PR tree-optimization/84740
[official-gcc.git] / gcc / lra-constraints.c
blob59b97540d98fb7d0b040e629893e9cee01f75ad3
1 /* Code for RTL transformations to satisfy insn constraints.
2 Copyright (C) 2010-2018 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for 3 passes: constraint pass,
23 inheritance/split pass, and pass for undoing failed inheritance and
24 split.
26 The major goal of constraint pass is to transform RTL to satisfy
27 insn and address constraints by:
28 o choosing insn alternatives;
29 o generating *reload insns* (or reloads in brief) and *reload
30 pseudos* which will get necessary hard registers later;
31 o substituting pseudos with equivalent values and removing the
32 instructions that initialized those pseudos.
34 The constraint pass has biggest and most complicated code in LRA.
35 There are a lot of important details like:
36 o reuse of input reload pseudos to simplify reload pseudo
37 allocations;
38 o some heuristics to choose insn alternative to improve the
39 inheritance;
40 o early clobbers etc.
42 The pass is mimicking former reload pass in alternative choosing
43 because the reload pass is oriented to current machine description
44 model. It might be changed if the machine description model is
45 changed.
47 There is special code for preventing all LRA and this pass cycling
48 in case of bugs.
50 On the first iteration of the pass we process every instruction and
51 choose an alternative for each one. On subsequent iterations we try
52 to avoid reprocessing instructions if we can be sure that the old
53 choice is still valid.
55 The inheritance/spilt pass is to transform code to achieve
56 ineheritance and live range splitting. It is done on backward
57 traversal of EBBs.
59 The inheritance optimization goal is to reuse values in hard
60 registers. There is analogous optimization in old reload pass. The
61 inheritance is achieved by following transformation:
63 reload_p1 <- p reload_p1 <- p
64 ... new_p <- reload_p1
65 ... => ...
66 reload_p2 <- p reload_p2 <- new_p
68 where p is spilled and not changed between the insns. Reload_p1 is
69 also called *original pseudo* and new_p is called *inheritance
70 pseudo*.
72 The subsequent assignment pass will try to assign the same (or
73 another if it is not possible) hard register to new_p as to
74 reload_p1 or reload_p2.
76 If the assignment pass fails to assign a hard register to new_p,
77 this file will undo the inheritance and restore the original code.
78 This is because implementing the above sequence with a spilled
79 new_p would make the code much worse. The inheritance is done in
80 EBB scope. The above is just a simplified example to get an idea
81 of the inheritance as the inheritance is also done for non-reload
82 insns.
84 Splitting (transformation) is also done in EBB scope on the same
85 pass as the inheritance:
87 r <- ... or ... <- r r <- ... or ... <- r
88 ... s <- r (new insn -- save)
89 ... =>
90 ... r <- s (new insn -- restore)
91 ... <- r ... <- r
93 The *split pseudo* s is assigned to the hard register of the
94 original pseudo or hard register r.
96 Splitting is done:
97 o In EBBs with high register pressure for global pseudos (living
98 in at least 2 BBs) and assigned to hard registers when there
99 are more one reloads needing the hard registers;
100 o for pseudos needing save/restore code around calls.
102 If the split pseudo still has the same hard register as the
103 original pseudo after the subsequent assignment pass or the
104 original pseudo was split, the opposite transformation is done on
105 the same pass for undoing inheritance. */
107 #undef REG_OK_STRICT
109 #include "config.h"
110 #include "system.h"
111 #include "coretypes.h"
112 #include "backend.h"
113 #include "target.h"
114 #include "rtl.h"
115 #include "tree.h"
116 #include "predict.h"
117 #include "df.h"
118 #include "memmodel.h"
119 #include "tm_p.h"
120 #include "expmed.h"
121 #include "optabs.h"
122 #include "regs.h"
123 #include "ira.h"
124 #include "recog.h"
125 #include "output.h"
126 #include "addresses.h"
127 #include "expr.h"
128 #include "cfgrtl.h"
129 #include "rtl-error.h"
130 #include "params.h"
131 #include "lra.h"
132 #include "lra-int.h"
133 #include "print-rtl.h"
135 /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
136 insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted
137 reload insns. */
138 static int bb_reload_num;
140 /* The current insn being processed and corresponding its single set
141 (NULL otherwise), its data (basic block, the insn data, the insn
142 static data, and the mode of each operand). */
143 static rtx_insn *curr_insn;
144 static rtx curr_insn_set;
145 static basic_block curr_bb;
146 static lra_insn_recog_data_t curr_id;
147 static struct lra_static_insn_data *curr_static_id;
148 static machine_mode curr_operand_mode[MAX_RECOG_OPERANDS];
149 /* Mode of the register substituted by its equivalence with VOIDmode
150 (e.g. constant) and whose subreg is given operand of the current
151 insn. VOIDmode in all other cases. */
152 static machine_mode original_subreg_reg_mode[MAX_RECOG_OPERANDS];
156 /* Start numbers for new registers and insns at the current constraints
157 pass start. */
158 static int new_regno_start;
159 static int new_insn_uid_start;
161 /* If LOC is nonnull, strip any outer subreg from it. */
162 static inline rtx *
163 strip_subreg (rtx *loc)
165 return loc && GET_CODE (*loc) == SUBREG ? &SUBREG_REG (*loc) : loc;
168 /* Return hard regno of REGNO or if it is was not assigned to a hard
169 register, use a hard register from its allocno class. */
170 static int
171 get_try_hard_regno (int regno)
173 int hard_regno;
174 enum reg_class rclass;
176 if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
177 hard_regno = lra_get_regno_hard_regno (regno);
178 if (hard_regno >= 0)
179 return hard_regno;
180 rclass = lra_get_allocno_class (regno);
181 if (rclass == NO_REGS)
182 return -1;
183 return ira_class_hard_regs[rclass][0];
186 /* Return the hard regno of X after removing its subreg. If X is not
187 a register or a subreg of a register, return -1. If X is a pseudo,
188 use its assignment. If FINAL_P return the final hard regno which will
189 be after elimination. */
190 static int
191 get_hard_regno (rtx x, bool final_p)
193 rtx reg;
194 int hard_regno;
196 reg = x;
197 if (SUBREG_P (x))
198 reg = SUBREG_REG (x);
199 if (! REG_P (reg))
200 return -1;
201 if (! HARD_REGISTER_NUM_P (hard_regno = REGNO (reg)))
202 hard_regno = lra_get_regno_hard_regno (hard_regno);
203 if (hard_regno < 0)
204 return -1;
205 if (final_p)
206 hard_regno = lra_get_elimination_hard_regno (hard_regno);
207 if (SUBREG_P (x))
208 hard_regno += subreg_regno_offset (hard_regno, GET_MODE (reg),
209 SUBREG_BYTE (x), GET_MODE (x));
210 return hard_regno;
213 /* If REGNO is a hard register or has been allocated a hard register,
214 return the class of that register. If REGNO is a reload pseudo
215 created by the current constraints pass, return its allocno class.
216 Return NO_REGS otherwise. */
217 static enum reg_class
218 get_reg_class (int regno)
220 int hard_regno;
222 if (! HARD_REGISTER_NUM_P (hard_regno = regno))
223 hard_regno = lra_get_regno_hard_regno (regno);
224 if (hard_regno >= 0)
226 hard_regno = lra_get_elimination_hard_regno (hard_regno);
227 return REGNO_REG_CLASS (hard_regno);
229 if (regno >= new_regno_start)
230 return lra_get_allocno_class (regno);
231 return NO_REGS;
234 /* Return true if REG satisfies (or will satisfy) reg class constraint
235 CL. Use elimination first if REG is a hard register. If REG is a
236 reload pseudo created by this constraints pass, assume that it will
237 be allocated a hard register from its allocno class, but allow that
238 class to be narrowed to CL if it is currently a superset of CL.
240 If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
241 REGNO (reg), or NO_REGS if no change in its class was needed. */
242 static bool
243 in_class_p (rtx reg, enum reg_class cl, enum reg_class *new_class)
245 enum reg_class rclass, common_class;
246 machine_mode reg_mode;
247 int class_size, hard_regno, nregs, i, j;
248 int regno = REGNO (reg);
250 if (new_class != NULL)
251 *new_class = NO_REGS;
252 if (regno < FIRST_PSEUDO_REGISTER)
254 rtx final_reg = reg;
255 rtx *final_loc = &final_reg;
257 lra_eliminate_reg_if_possible (final_loc);
258 return TEST_HARD_REG_BIT (reg_class_contents[cl], REGNO (*final_loc));
260 reg_mode = GET_MODE (reg);
261 rclass = get_reg_class (regno);
262 if (regno < new_regno_start
263 /* Do not allow the constraints for reload instructions to
264 influence the classes of new pseudos. These reloads are
265 typically moves that have many alternatives, and restricting
266 reload pseudos for one alternative may lead to situations
267 where other reload pseudos are no longer allocatable. */
268 || (INSN_UID (curr_insn) >= new_insn_uid_start
269 && curr_insn_set != NULL
270 && ((OBJECT_P (SET_SRC (curr_insn_set))
271 && ! CONSTANT_P (SET_SRC (curr_insn_set)))
272 || (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
273 && OBJECT_P (SUBREG_REG (SET_SRC (curr_insn_set)))
274 && ! CONSTANT_P (SUBREG_REG (SET_SRC (curr_insn_set)))))))
275 /* When we don't know what class will be used finally for reload
276 pseudos, we use ALL_REGS. */
277 return ((regno >= new_regno_start && rclass == ALL_REGS)
278 || (rclass != NO_REGS && ira_class_subset_p[rclass][cl]
279 && ! hard_reg_set_subset_p (reg_class_contents[cl],
280 lra_no_alloc_regs)));
281 else
283 common_class = ira_reg_class_subset[rclass][cl];
284 if (new_class != NULL)
285 *new_class = common_class;
286 if (hard_reg_set_subset_p (reg_class_contents[common_class],
287 lra_no_alloc_regs))
288 return false;
289 /* Check that there are enough allocatable regs. */
290 class_size = ira_class_hard_regs_num[common_class];
291 for (i = 0; i < class_size; i++)
293 hard_regno = ira_class_hard_regs[common_class][i];
294 nregs = hard_regno_nregs (hard_regno, reg_mode);
295 if (nregs == 1)
296 return true;
297 for (j = 0; j < nregs; j++)
298 if (TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno + j)
299 || ! TEST_HARD_REG_BIT (reg_class_contents[common_class],
300 hard_regno + j))
301 break;
302 if (j >= nregs)
303 return true;
305 return false;
309 /* Return true if REGNO satisfies a memory constraint. */
310 static bool
311 in_mem_p (int regno)
313 return get_reg_class (regno) == NO_REGS;
316 /* Return 1 if ADDR is a valid memory address for mode MODE in address
317 space AS, and check that each pseudo has the proper kind of hard
318 reg. */
319 static int
320 valid_address_p (machine_mode mode ATTRIBUTE_UNUSED,
321 rtx addr, addr_space_t as)
323 #ifdef GO_IF_LEGITIMATE_ADDRESS
324 lra_assert (ADDR_SPACE_GENERIC_P (as));
325 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
326 return 0;
328 win:
329 return 1;
330 #else
331 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
332 #endif
335 namespace {
336 /* Temporarily eliminates registers in an address (for the lifetime of
337 the object). */
338 class address_eliminator {
339 public:
340 address_eliminator (struct address_info *ad);
341 ~address_eliminator ();
343 private:
344 struct address_info *m_ad;
345 rtx *m_base_loc;
346 rtx m_base_reg;
347 rtx *m_index_loc;
348 rtx m_index_reg;
352 address_eliminator::address_eliminator (struct address_info *ad)
353 : m_ad (ad),
354 m_base_loc (strip_subreg (ad->base_term)),
355 m_base_reg (NULL_RTX),
356 m_index_loc (strip_subreg (ad->index_term)),
357 m_index_reg (NULL_RTX)
359 if (m_base_loc != NULL)
361 m_base_reg = *m_base_loc;
362 lra_eliminate_reg_if_possible (m_base_loc);
363 if (m_ad->base_term2 != NULL)
364 *m_ad->base_term2 = *m_ad->base_term;
366 if (m_index_loc != NULL)
368 m_index_reg = *m_index_loc;
369 lra_eliminate_reg_if_possible (m_index_loc);
373 address_eliminator::~address_eliminator ()
375 if (m_base_loc && *m_base_loc != m_base_reg)
377 *m_base_loc = m_base_reg;
378 if (m_ad->base_term2 != NULL)
379 *m_ad->base_term2 = *m_ad->base_term;
381 if (m_index_loc && *m_index_loc != m_index_reg)
382 *m_index_loc = m_index_reg;
385 /* Return true if the eliminated form of AD is a legitimate target address. */
386 static bool
387 valid_address_p (struct address_info *ad)
389 address_eliminator eliminator (ad);
390 return valid_address_p (ad->mode, *ad->outer, ad->as);
393 /* Return true if the eliminated form of memory reference OP satisfies
394 extra (special) memory constraint CONSTRAINT. */
395 static bool
396 satisfies_memory_constraint_p (rtx op, enum constraint_num constraint)
398 struct address_info ad;
400 decompose_mem_address (&ad, op);
401 address_eliminator eliminator (&ad);
402 return constraint_satisfied_p (op, constraint);
405 /* Return true if the eliminated form of address AD satisfies extra
406 address constraint CONSTRAINT. */
407 static bool
408 satisfies_address_constraint_p (struct address_info *ad,
409 enum constraint_num constraint)
411 address_eliminator eliminator (ad);
412 return constraint_satisfied_p (*ad->outer, constraint);
415 /* Return true if the eliminated form of address OP satisfies extra
416 address constraint CONSTRAINT. */
417 static bool
418 satisfies_address_constraint_p (rtx op, enum constraint_num constraint)
420 struct address_info ad;
422 decompose_lea_address (&ad, &op);
423 return satisfies_address_constraint_p (&ad, constraint);
426 /* Initiate equivalences for LRA. As we keep original equivalences
427 before any elimination, we need to make copies otherwise any change
428 in insns might change the equivalences. */
429 void
430 lra_init_equiv (void)
432 ira_expand_reg_equiv ();
433 for (int i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
435 rtx res;
437 if ((res = ira_reg_equiv[i].memory) != NULL_RTX)
438 ira_reg_equiv[i].memory = copy_rtx (res);
439 if ((res = ira_reg_equiv[i].invariant) != NULL_RTX)
440 ira_reg_equiv[i].invariant = copy_rtx (res);
444 static rtx loc_equivalence_callback (rtx, const_rtx, void *);
446 /* Update equivalence for REGNO. We need to this as the equivalence
447 might contain other pseudos which are changed by their
448 equivalences. */
449 static void
450 update_equiv (int regno)
452 rtx x;
454 if ((x = ira_reg_equiv[regno].memory) != NULL_RTX)
455 ira_reg_equiv[regno].memory
456 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
457 NULL_RTX);
458 if ((x = ira_reg_equiv[regno].invariant) != NULL_RTX)
459 ira_reg_equiv[regno].invariant
460 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
461 NULL_RTX);
464 /* If we have decided to substitute X with another value, return that
465 value, otherwise return X. */
466 static rtx
467 get_equiv (rtx x)
469 int regno;
470 rtx res;
472 if (! REG_P (x) || (regno = REGNO (x)) < FIRST_PSEUDO_REGISTER
473 || ! ira_reg_equiv[regno].defined_p
474 || ! ira_reg_equiv[regno].profitable_p
475 || lra_get_regno_hard_regno (regno) >= 0)
476 return x;
477 if ((res = ira_reg_equiv[regno].memory) != NULL_RTX)
479 if (targetm.cannot_substitute_mem_equiv_p (res))
480 return x;
481 return res;
483 if ((res = ira_reg_equiv[regno].constant) != NULL_RTX)
484 return res;
485 if ((res = ira_reg_equiv[regno].invariant) != NULL_RTX)
486 return res;
487 gcc_unreachable ();
490 /* If we have decided to substitute X with the equivalent value,
491 return that value after elimination for INSN, otherwise return
492 X. */
493 static rtx
494 get_equiv_with_elimination (rtx x, rtx_insn *insn)
496 rtx res = get_equiv (x);
498 if (x == res || CONSTANT_P (res))
499 return res;
500 return lra_eliminate_regs_1 (insn, res, GET_MODE (res),
501 false, false, 0, true);
504 /* Set up curr_operand_mode. */
505 static void
506 init_curr_operand_mode (void)
508 int nop = curr_static_id->n_operands;
509 for (int i = 0; i < nop; i++)
511 machine_mode mode = GET_MODE (*curr_id->operand_loc[i]);
512 if (mode == VOIDmode)
514 /* The .md mode for address operands is the mode of the
515 addressed value rather than the mode of the address itself. */
516 if (curr_id->icode >= 0 && curr_static_id->operand[i].is_address)
517 mode = Pmode;
518 else
519 mode = curr_static_id->operand[i].mode;
521 curr_operand_mode[i] = mode;
527 /* The page contains code to reuse input reloads. */
529 /* Structure describes input reload of the current insns. */
530 struct input_reload
532 /* True for input reload of matched operands. */
533 bool match_p;
534 /* Reloaded value. */
535 rtx input;
536 /* Reload pseudo used. */
537 rtx reg;
540 /* The number of elements in the following array. */
541 static int curr_insn_input_reloads_num;
542 /* Array containing info about input reloads. It is used to find the
543 same input reload and reuse the reload pseudo in this case. */
544 static struct input_reload curr_insn_input_reloads[LRA_MAX_INSN_RELOADS];
546 /* Initiate data concerning reuse of input reloads for the current
547 insn. */
548 static void
549 init_curr_insn_input_reloads (void)
551 curr_insn_input_reloads_num = 0;
554 /* Create a new pseudo using MODE, RCLASS, ORIGINAL or reuse already
555 created input reload pseudo (only if TYPE is not OP_OUT). Don't
556 reuse pseudo if IN_SUBREG_P is true and the reused pseudo should be
557 wrapped up in SUBREG. The result pseudo is returned through
558 RESULT_REG. Return TRUE if we created a new pseudo, FALSE if we
559 reused the already created input reload pseudo. Use TITLE to
560 describe new registers for debug purposes. */
561 static bool
562 get_reload_reg (enum op_type type, machine_mode mode, rtx original,
563 enum reg_class rclass, bool in_subreg_p,
564 const char *title, rtx *result_reg)
566 int i, regno;
567 enum reg_class new_class;
568 bool unique_p = false;
570 if (type == OP_OUT)
572 *result_reg
573 = lra_create_new_reg_with_unique_value (mode, original, rclass, title);
574 return true;
576 /* Prevent reuse value of expression with side effects,
577 e.g. volatile memory. */
578 if (! side_effects_p (original))
579 for (i = 0; i < curr_insn_input_reloads_num; i++)
581 if (! curr_insn_input_reloads[i].match_p
582 && rtx_equal_p (curr_insn_input_reloads[i].input, original)
583 && in_class_p (curr_insn_input_reloads[i].reg, rclass, &new_class))
585 rtx reg = curr_insn_input_reloads[i].reg;
586 regno = REGNO (reg);
587 /* If input is equal to original and both are VOIDmode,
588 GET_MODE (reg) might be still different from mode.
589 Ensure we don't return *result_reg with wrong mode. */
590 if (GET_MODE (reg) != mode)
592 if (in_subreg_p)
593 continue;
594 if (maybe_lt (GET_MODE_SIZE (GET_MODE (reg)),
595 GET_MODE_SIZE (mode)))
596 continue;
597 reg = lowpart_subreg (mode, reg, GET_MODE (reg));
598 if (reg == NULL_RTX || GET_CODE (reg) != SUBREG)
599 continue;
601 *result_reg = reg;
602 if (lra_dump_file != NULL)
604 fprintf (lra_dump_file, " Reuse r%d for reload ", regno);
605 dump_value_slim (lra_dump_file, original, 1);
607 if (new_class != lra_get_allocno_class (regno))
608 lra_change_class (regno, new_class, ", change to", false);
609 if (lra_dump_file != NULL)
610 fprintf (lra_dump_file, "\n");
611 return false;
613 /* If we have an input reload with a different mode, make sure it
614 will get a different hard reg. */
615 else if (REG_P (original)
616 && REG_P (curr_insn_input_reloads[i].input)
617 && REGNO (original) == REGNO (curr_insn_input_reloads[i].input)
618 && (GET_MODE (original)
619 != GET_MODE (curr_insn_input_reloads[i].input)))
620 unique_p = true;
622 *result_reg = (unique_p
623 ? lra_create_new_reg_with_unique_value
624 : lra_create_new_reg) (mode, original, rclass, title);
625 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
626 curr_insn_input_reloads[curr_insn_input_reloads_num].input = original;
627 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = false;
628 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = *result_reg;
629 return true;
634 /* The page contains code to extract memory address parts. */
636 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudos. */
637 static inline bool
638 ok_for_index_p_nonstrict (rtx reg)
640 unsigned regno = REGNO (reg);
642 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
645 /* A version of regno_ok_for_base_p for use here, when all pseudos
646 should count as OK. Arguments as for regno_ok_for_base_p. */
647 static inline bool
648 ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
649 enum rtx_code outer_code, enum rtx_code index_code)
651 unsigned regno = REGNO (reg);
653 if (regno >= FIRST_PSEUDO_REGISTER)
654 return true;
655 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
660 /* The page contains major code to choose the current insn alternative
661 and generate reloads for it. */
663 /* Return the offset from REGNO of the least significant register
664 in (reg:MODE REGNO).
666 This function is used to tell whether two registers satisfy
667 a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
669 REGNO1 + lra_constraint_offset (REGNO1, MODE1)
670 == REGNO2 + lra_constraint_offset (REGNO2, MODE2) */
672 lra_constraint_offset (int regno, machine_mode mode)
674 lra_assert (regno < FIRST_PSEUDO_REGISTER);
676 scalar_int_mode int_mode;
677 if (WORDS_BIG_ENDIAN
678 && is_a <scalar_int_mode> (mode, &int_mode)
679 && GET_MODE_SIZE (int_mode) > UNITS_PER_WORD)
680 return hard_regno_nregs (regno, mode) - 1;
681 return 0;
684 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
685 if they are the same hard reg, and has special hacks for
686 auto-increment and auto-decrement. This is specifically intended for
687 process_alt_operands to use in determining whether two operands
688 match. X is the operand whose number is the lower of the two.
690 It is supposed that X is the output operand and Y is the input
691 operand. Y_HARD_REGNO is the final hard regno of register Y or
692 register in subreg Y as we know it now. Otherwise, it is a
693 negative value. */
694 static bool
695 operands_match_p (rtx x, rtx y, int y_hard_regno)
697 int i;
698 RTX_CODE code = GET_CODE (x);
699 const char *fmt;
701 if (x == y)
702 return true;
703 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
704 && (REG_P (y) || (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)))))
706 int j;
708 i = get_hard_regno (x, false);
709 if (i < 0)
710 goto slow;
712 if ((j = y_hard_regno) < 0)
713 goto slow;
715 i += lra_constraint_offset (i, GET_MODE (x));
716 j += lra_constraint_offset (j, GET_MODE (y));
718 return i == j;
721 /* If two operands must match, because they are really a single
722 operand of an assembler insn, then two post-increments are invalid
723 because the assembler insn would increment only once. On the
724 other hand, a post-increment matches ordinary indexing if the
725 post-increment is the output operand. */
726 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
727 return operands_match_p (XEXP (x, 0), y, y_hard_regno);
729 /* Two pre-increments are invalid because the assembler insn would
730 increment only once. On the other hand, a pre-increment matches
731 ordinary indexing if the pre-increment is the input operand. */
732 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
733 || GET_CODE (y) == PRE_MODIFY)
734 return operands_match_p (x, XEXP (y, 0), -1);
736 slow:
738 if (code == REG && REG_P (y))
739 return REGNO (x) == REGNO (y);
741 if (code == REG && GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))
742 && x == SUBREG_REG (y))
743 return true;
744 if (GET_CODE (y) == REG && code == SUBREG && REG_P (SUBREG_REG (x))
745 && SUBREG_REG (x) == y)
746 return true;
748 /* Now we have disposed of all the cases in which different rtx
749 codes can match. */
750 if (code != GET_CODE (y))
751 return false;
753 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
754 if (GET_MODE (x) != GET_MODE (y))
755 return false;
757 switch (code)
759 CASE_CONST_UNIQUE:
760 return false;
762 case LABEL_REF:
763 return label_ref_label (x) == label_ref_label (y);
764 case SYMBOL_REF:
765 return XSTR (x, 0) == XSTR (y, 0);
767 default:
768 break;
771 /* Compare the elements. If any pair of corresponding elements fail
772 to match, return false for the whole things. */
774 fmt = GET_RTX_FORMAT (code);
775 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
777 int val, j;
778 switch (fmt[i])
780 case 'w':
781 if (XWINT (x, i) != XWINT (y, i))
782 return false;
783 break;
785 case 'i':
786 if (XINT (x, i) != XINT (y, i))
787 return false;
788 break;
790 case 'p':
791 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
792 return false;
793 break;
795 case 'e':
796 val = operands_match_p (XEXP (x, i), XEXP (y, i), -1);
797 if (val == 0)
798 return false;
799 break;
801 case '0':
802 break;
804 case 'E':
805 if (XVECLEN (x, i) != XVECLEN (y, i))
806 return false;
807 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
809 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j), -1);
810 if (val == 0)
811 return false;
813 break;
815 /* It is believed that rtx's at this level will never
816 contain anything but integers and other rtx's, except for
817 within LABEL_REFs and SYMBOL_REFs. */
818 default:
819 gcc_unreachable ();
822 return true;
825 /* True if X is a constant that can be forced into the constant pool.
826 MODE is the mode of the operand, or VOIDmode if not known. */
827 #define CONST_POOL_OK_P(MODE, X) \
828 ((MODE) != VOIDmode \
829 && CONSTANT_P (X) \
830 && GET_CODE (X) != HIGH \
831 && GET_MODE_SIZE (MODE).is_constant () \
832 && !targetm.cannot_force_const_mem (MODE, X))
834 /* True if C is a non-empty register class that has too few registers
835 to be safely used as a reload target class. */
836 #define SMALL_REGISTER_CLASS_P(C) \
837 (ira_class_hard_regs_num [(C)] == 1 \
838 || (ira_class_hard_regs_num [(C)] >= 1 \
839 && targetm.class_likely_spilled_p (C)))
841 /* If REG is a reload pseudo, try to make its class satisfying CL. */
842 static void
843 narrow_reload_pseudo_class (rtx reg, enum reg_class cl)
845 enum reg_class rclass;
847 /* Do not make more accurate class from reloads generated. They are
848 mostly moves with a lot of constraints. Making more accurate
849 class may results in very narrow class and impossibility of find
850 registers for several reloads of one insn. */
851 if (INSN_UID (curr_insn) >= new_insn_uid_start)
852 return;
853 if (GET_CODE (reg) == SUBREG)
854 reg = SUBREG_REG (reg);
855 if (! REG_P (reg) || (int) REGNO (reg) < new_regno_start)
856 return;
857 if (in_class_p (reg, cl, &rclass) && rclass != cl)
858 lra_change_class (REGNO (reg), rclass, " Change to", true);
861 /* Searches X for any reference to a reg with the same value as REGNO,
862 returning the rtx of the reference found if any. Otherwise,
863 returns NULL_RTX. */
864 static rtx
865 regno_val_use_in (unsigned int regno, rtx x)
867 const char *fmt;
868 int i, j;
869 rtx tem;
871 if (REG_P (x) && lra_reg_info[REGNO (x)].val == lra_reg_info[regno].val)
872 return x;
874 fmt = GET_RTX_FORMAT (GET_CODE (x));
875 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
877 if (fmt[i] == 'e')
879 if ((tem = regno_val_use_in (regno, XEXP (x, i))))
880 return tem;
882 else if (fmt[i] == 'E')
883 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
884 if ((tem = regno_val_use_in (regno , XVECEXP (x, i, j))))
885 return tem;
888 return NULL_RTX;
891 /* Return true if all current insn non-output operands except INS (it
892 has a negaitve end marker) do not use pseudos with the same value
893 as REGNO. */
894 static bool
895 check_conflict_input_operands (int regno, signed char *ins)
897 int in;
898 int n_operands = curr_static_id->n_operands;
900 for (int nop = 0; nop < n_operands; nop++)
901 if (! curr_static_id->operand[nop].is_operator
902 && curr_static_id->operand[nop].type != OP_OUT)
904 for (int i = 0; (in = ins[i]) >= 0; i++)
905 if (in == nop)
906 break;
907 if (in < 0
908 && regno_val_use_in (regno, *curr_id->operand_loc[nop]) != NULL_RTX)
909 return false;
911 return true;
914 /* Generate reloads for matching OUT and INS (array of input operand
915 numbers with end marker -1) with reg class GOAL_CLASS, considering
916 output operands OUTS (similar array to INS) needing to be in different
917 registers. Add input and output reloads correspondingly to the lists
918 *BEFORE and *AFTER. OUT might be negative. In this case we generate
919 input reloads for matched input operands INS. EARLY_CLOBBER_P is a flag
920 that the output operand is early clobbered for chosen alternative. */
921 static void
922 match_reload (signed char out, signed char *ins, signed char *outs,
923 enum reg_class goal_class, rtx_insn **before,
924 rtx_insn **after, bool early_clobber_p)
926 bool out_conflict;
927 int i, in;
928 rtx new_in_reg, new_out_reg, reg;
929 machine_mode inmode, outmode;
930 rtx in_rtx = *curr_id->operand_loc[ins[0]];
931 rtx out_rtx = out < 0 ? in_rtx : *curr_id->operand_loc[out];
933 inmode = curr_operand_mode[ins[0]];
934 outmode = out < 0 ? inmode : curr_operand_mode[out];
935 push_to_sequence (*before);
936 if (inmode != outmode)
938 /* process_alt_operands has already checked that the mode sizes
939 are ordered. */
940 if (partial_subreg_p (outmode, inmode))
942 reg = new_in_reg
943 = lra_create_new_reg_with_unique_value (inmode, in_rtx,
944 goal_class, "");
945 new_out_reg = gen_lowpart_SUBREG (outmode, reg);
946 LRA_SUBREG_P (new_out_reg) = 1;
947 /* If the input reg is dying here, we can use the same hard
948 register for REG and IN_RTX. We do it only for original
949 pseudos as reload pseudos can die although original
950 pseudos still live where reload pseudos dies. */
951 if (REG_P (in_rtx) && (int) REGNO (in_rtx) < lra_new_regno_start
952 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
953 && (!early_clobber_p
954 || check_conflict_input_operands(REGNO (in_rtx), ins)))
955 lra_assign_reg_val (REGNO (in_rtx), REGNO (reg));
957 else
959 reg = new_out_reg
960 = lra_create_new_reg_with_unique_value (outmode, out_rtx,
961 goal_class, "");
962 new_in_reg = gen_lowpart_SUBREG (inmode, reg);
963 /* NEW_IN_REG is non-paradoxical subreg. We don't want
964 NEW_OUT_REG living above. We add clobber clause for
965 this. This is just a temporary clobber. We can remove
966 it at the end of LRA work. */
967 rtx_insn *clobber = emit_clobber (new_out_reg);
968 LRA_TEMP_CLOBBER_P (PATTERN (clobber)) = 1;
969 LRA_SUBREG_P (new_in_reg) = 1;
970 if (GET_CODE (in_rtx) == SUBREG)
972 rtx subreg_reg = SUBREG_REG (in_rtx);
974 /* If SUBREG_REG is dying here and sub-registers IN_RTX
975 and NEW_IN_REG are similar, we can use the same hard
976 register for REG and SUBREG_REG. */
977 if (REG_P (subreg_reg)
978 && (int) REGNO (subreg_reg) < lra_new_regno_start
979 && GET_MODE (subreg_reg) == outmode
980 && known_eq (SUBREG_BYTE (in_rtx), SUBREG_BYTE (new_in_reg))
981 && find_regno_note (curr_insn, REG_DEAD, REGNO (subreg_reg))
982 && (! early_clobber_p
983 || check_conflict_input_operands (REGNO (subreg_reg),
984 ins)))
985 lra_assign_reg_val (REGNO (subreg_reg), REGNO (reg));
989 else
991 /* Pseudos have values -- see comments for lra_reg_info.
992 Different pseudos with the same value do not conflict even if
993 they live in the same place. When we create a pseudo we
994 assign value of original pseudo (if any) from which we
995 created the new pseudo. If we create the pseudo from the
996 input pseudo, the new pseudo will have no conflict with the
997 input pseudo which is wrong when the input pseudo lives after
998 the insn and as the new pseudo value is changed by the insn
999 output. Therefore we create the new pseudo from the output
1000 except the case when we have single matched dying input
1001 pseudo.
1003 We cannot reuse the current output register because we might
1004 have a situation like "a <- a op b", where the constraints
1005 force the second input operand ("b") to match the output
1006 operand ("a"). "b" must then be copied into a new register
1007 so that it doesn't clobber the current value of "a".
1009 We can not use the same value if the output pseudo is
1010 early clobbered or the input pseudo is mentioned in the
1011 output, e.g. as an address part in memory, because
1012 output reload will actually extend the pseudo liveness.
1013 We don't care about eliminable hard regs here as we are
1014 interesting only in pseudos. */
1016 /* Matching input's register value is the same as one of the other
1017 output operand. Output operands in a parallel insn must be in
1018 different registers. */
1019 out_conflict = false;
1020 if (REG_P (in_rtx))
1022 for (i = 0; outs[i] >= 0; i++)
1024 rtx other_out_rtx = *curr_id->operand_loc[outs[i]];
1025 if (REG_P (other_out_rtx)
1026 && (regno_val_use_in (REGNO (in_rtx), other_out_rtx)
1027 != NULL_RTX))
1029 out_conflict = true;
1030 break;
1035 new_in_reg = new_out_reg
1036 = (! early_clobber_p && ins[1] < 0 && REG_P (in_rtx)
1037 && (int) REGNO (in_rtx) < lra_new_regno_start
1038 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
1039 && (! early_clobber_p
1040 || check_conflict_input_operands (REGNO (in_rtx), ins))
1041 && (out < 0
1042 || regno_val_use_in (REGNO (in_rtx), out_rtx) == NULL_RTX)
1043 && !out_conflict
1044 ? lra_create_new_reg (inmode, in_rtx, goal_class, "")
1045 : lra_create_new_reg_with_unique_value (outmode, out_rtx,
1046 goal_class, ""));
1048 /* In operand can be got from transformations before processing insn
1049 constraints. One example of such transformations is subreg
1050 reloading (see function simplify_operand_subreg). The new
1051 pseudos created by the transformations might have inaccurate
1052 class (ALL_REGS) and we should make their classes more
1053 accurate. */
1054 narrow_reload_pseudo_class (in_rtx, goal_class);
1055 lra_emit_move (copy_rtx (new_in_reg), in_rtx);
1056 *before = get_insns ();
1057 end_sequence ();
1058 /* Add the new pseudo to consider values of subsequent input reload
1059 pseudos. */
1060 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
1061 curr_insn_input_reloads[curr_insn_input_reloads_num].input = in_rtx;
1062 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = true;
1063 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = new_in_reg;
1064 for (i = 0; (in = ins[i]) >= 0; i++)
1066 lra_assert
1067 (GET_MODE (*curr_id->operand_loc[in]) == VOIDmode
1068 || GET_MODE (new_in_reg) == GET_MODE (*curr_id->operand_loc[in]));
1069 *curr_id->operand_loc[in] = new_in_reg;
1071 lra_update_dups (curr_id, ins);
1072 if (out < 0)
1073 return;
1074 /* See a comment for the input operand above. */
1075 narrow_reload_pseudo_class (out_rtx, goal_class);
1076 if (find_reg_note (curr_insn, REG_UNUSED, out_rtx) == NULL_RTX)
1078 start_sequence ();
1079 lra_emit_move (out_rtx, copy_rtx (new_out_reg));
1080 emit_insn (*after);
1081 *after = get_insns ();
1082 end_sequence ();
1084 *curr_id->operand_loc[out] = new_out_reg;
1085 lra_update_dup (curr_id, out);
1088 /* Return register class which is union of all reg classes in insn
1089 constraint alternative string starting with P. */
1090 static enum reg_class
1091 reg_class_from_constraints (const char *p)
1093 int c, len;
1094 enum reg_class op_class = NO_REGS;
1097 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
1099 case '#':
1100 case ',':
1101 return op_class;
1103 case 'g':
1104 op_class = reg_class_subunion[op_class][GENERAL_REGS];
1105 break;
1107 default:
1108 enum constraint_num cn = lookup_constraint (p);
1109 enum reg_class cl = reg_class_for_constraint (cn);
1110 if (cl == NO_REGS)
1112 if (insn_extra_address_constraint (cn))
1113 op_class
1114 = (reg_class_subunion
1115 [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1116 ADDRESS, SCRATCH)]);
1117 break;
1120 op_class = reg_class_subunion[op_class][cl];
1121 break;
1123 while ((p += len), c);
1124 return op_class;
1127 /* If OP is a register, return the class of the register as per
1128 get_reg_class, otherwise return NO_REGS. */
1129 static inline enum reg_class
1130 get_op_class (rtx op)
1132 return REG_P (op) ? get_reg_class (REGNO (op)) : NO_REGS;
1135 /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
1136 otherwise. If modes of MEM_PSEUDO and VAL are different, use
1137 SUBREG for VAL to make them equal. */
1138 static rtx_insn *
1139 emit_spill_move (bool to_p, rtx mem_pseudo, rtx val)
1141 if (GET_MODE (mem_pseudo) != GET_MODE (val))
1143 /* Usually size of mem_pseudo is greater than val size but in
1144 rare cases it can be less as it can be defined by target
1145 dependent macro HARD_REGNO_CALLER_SAVE_MODE. */
1146 if (! MEM_P (val))
1148 val = gen_lowpart_SUBREG (GET_MODE (mem_pseudo),
1149 GET_CODE (val) == SUBREG
1150 ? SUBREG_REG (val) : val);
1151 LRA_SUBREG_P (val) = 1;
1153 else
1155 mem_pseudo = gen_lowpart_SUBREG (GET_MODE (val), mem_pseudo);
1156 LRA_SUBREG_P (mem_pseudo) = 1;
1159 return to_p ? gen_move_insn (mem_pseudo, val)
1160 : gen_move_insn (val, mem_pseudo);
1163 /* Process a special case insn (register move), return true if we
1164 don't need to process it anymore. INSN should be a single set
1165 insn. Set up that RTL was changed through CHANGE_P and that hook
1166 TARGET_SECONDARY_MEMORY_NEEDED says to use secondary memory through
1167 SEC_MEM_P. */
1168 static bool
1169 check_and_process_move (bool *change_p, bool *sec_mem_p ATTRIBUTE_UNUSED)
1171 int sregno, dregno;
1172 rtx dest, src, dreg, sreg, new_reg, scratch_reg;
1173 rtx_insn *before;
1174 enum reg_class dclass, sclass, secondary_class;
1175 secondary_reload_info sri;
1177 lra_assert (curr_insn_set != NULL_RTX);
1178 dreg = dest = SET_DEST (curr_insn_set);
1179 sreg = src = SET_SRC (curr_insn_set);
1180 if (GET_CODE (dest) == SUBREG)
1181 dreg = SUBREG_REG (dest);
1182 if (GET_CODE (src) == SUBREG)
1183 sreg = SUBREG_REG (src);
1184 if (! (REG_P (dreg) || MEM_P (dreg)) || ! (REG_P (sreg) || MEM_P (sreg)))
1185 return false;
1186 sclass = dclass = NO_REGS;
1187 if (REG_P (dreg))
1188 dclass = get_reg_class (REGNO (dreg));
1189 gcc_assert (dclass < LIM_REG_CLASSES);
1190 if (dclass == ALL_REGS)
1191 /* ALL_REGS is used for new pseudos created by transformations
1192 like reload of SUBREG_REG (see function
1193 simplify_operand_subreg). We don't know their class yet. We
1194 should figure out the class from processing the insn
1195 constraints not in this fast path function. Even if ALL_REGS
1196 were a right class for the pseudo, secondary_... hooks usually
1197 are not define for ALL_REGS. */
1198 return false;
1199 if (REG_P (sreg))
1200 sclass = get_reg_class (REGNO (sreg));
1201 gcc_assert (sclass < LIM_REG_CLASSES);
1202 if (sclass == ALL_REGS)
1203 /* See comments above. */
1204 return false;
1205 if (sclass == NO_REGS && dclass == NO_REGS)
1206 return false;
1207 if (targetm.secondary_memory_needed (GET_MODE (src), sclass, dclass)
1208 && ((sclass != NO_REGS && dclass != NO_REGS)
1209 || (GET_MODE (src)
1210 != targetm.secondary_memory_needed_mode (GET_MODE (src)))))
1212 *sec_mem_p = true;
1213 return false;
1215 if (! REG_P (dreg) || ! REG_P (sreg))
1216 return false;
1217 sri.prev_sri = NULL;
1218 sri.icode = CODE_FOR_nothing;
1219 sri.extra_cost = 0;
1220 secondary_class = NO_REGS;
1221 /* Set up hard register for a reload pseudo for hook
1222 secondary_reload because some targets just ignore unassigned
1223 pseudos in the hook. */
1224 if (dclass != NO_REGS && lra_get_regno_hard_regno (REGNO (dreg)) < 0)
1226 dregno = REGNO (dreg);
1227 reg_renumber[dregno] = ira_class_hard_regs[dclass][0];
1229 else
1230 dregno = -1;
1231 if (sclass != NO_REGS && lra_get_regno_hard_regno (REGNO (sreg)) < 0)
1233 sregno = REGNO (sreg);
1234 reg_renumber[sregno] = ira_class_hard_regs[sclass][0];
1236 else
1237 sregno = -1;
1238 if (sclass != NO_REGS)
1239 secondary_class
1240 = (enum reg_class) targetm.secondary_reload (false, dest,
1241 (reg_class_t) sclass,
1242 GET_MODE (src), &sri);
1243 if (sclass == NO_REGS
1244 || ((secondary_class != NO_REGS || sri.icode != CODE_FOR_nothing)
1245 && dclass != NO_REGS))
1247 enum reg_class old_sclass = secondary_class;
1248 secondary_reload_info old_sri = sri;
1250 sri.prev_sri = NULL;
1251 sri.icode = CODE_FOR_nothing;
1252 sri.extra_cost = 0;
1253 secondary_class
1254 = (enum reg_class) targetm.secondary_reload (true, src,
1255 (reg_class_t) dclass,
1256 GET_MODE (src), &sri);
1257 /* Check the target hook consistency. */
1258 lra_assert
1259 ((secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1260 || (old_sclass == NO_REGS && old_sri.icode == CODE_FOR_nothing)
1261 || (secondary_class == old_sclass && sri.icode == old_sri.icode));
1263 if (sregno >= 0)
1264 reg_renumber [sregno] = -1;
1265 if (dregno >= 0)
1266 reg_renumber [dregno] = -1;
1267 if (secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1268 return false;
1269 *change_p = true;
1270 new_reg = NULL_RTX;
1271 if (secondary_class != NO_REGS)
1272 new_reg = lra_create_new_reg_with_unique_value (GET_MODE (src), NULL_RTX,
1273 secondary_class,
1274 "secondary");
1275 start_sequence ();
1276 if (sri.icode == CODE_FOR_nothing)
1277 lra_emit_move (new_reg, src);
1278 else
1280 enum reg_class scratch_class;
1282 scratch_class = (reg_class_from_constraints
1283 (insn_data[sri.icode].operand[2].constraint));
1284 scratch_reg = (lra_create_new_reg_with_unique_value
1285 (insn_data[sri.icode].operand[2].mode, NULL_RTX,
1286 scratch_class, "scratch"));
1287 emit_insn (GEN_FCN (sri.icode) (new_reg != NULL_RTX ? new_reg : dest,
1288 src, scratch_reg));
1290 before = get_insns ();
1291 end_sequence ();
1292 lra_process_new_insns (curr_insn, before, NULL, "Inserting the move");
1293 if (new_reg != NULL_RTX)
1294 SET_SRC (curr_insn_set) = new_reg;
1295 else
1297 if (lra_dump_file != NULL)
1299 fprintf (lra_dump_file, "Deleting move %u\n", INSN_UID (curr_insn));
1300 dump_insn_slim (lra_dump_file, curr_insn);
1302 lra_set_insn_deleted (curr_insn);
1303 return true;
1305 return false;
1308 /* The following data describe the result of process_alt_operands.
1309 The data are used in curr_insn_transform to generate reloads. */
1311 /* The chosen reg classes which should be used for the corresponding
1312 operands. */
1313 static enum reg_class goal_alt[MAX_RECOG_OPERANDS];
1314 /* True if the operand should be the same as another operand and that
1315 other operand does not need a reload. */
1316 static bool goal_alt_match_win[MAX_RECOG_OPERANDS];
1317 /* True if the operand does not need a reload. */
1318 static bool goal_alt_win[MAX_RECOG_OPERANDS];
1319 /* True if the operand can be offsetable memory. */
1320 static bool goal_alt_offmemok[MAX_RECOG_OPERANDS];
1321 /* The number of an operand to which given operand can be matched to. */
1322 static int goal_alt_matches[MAX_RECOG_OPERANDS];
1323 /* The number of elements in the following array. */
1324 static int goal_alt_dont_inherit_ops_num;
1325 /* Numbers of operands whose reload pseudos should not be inherited. */
1326 static int goal_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1327 /* True if the insn commutative operands should be swapped. */
1328 static bool goal_alt_swapped;
1329 /* The chosen insn alternative. */
1330 static int goal_alt_number;
1332 /* True if the corresponding operand is the result of an equivalence
1333 substitution. */
1334 static bool equiv_substition_p[MAX_RECOG_OPERANDS];
1336 /* The following five variables are used to choose the best insn
1337 alternative. They reflect final characteristics of the best
1338 alternative. */
1340 /* Number of necessary reloads and overall cost reflecting the
1341 previous value and other unpleasantness of the best alternative. */
1342 static int best_losers, best_overall;
1343 /* Overall number hard registers used for reloads. For example, on
1344 some targets we need 2 general registers to reload DFmode and only
1345 one floating point register. */
1346 static int best_reload_nregs;
1347 /* Overall number reflecting distances of previous reloading the same
1348 value. The distances are counted from the current BB start. It is
1349 used to improve inheritance chances. */
1350 static int best_reload_sum;
1352 /* True if the current insn should have no correspondingly input or
1353 output reloads. */
1354 static bool no_input_reloads_p, no_output_reloads_p;
1356 /* True if we swapped the commutative operands in the current
1357 insn. */
1358 static int curr_swapped;
1360 /* if CHECK_ONLY_P is false, arrange for address element *LOC to be a
1361 register of class CL. Add any input reloads to list BEFORE. AFTER
1362 is nonnull if *LOC is an automodified value; handle that case by
1363 adding the required output reloads to list AFTER. Return true if
1364 the RTL was changed.
1366 if CHECK_ONLY_P is true, check that the *LOC is a correct address
1367 register. Return false if the address register is correct. */
1368 static bool
1369 process_addr_reg (rtx *loc, bool check_only_p, rtx_insn **before, rtx_insn **after,
1370 enum reg_class cl)
1372 int regno;
1373 enum reg_class rclass, new_class;
1374 rtx reg;
1375 rtx new_reg;
1376 machine_mode mode;
1377 bool subreg_p, before_p = false;
1379 subreg_p = GET_CODE (*loc) == SUBREG;
1380 if (subreg_p)
1382 reg = SUBREG_REG (*loc);
1383 mode = GET_MODE (reg);
1385 /* For mode with size bigger than ptr_mode, there unlikely to be "mov"
1386 between two registers with different classes, but there normally will
1387 be "mov" which transfers element of vector register into the general
1388 register, and this normally will be a subreg which should be reloaded
1389 as a whole. This is particularly likely to be triggered when
1390 -fno-split-wide-types specified. */
1391 if (!REG_P (reg)
1392 || in_class_p (reg, cl, &new_class)
1393 || known_le (GET_MODE_SIZE (mode), GET_MODE_SIZE (ptr_mode)))
1394 loc = &SUBREG_REG (*loc);
1397 reg = *loc;
1398 mode = GET_MODE (reg);
1399 if (! REG_P (reg))
1401 if (check_only_p)
1402 return true;
1403 /* Always reload memory in an address even if the target supports
1404 such addresses. */
1405 new_reg = lra_create_new_reg_with_unique_value (mode, reg, cl, "address");
1406 before_p = true;
1408 else
1410 regno = REGNO (reg);
1411 rclass = get_reg_class (regno);
1412 if (! check_only_p
1413 && (*loc = get_equiv_with_elimination (reg, curr_insn)) != reg)
1415 if (lra_dump_file != NULL)
1417 fprintf (lra_dump_file,
1418 "Changing pseudo %d in address of insn %u on equiv ",
1419 REGNO (reg), INSN_UID (curr_insn));
1420 dump_value_slim (lra_dump_file, *loc, 1);
1421 fprintf (lra_dump_file, "\n");
1423 *loc = copy_rtx (*loc);
1425 if (*loc != reg || ! in_class_p (reg, cl, &new_class))
1427 if (check_only_p)
1428 return true;
1429 reg = *loc;
1430 if (get_reload_reg (after == NULL ? OP_IN : OP_INOUT,
1431 mode, reg, cl, subreg_p, "address", &new_reg))
1432 before_p = true;
1434 else if (new_class != NO_REGS && rclass != new_class)
1436 if (check_only_p)
1437 return true;
1438 lra_change_class (regno, new_class, " Change to", true);
1439 return false;
1441 else
1442 return false;
1444 if (before_p)
1446 push_to_sequence (*before);
1447 lra_emit_move (new_reg, reg);
1448 *before = get_insns ();
1449 end_sequence ();
1451 *loc = new_reg;
1452 if (after != NULL)
1454 start_sequence ();
1455 lra_emit_move (before_p ? copy_rtx (reg) : reg, new_reg);
1456 emit_insn (*after);
1457 *after = get_insns ();
1458 end_sequence ();
1460 return true;
1463 /* Insert move insn in simplify_operand_subreg. BEFORE returns
1464 the insn to be inserted before curr insn. AFTER returns the
1465 the insn to be inserted after curr insn. ORIGREG and NEWREG
1466 are the original reg and new reg for reload. */
1467 static void
1468 insert_move_for_subreg (rtx_insn **before, rtx_insn **after, rtx origreg,
1469 rtx newreg)
1471 if (before)
1473 push_to_sequence (*before);
1474 lra_emit_move (newreg, origreg);
1475 *before = get_insns ();
1476 end_sequence ();
1478 if (after)
1480 start_sequence ();
1481 lra_emit_move (origreg, newreg);
1482 emit_insn (*after);
1483 *after = get_insns ();
1484 end_sequence ();
1488 static int valid_address_p (machine_mode mode, rtx addr, addr_space_t as);
1489 static bool process_address (int, bool, rtx_insn **, rtx_insn **);
1491 /* Make reloads for subreg in operand NOP with internal subreg mode
1492 REG_MODE, add new reloads for further processing. Return true if
1493 any change was done. */
1494 static bool
1495 simplify_operand_subreg (int nop, machine_mode reg_mode)
1497 int hard_regno;
1498 rtx_insn *before, *after;
1499 machine_mode mode, innermode;
1500 rtx reg, new_reg;
1501 rtx operand = *curr_id->operand_loc[nop];
1502 enum reg_class regclass;
1503 enum op_type type;
1505 before = after = NULL;
1507 if (GET_CODE (operand) != SUBREG)
1508 return false;
1510 mode = GET_MODE (operand);
1511 reg = SUBREG_REG (operand);
1512 innermode = GET_MODE (reg);
1513 type = curr_static_id->operand[nop].type;
1514 if (MEM_P (reg))
1516 const bool addr_was_valid
1517 = valid_address_p (innermode, XEXP (reg, 0), MEM_ADDR_SPACE (reg));
1518 alter_subreg (curr_id->operand_loc[nop], false);
1519 rtx subst = *curr_id->operand_loc[nop];
1520 lra_assert (MEM_P (subst));
1522 if (!addr_was_valid
1523 || valid_address_p (GET_MODE (subst), XEXP (subst, 0),
1524 MEM_ADDR_SPACE (subst))
1525 || ((get_constraint_type (lookup_constraint
1526 (curr_static_id->operand[nop].constraint))
1527 != CT_SPECIAL_MEMORY)
1528 /* We still can reload address and if the address is
1529 valid, we can remove subreg without reloading its
1530 inner memory. */
1531 && valid_address_p (GET_MODE (subst),
1532 regno_reg_rtx
1533 [ira_class_hard_regs
1534 [base_reg_class (GET_MODE (subst),
1535 MEM_ADDR_SPACE (subst),
1536 ADDRESS, SCRATCH)][0]],
1537 MEM_ADDR_SPACE (subst))))
1539 /* If we change the address for a paradoxical subreg of memory, the
1540 new address might violate the necessary alignment or the access
1541 might be slow; take this into consideration. We need not worry
1542 about accesses beyond allocated memory for paradoxical memory
1543 subregs as we don't substitute such equiv memory (see processing
1544 equivalences in function lra_constraints) and because for spilled
1545 pseudos we allocate stack memory enough for the biggest
1546 corresponding paradoxical subreg.
1548 However, do not blindly simplify a (subreg (mem ...)) for
1549 WORD_REGISTER_OPERATIONS targets as this may lead to loading junk
1550 data into a register when the inner is narrower than outer or
1551 missing important data from memory when the inner is wider than
1552 outer. This rule only applies to modes that are no wider than
1553 a word. */
1554 if (!(maybe_ne (GET_MODE_PRECISION (mode),
1555 GET_MODE_PRECISION (innermode))
1556 && known_le (GET_MODE_SIZE (mode), UNITS_PER_WORD)
1557 && known_le (GET_MODE_SIZE (innermode), UNITS_PER_WORD)
1558 && WORD_REGISTER_OPERATIONS)
1559 && (!(MEM_ALIGN (subst) < GET_MODE_ALIGNMENT (mode)
1560 && targetm.slow_unaligned_access (mode, MEM_ALIGN (subst)))
1561 || (MEM_ALIGN (reg) < GET_MODE_ALIGNMENT (innermode)
1562 && targetm.slow_unaligned_access (innermode,
1563 MEM_ALIGN (reg)))))
1564 return true;
1566 *curr_id->operand_loc[nop] = operand;
1568 /* But if the address was not valid, we cannot reload the MEM without
1569 reloading the address first. */
1570 if (!addr_was_valid)
1571 process_address (nop, false, &before, &after);
1573 /* INNERMODE is fast, MODE slow. Reload the mem in INNERMODE. */
1574 enum reg_class rclass
1575 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1576 if (get_reload_reg (curr_static_id->operand[nop].type, innermode,
1577 reg, rclass, TRUE, "slow mem", &new_reg))
1579 bool insert_before, insert_after;
1580 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1582 insert_before = (type != OP_OUT
1583 || partial_subreg_p (mode, innermode));
1584 insert_after = type != OP_IN;
1585 insert_move_for_subreg (insert_before ? &before : NULL,
1586 insert_after ? &after : NULL,
1587 reg, new_reg);
1589 SUBREG_REG (operand) = new_reg;
1591 /* Convert to MODE. */
1592 reg = operand;
1593 rclass
1594 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1595 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1596 rclass, TRUE, "slow mem", &new_reg))
1598 bool insert_before, insert_after;
1599 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1601 insert_before = type != OP_OUT;
1602 insert_after = type != OP_IN;
1603 insert_move_for_subreg (insert_before ? &before : NULL,
1604 insert_after ? &after : NULL,
1605 reg, new_reg);
1607 *curr_id->operand_loc[nop] = new_reg;
1608 lra_process_new_insns (curr_insn, before, after,
1609 "Inserting slow mem reload");
1610 return true;
1613 /* If the address was valid and became invalid, prefer to reload
1614 the memory. Typical case is when the index scale should
1615 correspond the memory. */
1616 *curr_id->operand_loc[nop] = operand;
1617 /* Do not return false here as the MEM_P (reg) will be processed
1618 later in this function. */
1620 else if (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER)
1622 alter_subreg (curr_id->operand_loc[nop], false);
1623 return true;
1625 else if (CONSTANT_P (reg))
1627 /* Try to simplify subreg of constant. It is usually result of
1628 equivalence substitution. */
1629 if (innermode == VOIDmode
1630 && (innermode = original_subreg_reg_mode[nop]) == VOIDmode)
1631 innermode = curr_static_id->operand[nop].mode;
1632 if ((new_reg = simplify_subreg (mode, reg, innermode,
1633 SUBREG_BYTE (operand))) != NULL_RTX)
1635 *curr_id->operand_loc[nop] = new_reg;
1636 return true;
1639 /* Put constant into memory when we have mixed modes. It generates
1640 a better code in most cases as it does not need a secondary
1641 reload memory. It also prevents LRA looping when LRA is using
1642 secondary reload memory again and again. */
1643 if (CONSTANT_P (reg) && CONST_POOL_OK_P (reg_mode, reg)
1644 && SCALAR_INT_MODE_P (reg_mode) != SCALAR_INT_MODE_P (mode))
1646 SUBREG_REG (operand) = force_const_mem (reg_mode, reg);
1647 alter_subreg (curr_id->operand_loc[nop], false);
1648 return true;
1650 /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1651 if there may be a problem accessing OPERAND in the outer
1652 mode. */
1653 if ((REG_P (reg)
1654 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1655 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1656 /* Don't reload paradoxical subregs because we could be looping
1657 having repeatedly final regno out of hard regs range. */
1658 && (hard_regno_nregs (hard_regno, innermode)
1659 >= hard_regno_nregs (hard_regno, mode))
1660 && simplify_subreg_regno (hard_regno, innermode,
1661 SUBREG_BYTE (operand), mode) < 0
1662 /* Don't reload subreg for matching reload. It is actually
1663 valid subreg in LRA. */
1664 && ! LRA_SUBREG_P (operand))
1665 || CONSTANT_P (reg) || GET_CODE (reg) == PLUS || MEM_P (reg))
1667 enum reg_class rclass;
1669 if (REG_P (reg))
1670 /* There is a big probability that we will get the same class
1671 for the new pseudo and we will get the same insn which
1672 means infinite looping. So spill the new pseudo. */
1673 rclass = NO_REGS;
1674 else
1675 /* The class will be defined later in curr_insn_transform. */
1676 rclass
1677 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1679 if (get_reload_reg (curr_static_id->operand[nop].type, reg_mode, reg,
1680 rclass, TRUE, "subreg reg", &new_reg))
1682 bool insert_before, insert_after;
1683 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1685 insert_before = (type != OP_OUT
1686 || read_modify_subreg_p (operand));
1687 insert_after = (type != OP_IN);
1688 insert_move_for_subreg (insert_before ? &before : NULL,
1689 insert_after ? &after : NULL,
1690 reg, new_reg);
1692 SUBREG_REG (operand) = new_reg;
1693 lra_process_new_insns (curr_insn, before, after,
1694 "Inserting subreg reload");
1695 return true;
1697 /* Force a reload for a paradoxical subreg. For paradoxical subreg,
1698 IRA allocates hardreg to the inner pseudo reg according to its mode
1699 instead of the outermode, so the size of the hardreg may not be enough
1700 to contain the outermode operand, in that case we may need to insert
1701 reload for the reg. For the following two types of paradoxical subreg,
1702 we need to insert reload:
1703 1. If the op_type is OP_IN, and the hardreg could not be paired with
1704 other hardreg to contain the outermode operand
1705 (checked by in_hard_reg_set_p), we need to insert the reload.
1706 2. If the op_type is OP_OUT or OP_INOUT.
1708 Here is a paradoxical subreg example showing how the reload is generated:
1710 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1711 (subreg:TI (reg:DI 107 [ __comp ]) 0)) {*movti_internal_rex64}
1713 In IRA, reg107 is allocated to a DImode hardreg. We use x86-64 as example
1714 here, if reg107 is assigned to hardreg R15, because R15 is the last
1715 hardreg, compiler cannot find another hardreg to pair with R15 to
1716 contain TImode data. So we insert a TImode reload reg180 for it.
1717 After reload is inserted:
1719 (insn 283 0 0 (set (subreg:DI (reg:TI 180 [orig:107 __comp ] [107]) 0)
1720 (reg:DI 107 [ __comp ])) -1
1721 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1722 (subreg:TI (reg:TI 180 [orig:107 __comp ] [107]) 0)) {*movti_internal_rex64}
1724 Two reload hard registers will be allocated to reg180 to save TImode data
1725 in LRA_assign. */
1726 else if (REG_P (reg)
1727 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1728 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1729 && (hard_regno_nregs (hard_regno, innermode)
1730 < hard_regno_nregs (hard_regno, mode))
1731 && (regclass = lra_get_allocno_class (REGNO (reg)))
1732 && (type != OP_IN
1733 || !in_hard_reg_set_p (reg_class_contents[regclass],
1734 mode, hard_regno)))
1736 /* The class will be defined later in curr_insn_transform. */
1737 enum reg_class rclass
1738 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1740 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1741 rclass, TRUE, "paradoxical subreg", &new_reg))
1743 rtx subreg;
1744 bool insert_before, insert_after;
1746 PUT_MODE (new_reg, mode);
1747 subreg = gen_lowpart_SUBREG (innermode, new_reg);
1748 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1750 insert_before = (type != OP_OUT);
1751 insert_after = (type != OP_IN);
1752 insert_move_for_subreg (insert_before ? &before : NULL,
1753 insert_after ? &after : NULL,
1754 reg, subreg);
1756 SUBREG_REG (operand) = new_reg;
1757 lra_process_new_insns (curr_insn, before, after,
1758 "Inserting paradoxical subreg reload");
1759 return true;
1761 return false;
1764 /* Return TRUE if X refers for a hard register from SET. */
1765 static bool
1766 uses_hard_regs_p (rtx x, HARD_REG_SET set)
1768 int i, j, x_hard_regno;
1769 machine_mode mode;
1770 const char *fmt;
1771 enum rtx_code code;
1773 if (x == NULL_RTX)
1774 return false;
1775 code = GET_CODE (x);
1776 mode = GET_MODE (x);
1777 if (code == SUBREG)
1779 mode = wider_subreg_mode (x);
1780 x = SUBREG_REG (x);
1781 code = GET_CODE (x);
1784 if (REG_P (x))
1786 x_hard_regno = get_hard_regno (x, true);
1787 return (x_hard_regno >= 0
1788 && overlaps_hard_reg_set_p (set, mode, x_hard_regno));
1790 if (MEM_P (x))
1792 struct address_info ad;
1794 decompose_mem_address (&ad, x);
1795 if (ad.base_term != NULL && uses_hard_regs_p (*ad.base_term, set))
1796 return true;
1797 if (ad.index_term != NULL && uses_hard_regs_p (*ad.index_term, set))
1798 return true;
1800 fmt = GET_RTX_FORMAT (code);
1801 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1803 if (fmt[i] == 'e')
1805 if (uses_hard_regs_p (XEXP (x, i), set))
1806 return true;
1808 else if (fmt[i] == 'E')
1810 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1811 if (uses_hard_regs_p (XVECEXP (x, i, j), set))
1812 return true;
1815 return false;
1818 /* Return true if OP is a spilled pseudo. */
1819 static inline bool
1820 spilled_pseudo_p (rtx op)
1822 return (REG_P (op)
1823 && REGNO (op) >= FIRST_PSEUDO_REGISTER && in_mem_p (REGNO (op)));
1826 /* Return true if X is a general constant. */
1827 static inline bool
1828 general_constant_p (rtx x)
1830 return CONSTANT_P (x) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (x));
1833 static bool
1834 reg_in_class_p (rtx reg, enum reg_class cl)
1836 if (cl == NO_REGS)
1837 return get_reg_class (REGNO (reg)) == NO_REGS;
1838 return in_class_p (reg, cl, NULL);
1841 /* Return true if SET of RCLASS contains no hard regs which can be
1842 used in MODE. */
1843 static bool
1844 prohibited_class_reg_set_mode_p (enum reg_class rclass,
1845 HARD_REG_SET &set,
1846 machine_mode mode)
1848 HARD_REG_SET temp;
1850 lra_assert (hard_reg_set_subset_p (reg_class_contents[rclass], set));
1851 COPY_HARD_REG_SET (temp, set);
1852 AND_COMPL_HARD_REG_SET (temp, lra_no_alloc_regs);
1853 return (hard_reg_set_subset_p
1854 (temp, ira_prohibited_class_mode_regs[rclass][mode]));
1858 /* Used to check validity info about small class input operands. It
1859 should be incremented at start of processing an insn
1860 alternative. */
1861 static unsigned int curr_small_class_check = 0;
1863 /* Update number of used inputs of class OP_CLASS for operand NOP.
1864 Return true if we have more such class operands than the number of
1865 available regs. */
1866 static bool
1867 update_and_check_small_class_inputs (int nop, enum reg_class op_class)
1869 static unsigned int small_class_check[LIM_REG_CLASSES];
1870 static int small_class_input_nums[LIM_REG_CLASSES];
1872 if (SMALL_REGISTER_CLASS_P (op_class)
1873 /* We are interesting in classes became small because of fixing
1874 some hard regs, e.g. by an user through GCC options. */
1875 && hard_reg_set_intersect_p (reg_class_contents[op_class],
1876 ira_no_alloc_regs)
1877 && (curr_static_id->operand[nop].type != OP_OUT
1878 || curr_static_id->operand[nop].early_clobber))
1880 if (small_class_check[op_class] == curr_small_class_check)
1881 small_class_input_nums[op_class]++;
1882 else
1884 small_class_check[op_class] = curr_small_class_check;
1885 small_class_input_nums[op_class] = 1;
1887 if (small_class_input_nums[op_class] > ira_class_hard_regs_num[op_class])
1888 return true;
1890 return false;
1893 /* Major function to choose the current insn alternative and what
1894 operands should be reloaded and how. If ONLY_ALTERNATIVE is not
1895 negative we should consider only this alternative. Return false if
1896 we can not choose the alternative or find how to reload the
1897 operands. */
1898 static bool
1899 process_alt_operands (int only_alternative)
1901 bool ok_p = false;
1902 int nop, overall, nalt;
1903 int n_alternatives = curr_static_id->n_alternatives;
1904 int n_operands = curr_static_id->n_operands;
1905 /* LOSERS counts the operands that don't fit this alternative and
1906 would require loading. */
1907 int losers;
1908 int addr_losers;
1909 /* REJECT is a count of how undesirable this alternative says it is
1910 if any reloading is required. If the alternative matches exactly
1911 then REJECT is ignored, but otherwise it gets this much counted
1912 against it in addition to the reloading needed. */
1913 int reject;
1914 /* This is defined by '!' or '?' alternative constraint and added to
1915 reject. But in some cases it can be ignored. */
1916 int static_reject;
1917 int op_reject;
1918 /* The number of elements in the following array. */
1919 int early_clobbered_regs_num;
1920 /* Numbers of operands which are early clobber registers. */
1921 int early_clobbered_nops[MAX_RECOG_OPERANDS];
1922 enum reg_class curr_alt[MAX_RECOG_OPERANDS];
1923 HARD_REG_SET curr_alt_set[MAX_RECOG_OPERANDS];
1924 bool curr_alt_match_win[MAX_RECOG_OPERANDS];
1925 bool curr_alt_win[MAX_RECOG_OPERANDS];
1926 bool curr_alt_offmemok[MAX_RECOG_OPERANDS];
1927 int curr_alt_matches[MAX_RECOG_OPERANDS];
1928 /* The number of elements in the following array. */
1929 int curr_alt_dont_inherit_ops_num;
1930 /* Numbers of operands whose reload pseudos should not be inherited. */
1931 int curr_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1932 rtx op;
1933 /* The register when the operand is a subreg of register, otherwise the
1934 operand itself. */
1935 rtx no_subreg_reg_operand[MAX_RECOG_OPERANDS];
1936 /* The register if the operand is a register or subreg of register,
1937 otherwise NULL. */
1938 rtx operand_reg[MAX_RECOG_OPERANDS];
1939 int hard_regno[MAX_RECOG_OPERANDS];
1940 machine_mode biggest_mode[MAX_RECOG_OPERANDS];
1941 int reload_nregs, reload_sum;
1942 bool costly_p;
1943 enum reg_class cl;
1945 /* Calculate some data common for all alternatives to speed up the
1946 function. */
1947 for (nop = 0; nop < n_operands; nop++)
1949 rtx reg;
1951 op = no_subreg_reg_operand[nop] = *curr_id->operand_loc[nop];
1952 /* The real hard regno of the operand after the allocation. */
1953 hard_regno[nop] = get_hard_regno (op, true);
1955 operand_reg[nop] = reg = op;
1956 biggest_mode[nop] = GET_MODE (op);
1957 if (GET_CODE (op) == SUBREG)
1959 biggest_mode[nop] = wider_subreg_mode (op);
1960 operand_reg[nop] = reg = SUBREG_REG (op);
1962 if (! REG_P (reg))
1963 operand_reg[nop] = NULL_RTX;
1964 else if (REGNO (reg) >= FIRST_PSEUDO_REGISTER
1965 || ((int) REGNO (reg)
1966 == lra_get_elimination_hard_regno (REGNO (reg))))
1967 no_subreg_reg_operand[nop] = reg;
1968 else
1969 operand_reg[nop] = no_subreg_reg_operand[nop]
1970 /* Just use natural mode for elimination result. It should
1971 be enough for extra constraints hooks. */
1972 = regno_reg_rtx[hard_regno[nop]];
1975 /* The constraints are made of several alternatives. Each operand's
1976 constraint looks like foo,bar,... with commas separating the
1977 alternatives. The first alternatives for all operands go
1978 together, the second alternatives go together, etc.
1980 First loop over alternatives. */
1981 alternative_mask preferred = curr_id->preferred_alternatives;
1982 if (only_alternative >= 0)
1983 preferred &= ALTERNATIVE_BIT (only_alternative);
1985 for (nalt = 0; nalt < n_alternatives; nalt++)
1987 /* Loop over operands for one constraint alternative. */
1988 if (!TEST_BIT (preferred, nalt))
1989 continue;
1991 curr_small_class_check++;
1992 overall = losers = addr_losers = 0;
1993 static_reject = reject = reload_nregs = reload_sum = 0;
1994 for (nop = 0; nop < n_operands; nop++)
1996 int inc = (curr_static_id
1997 ->operand_alternative[nalt * n_operands + nop].reject);
1998 if (lra_dump_file != NULL && inc != 0)
1999 fprintf (lra_dump_file,
2000 " Staticly defined alt reject+=%d\n", inc);
2001 static_reject += inc;
2003 reject += static_reject;
2004 early_clobbered_regs_num = 0;
2006 for (nop = 0; nop < n_operands; nop++)
2008 const char *p;
2009 char *end;
2010 int len, c, m, i, opalt_num, this_alternative_matches;
2011 bool win, did_match, offmemok, early_clobber_p;
2012 /* false => this operand can be reloaded somehow for this
2013 alternative. */
2014 bool badop;
2015 /* true => this operand can be reloaded if the alternative
2016 allows regs. */
2017 bool winreg;
2018 /* True if a constant forced into memory would be OK for
2019 this operand. */
2020 bool constmemok;
2021 enum reg_class this_alternative, this_costly_alternative;
2022 HARD_REG_SET this_alternative_set, this_costly_alternative_set;
2023 bool this_alternative_match_win, this_alternative_win;
2024 bool this_alternative_offmemok;
2025 bool scratch_p;
2026 machine_mode mode;
2027 enum constraint_num cn;
2029 opalt_num = nalt * n_operands + nop;
2030 if (curr_static_id->operand_alternative[opalt_num].anything_ok)
2032 /* Fast track for no constraints at all. */
2033 curr_alt[nop] = NO_REGS;
2034 CLEAR_HARD_REG_SET (curr_alt_set[nop]);
2035 curr_alt_win[nop] = true;
2036 curr_alt_match_win[nop] = false;
2037 curr_alt_offmemok[nop] = false;
2038 curr_alt_matches[nop] = -1;
2039 continue;
2042 op = no_subreg_reg_operand[nop];
2043 mode = curr_operand_mode[nop];
2045 win = did_match = winreg = offmemok = constmemok = false;
2046 badop = true;
2048 early_clobber_p = false;
2049 p = curr_static_id->operand_alternative[opalt_num].constraint;
2051 this_costly_alternative = this_alternative = NO_REGS;
2052 /* We update set of possible hard regs besides its class
2053 because reg class might be inaccurate. For example,
2054 union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
2055 is translated in HI_REGS because classes are merged by
2056 pairs and there is no accurate intermediate class. */
2057 CLEAR_HARD_REG_SET (this_alternative_set);
2058 CLEAR_HARD_REG_SET (this_costly_alternative_set);
2059 this_alternative_win = false;
2060 this_alternative_match_win = false;
2061 this_alternative_offmemok = false;
2062 this_alternative_matches = -1;
2064 /* An empty constraint should be excluded by the fast
2065 track. */
2066 lra_assert (*p != 0 && *p != ',');
2068 op_reject = 0;
2069 /* Scan this alternative's specs for this operand; set WIN
2070 if the operand fits any letter in this alternative.
2071 Otherwise, clear BADOP if this operand could fit some
2072 letter after reloads, or set WINREG if this operand could
2073 fit after reloads provided the constraint allows some
2074 registers. */
2075 costly_p = false;
2078 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2080 case '\0':
2081 len = 0;
2082 break;
2083 case ',':
2084 c = '\0';
2085 break;
2087 case '&':
2088 early_clobber_p = true;
2089 break;
2091 case '$':
2092 op_reject += LRA_MAX_REJECT;
2093 break;
2094 case '^':
2095 op_reject += LRA_LOSER_COST_FACTOR;
2096 break;
2098 case '#':
2099 /* Ignore rest of this alternative. */
2100 c = '\0';
2101 break;
2103 case '0': case '1': case '2': case '3': case '4':
2104 case '5': case '6': case '7': case '8': case '9':
2106 int m_hregno;
2107 bool match_p;
2109 m = strtoul (p, &end, 10);
2110 p = end;
2111 len = 0;
2112 lra_assert (nop > m);
2114 /* Reject matches if we don't know which operand is
2115 bigger. This situation would arguably be a bug in
2116 an .md pattern, but could also occur in a user asm. */
2117 if (!ordered_p (GET_MODE_SIZE (biggest_mode[m]),
2118 GET_MODE_SIZE (biggest_mode[nop])))
2119 break;
2121 this_alternative_matches = m;
2122 m_hregno = get_hard_regno (*curr_id->operand_loc[m], false);
2123 /* We are supposed to match a previous operand.
2124 If we do, we win if that one did. If we do
2125 not, count both of the operands as losers.
2126 (This is too conservative, since most of the
2127 time only a single reload insn will be needed
2128 to make the two operands win. As a result,
2129 this alternative may be rejected when it is
2130 actually desirable.) */
2131 match_p = false;
2132 if (operands_match_p (*curr_id->operand_loc[nop],
2133 *curr_id->operand_loc[m], m_hregno))
2135 /* We should reject matching of an early
2136 clobber operand if the matching operand is
2137 not dying in the insn. */
2138 if (! curr_static_id->operand[m].early_clobber
2139 || operand_reg[nop] == NULL_RTX
2140 || (find_regno_note (curr_insn, REG_DEAD,
2141 REGNO (op))
2142 || REGNO (op) == REGNO (operand_reg[m])))
2143 match_p = true;
2145 if (match_p)
2147 /* If we are matching a non-offsettable
2148 address where an offsettable address was
2149 expected, then we must reject this
2150 combination, because we can't reload
2151 it. */
2152 if (curr_alt_offmemok[m]
2153 && MEM_P (*curr_id->operand_loc[m])
2154 && curr_alt[m] == NO_REGS && ! curr_alt_win[m])
2155 continue;
2157 else
2159 /* Operands don't match. Both operands must
2160 allow a reload register, otherwise we
2161 cannot make them match. */
2162 if (curr_alt[m] == NO_REGS)
2163 break;
2164 /* Retroactively mark the operand we had to
2165 match as a loser, if it wasn't already and
2166 it wasn't matched to a register constraint
2167 (e.g it might be matched by memory). */
2168 if (curr_alt_win[m]
2169 && (operand_reg[m] == NULL_RTX
2170 || hard_regno[m] < 0))
2172 losers++;
2173 reload_nregs
2174 += (ira_reg_class_max_nregs[curr_alt[m]]
2175 [GET_MODE (*curr_id->operand_loc[m])]);
2178 /* Prefer matching earlyclobber alternative as
2179 it results in less hard regs required for
2180 the insn than a non-matching earlyclobber
2181 alternative. */
2182 if (curr_static_id->operand[m].early_clobber)
2184 if (lra_dump_file != NULL)
2185 fprintf
2186 (lra_dump_file,
2187 " %d Matching earlyclobber alt:"
2188 " reject--\n",
2189 nop);
2190 reject--;
2192 /* Otherwise we prefer no matching
2193 alternatives because it gives more freedom
2194 in RA. */
2195 else if (operand_reg[nop] == NULL_RTX
2196 || (find_regno_note (curr_insn, REG_DEAD,
2197 REGNO (operand_reg[nop]))
2198 == NULL_RTX))
2200 if (lra_dump_file != NULL)
2201 fprintf
2202 (lra_dump_file,
2203 " %d Matching alt: reject+=2\n",
2204 nop);
2205 reject += 2;
2208 /* If we have to reload this operand and some
2209 previous operand also had to match the same
2210 thing as this operand, we don't know how to do
2211 that. */
2212 if (!match_p || !curr_alt_win[m])
2214 for (i = 0; i < nop; i++)
2215 if (curr_alt_matches[i] == m)
2216 break;
2217 if (i < nop)
2218 break;
2220 else
2221 did_match = true;
2223 /* This can be fixed with reloads if the operand
2224 we are supposed to match can be fixed with
2225 reloads. */
2226 badop = false;
2227 this_alternative = curr_alt[m];
2228 COPY_HARD_REG_SET (this_alternative_set, curr_alt_set[m]);
2229 winreg = this_alternative != NO_REGS;
2230 break;
2233 case 'g':
2234 if (MEM_P (op)
2235 || general_constant_p (op)
2236 || spilled_pseudo_p (op))
2237 win = true;
2238 cl = GENERAL_REGS;
2239 goto reg;
2241 default:
2242 cn = lookup_constraint (p);
2243 switch (get_constraint_type (cn))
2245 case CT_REGISTER:
2246 cl = reg_class_for_constraint (cn);
2247 if (cl != NO_REGS)
2248 goto reg;
2249 break;
2251 case CT_CONST_INT:
2252 if (CONST_INT_P (op)
2253 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
2254 win = true;
2255 break;
2257 case CT_MEMORY:
2258 if (MEM_P (op)
2259 && satisfies_memory_constraint_p (op, cn))
2260 win = true;
2261 else if (spilled_pseudo_p (op))
2262 win = true;
2264 /* If we didn't already win, we can reload constants
2265 via force_const_mem or put the pseudo value into
2266 memory, or make other memory by reloading the
2267 address like for 'o'. */
2268 if (CONST_POOL_OK_P (mode, op)
2269 || MEM_P (op) || REG_P (op)
2270 /* We can restore the equiv insn by a
2271 reload. */
2272 || equiv_substition_p[nop])
2273 badop = false;
2274 constmemok = true;
2275 offmemok = true;
2276 break;
2278 case CT_ADDRESS:
2279 /* If we didn't already win, we can reload the address
2280 into a base register. */
2281 if (satisfies_address_constraint_p (op, cn))
2282 win = true;
2283 cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2284 ADDRESS, SCRATCH);
2285 badop = false;
2286 goto reg;
2288 case CT_FIXED_FORM:
2289 if (constraint_satisfied_p (op, cn))
2290 win = true;
2291 break;
2293 case CT_SPECIAL_MEMORY:
2294 if (MEM_P (op)
2295 && satisfies_memory_constraint_p (op, cn))
2296 win = true;
2297 else if (spilled_pseudo_p (op))
2298 win = true;
2299 break;
2301 break;
2303 reg:
2304 this_alternative = reg_class_subunion[this_alternative][cl];
2305 IOR_HARD_REG_SET (this_alternative_set,
2306 reg_class_contents[cl]);
2307 if (costly_p)
2309 this_costly_alternative
2310 = reg_class_subunion[this_costly_alternative][cl];
2311 IOR_HARD_REG_SET (this_costly_alternative_set,
2312 reg_class_contents[cl]);
2314 if (mode == BLKmode)
2315 break;
2316 winreg = true;
2317 if (REG_P (op))
2319 if (hard_regno[nop] >= 0
2320 && in_hard_reg_set_p (this_alternative_set,
2321 mode, hard_regno[nop]))
2322 win = true;
2323 else if (hard_regno[nop] < 0
2324 && in_class_p (op, this_alternative, NULL))
2325 win = true;
2327 break;
2329 if (c != ' ' && c != '\t')
2330 costly_p = c == '*';
2332 while ((p += len), c);
2334 scratch_p = (operand_reg[nop] != NULL_RTX
2335 && lra_former_scratch_p (REGNO (operand_reg[nop])));
2336 /* Record which operands fit this alternative. */
2337 if (win)
2339 this_alternative_win = true;
2340 if (operand_reg[nop] != NULL_RTX)
2342 if (hard_regno[nop] >= 0)
2344 if (in_hard_reg_set_p (this_costly_alternative_set,
2345 mode, hard_regno[nop]))
2347 if (lra_dump_file != NULL)
2348 fprintf (lra_dump_file,
2349 " %d Costly set: reject++\n",
2350 nop);
2351 reject++;
2354 else
2356 /* Prefer won reg to spilled pseudo under other
2357 equal conditions for possibe inheritance. */
2358 if (! scratch_p)
2360 if (lra_dump_file != NULL)
2361 fprintf
2362 (lra_dump_file,
2363 " %d Non pseudo reload: reject++\n",
2364 nop);
2365 reject++;
2367 if (in_class_p (operand_reg[nop],
2368 this_costly_alternative, NULL))
2370 if (lra_dump_file != NULL)
2371 fprintf
2372 (lra_dump_file,
2373 " %d Non pseudo costly reload:"
2374 " reject++\n",
2375 nop);
2376 reject++;
2379 /* We simulate the behavior of old reload here.
2380 Although scratches need hard registers and it
2381 might result in spilling other pseudos, no reload
2382 insns are generated for the scratches. So it
2383 might cost something but probably less than old
2384 reload pass believes. */
2385 if (scratch_p)
2387 if (lra_dump_file != NULL)
2388 fprintf (lra_dump_file,
2389 " %d Scratch win: reject+=2\n",
2390 nop);
2391 reject += 2;
2395 else if (did_match)
2396 this_alternative_match_win = true;
2397 else
2399 int const_to_mem = 0;
2400 bool no_regs_p;
2402 reject += op_reject;
2403 /* Never do output reload of stack pointer. It makes
2404 impossible to do elimination when SP is changed in
2405 RTL. */
2406 if (op == stack_pointer_rtx && ! frame_pointer_needed
2407 && curr_static_id->operand[nop].type != OP_IN)
2408 goto fail;
2410 /* If this alternative asks for a specific reg class, see if there
2411 is at least one allocatable register in that class. */
2412 no_regs_p
2413 = (this_alternative == NO_REGS
2414 || (hard_reg_set_subset_p
2415 (reg_class_contents[this_alternative],
2416 lra_no_alloc_regs)));
2418 /* For asms, verify that the class for this alternative is possible
2419 for the mode that is specified. */
2420 if (!no_regs_p && INSN_CODE (curr_insn) < 0)
2422 int i;
2423 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2424 if (targetm.hard_regno_mode_ok (i, mode)
2425 && in_hard_reg_set_p (reg_class_contents[this_alternative],
2426 mode, i))
2427 break;
2428 if (i == FIRST_PSEUDO_REGISTER)
2429 winreg = false;
2432 /* If this operand accepts a register, and if the
2433 register class has at least one allocatable register,
2434 then this operand can be reloaded. */
2435 if (winreg && !no_regs_p)
2436 badop = false;
2438 if (badop)
2440 if (lra_dump_file != NULL)
2441 fprintf (lra_dump_file,
2442 " alt=%d: Bad operand -- refuse\n",
2443 nalt);
2444 goto fail;
2447 if (this_alternative != NO_REGS)
2449 HARD_REG_SET available_regs;
2451 COPY_HARD_REG_SET (available_regs,
2452 reg_class_contents[this_alternative]);
2453 AND_COMPL_HARD_REG_SET
2454 (available_regs,
2455 ira_prohibited_class_mode_regs[this_alternative][mode]);
2456 AND_COMPL_HARD_REG_SET (available_regs, lra_no_alloc_regs);
2457 if (hard_reg_set_empty_p (available_regs))
2459 /* There are no hard regs holding a value of given
2460 mode. */
2461 if (offmemok)
2463 this_alternative = NO_REGS;
2464 if (lra_dump_file != NULL)
2465 fprintf (lra_dump_file,
2466 " %d Using memory because of"
2467 " a bad mode: reject+=2\n",
2468 nop);
2469 reject += 2;
2471 else
2473 if (lra_dump_file != NULL)
2474 fprintf (lra_dump_file,
2475 " alt=%d: Wrong mode -- refuse\n",
2476 nalt);
2477 goto fail;
2482 /* If not assigned pseudo has a class which a subset of
2483 required reg class, it is a less costly alternative
2484 as the pseudo still can get a hard reg of necessary
2485 class. */
2486 if (! no_regs_p && REG_P (op) && hard_regno[nop] < 0
2487 && (cl = get_reg_class (REGNO (op))) != NO_REGS
2488 && ira_class_subset_p[this_alternative][cl])
2490 if (lra_dump_file != NULL)
2491 fprintf
2492 (lra_dump_file,
2493 " %d Super set class reg: reject-=3\n", nop);
2494 reject -= 3;
2497 this_alternative_offmemok = offmemok;
2498 if (this_costly_alternative != NO_REGS)
2500 if (lra_dump_file != NULL)
2501 fprintf (lra_dump_file,
2502 " %d Costly loser: reject++\n", nop);
2503 reject++;
2505 /* If the operand is dying, has a matching constraint,
2506 and satisfies constraints of the matched operand
2507 which failed to satisfy the own constraints, most probably
2508 the reload for this operand will be gone. */
2509 if (this_alternative_matches >= 0
2510 && !curr_alt_win[this_alternative_matches]
2511 && REG_P (op)
2512 && find_regno_note (curr_insn, REG_DEAD, REGNO (op))
2513 && (hard_regno[nop] >= 0
2514 ? in_hard_reg_set_p (this_alternative_set,
2515 mode, hard_regno[nop])
2516 : in_class_p (op, this_alternative, NULL)))
2518 if (lra_dump_file != NULL)
2519 fprintf
2520 (lra_dump_file,
2521 " %d Dying matched operand reload: reject++\n",
2522 nop);
2523 reject++;
2525 else
2527 /* Strict_low_part requires to reload the register
2528 not the sub-register. In this case we should
2529 check that a final reload hard reg can hold the
2530 value mode. */
2531 if (curr_static_id->operand[nop].strict_low
2532 && REG_P (op)
2533 && hard_regno[nop] < 0
2534 && GET_CODE (*curr_id->operand_loc[nop]) == SUBREG
2535 && ira_class_hard_regs_num[this_alternative] > 0
2536 && (!targetm.hard_regno_mode_ok
2537 (ira_class_hard_regs[this_alternative][0],
2538 GET_MODE (*curr_id->operand_loc[nop]))))
2540 if (lra_dump_file != NULL)
2541 fprintf
2542 (lra_dump_file,
2543 " alt=%d: Strict low subreg reload -- refuse\n",
2544 nalt);
2545 goto fail;
2547 losers++;
2549 if (operand_reg[nop] != NULL_RTX
2550 /* Output operands and matched input operands are
2551 not inherited. The following conditions do not
2552 exactly describe the previous statement but they
2553 are pretty close. */
2554 && curr_static_id->operand[nop].type != OP_OUT
2555 && (this_alternative_matches < 0
2556 || curr_static_id->operand[nop].type != OP_IN))
2558 int last_reload = (lra_reg_info[ORIGINAL_REGNO
2559 (operand_reg[nop])]
2560 .last_reload);
2562 /* The value of reload_sum has sense only if we
2563 process insns in their order. It happens only on
2564 the first constraints sub-pass when we do most of
2565 reload work. */
2566 if (lra_constraint_iter == 1 && last_reload > bb_reload_num)
2567 reload_sum += last_reload - bb_reload_num;
2569 /* If this is a constant that is reloaded into the
2570 desired class by copying it to memory first, count
2571 that as another reload. This is consistent with
2572 other code and is required to avoid choosing another
2573 alternative when the constant is moved into memory.
2574 Note that the test here is precisely the same as in
2575 the code below that calls force_const_mem. */
2576 if (CONST_POOL_OK_P (mode, op)
2577 && ((targetm.preferred_reload_class
2578 (op, this_alternative) == NO_REGS)
2579 || no_input_reloads_p))
2581 const_to_mem = 1;
2582 if (! no_regs_p)
2583 losers++;
2586 /* Alternative loses if it requires a type of reload not
2587 permitted for this insn. We can always reload
2588 objects with a REG_UNUSED note. */
2589 if ((curr_static_id->operand[nop].type != OP_IN
2590 && no_output_reloads_p
2591 && ! find_reg_note (curr_insn, REG_UNUSED, op))
2592 || (curr_static_id->operand[nop].type != OP_OUT
2593 && no_input_reloads_p && ! const_to_mem)
2594 || (this_alternative_matches >= 0
2595 && (no_input_reloads_p
2596 || (no_output_reloads_p
2597 && (curr_static_id->operand
2598 [this_alternative_matches].type != OP_IN)
2599 && ! find_reg_note (curr_insn, REG_UNUSED,
2600 no_subreg_reg_operand
2601 [this_alternative_matches])))))
2603 if (lra_dump_file != NULL)
2604 fprintf
2605 (lra_dump_file,
2606 " alt=%d: No input/otput reload -- refuse\n",
2607 nalt);
2608 goto fail;
2611 /* Alternative loses if it required class pseudo can not
2612 hold value of required mode. Such insns can be
2613 described by insn definitions with mode iterators. */
2614 if (GET_MODE (*curr_id->operand_loc[nop]) != VOIDmode
2615 && ! hard_reg_set_empty_p (this_alternative_set)
2616 /* It is common practice for constraints to use a
2617 class which does not have actually enough regs to
2618 hold the value (e.g. x86 AREG for mode requiring
2619 more one general reg). Therefore we have 2
2620 conditions to check that the reload pseudo can
2621 not hold the mode value. */
2622 && (!targetm.hard_regno_mode_ok
2623 (ira_class_hard_regs[this_alternative][0],
2624 GET_MODE (*curr_id->operand_loc[nop])))
2625 /* The above condition is not enough as the first
2626 reg in ira_class_hard_regs can be not aligned for
2627 multi-words mode values. */
2628 && (prohibited_class_reg_set_mode_p
2629 (this_alternative, this_alternative_set,
2630 GET_MODE (*curr_id->operand_loc[nop]))))
2632 if (lra_dump_file != NULL)
2633 fprintf (lra_dump_file,
2634 " alt=%d: reload pseudo for op %d "
2635 " can not hold the mode value -- refuse\n",
2636 nalt, nop);
2637 goto fail;
2640 /* Check strong discouragement of reload of non-constant
2641 into class THIS_ALTERNATIVE. */
2642 if (! CONSTANT_P (op) && ! no_regs_p
2643 && (targetm.preferred_reload_class
2644 (op, this_alternative) == NO_REGS
2645 || (curr_static_id->operand[nop].type == OP_OUT
2646 && (targetm.preferred_output_reload_class
2647 (op, this_alternative) == NO_REGS))))
2649 if (lra_dump_file != NULL)
2650 fprintf (lra_dump_file,
2651 " %d Non-prefered reload: reject+=%d\n",
2652 nop, LRA_MAX_REJECT);
2653 reject += LRA_MAX_REJECT;
2656 if (! (MEM_P (op) && offmemok)
2657 && ! (const_to_mem && constmemok))
2659 /* We prefer to reload pseudos over reloading other
2660 things, since such reloads may be able to be
2661 eliminated later. So bump REJECT in other cases.
2662 Don't do this in the case where we are forcing a
2663 constant into memory and it will then win since
2664 we don't want to have a different alternative
2665 match then. */
2666 if (! (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2668 if (lra_dump_file != NULL)
2669 fprintf
2670 (lra_dump_file,
2671 " %d Non-pseudo reload: reject+=2\n",
2672 nop);
2673 reject += 2;
2676 if (! no_regs_p)
2677 reload_nregs
2678 += ira_reg_class_max_nregs[this_alternative][mode];
2680 if (SMALL_REGISTER_CLASS_P (this_alternative))
2682 if (lra_dump_file != NULL)
2683 fprintf
2684 (lra_dump_file,
2685 " %d Small class reload: reject+=%d\n",
2686 nop, LRA_LOSER_COST_FACTOR / 2);
2687 reject += LRA_LOSER_COST_FACTOR / 2;
2691 /* We are trying to spill pseudo into memory. It is
2692 usually more costly than moving to a hard register
2693 although it might takes the same number of
2694 reloads.
2696 Non-pseudo spill may happen also. Suppose a target allows both
2697 register and memory in the operand constraint alternatives,
2698 then it's typical that an eliminable register has a substition
2699 of "base + offset" which can either be reloaded by a simple
2700 "new_reg <= base + offset" which will match the register
2701 constraint, or a similar reg addition followed by further spill
2702 to and reload from memory which will match the memory
2703 constraint, but this memory spill will be much more costly
2704 usually.
2706 Code below increases the reject for both pseudo and non-pseudo
2707 spill. */
2708 if (no_regs_p
2709 && !(MEM_P (op) && offmemok)
2710 && !(REG_P (op) && hard_regno[nop] < 0))
2712 if (lra_dump_file != NULL)
2713 fprintf
2714 (lra_dump_file,
2715 " %d Spill %spseudo into memory: reject+=3\n",
2716 nop, REG_P (op) ? "" : "Non-");
2717 reject += 3;
2718 if (VECTOR_MODE_P (mode))
2720 /* Spilling vectors into memory is usually more
2721 costly as they contain big values. */
2722 if (lra_dump_file != NULL)
2723 fprintf
2724 (lra_dump_file,
2725 " %d Spill vector pseudo: reject+=2\n",
2726 nop);
2727 reject += 2;
2731 /* When we use an operand requiring memory in given
2732 alternative, the insn should write *and* read the
2733 value to/from memory it is costly in comparison with
2734 an insn alternative which does not use memory
2735 (e.g. register or immediate operand). We exclude
2736 memory operand for such case as we can satisfy the
2737 memory constraints by reloading address. */
2738 if (no_regs_p && offmemok && !MEM_P (op))
2740 if (lra_dump_file != NULL)
2741 fprintf
2742 (lra_dump_file,
2743 " Using memory insn operand %d: reject+=3\n",
2744 nop);
2745 reject += 3;
2748 /* If reload requires moving value through secondary
2749 memory, it will need one more insn at least. */
2750 if (this_alternative != NO_REGS
2751 && REG_P (op) && (cl = get_reg_class (REGNO (op))) != NO_REGS
2752 && ((curr_static_id->operand[nop].type != OP_OUT
2753 && targetm.secondary_memory_needed (GET_MODE (op), cl,
2754 this_alternative))
2755 || (curr_static_id->operand[nop].type != OP_IN
2756 && (targetm.secondary_memory_needed
2757 (GET_MODE (op), this_alternative, cl)))))
2758 losers++;
2760 /* Input reloads can be inherited more often than output
2761 reloads can be removed, so penalize output
2762 reloads. */
2763 if (!REG_P (op) || curr_static_id->operand[nop].type != OP_IN)
2765 if (lra_dump_file != NULL)
2766 fprintf
2767 (lra_dump_file,
2768 " %d Non input pseudo reload: reject++\n",
2769 nop);
2770 reject++;
2773 if (MEM_P (op) && offmemok)
2774 addr_losers++;
2775 else if (curr_static_id->operand[nop].type == OP_INOUT)
2777 if (lra_dump_file != NULL)
2778 fprintf
2779 (lra_dump_file,
2780 " %d Input/Output reload: reject+=%d\n",
2781 nop, LRA_LOSER_COST_FACTOR);
2782 reject += LRA_LOSER_COST_FACTOR;
2786 if (early_clobber_p && ! scratch_p)
2788 if (lra_dump_file != NULL)
2789 fprintf (lra_dump_file,
2790 " %d Early clobber: reject++\n", nop);
2791 reject++;
2793 /* ??? We check early clobbers after processing all operands
2794 (see loop below) and there we update the costs more.
2795 Should we update the cost (may be approximately) here
2796 because of early clobber register reloads or it is a rare
2797 or non-important thing to be worth to do it. */
2798 overall = (losers * LRA_LOSER_COST_FACTOR + reject
2799 - (addr_losers == losers ? static_reject : 0));
2800 if ((best_losers == 0 || losers != 0) && best_overall < overall)
2802 if (lra_dump_file != NULL)
2803 fprintf (lra_dump_file,
2804 " alt=%d,overall=%d,losers=%d -- refuse\n",
2805 nalt, overall, losers);
2806 goto fail;
2809 if (update_and_check_small_class_inputs (nop, this_alternative))
2811 if (lra_dump_file != NULL)
2812 fprintf (lra_dump_file,
2813 " alt=%d, not enough small class regs -- refuse\n",
2814 nalt);
2815 goto fail;
2817 curr_alt[nop] = this_alternative;
2818 COPY_HARD_REG_SET (curr_alt_set[nop], this_alternative_set);
2819 curr_alt_win[nop] = this_alternative_win;
2820 curr_alt_match_win[nop] = this_alternative_match_win;
2821 curr_alt_offmemok[nop] = this_alternative_offmemok;
2822 curr_alt_matches[nop] = this_alternative_matches;
2824 if (this_alternative_matches >= 0
2825 && !did_match && !this_alternative_win)
2826 curr_alt_win[this_alternative_matches] = false;
2828 if (early_clobber_p && operand_reg[nop] != NULL_RTX)
2829 early_clobbered_nops[early_clobbered_regs_num++] = nop;
2832 if (curr_insn_set != NULL_RTX && n_operands == 2
2833 /* Prevent processing non-move insns. */
2834 && (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
2835 || SET_SRC (curr_insn_set) == no_subreg_reg_operand[1])
2836 && ((! curr_alt_win[0] && ! curr_alt_win[1]
2837 && REG_P (no_subreg_reg_operand[0])
2838 && REG_P (no_subreg_reg_operand[1])
2839 && (reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2840 || reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0])))
2841 || (! curr_alt_win[0] && curr_alt_win[1]
2842 && REG_P (no_subreg_reg_operand[1])
2843 /* Check that we reload memory not the memory
2844 address. */
2845 && ! (curr_alt_offmemok[0]
2846 && MEM_P (no_subreg_reg_operand[0]))
2847 && reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0]))
2848 || (curr_alt_win[0] && ! curr_alt_win[1]
2849 && REG_P (no_subreg_reg_operand[0])
2850 /* Check that we reload memory not the memory
2851 address. */
2852 && ! (curr_alt_offmemok[1]
2853 && MEM_P (no_subreg_reg_operand[1]))
2854 && reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2855 && (! CONST_POOL_OK_P (curr_operand_mode[1],
2856 no_subreg_reg_operand[1])
2857 || (targetm.preferred_reload_class
2858 (no_subreg_reg_operand[1],
2859 (enum reg_class) curr_alt[1]) != NO_REGS))
2860 /* If it is a result of recent elimination in move
2861 insn we can transform it into an add still by
2862 using this alternative. */
2863 && GET_CODE (no_subreg_reg_operand[1]) != PLUS
2864 /* Likewise if the source has been replaced with an
2865 equivalent value. This only happens once -- the reload
2866 will use the equivalent value instead of the register it
2867 replaces -- so there should be no danger of cycling. */
2868 && !equiv_substition_p[1])))
2870 /* We have a move insn and a new reload insn will be similar
2871 to the current insn. We should avoid such situation as
2872 it results in LRA cycling. */
2873 if (lra_dump_file != NULL)
2874 fprintf (lra_dump_file,
2875 " Cycle danger: overall += LRA_MAX_REJECT\n");
2876 overall += LRA_MAX_REJECT;
2878 ok_p = true;
2879 curr_alt_dont_inherit_ops_num = 0;
2880 for (nop = 0; nop < early_clobbered_regs_num; nop++)
2882 int i, j, clobbered_hard_regno, first_conflict_j, last_conflict_j;
2883 HARD_REG_SET temp_set;
2885 i = early_clobbered_nops[nop];
2886 if ((! curr_alt_win[i] && ! curr_alt_match_win[i])
2887 || hard_regno[i] < 0)
2888 continue;
2889 lra_assert (operand_reg[i] != NULL_RTX);
2890 clobbered_hard_regno = hard_regno[i];
2891 CLEAR_HARD_REG_SET (temp_set);
2892 add_to_hard_reg_set (&temp_set, biggest_mode[i], clobbered_hard_regno);
2893 first_conflict_j = last_conflict_j = -1;
2894 for (j = 0; j < n_operands; j++)
2895 if (j == i
2896 /* We don't want process insides of match_operator and
2897 match_parallel because otherwise we would process
2898 their operands once again generating a wrong
2899 code. */
2900 || curr_static_id->operand[j].is_operator)
2901 continue;
2902 else if ((curr_alt_matches[j] == i && curr_alt_match_win[j])
2903 || (curr_alt_matches[i] == j && curr_alt_match_win[i]))
2904 continue;
2905 /* If we don't reload j-th operand, check conflicts. */
2906 else if ((curr_alt_win[j] || curr_alt_match_win[j])
2907 && uses_hard_regs_p (*curr_id->operand_loc[j], temp_set))
2909 if (first_conflict_j < 0)
2910 first_conflict_j = j;
2911 last_conflict_j = j;
2913 if (last_conflict_j < 0)
2914 continue;
2915 /* If earlyclobber operand conflicts with another
2916 non-matching operand which is actually the same register
2917 as the earlyclobber operand, it is better to reload the
2918 another operand as an operand matching the earlyclobber
2919 operand can be also the same. */
2920 if (first_conflict_j == last_conflict_j
2921 && operand_reg[last_conflict_j] != NULL_RTX
2922 && ! curr_alt_match_win[last_conflict_j]
2923 && REGNO (operand_reg[i]) == REGNO (operand_reg[last_conflict_j]))
2925 curr_alt_win[last_conflict_j] = false;
2926 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++]
2927 = last_conflict_j;
2928 losers++;
2929 /* Early clobber was already reflected in REJECT. */
2930 lra_assert (reject > 0);
2931 if (lra_dump_file != NULL)
2932 fprintf
2933 (lra_dump_file,
2934 " %d Conflict early clobber reload: reject--\n",
2936 reject--;
2937 overall += LRA_LOSER_COST_FACTOR - 1;
2939 else
2941 /* We need to reload early clobbered register and the
2942 matched registers. */
2943 for (j = 0; j < n_operands; j++)
2944 if (curr_alt_matches[j] == i)
2946 curr_alt_match_win[j] = false;
2947 losers++;
2948 overall += LRA_LOSER_COST_FACTOR;
2950 if (! curr_alt_match_win[i])
2951 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++] = i;
2952 else
2954 /* Remember pseudos used for match reloads are never
2955 inherited. */
2956 lra_assert (curr_alt_matches[i] >= 0);
2957 curr_alt_win[curr_alt_matches[i]] = false;
2959 curr_alt_win[i] = curr_alt_match_win[i] = false;
2960 losers++;
2961 /* Early clobber was already reflected in REJECT. */
2962 lra_assert (reject > 0);
2963 if (lra_dump_file != NULL)
2964 fprintf
2965 (lra_dump_file,
2966 " %d Matched conflict early clobber reloads: "
2967 "reject--\n",
2969 reject--;
2970 overall += LRA_LOSER_COST_FACTOR - 1;
2973 if (lra_dump_file != NULL)
2974 fprintf (lra_dump_file, " alt=%d,overall=%d,losers=%d,rld_nregs=%d\n",
2975 nalt, overall, losers, reload_nregs);
2977 /* If this alternative can be made to work by reloading, and it
2978 needs less reloading than the others checked so far, record
2979 it as the chosen goal for reloading. */
2980 if ((best_losers != 0 && losers == 0)
2981 || (((best_losers == 0 && losers == 0)
2982 || (best_losers != 0 && losers != 0))
2983 && (best_overall > overall
2984 || (best_overall == overall
2985 /* If the cost of the reloads is the same,
2986 prefer alternative which requires minimal
2987 number of reload regs. */
2988 && (reload_nregs < best_reload_nregs
2989 || (reload_nregs == best_reload_nregs
2990 && (best_reload_sum < reload_sum
2991 || (best_reload_sum == reload_sum
2992 && nalt < goal_alt_number))))))))
2994 for (nop = 0; nop < n_operands; nop++)
2996 goal_alt_win[nop] = curr_alt_win[nop];
2997 goal_alt_match_win[nop] = curr_alt_match_win[nop];
2998 goal_alt_matches[nop] = curr_alt_matches[nop];
2999 goal_alt[nop] = curr_alt[nop];
3000 goal_alt_offmemok[nop] = curr_alt_offmemok[nop];
3002 goal_alt_dont_inherit_ops_num = curr_alt_dont_inherit_ops_num;
3003 for (nop = 0; nop < curr_alt_dont_inherit_ops_num; nop++)
3004 goal_alt_dont_inherit_ops[nop] = curr_alt_dont_inherit_ops[nop];
3005 goal_alt_swapped = curr_swapped;
3006 best_overall = overall;
3007 best_losers = losers;
3008 best_reload_nregs = reload_nregs;
3009 best_reload_sum = reload_sum;
3010 goal_alt_number = nalt;
3012 if (losers == 0)
3013 /* Everything is satisfied. Do not process alternatives
3014 anymore. */
3015 break;
3016 fail:
3019 return ok_p;
3022 /* Make reload base reg from address AD. */
3023 static rtx
3024 base_to_reg (struct address_info *ad)
3026 enum reg_class cl;
3027 int code = -1;
3028 rtx new_inner = NULL_RTX;
3029 rtx new_reg = NULL_RTX;
3030 rtx_insn *insn;
3031 rtx_insn *last_insn = get_last_insn();
3033 lra_assert (ad->disp == ad->disp_term);
3034 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3035 get_index_code (ad));
3036 new_reg = lra_create_new_reg (GET_MODE (*ad->base), NULL_RTX,
3037 cl, "base");
3038 new_inner = simplify_gen_binary (PLUS, GET_MODE (new_reg), new_reg,
3039 ad->disp_term == NULL
3040 ? const0_rtx
3041 : *ad->disp_term);
3042 if (!valid_address_p (ad->mode, new_inner, ad->as))
3043 return NULL_RTX;
3044 insn = emit_insn (gen_rtx_SET (new_reg, *ad->base));
3045 code = recog_memoized (insn);
3046 if (code < 0)
3048 delete_insns_since (last_insn);
3049 return NULL_RTX;
3052 return new_inner;
3055 /* Make reload base reg + DISP from address AD. Return the new pseudo. */
3056 static rtx
3057 base_plus_disp_to_reg (struct address_info *ad, rtx disp)
3059 enum reg_class cl;
3060 rtx new_reg;
3062 lra_assert (ad->base == ad->base_term);
3063 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3064 get_index_code (ad));
3065 new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX,
3066 cl, "base + disp");
3067 lra_emit_add (new_reg, *ad->base_term, disp);
3068 return new_reg;
3071 /* Make reload of index part of address AD. Return the new
3072 pseudo. */
3073 static rtx
3074 index_part_to_reg (struct address_info *ad)
3076 rtx new_reg;
3078 new_reg = lra_create_new_reg (GET_MODE (*ad->index), NULL_RTX,
3079 INDEX_REG_CLASS, "index term");
3080 expand_mult (GET_MODE (*ad->index), *ad->index_term,
3081 GEN_INT (get_index_scale (ad)), new_reg, 1);
3082 return new_reg;
3085 /* Return true if we can add a displacement to address AD, even if that
3086 makes the address invalid. The fix-up code requires any new address
3087 to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */
3088 static bool
3089 can_add_disp_p (struct address_info *ad)
3091 return (!ad->autoinc_p
3092 && ad->segment == NULL
3093 && ad->base == ad->base_term
3094 && ad->disp == ad->disp_term);
3097 /* Make equiv substitution in address AD. Return true if a substitution
3098 was made. */
3099 static bool
3100 equiv_address_substitution (struct address_info *ad)
3102 rtx base_reg, new_base_reg, index_reg, new_index_reg, *base_term, *index_term;
3103 poly_int64 disp;
3104 HOST_WIDE_INT scale;
3105 bool change_p;
3107 base_term = strip_subreg (ad->base_term);
3108 if (base_term == NULL)
3109 base_reg = new_base_reg = NULL_RTX;
3110 else
3112 base_reg = *base_term;
3113 new_base_reg = get_equiv_with_elimination (base_reg, curr_insn);
3115 index_term = strip_subreg (ad->index_term);
3116 if (index_term == NULL)
3117 index_reg = new_index_reg = NULL_RTX;
3118 else
3120 index_reg = *index_term;
3121 new_index_reg = get_equiv_with_elimination (index_reg, curr_insn);
3123 if (base_reg == new_base_reg && index_reg == new_index_reg)
3124 return false;
3125 disp = 0;
3126 change_p = false;
3127 if (lra_dump_file != NULL)
3129 fprintf (lra_dump_file, "Changing address in insn %d ",
3130 INSN_UID (curr_insn));
3131 dump_value_slim (lra_dump_file, *ad->outer, 1);
3133 if (base_reg != new_base_reg)
3135 poly_int64 offset;
3136 if (REG_P (new_base_reg))
3138 *base_term = new_base_reg;
3139 change_p = true;
3141 else if (GET_CODE (new_base_reg) == PLUS
3142 && REG_P (XEXP (new_base_reg, 0))
3143 && poly_int_rtx_p (XEXP (new_base_reg, 1), &offset)
3144 && can_add_disp_p (ad))
3146 disp += offset;
3147 *base_term = XEXP (new_base_reg, 0);
3148 change_p = true;
3150 if (ad->base_term2 != NULL)
3151 *ad->base_term2 = *ad->base_term;
3153 if (index_reg != new_index_reg)
3155 poly_int64 offset;
3156 if (REG_P (new_index_reg))
3158 *index_term = new_index_reg;
3159 change_p = true;
3161 else if (GET_CODE (new_index_reg) == PLUS
3162 && REG_P (XEXP (new_index_reg, 0))
3163 && poly_int_rtx_p (XEXP (new_index_reg, 1), &offset)
3164 && can_add_disp_p (ad)
3165 && (scale = get_index_scale (ad)))
3167 disp += offset * scale;
3168 *index_term = XEXP (new_index_reg, 0);
3169 change_p = true;
3172 if (maybe_ne (disp, 0))
3174 if (ad->disp != NULL)
3175 *ad->disp = plus_constant (GET_MODE (*ad->inner), *ad->disp, disp);
3176 else
3178 *ad->inner = plus_constant (GET_MODE (*ad->inner), *ad->inner, disp);
3179 update_address (ad);
3181 change_p = true;
3183 if (lra_dump_file != NULL)
3185 if (! change_p)
3186 fprintf (lra_dump_file, " -- no change\n");
3187 else
3189 fprintf (lra_dump_file, " on equiv ");
3190 dump_value_slim (lra_dump_file, *ad->outer, 1);
3191 fprintf (lra_dump_file, "\n");
3194 return change_p;
3197 /* Major function to make reloads for an address in operand NOP or
3198 check its correctness (If CHECK_ONLY_P is true). The supported
3199 cases are:
3201 1) an address that existed before LRA started, at which point it
3202 must have been valid. These addresses are subject to elimination
3203 and may have become invalid due to the elimination offset being out
3204 of range.
3206 2) an address created by forcing a constant to memory
3207 (force_const_to_mem). The initial form of these addresses might
3208 not be valid, and it is this function's job to make them valid.
3210 3) a frame address formed from a register and a (possibly zero)
3211 constant offset. As above, these addresses might not be valid and
3212 this function must make them so.
3214 Add reloads to the lists *BEFORE and *AFTER. We might need to add
3215 reloads to *AFTER because of inc/dec, {pre, post} modify in the
3216 address. Return true for any RTL change.
3218 The function is a helper function which does not produce all
3219 transformations (when CHECK_ONLY_P is false) which can be
3220 necessary. It does just basic steps. To do all necessary
3221 transformations use function process_address. */
3222 static bool
3223 process_address_1 (int nop, bool check_only_p,
3224 rtx_insn **before, rtx_insn **after)
3226 struct address_info ad;
3227 rtx new_reg;
3228 HOST_WIDE_INT scale;
3229 rtx op = *curr_id->operand_loc[nop];
3230 const char *constraint = curr_static_id->operand[nop].constraint;
3231 enum constraint_num cn = lookup_constraint (constraint);
3232 bool change_p = false;
3234 if (MEM_P (op)
3235 && GET_MODE (op) == BLKmode
3236 && GET_CODE (XEXP (op, 0)) == SCRATCH)
3237 return false;
3239 if (insn_extra_address_constraint (cn))
3240 decompose_lea_address (&ad, curr_id->operand_loc[nop]);
3241 /* Do not attempt to decompose arbitrary addresses generated by combine
3242 for asm operands with loose constraints, e.g 'X'. */
3243 else if (MEM_P (op)
3244 && !(INSN_CODE (curr_insn) < 0
3245 && get_constraint_type (cn) == CT_FIXED_FORM
3246 && constraint_satisfied_p (op, cn)))
3247 decompose_mem_address (&ad, op);
3248 else if (GET_CODE (op) == SUBREG
3249 && MEM_P (SUBREG_REG (op)))
3250 decompose_mem_address (&ad, SUBREG_REG (op));
3251 else
3252 return false;
3253 /* If INDEX_REG_CLASS is assigned to base_term already and isn't to
3254 index_term, swap them so to avoid assigning INDEX_REG_CLASS to both
3255 when INDEX_REG_CLASS is a single register class. */
3256 if (ad.base_term != NULL
3257 && ad.index_term != NULL
3258 && ira_class_hard_regs_num[INDEX_REG_CLASS] == 1
3259 && REG_P (*ad.base_term)
3260 && REG_P (*ad.index_term)
3261 && in_class_p (*ad.base_term, INDEX_REG_CLASS, NULL)
3262 && ! in_class_p (*ad.index_term, INDEX_REG_CLASS, NULL))
3264 std::swap (ad.base, ad.index);
3265 std::swap (ad.base_term, ad.index_term);
3267 if (! check_only_p)
3268 change_p = equiv_address_substitution (&ad);
3269 if (ad.base_term != NULL
3270 && (process_addr_reg
3271 (ad.base_term, check_only_p, before,
3272 (ad.autoinc_p
3273 && !(REG_P (*ad.base_term)
3274 && find_regno_note (curr_insn, REG_DEAD,
3275 REGNO (*ad.base_term)) != NULL_RTX)
3276 ? after : NULL),
3277 base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3278 get_index_code (&ad)))))
3280 change_p = true;
3281 if (ad.base_term2 != NULL)
3282 *ad.base_term2 = *ad.base_term;
3284 if (ad.index_term != NULL
3285 && process_addr_reg (ad.index_term, check_only_p,
3286 before, NULL, INDEX_REG_CLASS))
3287 change_p = true;
3289 /* Target hooks sometimes don't treat extra-constraint addresses as
3290 legitimate address_operands, so handle them specially. */
3291 if (insn_extra_address_constraint (cn)
3292 && satisfies_address_constraint_p (&ad, cn))
3293 return change_p;
3295 if (check_only_p)
3296 return change_p;
3298 /* There are three cases where the shape of *AD.INNER may now be invalid:
3300 1) the original address was valid, but either elimination or
3301 equiv_address_substitution was applied and that made
3302 the address invalid.
3304 2) the address is an invalid symbolic address created by
3305 force_const_to_mem.
3307 3) the address is a frame address with an invalid offset.
3309 4) the address is a frame address with an invalid base.
3311 All these cases involve a non-autoinc address, so there is no
3312 point revalidating other types. */
3313 if (ad.autoinc_p || valid_address_p (&ad))
3314 return change_p;
3316 /* Any index existed before LRA started, so we can assume that the
3317 presence and shape of the index is valid. */
3318 push_to_sequence (*before);
3319 lra_assert (ad.disp == ad.disp_term);
3320 if (ad.base == NULL)
3322 if (ad.index == NULL)
3324 rtx_insn *insn;
3325 rtx_insn *last = get_last_insn ();
3326 int code = -1;
3327 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3328 SCRATCH, SCRATCH);
3329 rtx addr = *ad.inner;
3331 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3332 if (HAVE_lo_sum)
3334 /* addr => lo_sum (new_base, addr), case (2) above. */
3335 insn = emit_insn (gen_rtx_SET
3336 (new_reg,
3337 gen_rtx_HIGH (Pmode, copy_rtx (addr))));
3338 code = recog_memoized (insn);
3339 if (code >= 0)
3341 *ad.inner = gen_rtx_LO_SUM (Pmode, new_reg, addr);
3342 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
3344 /* Try to put lo_sum into register. */
3345 insn = emit_insn (gen_rtx_SET
3346 (new_reg,
3347 gen_rtx_LO_SUM (Pmode, new_reg, addr)));
3348 code = recog_memoized (insn);
3349 if (code >= 0)
3351 *ad.inner = new_reg;
3352 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
3354 *ad.inner = addr;
3355 code = -1;
3361 if (code < 0)
3362 delete_insns_since (last);
3365 if (code < 0)
3367 /* addr => new_base, case (2) above. */
3368 lra_emit_move (new_reg, addr);
3370 for (insn = last == NULL_RTX ? get_insns () : NEXT_INSN (last);
3371 insn != NULL_RTX;
3372 insn = NEXT_INSN (insn))
3373 if (recog_memoized (insn) < 0)
3374 break;
3375 if (insn != NULL_RTX)
3377 /* Do nothing if we cannot generate right insns.
3378 This is analogous to reload pass behavior. */
3379 delete_insns_since (last);
3380 end_sequence ();
3381 return false;
3383 *ad.inner = new_reg;
3386 else
3388 /* index * scale + disp => new base + index * scale,
3389 case (1) above. */
3390 enum reg_class cl = base_reg_class (ad.mode, ad.as, PLUS,
3391 GET_CODE (*ad.index));
3393 lra_assert (INDEX_REG_CLASS != NO_REGS);
3394 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "disp");
3395 lra_emit_move (new_reg, *ad.disp);
3396 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3397 new_reg, *ad.index);
3400 else if (ad.index == NULL)
3402 int regno;
3403 enum reg_class cl;
3404 rtx set;
3405 rtx_insn *insns, *last_insn;
3406 /* Try to reload base into register only if the base is invalid
3407 for the address but with valid offset, case (4) above. */
3408 start_sequence ();
3409 new_reg = base_to_reg (&ad);
3411 /* base + disp => new base, cases (1) and (3) above. */
3412 /* Another option would be to reload the displacement into an
3413 index register. However, postreload has code to optimize
3414 address reloads that have the same base and different
3415 displacements, so reloading into an index register would
3416 not necessarily be a win. */
3417 if (new_reg == NULL_RTX)
3419 /* See if the target can split the displacement into a
3420 legitimate new displacement from a local anchor. */
3421 gcc_assert (ad.disp == ad.disp_term);
3422 poly_int64 orig_offset;
3423 rtx offset1, offset2;
3424 if (poly_int_rtx_p (*ad.disp, &orig_offset)
3425 && targetm.legitimize_address_displacement (&offset1, &offset2,
3426 orig_offset,
3427 ad.mode))
3429 new_reg = base_plus_disp_to_reg (&ad, offset1);
3430 new_reg = gen_rtx_PLUS (GET_MODE (new_reg), new_reg, offset2);
3432 else
3433 new_reg = base_plus_disp_to_reg (&ad, *ad.disp);
3435 insns = get_insns ();
3436 last_insn = get_last_insn ();
3437 /* If we generated at least two insns, try last insn source as
3438 an address. If we succeed, we generate one less insn. */
3439 if (REG_P (new_reg)
3440 && last_insn != insns
3441 && (set = single_set (last_insn)) != NULL_RTX
3442 && GET_CODE (SET_SRC (set)) == PLUS
3443 && REG_P (XEXP (SET_SRC (set), 0))
3444 && CONSTANT_P (XEXP (SET_SRC (set), 1)))
3446 *ad.inner = SET_SRC (set);
3447 if (valid_address_p (ad.mode, *ad.outer, ad.as))
3449 *ad.base_term = XEXP (SET_SRC (set), 0);
3450 *ad.disp_term = XEXP (SET_SRC (set), 1);
3451 cl = base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3452 get_index_code (&ad));
3453 regno = REGNO (*ad.base_term);
3454 if (regno >= FIRST_PSEUDO_REGISTER
3455 && cl != lra_get_allocno_class (regno))
3456 lra_change_class (regno, cl, " Change to", true);
3457 new_reg = SET_SRC (set);
3458 delete_insns_since (PREV_INSN (last_insn));
3461 end_sequence ();
3462 emit_insn (insns);
3463 *ad.inner = new_reg;
3465 else if (ad.disp_term != NULL)
3467 /* base + scale * index + disp => new base + scale * index,
3468 case (1) above. */
3469 gcc_assert (ad.disp == ad.disp_term);
3470 new_reg = base_plus_disp_to_reg (&ad, *ad.disp);
3471 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3472 new_reg, *ad.index);
3474 else if ((scale = get_index_scale (&ad)) == 1)
3476 /* The last transformation to one reg will be made in
3477 curr_insn_transform function. */
3478 end_sequence ();
3479 return false;
3481 else if (scale != 0)
3483 /* base + scale * index => base + new_reg,
3484 case (1) above.
3485 Index part of address may become invalid. For example, we
3486 changed pseudo on the equivalent memory and a subreg of the
3487 pseudo onto the memory of different mode for which the scale is
3488 prohibitted. */
3489 new_reg = index_part_to_reg (&ad);
3490 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3491 *ad.base_term, new_reg);
3493 else
3495 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3496 SCRATCH, SCRATCH);
3497 rtx addr = *ad.inner;
3499 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3500 /* addr => new_base. */
3501 lra_emit_move (new_reg, addr);
3502 *ad.inner = new_reg;
3504 *before = get_insns ();
3505 end_sequence ();
3506 return true;
3509 /* If CHECK_ONLY_P is false, do address reloads until it is necessary.
3510 Use process_address_1 as a helper function. Return true for any
3511 RTL changes.
3513 If CHECK_ONLY_P is true, just check address correctness. Return
3514 false if the address correct. */
3515 static bool
3516 process_address (int nop, bool check_only_p,
3517 rtx_insn **before, rtx_insn **after)
3519 bool res = false;
3521 while (process_address_1 (nop, check_only_p, before, after))
3523 if (check_only_p)
3524 return true;
3525 res = true;
3527 return res;
3530 /* Emit insns to reload VALUE into a new register. VALUE is an
3531 auto-increment or auto-decrement RTX whose operand is a register or
3532 memory location; so reloading involves incrementing that location.
3533 IN is either identical to VALUE, or some cheaper place to reload
3534 value being incremented/decremented from.
3536 INC_AMOUNT is the number to increment or decrement by (always
3537 positive and ignored for POST_MODIFY/PRE_MODIFY).
3539 Return pseudo containing the result. */
3540 static rtx
3541 emit_inc (enum reg_class new_rclass, rtx in, rtx value, poly_int64 inc_amount)
3543 /* REG or MEM to be copied and incremented. */
3544 rtx incloc = XEXP (value, 0);
3545 /* Nonzero if increment after copying. */
3546 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
3547 || GET_CODE (value) == POST_MODIFY);
3548 rtx_insn *last;
3549 rtx inc;
3550 rtx_insn *add_insn;
3551 int code;
3552 rtx real_in = in == value ? incloc : in;
3553 rtx result;
3554 bool plus_p = true;
3556 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
3558 lra_assert (GET_CODE (XEXP (value, 1)) == PLUS
3559 || GET_CODE (XEXP (value, 1)) == MINUS);
3560 lra_assert (rtx_equal_p (XEXP (XEXP (value, 1), 0), XEXP (value, 0)));
3561 plus_p = GET_CODE (XEXP (value, 1)) == PLUS;
3562 inc = XEXP (XEXP (value, 1), 1);
3564 else
3566 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
3567 inc_amount = -inc_amount;
3569 inc = gen_int_mode (inc_amount, GET_MODE (value));
3572 if (! post && REG_P (incloc))
3573 result = incloc;
3574 else
3575 result = lra_create_new_reg (GET_MODE (value), value, new_rclass,
3576 "INC/DEC result");
3578 if (real_in != result)
3580 /* First copy the location to the result register. */
3581 lra_assert (REG_P (result));
3582 emit_insn (gen_move_insn (result, real_in));
3585 /* We suppose that there are insns to add/sub with the constant
3586 increment permitted in {PRE/POST)_{DEC/INC/MODIFY}. At least the
3587 old reload worked with this assumption. If the assumption
3588 becomes wrong, we should use approach in function
3589 base_plus_disp_to_reg. */
3590 if (in == value)
3592 /* See if we can directly increment INCLOC. */
3593 last = get_last_insn ();
3594 add_insn = emit_insn (plus_p
3595 ? gen_add2_insn (incloc, inc)
3596 : gen_sub2_insn (incloc, inc));
3598 code = recog_memoized (add_insn);
3599 if (code >= 0)
3601 if (! post && result != incloc)
3602 emit_insn (gen_move_insn (result, incloc));
3603 return result;
3605 delete_insns_since (last);
3608 /* If couldn't do the increment directly, must increment in RESULT.
3609 The way we do this depends on whether this is pre- or
3610 post-increment. For pre-increment, copy INCLOC to the reload
3611 register, increment it there, then save back. */
3612 if (! post)
3614 if (real_in != result)
3615 emit_insn (gen_move_insn (result, real_in));
3616 if (plus_p)
3617 emit_insn (gen_add2_insn (result, inc));
3618 else
3619 emit_insn (gen_sub2_insn (result, inc));
3620 if (result != incloc)
3621 emit_insn (gen_move_insn (incloc, result));
3623 else
3625 /* Post-increment.
3627 Because this might be a jump insn or a compare, and because
3628 RESULT may not be available after the insn in an input
3629 reload, we must do the incrementing before the insn being
3630 reloaded for.
3632 We have already copied IN to RESULT. Increment the copy in
3633 RESULT, save that back, then decrement RESULT so it has
3634 the original value. */
3635 if (plus_p)
3636 emit_insn (gen_add2_insn (result, inc));
3637 else
3638 emit_insn (gen_sub2_insn (result, inc));
3639 emit_insn (gen_move_insn (incloc, result));
3640 /* Restore non-modified value for the result. We prefer this
3641 way because it does not require an additional hard
3642 register. */
3643 if (plus_p)
3645 poly_int64 offset;
3646 if (poly_int_rtx_p (inc, &offset))
3647 emit_insn (gen_add2_insn (result,
3648 gen_int_mode (-offset,
3649 GET_MODE (result))));
3650 else
3651 emit_insn (gen_sub2_insn (result, inc));
3653 else
3654 emit_insn (gen_add2_insn (result, inc));
3656 return result;
3659 /* Return true if the current move insn does not need processing as we
3660 already know that it satisfies its constraints. */
3661 static bool
3662 simple_move_p (void)
3664 rtx dest, src;
3665 enum reg_class dclass, sclass;
3667 lra_assert (curr_insn_set != NULL_RTX);
3668 dest = SET_DEST (curr_insn_set);
3669 src = SET_SRC (curr_insn_set);
3671 /* If the instruction has multiple sets we need to process it even if it
3672 is single_set. This can happen if one or more of the SETs are dead.
3673 See PR73650. */
3674 if (multiple_sets (curr_insn))
3675 return false;
3677 return ((dclass = get_op_class (dest)) != NO_REGS
3678 && (sclass = get_op_class (src)) != NO_REGS
3679 /* The backend guarantees that register moves of cost 2
3680 never need reloads. */
3681 && targetm.register_move_cost (GET_MODE (src), sclass, dclass) == 2);
3684 /* Swap operands NOP and NOP + 1. */
3685 static inline void
3686 swap_operands (int nop)
3688 std::swap (curr_operand_mode[nop], curr_operand_mode[nop + 1]);
3689 std::swap (original_subreg_reg_mode[nop], original_subreg_reg_mode[nop + 1]);
3690 std::swap (*curr_id->operand_loc[nop], *curr_id->operand_loc[nop + 1]);
3691 std::swap (equiv_substition_p[nop], equiv_substition_p[nop + 1]);
3692 /* Swap the duplicates too. */
3693 lra_update_dup (curr_id, nop);
3694 lra_update_dup (curr_id, nop + 1);
3697 /* Main entry point of the constraint code: search the body of the
3698 current insn to choose the best alternative. It is mimicking insn
3699 alternative cost calculation model of former reload pass. That is
3700 because machine descriptions were written to use this model. This
3701 model can be changed in future. Make commutative operand exchange
3702 if it is chosen.
3704 if CHECK_ONLY_P is false, do RTL changes to satisfy the
3705 constraints. Return true if any change happened during function
3706 call.
3708 If CHECK_ONLY_P is true then don't do any transformation. Just
3709 check that the insn satisfies all constraints. If the insn does
3710 not satisfy any constraint, return true. */
3711 static bool
3712 curr_insn_transform (bool check_only_p)
3714 int i, j, k;
3715 int n_operands;
3716 int n_alternatives;
3717 int n_outputs;
3718 int commutative;
3719 signed char goal_alt_matched[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
3720 signed char match_inputs[MAX_RECOG_OPERANDS + 1];
3721 signed char outputs[MAX_RECOG_OPERANDS + 1];
3722 rtx_insn *before, *after;
3723 bool alt_p = false;
3724 /* Flag that the insn has been changed through a transformation. */
3725 bool change_p;
3726 bool sec_mem_p;
3727 bool use_sec_mem_p;
3728 int max_regno_before;
3729 int reused_alternative_num;
3731 curr_insn_set = single_set (curr_insn);
3732 if (curr_insn_set != NULL_RTX && simple_move_p ())
3734 /* We assume that the corresponding insn alternative has no
3735 earlier clobbers. If it is not the case, don't define move
3736 cost equal to 2 for the corresponding register classes. */
3737 lra_set_used_insn_alternative (curr_insn, LRA_NON_CLOBBERED_ALT);
3738 return false;
3741 no_input_reloads_p = no_output_reloads_p = false;
3742 goal_alt_number = -1;
3743 change_p = sec_mem_p = false;
3744 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output
3745 reloads; neither are insns that SET cc0. Insns that use CC0 are
3746 not allowed to have any input reloads. */
3747 if (JUMP_P (curr_insn) || CALL_P (curr_insn))
3748 no_output_reloads_p = true;
3750 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (curr_insn)))
3751 no_input_reloads_p = true;
3752 if (HAVE_cc0 && reg_set_p (cc0_rtx, PATTERN (curr_insn)))
3753 no_output_reloads_p = true;
3755 n_operands = curr_static_id->n_operands;
3756 n_alternatives = curr_static_id->n_alternatives;
3758 /* Just return "no reloads" if insn has no operands with
3759 constraints. */
3760 if (n_operands == 0 || n_alternatives == 0)
3761 return false;
3763 max_regno_before = max_reg_num ();
3765 for (i = 0; i < n_operands; i++)
3767 goal_alt_matched[i][0] = -1;
3768 goal_alt_matches[i] = -1;
3771 commutative = curr_static_id->commutative;
3773 /* Now see what we need for pseudos that didn't get hard regs or got
3774 the wrong kind of hard reg. For this, we must consider all the
3775 operands together against the register constraints. */
3777 best_losers = best_overall = INT_MAX;
3778 best_reload_sum = 0;
3780 curr_swapped = false;
3781 goal_alt_swapped = false;
3783 if (! check_only_p)
3784 /* Make equivalence substitution and memory subreg elimination
3785 before address processing because an address legitimacy can
3786 depend on memory mode. */
3787 for (i = 0; i < n_operands; i++)
3789 rtx op, subst, old;
3790 bool op_change_p = false;
3792 if (curr_static_id->operand[i].is_operator)
3793 continue;
3795 old = op = *curr_id->operand_loc[i];
3796 if (GET_CODE (old) == SUBREG)
3797 old = SUBREG_REG (old);
3798 subst = get_equiv_with_elimination (old, curr_insn);
3799 original_subreg_reg_mode[i] = VOIDmode;
3800 equiv_substition_p[i] = false;
3801 if (subst != old)
3803 equiv_substition_p[i] = true;
3804 subst = copy_rtx (subst);
3805 lra_assert (REG_P (old));
3806 if (GET_CODE (op) != SUBREG)
3807 *curr_id->operand_loc[i] = subst;
3808 else
3810 SUBREG_REG (op) = subst;
3811 if (GET_MODE (subst) == VOIDmode)
3812 original_subreg_reg_mode[i] = GET_MODE (old);
3814 if (lra_dump_file != NULL)
3816 fprintf (lra_dump_file,
3817 "Changing pseudo %d in operand %i of insn %u on equiv ",
3818 REGNO (old), i, INSN_UID (curr_insn));
3819 dump_value_slim (lra_dump_file, subst, 1);
3820 fprintf (lra_dump_file, "\n");
3822 op_change_p = change_p = true;
3824 if (simplify_operand_subreg (i, GET_MODE (old)) || op_change_p)
3826 change_p = true;
3827 lra_update_dup (curr_id, i);
3831 /* Reload address registers and displacements. We do it before
3832 finding an alternative because of memory constraints. */
3833 before = after = NULL;
3834 for (i = 0; i < n_operands; i++)
3835 if (! curr_static_id->operand[i].is_operator
3836 && process_address (i, check_only_p, &before, &after))
3838 if (check_only_p)
3839 return true;
3840 change_p = true;
3841 lra_update_dup (curr_id, i);
3844 if (change_p)
3845 /* If we've changed the instruction then any alternative that
3846 we chose previously may no longer be valid. */
3847 lra_set_used_insn_alternative (curr_insn, LRA_UNKNOWN_ALT);
3849 if (! check_only_p && curr_insn_set != NULL_RTX
3850 && check_and_process_move (&change_p, &sec_mem_p))
3851 return change_p;
3853 try_swapped:
3855 reused_alternative_num = check_only_p ? LRA_UNKNOWN_ALT : curr_id->used_insn_alternative;
3856 if (lra_dump_file != NULL && reused_alternative_num >= 0)
3857 fprintf (lra_dump_file, "Reusing alternative %d for insn #%u\n",
3858 reused_alternative_num, INSN_UID (curr_insn));
3860 if (process_alt_operands (reused_alternative_num))
3861 alt_p = true;
3863 if (check_only_p)
3864 return ! alt_p || best_losers != 0;
3866 /* If insn is commutative (it's safe to exchange a certain pair of
3867 operands) then we need to try each alternative twice, the second
3868 time matching those two operands as if we had exchanged them. To
3869 do this, really exchange them in operands.
3871 If we have just tried the alternatives the second time, return
3872 operands to normal and drop through. */
3874 if (reused_alternative_num < 0 && commutative >= 0)
3876 curr_swapped = !curr_swapped;
3877 if (curr_swapped)
3879 swap_operands (commutative);
3880 goto try_swapped;
3882 else
3883 swap_operands (commutative);
3886 if (! alt_p && ! sec_mem_p)
3888 /* No alternative works with reloads?? */
3889 if (INSN_CODE (curr_insn) >= 0)
3890 fatal_insn ("unable to generate reloads for:", curr_insn);
3891 error_for_asm (curr_insn,
3892 "inconsistent operand constraints in an %<asm%>");
3893 /* Avoid further trouble with this insn. Don't generate use
3894 pattern here as we could use the insn SP offset. */
3895 lra_set_insn_deleted (curr_insn);
3896 return true;
3899 /* If the best alternative is with operands 1 and 2 swapped, swap
3900 them. Update the operand numbers of any reloads already
3901 pushed. */
3903 if (goal_alt_swapped)
3905 if (lra_dump_file != NULL)
3906 fprintf (lra_dump_file, " Commutative operand exchange in insn %u\n",
3907 INSN_UID (curr_insn));
3909 /* Swap the duplicates too. */
3910 swap_operands (commutative);
3911 change_p = true;
3914 /* Some targets' TARGET_SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
3915 too conservatively. So we use the secondary memory only if there
3916 is no any alternative without reloads. */
3917 use_sec_mem_p = false;
3918 if (! alt_p)
3919 use_sec_mem_p = true;
3920 else if (sec_mem_p)
3922 for (i = 0; i < n_operands; i++)
3923 if (! goal_alt_win[i] && ! goal_alt_match_win[i])
3924 break;
3925 use_sec_mem_p = i < n_operands;
3928 if (use_sec_mem_p)
3930 int in = -1, out = -1;
3931 rtx new_reg, src, dest, rld;
3932 machine_mode sec_mode, rld_mode;
3934 lra_assert (curr_insn_set != NULL_RTX && sec_mem_p);
3935 dest = SET_DEST (curr_insn_set);
3936 src = SET_SRC (curr_insn_set);
3937 for (i = 0; i < n_operands; i++)
3938 if (*curr_id->operand_loc[i] == dest)
3939 out = i;
3940 else if (*curr_id->operand_loc[i] == src)
3941 in = i;
3942 for (i = 0; i < curr_static_id->n_dups; i++)
3943 if (out < 0 && *curr_id->dup_loc[i] == dest)
3944 out = curr_static_id->dup_num[i];
3945 else if (in < 0 && *curr_id->dup_loc[i] == src)
3946 in = curr_static_id->dup_num[i];
3947 lra_assert (out >= 0 && in >= 0
3948 && curr_static_id->operand[out].type == OP_OUT
3949 && curr_static_id->operand[in].type == OP_IN);
3950 rld = partial_subreg_p (GET_MODE (src), GET_MODE (dest)) ? src : dest;
3951 rld_mode = GET_MODE (rld);
3952 sec_mode = targetm.secondary_memory_needed_mode (rld_mode);
3953 new_reg = lra_create_new_reg (sec_mode, NULL_RTX,
3954 NO_REGS, "secondary");
3955 /* If the mode is changed, it should be wider. */
3956 lra_assert (!partial_subreg_p (sec_mode, rld_mode));
3957 if (sec_mode != rld_mode)
3959 /* If the target says specifically to use another mode for
3960 secondary memory moves we can not reuse the original
3961 insn. */
3962 after = emit_spill_move (false, new_reg, dest);
3963 lra_process_new_insns (curr_insn, NULL, after,
3964 "Inserting the sec. move");
3965 /* We may have non null BEFORE here (e.g. after address
3966 processing. */
3967 push_to_sequence (before);
3968 before = emit_spill_move (true, new_reg, src);
3969 emit_insn (before);
3970 before = get_insns ();
3971 end_sequence ();
3972 lra_process_new_insns (curr_insn, before, NULL, "Changing on");
3973 lra_set_insn_deleted (curr_insn);
3975 else if (dest == rld)
3977 *curr_id->operand_loc[out] = new_reg;
3978 lra_update_dup (curr_id, out);
3979 after = emit_spill_move (false, new_reg, dest);
3980 lra_process_new_insns (curr_insn, NULL, after,
3981 "Inserting the sec. move");
3983 else
3985 *curr_id->operand_loc[in] = new_reg;
3986 lra_update_dup (curr_id, in);
3987 /* See comments above. */
3988 push_to_sequence (before);
3989 before = emit_spill_move (true, new_reg, src);
3990 emit_insn (before);
3991 before = get_insns ();
3992 end_sequence ();
3993 lra_process_new_insns (curr_insn, before, NULL,
3994 "Inserting the sec. move");
3996 lra_update_insn_regno_info (curr_insn);
3997 return true;
4000 lra_assert (goal_alt_number >= 0);
4001 lra_set_used_insn_alternative (curr_insn, goal_alt_number);
4003 if (lra_dump_file != NULL)
4005 const char *p;
4007 fprintf (lra_dump_file, " Choosing alt %d in insn %u:",
4008 goal_alt_number, INSN_UID (curr_insn));
4009 for (i = 0; i < n_operands; i++)
4011 p = (curr_static_id->operand_alternative
4012 [goal_alt_number * n_operands + i].constraint);
4013 if (*p == '\0')
4014 continue;
4015 fprintf (lra_dump_file, " (%d) ", i);
4016 for (; *p != '\0' && *p != ',' && *p != '#'; p++)
4017 fputc (*p, lra_dump_file);
4019 if (INSN_CODE (curr_insn) >= 0
4020 && (p = get_insn_name (INSN_CODE (curr_insn))) != NULL)
4021 fprintf (lra_dump_file, " {%s}", p);
4022 if (maybe_ne (curr_id->sp_offset, 0))
4024 fprintf (lra_dump_file, " (sp_off=");
4025 print_dec (curr_id->sp_offset, lra_dump_file);
4026 fprintf (lra_dump_file, ")");
4028 fprintf (lra_dump_file, "\n");
4031 /* Right now, for any pair of operands I and J that are required to
4032 match, with J < I, goal_alt_matches[I] is J. Add I to
4033 goal_alt_matched[J]. */
4035 for (i = 0; i < n_operands; i++)
4036 if ((j = goal_alt_matches[i]) >= 0)
4038 for (k = 0; goal_alt_matched[j][k] >= 0; k++)
4040 /* We allow matching one output operand and several input
4041 operands. */
4042 lra_assert (k == 0
4043 || (curr_static_id->operand[j].type == OP_OUT
4044 && curr_static_id->operand[i].type == OP_IN
4045 && (curr_static_id->operand
4046 [goal_alt_matched[j][0]].type == OP_IN)));
4047 goal_alt_matched[j][k] = i;
4048 goal_alt_matched[j][k + 1] = -1;
4051 for (i = 0; i < n_operands; i++)
4052 goal_alt_win[i] |= goal_alt_match_win[i];
4054 /* Any constants that aren't allowed and can't be reloaded into
4055 registers are here changed into memory references. */
4056 for (i = 0; i < n_operands; i++)
4057 if (goal_alt_win[i])
4059 int regno;
4060 enum reg_class new_class;
4061 rtx reg = *curr_id->operand_loc[i];
4063 if (GET_CODE (reg) == SUBREG)
4064 reg = SUBREG_REG (reg);
4066 if (REG_P (reg) && (regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
4068 bool ok_p = in_class_p (reg, goal_alt[i], &new_class);
4070 if (new_class != NO_REGS && get_reg_class (regno) != new_class)
4072 lra_assert (ok_p);
4073 lra_change_class (regno, new_class, " Change to", true);
4077 else
4079 const char *constraint;
4080 char c;
4081 rtx op = *curr_id->operand_loc[i];
4082 rtx subreg = NULL_RTX;
4083 machine_mode mode = curr_operand_mode[i];
4085 if (GET_CODE (op) == SUBREG)
4087 subreg = op;
4088 op = SUBREG_REG (op);
4089 mode = GET_MODE (op);
4092 if (CONST_POOL_OK_P (mode, op)
4093 && ((targetm.preferred_reload_class
4094 (op, (enum reg_class) goal_alt[i]) == NO_REGS)
4095 || no_input_reloads_p))
4097 rtx tem = force_const_mem (mode, op);
4099 change_p = true;
4100 if (subreg != NULL_RTX)
4101 tem = gen_rtx_SUBREG (mode, tem, SUBREG_BYTE (subreg));
4103 *curr_id->operand_loc[i] = tem;
4104 lra_update_dup (curr_id, i);
4105 process_address (i, false, &before, &after);
4107 /* If the alternative accepts constant pool refs directly
4108 there will be no reload needed at all. */
4109 if (subreg != NULL_RTX)
4110 continue;
4111 /* Skip alternatives before the one requested. */
4112 constraint = (curr_static_id->operand_alternative
4113 [goal_alt_number * n_operands + i].constraint);
4114 for (;
4115 (c = *constraint) && c != ',' && c != '#';
4116 constraint += CONSTRAINT_LEN (c, constraint))
4118 enum constraint_num cn = lookup_constraint (constraint);
4119 if ((insn_extra_memory_constraint (cn)
4120 || insn_extra_special_memory_constraint (cn))
4121 && satisfies_memory_constraint_p (tem, cn))
4122 break;
4124 if (c == '\0' || c == ',' || c == '#')
4125 continue;
4127 goal_alt_win[i] = true;
4131 n_outputs = 0;
4132 outputs[0] = -1;
4133 for (i = 0; i < n_operands; i++)
4135 int regno;
4136 bool optional_p = false;
4137 rtx old, new_reg;
4138 rtx op = *curr_id->operand_loc[i];
4140 if (goal_alt_win[i])
4142 if (goal_alt[i] == NO_REGS
4143 && REG_P (op)
4144 /* When we assign NO_REGS it means that we will not
4145 assign a hard register to the scratch pseudo by
4146 assigment pass and the scratch pseudo will be
4147 spilled. Spilled scratch pseudos are transformed
4148 back to scratches at the LRA end. */
4149 && lra_former_scratch_operand_p (curr_insn, i)
4150 && lra_former_scratch_p (REGNO (op)))
4152 int regno = REGNO (op);
4153 lra_change_class (regno, NO_REGS, " Change to", true);
4154 if (lra_get_regno_hard_regno (regno) >= 0)
4155 /* We don't have to mark all insn affected by the
4156 spilled pseudo as there is only one such insn, the
4157 current one. */
4158 reg_renumber[regno] = -1;
4159 lra_assert (bitmap_single_bit_set_p
4160 (&lra_reg_info[REGNO (op)].insn_bitmap));
4162 /* We can do an optional reload. If the pseudo got a hard
4163 reg, we might improve the code through inheritance. If
4164 it does not get a hard register we coalesce memory/memory
4165 moves later. Ignore move insns to avoid cycling. */
4166 if (! lra_simple_p
4167 && lra_undo_inheritance_iter < LRA_MAX_INHERITANCE_PASSES
4168 && goal_alt[i] != NO_REGS && REG_P (op)
4169 && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER
4170 && regno < new_regno_start
4171 && ! lra_former_scratch_p (regno)
4172 && reg_renumber[regno] < 0
4173 /* Check that the optional reload pseudo will be able to
4174 hold given mode value. */
4175 && ! (prohibited_class_reg_set_mode_p
4176 (goal_alt[i], reg_class_contents[goal_alt[i]],
4177 PSEUDO_REGNO_MODE (regno)))
4178 && (curr_insn_set == NULL_RTX
4179 || !((REG_P (SET_SRC (curr_insn_set))
4180 || MEM_P (SET_SRC (curr_insn_set))
4181 || GET_CODE (SET_SRC (curr_insn_set)) == SUBREG)
4182 && (REG_P (SET_DEST (curr_insn_set))
4183 || MEM_P (SET_DEST (curr_insn_set))
4184 || GET_CODE (SET_DEST (curr_insn_set)) == SUBREG))))
4185 optional_p = true;
4186 else
4187 continue;
4190 /* Operands that match previous ones have already been handled. */
4191 if (goal_alt_matches[i] >= 0)
4192 continue;
4194 /* We should not have an operand with a non-offsettable address
4195 appearing where an offsettable address will do. It also may
4196 be a case when the address should be special in other words
4197 not a general one (e.g. it needs no index reg). */
4198 if (goal_alt_matched[i][0] == -1 && goal_alt_offmemok[i] && MEM_P (op))
4200 enum reg_class rclass;
4201 rtx *loc = &XEXP (op, 0);
4202 enum rtx_code code = GET_CODE (*loc);
4204 push_to_sequence (before);
4205 rclass = base_reg_class (GET_MODE (op), MEM_ADDR_SPACE (op),
4206 MEM, SCRATCH);
4207 if (GET_RTX_CLASS (code) == RTX_AUTOINC)
4208 new_reg = emit_inc (rclass, *loc, *loc,
4209 /* This value does not matter for MODIFY. */
4210 GET_MODE_SIZE (GET_MODE (op)));
4211 else if (get_reload_reg (OP_IN, Pmode, *loc, rclass, FALSE,
4212 "offsetable address", &new_reg))
4214 rtx addr = *loc;
4215 enum rtx_code code = GET_CODE (addr);
4217 if (code == AND && CONST_INT_P (XEXP (addr, 1)))
4218 /* (and ... (const_int -X)) is used to align to X bytes. */
4219 addr = XEXP (*loc, 0);
4220 lra_emit_move (new_reg, addr);
4221 if (addr != *loc)
4222 emit_move_insn (new_reg, gen_rtx_AND (GET_MODE (new_reg), new_reg, XEXP (*loc, 1)));
4224 before = get_insns ();
4225 end_sequence ();
4226 *loc = new_reg;
4227 lra_update_dup (curr_id, i);
4229 else if (goal_alt_matched[i][0] == -1)
4231 machine_mode mode;
4232 rtx reg, *loc;
4233 int hard_regno;
4234 enum op_type type = curr_static_id->operand[i].type;
4236 loc = curr_id->operand_loc[i];
4237 mode = curr_operand_mode[i];
4238 if (GET_CODE (*loc) == SUBREG)
4240 reg = SUBREG_REG (*loc);
4241 poly_int64 byte = SUBREG_BYTE (*loc);
4242 if (REG_P (reg)
4243 /* Strict_low_part requires reloading the register and not
4244 just the subreg. Likewise for a strict subreg no wider
4245 than a word for WORD_REGISTER_OPERATIONS targets. */
4246 && (curr_static_id->operand[i].strict_low
4247 || (!paradoxical_subreg_p (mode, GET_MODE (reg))
4248 && (hard_regno
4249 = get_try_hard_regno (REGNO (reg))) >= 0
4250 && (simplify_subreg_regno
4251 (hard_regno,
4252 GET_MODE (reg), byte, mode) < 0)
4253 && (goal_alt[i] == NO_REGS
4254 || (simplify_subreg_regno
4255 (ira_class_hard_regs[goal_alt[i]][0],
4256 GET_MODE (reg), byte, mode) >= 0)))
4257 || (partial_subreg_p (mode, GET_MODE (reg))
4258 && known_le (GET_MODE_SIZE (GET_MODE (reg)),
4259 UNITS_PER_WORD)
4260 && WORD_REGISTER_OPERATIONS)))
4262 /* An OP_INOUT is required when reloading a subreg of a
4263 mode wider than a word to ensure that data beyond the
4264 word being reloaded is preserved. Also automatically
4265 ensure that strict_low_part reloads are made into
4266 OP_INOUT which should already be true from the backend
4267 constraints. */
4268 if (type == OP_OUT
4269 && (curr_static_id->operand[i].strict_low
4270 || read_modify_subreg_p (*loc)))
4271 type = OP_INOUT;
4272 loc = &SUBREG_REG (*loc);
4273 mode = GET_MODE (*loc);
4276 old = *loc;
4277 if (get_reload_reg (type, mode, old, goal_alt[i],
4278 loc != curr_id->operand_loc[i], "", &new_reg)
4279 && type != OP_OUT)
4281 push_to_sequence (before);
4282 lra_emit_move (new_reg, old);
4283 before = get_insns ();
4284 end_sequence ();
4286 *loc = new_reg;
4287 if (type != OP_IN
4288 && find_reg_note (curr_insn, REG_UNUSED, old) == NULL_RTX)
4290 start_sequence ();
4291 lra_emit_move (type == OP_INOUT ? copy_rtx (old) : old, new_reg);
4292 emit_insn (after);
4293 after = get_insns ();
4294 end_sequence ();
4295 *loc = new_reg;
4297 for (j = 0; j < goal_alt_dont_inherit_ops_num; j++)
4298 if (goal_alt_dont_inherit_ops[j] == i)
4300 lra_set_regno_unique_value (REGNO (new_reg));
4301 break;
4303 lra_update_dup (curr_id, i);
4305 else if (curr_static_id->operand[i].type == OP_IN
4306 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4307 == OP_OUT
4308 || (curr_static_id->operand[goal_alt_matched[i][0]].type
4309 == OP_INOUT
4310 && (operands_match_p
4311 (*curr_id->operand_loc[i],
4312 *curr_id->operand_loc[goal_alt_matched[i][0]],
4313 -1)))))
4315 /* generate reloads for input and matched outputs. */
4316 match_inputs[0] = i;
4317 match_inputs[1] = -1;
4318 match_reload (goal_alt_matched[i][0], match_inputs, outputs,
4319 goal_alt[i], &before, &after,
4320 curr_static_id->operand_alternative
4321 [goal_alt_number * n_operands + goal_alt_matched[i][0]]
4322 .earlyclobber);
4324 else if ((curr_static_id->operand[i].type == OP_OUT
4325 || (curr_static_id->operand[i].type == OP_INOUT
4326 && (operands_match_p
4327 (*curr_id->operand_loc[i],
4328 *curr_id->operand_loc[goal_alt_matched[i][0]],
4329 -1))))
4330 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4331 == OP_IN))
4332 /* Generate reloads for output and matched inputs. */
4333 match_reload (i, goal_alt_matched[i], outputs, goal_alt[i], &before,
4334 &after, curr_static_id->operand_alternative
4335 [goal_alt_number * n_operands + i].earlyclobber);
4336 else if (curr_static_id->operand[i].type == OP_IN
4337 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4338 == OP_IN))
4340 /* Generate reloads for matched inputs. */
4341 match_inputs[0] = i;
4342 for (j = 0; (k = goal_alt_matched[i][j]) >= 0; j++)
4343 match_inputs[j + 1] = k;
4344 match_inputs[j + 1] = -1;
4345 match_reload (-1, match_inputs, outputs, goal_alt[i], &before,
4346 &after, false);
4348 else
4349 /* We must generate code in any case when function
4350 process_alt_operands decides that it is possible. */
4351 gcc_unreachable ();
4353 /* Memorise processed outputs so that output remaining to be processed
4354 can avoid using the same register value (see match_reload). */
4355 if (curr_static_id->operand[i].type == OP_OUT)
4357 outputs[n_outputs++] = i;
4358 outputs[n_outputs] = -1;
4361 if (optional_p)
4363 rtx reg = op;
4365 lra_assert (REG_P (reg));
4366 regno = REGNO (reg);
4367 op = *curr_id->operand_loc[i]; /* Substitution. */
4368 if (GET_CODE (op) == SUBREG)
4369 op = SUBREG_REG (op);
4370 gcc_assert (REG_P (op) && (int) REGNO (op) >= new_regno_start);
4371 bitmap_set_bit (&lra_optional_reload_pseudos, REGNO (op));
4372 lra_reg_info[REGNO (op)].restore_rtx = reg;
4373 if (lra_dump_file != NULL)
4374 fprintf (lra_dump_file,
4375 " Making reload reg %d for reg %d optional\n",
4376 REGNO (op), regno);
4379 if (before != NULL_RTX || after != NULL_RTX
4380 || max_regno_before != max_reg_num ())
4381 change_p = true;
4382 if (change_p)
4384 lra_update_operator_dups (curr_id);
4385 /* Something changes -- process the insn. */
4386 lra_update_insn_regno_info (curr_insn);
4388 lra_process_new_insns (curr_insn, before, after, "Inserting insn reload");
4389 return change_p;
4392 /* Return true if INSN satisfies all constraints. In other words, no
4393 reload insns are needed. */
4394 bool
4395 lra_constrain_insn (rtx_insn *insn)
4397 int saved_new_regno_start = new_regno_start;
4398 int saved_new_insn_uid_start = new_insn_uid_start;
4399 bool change_p;
4401 curr_insn = insn;
4402 curr_id = lra_get_insn_recog_data (curr_insn);
4403 curr_static_id = curr_id->insn_static_data;
4404 new_insn_uid_start = get_max_uid ();
4405 new_regno_start = max_reg_num ();
4406 change_p = curr_insn_transform (true);
4407 new_regno_start = saved_new_regno_start;
4408 new_insn_uid_start = saved_new_insn_uid_start;
4409 return ! change_p;
4412 /* Return true if X is in LIST. */
4413 static bool
4414 in_list_p (rtx x, rtx list)
4416 for (; list != NULL_RTX; list = XEXP (list, 1))
4417 if (XEXP (list, 0) == x)
4418 return true;
4419 return false;
4422 /* Return true if X contains an allocatable hard register (if
4423 HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */
4424 static bool
4425 contains_reg_p (rtx x, bool hard_reg_p, bool spilled_p)
4427 int i, j;
4428 const char *fmt;
4429 enum rtx_code code;
4431 code = GET_CODE (x);
4432 if (REG_P (x))
4434 int regno = REGNO (x);
4435 HARD_REG_SET alloc_regs;
4437 if (hard_reg_p)
4439 if (regno >= FIRST_PSEUDO_REGISTER)
4440 regno = lra_get_regno_hard_regno (regno);
4441 if (regno < 0)
4442 return false;
4443 COMPL_HARD_REG_SET (alloc_regs, lra_no_alloc_regs);
4444 return overlaps_hard_reg_set_p (alloc_regs, GET_MODE (x), regno);
4446 else
4448 if (regno < FIRST_PSEUDO_REGISTER)
4449 return false;
4450 if (! spilled_p)
4451 return true;
4452 return lra_get_regno_hard_regno (regno) < 0;
4455 fmt = GET_RTX_FORMAT (code);
4456 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4458 if (fmt[i] == 'e')
4460 if (contains_reg_p (XEXP (x, i), hard_reg_p, spilled_p))
4461 return true;
4463 else if (fmt[i] == 'E')
4465 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4466 if (contains_reg_p (XVECEXP (x, i, j), hard_reg_p, spilled_p))
4467 return true;
4470 return false;
4473 /* Process all regs in location *LOC and change them on equivalent
4474 substitution. Return true if any change was done. */
4475 static bool
4476 loc_equivalence_change_p (rtx *loc)
4478 rtx subst, reg, x = *loc;
4479 bool result = false;
4480 enum rtx_code code = GET_CODE (x);
4481 const char *fmt;
4482 int i, j;
4484 if (code == SUBREG)
4486 reg = SUBREG_REG (x);
4487 if ((subst = get_equiv_with_elimination (reg, curr_insn)) != reg
4488 && GET_MODE (subst) == VOIDmode)
4490 /* We cannot reload debug location. Simplify subreg here
4491 while we know the inner mode. */
4492 *loc = simplify_gen_subreg (GET_MODE (x), subst,
4493 GET_MODE (reg), SUBREG_BYTE (x));
4494 return true;
4497 if (code == REG && (subst = get_equiv_with_elimination (x, curr_insn)) != x)
4499 *loc = subst;
4500 return true;
4503 /* Scan all the operand sub-expressions. */
4504 fmt = GET_RTX_FORMAT (code);
4505 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4507 if (fmt[i] == 'e')
4508 result = loc_equivalence_change_p (&XEXP (x, i)) || result;
4509 else if (fmt[i] == 'E')
4510 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4511 result
4512 = loc_equivalence_change_p (&XVECEXP (x, i, j)) || result;
4514 return result;
4517 /* Similar to loc_equivalence_change_p, but for use as
4518 simplify_replace_fn_rtx callback. DATA is insn for which the
4519 elimination is done. If it null we don't do the elimination. */
4520 static rtx
4521 loc_equivalence_callback (rtx loc, const_rtx, void *data)
4523 if (!REG_P (loc))
4524 return NULL_RTX;
4526 rtx subst = (data == NULL
4527 ? get_equiv (loc) : get_equiv_with_elimination (loc, (rtx_insn *) data));
4528 if (subst != loc)
4529 return subst;
4531 return NULL_RTX;
4534 /* Maximum number of generated reload insns per an insn. It is for
4535 preventing this pass cycling in a bug case. */
4536 #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
4538 /* The current iteration number of this LRA pass. */
4539 int lra_constraint_iter;
4541 /* True if we substituted equiv which needs checking register
4542 allocation correctness because the equivalent value contains
4543 allocatable hard registers or when we restore multi-register
4544 pseudo. */
4545 bool lra_risky_transformations_p;
4547 /* Return true if REGNO is referenced in more than one block. */
4548 static bool
4549 multi_block_pseudo_p (int regno)
4551 basic_block bb = NULL;
4552 unsigned int uid;
4553 bitmap_iterator bi;
4555 if (regno < FIRST_PSEUDO_REGISTER)
4556 return false;
4558 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
4559 if (bb == NULL)
4560 bb = BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn);
4561 else if (BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn) != bb)
4562 return true;
4563 return false;
4566 /* Return true if LIST contains a deleted insn. */
4567 static bool
4568 contains_deleted_insn_p (rtx_insn_list *list)
4570 for (; list != NULL_RTX; list = list->next ())
4571 if (NOTE_P (list->insn ())
4572 && NOTE_KIND (list->insn ()) == NOTE_INSN_DELETED)
4573 return true;
4574 return false;
4577 /* Return true if X contains a pseudo dying in INSN. */
4578 static bool
4579 dead_pseudo_p (rtx x, rtx_insn *insn)
4581 int i, j;
4582 const char *fmt;
4583 enum rtx_code code;
4585 if (REG_P (x))
4586 return (insn != NULL_RTX
4587 && find_regno_note (insn, REG_DEAD, REGNO (x)) != NULL_RTX);
4588 code = GET_CODE (x);
4589 fmt = GET_RTX_FORMAT (code);
4590 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4592 if (fmt[i] == 'e')
4594 if (dead_pseudo_p (XEXP (x, i), insn))
4595 return true;
4597 else if (fmt[i] == 'E')
4599 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4600 if (dead_pseudo_p (XVECEXP (x, i, j), insn))
4601 return true;
4604 return false;
4607 /* Return true if INSN contains a dying pseudo in INSN right hand
4608 side. */
4609 static bool
4610 insn_rhs_dead_pseudo_p (rtx_insn *insn)
4612 rtx set = single_set (insn);
4614 gcc_assert (set != NULL);
4615 return dead_pseudo_p (SET_SRC (set), insn);
4618 /* Return true if any init insn of REGNO contains a dying pseudo in
4619 insn right hand side. */
4620 static bool
4621 init_insn_rhs_dead_pseudo_p (int regno)
4623 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4625 if (insns == NULL)
4626 return false;
4627 for (; insns != NULL_RTX; insns = insns->next ())
4628 if (insn_rhs_dead_pseudo_p (insns->insn ()))
4629 return true;
4630 return false;
4633 /* Return TRUE if REGNO has a reverse equivalence. The equivalence is
4634 reverse only if we have one init insn with given REGNO as a
4635 source. */
4636 static bool
4637 reverse_equiv_p (int regno)
4639 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4640 rtx set;
4642 if (insns == NULL)
4643 return false;
4644 if (! INSN_P (insns->insn ())
4645 || insns->next () != NULL)
4646 return false;
4647 if ((set = single_set (insns->insn ())) == NULL_RTX)
4648 return false;
4649 return REG_P (SET_SRC (set)) && (int) REGNO (SET_SRC (set)) == regno;
4652 /* Return TRUE if REGNO was reloaded in an equivalence init insn. We
4653 call this function only for non-reverse equivalence. */
4654 static bool
4655 contains_reloaded_insn_p (int regno)
4657 rtx set;
4658 rtx_insn_list *list = ira_reg_equiv[regno].init_insns;
4660 for (; list != NULL; list = list->next ())
4661 if ((set = single_set (list->insn ())) == NULL_RTX
4662 || ! REG_P (SET_DEST (set))
4663 || (int) REGNO (SET_DEST (set)) != regno)
4664 return true;
4665 return false;
4668 /* Entry function of LRA constraint pass. Return true if the
4669 constraint pass did change the code. */
4670 bool
4671 lra_constraints (bool first_p)
4673 bool changed_p;
4674 int i, hard_regno, new_insns_num;
4675 unsigned int min_len, new_min_len, uid;
4676 rtx set, x, reg, dest_reg;
4677 basic_block last_bb;
4678 bitmap_iterator bi;
4680 lra_constraint_iter++;
4681 if (lra_dump_file != NULL)
4682 fprintf (lra_dump_file, "\n********** Local #%d: **********\n\n",
4683 lra_constraint_iter);
4684 changed_p = false;
4685 if (pic_offset_table_rtx
4686 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
4687 lra_risky_transformations_p = true;
4688 else
4689 /* On the first iteration we should check IRA assignment
4690 correctness. In rare cases, the assignments can be wrong as
4691 early clobbers operands are ignored in IRA. */
4692 lra_risky_transformations_p = first_p;
4693 new_insn_uid_start = get_max_uid ();
4694 new_regno_start = first_p ? lra_constraint_new_regno_start : max_reg_num ();
4695 /* Mark used hard regs for target stack size calulations. */
4696 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4697 if (lra_reg_info[i].nrefs != 0
4698 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4700 int j, nregs;
4702 nregs = hard_regno_nregs (hard_regno, lra_reg_info[i].biggest_mode);
4703 for (j = 0; j < nregs; j++)
4704 df_set_regs_ever_live (hard_regno + j, true);
4706 /* Do elimination before the equivalence processing as we can spill
4707 some pseudos during elimination. */
4708 lra_eliminate (false, first_p);
4709 auto_bitmap equiv_insn_bitmap (&reg_obstack);
4710 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4711 if (lra_reg_info[i].nrefs != 0)
4713 ira_reg_equiv[i].profitable_p = true;
4714 reg = regno_reg_rtx[i];
4715 if (lra_get_regno_hard_regno (i) < 0 && (x = get_equiv (reg)) != reg)
4717 bool pseudo_p = contains_reg_p (x, false, false);
4719 /* After RTL transformation, we can not guarantee that
4720 pseudo in the substitution was not reloaded which might
4721 make equivalence invalid. For example, in reverse
4722 equiv of p0
4724 p0 <- ...
4726 equiv_mem <- p0
4728 the memory address register was reloaded before the 2nd
4729 insn. */
4730 if ((! first_p && pseudo_p)
4731 /* We don't use DF for compilation speed sake. So it
4732 is problematic to update live info when we use an
4733 equivalence containing pseudos in more than one
4734 BB. */
4735 || (pseudo_p && multi_block_pseudo_p (i))
4736 /* If an init insn was deleted for some reason, cancel
4737 the equiv. We could update the equiv insns after
4738 transformations including an equiv insn deletion
4739 but it is not worthy as such cases are extremely
4740 rare. */
4741 || contains_deleted_insn_p (ira_reg_equiv[i].init_insns)
4742 /* If it is not a reverse equivalence, we check that a
4743 pseudo in rhs of the init insn is not dying in the
4744 insn. Otherwise, the live info at the beginning of
4745 the corresponding BB might be wrong after we
4746 removed the insn. When the equiv can be a
4747 constant, the right hand side of the init insn can
4748 be a pseudo. */
4749 || (! reverse_equiv_p (i)
4750 && (init_insn_rhs_dead_pseudo_p (i)
4751 /* If we reloaded the pseudo in an equivalence
4752 init insn, we can not remove the equiv init
4753 insns and the init insns might write into
4754 const memory in this case. */
4755 || contains_reloaded_insn_p (i)))
4756 /* Prevent access beyond equivalent memory for
4757 paradoxical subregs. */
4758 || (MEM_P (x)
4759 && maybe_gt (GET_MODE_SIZE (lra_reg_info[i].biggest_mode),
4760 GET_MODE_SIZE (GET_MODE (x))))
4761 || (pic_offset_table_rtx
4762 && ((CONST_POOL_OK_P (PSEUDO_REGNO_MODE (i), x)
4763 && (targetm.preferred_reload_class
4764 (x, lra_get_allocno_class (i)) == NO_REGS))
4765 || contains_symbol_ref_p (x))))
4766 ira_reg_equiv[i].defined_p = false;
4767 if (contains_reg_p (x, false, true))
4768 ira_reg_equiv[i].profitable_p = false;
4769 if (get_equiv (reg) != reg)
4770 bitmap_ior_into (equiv_insn_bitmap, &lra_reg_info[i].insn_bitmap);
4773 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4774 update_equiv (i);
4775 /* We should add all insns containing pseudos which should be
4776 substituted by their equivalences. */
4777 EXECUTE_IF_SET_IN_BITMAP (equiv_insn_bitmap, 0, uid, bi)
4778 lra_push_insn_by_uid (uid);
4779 min_len = lra_insn_stack_length ();
4780 new_insns_num = 0;
4781 last_bb = NULL;
4782 changed_p = false;
4783 while ((new_min_len = lra_insn_stack_length ()) != 0)
4785 curr_insn = lra_pop_insn ();
4786 --new_min_len;
4787 curr_bb = BLOCK_FOR_INSN (curr_insn);
4788 if (curr_bb != last_bb)
4790 last_bb = curr_bb;
4791 bb_reload_num = lra_curr_reload_num;
4793 if (min_len > new_min_len)
4795 min_len = new_min_len;
4796 new_insns_num = 0;
4798 if (new_insns_num > MAX_RELOAD_INSNS_NUMBER)
4799 internal_error
4800 ("Max. number of generated reload insns per insn is achieved (%d)\n",
4801 MAX_RELOAD_INSNS_NUMBER);
4802 new_insns_num++;
4803 if (DEBUG_INSN_P (curr_insn))
4805 /* We need to check equivalence in debug insn and change
4806 pseudo to the equivalent value if necessary. */
4807 curr_id = lra_get_insn_recog_data (curr_insn);
4808 if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn)))
4810 rtx old = *curr_id->operand_loc[0];
4811 *curr_id->operand_loc[0]
4812 = simplify_replace_fn_rtx (old, NULL_RTX,
4813 loc_equivalence_callback, curr_insn);
4814 if (old != *curr_id->operand_loc[0])
4816 lra_update_insn_regno_info (curr_insn);
4817 changed_p = true;
4821 else if (INSN_P (curr_insn))
4823 if ((set = single_set (curr_insn)) != NULL_RTX)
4825 dest_reg = SET_DEST (set);
4826 /* The equivalence pseudo could be set up as SUBREG in a
4827 case when it is a call restore insn in a mode
4828 different from the pseudo mode. */
4829 if (GET_CODE (dest_reg) == SUBREG)
4830 dest_reg = SUBREG_REG (dest_reg);
4831 if ((REG_P (dest_reg)
4832 && (x = get_equiv (dest_reg)) != dest_reg
4833 /* Remove insns which set up a pseudo whose value
4834 can not be changed. Such insns might be not in
4835 init_insns because we don't update equiv data
4836 during insn transformations.
4838 As an example, let suppose that a pseudo got
4839 hard register and on the 1st pass was not
4840 changed to equivalent constant. We generate an
4841 additional insn setting up the pseudo because of
4842 secondary memory movement. Then the pseudo is
4843 spilled and we use the equiv constant. In this
4844 case we should remove the additional insn and
4845 this insn is not init_insns list. */
4846 && (! MEM_P (x) || MEM_READONLY_P (x)
4847 /* Check that this is actually an insn setting
4848 up the equivalence. */
4849 || in_list_p (curr_insn,
4850 ira_reg_equiv
4851 [REGNO (dest_reg)].init_insns)))
4852 || (((x = get_equiv (SET_SRC (set))) != SET_SRC (set))
4853 && in_list_p (curr_insn,
4854 ira_reg_equiv
4855 [REGNO (SET_SRC (set))].init_insns)))
4857 /* This is equiv init insn of pseudo which did not get a
4858 hard register -- remove the insn. */
4859 if (lra_dump_file != NULL)
4861 fprintf (lra_dump_file,
4862 " Removing equiv init insn %i (freq=%d)\n",
4863 INSN_UID (curr_insn),
4864 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (curr_insn)));
4865 dump_insn_slim (lra_dump_file, curr_insn);
4867 if (contains_reg_p (x, true, false))
4868 lra_risky_transformations_p = true;
4869 lra_set_insn_deleted (curr_insn);
4870 continue;
4873 curr_id = lra_get_insn_recog_data (curr_insn);
4874 curr_static_id = curr_id->insn_static_data;
4875 init_curr_insn_input_reloads ();
4876 init_curr_operand_mode ();
4877 if (curr_insn_transform (false))
4878 changed_p = true;
4879 /* Check non-transformed insns too for equiv change as USE
4880 or CLOBBER don't need reloads but can contain pseudos
4881 being changed on their equivalences. */
4882 else if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn))
4883 && loc_equivalence_change_p (&PATTERN (curr_insn)))
4885 lra_update_insn_regno_info (curr_insn);
4886 changed_p = true;
4891 /* If we used a new hard regno, changed_p should be true because the
4892 hard reg is assigned to a new pseudo. */
4893 if (flag_checking && !changed_p)
4895 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4896 if (lra_reg_info[i].nrefs != 0
4897 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4899 int j, nregs = hard_regno_nregs (hard_regno,
4900 PSEUDO_REGNO_MODE (i));
4902 for (j = 0; j < nregs; j++)
4903 lra_assert (df_regs_ever_live_p (hard_regno + j));
4906 return changed_p;
4909 static void initiate_invariants (void);
4910 static void finish_invariants (void);
4912 /* Initiate the LRA constraint pass. It is done once per
4913 function. */
4914 void
4915 lra_constraints_init (void)
4917 initiate_invariants ();
4920 /* Finalize the LRA constraint pass. It is done once per
4921 function. */
4922 void
4923 lra_constraints_finish (void)
4925 finish_invariants ();
4930 /* Structure describes invariants for ineheritance. */
4931 struct lra_invariant
4933 /* The order number of the invariant. */
4934 int num;
4935 /* The invariant RTX. */
4936 rtx invariant_rtx;
4937 /* The origin insn of the invariant. */
4938 rtx_insn *insn;
4941 typedef lra_invariant invariant_t;
4942 typedef invariant_t *invariant_ptr_t;
4943 typedef const invariant_t *const_invariant_ptr_t;
4945 /* Pointer to the inheritance invariants. */
4946 static vec<invariant_ptr_t> invariants;
4948 /* Allocation pool for the invariants. */
4949 static object_allocator<lra_invariant> *invariants_pool;
4951 /* Hash table for the invariants. */
4952 static htab_t invariant_table;
4954 /* Hash function for INVARIANT. */
4955 static hashval_t
4956 invariant_hash (const void *invariant)
4958 rtx inv = ((const_invariant_ptr_t) invariant)->invariant_rtx;
4959 return lra_rtx_hash (inv);
4962 /* Equal function for invariants INVARIANT1 and INVARIANT2. */
4963 static int
4964 invariant_eq_p (const void *invariant1, const void *invariant2)
4966 rtx inv1 = ((const_invariant_ptr_t) invariant1)->invariant_rtx;
4967 rtx inv2 = ((const_invariant_ptr_t) invariant2)->invariant_rtx;
4969 return rtx_equal_p (inv1, inv2);
4972 /* Insert INVARIANT_RTX into the table if it is not there yet. Return
4973 invariant which is in the table. */
4974 static invariant_ptr_t
4975 insert_invariant (rtx invariant_rtx)
4977 void **entry_ptr;
4978 invariant_t invariant;
4979 invariant_ptr_t invariant_ptr;
4981 invariant.invariant_rtx = invariant_rtx;
4982 entry_ptr = htab_find_slot (invariant_table, &invariant, INSERT);
4983 if (*entry_ptr == NULL)
4985 invariant_ptr = invariants_pool->allocate ();
4986 invariant_ptr->invariant_rtx = invariant_rtx;
4987 invariant_ptr->insn = NULL;
4988 invariants.safe_push (invariant_ptr);
4989 *entry_ptr = (void *) invariant_ptr;
4991 return (invariant_ptr_t) *entry_ptr;
4994 /* Initiate the invariant table. */
4995 static void
4996 initiate_invariants (void)
4998 invariants.create (100);
4999 invariants_pool
5000 = new object_allocator<lra_invariant> ("Inheritance invariants");
5001 invariant_table = htab_create (100, invariant_hash, invariant_eq_p, NULL);
5004 /* Finish the invariant table. */
5005 static void
5006 finish_invariants (void)
5008 htab_delete (invariant_table);
5009 delete invariants_pool;
5010 invariants.release ();
5013 /* Make the invariant table empty. */
5014 static void
5015 clear_invariants (void)
5017 htab_empty (invariant_table);
5018 invariants_pool->release ();
5019 invariants.truncate (0);
5024 /* This page contains code to do inheritance/split
5025 transformations. */
5027 /* Number of reloads passed so far in current EBB. */
5028 static int reloads_num;
5030 /* Number of calls passed so far in current EBB. */
5031 static int calls_num;
5033 /* Current reload pseudo check for validity of elements in
5034 USAGE_INSNS. */
5035 static int curr_usage_insns_check;
5037 /* Info about last usage of registers in EBB to do inheritance/split
5038 transformation. Inheritance transformation is done from a spilled
5039 pseudo and split transformations from a hard register or a pseudo
5040 assigned to a hard register. */
5041 struct usage_insns
5043 /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
5044 value INSNS is valid. The insns is chain of optional debug insns
5045 and a finishing non-debug insn using the corresponding reg. The
5046 value is also used to mark the registers which are set up in the
5047 current insn. The negated insn uid is used for this. */
5048 int check;
5049 /* Value of global reloads_num at the last insn in INSNS. */
5050 int reloads_num;
5051 /* Value of global reloads_nums at the last insn in INSNS. */
5052 int calls_num;
5053 /* It can be true only for splitting. And it means that the restore
5054 insn should be put after insn given by the following member. */
5055 bool after_p;
5056 /* Next insns in the current EBB which use the original reg and the
5057 original reg value is not changed between the current insn and
5058 the next insns. In order words, e.g. for inheritance, if we need
5059 to use the original reg value again in the next insns we can try
5060 to use the value in a hard register from a reload insn of the
5061 current insn. */
5062 rtx insns;
5065 /* Map: regno -> corresponding pseudo usage insns. */
5066 static struct usage_insns *usage_insns;
5068 static void
5069 setup_next_usage_insn (int regno, rtx insn, int reloads_num, bool after_p)
5071 usage_insns[regno].check = curr_usage_insns_check;
5072 usage_insns[regno].insns = insn;
5073 usage_insns[regno].reloads_num = reloads_num;
5074 usage_insns[regno].calls_num = calls_num;
5075 usage_insns[regno].after_p = after_p;
5078 /* The function is used to form list REGNO usages which consists of
5079 optional debug insns finished by a non-debug insn using REGNO.
5080 RELOADS_NUM is current number of reload insns processed so far. */
5081 static void
5082 add_next_usage_insn (int regno, rtx_insn *insn, int reloads_num)
5084 rtx next_usage_insns;
5086 if (usage_insns[regno].check == curr_usage_insns_check
5087 && (next_usage_insns = usage_insns[regno].insns) != NULL_RTX
5088 && DEBUG_INSN_P (insn))
5090 /* Check that we did not add the debug insn yet. */
5091 if (next_usage_insns != insn
5092 && (GET_CODE (next_usage_insns) != INSN_LIST
5093 || XEXP (next_usage_insns, 0) != insn))
5094 usage_insns[regno].insns = gen_rtx_INSN_LIST (VOIDmode, insn,
5095 next_usage_insns);
5097 else if (NONDEBUG_INSN_P (insn))
5098 setup_next_usage_insn (regno, insn, reloads_num, false);
5099 else
5100 usage_insns[regno].check = 0;
5103 /* Return first non-debug insn in list USAGE_INSNS. */
5104 static rtx_insn *
5105 skip_usage_debug_insns (rtx usage_insns)
5107 rtx insn;
5109 /* Skip debug insns. */
5110 for (insn = usage_insns;
5111 insn != NULL_RTX && GET_CODE (insn) == INSN_LIST;
5112 insn = XEXP (insn, 1))
5114 return safe_as_a <rtx_insn *> (insn);
5117 /* Return true if we need secondary memory moves for insn in
5118 USAGE_INSNS after inserting inherited pseudo of class INHER_CL
5119 into the insn. */
5120 static bool
5121 check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED,
5122 rtx usage_insns ATTRIBUTE_UNUSED)
5124 rtx_insn *insn;
5125 rtx set, dest;
5126 enum reg_class cl;
5128 if (inher_cl == ALL_REGS
5129 || (insn = skip_usage_debug_insns (usage_insns)) == NULL_RTX)
5130 return false;
5131 lra_assert (INSN_P (insn));
5132 if ((set = single_set (insn)) == NULL_RTX || ! REG_P (SET_DEST (set)))
5133 return false;
5134 dest = SET_DEST (set);
5135 if (! REG_P (dest))
5136 return false;
5137 lra_assert (inher_cl != NO_REGS);
5138 cl = get_reg_class (REGNO (dest));
5139 return (cl != NO_REGS && cl != ALL_REGS
5140 && targetm.secondary_memory_needed (GET_MODE (dest), inher_cl, cl));
5143 /* Registers involved in inheritance/split in the current EBB
5144 (inheritance/split pseudos and original registers). */
5145 static bitmap_head check_only_regs;
5147 /* Reload pseudos can not be involded in invariant inheritance in the
5148 current EBB. */
5149 static bitmap_head invalid_invariant_regs;
5151 /* Do inheritance transformations for insn INSN, which defines (if
5152 DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which
5153 instruction in the EBB next uses ORIGINAL_REGNO; it has the same
5154 form as the "insns" field of usage_insns. Return true if we
5155 succeed in such transformation.
5157 The transformations look like:
5159 p <- ... i <- ...
5160 ... p <- i (new insn)
5161 ... =>
5162 <- ... p ... <- ... i ...
5164 ... i <- p (new insn)
5165 <- ... p ... <- ... i ...
5166 ... =>
5167 <- ... p ... <- ... i ...
5168 where p is a spilled original pseudo and i is a new inheritance pseudo.
5171 The inheritance pseudo has the smallest class of two classes CL and
5172 class of ORIGINAL REGNO. */
5173 static bool
5174 inherit_reload_reg (bool def_p, int original_regno,
5175 enum reg_class cl, rtx_insn *insn, rtx next_usage_insns)
5177 if (optimize_function_for_size_p (cfun))
5178 return false;
5180 enum reg_class rclass = lra_get_allocno_class (original_regno);
5181 rtx original_reg = regno_reg_rtx[original_regno];
5182 rtx new_reg, usage_insn;
5183 rtx_insn *new_insns;
5185 lra_assert (! usage_insns[original_regno].after_p);
5186 if (lra_dump_file != NULL)
5187 fprintf (lra_dump_file,
5188 " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
5189 if (! ira_reg_classes_intersect_p[cl][rclass])
5191 if (lra_dump_file != NULL)
5193 fprintf (lra_dump_file,
5194 " Rejecting inheritance for %d "
5195 "because of disjoint classes %s and %s\n",
5196 original_regno, reg_class_names[cl],
5197 reg_class_names[rclass]);
5198 fprintf (lra_dump_file,
5199 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5201 return false;
5203 if ((ira_class_subset_p[cl][rclass] && cl != rclass)
5204 /* We don't use a subset of two classes because it can be
5205 NO_REGS. This transformation is still profitable in most
5206 cases even if the classes are not intersected as register
5207 move is probably cheaper than a memory load. */
5208 || ira_class_hard_regs_num[cl] < ira_class_hard_regs_num[rclass])
5210 if (lra_dump_file != NULL)
5211 fprintf (lra_dump_file, " Use smallest class of %s and %s\n",
5212 reg_class_names[cl], reg_class_names[rclass]);
5214 rclass = cl;
5216 if (check_secondary_memory_needed_p (rclass, next_usage_insns))
5218 /* Reject inheritance resulting in secondary memory moves.
5219 Otherwise, there is a danger in LRA cycling. Also such
5220 transformation will be unprofitable. */
5221 if (lra_dump_file != NULL)
5223 rtx_insn *insn = skip_usage_debug_insns (next_usage_insns);
5224 rtx set = single_set (insn);
5226 lra_assert (set != NULL_RTX);
5228 rtx dest = SET_DEST (set);
5230 lra_assert (REG_P (dest));
5231 fprintf (lra_dump_file,
5232 " Rejecting inheritance for insn %d(%s)<-%d(%s) "
5233 "as secondary mem is needed\n",
5234 REGNO (dest), reg_class_names[get_reg_class (REGNO (dest))],
5235 original_regno, reg_class_names[rclass]);
5236 fprintf (lra_dump_file,
5237 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5239 return false;
5241 new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
5242 rclass, "inheritance");
5243 start_sequence ();
5244 if (def_p)
5245 lra_emit_move (original_reg, new_reg);
5246 else
5247 lra_emit_move (new_reg, original_reg);
5248 new_insns = get_insns ();
5249 end_sequence ();
5250 if (NEXT_INSN (new_insns) != NULL_RTX)
5252 if (lra_dump_file != NULL)
5254 fprintf (lra_dump_file,
5255 " Rejecting inheritance %d->%d "
5256 "as it results in 2 or more insns:\n",
5257 original_regno, REGNO (new_reg));
5258 dump_rtl_slim (lra_dump_file, new_insns, NULL, -1, 0);
5259 fprintf (lra_dump_file,
5260 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5262 return false;
5264 lra_substitute_pseudo_within_insn (insn, original_regno, new_reg, false);
5265 lra_update_insn_regno_info (insn);
5266 if (! def_p)
5267 /* We now have a new usage insn for original regno. */
5268 setup_next_usage_insn (original_regno, new_insns, reloads_num, false);
5269 if (lra_dump_file != NULL)
5270 fprintf (lra_dump_file, " Original reg change %d->%d (bb%d):\n",
5271 original_regno, REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5272 lra_reg_info[REGNO (new_reg)].restore_rtx = regno_reg_rtx[original_regno];
5273 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5274 bitmap_set_bit (&check_only_regs, original_regno);
5275 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5276 if (def_p)
5277 lra_process_new_insns (insn, NULL, new_insns,
5278 "Add original<-inheritance");
5279 else
5280 lra_process_new_insns (insn, new_insns, NULL,
5281 "Add inheritance<-original");
5282 while (next_usage_insns != NULL_RTX)
5284 if (GET_CODE (next_usage_insns) != INSN_LIST)
5286 usage_insn = next_usage_insns;
5287 lra_assert (NONDEBUG_INSN_P (usage_insn));
5288 next_usage_insns = NULL;
5290 else
5292 usage_insn = XEXP (next_usage_insns, 0);
5293 lra_assert (DEBUG_INSN_P (usage_insn));
5294 next_usage_insns = XEXP (next_usage_insns, 1);
5296 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false,
5297 DEBUG_INSN_P (usage_insn));
5298 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5299 if (lra_dump_file != NULL)
5301 basic_block bb = BLOCK_FOR_INSN (usage_insn);
5302 fprintf (lra_dump_file,
5303 " Inheritance reuse change %d->%d (bb%d):\n",
5304 original_regno, REGNO (new_reg),
5305 bb ? bb->index : -1);
5306 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5309 if (lra_dump_file != NULL)
5310 fprintf (lra_dump_file,
5311 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5312 return true;
5315 /* Return true if we need a caller save/restore for pseudo REGNO which
5316 was assigned to a hard register. */
5317 static inline bool
5318 need_for_call_save_p (int regno)
5320 lra_assert (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0);
5321 return (usage_insns[regno].calls_num < calls_num
5322 && (overlaps_hard_reg_set_p
5323 ((flag_ipa_ra &&
5324 ! hard_reg_set_empty_p (lra_reg_info[regno].actual_call_used_reg_set))
5325 ? lra_reg_info[regno].actual_call_used_reg_set
5326 : call_used_reg_set,
5327 PSEUDO_REGNO_MODE (regno), reg_renumber[regno])
5328 || (targetm.hard_regno_call_part_clobbered
5329 (reg_renumber[regno], PSEUDO_REGNO_MODE (regno)))));
5332 /* Global registers occurring in the current EBB. */
5333 static bitmap_head ebb_global_regs;
5335 /* Return true if we need a split for hard register REGNO or pseudo
5336 REGNO which was assigned to a hard register.
5337 POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
5338 used for reloads since the EBB end. It is an approximation of the
5339 used hard registers in the split range. The exact value would
5340 require expensive calculations. If we were aggressive with
5341 splitting because of the approximation, the split pseudo will save
5342 the same hard register assignment and will be removed in the undo
5343 pass. We still need the approximation because too aggressive
5344 splitting would result in too inaccurate cost calculation in the
5345 assignment pass because of too many generated moves which will be
5346 probably removed in the undo pass. */
5347 static inline bool
5348 need_for_split_p (HARD_REG_SET potential_reload_hard_regs, int regno)
5350 int hard_regno = regno < FIRST_PSEUDO_REGISTER ? regno : reg_renumber[regno];
5352 lra_assert (hard_regno >= 0);
5353 return ((TEST_HARD_REG_BIT (potential_reload_hard_regs, hard_regno)
5354 /* Don't split eliminable hard registers, otherwise we can
5355 split hard registers like hard frame pointer, which
5356 lives on BB start/end according to DF-infrastructure,
5357 when there is a pseudo assigned to the register and
5358 living in the same BB. */
5359 && (regno >= FIRST_PSEUDO_REGISTER
5360 || ! TEST_HARD_REG_BIT (eliminable_regset, hard_regno))
5361 && ! TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno)
5362 /* Don't split call clobbered hard regs living through
5363 calls, otherwise we might have a check problem in the
5364 assign sub-pass as in the most cases (exception is a
5365 situation when lra_risky_transformations_p value is
5366 true) the assign pass assumes that all pseudos living
5367 through calls are assigned to call saved hard regs. */
5368 && (regno >= FIRST_PSEUDO_REGISTER
5369 || ! TEST_HARD_REG_BIT (call_used_reg_set, regno)
5370 || usage_insns[regno].calls_num == calls_num)
5371 /* We need at least 2 reloads to make pseudo splitting
5372 profitable. We should provide hard regno splitting in
5373 any case to solve 1st insn scheduling problem when
5374 moving hard register definition up might result in
5375 impossibility to find hard register for reload pseudo of
5376 small register class. */
5377 && (usage_insns[regno].reloads_num
5378 + (regno < FIRST_PSEUDO_REGISTER ? 0 : 3) < reloads_num)
5379 && (regno < FIRST_PSEUDO_REGISTER
5380 /* For short living pseudos, spilling + inheritance can
5381 be considered a substitution for splitting.
5382 Therefore we do not splitting for local pseudos. It
5383 decreases also aggressiveness of splitting. The
5384 minimal number of references is chosen taking into
5385 account that for 2 references splitting has no sense
5386 as we can just spill the pseudo. */
5387 || (regno >= FIRST_PSEUDO_REGISTER
5388 && lra_reg_info[regno].nrefs > 3
5389 && bitmap_bit_p (&ebb_global_regs, regno))))
5390 || (regno >= FIRST_PSEUDO_REGISTER && need_for_call_save_p (regno)));
5393 /* Return class for the split pseudo created from original pseudo with
5394 ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We
5395 choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
5396 results in no secondary memory movements. */
5397 static enum reg_class
5398 choose_split_class (enum reg_class allocno_class,
5399 int hard_regno ATTRIBUTE_UNUSED,
5400 machine_mode mode ATTRIBUTE_UNUSED)
5402 int i;
5403 enum reg_class cl, best_cl = NO_REGS;
5404 enum reg_class hard_reg_class ATTRIBUTE_UNUSED
5405 = REGNO_REG_CLASS (hard_regno);
5407 if (! targetm.secondary_memory_needed (mode, allocno_class, allocno_class)
5408 && TEST_HARD_REG_BIT (reg_class_contents[allocno_class], hard_regno))
5409 return allocno_class;
5410 for (i = 0;
5411 (cl = reg_class_subclasses[allocno_class][i]) != LIM_REG_CLASSES;
5412 i++)
5413 if (! targetm.secondary_memory_needed (mode, cl, hard_reg_class)
5414 && ! targetm.secondary_memory_needed (mode, hard_reg_class, cl)
5415 && TEST_HARD_REG_BIT (reg_class_contents[cl], hard_regno)
5416 && (best_cl == NO_REGS
5417 || ira_class_hard_regs_num[best_cl] < ira_class_hard_regs_num[cl]))
5418 best_cl = cl;
5419 return best_cl;
5422 /* Copy any equivalence information from ORIGINAL_REGNO to NEW_REGNO.
5423 It only makes sense to call this function if NEW_REGNO is always
5424 equal to ORIGINAL_REGNO. */
5426 static void
5427 lra_copy_reg_equiv (unsigned int new_regno, unsigned int original_regno)
5429 if (!ira_reg_equiv[original_regno].defined_p)
5430 return;
5432 ira_expand_reg_equiv ();
5433 ira_reg_equiv[new_regno].defined_p = true;
5434 if (ira_reg_equiv[original_regno].memory)
5435 ira_reg_equiv[new_regno].memory
5436 = copy_rtx (ira_reg_equiv[original_regno].memory);
5437 if (ira_reg_equiv[original_regno].constant)
5438 ira_reg_equiv[new_regno].constant
5439 = copy_rtx (ira_reg_equiv[original_regno].constant);
5440 if (ira_reg_equiv[original_regno].invariant)
5441 ira_reg_equiv[new_regno].invariant
5442 = copy_rtx (ira_reg_equiv[original_regno].invariant);
5445 /* Do split transformations for insn INSN, which defines or uses
5446 ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in
5447 the EBB next uses ORIGINAL_REGNO; it has the same form as the
5448 "insns" field of usage_insns.
5450 The transformations look like:
5452 p <- ... p <- ...
5453 ... s <- p (new insn -- save)
5454 ... =>
5455 ... p <- s (new insn -- restore)
5456 <- ... p ... <- ... p ...
5458 <- ... p ... <- ... p ...
5459 ... s <- p (new insn -- save)
5460 ... =>
5461 ... p <- s (new insn -- restore)
5462 <- ... p ... <- ... p ...
5464 where p is an original pseudo got a hard register or a hard
5465 register and s is a new split pseudo. The save is put before INSN
5466 if BEFORE_P is true. Return true if we succeed in such
5467 transformation. */
5468 static bool
5469 split_reg (bool before_p, int original_regno, rtx_insn *insn,
5470 rtx next_usage_insns)
5472 enum reg_class rclass;
5473 rtx original_reg;
5474 int hard_regno, nregs;
5475 rtx new_reg, usage_insn;
5476 rtx_insn *restore, *save;
5477 bool after_p;
5478 bool call_save_p;
5479 machine_mode mode;
5481 if (original_regno < FIRST_PSEUDO_REGISTER)
5483 rclass = ira_allocno_class_translate[REGNO_REG_CLASS (original_regno)];
5484 hard_regno = original_regno;
5485 call_save_p = false;
5486 nregs = 1;
5487 mode = lra_reg_info[hard_regno].biggest_mode;
5488 machine_mode reg_rtx_mode = GET_MODE (regno_reg_rtx[hard_regno]);
5489 /* A reg can have a biggest_mode of VOIDmode if it was only ever seen
5490 as part of a multi-word register. In that case, or if the biggest
5491 mode was larger than a register, just use the reg_rtx. Otherwise,
5492 limit the size to that of the biggest access in the function. */
5493 if (mode == VOIDmode
5494 || paradoxical_subreg_p (mode, reg_rtx_mode))
5496 original_reg = regno_reg_rtx[hard_regno];
5497 mode = reg_rtx_mode;
5499 else
5500 original_reg = gen_rtx_REG (mode, hard_regno);
5502 else
5504 mode = PSEUDO_REGNO_MODE (original_regno);
5505 hard_regno = reg_renumber[original_regno];
5506 nregs = hard_regno_nregs (hard_regno, mode);
5507 rclass = lra_get_allocno_class (original_regno);
5508 original_reg = regno_reg_rtx[original_regno];
5509 call_save_p = need_for_call_save_p (original_regno);
5511 lra_assert (hard_regno >= 0);
5512 if (lra_dump_file != NULL)
5513 fprintf (lra_dump_file,
5514 " ((((((((((((((((((((((((((((((((((((((((((((((((\n");
5516 if (call_save_p)
5518 mode = HARD_REGNO_CALLER_SAVE_MODE (hard_regno,
5519 hard_regno_nregs (hard_regno, mode),
5520 mode);
5521 new_reg = lra_create_new_reg (mode, NULL_RTX, NO_REGS, "save");
5523 else
5525 rclass = choose_split_class (rclass, hard_regno, mode);
5526 if (rclass == NO_REGS)
5528 if (lra_dump_file != NULL)
5530 fprintf (lra_dump_file,
5531 " Rejecting split of %d(%s): "
5532 "no good reg class for %d(%s)\n",
5533 original_regno,
5534 reg_class_names[lra_get_allocno_class (original_regno)],
5535 hard_regno,
5536 reg_class_names[REGNO_REG_CLASS (hard_regno)]);
5537 fprintf
5538 (lra_dump_file,
5539 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5541 return false;
5543 /* Split_if_necessary can split hard registers used as part of a
5544 multi-register mode but splits each register individually. The
5545 mode used for each independent register may not be supported
5546 so reject the split. Splitting the wider mode should theoretically
5547 be possible but is not implemented. */
5548 if (!targetm.hard_regno_mode_ok (hard_regno, mode))
5550 if (lra_dump_file != NULL)
5552 fprintf (lra_dump_file,
5553 " Rejecting split of %d(%s): unsuitable mode %s\n",
5554 original_regno,
5555 reg_class_names[lra_get_allocno_class (original_regno)],
5556 GET_MODE_NAME (mode));
5557 fprintf
5558 (lra_dump_file,
5559 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5561 return false;
5563 new_reg = lra_create_new_reg (mode, original_reg, rclass, "split");
5564 reg_renumber[REGNO (new_reg)] = hard_regno;
5566 int new_regno = REGNO (new_reg);
5567 save = emit_spill_move (true, new_reg, original_reg);
5568 if (NEXT_INSN (save) != NULL_RTX && !call_save_p)
5570 if (lra_dump_file != NULL)
5572 fprintf
5573 (lra_dump_file,
5574 " Rejecting split %d->%d resulting in > 2 save insns:\n",
5575 original_regno, new_regno);
5576 dump_rtl_slim (lra_dump_file, save, NULL, -1, 0);
5577 fprintf (lra_dump_file,
5578 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5580 return false;
5582 restore = emit_spill_move (false, new_reg, original_reg);
5583 if (NEXT_INSN (restore) != NULL_RTX && !call_save_p)
5585 if (lra_dump_file != NULL)
5587 fprintf (lra_dump_file,
5588 " Rejecting split %d->%d "
5589 "resulting in > 2 restore insns:\n",
5590 original_regno, new_regno);
5591 dump_rtl_slim (lra_dump_file, restore, NULL, -1, 0);
5592 fprintf (lra_dump_file,
5593 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5595 return false;
5597 /* Transfer equivalence information to the spill register, so that
5598 if we fail to allocate the spill register, we have the option of
5599 rematerializing the original value instead of spilling to the stack. */
5600 if (!HARD_REGISTER_NUM_P (original_regno)
5601 && mode == PSEUDO_REGNO_MODE (original_regno))
5602 lra_copy_reg_equiv (new_regno, original_regno);
5603 after_p = usage_insns[original_regno].after_p;
5604 lra_reg_info[new_regno].restore_rtx = regno_reg_rtx[original_regno];
5605 bitmap_set_bit (&check_only_regs, new_regno);
5606 bitmap_set_bit (&check_only_regs, original_regno);
5607 bitmap_set_bit (&lra_split_regs, new_regno);
5608 for (;;)
5610 if (GET_CODE (next_usage_insns) != INSN_LIST)
5612 usage_insn = next_usage_insns;
5613 break;
5615 usage_insn = XEXP (next_usage_insns, 0);
5616 lra_assert (DEBUG_INSN_P (usage_insn));
5617 next_usage_insns = XEXP (next_usage_insns, 1);
5618 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false,
5619 true);
5620 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5621 if (lra_dump_file != NULL)
5623 fprintf (lra_dump_file, " Split reuse change %d->%d:\n",
5624 original_regno, new_regno);
5625 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5628 lra_assert (NOTE_P (usage_insn) || NONDEBUG_INSN_P (usage_insn));
5629 lra_assert (usage_insn != insn || (after_p && before_p));
5630 lra_process_new_insns (as_a <rtx_insn *> (usage_insn),
5631 after_p ? NULL : restore,
5632 after_p ? restore : NULL,
5633 call_save_p
5634 ? "Add reg<-save" : "Add reg<-split");
5635 lra_process_new_insns (insn, before_p ? save : NULL,
5636 before_p ? NULL : save,
5637 call_save_p
5638 ? "Add save<-reg" : "Add split<-reg");
5639 if (nregs > 1)
5640 /* If we are trying to split multi-register. We should check
5641 conflicts on the next assignment sub-pass. IRA can allocate on
5642 sub-register levels, LRA do this on pseudos level right now and
5643 this discrepancy may create allocation conflicts after
5644 splitting. */
5645 lra_risky_transformations_p = true;
5646 if (lra_dump_file != NULL)
5647 fprintf (lra_dump_file,
5648 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5649 return true;
5652 /* Recognize that we need a split transformation for insn INSN, which
5653 defines or uses REGNO in its insn biggest MODE (we use it only if
5654 REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains
5655 hard registers which might be used for reloads since the EBB end.
5656 Put the save before INSN if BEFORE_P is true. MAX_UID is maximla
5657 uid before starting INSN processing. Return true if we succeed in
5658 such transformation. */
5659 static bool
5660 split_if_necessary (int regno, machine_mode mode,
5661 HARD_REG_SET potential_reload_hard_regs,
5662 bool before_p, rtx_insn *insn, int max_uid)
5664 bool res = false;
5665 int i, nregs = 1;
5666 rtx next_usage_insns;
5668 if (regno < FIRST_PSEUDO_REGISTER)
5669 nregs = hard_regno_nregs (regno, mode);
5670 for (i = 0; i < nregs; i++)
5671 if (usage_insns[regno + i].check == curr_usage_insns_check
5672 && (next_usage_insns = usage_insns[regno + i].insns) != NULL_RTX
5673 /* To avoid processing the register twice or more. */
5674 && ((GET_CODE (next_usage_insns) != INSN_LIST
5675 && INSN_UID (next_usage_insns) < max_uid)
5676 || (GET_CODE (next_usage_insns) == INSN_LIST
5677 && (INSN_UID (XEXP (next_usage_insns, 0)) < max_uid)))
5678 && need_for_split_p (potential_reload_hard_regs, regno + i)
5679 && split_reg (before_p, regno + i, insn, next_usage_insns))
5680 res = true;
5681 return res;
5684 /* Return TRUE if rtx X is considered as an invariant for
5685 inheritance. */
5686 static bool
5687 invariant_p (const_rtx x)
5689 machine_mode mode;
5690 const char *fmt;
5691 enum rtx_code code;
5692 int i, j;
5694 code = GET_CODE (x);
5695 mode = GET_MODE (x);
5696 if (code == SUBREG)
5698 x = SUBREG_REG (x);
5699 code = GET_CODE (x);
5700 mode = wider_subreg_mode (mode, GET_MODE (x));
5703 if (MEM_P (x))
5704 return false;
5706 if (REG_P (x))
5708 int i, nregs, regno = REGNO (x);
5710 if (regno >= FIRST_PSEUDO_REGISTER || regno == STACK_POINTER_REGNUM
5711 || TEST_HARD_REG_BIT (eliminable_regset, regno)
5712 || GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
5713 return false;
5714 nregs = hard_regno_nregs (regno, mode);
5715 for (i = 0; i < nregs; i++)
5716 if (! fixed_regs[regno + i]
5717 /* A hard register may be clobbered in the current insn
5718 but we can ignore this case because if the hard
5719 register is used it should be set somewhere after the
5720 clobber. */
5721 || bitmap_bit_p (&invalid_invariant_regs, regno + i))
5722 return false;
5724 fmt = GET_RTX_FORMAT (code);
5725 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5727 if (fmt[i] == 'e')
5729 if (! invariant_p (XEXP (x, i)))
5730 return false;
5732 else if (fmt[i] == 'E')
5734 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5735 if (! invariant_p (XVECEXP (x, i, j)))
5736 return false;
5739 return true;
5742 /* We have 'dest_reg <- invariant'. Let us try to make an invariant
5743 inheritance transformation (using dest_reg instead invariant in a
5744 subsequent insn). */
5745 static bool
5746 process_invariant_for_inheritance (rtx dst_reg, rtx invariant_rtx)
5748 invariant_ptr_t invariant_ptr;
5749 rtx_insn *insn, *new_insns;
5750 rtx insn_set, insn_reg, new_reg;
5751 int insn_regno;
5752 bool succ_p = false;
5753 int dst_regno = REGNO (dst_reg);
5754 machine_mode dst_mode = GET_MODE (dst_reg);
5755 enum reg_class cl = lra_get_allocno_class (dst_regno), insn_reg_cl;
5757 invariant_ptr = insert_invariant (invariant_rtx);
5758 if ((insn = invariant_ptr->insn) != NULL_RTX)
5760 /* We have a subsequent insn using the invariant. */
5761 insn_set = single_set (insn);
5762 lra_assert (insn_set != NULL);
5763 insn_reg = SET_DEST (insn_set);
5764 lra_assert (REG_P (insn_reg));
5765 insn_regno = REGNO (insn_reg);
5766 insn_reg_cl = lra_get_allocno_class (insn_regno);
5768 if (dst_mode == GET_MODE (insn_reg)
5769 /* We should consider only result move reg insns which are
5770 cheap. */
5771 && targetm.register_move_cost (dst_mode, cl, insn_reg_cl) == 2
5772 && targetm.register_move_cost (dst_mode, cl, cl) == 2)
5774 if (lra_dump_file != NULL)
5775 fprintf (lra_dump_file,
5776 " [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[\n");
5777 new_reg = lra_create_new_reg (dst_mode, dst_reg,
5778 cl, "invariant inheritance");
5779 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5780 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5781 lra_reg_info[REGNO (new_reg)].restore_rtx = PATTERN (insn);
5782 start_sequence ();
5783 lra_emit_move (new_reg, dst_reg);
5784 new_insns = get_insns ();
5785 end_sequence ();
5786 lra_process_new_insns (curr_insn, NULL, new_insns,
5787 "Add invariant inheritance<-original");
5788 start_sequence ();
5789 lra_emit_move (SET_DEST (insn_set), new_reg);
5790 new_insns = get_insns ();
5791 end_sequence ();
5792 lra_process_new_insns (insn, NULL, new_insns,
5793 "Changing reload<-inheritance");
5794 lra_set_insn_deleted (insn);
5795 succ_p = true;
5796 if (lra_dump_file != NULL)
5798 fprintf (lra_dump_file,
5799 " Invariant inheritance reuse change %d (bb%d):\n",
5800 REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5801 dump_insn_slim (lra_dump_file, insn);
5802 fprintf (lra_dump_file,
5803 " ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]\n");
5807 invariant_ptr->insn = curr_insn;
5808 return succ_p;
5811 /* Check only registers living at the current program point in the
5812 current EBB. */
5813 static bitmap_head live_regs;
5815 /* Update live info in EBB given by its HEAD and TAIL insns after
5816 inheritance/split transformation. The function removes dead moves
5817 too. */
5818 static void
5819 update_ebb_live_info (rtx_insn *head, rtx_insn *tail)
5821 unsigned int j;
5822 int i, regno;
5823 bool live_p;
5824 rtx_insn *prev_insn;
5825 rtx set;
5826 bool remove_p;
5827 basic_block last_bb, prev_bb, curr_bb;
5828 bitmap_iterator bi;
5829 struct lra_insn_reg *reg;
5830 edge e;
5831 edge_iterator ei;
5833 last_bb = BLOCK_FOR_INSN (tail);
5834 prev_bb = NULL;
5835 for (curr_insn = tail;
5836 curr_insn != PREV_INSN (head);
5837 curr_insn = prev_insn)
5839 prev_insn = PREV_INSN (curr_insn);
5840 /* We need to process empty blocks too. They contain
5841 NOTE_INSN_BASIC_BLOCK referring for the basic block. */
5842 if (NOTE_P (curr_insn) && NOTE_KIND (curr_insn) != NOTE_INSN_BASIC_BLOCK)
5843 continue;
5844 curr_bb = BLOCK_FOR_INSN (curr_insn);
5845 if (curr_bb != prev_bb)
5847 if (prev_bb != NULL)
5849 /* Update df_get_live_in (prev_bb): */
5850 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
5851 if (bitmap_bit_p (&live_regs, j))
5852 bitmap_set_bit (df_get_live_in (prev_bb), j);
5853 else
5854 bitmap_clear_bit (df_get_live_in (prev_bb), j);
5856 if (curr_bb != last_bb)
5858 /* Update df_get_live_out (curr_bb): */
5859 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
5861 live_p = bitmap_bit_p (&live_regs, j);
5862 if (! live_p)
5863 FOR_EACH_EDGE (e, ei, curr_bb->succs)
5864 if (bitmap_bit_p (df_get_live_in (e->dest), j))
5866 live_p = true;
5867 break;
5869 if (live_p)
5870 bitmap_set_bit (df_get_live_out (curr_bb), j);
5871 else
5872 bitmap_clear_bit (df_get_live_out (curr_bb), j);
5875 prev_bb = curr_bb;
5876 bitmap_and (&live_regs, &check_only_regs, df_get_live_out (curr_bb));
5878 if (! NONDEBUG_INSN_P (curr_insn))
5879 continue;
5880 curr_id = lra_get_insn_recog_data (curr_insn);
5881 curr_static_id = curr_id->insn_static_data;
5882 remove_p = false;
5883 if ((set = single_set (curr_insn)) != NULL_RTX
5884 && REG_P (SET_DEST (set))
5885 && (regno = REGNO (SET_DEST (set))) >= FIRST_PSEUDO_REGISTER
5886 && SET_DEST (set) != pic_offset_table_rtx
5887 && bitmap_bit_p (&check_only_regs, regno)
5888 && ! bitmap_bit_p (&live_regs, regno))
5889 remove_p = true;
5890 /* See which defined values die here. */
5891 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5892 if (reg->type == OP_OUT && ! reg->subreg_p)
5893 bitmap_clear_bit (&live_regs, reg->regno);
5894 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
5895 if (reg->type == OP_OUT && ! reg->subreg_p)
5896 bitmap_clear_bit (&live_regs, reg->regno);
5897 if (curr_id->arg_hard_regs != NULL)
5898 /* Make clobbered argument hard registers die. */
5899 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
5900 if (regno >= FIRST_PSEUDO_REGISTER)
5901 bitmap_clear_bit (&live_regs, regno - FIRST_PSEUDO_REGISTER);
5902 /* Mark each used value as live. */
5903 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5904 if (reg->type != OP_OUT
5905 && bitmap_bit_p (&check_only_regs, reg->regno))
5906 bitmap_set_bit (&live_regs, reg->regno);
5907 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
5908 if (reg->type != OP_OUT
5909 && bitmap_bit_p (&check_only_regs, reg->regno))
5910 bitmap_set_bit (&live_regs, reg->regno);
5911 if (curr_id->arg_hard_regs != NULL)
5912 /* Make used argument hard registers live. */
5913 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
5914 if (regno < FIRST_PSEUDO_REGISTER
5915 && bitmap_bit_p (&check_only_regs, regno))
5916 bitmap_set_bit (&live_regs, regno);
5917 /* It is quite important to remove dead move insns because it
5918 means removing dead store. We don't need to process them for
5919 constraints. */
5920 if (remove_p)
5922 if (lra_dump_file != NULL)
5924 fprintf (lra_dump_file, " Removing dead insn:\n ");
5925 dump_insn_slim (lra_dump_file, curr_insn);
5927 lra_set_insn_deleted (curr_insn);
5932 /* The structure describes info to do an inheritance for the current
5933 insn. We need to collect such info first before doing the
5934 transformations because the transformations change the insn
5935 internal representation. */
5936 struct to_inherit
5938 /* Original regno. */
5939 int regno;
5940 /* Subsequent insns which can inherit original reg value. */
5941 rtx insns;
5944 /* Array containing all info for doing inheritance from the current
5945 insn. */
5946 static struct to_inherit to_inherit[LRA_MAX_INSN_RELOADS];
5948 /* Number elements in the previous array. */
5949 static int to_inherit_num;
5951 /* Add inheritance info REGNO and INSNS. Their meaning is described in
5952 structure to_inherit. */
5953 static void
5954 add_to_inherit (int regno, rtx insns)
5956 int i;
5958 for (i = 0; i < to_inherit_num; i++)
5959 if (to_inherit[i].regno == regno)
5960 return;
5961 lra_assert (to_inherit_num < LRA_MAX_INSN_RELOADS);
5962 to_inherit[to_inherit_num].regno = regno;
5963 to_inherit[to_inherit_num++].insns = insns;
5966 /* Return the last non-debug insn in basic block BB, or the block begin
5967 note if none. */
5968 static rtx_insn *
5969 get_last_insertion_point (basic_block bb)
5971 rtx_insn *insn;
5973 FOR_BB_INSNS_REVERSE (bb, insn)
5974 if (NONDEBUG_INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
5975 return insn;
5976 gcc_unreachable ();
5979 /* Set up RES by registers living on edges FROM except the edge (FROM,
5980 TO) or by registers set up in a jump insn in BB FROM. */
5981 static void
5982 get_live_on_other_edges (basic_block from, basic_block to, bitmap res)
5984 rtx_insn *last;
5985 struct lra_insn_reg *reg;
5986 edge e;
5987 edge_iterator ei;
5989 lra_assert (to != NULL);
5990 bitmap_clear (res);
5991 FOR_EACH_EDGE (e, ei, from->succs)
5992 if (e->dest != to)
5993 bitmap_ior_into (res, df_get_live_in (e->dest));
5994 last = get_last_insertion_point (from);
5995 if (! JUMP_P (last))
5996 return;
5997 curr_id = lra_get_insn_recog_data (last);
5998 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5999 if (reg->type != OP_IN)
6000 bitmap_set_bit (res, reg->regno);
6003 /* Used as a temporary results of some bitmap calculations. */
6004 static bitmap_head temp_bitmap;
6006 /* We split for reloads of small class of hard regs. The following
6007 defines how many hard regs the class should have to be qualified as
6008 small. The code is mostly oriented to x86/x86-64 architecture
6009 where some insns need to use only specific register or pair of
6010 registers and these register can live in RTL explicitly, e.g. for
6011 parameter passing. */
6012 static const int max_small_class_regs_num = 2;
6014 /* Do inheritance/split transformations in EBB starting with HEAD and
6015 finishing on TAIL. We process EBB insns in the reverse order.
6016 Return true if we did any inheritance/split transformation in the
6017 EBB.
6019 We should avoid excessive splitting which results in worse code
6020 because of inaccurate cost calculations for spilling new split
6021 pseudos in such case. To achieve this we do splitting only if
6022 register pressure is high in given basic block and there are reload
6023 pseudos requiring hard registers. We could do more register
6024 pressure calculations at any given program point to avoid necessary
6025 splitting even more but it is to expensive and the current approach
6026 works well enough. */
6027 static bool
6028 inherit_in_ebb (rtx_insn *head, rtx_insn *tail)
6030 int i, src_regno, dst_regno, nregs;
6031 bool change_p, succ_p, update_reloads_num_p;
6032 rtx_insn *prev_insn, *last_insn;
6033 rtx next_usage_insns, curr_set;
6034 enum reg_class cl;
6035 struct lra_insn_reg *reg;
6036 basic_block last_processed_bb, curr_bb = NULL;
6037 HARD_REG_SET potential_reload_hard_regs, live_hard_regs;
6038 bitmap to_process;
6039 unsigned int j;
6040 bitmap_iterator bi;
6041 bool head_p, after_p;
6043 change_p = false;
6044 curr_usage_insns_check++;
6045 clear_invariants ();
6046 reloads_num = calls_num = 0;
6047 bitmap_clear (&check_only_regs);
6048 bitmap_clear (&invalid_invariant_regs);
6049 last_processed_bb = NULL;
6050 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6051 COPY_HARD_REG_SET (live_hard_regs, eliminable_regset);
6052 IOR_HARD_REG_SET (live_hard_regs, lra_no_alloc_regs);
6053 /* We don't process new insns generated in the loop. */
6054 for (curr_insn = tail; curr_insn != PREV_INSN (head); curr_insn = prev_insn)
6056 prev_insn = PREV_INSN (curr_insn);
6057 if (BLOCK_FOR_INSN (curr_insn) != NULL)
6058 curr_bb = BLOCK_FOR_INSN (curr_insn);
6059 if (last_processed_bb != curr_bb)
6061 /* We are at the end of BB. Add qualified living
6062 pseudos for potential splitting. */
6063 to_process = df_get_live_out (curr_bb);
6064 if (last_processed_bb != NULL)
6066 /* We are somewhere in the middle of EBB. */
6067 get_live_on_other_edges (curr_bb, last_processed_bb,
6068 &temp_bitmap);
6069 to_process = &temp_bitmap;
6071 last_processed_bb = curr_bb;
6072 last_insn = get_last_insertion_point (curr_bb);
6073 after_p = (! JUMP_P (last_insn)
6074 && (! CALL_P (last_insn)
6075 || (find_reg_note (last_insn,
6076 REG_NORETURN, NULL_RTX) == NULL_RTX
6077 && ! SIBLING_CALL_P (last_insn))));
6078 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6079 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6081 if ((int) j >= lra_constraint_new_regno_start)
6082 break;
6083 if (j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6085 if (j < FIRST_PSEUDO_REGISTER)
6086 SET_HARD_REG_BIT (live_hard_regs, j);
6087 else
6088 add_to_hard_reg_set (&live_hard_regs,
6089 PSEUDO_REGNO_MODE (j),
6090 reg_renumber[j]);
6091 setup_next_usage_insn (j, last_insn, reloads_num, after_p);
6095 src_regno = dst_regno = -1;
6096 curr_set = single_set (curr_insn);
6097 if (curr_set != NULL_RTX && REG_P (SET_DEST (curr_set)))
6098 dst_regno = REGNO (SET_DEST (curr_set));
6099 if (curr_set != NULL_RTX && REG_P (SET_SRC (curr_set)))
6100 src_regno = REGNO (SET_SRC (curr_set));
6101 update_reloads_num_p = true;
6102 if (src_regno < lra_constraint_new_regno_start
6103 && src_regno >= FIRST_PSEUDO_REGISTER
6104 && reg_renumber[src_regno] < 0
6105 && dst_regno >= lra_constraint_new_regno_start
6106 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS)
6108 /* 'reload_pseudo <- original_pseudo'. */
6109 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6110 reloads_num++;
6111 update_reloads_num_p = false;
6112 succ_p = false;
6113 if (usage_insns[src_regno].check == curr_usage_insns_check
6114 && (next_usage_insns = usage_insns[src_regno].insns) != NULL_RTX)
6115 succ_p = inherit_reload_reg (false, src_regno, cl,
6116 curr_insn, next_usage_insns);
6117 if (succ_p)
6118 change_p = true;
6119 else
6120 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6121 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6122 IOR_HARD_REG_SET (potential_reload_hard_regs,
6123 reg_class_contents[cl]);
6125 else if (src_regno < 0
6126 && dst_regno >= lra_constraint_new_regno_start
6127 && invariant_p (SET_SRC (curr_set))
6128 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS
6129 && ! bitmap_bit_p (&invalid_invariant_regs, dst_regno)
6130 && ! bitmap_bit_p (&invalid_invariant_regs,
6131 ORIGINAL_REGNO(regno_reg_rtx[dst_regno])))
6133 /* 'reload_pseudo <- invariant'. */
6134 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6135 reloads_num++;
6136 update_reloads_num_p = false;
6137 if (process_invariant_for_inheritance (SET_DEST (curr_set), SET_SRC (curr_set)))
6138 change_p = true;
6139 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6140 IOR_HARD_REG_SET (potential_reload_hard_regs,
6141 reg_class_contents[cl]);
6143 else if (src_regno >= lra_constraint_new_regno_start
6144 && dst_regno < lra_constraint_new_regno_start
6145 && dst_regno >= FIRST_PSEUDO_REGISTER
6146 && reg_renumber[dst_regno] < 0
6147 && (cl = lra_get_allocno_class (src_regno)) != NO_REGS
6148 && usage_insns[dst_regno].check == curr_usage_insns_check
6149 && (next_usage_insns
6150 = usage_insns[dst_regno].insns) != NULL_RTX)
6152 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6153 reloads_num++;
6154 update_reloads_num_p = false;
6155 /* 'original_pseudo <- reload_pseudo'. */
6156 if (! JUMP_P (curr_insn)
6157 && inherit_reload_reg (true, dst_regno, cl,
6158 curr_insn, next_usage_insns))
6159 change_p = true;
6160 /* Invalidate. */
6161 usage_insns[dst_regno].check = 0;
6162 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6163 IOR_HARD_REG_SET (potential_reload_hard_regs,
6164 reg_class_contents[cl]);
6166 else if (INSN_P (curr_insn))
6168 int iter;
6169 int max_uid = get_max_uid ();
6171 curr_id = lra_get_insn_recog_data (curr_insn);
6172 curr_static_id = curr_id->insn_static_data;
6173 to_inherit_num = 0;
6174 /* Process insn definitions. */
6175 for (iter = 0; iter < 2; iter++)
6176 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6177 reg != NULL;
6178 reg = reg->next)
6179 if (reg->type != OP_IN
6180 && (dst_regno = reg->regno) < lra_constraint_new_regno_start)
6182 if (dst_regno >= FIRST_PSEUDO_REGISTER && reg->type == OP_OUT
6183 && reg_renumber[dst_regno] < 0 && ! reg->subreg_p
6184 && usage_insns[dst_regno].check == curr_usage_insns_check
6185 && (next_usage_insns
6186 = usage_insns[dst_regno].insns) != NULL_RTX)
6188 struct lra_insn_reg *r;
6190 for (r = curr_id->regs; r != NULL; r = r->next)
6191 if (r->type != OP_OUT && r->regno == dst_regno)
6192 break;
6193 /* Don't do inheritance if the pseudo is also
6194 used in the insn. */
6195 if (r == NULL)
6196 /* We can not do inheritance right now
6197 because the current insn reg info (chain
6198 regs) can change after that. */
6199 add_to_inherit (dst_regno, next_usage_insns);
6201 /* We can not process one reg twice here because of
6202 usage_insns invalidation. */
6203 if ((dst_regno < FIRST_PSEUDO_REGISTER
6204 || reg_renumber[dst_regno] >= 0)
6205 && ! reg->subreg_p && reg->type != OP_IN)
6207 HARD_REG_SET s;
6209 if (split_if_necessary (dst_regno, reg->biggest_mode,
6210 potential_reload_hard_regs,
6211 false, curr_insn, max_uid))
6212 change_p = true;
6213 CLEAR_HARD_REG_SET (s);
6214 if (dst_regno < FIRST_PSEUDO_REGISTER)
6215 add_to_hard_reg_set (&s, reg->biggest_mode, dst_regno);
6216 else
6217 add_to_hard_reg_set (&s, PSEUDO_REGNO_MODE (dst_regno),
6218 reg_renumber[dst_regno]);
6219 AND_COMPL_HARD_REG_SET (live_hard_regs, s);
6221 /* We should invalidate potential inheritance or
6222 splitting for the current insn usages to the next
6223 usage insns (see code below) as the output pseudo
6224 prevents this. */
6225 if ((dst_regno >= FIRST_PSEUDO_REGISTER
6226 && reg_renumber[dst_regno] < 0)
6227 || (reg->type == OP_OUT && ! reg->subreg_p
6228 && (dst_regno < FIRST_PSEUDO_REGISTER
6229 || reg_renumber[dst_regno] >= 0)))
6231 /* Invalidate and mark definitions. */
6232 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6233 usage_insns[dst_regno].check = -(int) INSN_UID (curr_insn);
6234 else
6236 nregs = hard_regno_nregs (dst_regno,
6237 reg->biggest_mode);
6238 for (i = 0; i < nregs; i++)
6239 usage_insns[dst_regno + i].check
6240 = -(int) INSN_UID (curr_insn);
6244 /* Process clobbered call regs. */
6245 if (curr_id->arg_hard_regs != NULL)
6246 for (i = 0; (dst_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6247 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6248 usage_insns[dst_regno - FIRST_PSEUDO_REGISTER].check
6249 = -(int) INSN_UID (curr_insn);
6250 if (! JUMP_P (curr_insn))
6251 for (i = 0; i < to_inherit_num; i++)
6252 if (inherit_reload_reg (true, to_inherit[i].regno,
6253 ALL_REGS, curr_insn,
6254 to_inherit[i].insns))
6255 change_p = true;
6256 if (CALL_P (curr_insn))
6258 rtx cheap, pat, dest;
6259 rtx_insn *restore;
6260 int regno, hard_regno;
6262 calls_num++;
6263 if ((cheap = find_reg_note (curr_insn,
6264 REG_RETURNED, NULL_RTX)) != NULL_RTX
6265 && ((cheap = XEXP (cheap, 0)), true)
6266 && (regno = REGNO (cheap)) >= FIRST_PSEUDO_REGISTER
6267 && (hard_regno = reg_renumber[regno]) >= 0
6268 && usage_insns[regno].check == curr_usage_insns_check
6269 /* If there are pending saves/restores, the
6270 optimization is not worth. */
6271 && usage_insns[regno].calls_num == calls_num - 1
6272 && TEST_HARD_REG_BIT (call_used_reg_set, hard_regno))
6274 /* Restore the pseudo from the call result as
6275 REG_RETURNED note says that the pseudo value is
6276 in the call result and the pseudo is an argument
6277 of the call. */
6278 pat = PATTERN (curr_insn);
6279 if (GET_CODE (pat) == PARALLEL)
6280 pat = XVECEXP (pat, 0, 0);
6281 dest = SET_DEST (pat);
6282 /* For multiple return values dest is PARALLEL.
6283 Currently we handle only single return value case. */
6284 if (REG_P (dest))
6286 start_sequence ();
6287 emit_move_insn (cheap, copy_rtx (dest));
6288 restore = get_insns ();
6289 end_sequence ();
6290 lra_process_new_insns (curr_insn, NULL, restore,
6291 "Inserting call parameter restore");
6292 /* We don't need to save/restore of the pseudo from
6293 this call. */
6294 usage_insns[regno].calls_num = calls_num;
6295 bitmap_set_bit (&check_only_regs, regno);
6299 to_inherit_num = 0;
6300 /* Process insn usages. */
6301 for (iter = 0; iter < 2; iter++)
6302 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6303 reg != NULL;
6304 reg = reg->next)
6305 if ((reg->type != OP_OUT
6306 || (reg->type == OP_OUT && reg->subreg_p))
6307 && (src_regno = reg->regno) < lra_constraint_new_regno_start)
6309 if (src_regno >= FIRST_PSEUDO_REGISTER
6310 && reg_renumber[src_regno] < 0 && reg->type == OP_IN)
6312 if (usage_insns[src_regno].check == curr_usage_insns_check
6313 && (next_usage_insns
6314 = usage_insns[src_regno].insns) != NULL_RTX
6315 && NONDEBUG_INSN_P (curr_insn))
6316 add_to_inherit (src_regno, next_usage_insns);
6317 else if (usage_insns[src_regno].check
6318 != -(int) INSN_UID (curr_insn))
6319 /* Add usages but only if the reg is not set up
6320 in the same insn. */
6321 add_next_usage_insn (src_regno, curr_insn, reloads_num);
6323 else if (src_regno < FIRST_PSEUDO_REGISTER
6324 || reg_renumber[src_regno] >= 0)
6326 bool before_p;
6327 rtx_insn *use_insn = curr_insn;
6329 before_p = (JUMP_P (curr_insn)
6330 || (CALL_P (curr_insn) && reg->type == OP_IN));
6331 if (NONDEBUG_INSN_P (curr_insn)
6332 && (! JUMP_P (curr_insn) || reg->type == OP_IN)
6333 && split_if_necessary (src_regno, reg->biggest_mode,
6334 potential_reload_hard_regs,
6335 before_p, curr_insn, max_uid))
6337 if (reg->subreg_p)
6338 lra_risky_transformations_p = true;
6339 change_p = true;
6340 /* Invalidate. */
6341 usage_insns[src_regno].check = 0;
6342 if (before_p)
6343 use_insn = PREV_INSN (curr_insn);
6345 if (NONDEBUG_INSN_P (curr_insn))
6347 if (src_regno < FIRST_PSEUDO_REGISTER)
6348 add_to_hard_reg_set (&live_hard_regs,
6349 reg->biggest_mode, src_regno);
6350 else
6351 add_to_hard_reg_set (&live_hard_regs,
6352 PSEUDO_REGNO_MODE (src_regno),
6353 reg_renumber[src_regno]);
6355 if (src_regno >= FIRST_PSEUDO_REGISTER)
6356 add_next_usage_insn (src_regno, use_insn, reloads_num);
6357 else
6359 for (i = 0; i < hard_regno_nregs (src_regno, reg->biggest_mode); i++)
6360 add_next_usage_insn (src_regno + i, use_insn, reloads_num);
6364 /* Process used call regs. */
6365 if (curr_id->arg_hard_regs != NULL)
6366 for (i = 0; (src_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6367 if (src_regno < FIRST_PSEUDO_REGISTER)
6369 SET_HARD_REG_BIT (live_hard_regs, src_regno);
6370 add_next_usage_insn (src_regno, curr_insn, reloads_num);
6372 for (i = 0; i < to_inherit_num; i++)
6374 src_regno = to_inherit[i].regno;
6375 if (inherit_reload_reg (false, src_regno, ALL_REGS,
6376 curr_insn, to_inherit[i].insns))
6377 change_p = true;
6378 else
6379 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6382 if (update_reloads_num_p
6383 && NONDEBUG_INSN_P (curr_insn) && curr_set != NULL_RTX)
6385 int regno = -1;
6386 if ((REG_P (SET_DEST (curr_set))
6387 && (regno = REGNO (SET_DEST (curr_set))) >= lra_constraint_new_regno_start
6388 && reg_renumber[regno] < 0
6389 && (cl = lra_get_allocno_class (regno)) != NO_REGS)
6390 || (REG_P (SET_SRC (curr_set))
6391 && (regno = REGNO (SET_SRC (curr_set))) >= lra_constraint_new_regno_start
6392 && reg_renumber[regno] < 0
6393 && (cl = lra_get_allocno_class (regno)) != NO_REGS))
6395 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6396 reloads_num++;
6397 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6398 IOR_HARD_REG_SET (potential_reload_hard_regs,
6399 reg_class_contents[cl]);
6402 if (NONDEBUG_INSN_P (curr_insn))
6404 int regno;
6406 /* Invalidate invariants with changed regs. */
6407 curr_id = lra_get_insn_recog_data (curr_insn);
6408 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6409 if (reg->type != OP_IN)
6411 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6412 bitmap_set_bit (&invalid_invariant_regs,
6413 ORIGINAL_REGNO (regno_reg_rtx[reg->regno]));
6415 curr_static_id = curr_id->insn_static_data;
6416 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6417 if (reg->type != OP_IN)
6418 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6419 if (curr_id->arg_hard_regs != NULL)
6420 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6421 if (regno >= FIRST_PSEUDO_REGISTER)
6422 bitmap_set_bit (&invalid_invariant_regs,
6423 regno - FIRST_PSEUDO_REGISTER);
6425 /* We reached the start of the current basic block. */
6426 if (prev_insn == NULL_RTX || prev_insn == PREV_INSN (head)
6427 || BLOCK_FOR_INSN (prev_insn) != curr_bb)
6429 /* We reached the beginning of the current block -- do
6430 rest of spliting in the current BB. */
6431 to_process = df_get_live_in (curr_bb);
6432 if (BLOCK_FOR_INSN (head) != curr_bb)
6434 /* We are somewhere in the middle of EBB. */
6435 get_live_on_other_edges (EDGE_PRED (curr_bb, 0)->src,
6436 curr_bb, &temp_bitmap);
6437 to_process = &temp_bitmap;
6439 head_p = true;
6440 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6442 if ((int) j >= lra_constraint_new_regno_start)
6443 break;
6444 if (((int) j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6445 && usage_insns[j].check == curr_usage_insns_check
6446 && (next_usage_insns = usage_insns[j].insns) != NULL_RTX)
6448 if (need_for_split_p (potential_reload_hard_regs, j))
6450 if (lra_dump_file != NULL && head_p)
6452 fprintf (lra_dump_file,
6453 " ----------------------------------\n");
6454 head_p = false;
6456 if (split_reg (false, j, bb_note (curr_bb),
6457 next_usage_insns))
6458 change_p = true;
6460 usage_insns[j].check = 0;
6465 return change_p;
6468 /* This value affects EBB forming. If probability of edge from EBB to
6469 a BB is not greater than the following value, we don't add the BB
6470 to EBB. */
6471 #define EBB_PROBABILITY_CUTOFF \
6472 ((REG_BR_PROB_BASE * LRA_INHERITANCE_EBB_PROBABILITY_CUTOFF) / 100)
6474 /* Current number of inheritance/split iteration. */
6475 int lra_inheritance_iter;
6477 /* Entry function for inheritance/split pass. */
6478 void
6479 lra_inheritance (void)
6481 int i;
6482 basic_block bb, start_bb;
6483 edge e;
6485 lra_inheritance_iter++;
6486 if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
6487 return;
6488 timevar_push (TV_LRA_INHERITANCE);
6489 if (lra_dump_file != NULL)
6490 fprintf (lra_dump_file, "\n********** Inheritance #%d: **********\n\n",
6491 lra_inheritance_iter);
6492 curr_usage_insns_check = 0;
6493 usage_insns = XNEWVEC (struct usage_insns, lra_constraint_new_regno_start);
6494 for (i = 0; i < lra_constraint_new_regno_start; i++)
6495 usage_insns[i].check = 0;
6496 bitmap_initialize (&check_only_regs, &reg_obstack);
6497 bitmap_initialize (&invalid_invariant_regs, &reg_obstack);
6498 bitmap_initialize (&live_regs, &reg_obstack);
6499 bitmap_initialize (&temp_bitmap, &reg_obstack);
6500 bitmap_initialize (&ebb_global_regs, &reg_obstack);
6501 FOR_EACH_BB_FN (bb, cfun)
6503 start_bb = bb;
6504 if (lra_dump_file != NULL)
6505 fprintf (lra_dump_file, "EBB");
6506 /* Form a EBB starting with BB. */
6507 bitmap_clear (&ebb_global_regs);
6508 bitmap_ior_into (&ebb_global_regs, df_get_live_in (bb));
6509 for (;;)
6511 if (lra_dump_file != NULL)
6512 fprintf (lra_dump_file, " %d", bb->index);
6513 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
6514 || LABEL_P (BB_HEAD (bb->next_bb)))
6515 break;
6516 e = find_fallthru_edge (bb->succs);
6517 if (! e)
6518 break;
6519 if (e->probability.initialized_p ()
6520 && e->probability.to_reg_br_prob_base () < EBB_PROBABILITY_CUTOFF)
6521 break;
6522 bb = bb->next_bb;
6524 bitmap_ior_into (&ebb_global_regs, df_get_live_out (bb));
6525 if (lra_dump_file != NULL)
6526 fprintf (lra_dump_file, "\n");
6527 if (inherit_in_ebb (BB_HEAD (start_bb), BB_END (bb)))
6528 /* Remember that the EBB head and tail can change in
6529 inherit_in_ebb. */
6530 update_ebb_live_info (BB_HEAD (start_bb), BB_END (bb));
6532 bitmap_clear (&ebb_global_regs);
6533 bitmap_clear (&temp_bitmap);
6534 bitmap_clear (&live_regs);
6535 bitmap_clear (&invalid_invariant_regs);
6536 bitmap_clear (&check_only_regs);
6537 free (usage_insns);
6539 timevar_pop (TV_LRA_INHERITANCE);
6544 /* This page contains code to undo failed inheritance/split
6545 transformations. */
6547 /* Current number of iteration undoing inheritance/split. */
6548 int lra_undo_inheritance_iter;
6550 /* Fix BB live info LIVE after removing pseudos created on pass doing
6551 inheritance/split which are REMOVED_PSEUDOS. */
6552 static void
6553 fix_bb_live_info (bitmap live, bitmap removed_pseudos)
6555 unsigned int regno;
6556 bitmap_iterator bi;
6558 EXECUTE_IF_SET_IN_BITMAP (removed_pseudos, 0, regno, bi)
6559 if (bitmap_clear_bit (live, regno)
6560 && REG_P (lra_reg_info[regno].restore_rtx))
6561 bitmap_set_bit (live, REGNO (lra_reg_info[regno].restore_rtx));
6564 /* Return regno of the (subreg of) REG. Otherwise, return a negative
6565 number. */
6566 static int
6567 get_regno (rtx reg)
6569 if (GET_CODE (reg) == SUBREG)
6570 reg = SUBREG_REG (reg);
6571 if (REG_P (reg))
6572 return REGNO (reg);
6573 return -1;
6576 /* Delete a move INSN with destination reg DREGNO and a previous
6577 clobber insn with the same regno. The inheritance/split code can
6578 generate moves with preceding clobber and when we delete such moves
6579 we should delete the clobber insn too to keep the correct life
6580 info. */
6581 static void
6582 delete_move_and_clobber (rtx_insn *insn, int dregno)
6584 rtx_insn *prev_insn = PREV_INSN (insn);
6586 lra_set_insn_deleted (insn);
6587 lra_assert (dregno >= 0);
6588 if (prev_insn != NULL && NONDEBUG_INSN_P (prev_insn)
6589 && GET_CODE (PATTERN (prev_insn)) == CLOBBER
6590 && dregno == get_regno (XEXP (PATTERN (prev_insn), 0)))
6591 lra_set_insn_deleted (prev_insn);
6594 /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
6595 return true if we did any change. The undo transformations for
6596 inheritance looks like
6597 i <- i2
6598 p <- i => p <- i2
6599 or removing
6600 p <- i, i <- p, and i <- i3
6601 where p is original pseudo from which inheritance pseudo i was
6602 created, i and i3 are removed inheritance pseudos, i2 is another
6603 not removed inheritance pseudo. All split pseudos or other
6604 occurrences of removed inheritance pseudos are changed on the
6605 corresponding original pseudos.
6607 The function also schedules insns changed and created during
6608 inheritance/split pass for processing by the subsequent constraint
6609 pass. */
6610 static bool
6611 remove_inheritance_pseudos (bitmap remove_pseudos)
6613 basic_block bb;
6614 int regno, sregno, prev_sregno, dregno;
6615 rtx restore_rtx;
6616 rtx set, prev_set;
6617 rtx_insn *prev_insn;
6618 bool change_p, done_p;
6620 change_p = ! bitmap_empty_p (remove_pseudos);
6621 /* We can not finish the function right away if CHANGE_P is true
6622 because we need to marks insns affected by previous
6623 inheritance/split pass for processing by the subsequent
6624 constraint pass. */
6625 FOR_EACH_BB_FN (bb, cfun)
6627 fix_bb_live_info (df_get_live_in (bb), remove_pseudos);
6628 fix_bb_live_info (df_get_live_out (bb), remove_pseudos);
6629 FOR_BB_INSNS_REVERSE (bb, curr_insn)
6631 if (! INSN_P (curr_insn))
6632 continue;
6633 done_p = false;
6634 sregno = dregno = -1;
6635 if (change_p && NONDEBUG_INSN_P (curr_insn)
6636 && (set = single_set (curr_insn)) != NULL_RTX)
6638 dregno = get_regno (SET_DEST (set));
6639 sregno = get_regno (SET_SRC (set));
6642 if (sregno >= 0 && dregno >= 0)
6644 if (bitmap_bit_p (remove_pseudos, dregno)
6645 && ! REG_P (lra_reg_info[dregno].restore_rtx))
6647 /* invariant inheritance pseudo <- original pseudo */
6648 if (lra_dump_file != NULL)
6650 fprintf (lra_dump_file, " Removing invariant inheritance:\n");
6651 dump_insn_slim (lra_dump_file, curr_insn);
6652 fprintf (lra_dump_file, "\n");
6654 delete_move_and_clobber (curr_insn, dregno);
6655 done_p = true;
6657 else if (bitmap_bit_p (remove_pseudos, sregno)
6658 && ! REG_P (lra_reg_info[sregno].restore_rtx))
6660 /* reload pseudo <- invariant inheritance pseudo */
6661 start_sequence ();
6662 /* We can not just change the source. It might be
6663 an insn different from the move. */
6664 emit_insn (lra_reg_info[sregno].restore_rtx);
6665 rtx_insn *new_insns = get_insns ();
6666 end_sequence ();
6667 lra_assert (single_set (new_insns) != NULL
6668 && SET_DEST (set) == SET_DEST (single_set (new_insns)));
6669 lra_process_new_insns (curr_insn, NULL, new_insns,
6670 "Changing reload<-invariant inheritance");
6671 delete_move_and_clobber (curr_insn, dregno);
6672 done_p = true;
6674 else if ((bitmap_bit_p (remove_pseudos, sregno)
6675 && (get_regno (lra_reg_info[sregno].restore_rtx) == dregno
6676 || (bitmap_bit_p (remove_pseudos, dregno)
6677 && get_regno (lra_reg_info[sregno].restore_rtx) >= 0
6678 && (get_regno (lra_reg_info[sregno].restore_rtx)
6679 == get_regno (lra_reg_info[dregno].restore_rtx)))))
6680 || (bitmap_bit_p (remove_pseudos, dregno)
6681 && get_regno (lra_reg_info[dregno].restore_rtx) == sregno))
6682 /* One of the following cases:
6683 original <- removed inheritance pseudo
6684 removed inherit pseudo <- another removed inherit pseudo
6685 removed inherit pseudo <- original pseudo
6687 removed_split_pseudo <- original_reg
6688 original_reg <- removed_split_pseudo */
6690 if (lra_dump_file != NULL)
6692 fprintf (lra_dump_file, " Removing %s:\n",
6693 bitmap_bit_p (&lra_split_regs, sregno)
6694 || bitmap_bit_p (&lra_split_regs, dregno)
6695 ? "split" : "inheritance");
6696 dump_insn_slim (lra_dump_file, curr_insn);
6698 delete_move_and_clobber (curr_insn, dregno);
6699 done_p = true;
6701 else if (bitmap_bit_p (remove_pseudos, sregno)
6702 && bitmap_bit_p (&lra_inheritance_pseudos, sregno))
6704 /* Search the following pattern:
6705 inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
6706 original_pseudo <- inherit_or_split_pseudo1
6707 where the 2nd insn is the current insn and
6708 inherit_or_split_pseudo2 is not removed. If it is found,
6709 change the current insn onto:
6710 original_pseudo <- inherit_or_split_pseudo2. */
6711 for (prev_insn = PREV_INSN (curr_insn);
6712 prev_insn != NULL_RTX && ! NONDEBUG_INSN_P (prev_insn);
6713 prev_insn = PREV_INSN (prev_insn))
6715 if (prev_insn != NULL_RTX && BLOCK_FOR_INSN (prev_insn) == bb
6716 && (prev_set = single_set (prev_insn)) != NULL_RTX
6717 /* There should be no subregs in insn we are
6718 searching because only the original reg might
6719 be in subreg when we changed the mode of
6720 load/store for splitting. */
6721 && REG_P (SET_DEST (prev_set))
6722 && REG_P (SET_SRC (prev_set))
6723 && (int) REGNO (SET_DEST (prev_set)) == sregno
6724 && ((prev_sregno = REGNO (SET_SRC (prev_set)))
6725 >= FIRST_PSEUDO_REGISTER)
6726 && (lra_reg_info[prev_sregno].restore_rtx == NULL_RTX
6728 /* As we consider chain of inheritance or
6729 splitting described in above comment we should
6730 check that sregno and prev_sregno were
6731 inheritance/split pseudos created from the
6732 same original regno. */
6733 (get_regno (lra_reg_info[sregno].restore_rtx) >= 0
6734 && (get_regno (lra_reg_info[sregno].restore_rtx)
6735 == get_regno (lra_reg_info[prev_sregno].restore_rtx))))
6736 && ! bitmap_bit_p (remove_pseudos, prev_sregno))
6738 lra_assert (GET_MODE (SET_SRC (prev_set))
6739 == GET_MODE (regno_reg_rtx[sregno]));
6740 /* Although we have a single set, the insn can
6741 contain more one sregno register occurrence
6742 as a source. Change all occurrences. */
6743 lra_substitute_pseudo_within_insn (curr_insn, sregno,
6744 SET_SRC (prev_set),
6745 false);
6746 /* As we are finishing with processing the insn
6747 here, check the destination too as it might
6748 inheritance pseudo for another pseudo. */
6749 if (bitmap_bit_p (remove_pseudos, dregno)
6750 && bitmap_bit_p (&lra_inheritance_pseudos, dregno)
6751 && (restore_rtx
6752 = lra_reg_info[dregno].restore_rtx) != NULL_RTX)
6754 if (GET_CODE (SET_DEST (set)) == SUBREG)
6755 SUBREG_REG (SET_DEST (set)) = restore_rtx;
6756 else
6757 SET_DEST (set) = restore_rtx;
6759 lra_push_insn_and_update_insn_regno_info (curr_insn);
6760 lra_set_used_insn_alternative_by_uid
6761 (INSN_UID (curr_insn), LRA_UNKNOWN_ALT);
6762 done_p = true;
6763 if (lra_dump_file != NULL)
6765 fprintf (lra_dump_file, " Change reload insn:\n");
6766 dump_insn_slim (lra_dump_file, curr_insn);
6771 if (! done_p)
6773 struct lra_insn_reg *reg;
6774 bool restored_regs_p = false;
6775 bool kept_regs_p = false;
6777 curr_id = lra_get_insn_recog_data (curr_insn);
6778 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6780 regno = reg->regno;
6781 restore_rtx = lra_reg_info[regno].restore_rtx;
6782 if (restore_rtx != NULL_RTX)
6784 if (change_p && bitmap_bit_p (remove_pseudos, regno))
6786 lra_substitute_pseudo_within_insn
6787 (curr_insn, regno, restore_rtx, false);
6788 restored_regs_p = true;
6790 else
6791 kept_regs_p = true;
6794 if (NONDEBUG_INSN_P (curr_insn) && kept_regs_p)
6796 /* The instruction has changed since the previous
6797 constraints pass. */
6798 lra_push_insn_and_update_insn_regno_info (curr_insn);
6799 lra_set_used_insn_alternative_by_uid
6800 (INSN_UID (curr_insn), LRA_UNKNOWN_ALT);
6802 else if (restored_regs_p)
6803 /* The instruction has been restored to the form that
6804 it had during the previous constraints pass. */
6805 lra_update_insn_regno_info (curr_insn);
6806 if (restored_regs_p && lra_dump_file != NULL)
6808 fprintf (lra_dump_file, " Insn after restoring regs:\n");
6809 dump_insn_slim (lra_dump_file, curr_insn);
6814 return change_p;
6817 /* If optional reload pseudos failed to get a hard register or was not
6818 inherited, it is better to remove optional reloads. We do this
6819 transformation after undoing inheritance to figure out necessity to
6820 remove optional reloads easier. Return true if we do any
6821 change. */
6822 static bool
6823 undo_optional_reloads (void)
6825 bool change_p, keep_p;
6826 unsigned int regno, uid;
6827 bitmap_iterator bi, bi2;
6828 rtx_insn *insn;
6829 rtx set, src, dest;
6830 auto_bitmap removed_optional_reload_pseudos (&reg_obstack);
6832 bitmap_copy (removed_optional_reload_pseudos, &lra_optional_reload_pseudos);
6833 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
6835 keep_p = false;
6836 /* Keep optional reloads from previous subpasses. */
6837 if (lra_reg_info[regno].restore_rtx == NULL_RTX
6838 /* If the original pseudo changed its allocation, just
6839 removing the optional pseudo is dangerous as the original
6840 pseudo will have longer live range. */
6841 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] >= 0)
6842 keep_p = true;
6843 else if (reg_renumber[regno] >= 0)
6844 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi2)
6846 insn = lra_insn_recog_data[uid]->insn;
6847 if ((set = single_set (insn)) == NULL_RTX)
6848 continue;
6849 src = SET_SRC (set);
6850 dest = SET_DEST (set);
6851 if (! REG_P (src) || ! REG_P (dest))
6852 continue;
6853 if (REGNO (dest) == regno
6854 /* Ignore insn for optional reloads itself. */
6855 && REGNO (lra_reg_info[regno].restore_rtx) != REGNO (src)
6856 /* Check only inheritance on last inheritance pass. */
6857 && (int) REGNO (src) >= new_regno_start
6858 /* Check that the optional reload was inherited. */
6859 && bitmap_bit_p (&lra_inheritance_pseudos, REGNO (src)))
6861 keep_p = true;
6862 break;
6865 if (keep_p)
6867 bitmap_clear_bit (removed_optional_reload_pseudos, regno);
6868 if (lra_dump_file != NULL)
6869 fprintf (lra_dump_file, "Keep optional reload reg %d\n", regno);
6872 change_p = ! bitmap_empty_p (removed_optional_reload_pseudos);
6873 auto_bitmap insn_bitmap (&reg_obstack);
6874 EXECUTE_IF_SET_IN_BITMAP (removed_optional_reload_pseudos, 0, regno, bi)
6876 if (lra_dump_file != NULL)
6877 fprintf (lra_dump_file, "Remove optional reload reg %d\n", regno);
6878 bitmap_copy (insn_bitmap, &lra_reg_info[regno].insn_bitmap);
6879 EXECUTE_IF_SET_IN_BITMAP (insn_bitmap, 0, uid, bi2)
6881 insn = lra_insn_recog_data[uid]->insn;
6882 if ((set = single_set (insn)) != NULL_RTX)
6884 src = SET_SRC (set);
6885 dest = SET_DEST (set);
6886 if (REG_P (src) && REG_P (dest)
6887 && ((REGNO (src) == regno
6888 && (REGNO (lra_reg_info[regno].restore_rtx)
6889 == REGNO (dest)))
6890 || (REGNO (dest) == regno
6891 && (REGNO (lra_reg_info[regno].restore_rtx)
6892 == REGNO (src)))))
6894 if (lra_dump_file != NULL)
6896 fprintf (lra_dump_file, " Deleting move %u\n",
6897 INSN_UID (insn));
6898 dump_insn_slim (lra_dump_file, insn);
6900 delete_move_and_clobber (insn, REGNO (dest));
6901 continue;
6903 /* We should not worry about generation memory-memory
6904 moves here as if the corresponding inheritance did
6905 not work (inheritance pseudo did not get a hard reg),
6906 we remove the inheritance pseudo and the optional
6907 reload. */
6909 lra_substitute_pseudo_within_insn
6910 (insn, regno, lra_reg_info[regno].restore_rtx, false);
6911 lra_update_insn_regno_info (insn);
6912 if (lra_dump_file != NULL)
6914 fprintf (lra_dump_file,
6915 " Restoring original insn:\n");
6916 dump_insn_slim (lra_dump_file, insn);
6920 /* Clear restore_regnos. */
6921 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
6922 lra_reg_info[regno].restore_rtx = NULL_RTX;
6923 return change_p;
6926 /* Entry function for undoing inheritance/split transformation. Return true
6927 if we did any RTL change in this pass. */
6928 bool
6929 lra_undo_inheritance (void)
6931 unsigned int regno;
6932 int hard_regno;
6933 int n_all_inherit, n_inherit, n_all_split, n_split;
6934 rtx restore_rtx;
6935 bitmap_iterator bi;
6936 bool change_p;
6938 lra_undo_inheritance_iter++;
6939 if (lra_undo_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
6940 return false;
6941 if (lra_dump_file != NULL)
6942 fprintf (lra_dump_file,
6943 "\n********** Undoing inheritance #%d: **********\n\n",
6944 lra_undo_inheritance_iter);
6945 auto_bitmap remove_pseudos (&reg_obstack);
6946 n_inherit = n_all_inherit = 0;
6947 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
6948 if (lra_reg_info[regno].restore_rtx != NULL_RTX)
6950 n_all_inherit++;
6951 if (reg_renumber[regno] < 0
6952 /* If the original pseudo changed its allocation, just
6953 removing inheritance is dangerous as for changing
6954 allocation we used shorter live-ranges. */
6955 && (! REG_P (lra_reg_info[regno].restore_rtx)
6956 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] < 0))
6957 bitmap_set_bit (remove_pseudos, regno);
6958 else
6959 n_inherit++;
6961 if (lra_dump_file != NULL && n_all_inherit != 0)
6962 fprintf (lra_dump_file, "Inherit %d out of %d (%.2f%%)\n",
6963 n_inherit, n_all_inherit,
6964 (double) n_inherit / n_all_inherit * 100);
6965 n_split = n_all_split = 0;
6966 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
6967 if ((restore_rtx = lra_reg_info[regno].restore_rtx) != NULL_RTX)
6969 int restore_regno = REGNO (restore_rtx);
6971 n_all_split++;
6972 hard_regno = (restore_regno >= FIRST_PSEUDO_REGISTER
6973 ? reg_renumber[restore_regno] : restore_regno);
6974 if (hard_regno < 0 || reg_renumber[regno] == hard_regno)
6975 bitmap_set_bit (remove_pseudos, regno);
6976 else
6978 n_split++;
6979 if (lra_dump_file != NULL)
6980 fprintf (lra_dump_file, " Keep split r%d (orig=r%d)\n",
6981 regno, restore_regno);
6984 if (lra_dump_file != NULL && n_all_split != 0)
6985 fprintf (lra_dump_file, "Split %d out of %d (%.2f%%)\n",
6986 n_split, n_all_split,
6987 (double) n_split / n_all_split * 100);
6988 change_p = remove_inheritance_pseudos (remove_pseudos);
6989 /* Clear restore_regnos. */
6990 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
6991 lra_reg_info[regno].restore_rtx = NULL_RTX;
6992 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
6993 lra_reg_info[regno].restore_rtx = NULL_RTX;
6994 change_p = undo_optional_reloads () || change_p;
6995 return change_p;