re PR tree-optimization/19831 (Missing DSE/malloc/free optimization)
[official-gcc.git] / gcc / graphite-scop-detection.c
blob38fe92b44bbe27ab7e76d0516fa183edff7419cd
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009-2013 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
24 #ifdef HAVE_cloog
25 #include <isl/set.h>
26 #include <isl/map.h>
27 #include <isl/union_map.h>
28 #include <cloog/cloog.h>
29 #include <cloog/isl/domain.h>
30 #endif
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tree.h"
35 #include "gimple.h"
36 #include "gimple-ssa.h"
37 #include "tree-phinodes.h"
38 #include "ssa-iterators.h"
39 #include "tree-ssa-loop-manip.h"
40 #include "tree-ssa-loop-niter.h"
41 #include "tree-ssa-loop.h"
42 #include "tree-into-ssa.h"
43 #include "tree-ssa.h"
44 #include "cfgloop.h"
45 #include "tree-chrec.h"
46 #include "tree-data-ref.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-pass.h"
49 #include "sese.h"
50 #include "tree-ssa-propagate.h"
52 #ifdef HAVE_cloog
53 #include "graphite-poly.h"
54 #include "graphite-scop-detection.h"
56 /* Forward declarations. */
57 static void make_close_phi_nodes_unique (basic_block);
59 /* The type of the analyzed basic block. */
61 typedef enum gbb_type {
62 GBB_UNKNOWN,
63 GBB_LOOP_SING_EXIT_HEADER,
64 GBB_LOOP_MULT_EXIT_HEADER,
65 GBB_LOOP_EXIT,
66 GBB_COND_HEADER,
67 GBB_SIMPLE,
68 GBB_LAST
69 } gbb_type;
71 /* Detect the type of BB. Loop headers are only marked, if they are
72 new. This means their loop_father is different to LAST_LOOP.
73 Otherwise they are treated like any other bb and their type can be
74 any other type. */
76 static gbb_type
77 get_bb_type (basic_block bb, struct loop *last_loop)
79 vec<basic_block> dom;
80 int nb_dom;
81 struct loop *loop = bb->loop_father;
83 /* Check, if we entry into a new loop. */
84 if (loop != last_loop)
86 if (single_exit (loop) != NULL)
87 return GBB_LOOP_SING_EXIT_HEADER;
88 else if (loop->num != 0)
89 return GBB_LOOP_MULT_EXIT_HEADER;
90 else
91 return GBB_COND_HEADER;
94 dom = get_dominated_by (CDI_DOMINATORS, bb);
95 nb_dom = dom.length ();
96 dom.release ();
98 if (nb_dom == 0)
99 return GBB_LAST;
101 if (nb_dom == 1 && single_succ_p (bb))
102 return GBB_SIMPLE;
104 return GBB_COND_HEADER;
107 /* A SCoP detection region, defined using bbs as borders.
109 All control flow touching this region, comes in passing basic_block
110 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
111 edges for the borders we are able to represent also regions that do
112 not have a single entry or exit edge.
114 But as they have a single entry basic_block and a single exit
115 basic_block, we are able to generate for every sd_region a single
116 entry and exit edge.
120 3 <- entry
123 / \ This region contains: {3, 4, 5, 6, 7, 8}
128 9 <- exit */
131 typedef struct sd_region_p
133 /* The entry bb dominates all bbs in the sd_region. It is part of
134 the region. */
135 basic_block entry;
137 /* The exit bb postdominates all bbs in the sd_region, but is not
138 part of the region. */
139 basic_block exit;
140 } sd_region;
144 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
146 static void
147 move_sd_regions (vec<sd_region> *source, vec<sd_region> *target)
149 sd_region *s;
150 int i;
152 FOR_EACH_VEC_ELT (*source, i, s)
153 target->safe_push (*s);
155 source->release ();
158 /* Something like "n * m" is not allowed. */
160 static bool
161 graphite_can_represent_init (tree e)
163 switch (TREE_CODE (e))
165 case POLYNOMIAL_CHREC:
166 return graphite_can_represent_init (CHREC_LEFT (e))
167 && graphite_can_represent_init (CHREC_RIGHT (e));
169 case MULT_EXPR:
170 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
171 return graphite_can_represent_init (TREE_OPERAND (e, 0))
172 && host_integerp (TREE_OPERAND (e, 1), 0);
173 else
174 return graphite_can_represent_init (TREE_OPERAND (e, 1))
175 && host_integerp (TREE_OPERAND (e, 0), 0);
177 case PLUS_EXPR:
178 case POINTER_PLUS_EXPR:
179 case MINUS_EXPR:
180 return graphite_can_represent_init (TREE_OPERAND (e, 0))
181 && graphite_can_represent_init (TREE_OPERAND (e, 1));
183 case NEGATE_EXPR:
184 case BIT_NOT_EXPR:
185 CASE_CONVERT:
186 case NON_LVALUE_EXPR:
187 return graphite_can_represent_init (TREE_OPERAND (e, 0));
189 default:
190 break;
193 return true;
196 /* Return true when SCEV can be represented in the polyhedral model.
198 An expression can be represented, if it can be expressed as an
199 affine expression. For loops (i, j) and parameters (m, n) all
200 affine expressions are of the form:
202 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
204 1 i + 20 j + (-2) m + 25
206 Something like "i * n" or "n * m" is not allowed. */
208 static bool
209 graphite_can_represent_scev (tree scev)
211 if (chrec_contains_undetermined (scev))
212 return false;
214 switch (TREE_CODE (scev))
216 case PLUS_EXPR:
217 case MINUS_EXPR:
218 return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
219 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
221 case MULT_EXPR:
222 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
223 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
224 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
225 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
226 && graphite_can_represent_init (scev)
227 && graphite_can_represent_scev (TREE_OPERAND (scev, 0))
228 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
230 case POLYNOMIAL_CHREC:
231 /* Check for constant strides. With a non constant stride of
232 'n' we would have a value of 'iv * n'. Also check that the
233 initial value can represented: for example 'n * m' cannot be
234 represented. */
235 if (!evolution_function_right_is_integer_cst (scev)
236 || !graphite_can_represent_init (scev))
237 return false;
239 default:
240 break;
243 /* Only affine functions can be represented. */
244 if (!scev_is_linear_expression (scev))
245 return false;
247 return true;
251 /* Return true when EXPR can be represented in the polyhedral model.
253 This means an expression can be represented, if it is linear with
254 respect to the loops and the strides are non parametric.
255 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
256 entry of the region we analyse. */
258 static bool
259 graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
260 tree expr)
262 tree scev = analyze_scalar_evolution (loop, expr);
264 scev = instantiate_scev (scop_entry, loop, scev);
266 return graphite_can_represent_scev (scev);
269 /* Return true if the data references of STMT can be represented by
270 Graphite. */
272 static bool
273 stmt_has_simple_data_refs_p (loop_p outermost_loop ATTRIBUTE_UNUSED,
274 gimple stmt)
276 data_reference_p dr;
277 unsigned i;
278 int j;
279 bool res = true;
280 vec<data_reference_p> drs = vNULL;
281 loop_p outer;
283 for (outer = loop_containing_stmt (stmt); outer; outer = loop_outer (outer))
285 graphite_find_data_references_in_stmt (outer,
286 loop_containing_stmt (stmt),
287 stmt, &drs);
289 FOR_EACH_VEC_ELT (drs, j, dr)
290 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
291 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
293 res = false;
294 goto done;
297 free_data_refs (drs);
298 drs.create (0);
301 done:
302 free_data_refs (drs);
303 return res;
306 /* Return true only when STMT is simple enough for being handled by
307 Graphite. This depends on SCOP_ENTRY, as the parameters are
308 initialized relatively to this basic block, the linear functions
309 are initialized to OUTERMOST_LOOP and BB is the place where we try
310 to evaluate the STMT. */
312 static bool
313 stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
314 gimple stmt, basic_block bb)
316 loop_p loop = bb->loop_father;
318 gcc_assert (scop_entry);
320 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
321 Calls have side-effects, except those to const or pure
322 functions. */
323 if (gimple_has_volatile_ops (stmt)
324 || (gimple_code (stmt) == GIMPLE_CALL
325 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
326 || (gimple_code (stmt) == GIMPLE_ASM))
327 return false;
329 if (is_gimple_debug (stmt))
330 return true;
332 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
333 return false;
335 switch (gimple_code (stmt))
337 case GIMPLE_RETURN:
338 case GIMPLE_LABEL:
339 return true;
341 case GIMPLE_COND:
343 tree op;
344 ssa_op_iter op_iter;
345 enum tree_code code = gimple_cond_code (stmt);
347 /* We can handle all binary comparisons. Inequalities are
348 also supported as they can be represented with union of
349 polyhedra. */
350 if (!(code == LT_EXPR
351 || code == GT_EXPR
352 || code == LE_EXPR
353 || code == GE_EXPR
354 || code == EQ_EXPR
355 || code == NE_EXPR))
356 return false;
358 FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES)
359 if (!graphite_can_represent_expr (scop_entry, loop, op)
360 /* We can not handle REAL_TYPE. Failed for pr39260. */
361 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
362 return false;
364 return true;
367 case GIMPLE_ASSIGN:
368 case GIMPLE_CALL:
369 return true;
371 default:
372 /* These nodes cut a new scope. */
373 return false;
376 return false;
379 /* Returns the statement of BB that contains a harmful operation: that
380 can be a function call with side effects, the induction variables
381 are not linear with respect to SCOP_ENTRY, etc. The current open
382 scop should end before this statement. The evaluation is limited using
383 OUTERMOST_LOOP as outermost loop that may change. */
385 static gimple
386 harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
388 gimple_stmt_iterator gsi;
390 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
391 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
392 return gsi_stmt (gsi);
394 return NULL;
397 /* Return true if LOOP can be represented in the polyhedral
398 representation. This is evaluated taking SCOP_ENTRY and
399 OUTERMOST_LOOP in mind. */
401 static bool
402 graphite_can_represent_loop (basic_block scop_entry, loop_p loop)
404 tree niter;
405 struct tree_niter_desc niter_desc;
407 /* FIXME: For the moment, graphite cannot be used on loops that
408 iterate using induction variables that wrap. */
410 return number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
411 && niter_desc.control.no_overflow
412 && (niter = number_of_latch_executions (loop))
413 && !chrec_contains_undetermined (niter)
414 && graphite_can_represent_expr (scop_entry, loop, niter);
417 /* Store information needed by scopdet_* functions. */
419 struct scopdet_info
421 /* Exit of the open scop would stop if the current BB is harmful. */
422 basic_block exit;
424 /* Where the next scop would start if the current BB is harmful. */
425 basic_block next;
427 /* The bb or one of its children contains open loop exits. That means
428 loop exit nodes that are not surrounded by a loop dominated by bb. */
429 bool exits;
431 /* The bb or one of its children contains only structures we can handle. */
432 bool difficult;
435 static struct scopdet_info build_scops_1 (basic_block, loop_p,
436 vec<sd_region> *, loop_p);
438 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
439 to SCOPS. TYPE is the gbb_type of BB. */
441 static struct scopdet_info
442 scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
443 vec<sd_region> *scops, gbb_type type)
445 loop_p loop = bb->loop_father;
446 struct scopdet_info result;
447 gimple stmt;
449 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
450 basic_block entry_block = ENTRY_BLOCK_PTR;
451 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
452 result.difficult = (stmt != NULL);
453 result.exit = NULL;
455 switch (type)
457 case GBB_LAST:
458 result.next = NULL;
459 result.exits = false;
461 /* Mark bbs terminating a SESE region difficult, if they start
462 a condition. */
463 if (!single_succ_p (bb))
464 result.difficult = true;
465 else
466 result.exit = single_succ (bb);
468 break;
470 case GBB_SIMPLE:
471 result.next = single_succ (bb);
472 result.exits = false;
473 result.exit = single_succ (bb);
474 break;
476 case GBB_LOOP_SING_EXIT_HEADER:
478 vec<sd_region> regions;
479 regions.create (3);
480 struct scopdet_info sinfo;
481 edge exit_e = single_exit (loop);
483 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
485 if (!graphite_can_represent_loop (entry_block, loop))
486 result.difficult = true;
488 result.difficult |= sinfo.difficult;
490 /* Try again with another loop level. */
491 if (result.difficult
492 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
494 outermost_loop = loop;
496 regions.release ();
497 regions.create (3);
499 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
501 result = sinfo;
502 result.difficult = true;
504 if (sinfo.difficult)
505 move_sd_regions (&regions, scops);
506 else
508 sd_region open_scop;
509 open_scop.entry = bb;
510 open_scop.exit = exit_e->dest;
511 scops->safe_push (open_scop);
512 regions.release ();
515 else
517 result.exit = exit_e->dest;
518 result.next = exit_e->dest;
520 /* If we do not dominate result.next, remove it. It's either
521 the EXIT_BLOCK_PTR, or another bb dominates it and will
522 call the scop detection for this bb. */
523 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
524 result.next = NULL;
526 if (exit_e->src->loop_father != loop)
527 result.next = NULL;
529 result.exits = false;
531 if (result.difficult)
532 move_sd_regions (&regions, scops);
533 else
534 regions.release ();
537 break;
540 case GBB_LOOP_MULT_EXIT_HEADER:
542 /* XXX: For now we just do not join loops with multiple exits. If the
543 exits lead to the same bb it may be possible to join the loop. */
544 vec<sd_region> regions;
545 regions.create (3);
546 vec<edge> exits = get_loop_exit_edges (loop);
547 edge e;
548 int i;
549 build_scops_1 (bb, loop, &regions, loop);
551 /* Scan the code dominated by this loop. This means all bbs, that are
552 are dominated by a bb in this loop, but are not part of this loop.
554 The easiest case:
555 - The loop exit destination is dominated by the exit sources.
557 TODO: We miss here the more complex cases:
558 - The exit destinations are dominated by another bb inside
559 the loop.
560 - The loop dominates bbs, that are not exit destinations. */
561 FOR_EACH_VEC_ELT (exits, i, e)
562 if (e->src->loop_father == loop
563 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
565 if (loop_outer (outermost_loop))
566 outermost_loop = loop_outer (outermost_loop);
568 /* Pass loop_outer to recognize e->dest as loop header in
569 build_scops_1. */
570 if (e->dest->loop_father->header == e->dest)
571 build_scops_1 (e->dest, outermost_loop, &regions,
572 loop_outer (e->dest->loop_father));
573 else
574 build_scops_1 (e->dest, outermost_loop, &regions,
575 e->dest->loop_father);
578 result.next = NULL;
579 result.exit = NULL;
580 result.difficult = true;
581 result.exits = false;
582 move_sd_regions (&regions, scops);
583 exits.release ();
584 break;
586 case GBB_COND_HEADER:
588 vec<sd_region> regions;
589 regions.create (3);
590 struct scopdet_info sinfo;
591 vec<basic_block> dominated;
592 int i;
593 basic_block dom_bb;
594 basic_block last_exit = NULL;
595 edge e;
596 result.exits = false;
598 /* First check the successors of BB, and check if it is
599 possible to join the different branches. */
600 FOR_EACH_VEC_SAFE_ELT (bb->succs, i, e)
602 /* Ignore loop exits. They will be handled after the loop
603 body. */
604 if (loop_exits_to_bb_p (loop, e->dest))
606 result.exits = true;
607 continue;
610 /* Do not follow edges that lead to the end of the
611 conditions block. For example, in
614 | /|\
615 | 1 2 |
616 | | | |
617 | 3 4 |
618 | \|/
621 the edge from 0 => 6. Only check if all paths lead to
622 the same node 6. */
624 if (!single_pred_p (e->dest))
626 /* Check, if edge leads directly to the end of this
627 condition. */
628 if (!last_exit)
629 last_exit = e->dest;
631 if (e->dest != last_exit)
632 result.difficult = true;
634 continue;
637 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
639 result.difficult = true;
640 continue;
643 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
645 result.exits |= sinfo.exits;
646 result.difficult |= sinfo.difficult;
648 /* Checks, if all branches end at the same point.
649 If that is true, the condition stays joinable.
650 Have a look at the example above. */
651 if (sinfo.exit)
653 if (!last_exit)
654 last_exit = sinfo.exit;
656 if (sinfo.exit != last_exit)
657 result.difficult = true;
659 else
660 result.difficult = true;
663 if (!last_exit)
664 result.difficult = true;
666 /* Join the branches of the condition if possible. */
667 if (!result.exits && !result.difficult)
669 /* Only return a next pointer if we dominate this pointer.
670 Otherwise it will be handled by the bb dominating it. */
671 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
672 && last_exit != bb)
673 result.next = last_exit;
674 else
675 result.next = NULL;
677 result.exit = last_exit;
679 regions.release ();
680 break;
683 /* Scan remaining bbs dominated by BB. */
684 dominated = get_dominated_by (CDI_DOMINATORS, bb);
686 FOR_EACH_VEC_ELT (dominated, i, dom_bb)
688 /* Ignore loop exits: they will be handled after the loop body. */
689 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
690 < loop_depth (loop))
692 result.exits = true;
693 continue;
696 /* Ignore the bbs processed above. */
697 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
698 continue;
700 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
701 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
702 loop_outer (loop));
703 else
704 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
706 result.exits |= sinfo.exits;
707 result.difficult = true;
708 result.exit = NULL;
711 dominated.release ();
713 result.next = NULL;
714 move_sd_regions (&regions, scops);
716 break;
719 default:
720 gcc_unreachable ();
723 return result;
726 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
727 SCOPS. The analyse if a sd_region can be handled is based on the value
728 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
729 is the loop in which CURRENT is handled.
731 TODO: These functions got a little bit big. They definitely should be cleaned
732 up. */
734 static struct scopdet_info
735 build_scops_1 (basic_block current, loop_p outermost_loop,
736 vec<sd_region> *scops, loop_p loop)
738 bool in_scop = false;
739 sd_region open_scop;
740 struct scopdet_info sinfo;
742 /* Initialize result. */
743 struct scopdet_info result;
744 result.exits = false;
745 result.difficult = false;
746 result.next = NULL;
747 result.exit = NULL;
748 open_scop.entry = NULL;
749 open_scop.exit = NULL;
750 sinfo.exit = NULL;
752 /* Loop over the dominance tree. If we meet a difficult bb, close
753 the current SCoP. Loop and condition header start a new layer,
754 and can only be added if all bbs in deeper layers are simple. */
755 while (current != NULL)
757 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
758 get_bb_type (current, loop));
760 if (!in_scop && !(sinfo.exits || sinfo.difficult))
762 open_scop.entry = current;
763 open_scop.exit = NULL;
764 in_scop = true;
766 else if (in_scop && (sinfo.exits || sinfo.difficult))
768 open_scop.exit = current;
769 scops->safe_push (open_scop);
770 in_scop = false;
773 result.difficult |= sinfo.difficult;
774 result.exits |= sinfo.exits;
776 current = sinfo.next;
779 /* Try to close open_scop, if we are still in an open SCoP. */
780 if (in_scop)
782 open_scop.exit = sinfo.exit;
783 gcc_assert (open_scop.exit);
784 scops->safe_push (open_scop);
787 result.exit = sinfo.exit;
788 return result;
791 /* Checks if a bb is contained in REGION. */
793 static bool
794 bb_in_sd_region (basic_block bb, sd_region *region)
796 return bb_in_region (bb, region->entry, region->exit);
799 /* Returns the single entry edge of REGION, if it does not exits NULL. */
801 static edge
802 find_single_entry_edge (sd_region *region)
804 edge e;
805 edge_iterator ei;
806 edge entry = NULL;
808 FOR_EACH_EDGE (e, ei, region->entry->preds)
809 if (!bb_in_sd_region (e->src, region))
811 if (entry)
813 entry = NULL;
814 break;
817 else
818 entry = e;
821 return entry;
824 /* Returns the single exit edge of REGION, if it does not exits NULL. */
826 static edge
827 find_single_exit_edge (sd_region *region)
829 edge e;
830 edge_iterator ei;
831 edge exit = NULL;
833 FOR_EACH_EDGE (e, ei, region->exit->preds)
834 if (bb_in_sd_region (e->src, region))
836 if (exit)
838 exit = NULL;
839 break;
842 else
843 exit = e;
846 return exit;
849 /* Create a single entry edge for REGION. */
851 static void
852 create_single_entry_edge (sd_region *region)
854 if (find_single_entry_edge (region))
855 return;
857 /* There are multiple predecessors for bb_3
859 | 1 2
860 | | /
861 | |/
862 | 3 <- entry
863 | |\
864 | | |
865 | 4 ^
866 | | |
867 | |/
870 There are two edges (1->3, 2->3), that point from outside into the region,
871 and another one (5->3), a loop latch, lead to bb_3.
873 We split bb_3.
875 | 1 2
876 | | /
877 | |/
878 |3.0
879 | |\ (3.0 -> 3.1) = single entry edge
880 |3.1 | <- entry
881 | | |
882 | | |
883 | 4 ^
884 | | |
885 | |/
888 If the loop is part of the SCoP, we have to redirect the loop latches.
890 | 1 2
891 | | /
892 | |/
893 |3.0
894 | | (3.0 -> 3.1) = entry edge
895 |3.1 <- entry
896 | |\
897 | | |
898 | 4 ^
899 | | |
900 | |/
901 | 5 */
903 if (region->entry->loop_father->header != region->entry
904 || dominated_by_p (CDI_DOMINATORS,
905 loop_latch_edge (region->entry->loop_father)->src,
906 region->exit))
908 edge forwarder = split_block_after_labels (region->entry);
909 region->entry = forwarder->dest;
911 else
912 /* This case is never executed, as the loop headers seem always to have a
913 single edge pointing from outside into the loop. */
914 gcc_unreachable ();
916 gcc_checking_assert (find_single_entry_edge (region));
919 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
921 static bool
922 sd_region_without_exit (edge e)
924 sd_region *r = (sd_region *) e->aux;
926 if (r)
927 return r->exit == NULL;
928 else
929 return false;
932 /* Create a single exit edge for REGION. */
934 static void
935 create_single_exit_edge (sd_region *region)
937 edge e;
938 edge_iterator ei;
939 edge forwarder = NULL;
940 basic_block exit;
942 /* We create a forwarder bb (5) for all edges leaving this region
943 (3->5, 4->5). All other edges leading to the same bb, are moved
944 to a new bb (6). If these edges where part of another region (2->5)
945 we update the region->exit pointer, of this region.
947 To identify which edge belongs to which region we depend on the e->aux
948 pointer in every edge. It points to the region of the edge or to NULL,
949 if the edge is not part of any region.
951 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
952 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
953 5 <- exit
955 changes to
957 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
958 | | \/ 3->5 no region, 4->5 no region,
959 | | 5
960 \| / 5->6 region->exit = 6
963 Now there is only a single exit edge (5->6). */
964 exit = region->exit;
965 region->exit = NULL;
966 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
968 /* Unmark the edges, that are no longer exit edges. */
969 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
970 if (e->aux)
971 e->aux = NULL;
973 /* Mark the new exit edge. */
974 single_succ_edge (forwarder->src)->aux = region;
976 /* Update the exit bb of all regions, where exit edges lead to
977 forwarder->dest. */
978 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
979 if (e->aux)
980 ((sd_region *) e->aux)->exit = forwarder->dest;
982 gcc_checking_assert (find_single_exit_edge (region));
985 /* Unmark the exit edges of all REGIONS.
986 See comment in "create_single_exit_edge". */
988 static void
989 unmark_exit_edges (vec<sd_region> regions)
991 int i;
992 sd_region *s;
993 edge e;
994 edge_iterator ei;
996 FOR_EACH_VEC_ELT (regions, i, s)
997 FOR_EACH_EDGE (e, ei, s->exit->preds)
998 e->aux = NULL;
1002 /* Mark the exit edges of all REGIONS.
1003 See comment in "create_single_exit_edge". */
1005 static void
1006 mark_exit_edges (vec<sd_region> regions)
1008 int i;
1009 sd_region *s;
1010 edge e;
1011 edge_iterator ei;
1013 FOR_EACH_VEC_ELT (regions, i, s)
1014 FOR_EACH_EDGE (e, ei, s->exit->preds)
1015 if (bb_in_sd_region (e->src, s))
1016 e->aux = s;
1019 /* Create for all scop regions a single entry and a single exit edge. */
1021 static void
1022 create_sese_edges (vec<sd_region> regions)
1024 int i;
1025 sd_region *s;
1027 FOR_EACH_VEC_ELT (regions, i, s)
1028 create_single_entry_edge (s);
1030 mark_exit_edges (regions);
1032 FOR_EACH_VEC_ELT (regions, i, s)
1033 /* Don't handle multiple edges exiting the function. */
1034 if (!find_single_exit_edge (s)
1035 && s->exit != EXIT_BLOCK_PTR)
1036 create_single_exit_edge (s);
1038 unmark_exit_edges (regions);
1040 calculate_dominance_info (CDI_DOMINATORS);
1041 fix_loop_structure (NULL);
1043 #ifdef ENABLE_CHECKING
1044 verify_loop_structure ();
1045 verify_ssa (false);
1046 #endif
1049 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1051 static void
1052 build_graphite_scops (vec<sd_region> regions,
1053 vec<scop_p> *scops)
1055 int i;
1056 sd_region *s;
1058 FOR_EACH_VEC_ELT (regions, i, s)
1060 edge entry = find_single_entry_edge (s);
1061 edge exit = find_single_exit_edge (s);
1062 scop_p scop;
1064 if (!exit)
1065 continue;
1067 scop = new_scop (new_sese (entry, exit));
1068 scops->safe_push (scop);
1070 /* Are there overlapping SCoPs? */
1071 #ifdef ENABLE_CHECKING
1073 int j;
1074 sd_region *s2;
1076 FOR_EACH_VEC_ELT (regions, j, s2)
1077 if (s != s2)
1078 gcc_assert (!bb_in_sd_region (s->entry, s2));
1080 #endif
1084 /* Returns true when BB contains only close phi nodes. */
1086 static bool
1087 contains_only_close_phi_nodes (basic_block bb)
1089 gimple_stmt_iterator gsi;
1091 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1092 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1093 return false;
1095 return true;
1098 /* Print statistics for SCOP to FILE. */
1100 static void
1101 print_graphite_scop_statistics (FILE* file, scop_p scop)
1103 long n_bbs = 0;
1104 long n_loops = 0;
1105 long n_stmts = 0;
1106 long n_conditions = 0;
1107 long n_p_bbs = 0;
1108 long n_p_loops = 0;
1109 long n_p_stmts = 0;
1110 long n_p_conditions = 0;
1112 basic_block bb;
1114 FOR_ALL_BB (bb)
1116 gimple_stmt_iterator psi;
1117 loop_p loop = bb->loop_father;
1119 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1120 continue;
1122 n_bbs++;
1123 n_p_bbs += bb->count;
1125 if (EDGE_COUNT (bb->succs) > 1)
1127 n_conditions++;
1128 n_p_conditions += bb->count;
1131 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1133 n_stmts++;
1134 n_p_stmts += bb->count;
1137 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1139 n_loops++;
1140 n_p_loops += bb->count;
1145 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1146 fprintf (file, "BBS:%ld, ", n_bbs);
1147 fprintf (file, "LOOPS:%ld, ", n_loops);
1148 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1149 fprintf (file, "STMTS:%ld)\n", n_stmts);
1150 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1151 fprintf (file, "BBS:%ld, ", n_p_bbs);
1152 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1153 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1154 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1157 /* Print statistics for SCOPS to FILE. */
1159 static void
1160 print_graphite_statistics (FILE* file, vec<scop_p> scops)
1162 int i;
1163 scop_p scop;
1165 FOR_EACH_VEC_ELT (scops, i, scop)
1166 print_graphite_scop_statistics (file, scop);
1169 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1171 Example:
1173 for (i |
1175 for (j | SCoP 1
1176 for (k |
1179 * SCoP frontier, as this line is not surrounded by any loop. *
1181 for (l | SCoP 2
1183 This is necessary as scalar evolution and parameter detection need a
1184 outermost loop to initialize parameters correctly.
1186 TODO: FIX scalar evolution and parameter detection to allow more flexible
1187 SCoP frontiers. */
1189 static void
1190 limit_scops (vec<scop_p> *scops)
1192 vec<sd_region> regions;
1193 regions.create (3);
1195 int i;
1196 scop_p scop;
1198 FOR_EACH_VEC_ELT (*scops, i, scop)
1200 int j;
1201 loop_p loop;
1202 sese region = SCOP_REGION (scop);
1203 build_sese_loop_nests (region);
1205 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region), j, loop)
1206 if (!loop_in_sese_p (loop_outer (loop), region)
1207 && single_exit (loop))
1209 sd_region open_scop;
1210 open_scop.entry = loop->header;
1211 open_scop.exit = single_exit (loop)->dest;
1213 /* This is a hack on top of the limit_scops hack. The
1214 limit_scops hack should disappear all together. */
1215 if (single_succ_p (open_scop.exit)
1216 && contains_only_close_phi_nodes (open_scop.exit))
1217 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1219 regions.safe_push (open_scop);
1223 free_scops (*scops);
1224 scops->create (3);
1226 create_sese_edges (regions);
1227 build_graphite_scops (regions, scops);
1228 regions.release ();
1231 /* Returns true when P1 and P2 are close phis with the same
1232 argument. */
1234 static inline bool
1235 same_close_phi_node (gimple p1, gimple p2)
1237 return operand_equal_p (gimple_phi_arg_def (p1, 0),
1238 gimple_phi_arg_def (p2, 0), 0);
1241 /* Remove the close phi node at GSI and replace its rhs with the rhs
1242 of PHI. */
1244 static void
1245 remove_duplicate_close_phi (gimple phi, gimple_stmt_iterator *gsi)
1247 gimple use_stmt;
1248 use_operand_p use_p;
1249 imm_use_iterator imm_iter;
1250 tree res = gimple_phi_result (phi);
1251 tree def = gimple_phi_result (gsi_stmt (*gsi));
1253 gcc_assert (same_close_phi_node (phi, gsi_stmt (*gsi)));
1255 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
1257 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1258 SET_USE (use_p, res);
1260 update_stmt (use_stmt);
1262 /* It is possible that we just created a duplicate close-phi
1263 for an already-processed containing loop. Check for this
1264 case and clean it up. */
1265 if (gimple_code (use_stmt) == GIMPLE_PHI
1266 && gimple_phi_num_args (use_stmt) == 1)
1267 make_close_phi_nodes_unique (gimple_bb (use_stmt));
1270 remove_phi_node (gsi, true);
1273 /* Removes all the close phi duplicates from BB. */
1275 static void
1276 make_close_phi_nodes_unique (basic_block bb)
1278 gimple_stmt_iterator psi;
1280 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1282 gimple_stmt_iterator gsi = psi;
1283 gimple phi = gsi_stmt (psi);
1285 /* At this point, PHI should be a close phi in normal form. */
1286 gcc_assert (gimple_phi_num_args (phi) == 1);
1288 /* Iterate over the next phis and remove duplicates. */
1289 gsi_next (&gsi);
1290 while (!gsi_end_p (gsi))
1291 if (same_close_phi_node (phi, gsi_stmt (gsi)))
1292 remove_duplicate_close_phi (phi, &gsi);
1293 else
1294 gsi_next (&gsi);
1298 /* Transforms LOOP to the canonical loop closed SSA form. */
1300 static void
1301 canonicalize_loop_closed_ssa (loop_p loop)
1303 edge e = single_exit (loop);
1304 basic_block bb;
1306 if (!e || e->flags & EDGE_ABNORMAL)
1307 return;
1309 bb = e->dest;
1311 if (single_pred_p (bb))
1313 e = split_block_after_labels (bb);
1314 make_close_phi_nodes_unique (e->src);
1316 else
1318 gimple_stmt_iterator psi;
1319 basic_block close = split_edge (e);
1321 e = single_succ_edge (close);
1323 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1325 gimple phi = gsi_stmt (psi);
1326 unsigned i;
1328 for (i = 0; i < gimple_phi_num_args (phi); i++)
1329 if (gimple_phi_arg_edge (phi, i) == e)
1331 tree res, arg = gimple_phi_arg_def (phi, i);
1332 use_operand_p use_p;
1333 gimple close_phi;
1335 if (TREE_CODE (arg) != SSA_NAME)
1336 continue;
1338 close_phi = create_phi_node (NULL_TREE, close);
1339 res = create_new_def_for (arg, close_phi,
1340 gimple_phi_result_ptr (close_phi));
1341 add_phi_arg (close_phi, arg,
1342 gimple_phi_arg_edge (close_phi, 0),
1343 UNKNOWN_LOCATION);
1344 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1345 replace_exp (use_p, res);
1346 update_stmt (phi);
1350 make_close_phi_nodes_unique (close);
1353 /* The code above does not properly handle changes in the post dominance
1354 information (yet). */
1355 free_dominance_info (CDI_POST_DOMINATORS);
1358 /* Converts the current loop closed SSA form to a canonical form
1359 expected by the Graphite code generation.
1361 The loop closed SSA form has the following invariant: a variable
1362 defined in a loop that is used outside the loop appears only in the
1363 phi nodes in the destination of the loop exit. These phi nodes are
1364 called close phi nodes.
1366 The canonical loop closed SSA form contains the extra invariants:
1368 - when the loop contains only one exit, the close phi nodes contain
1369 only one argument. That implies that the basic block that contains
1370 the close phi nodes has only one predecessor, that is a basic block
1371 in the loop.
1373 - the basic block containing the close phi nodes does not contain
1374 other statements.
1376 - there exist only one phi node per definition in the loop.
1379 static void
1380 canonicalize_loop_closed_ssa_form (void)
1382 loop_iterator li;
1383 loop_p loop;
1385 #ifdef ENABLE_CHECKING
1386 verify_loop_closed_ssa (true);
1387 #endif
1389 FOR_EACH_LOOP (li, loop, 0)
1390 canonicalize_loop_closed_ssa (loop);
1392 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1393 update_ssa (TODO_update_ssa);
1395 #ifdef ENABLE_CHECKING
1396 verify_loop_closed_ssa (true);
1397 #endif
1400 /* Find Static Control Parts (SCoP) in the current function and pushes
1401 them to SCOPS. */
1403 void
1404 build_scops (vec<scop_p> *scops)
1406 struct loop *loop = current_loops->tree_root;
1407 vec<sd_region> regions;
1408 regions.create (3);
1410 canonicalize_loop_closed_ssa_form ();
1411 build_scops_1 (single_succ (ENTRY_BLOCK_PTR), ENTRY_BLOCK_PTR->loop_father,
1412 &regions, loop);
1413 create_sese_edges (regions);
1414 build_graphite_scops (regions, scops);
1416 if (dump_file && (dump_flags & TDF_DETAILS))
1417 print_graphite_statistics (dump_file, *scops);
1419 limit_scops (scops);
1420 regions.release ();
1422 if (dump_file && (dump_flags & TDF_DETAILS))
1423 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1424 scops ? scops->length () : 0);
1427 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1428 different colors. If there are not enough colors, paint the
1429 remaining SCoPs in gray.
1431 Special nodes:
1432 - "*" after the node number denotes the entry of a SCoP,
1433 - "#" after the node number denotes the exit of a SCoP,
1434 - "()" around the node number denotes the entry or the
1435 exit nodes of the SCOP. These are not part of SCoP. */
1437 static void
1438 dot_all_scops_1 (FILE *file, vec<scop_p> scops)
1440 basic_block bb;
1441 edge e;
1442 edge_iterator ei;
1443 scop_p scop;
1444 const char* color;
1445 int i;
1447 /* Disable debugging while printing graph. */
1448 int tmp_dump_flags = dump_flags;
1449 dump_flags = 0;
1451 fprintf (file, "digraph all {\n");
1453 FOR_ALL_BB (bb)
1455 int part_of_scop = false;
1457 /* Use HTML for every bb label. So we are able to print bbs
1458 which are part of two different SCoPs, with two different
1459 background colors. */
1460 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1461 bb->index);
1462 fprintf (file, "CELLSPACING=\"0\">\n");
1464 /* Select color for SCoP. */
1465 FOR_EACH_VEC_ELT (scops, i, scop)
1467 sese region = SCOP_REGION (scop);
1468 if (bb_in_sese_p (bb, region)
1469 || (SESE_EXIT_BB (region) == bb)
1470 || (SESE_ENTRY_BB (region) == bb))
1472 switch (i % 17)
1474 case 0: /* red */
1475 color = "#e41a1c";
1476 break;
1477 case 1: /* blue */
1478 color = "#377eb8";
1479 break;
1480 case 2: /* green */
1481 color = "#4daf4a";
1482 break;
1483 case 3: /* purple */
1484 color = "#984ea3";
1485 break;
1486 case 4: /* orange */
1487 color = "#ff7f00";
1488 break;
1489 case 5: /* yellow */
1490 color = "#ffff33";
1491 break;
1492 case 6: /* brown */
1493 color = "#a65628";
1494 break;
1495 case 7: /* rose */
1496 color = "#f781bf";
1497 break;
1498 case 8:
1499 color = "#8dd3c7";
1500 break;
1501 case 9:
1502 color = "#ffffb3";
1503 break;
1504 case 10:
1505 color = "#bebada";
1506 break;
1507 case 11:
1508 color = "#fb8072";
1509 break;
1510 case 12:
1511 color = "#80b1d3";
1512 break;
1513 case 13:
1514 color = "#fdb462";
1515 break;
1516 case 14:
1517 color = "#b3de69";
1518 break;
1519 case 15:
1520 color = "#fccde5";
1521 break;
1522 case 16:
1523 color = "#bc80bd";
1524 break;
1525 default: /* gray */
1526 color = "#999999";
1529 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1531 if (!bb_in_sese_p (bb, region))
1532 fprintf (file, " (");
1534 if (bb == SESE_ENTRY_BB (region)
1535 && bb == SESE_EXIT_BB (region))
1536 fprintf (file, " %d*# ", bb->index);
1537 else if (bb == SESE_ENTRY_BB (region))
1538 fprintf (file, " %d* ", bb->index);
1539 else if (bb == SESE_EXIT_BB (region))
1540 fprintf (file, " %d# ", bb->index);
1541 else
1542 fprintf (file, " %d ", bb->index);
1544 if (!bb_in_sese_p (bb,region))
1545 fprintf (file, ")");
1547 fprintf (file, "</TD></TR>\n");
1548 part_of_scop = true;
1552 if (!part_of_scop)
1554 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1555 fprintf (file, " %d </TD></TR>\n", bb->index);
1557 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1560 FOR_ALL_BB (bb)
1562 FOR_EACH_EDGE (e, ei, bb->succs)
1563 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1566 fputs ("}\n\n", file);
1568 /* Enable debugging again. */
1569 dump_flags = tmp_dump_flags;
1572 /* Display all SCoPs using dotty. */
1574 DEBUG_FUNCTION void
1575 dot_all_scops (vec<scop_p> scops)
1577 /* When debugging, enable the following code. This cannot be used
1578 in production compilers because it calls "system". */
1579 #if 0
1580 int x;
1581 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1582 gcc_assert (stream);
1584 dot_all_scops_1 (stream, scops);
1585 fclose (stream);
1587 x = system ("dotty /tmp/allscops.dot &");
1588 #else
1589 dot_all_scops_1 (stderr, scops);
1590 #endif
1593 /* Display all SCoPs using dotty. */
1595 DEBUG_FUNCTION void
1596 dot_scop (scop_p scop)
1598 vec<scop_p> scops = vNULL;
1600 if (scop)
1601 scops.safe_push (scop);
1603 /* When debugging, enable the following code. This cannot be used
1604 in production compilers because it calls "system". */
1605 #if 0
1607 int x;
1608 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1609 gcc_assert (stream);
1611 dot_all_scops_1 (stream, scops);
1612 fclose (stream);
1613 x = system ("dotty /tmp/allscops.dot &");
1615 #else
1616 dot_all_scops_1 (stderr, scops);
1617 #endif
1619 scops.release ();
1622 #endif