn *insn;
661 rtx_insn *last;
663 bitmap_union_of_preds (reaching_defs, bb_out, BASIC_BLOCK_FOR_FN (cfun, i));
664 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
665 insn != last;
666 insn = NEXT_INSN (insn))
668 if (INSN_P (insn))
670 int insn_uid = INSN_UID (insn);
672 btr_def *def = def_array[insn_uid];
673 btr_user *user = use_array[insn_uid];
674 if (def != NULL)
676 /* Remove all reaching defs of regno except
677 for this one. */
678 bitmap_and_compl (reaching_defs, reaching_defs,
679 btr_defset[def->btr - first_btr]);
680 bitmap_set_bit (reaching_defs, insn_uid);
683 if (user != NULL)
685 /* Find all the reaching defs for this use. */
686 auto_sbitmap reaching_defs_of_reg (max_uid);
687 unsigned int uid = 0;
688 sbitmap_iterator sbi;
690 if (user->use)
691 bitmap_and (
692 reaching_defs_of_reg,
693 reaching_defs,
694 btr_defset[REGNO (user->use) - first_btr]);
695 else
697 int reg;
699 bitmap_clear (reaching_defs_of_reg);
700 for (reg = first_btr; reg <= last_btr; reg++)
701 if (TEST_HARD_REG_BIT (all_btrs, reg)
702 && refers_to_regno_p (reg, user->insn))
703 bitmap_or_and (reaching_defs_of_reg,
704 reaching_defs_of_reg,
705 reaching_defs,
706 btr_defset[reg - first_btr]);
708 EXECUTE_IF_SET_IN_BITMAP (reaching_defs_of_reg, 0, uid, sbi)
710 btr_def *def = def_array[uid];
712 /* We now know that def reaches user. */
714 if (dump_file)
715 fprintf (dump_file,
716 "Def in insn %d reaches use in insn %d\n",
717 uid, insn_uid);
719 user->n_reaching_defs++;
720 if (!user->use)
721 def->has_ambiguous_use = 1;
722 if (user->first_reaching_def != -1)
723 { /* There is more than one reaching def. This is
724 a rare case, so just give up on this def/use
725 web when it occurs. */
726 def->has_ambiguous_use = 1;
727 def_array[user->first_reaching_def]
728 ->has_ambiguous_use = 1;
729 if (dump_file)
730 fprintf (dump_file,
731 "(use %d has multiple reaching defs)\n",
732 insn_uid);
734 else
735 user->first_reaching_def = uid;
736 if (user->other_use_this_block)
737 def->other_btr_uses_after_use = 1;
738 user->next = def->uses;
739 def->uses = user;
743 if (CALL_P (insn))
745 int regno;
747 for (regno = first_btr; regno <= last_btr; regno++)
748 if (TEST_HARD_REG_BIT (all_btrs, regno)
749 && TEST_HARD_REG_BIT (call_used_reg_set, regno))
750 bitmap_and_compl (reaching_defs, reaching_defs,
751 btr_defset[regno - first_btr]);
758 static void
759 build_btr_def_use_webs (btr_heap_t *all_btr_defs)
761 const int max_uid = get_max_uid ();
762 btr_def **def_array = XCNEWVEC (btr_def *, max_uid);
763 btr_user **use_array = XCNEWVEC (btr_user *, max_uid);
764 sbitmap *btr_defset = sbitmap_vector_alloc (
765 (last_btr - first_btr) + 1, max_uid);
766 sbitmap *bb_gen = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
767 max_uid);
768 HARD_REG_SET *btrs_written = XCNEWVEC (HARD_REG_SET,
769 last_basic_block_for_fn (cfun));
770 sbitmap *bb_kill;
771 sbitmap *bb_out;
773 bitmap_vector_clear (btr_defset, (last_btr - first_btr) + 1);
775 compute_defs_uses_and_gen (all_btr_defs, def_array, use_array, btr_defset,
776 bb_gen, btrs_written);
778 bb_kill = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), max_uid);
779 compute_kill (bb_kill, btr_defset, btrs_written);
780 free (btrs_written);
782 bb_out = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), max_uid);
783 compute_out (bb_out, bb_gen, bb_kill, max_uid);
785 sbitmap_vector_free (bb_gen);
786 sbitmap_vector_free (bb_kill);
788 link_btr_uses (def_array, use_array, bb_out, btr_defset, max_uid);
790 sbitmap_vector_free (bb_out);
791 sbitmap_vector_free (btr_defset);
792 free (use_array);
793 free (def_array);
796 /* Return true if basic block BB contains the start or end of the
797 live range of the definition DEF, AND there are other live
798 ranges of the same target register that include BB. */
799 static int
800 block_at_edge_of_live_range_p (int bb, btr_def *def)
802 if (def->other_btr_uses_before_def
803 && BASIC_BLOCK_FOR_FN (cfun, bb) == def->bb)
804 return 1;
805 else if (def->other_btr_uses_after_use)
807 btr_user *user;
808 for (user = def->uses; user != NULL; user = user->next)
809 if (BASIC_BLOCK_FOR_FN (cfun, bb) == user->bb)
810 return 1;
812 return 0;
815 /* We are removing the def/use web DEF. The target register
816 used in this web is therefore no longer live in the live range
817 of this web, so remove it from the live set of all basic blocks
818 in the live range of the web.
819 Blocks at the boundary of the live range may contain other live
820 ranges for the same target register, so we have to be careful
821 to remove the target register from the live set of these blocks
822 only if they do not contain other live ranges for the same register. */
823 static void
824 clear_btr_from_live_range (btr_def *def)
826 unsigned bb;
827 bitmap_iterator bi;
829 EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
831 if ((!def->other_btr_uses_before_def
832 && !def->other_btr_uses_after_use)
833 || !block_at_edge_of_live_range_p (bb, def))
835 CLEAR_HARD_REG_BIT (btrs_live[bb], def->btr);
836 CLEAR_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
837 if (dump_file)
838 dump_btrs_live (bb);
841 if (def->own_end)
842 CLEAR_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
846 /* We are adding the def/use web DEF. Add the target register used
847 in this web to the live set of all of the basic blocks that contain
848 the live range of the web.
849 If OWN_END is set, also show that the register is live from our
850 definitions at the end of the basic block where it is defined. */
851 static void
852 add_btr_to_live_range (btr_def *def, int own_end)
854 unsigned bb;
855 bitmap_iterator bi;
857 EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
859 SET_HARD_REG_BIT (btrs_live[bb], def->btr);
860 SET_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
861 if (dump_file)
862 dump_btrs_live (bb);
864 if (own_end)
866 SET_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
867 def->own_end = 1;
871 /* Update a live range to contain the basic block NEW_BLOCK, and all
872 blocks on paths between the existing live range and NEW_BLOCK.
873 HEAD is a block contained in the existing live range that dominates
874 all other blocks in the existing live range.
875 Also add to the set BTRS_LIVE_IN_RANGE all target registers that
876 are live in the blocks that we add to the live range.
877 If FULL_RANGE is set, include the full live range of NEW_BB;
878 otherwise, if NEW_BB dominates HEAD_BB, only add registers that
879 are life at the end of NEW_BB for NEW_BB itself.
880 It is a precondition that either NEW_BLOCK dominates HEAD,or
881 HEAD dom NEW_BLOCK. This is used to speed up the
882 implementation of this function. */
883 static void
884 augment_live_range (bitmap live_range, HARD_REG_SET *btrs_live_in_range,
885 basic_block head_bb, basic_block new_bb, int full_range)
887 basic_block *worklist, *tos;
889 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
891 if (dominated_by_p (CDI_DOMINATORS, new_bb, head_bb))
893 if (new_bb == head_bb)
895 if (full_range)
896 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_bb->index]);
897 free (tos);
898 return;
900 *tos++ = new_bb;
902 else
904 edge e;
905 edge_iterator ei;
906 int new_block = new_bb->index;
908 gcc_assert (dominated_by_p (CDI_DOMINATORS, head_bb, new_bb));
910 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[head_bb->index]);
911 bitmap_set_bit (live_range, new_block);
912 /* A previous btr migration could have caused a register to be
913 live just at the end of new_block which we need in full, so
914 use trs_live_at_end even if full_range is set. */
915 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live_at_end[new_block]);
916 if (full_range)
917 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_block]);
918 if (dump_file)
920 fprintf (dump_file,
921 "Adding end of block %d and rest of %d to live range\n",
922 new_block, head_bb->index);
923 fprintf (dump_file,"Now live btrs are ");
924 dump_hard_reg_set (*btrs_live_in_range);
925 fprintf (dump_file, "\n");
927 FOR_EACH_EDGE (e, ei, head_bb->preds)
928 *tos++ = e->src;
931 while (tos != worklist)
933 basic_block bb = *--tos;
934 if (!bitmap_bit_p (live_range, bb->index))
936 edge e;
937 edge_iterator ei;
939 bitmap_set_bit (live_range, bb->index);
940 IOR_HARD_REG_SET (*btrs_live_in_range,
941 btrs_live[bb->index]);
942 /* A previous btr migration could have caused a register to be
943 live just at the end of a block which we need in full. */
944 IOR_HARD_REG_SET (*btrs_live_in_range,
945 btrs_live_at_end[bb->index]);
946 if (dump_file)
948 fprintf (dump_file,
949 "Adding block %d to live range\n", bb->index);
950 fprintf (dump_file,"Now live btrs are ");
951 dump_hard_reg_set (*btrs_live_in_range);
952 fprintf (dump_file, "\n");
955 FOR_EACH_EDGE (e, ei, bb->preds)
957 basic_block pred = e->src;
958 if (!bitmap_bit_p (live_range, pred->index))
959 *tos++ = pred;
964 free (worklist);
967 /* Return the most desirable target register that is not in
968 the set USED_BTRS. */
969 static int
970 choose_btr (HARD_REG_SET used_btrs)
972 int i;
974 if (!hard_reg_set_subset_p (all_btrs, used_btrs))
975 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
977 #ifdef REG_ALLOC_ORDER
978 int regno = reg_alloc_order[i];
979 #else
980 int regno = i;
981 #endif
982 if (TEST_HARD_REG_BIT (all_btrs, regno)
983 && !TEST_HARD_REG_BIT (used_btrs, regno))
984 return regno;
986 return -1;
989 /* Calculate the set of basic blocks that contain the live range of
990 the def/use web DEF.
991 Also calculate the set of target registers that are live at time
992 in this live range, but ignore the live range represented by DEF
993 when calculating this set. */
994 static void
995 btr_def_live_range (btr_def *def, HARD_REG_SET *btrs_live_in_range)
997 if (!def->live_range)
999 btr_user *user;
1001 def->live_range = BITMAP_ALLOC (NULL);
1003 bitmap_set_bit (def->live_range, def->bb->index);
1004 COPY_HARD_REG_SET (*btrs_live_in_range,
1005 (flag_btr_bb_exclusive
1006 ? btrs_live : btrs_live_at_end)[def->bb->index]);
1008 for (user = def->uses; user != NULL; user = user->next)
1009 augment_live_range (def->live_range, btrs_live_in_range,
1010 def->bb, user->bb,
1011 (flag_btr_bb_exclusive
1012 || user->insn != BB_END (def->bb)
1013 || !JUMP_P (user->insn)));
1015 else
1017 /* def->live_range is accurate, but we need to recompute
1018 the set of target registers live over it, because migration
1019 of other PT instructions may have affected it.
1021 unsigned bb;
1022 unsigned def_bb = flag_btr_bb_exclusive ? -1 : def->bb->index;
1023 bitmap_iterator bi;
1025 CLEAR_HARD_REG_SET (*btrs_live_in_range);
1026 EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
1028 IOR_HARD_REG_SET (*btrs_live_in_range,
1029 (def_bb == bb
1030 ? btrs_live_at_end : btrs_live) [bb]);
1033 if (!def->other_btr_uses_before_def &&
1034 !def->other_btr_uses_after_use)
1035 CLEAR_HARD_REG_BIT (*btrs_live_in_range, def->btr);
1038 /* Merge into the def/use web DEF any other def/use webs in the same
1039 group that are dominated by DEF, provided that there is a target
1040 register available to allocate to the merged web. */
1041 static void
1042 combine_btr_defs (btr_def *def, HARD_REG_SET *btrs_live_in_range)
1044 btr_def *other_def;
1046 for (other_def = def->group->members;
1047 other_def != NULL;
1048 other_def = other_def->next_this_group)
1050 if (other_def != def
1051 && other_def->uses != NULL
1052 && ! other_def->has_ambiguous_use
1053 && dominated_by_p (CDI_DOMINATORS, other_def->bb, def->bb))
1055 /* def->bb dominates the other def, so def and other_def could
1056 be combined. */
1057 /* Merge their live ranges, and get the set of
1058 target registers live over the merged range. */
1059 int btr;
1060 HARD_REG_SET combined_btrs_live;
1061 bitmap combined_live_range = BITMAP_ALLOC (NULL);
1062 btr_user *user;
1064 if (other_def->live_range == NULL)
1066 HARD_REG_SET dummy_btrs_live_in_range;
1067 btr_def_live_range (other_def, &dummy_btrs_live_in_range);
1069 COPY_HARD_REG_SET (combined_btrs_live, *btrs_live_in_range);
1070 bitmap_copy (combined_live_range, def->live_range);
1072 for (user = other_def->uses; user != NULL; user = user->next)
1073 augment_live_range (combined_live_range, &combined_btrs_live,
1074 def->bb, user->bb,
1075 (flag_btr_bb_exclusive
1076 || user->insn != BB_END (def->bb)
1077 || !JUMP_P (user->insn)));
1079 btr = choose_btr (combined_btrs_live);
1080 if (btr != -1)
1082 /* We can combine them. */
1083 if (dump_file)
1084 fprintf (dump_file,
1085 "Combining def in insn %d with def in insn %d\n",
1086 INSN_UID (other_def->insn), INSN_UID (def->insn));
1088 def->btr = btr;
1089 user = other_def->uses;
1090 while (user != NULL)
1092 btr_user *next = user->next;
1094 user->next = def->uses;
1095 def->uses = user;
1096 user = next;
1098 /* Combining def/use webs can make target registers live
1099 after uses where they previously were not. This means
1100 some REG_DEAD notes may no longer be correct. We could
1101 be more precise about this if we looked at the combined
1102 live range, but here I just delete any REG_DEAD notes
1103 in case they are no longer correct. */
1104 for (user = def->uses; user != NULL; user = user->next)
1105 remove_note (user->insn,
1106 find_regno_note (user->insn, REG_DEAD,
1107 REGNO (user->use)));
1108 clear_btr_from_live_range (other_def);
1109 other_def->uses = NULL;
1110 bitmap_copy (def->live_range, combined_live_range);
1111 if (other_def->btr == btr && other_def->other_btr_uses_after_use)
1112 def->other_btr_uses_after_use = 1;
1113 COPY_HARD_REG_SET (*btrs_live_in_range, combined_btrs_live);
1115 /* Delete the old target register initialization. */
1116 delete_insn (other_def->insn);
1119 BITMAP_FREE (combined_live_range);
1124 /* Move the definition DEF from its current position to basic
1125 block NEW_DEF_BB, and modify it to use branch target register BTR.
1126 Delete the old defining insn, and insert a new one in NEW_DEF_BB.
1127 Update all reaching uses of DEF in the RTL to use BTR.
1128 If this new position means that other defs in the
1129 same group can be combined with DEF then combine them. */
1130 static void
1131 move_btr_def (basic_block new_def_bb, int btr, btr_def *def, bitmap live_range,
1132 HARD_REG_SET *btrs_live_in_range)
1134 /* We can move the instruction.
1135 Set a target register in block NEW_DEF_BB to the value
1136 needed for this target register definition.
1137 Replace all uses of the old target register definition by
1138 uses of the new definition. Delete the old definition. */
1139 basic_block b = new_def_bb;
1140 rtx_insn *insp = BB_HEAD (b);
1141 rtx_insn *old_insn = def->insn;
1142 rtx src;
1143 rtx btr_rtx;
1144 rtx_insn *new_insn;
1145 machine_mode btr_mode;
1146 btr_user *user;
1147 rtx set;
1149 if (dump_file)
1150 fprintf(dump_file, "migrating to basic block %d, using reg %d\n",
1151 new_def_bb->index, btr);
1153 clear_btr_from_live_range (def);
1154 def->btr = btr;
1155 def->bb = new_def_bb;
1156 def->luid = 0;
1157 def->cost = basic_block_freq (new_def_bb);
1158 bitmap_copy (def->live_range, live_range);
1159 combine_btr_defs (def, btrs_live_in_range);
1160 btr = def->btr;
1161 def->other_btr_uses_before_def
1162 = TEST_HARD_REG_BIT (btrs_live[b->index], btr) ? 1 : 0;
1163 add_btr_to_live_range (def, 1);
1164 if (LABEL_P (insp))
1165 insp = NEXT_INSN (insp);
1166 /* N.B.: insp is expected to be NOTE_INSN_BASIC_BLOCK now. Some
1167 optimizations can result in insp being both first and last insn of
1168 its basic block. */
1169 /* ?? some assertions to check that insp is sensible? */
1171 if (def->other_btr_uses_before_def)
1173 insp = BB_END (b);
1174 for (insp = BB_END (b); ! INSN_P (insp); insp = PREV_INSN (insp))
1175 gcc_assert (insp != BB_HEAD (b));
1177 if (JUMP_P (insp) || can_throw_internal (insp))
1178 insp = PREV_INSN (insp);
1181 set = single_set (old_insn);
1182 src = SET_SRC (set);
1183 btr_mode = GET_MODE (SET_DEST (set));
1184 btr_rtx = gen_rtx_REG (btr_mode, btr);
1186 new_insn = gen_move_insn (btr_rtx, src);
1188 /* Insert target register initialization at head of basic block. */
1189 def->insn = emit_insn_after (new_insn, insp);
1191 df_set_regs_ever_live (btr, true);
1193 if (dump_file)
1194 fprintf (dump_file, "New pt is insn %d, inserted after insn %d\n",
1195 INSN_UID (def->insn), INSN_UID (insp));
1197 /* Delete the old target register initialization. */
1198 delete_insn (old_insn);
1200 /* Replace each use of the old target register by a use of the new target
1201 register. */
1202 for (user = def->uses; user != NULL; user = user->next)
1204 /* Some extra work here to ensure consistent modes, because
1205 it seems that a target register REG rtx can be given a different
1206 mode depending on the context (surely that should not be
1207 the case?). */
1208 rtx replacement_rtx;
1209 if (GET_MODE (user->use) == GET_MODE (btr_rtx)
1210 || GET_MODE (user->use) == VOIDmode)
1211 replacement_rtx = btr_rtx;
1212 else
1213 replacement_rtx = gen_rtx_REG (GET_MODE (user->use), btr);
1214 validate_replace_rtx (user->use, replacement_rtx, user->insn);
1215 user->use = replacement_rtx;
1219 /* We anticipate intra-block scheduling to be done. See if INSN could move
1220 up within BB by N_INSNS. */
1221 static int
1222 can_move_up (const_basic_block bb, const rtx_insn *insn, int n_insns)
1224 while (insn != BB_HEAD (bb) && n_insns > 0)
1226 insn = PREV_INSN (insn);
1227 /* ??? What if we have an anti-dependency that actually prevents the
1228 scheduler from doing the move? We'd like to re-allocate the register,
1229 but not necessarily put the load into another basic block. */
1230 if (INSN_P (insn))
1231 n_insns--;
1233 return n_insns <= 0;
1236 /* Attempt to migrate the target register definition DEF to an
1237 earlier point in the flowgraph.
1239 It is a precondition of this function that DEF is migratable:
1240 i.e. it has a constant source, and all uses are unambiguous.
1242 Only migrations that reduce the cost of DEF will be made.
1243 MIN_COST is the lower bound on the cost of the DEF after migration.
1244 If we migrate DEF so that its cost falls below MIN_COST,
1245 then we do not attempt to migrate further. The idea is that
1246 we migrate definitions in a priority order based on their cost,
1247 when the cost of this definition falls below MIN_COST, then
1248 there is another definition with cost == MIN_COST which now
1249 has a higher priority than this definition.
1251 Return nonzero if there may be benefit from attempting to
1252 migrate this DEF further (i.e. we have reduced the cost below
1253 MIN_COST, but we may be able to reduce it further).
1254 Return zero if no further migration is possible. */
1255 static int
1256 migrate_btr_def (btr_def *def, int min_cost)
1258 bitmap live_range;
1259 HARD_REG_SET btrs_live_in_range;
1260 int btr_used_near_def = 0;
1261 int def_basic_block_freq;
1262 basic_block attempt;
1263 int give_up = 0;
1264 int def_moved = 0;
1265 btr_user *user;
1266 int def_latency;
1268 if (dump_file)
1269 fprintf (dump_file,
1270 "Attempting to migrate pt from insn %d (cost = %d, min_cost = %d) ... ",
1271 INSN_UID (def->insn), def->cost, min_cost);
1273 if (!def->group || def->has_ambiguous_use)
1274 /* These defs are not migratable. */
1276 if (dump_file)
1277 fprintf (dump_file, "it's not migratable\n");
1278 return 0;
1281 if (!def->uses)
1282 /* We have combined this def with another in the same group, so
1283 no need to consider it further.
1286 if (dump_file)
1287 fprintf (dump_file, "it's already combined with another pt\n");
1288 return 0;
1291 btr_def_live_range (def, &btrs_live_in_range);
1292 live_range = BITMAP_ALLOC (NULL);
1293 bitmap_copy (live_range, def->live_range);
1295 #ifdef INSN_SCHEDULING
1296 def_latency = insn_default_latency (def->insn) * issue_rate;
1297 #else
1298 def_latency = issue_rate;
1299 #endif
1301 for (user = def->uses; user != NULL; user = user->next)
1303 if (user->bb == def->bb
1304 && user->luid > def->luid
1305 && (def->luid + def_latency) > user->luid
1306 && ! can_move_up (def->bb, def->insn,
1307 (def->luid + def_latency) - user->luid))
1309 btr_used_near_def = 1;
1310 break;
1314 def_basic_block_freq = basic_block_freq (def->bb);
1316 for (attempt = get_immediate_dominator (CDI_DOMINATORS, def->bb);
1317 !give_up && attempt && attempt != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1318 && def->cost >= min_cost;
1319 attempt = get_immediate_dominator (CDI_DOMINATORS, attempt))
1321 /* Try to move the instruction that sets the target register into
1322 basic block ATTEMPT. */
1323 int try_freq = basic_block_freq (attempt);
1324 edge_iterator ei;
1325 edge e;
1327 /* If ATTEMPT has abnormal edges, skip it. */
1328 FOR_EACH_EDGE (e, ei, attempt->succs)
1329 if (e->flags & EDGE_COMPLEX)
1330 break;
1331 if (e)
1332 continue;
1334 if (dump_file)
1335 fprintf (dump_file, "trying block %d ...", attempt->index);
1337 if (try_freq < def_basic_block_freq
1338 || (try_freq == def_basic_block_freq && btr_used_near_def))
1340 int btr;
1341 augment_live_range (live_range, &btrs_live_in_range, def->bb, attempt,
1342 flag_btr_bb_exclusive);
1343 if (dump_file)
1345 fprintf (dump_file, "Now btrs live in range are: ");
1346 dump_hard_reg_set (btrs_live_in_range);
1347 fprintf (dump_file, "\n");
1349 btr = choose_btr (btrs_live_in_range);
1350 if (btr != -1)
1352 move_btr_def (attempt, btr, def, live_range, &btrs_live_in_range);
1353 bitmap_copy (live_range, def->live_range);
1354 btr_used_near_def = 0;
1355 def_moved = 1;
1356 def_basic_block_freq = basic_block_freq (def->bb);
1358 else
1360 /* There are no free target registers available to move
1361 this far forward, so give up */
1362 give_up = 1;
1363 if (dump_file)
1364 fprintf (dump_file,
1365 "giving up because there are no free target registers\n");
1370 if (!def_moved)
1372 give_up = 1;
1373 if (dump_file)
1374 fprintf (dump_file, "failed to move\n");
1376 BITMAP_FREE (live_range);
1377 return !give_up;
1380 /* Attempt to move instructions that set target registers earlier
1381 in the flowgraph, away from their corresponding uses. */
1382 static void
1383 migrate_btr_defs (enum reg_class btr_class, int allow_callee_save)
1385 btr_heap_t all_btr_defs (LONG_MIN);
1386 int reg;
1388 gcc_obstack_init (&migrate_btrl_obstack);
1389 if (dump_file)
1391 int i;
1393 for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
1395 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1396 fprintf (dump_file,
1397 "Basic block %d: count = %" PRId64
1398 " loop-depth = %d idom = %d\n",
1399 i, (int64_t) bb->count, bb_loop_depth (bb),
1400 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
1404 CLEAR_HARD_REG_SET (all_btrs);
1405 for (first_btr = -1, reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
1406 if (TEST_HARD_REG_BIT (reg_class_contents[(int) btr_class], reg)
1407 && (allow_callee_save || call_used_regs[reg]
1408 || df_regs_ever_live_p (reg)))
1410 SET_HARD_REG_BIT (all_btrs, reg);
1411 last_btr = reg;
1412 if (first_btr < 0)
1413 first_btr = reg;
1416 btrs_live = XCNEWVEC (HARD_REG_SET, last_basic_block_for_fn (cfun));
1417 btrs_live_at_end = XCNEWVEC (HARD_REG_SET, last_basic_block_for_fn (cfun));
1419 build_btr_def_use_webs (&all_btr_defs);
1421 while (!all_btr_defs.empty ())
1423 int min_cost = -all_btr_defs.min_key ();
1424 btr_def *def = all_btr_defs.extract_min ();
1425 if (migrate_btr_def (def, min_cost))
1427 all_btr_defs.insert (-def->cost, def);
1428 if (dump_file)
1430 fprintf (dump_file,
1431 "Putting insn %d back on queue with priority %d\n",
1432 INSN_UID (def->insn), def->cost);
1435 else
1436 BITMAP_FREE (def->live_range);
1439 free (btrs_live);
1440 free (btrs_live_at_end);
1441 obstack_free (&migrate_btrl_obstack, NULL);
1444 static void
1445 branch_target_load_optimize (bool after_prologue_epilogue_gen)
1447 enum reg_class klass
1448 = (enum reg_class) targetm.branch_target_register_class ();
1449 if (klass != NO_REGS)
1451 /* Initialize issue_rate. */
1452 if (targetm.sched.issue_rate)
1453 issue_rate = targetm.sched.issue_rate ();
1454 else
1455 issue_rate = 1;
1457 if (!after_prologue_epilogue_gen)
1459 /* Build the CFG for migrate_btr_defs. */
1460 #if 1
1461 /* This may or may not be needed, depending on where we
1462 run this phase. */
1463 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
1464 #endif
1466 df_analyze ();
1469 /* Dominator info is also needed for migrate_btr_def. */
1470 calculate_dominance_info (CDI_DOMINATORS);
1471 migrate_btr_defs (klass,
1472 (targetm.branch_target_register_callee_saved
1473 (after_prologue_epilogue_gen)));
1475 free_dominance_info (CDI_DOMINATORS);
1479 namespace {
1481 const pass_data pass_data_branch_target_load_optimize1 =
1483 RTL_PASS, /* type */
1484 "btl1", /* name */
1485 OPTGROUP_NONE, /* optinfo_flags */
1486 TV_NONE, /* tv_id */
1487 0, /* properties_required */
1488 0, /* properties_provided */
1489 0, /* properties_destroyed */
1490 0, /* todo_flags_start */
1491 0, /* todo_flags_finish */
1494 class pass_branch_target_load_optimize1 : public rtl_opt_pass
1496 public:
1497 pass_branch_target_load_optimize1 (gcc::context *ctxt)
1498 : rtl_opt_pass (pass_data_branch_target_load_optimize1, ctxt)
1501 /* opt_pass methods: */
1502 virtual bool gate (function *) { return flag_branch_target_load_optimize; }
1503 virtual unsigned int execute (function *)
1505 branch_target_load_optimize (epilogue_completed);
1506 return 0;
1509 }; // class pass_branch_target_load_optimize1
1511 } // anon namespace
1513 rtl_opt_pass *
1514 make_pass_branch_target_load_optimize1 (gcc::context *ctxt)
1516 return new pass_branch_target_load_optimize1 (ctxt);
1520 namespace {
1522 const pass_data pass_data_branch_target_load_optimize2 =
1524 RTL_PASS, /* type */
1525 "btl2", /* name */
1526 OPTGROUP_NONE, /* optinfo_flags */
1527 TV_NONE, /* tv_id */
1528 0, /* properties_required */
1529 0, /* properties_provided */
1530 0, /* properties_destroyed */
1531 0, /* todo_flags_start */
1532 0, /* todo_flags_finish */
1535 class pass_branch_target_load_optimize2 : public rtl_opt_pass
1537 public:
1538 pass_branch_target_load_optimize2 (gcc::context *ctxt)
1539 : rtl_opt_pass (pass_data_branch_target_load_optimize2, ctxt)
1542 /* opt_pass methods: */
1543 virtual bool gate (function *)
1545 return (optimize > 0 && flag_branch_target_load_optimize2);
1548 virtual unsigned int execute (function *);
1550 }; // class pass_branch_target_load_optimize2
1552 unsigned int
1553 pass_branch_target_load_optimize2::execute (function *)
1555 static int warned = 0;
1557 /* Leave this a warning for now so that it is possible to experiment
1558 with running this pass twice. In 3.6, we should either make this
1559 an error, or use separate dump files. */
1560 if (flag_branch_target_load_optimize
1561 && flag_branch_target_load_optimize2
1562 && !warned)
1564 warning (0, "branch target register load optimization is not intended "
1565 "to be run twice");
1567 warned = 1;
1570 branch_target_load_optimize (epilogue_completed);
1571 return 0;
1574 } // anon namespace
1576 rtl_opt_pass *
1577 make_pass_branch_target_load_optimize2 (gcc::context *ctxt)
1579 return new pass_branch_target_load_optimize2 (ctxt);