PR tree-optimization/84740
[official-gcc.git] / gcc / convert.c
blob8c8931f40ed284d80d69eb3c4a23a76f18678073
1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* These routines are somewhat language-independent utility function
22 intended to be called by the language-specific convert () functions. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "target.h"
28 #include "tree.h"
29 #include "diagnostic-core.h"
30 #include "fold-const.h"
31 #include "stor-layout.h"
32 #include "convert.h"
33 #include "langhooks.h"
34 #include "builtins.h"
35 #include "ubsan.h"
36 #include "stringpool.h"
37 #include "attribs.h"
38 #include "asan.h"
40 #define maybe_fold_build1_loc(FOLD_P, LOC, CODE, TYPE, EXPR) \
41 ((FOLD_P) ? fold_build1_loc (LOC, CODE, TYPE, EXPR) \
42 : build1_loc (LOC, CODE, TYPE, EXPR))
43 #define maybe_fold_build2_loc(FOLD_P, LOC, CODE, TYPE, EXPR1, EXPR2) \
44 ((FOLD_P) ? fold_build2_loc (LOC, CODE, TYPE, EXPR1, EXPR2) \
45 : build2_loc (LOC, CODE, TYPE, EXPR1, EXPR2))
47 /* Convert EXPR to some pointer or reference type TYPE.
48 EXPR must be pointer, reference, integer, enumeral, or literal zero;
49 in other cases error is called. If FOLD_P is true, try to fold the
50 expression. */
52 static tree
53 convert_to_pointer_1 (tree type, tree expr, bool fold_p)
55 location_t loc = EXPR_LOCATION (expr);
56 if (TREE_TYPE (expr) == type)
57 return expr;
59 switch (TREE_CODE (TREE_TYPE (expr)))
61 case POINTER_TYPE:
62 case REFERENCE_TYPE:
64 /* If the pointers point to different address spaces, conversion needs
65 to be done via a ADDR_SPACE_CONVERT_EXPR instead of a NOP_EXPR. */
66 addr_space_t to_as = TYPE_ADDR_SPACE (TREE_TYPE (type));
67 addr_space_t from_as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (expr)));
69 if (to_as == from_as)
70 return maybe_fold_build1_loc (fold_p, loc, NOP_EXPR, type, expr);
71 else
72 return maybe_fold_build1_loc (fold_p, loc, ADDR_SPACE_CONVERT_EXPR,
73 type, expr);
76 case INTEGER_TYPE:
77 case ENUMERAL_TYPE:
78 case BOOLEAN_TYPE:
80 /* If the input precision differs from the target pointer type
81 precision, first convert the input expression to an integer type of
82 the target precision. Some targets, e.g. VMS, need several pointer
83 sizes to coexist so the latter isn't necessarily POINTER_SIZE. */
84 unsigned int pprec = TYPE_PRECISION (type);
85 unsigned int eprec = TYPE_PRECISION (TREE_TYPE (expr));
87 if (eprec != pprec)
88 expr
89 = maybe_fold_build1_loc (fold_p, loc, NOP_EXPR,
90 lang_hooks.types.type_for_size (pprec, 0),
91 expr);
93 return maybe_fold_build1_loc (fold_p, loc, CONVERT_EXPR, type, expr);
95 default:
96 error ("cannot convert to a pointer type");
97 return convert_to_pointer_1 (type, integer_zero_node, fold_p);
101 /* A wrapper around convert_to_pointer_1 that always folds the
102 expression. */
104 tree
105 convert_to_pointer (tree type, tree expr)
107 return convert_to_pointer_1 (type, expr, true);
110 /* A wrapper around convert_to_pointer_1 that only folds the
111 expression if DOFOLD, or if it is CONSTANT_CLASS_P. */
113 tree
114 convert_to_pointer_maybe_fold (tree type, tree expr, bool dofold)
116 return convert_to_pointer_1 (type, expr, dofold || CONSTANT_CLASS_P (expr));
119 /* Convert EXPR to some floating-point type TYPE.
121 EXPR must be float, fixed-point, integer, or enumeral;
122 in other cases error is called. If FOLD_P is true, try to fold
123 the expression. */
125 static tree
126 convert_to_real_1 (tree type, tree expr, bool fold_p)
128 enum built_in_function fcode = builtin_mathfn_code (expr);
129 tree itype = TREE_TYPE (expr);
130 location_t loc = EXPR_LOCATION (expr);
132 if (TREE_CODE (expr) == COMPOUND_EXPR)
134 tree t = convert_to_real_1 (type, TREE_OPERAND (expr, 1), fold_p);
135 if (t == TREE_OPERAND (expr, 1))
136 return expr;
137 return build2_loc (EXPR_LOCATION (expr), COMPOUND_EXPR, TREE_TYPE (t),
138 TREE_OPERAND (expr, 0), t);
141 /* Disable until we figure out how to decide whether the functions are
142 present in runtime. */
143 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
144 if (optimize
145 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
146 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
148 switch (fcode)
150 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
151 CASE_MATHFN (COSH)
152 CASE_MATHFN (EXP)
153 CASE_MATHFN (EXP10)
154 CASE_MATHFN (EXP2)
155 CASE_MATHFN (EXPM1)
156 CASE_MATHFN (GAMMA)
157 CASE_MATHFN (J0)
158 CASE_MATHFN (J1)
159 CASE_MATHFN (LGAMMA)
160 CASE_MATHFN (POW10)
161 CASE_MATHFN (SINH)
162 CASE_MATHFN (TGAMMA)
163 CASE_MATHFN (Y0)
164 CASE_MATHFN (Y1)
165 /* The above functions may set errno differently with float
166 input or output so this transformation is not safe with
167 -fmath-errno. */
168 if (flag_errno_math)
169 break;
170 gcc_fallthrough ();
171 CASE_MATHFN (ACOS)
172 CASE_MATHFN (ACOSH)
173 CASE_MATHFN (ASIN)
174 CASE_MATHFN (ASINH)
175 CASE_MATHFN (ATAN)
176 CASE_MATHFN (ATANH)
177 CASE_MATHFN (CBRT)
178 CASE_MATHFN (COS)
179 CASE_MATHFN (ERF)
180 CASE_MATHFN (ERFC)
181 CASE_MATHFN (LOG)
182 CASE_MATHFN (LOG10)
183 CASE_MATHFN (LOG2)
184 CASE_MATHFN (LOG1P)
185 CASE_MATHFN (SIN)
186 CASE_MATHFN (TAN)
187 CASE_MATHFN (TANH)
188 /* The above functions are not safe to do this conversion. */
189 if (!flag_unsafe_math_optimizations)
190 break;
191 gcc_fallthrough ();
192 CASE_MATHFN (SQRT)
193 CASE_MATHFN (FABS)
194 CASE_MATHFN (LOGB)
195 #undef CASE_MATHFN
197 tree arg0 = strip_float_extensions (CALL_EXPR_ARG (expr, 0));
198 tree newtype = type;
200 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
201 the both as the safe type for operation. */
202 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
203 newtype = TREE_TYPE (arg0);
205 /* We consider to convert
207 (T1) sqrtT2 ((T2) exprT3)
209 (T1) sqrtT4 ((T4) exprT3)
211 , where T1 is TYPE, T2 is ITYPE, T3 is TREE_TYPE (ARG0),
212 and T4 is NEWTYPE. All those types are of floating point types.
213 T4 (NEWTYPE) should be narrower than T2 (ITYPE). This conversion
214 is safe only if P1 >= P2*2+2, where P1 and P2 are precisions of
215 T2 and T4. See the following URL for a reference:
216 http://stackoverflow.com/questions/9235456/determining-
217 floating-point-square-root
219 if ((fcode == BUILT_IN_SQRT || fcode == BUILT_IN_SQRTL)
220 && !flag_unsafe_math_optimizations)
222 /* The following conversion is unsafe even the precision condition
223 below is satisfied:
225 (float) sqrtl ((long double) double_val) -> (float) sqrt (double_val)
227 if (TYPE_MODE (type) != TYPE_MODE (newtype))
228 break;
230 int p1 = REAL_MODE_FORMAT (TYPE_MODE (itype))->p;
231 int p2 = REAL_MODE_FORMAT (TYPE_MODE (newtype))->p;
232 if (p1 < p2 * 2 + 2)
233 break;
236 /* Be careful about integer to fp conversions.
237 These may overflow still. */
238 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
239 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
240 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
241 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
243 tree fn = mathfn_built_in (newtype, fcode);
244 if (fn)
246 tree arg = convert_to_real_1 (newtype, arg0, fold_p);
247 expr = build_call_expr (fn, 1, arg);
248 if (newtype == type)
249 return expr;
253 default:
254 break;
258 /* Propagate the cast into the operation. */
259 if (itype != type && FLOAT_TYPE_P (type))
260 switch (TREE_CODE (expr))
262 /* Convert (float)-x into -(float)x. This is safe for
263 round-to-nearest rounding mode when the inner type is float. */
264 case ABS_EXPR:
265 case NEGATE_EXPR:
266 if (!flag_rounding_math
267 && FLOAT_TYPE_P (itype)
268 && TYPE_PRECISION (type) < TYPE_PRECISION (itype))
270 tree arg = convert_to_real_1 (type, TREE_OPERAND (expr, 0),
271 fold_p);
272 return build1 (TREE_CODE (expr), type, arg);
274 break;
275 /* Convert (outertype)((innertype0)a+(innertype1)b)
276 into ((newtype)a+(newtype)b) where newtype
277 is the widest mode from all of these. */
278 case PLUS_EXPR:
279 case MINUS_EXPR:
280 case MULT_EXPR:
281 case RDIV_EXPR:
283 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
284 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
286 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
287 && FLOAT_TYPE_P (TREE_TYPE (arg1))
288 && DECIMAL_FLOAT_TYPE_P (itype) == DECIMAL_FLOAT_TYPE_P (type))
290 tree newtype = type;
292 if (TYPE_MODE (TREE_TYPE (arg0)) == SDmode
293 || TYPE_MODE (TREE_TYPE (arg1)) == SDmode
294 || TYPE_MODE (type) == SDmode)
295 newtype = dfloat32_type_node;
296 if (TYPE_MODE (TREE_TYPE (arg0)) == DDmode
297 || TYPE_MODE (TREE_TYPE (arg1)) == DDmode
298 || TYPE_MODE (type) == DDmode)
299 newtype = dfloat64_type_node;
300 if (TYPE_MODE (TREE_TYPE (arg0)) == TDmode
301 || TYPE_MODE (TREE_TYPE (arg1)) == TDmode
302 || TYPE_MODE (type) == TDmode)
303 newtype = dfloat128_type_node;
304 if (newtype == dfloat32_type_node
305 || newtype == dfloat64_type_node
306 || newtype == dfloat128_type_node)
308 expr = build2 (TREE_CODE (expr), newtype,
309 convert_to_real_1 (newtype, arg0,
310 fold_p),
311 convert_to_real_1 (newtype, arg1,
312 fold_p));
313 if (newtype == type)
314 return expr;
315 break;
318 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
319 newtype = TREE_TYPE (arg0);
320 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
321 newtype = TREE_TYPE (arg1);
322 /* Sometimes this transformation is safe (cannot
323 change results through affecting double rounding
324 cases) and sometimes it is not. If NEWTYPE is
325 wider than TYPE, e.g. (float)((long double)double
326 + (long double)double) converted to
327 (float)(double + double), the transformation is
328 unsafe regardless of the details of the types
329 involved; double rounding can arise if the result
330 of NEWTYPE arithmetic is a NEWTYPE value half way
331 between two representable TYPE values but the
332 exact value is sufficiently different (in the
333 right direction) for this difference to be
334 visible in ITYPE arithmetic. If NEWTYPE is the
335 same as TYPE, however, the transformation may be
336 safe depending on the types involved: it is safe
337 if the ITYPE has strictly more than twice as many
338 mantissa bits as TYPE, can represent infinities
339 and NaNs if the TYPE can, and has sufficient
340 exponent range for the product or ratio of two
341 values representable in the TYPE to be within the
342 range of normal values of ITYPE. */
343 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
344 && (flag_unsafe_math_optimizations
345 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
346 && real_can_shorten_arithmetic (TYPE_MODE (itype),
347 TYPE_MODE (type))
348 && !excess_precision_type (newtype))))
350 expr = build2 (TREE_CODE (expr), newtype,
351 convert_to_real_1 (newtype, arg0,
352 fold_p),
353 convert_to_real_1 (newtype, arg1,
354 fold_p));
355 if (newtype == type)
356 return expr;
360 break;
361 default:
362 break;
365 switch (TREE_CODE (TREE_TYPE (expr)))
367 case REAL_TYPE:
368 /* Ignore the conversion if we don't need to store intermediate
369 results and neither type is a decimal float. */
370 return build1_loc (loc,
371 (flag_float_store
372 || DECIMAL_FLOAT_TYPE_P (type)
373 || DECIMAL_FLOAT_TYPE_P (itype))
374 ? CONVERT_EXPR : NOP_EXPR, type, expr);
376 case INTEGER_TYPE:
377 case ENUMERAL_TYPE:
378 case BOOLEAN_TYPE:
379 return build1 (FLOAT_EXPR, type, expr);
381 case FIXED_POINT_TYPE:
382 return build1 (FIXED_CONVERT_EXPR, type, expr);
384 case COMPLEX_TYPE:
385 return convert (type,
386 maybe_fold_build1_loc (fold_p, loc, REALPART_EXPR,
387 TREE_TYPE (TREE_TYPE (expr)),
388 expr));
390 case POINTER_TYPE:
391 case REFERENCE_TYPE:
392 error ("pointer value used where a floating point value was expected");
393 return convert_to_real_1 (type, integer_zero_node, fold_p);
395 default:
396 error ("aggregate value used where a float was expected");
397 return convert_to_real_1 (type, integer_zero_node, fold_p);
401 /* A wrapper around convert_to_real_1 that always folds the
402 expression. */
404 tree
405 convert_to_real (tree type, tree expr)
407 return convert_to_real_1 (type, expr, true);
410 /* A wrapper around convert_to_real_1 that only folds the
411 expression if DOFOLD, or if it is CONSTANT_CLASS_P. */
413 tree
414 convert_to_real_maybe_fold (tree type, tree expr, bool dofold)
416 return convert_to_real_1 (type, expr, dofold || CONSTANT_CLASS_P (expr));
419 /* Try to narrow EX_FORM ARG0 ARG1 in narrowed arg types producing a
420 result in TYPE. */
422 static tree
423 do_narrow (location_t loc,
424 enum tree_code ex_form, tree type, tree arg0, tree arg1,
425 tree expr, unsigned inprec, unsigned outprec, bool dofold)
427 /* Do the arithmetic in type TYPEX,
428 then convert result to TYPE. */
429 tree typex = type;
431 /* Can't do arithmetic in enumeral types
432 so use an integer type that will hold the values. */
433 if (TREE_CODE (typex) == ENUMERAL_TYPE)
434 typex = lang_hooks.types.type_for_size (TYPE_PRECISION (typex),
435 TYPE_UNSIGNED (typex));
437 /* The type demotion below might cause doing unsigned arithmetic
438 instead of signed, and thus hide overflow bugs. */
439 if ((ex_form == PLUS_EXPR || ex_form == MINUS_EXPR)
440 && !TYPE_UNSIGNED (typex)
441 && sanitize_flags_p (SANITIZE_SI_OVERFLOW))
442 return NULL_TREE;
444 /* But now perhaps TYPEX is as wide as INPREC.
445 In that case, do nothing special here.
446 (Otherwise would recurse infinitely in convert. */
447 if (TYPE_PRECISION (typex) != inprec)
449 /* Don't do unsigned arithmetic where signed was wanted,
450 or vice versa.
451 Exception: if both of the original operands were
452 unsigned then we can safely do the work as unsigned.
453 Exception: shift operations take their type solely
454 from the first argument.
455 Exception: the LSHIFT_EXPR case above requires that
456 we perform this operation unsigned lest we produce
457 signed-overflow undefinedness.
458 And we may need to do it as unsigned
459 if we truncate to the original size. */
460 if (TYPE_UNSIGNED (TREE_TYPE (expr))
461 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
462 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
463 || ex_form == LSHIFT_EXPR
464 || ex_form == RSHIFT_EXPR
465 || ex_form == LROTATE_EXPR
466 || ex_form == RROTATE_EXPR))
467 || ex_form == LSHIFT_EXPR
468 /* If we have !flag_wrapv, and either ARG0 or
469 ARG1 is of a signed type, we have to do
470 PLUS_EXPR, MINUS_EXPR or MULT_EXPR in an unsigned
471 type in case the operation in outprec precision
472 could overflow. Otherwise, we would introduce
473 signed-overflow undefinedness. */
474 || ((!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
475 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
476 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
477 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1))))
478 && ((TYPE_PRECISION (TREE_TYPE (arg0)) * 2u
479 > outprec)
480 || (TYPE_PRECISION (TREE_TYPE (arg1)) * 2u
481 > outprec))
482 && (ex_form == PLUS_EXPR
483 || ex_form == MINUS_EXPR
484 || ex_form == MULT_EXPR)))
486 if (!TYPE_UNSIGNED (typex))
487 typex = unsigned_type_for (typex);
489 else
491 if (TYPE_UNSIGNED (typex))
492 typex = signed_type_for (typex);
494 /* We should do away with all this once we have a proper
495 type promotion/demotion pass, see PR45397. */
496 expr = maybe_fold_build2_loc (dofold, loc, ex_form, typex,
497 convert (typex, arg0),
498 convert (typex, arg1));
499 return convert (type, expr);
502 return NULL_TREE;
505 /* Convert EXPR to some integer (or enum) type TYPE.
507 EXPR must be pointer, integer, discrete (enum, char, or bool), float,
508 fixed-point or vector; in other cases error is called.
510 If DOFOLD is TRUE, we try to simplify newly-created patterns by folding.
512 The result of this is always supposed to be a newly created tree node
513 not in use in any existing structure. */
515 static tree
516 convert_to_integer_1 (tree type, tree expr, bool dofold)
518 enum tree_code ex_form = TREE_CODE (expr);
519 tree intype = TREE_TYPE (expr);
520 unsigned int inprec = element_precision (intype);
521 unsigned int outprec = element_precision (type);
522 location_t loc = EXPR_LOCATION (expr);
524 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
525 be. Consider `enum E = { a, b = (enum E) 3 };'. */
526 if (!COMPLETE_TYPE_P (type))
528 error ("conversion to incomplete type");
529 return error_mark_node;
532 if (ex_form == COMPOUND_EXPR)
534 tree t = convert_to_integer_1 (type, TREE_OPERAND (expr, 1), dofold);
535 if (t == TREE_OPERAND (expr, 1))
536 return expr;
537 return build2_loc (EXPR_LOCATION (expr), COMPOUND_EXPR, TREE_TYPE (t),
538 TREE_OPERAND (expr, 0), t);
541 /* Convert e.g. (long)round(d) -> lround(d). */
542 /* If we're converting to char, we may encounter differing behavior
543 between converting from double->char vs double->long->char.
544 We're in "undefined" territory but we prefer to be conservative,
545 so only proceed in "unsafe" math mode. */
546 if (optimize
547 && (flag_unsafe_math_optimizations
548 || (long_integer_type_node
549 && outprec >= TYPE_PRECISION (long_integer_type_node))))
551 tree s_expr = strip_float_extensions (expr);
552 tree s_intype = TREE_TYPE (s_expr);
553 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
554 tree fn = 0;
556 switch (fcode)
558 CASE_FLT_FN (BUILT_IN_CEIL):
559 CASE_FLT_FN_FLOATN_NX (BUILT_IN_CEIL):
560 /* Only convert in ISO C99 mode. */
561 if (!targetm.libc_has_function (function_c99_misc))
562 break;
563 if (outprec < TYPE_PRECISION (integer_type_node)
564 || (outprec == TYPE_PRECISION (integer_type_node)
565 && !TYPE_UNSIGNED (type)))
566 fn = mathfn_built_in (s_intype, BUILT_IN_ICEIL);
567 else if (outprec == TYPE_PRECISION (long_integer_type_node)
568 && !TYPE_UNSIGNED (type))
569 fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
570 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
571 && !TYPE_UNSIGNED (type))
572 fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
573 break;
575 CASE_FLT_FN (BUILT_IN_FLOOR):
576 CASE_FLT_FN_FLOATN_NX (BUILT_IN_FLOOR):
577 /* Only convert in ISO C99 mode. */
578 if (!targetm.libc_has_function (function_c99_misc))
579 break;
580 if (outprec < TYPE_PRECISION (integer_type_node)
581 || (outprec == TYPE_PRECISION (integer_type_node)
582 && !TYPE_UNSIGNED (type)))
583 fn = mathfn_built_in (s_intype, BUILT_IN_IFLOOR);
584 else if (outprec == TYPE_PRECISION (long_integer_type_node)
585 && !TYPE_UNSIGNED (type))
586 fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
587 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
588 && !TYPE_UNSIGNED (type))
589 fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
590 break;
592 CASE_FLT_FN (BUILT_IN_ROUND):
593 CASE_FLT_FN_FLOATN_NX (BUILT_IN_ROUND):
594 /* Only convert in ISO C99 mode and with -fno-math-errno. */
595 if (!targetm.libc_has_function (function_c99_misc) || flag_errno_math)
596 break;
597 if (outprec < TYPE_PRECISION (integer_type_node)
598 || (outprec == TYPE_PRECISION (integer_type_node)
599 && !TYPE_UNSIGNED (type)))
600 fn = mathfn_built_in (s_intype, BUILT_IN_IROUND);
601 else if (outprec == TYPE_PRECISION (long_integer_type_node)
602 && !TYPE_UNSIGNED (type))
603 fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
604 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
605 && !TYPE_UNSIGNED (type))
606 fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
607 break;
609 CASE_FLT_FN (BUILT_IN_NEARBYINT):
610 CASE_FLT_FN_FLOATN_NX (BUILT_IN_NEARBYINT):
611 /* Only convert nearbyint* if we can ignore math exceptions. */
612 if (flag_trapping_math)
613 break;
614 gcc_fallthrough ();
615 CASE_FLT_FN (BUILT_IN_RINT):
616 CASE_FLT_FN_FLOATN_NX (BUILT_IN_RINT):
617 /* Only convert in ISO C99 mode and with -fno-math-errno. */
618 if (!targetm.libc_has_function (function_c99_misc) || flag_errno_math)
619 break;
620 if (outprec < TYPE_PRECISION (integer_type_node)
621 || (outprec == TYPE_PRECISION (integer_type_node)
622 && !TYPE_UNSIGNED (type)))
623 fn = mathfn_built_in (s_intype, BUILT_IN_IRINT);
624 else if (outprec == TYPE_PRECISION (long_integer_type_node)
625 && !TYPE_UNSIGNED (type))
626 fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
627 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
628 && !TYPE_UNSIGNED (type))
629 fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
630 break;
632 CASE_FLT_FN (BUILT_IN_TRUNC):
633 CASE_FLT_FN_FLOATN_NX (BUILT_IN_TRUNC):
634 return convert_to_integer_1 (type, CALL_EXPR_ARG (s_expr, 0), dofold);
636 default:
637 break;
640 if (fn)
642 tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0));
643 return convert_to_integer_1 (type, newexpr, dofold);
647 /* Convert (int)logb(d) -> ilogb(d). */
648 if (optimize
649 && flag_unsafe_math_optimizations
650 && !flag_trapping_math && !flag_errno_math && flag_finite_math_only
651 && integer_type_node
652 && (outprec > TYPE_PRECISION (integer_type_node)
653 || (outprec == TYPE_PRECISION (integer_type_node)
654 && !TYPE_UNSIGNED (type))))
656 tree s_expr = strip_float_extensions (expr);
657 tree s_intype = TREE_TYPE (s_expr);
658 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
659 tree fn = 0;
661 switch (fcode)
663 CASE_FLT_FN (BUILT_IN_LOGB):
664 fn = mathfn_built_in (s_intype, BUILT_IN_ILOGB);
665 break;
667 default:
668 break;
671 if (fn)
673 tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0));
674 return convert_to_integer_1 (type, newexpr, dofold);
678 switch (TREE_CODE (intype))
680 case POINTER_TYPE:
681 case REFERENCE_TYPE:
682 if (integer_zerop (expr) && !TREE_OVERFLOW (expr))
683 return build_int_cst (type, 0);
685 /* Convert to an unsigned integer of the correct width first, and from
686 there widen/truncate to the required type. Some targets support the
687 coexistence of multiple valid pointer sizes, so fetch the one we need
688 from the type. */
689 if (!dofold)
690 return build1 (CONVERT_EXPR, type, expr);
691 expr = fold_build1 (CONVERT_EXPR,
692 lang_hooks.types.type_for_size
693 (TYPE_PRECISION (intype), 0),
694 expr);
695 return fold_convert (type, expr);
697 case INTEGER_TYPE:
698 case ENUMERAL_TYPE:
699 case BOOLEAN_TYPE:
700 case OFFSET_TYPE:
701 /* If this is a logical operation, which just returns 0 or 1, we can
702 change the type of the expression. */
704 if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
706 expr = copy_node (expr);
707 TREE_TYPE (expr) = type;
708 return expr;
711 /* If we are widening the type, put in an explicit conversion.
712 Similarly if we are not changing the width. After this, we know
713 we are truncating EXPR. */
715 else if (outprec >= inprec)
717 enum tree_code code;
719 /* If the precision of the EXPR's type is K bits and the
720 destination mode has more bits, and the sign is changing,
721 it is not safe to use a NOP_EXPR. For example, suppose
722 that EXPR's type is a 3-bit unsigned integer type, the
723 TYPE is a 3-bit signed integer type, and the machine mode
724 for the types is 8-bit QImode. In that case, the
725 conversion necessitates an explicit sign-extension. In
726 the signed-to-unsigned case the high-order bits have to
727 be cleared. */
728 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
729 && !type_has_mode_precision_p (TREE_TYPE (expr)))
730 code = CONVERT_EXPR;
731 else
732 code = NOP_EXPR;
734 return maybe_fold_build1_loc (dofold, loc, code, type, expr);
737 /* If TYPE is an enumeral type or a type with a precision less
738 than the number of bits in its mode, do the conversion to the
739 type corresponding to its mode, then do a nop conversion
740 to TYPE. */
741 else if (TREE_CODE (type) == ENUMERAL_TYPE
742 || maybe_ne (outprec, GET_MODE_PRECISION (TYPE_MODE (type))))
744 expr = convert (lang_hooks.types.type_for_mode
745 (TYPE_MODE (type), TYPE_UNSIGNED (type)), expr);
746 return maybe_fold_build1_loc (dofold, loc, NOP_EXPR, type, expr);
749 /* Here detect when we can distribute the truncation down past some
750 arithmetic. For example, if adding two longs and converting to an
751 int, we can equally well convert both to ints and then add.
752 For the operations handled here, such truncation distribution
753 is always safe.
754 It is desirable in these cases:
755 1) when truncating down to full-word from a larger size
756 2) when truncating takes no work.
757 3) when at least one operand of the arithmetic has been extended
758 (as by C's default conversions). In this case we need two conversions
759 if we do the arithmetic as already requested, so we might as well
760 truncate both and then combine. Perhaps that way we need only one.
762 Note that in general we cannot do the arithmetic in a type
763 shorter than the desired result of conversion, even if the operands
764 are both extended from a shorter type, because they might overflow
765 if combined in that type. The exceptions to this--the times when
766 two narrow values can be combined in their narrow type even to
767 make a wider result--are handled by "shorten" in build_binary_op. */
769 if (dofold)
770 switch (ex_form)
772 case RSHIFT_EXPR:
773 /* We can pass truncation down through right shifting
774 when the shift count is a nonpositive constant. */
775 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
776 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0)
777 goto trunc1;
778 break;
780 case LSHIFT_EXPR:
781 /* We can pass truncation down through left shifting
782 when the shift count is a nonnegative constant and
783 the target type is unsigned. */
784 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
785 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
786 && TYPE_UNSIGNED (type)
787 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
789 /* If shift count is less than the width of the truncated type,
790 really shift. */
791 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
792 /* In this case, shifting is like multiplication. */
793 goto trunc1;
794 else
796 /* If it is >= that width, result is zero.
797 Handling this with trunc1 would give the wrong result:
798 (int) ((long long) a << 32) is well defined (as 0)
799 but (int) a << 32 is undefined and would get a
800 warning. */
802 tree t = build_int_cst (type, 0);
804 /* If the original expression had side-effects, we must
805 preserve it. */
806 if (TREE_SIDE_EFFECTS (expr))
807 return build2 (COMPOUND_EXPR, type, expr, t);
808 else
809 return t;
812 break;
814 case TRUNC_DIV_EXPR:
816 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), NULL_TREE);
817 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), NULL_TREE);
819 /* Don't distribute unless the output precision is at least as
820 big as the actual inputs and it has the same signedness. */
821 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
822 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
823 /* If signedness of arg0 and arg1 don't match,
824 we can't necessarily find a type to compare them in. */
825 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
826 == TYPE_UNSIGNED (TREE_TYPE (arg1)))
827 /* Do not change the sign of the division. */
828 && (TYPE_UNSIGNED (TREE_TYPE (expr))
829 == TYPE_UNSIGNED (TREE_TYPE (arg0)))
830 /* Either require unsigned division or a division by
831 a constant that is not -1. */
832 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
833 || (TREE_CODE (arg1) == INTEGER_CST
834 && !integer_all_onesp (arg1))))
836 tree tem = do_narrow (loc, ex_form, type, arg0, arg1,
837 expr, inprec, outprec, dofold);
838 if (tem)
839 return tem;
841 break;
844 case MAX_EXPR:
845 case MIN_EXPR:
846 case MULT_EXPR:
848 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
849 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
851 /* Don't distribute unless the output precision is at least as
852 big as the actual inputs. Otherwise, the comparison of the
853 truncated values will be wrong. */
854 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
855 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
856 /* If signedness of arg0 and arg1 don't match,
857 we can't necessarily find a type to compare them in. */
858 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
859 == TYPE_UNSIGNED (TREE_TYPE (arg1))))
860 goto trunc1;
861 break;
864 case PLUS_EXPR:
865 case MINUS_EXPR:
866 case BIT_AND_EXPR:
867 case BIT_IOR_EXPR:
868 case BIT_XOR_EXPR:
869 trunc1:
871 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
872 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
874 /* Do not try to narrow operands of pointer subtraction;
875 that will interfere with other folding. */
876 if (ex_form == MINUS_EXPR
877 && CONVERT_EXPR_P (arg0)
878 && CONVERT_EXPR_P (arg1)
879 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 0)))
880 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1, 0))))
881 break;
883 if (outprec >= BITS_PER_WORD
884 || targetm.truly_noop_truncation (outprec, inprec)
885 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
886 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
888 tree tem = do_narrow (loc, ex_form, type, arg0, arg1,
889 expr, inprec, outprec, dofold);
890 if (tem)
891 return tem;
894 break;
896 case NEGATE_EXPR:
897 /* Using unsigned arithmetic for signed types may hide overflow
898 bugs. */
899 if (!TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (expr, 0)))
900 && sanitize_flags_p (SANITIZE_SI_OVERFLOW))
901 break;
902 /* Fall through. */
903 case BIT_NOT_EXPR:
904 /* This is not correct for ABS_EXPR,
905 since we must test the sign before truncation. */
907 /* Do the arithmetic in type TYPEX,
908 then convert result to TYPE. */
909 tree typex = type;
911 /* Can't do arithmetic in enumeral types
912 so use an integer type that will hold the values. */
913 if (TREE_CODE (typex) == ENUMERAL_TYPE)
914 typex
915 = lang_hooks.types.type_for_size (TYPE_PRECISION (typex),
916 TYPE_UNSIGNED (typex));
918 if (!TYPE_UNSIGNED (typex))
919 typex = unsigned_type_for (typex);
920 return convert (type,
921 fold_build1 (ex_form, typex,
922 convert (typex,
923 TREE_OPERAND (expr, 0))));
926 CASE_CONVERT:
928 tree argtype = TREE_TYPE (TREE_OPERAND (expr, 0));
929 /* Don't introduce a "can't convert between vector values
930 of different size" error. */
931 if (TREE_CODE (argtype) == VECTOR_TYPE
932 && maybe_ne (GET_MODE_SIZE (TYPE_MODE (argtype)),
933 GET_MODE_SIZE (TYPE_MODE (type))))
934 break;
936 /* If truncating after truncating, might as well do all at once.
937 If truncating after extending, we may get rid of wasted work. */
938 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
940 case COND_EXPR:
941 /* It is sometimes worthwhile to push the narrowing down through
942 the conditional and never loses. A COND_EXPR may have a throw
943 as one operand, which then has void type. Just leave void
944 operands as they are. */
945 return
946 fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
947 VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1)))
948 ? TREE_OPERAND (expr, 1)
949 : convert (type, TREE_OPERAND (expr, 1)),
950 VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 2)))
951 ? TREE_OPERAND (expr, 2)
952 : convert (type, TREE_OPERAND (expr, 2)));
954 default:
955 break;
958 /* When parsing long initializers, we might end up with a lot of casts.
959 Shortcut this. */
960 if (TREE_CODE (expr) == INTEGER_CST)
961 return fold_convert (type, expr);
962 return build1 (CONVERT_EXPR, type, expr);
964 case REAL_TYPE:
965 if (sanitize_flags_p (SANITIZE_FLOAT_CAST)
966 && current_function_decl != NULL_TREE)
968 expr = save_expr (expr);
969 tree check = ubsan_instrument_float_cast (loc, type, expr);
970 expr = build1 (FIX_TRUNC_EXPR, type, expr);
971 if (check == NULL_TREE)
972 return expr;
973 return maybe_fold_build2_loc (dofold, loc, COMPOUND_EXPR,
974 TREE_TYPE (expr), check, expr);
976 else
977 return build1 (FIX_TRUNC_EXPR, type, expr);
979 case FIXED_POINT_TYPE:
980 return build1 (FIXED_CONVERT_EXPR, type, expr);
982 case COMPLEX_TYPE:
983 expr = maybe_fold_build1_loc (dofold, loc, REALPART_EXPR,
984 TREE_TYPE (TREE_TYPE (expr)), expr);
985 return convert (type, expr);
987 case VECTOR_TYPE:
988 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
990 error ("can%'t convert a vector of type %qT"
991 " to type %qT which has different size",
992 TREE_TYPE (expr), type);
993 return error_mark_node;
995 return build1 (VIEW_CONVERT_EXPR, type, expr);
997 default:
998 error ("aggregate value used where an integer was expected");
999 return convert (type, integer_zero_node);
1003 /* Convert EXPR to some integer (or enum) type TYPE.
1005 EXPR must be pointer, integer, discrete (enum, char, or bool), float,
1006 fixed-point or vector; in other cases error is called.
1008 The result of this is always supposed to be a newly created tree node
1009 not in use in any existing structure. */
1011 tree
1012 convert_to_integer (tree type, tree expr)
1014 return convert_to_integer_1 (type, expr, true);
1017 /* A wrapper around convert_to_complex_1 that only folds the
1018 expression if DOFOLD, or if it is CONSTANT_CLASS_P. */
1020 tree
1021 convert_to_integer_maybe_fold (tree type, tree expr, bool dofold)
1023 return convert_to_integer_1 (type, expr, dofold || CONSTANT_CLASS_P (expr));
1026 /* Convert EXPR to the complex type TYPE in the usual ways. If FOLD_P is
1027 true, try to fold the expression. */
1029 static tree
1030 convert_to_complex_1 (tree type, tree expr, bool fold_p)
1032 location_t loc = EXPR_LOCATION (expr);
1033 tree subtype = TREE_TYPE (type);
1035 switch (TREE_CODE (TREE_TYPE (expr)))
1037 case REAL_TYPE:
1038 case FIXED_POINT_TYPE:
1039 case INTEGER_TYPE:
1040 case ENUMERAL_TYPE:
1041 case BOOLEAN_TYPE:
1042 return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
1043 convert (subtype, integer_zero_node));
1045 case COMPLEX_TYPE:
1047 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
1049 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
1050 return expr;
1051 else if (TREE_CODE (expr) == COMPOUND_EXPR)
1053 tree t = convert_to_complex_1 (type, TREE_OPERAND (expr, 1),
1054 fold_p);
1055 if (t == TREE_OPERAND (expr, 1))
1056 return expr;
1057 return build2_loc (EXPR_LOCATION (expr), COMPOUND_EXPR,
1058 TREE_TYPE (t), TREE_OPERAND (expr, 0), t);
1060 else if (TREE_CODE (expr) == COMPLEX_EXPR)
1061 return maybe_fold_build2_loc (fold_p, loc, COMPLEX_EXPR, type,
1062 convert (subtype,
1063 TREE_OPERAND (expr, 0)),
1064 convert (subtype,
1065 TREE_OPERAND (expr, 1)));
1066 else
1068 expr = save_expr (expr);
1069 tree realp = maybe_fold_build1_loc (fold_p, loc, REALPART_EXPR,
1070 TREE_TYPE (TREE_TYPE (expr)),
1071 expr);
1072 tree imagp = maybe_fold_build1_loc (fold_p, loc, IMAGPART_EXPR,
1073 TREE_TYPE (TREE_TYPE (expr)),
1074 expr);
1075 return maybe_fold_build2_loc (fold_p, loc, COMPLEX_EXPR, type,
1076 convert (subtype, realp),
1077 convert (subtype, imagp));
1081 case POINTER_TYPE:
1082 case REFERENCE_TYPE:
1083 error ("pointer value used where a complex was expected");
1084 return convert_to_complex_1 (type, integer_zero_node, fold_p);
1086 default:
1087 error ("aggregate value used where a complex was expected");
1088 return convert_to_complex_1 (type, integer_zero_node, fold_p);
1092 /* A wrapper around convert_to_complex_1 that always folds the
1093 expression. */
1095 tree
1096 convert_to_complex (tree type, tree expr)
1098 return convert_to_complex_1 (type, expr, true);
1101 /* A wrapper around convert_to_complex_1 that only folds the
1102 expression if DOFOLD, or if it is CONSTANT_CLASS_P. */
1104 tree
1105 convert_to_complex_maybe_fold (tree type, tree expr, bool dofold)
1107 return convert_to_complex_1 (type, expr, dofold || CONSTANT_CLASS_P (expr));
1110 /* Convert EXPR to the vector type TYPE in the usual ways. */
1112 tree
1113 convert_to_vector (tree type, tree expr)
1115 switch (TREE_CODE (TREE_TYPE (expr)))
1117 case INTEGER_TYPE:
1118 case VECTOR_TYPE:
1119 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
1121 error ("can%'t convert a value of type %qT"
1122 " to vector type %qT which has different size",
1123 TREE_TYPE (expr), type);
1124 return error_mark_node;
1126 return build1 (VIEW_CONVERT_EXPR, type, expr);
1128 default:
1129 error ("can%'t convert value to a vector");
1130 return error_mark_node;
1134 /* Convert EXPR to some fixed-point type TYPE.
1136 EXPR must be fixed-point, float, integer, or enumeral;
1137 in other cases error is called. */
1139 tree
1140 convert_to_fixed (tree type, tree expr)
1142 if (integer_zerop (expr))
1144 tree fixed_zero_node = build_fixed (type, FCONST0 (TYPE_MODE (type)));
1145 return fixed_zero_node;
1147 else if (integer_onep (expr) && ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)))
1149 tree fixed_one_node = build_fixed (type, FCONST1 (TYPE_MODE (type)));
1150 return fixed_one_node;
1153 switch (TREE_CODE (TREE_TYPE (expr)))
1155 case FIXED_POINT_TYPE:
1156 case INTEGER_TYPE:
1157 case ENUMERAL_TYPE:
1158 case BOOLEAN_TYPE:
1159 case REAL_TYPE:
1160 return build1 (FIXED_CONVERT_EXPR, type, expr);
1162 case COMPLEX_TYPE:
1163 return convert (type,
1164 fold_build1 (REALPART_EXPR,
1165 TREE_TYPE (TREE_TYPE (expr)), expr));
1167 default:
1168 error ("aggregate value used where a fixed-point was expected");
1169 return error_mark_node;