1 // gogo.cc -- Go frontend parsed representation.
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
15 #include "statements.h"
16 #include "expressions.h"
26 Gogo::Gogo(Backend
* backend
, Linemap
* linemap
, int, int pointer_size
)
31 globals_(new Bindings(NULL
)),
34 imported_unsafe_(false),
45 pkgpath_from_option_(false),
46 prefix_from_option_(false),
47 relative_import_path_(),
50 specific_type_functions_(),
51 specific_type_functions_are_written_(false),
52 named_types_are_converted_(false)
54 const Location loc
= Linemap::predeclared_location();
56 Named_type
* uint8_type
= Type::make_integer_type("uint8", true, 8,
57 RUNTIME_TYPE_KIND_UINT8
);
58 this->add_named_type(uint8_type
);
59 this->add_named_type(Type::make_integer_type("uint16", true, 16,
60 RUNTIME_TYPE_KIND_UINT16
));
61 this->add_named_type(Type::make_integer_type("uint32", true, 32,
62 RUNTIME_TYPE_KIND_UINT32
));
63 this->add_named_type(Type::make_integer_type("uint64", true, 64,
64 RUNTIME_TYPE_KIND_UINT64
));
66 this->add_named_type(Type::make_integer_type("int8", false, 8,
67 RUNTIME_TYPE_KIND_INT8
));
68 this->add_named_type(Type::make_integer_type("int16", false, 16,
69 RUNTIME_TYPE_KIND_INT16
));
70 Named_type
* int32_type
= Type::make_integer_type("int32", false, 32,
71 RUNTIME_TYPE_KIND_INT32
);
72 this->add_named_type(int32_type
);
73 this->add_named_type(Type::make_integer_type("int64", false, 64,
74 RUNTIME_TYPE_KIND_INT64
));
76 this->add_named_type(Type::make_float_type("float32", 32,
77 RUNTIME_TYPE_KIND_FLOAT32
));
78 this->add_named_type(Type::make_float_type("float64", 64,
79 RUNTIME_TYPE_KIND_FLOAT64
));
81 this->add_named_type(Type::make_complex_type("complex64", 64,
82 RUNTIME_TYPE_KIND_COMPLEX64
));
83 this->add_named_type(Type::make_complex_type("complex128", 128,
84 RUNTIME_TYPE_KIND_COMPLEX128
));
86 int int_type_size
= pointer_size
;
87 if (int_type_size
< 32)
89 this->add_named_type(Type::make_integer_type("uint", true,
91 RUNTIME_TYPE_KIND_UINT
));
92 Named_type
* int_type
= Type::make_integer_type("int", false, int_type_size
,
93 RUNTIME_TYPE_KIND_INT
);
94 this->add_named_type(int_type
);
96 this->add_named_type(Type::make_integer_type("uintptr", true,
98 RUNTIME_TYPE_KIND_UINTPTR
));
100 // "byte" is an alias for "uint8".
101 uint8_type
->integer_type()->set_is_byte();
102 Named_object
* byte_type
= Named_object::make_type("byte", NULL
, uint8_type
,
104 this->add_named_type(byte_type
->type_value());
106 // "rune" is an alias for "int32".
107 int32_type
->integer_type()->set_is_rune();
108 Named_object
* rune_type
= Named_object::make_type("rune", NULL
, int32_type
,
110 this->add_named_type(rune_type
->type_value());
112 this->add_named_type(Type::make_named_bool_type());
114 this->add_named_type(Type::make_named_string_type());
116 // "error" is interface { Error() string }.
118 Typed_identifier_list
*methods
= new Typed_identifier_list
;
119 Typed_identifier_list
*results
= new Typed_identifier_list
;
120 results
->push_back(Typed_identifier("", Type::lookup_string_type(), loc
));
121 Type
*method_type
= Type::make_function_type(NULL
, NULL
, results
, loc
);
122 methods
->push_back(Typed_identifier("Error", method_type
, loc
));
123 Interface_type
*error_iface
= Type::make_interface_type(methods
, loc
);
124 error_iface
->finalize_methods();
125 Named_type
*error_type
= Named_object::make_type("error", NULL
, error_iface
, loc
)->type_value();
126 this->add_named_type(error_type
);
129 this->globals_
->add_constant(Typed_identifier("true",
130 Type::make_boolean_type(),
133 Expression::make_boolean(true, loc
),
135 this->globals_
->add_constant(Typed_identifier("false",
136 Type::make_boolean_type(),
139 Expression::make_boolean(false, loc
),
142 this->globals_
->add_constant(Typed_identifier("nil", Type::make_nil_type(),
145 Expression::make_nil(loc
),
148 Type
* abstract_int_type
= Type::make_abstract_integer_type();
149 this->globals_
->add_constant(Typed_identifier("iota", abstract_int_type
,
152 Expression::make_iota(),
155 Function_type
* new_type
= Type::make_function_type(NULL
, NULL
, NULL
, loc
);
156 new_type
->set_is_varargs();
157 new_type
->set_is_builtin();
158 this->globals_
->add_function_declaration("new", NULL
, new_type
, loc
);
160 Function_type
* make_type
= Type::make_function_type(NULL
, NULL
, NULL
, loc
);
161 make_type
->set_is_varargs();
162 make_type
->set_is_builtin();
163 this->globals_
->add_function_declaration("make", NULL
, make_type
, loc
);
165 Typed_identifier_list
* len_result
= new Typed_identifier_list();
166 len_result
->push_back(Typed_identifier("", int_type
, loc
));
167 Function_type
* len_type
= Type::make_function_type(NULL
, NULL
, len_result
,
169 len_type
->set_is_builtin();
170 this->globals_
->add_function_declaration("len", NULL
, len_type
, loc
);
172 Typed_identifier_list
* cap_result
= new Typed_identifier_list();
173 cap_result
->push_back(Typed_identifier("", int_type
, loc
));
174 Function_type
* cap_type
= Type::make_function_type(NULL
, NULL
, len_result
,
176 cap_type
->set_is_builtin();
177 this->globals_
->add_function_declaration("cap", NULL
, cap_type
, loc
);
179 Function_type
* print_type
= Type::make_function_type(NULL
, NULL
, NULL
, loc
);
180 print_type
->set_is_varargs();
181 print_type
->set_is_builtin();
182 this->globals_
->add_function_declaration("print", NULL
, print_type
, loc
);
184 print_type
= Type::make_function_type(NULL
, NULL
, NULL
, loc
);
185 print_type
->set_is_varargs();
186 print_type
->set_is_builtin();
187 this->globals_
->add_function_declaration("println", NULL
, print_type
, loc
);
189 Type
*empty
= Type::make_empty_interface_type(loc
);
190 Typed_identifier_list
* panic_parms
= new Typed_identifier_list();
191 panic_parms
->push_back(Typed_identifier("e", empty
, loc
));
192 Function_type
*panic_type
= Type::make_function_type(NULL
, panic_parms
,
194 panic_type
->set_is_builtin();
195 this->globals_
->add_function_declaration("panic", NULL
, panic_type
, loc
);
197 Typed_identifier_list
* recover_result
= new Typed_identifier_list();
198 recover_result
->push_back(Typed_identifier("", empty
, loc
));
199 Function_type
* recover_type
= Type::make_function_type(NULL
, NULL
,
202 recover_type
->set_is_builtin();
203 this->globals_
->add_function_declaration("recover", NULL
, recover_type
, loc
);
205 Function_type
* close_type
= Type::make_function_type(NULL
, NULL
, NULL
, loc
);
206 close_type
->set_is_varargs();
207 close_type
->set_is_builtin();
208 this->globals_
->add_function_declaration("close", NULL
, close_type
, loc
);
210 Typed_identifier_list
* copy_result
= new Typed_identifier_list();
211 copy_result
->push_back(Typed_identifier("", int_type
, loc
));
212 Function_type
* copy_type
= Type::make_function_type(NULL
, NULL
,
214 copy_type
->set_is_varargs();
215 copy_type
->set_is_builtin();
216 this->globals_
->add_function_declaration("copy", NULL
, copy_type
, loc
);
218 Function_type
* append_type
= Type::make_function_type(NULL
, NULL
, NULL
, loc
);
219 append_type
->set_is_varargs();
220 append_type
->set_is_builtin();
221 this->globals_
->add_function_declaration("append", NULL
, append_type
, loc
);
223 Function_type
* complex_type
= Type::make_function_type(NULL
, NULL
, NULL
, loc
);
224 complex_type
->set_is_varargs();
225 complex_type
->set_is_builtin();
226 this->globals_
->add_function_declaration("complex", NULL
, complex_type
, loc
);
228 Function_type
* real_type
= Type::make_function_type(NULL
, NULL
, NULL
, loc
);
229 real_type
->set_is_varargs();
230 real_type
->set_is_builtin();
231 this->globals_
->add_function_declaration("real", NULL
, real_type
, loc
);
233 Function_type
* imag_type
= Type::make_function_type(NULL
, NULL
, NULL
, loc
);
234 imag_type
->set_is_varargs();
235 imag_type
->set_is_builtin();
236 this->globals_
->add_function_declaration("imag", NULL
, imag_type
, loc
);
238 Function_type
* delete_type
= Type::make_function_type(NULL
, NULL
, NULL
, loc
);
239 delete_type
->set_is_varargs();
240 delete_type
->set_is_builtin();
241 this->globals_
->add_function_declaration("delete", NULL
, delete_type
, loc
);
244 // Convert a pkgpath into a string suitable for a symbol. Note that
245 // this transformation is convenient but imperfect. A -fgo-pkgpath
246 // option of a/b_c will conflict with a -fgo-pkgpath option of a_b/c,
247 // possibly leading to link time errors.
250 Gogo::pkgpath_for_symbol(const std::string
& pkgpath
)
252 std::string s
= pkgpath
;
253 for (size_t i
= 0; i
< s
.length(); ++i
)
256 if ((c
>= 'a' && c
<= 'z')
257 || (c
>= 'A' && c
<= 'Z')
258 || (c
>= '0' && c
<= '9')
269 // Get the package path to use for type reflection data. This should
270 // ideally be unique across the entire link.
273 Gogo::pkgpath() const
275 go_assert(this->pkgpath_set_
);
276 return this->pkgpath_
;
279 // Set the package path from the -fgo-pkgpath command line option.
282 Gogo::set_pkgpath(const std::string
& arg
)
284 go_assert(!this->pkgpath_set_
);
285 this->pkgpath_
= arg
;
286 this->pkgpath_set_
= true;
287 this->pkgpath_from_option_
= true;
290 // Get the package path to use for symbol names.
293 Gogo::pkgpath_symbol() const
295 go_assert(this->pkgpath_set_
);
296 return this->pkgpath_symbol_
;
299 // Set the unique prefix to use to determine the package path, from
300 // the -fgo-prefix command line option.
303 Gogo::set_prefix(const std::string
& arg
)
305 go_assert(!this->prefix_from_option_
);
307 this->prefix_from_option_
= true;
310 // Munge name for use in an error message.
313 Gogo::message_name(const std::string
& name
)
315 return go_localize_identifier(Gogo::unpack_hidden_name(name
).c_str());
318 // Get the package name.
321 Gogo::package_name() const
323 go_assert(this->package_
!= NULL
);
324 return this->package_
->package_name();
327 // Set the package name.
330 Gogo::set_package_name(const std::string
& package_name
,
333 if (this->package_
!= NULL
)
335 if (this->package_
->package_name() != package_name
)
336 error_at(location
, "expected package %<%s%>",
337 Gogo::message_name(this->package_
->package_name()).c_str());
341 // Now that we know the name of the package we are compiling, set
342 // the package path to use for reflect.Type.PkgPath and global
344 if (!this->pkgpath_set_
)
346 if (!this->prefix_from_option_
&& package_name
== "main")
347 this->pkgpath_
= package_name
;
350 if (!this->prefix_from_option_
)
351 this->prefix_
= "go";
352 this->pkgpath_
= this->prefix_
+ '.' + package_name
;
354 this->pkgpath_set_
= true;
357 this->pkgpath_symbol_
= Gogo::pkgpath_for_symbol(this->pkgpath_
);
359 this->package_
= this->register_package(this->pkgpath_
, location
);
360 this->package_
->set_package_name(package_name
, location
);
362 if (this->is_main_package())
364 // Declare "main" as a function which takes no parameters and
366 Location uloc
= Linemap::unknown_location();
367 this->declare_function(Gogo::pack_hidden_name("main", false),
368 Type::make_function_type (NULL
, NULL
, NULL
, uloc
),
373 // Return whether this is the "main" package. This is not true if
374 // -fgo-pkgpath or -fgo-prefix was used.
377 Gogo::is_main_package() const
379 return (this->package_name() == "main"
380 && !this->pkgpath_from_option_
381 && !this->prefix_from_option_
);
387 Gogo::import_package(const std::string
& filename
,
388 const std::string
& local_name
,
389 bool is_local_name_exported
,
392 if (filename
.empty())
394 error_at(location
, "import path is empty");
398 const char *pf
= filename
.data();
399 const char *pend
= pf
+ filename
.length();
403 int adv
= Lex::fetch_char(pf
, &c
);
406 error_at(location
, "import path contains invalid UTF-8 sequence");
411 error_at(location
, "import path contains NUL");
414 if (c
< 0x20 || c
== 0x7f)
416 error_at(location
, "import path contains control character");
421 error_at(location
, "import path contains backslash; use slash");
424 if (Lex::is_unicode_space(c
))
426 error_at(location
, "import path contains space character");
429 if (c
< 0x7f && strchr("!\"#$%&'()*,:;<=>?[]^`{|}", c
) != NULL
)
431 error_at(location
, "import path contains invalid character '%c'", c
);
437 if (IS_ABSOLUTE_PATH(filename
.c_str()))
439 error_at(location
, "import path cannot be absolute path");
443 if (filename
== "unsafe")
445 this->import_unsafe(local_name
, is_local_name_exported
, location
);
449 Imports::const_iterator p
= this->imports_
.find(filename
);
450 if (p
!= this->imports_
.end())
452 Package
* package
= p
->second
;
453 package
->set_location(location
);
454 package
->set_is_imported();
455 std::string ln
= local_name
;
456 bool is_ln_exported
= is_local_name_exported
;
459 ln
= package
->package_name();
460 go_assert(!ln
.empty());
461 is_ln_exported
= Lex::is_exported_name(ln
);
465 Bindings
* bindings
= package
->bindings();
466 for (Bindings::const_declarations_iterator p
=
467 bindings
->begin_declarations();
468 p
!= bindings
->end_declarations();
470 this->add_named_object(p
->second
);
473 package
->set_uses_sink_alias();
476 ln
= this->pack_hidden_name(ln
, is_ln_exported
);
477 this->package_
->bindings()->add_package(ln
, package
);
482 Import::Stream
* stream
= Import::open_package(filename
, location
,
483 this->relative_import_path_
);
486 error_at(location
, "import file %qs not found", filename
.c_str());
490 Import
imp(stream
, location
);
491 imp
.register_builtin_types(this);
492 Package
* package
= imp
.import(this, local_name
, is_local_name_exported
);
495 if (package
->pkgpath() == this->pkgpath())
497 ("imported package uses same package path as package "
498 "being compiled (see -fgo-pkgpath option)"));
500 this->imports_
.insert(std::make_pair(filename
, package
));
501 package
->set_is_imported();
507 // Add an import control function for an imported package to the list.
510 Gogo::add_import_init_fn(const std::string
& package_name
,
511 const std::string
& init_name
, int prio
)
513 for (std::set
<Import_init
>::const_iterator p
=
514 this->imported_init_fns_
.begin();
515 p
!= this->imported_init_fns_
.end();
518 if (p
->init_name() == init_name
)
520 // If a test of package P1, built as part of package P1,
521 // imports package P2, and P2 imports P1 (perhaps
522 // indirectly), then we will see the same import name with
523 // different import priorities. That is OK, so don't give
524 // an error about it.
525 if (p
->package_name() != package_name
)
527 error("duplicate package initialization name %qs",
528 Gogo::message_name(init_name
).c_str());
529 inform(UNKNOWN_LOCATION
, "used by package %qs at priority %d",
530 Gogo::message_name(p
->package_name()).c_str(),
532 inform(UNKNOWN_LOCATION
, " and by package %qs at priority %d",
533 Gogo::message_name(package_name
).c_str(), prio
);
539 this->imported_init_fns_
.insert(Import_init(package_name
, init_name
,
543 // Return whether we are at the global binding level.
546 Gogo::in_global_scope() const
548 return this->functions_
.empty();
551 // Return the current binding contour.
554 Gogo::current_bindings()
556 if (!this->functions_
.empty())
557 return this->functions_
.back().blocks
.back()->bindings();
558 else if (this->package_
!= NULL
)
559 return this->package_
->bindings();
561 return this->globals_
;
565 Gogo::current_bindings() const
567 if (!this->functions_
.empty())
568 return this->functions_
.back().blocks
.back()->bindings();
569 else if (this->package_
!= NULL
)
570 return this->package_
->bindings();
572 return this->globals_
;
575 // Return the current block.
578 Gogo::current_block()
580 if (this->functions_
.empty())
583 return this->functions_
.back().blocks
.back();
586 // Look up a name in the current binding contour. If PFUNCTION is not
587 // NULL, set it to the function in which the name is defined, or NULL
588 // if the name is defined in global scope.
591 Gogo::lookup(const std::string
& name
, Named_object
** pfunction
) const
593 if (pfunction
!= NULL
)
596 if (Gogo::is_sink_name(name
))
597 return Named_object::make_sink();
599 for (Open_functions::const_reverse_iterator p
= this->functions_
.rbegin();
600 p
!= this->functions_
.rend();
603 Named_object
* ret
= p
->blocks
.back()->bindings()->lookup(name
);
606 if (pfunction
!= NULL
)
607 *pfunction
= p
->function
;
612 if (this->package_
!= NULL
)
614 Named_object
* ret
= this->package_
->bindings()->lookup(name
);
617 if (ret
->package() != NULL
)
618 ret
->package()->set_used();
623 // We do not look in the global namespace. If we did, the global
624 // namespace would effectively hide names which were defined in
625 // package scope which we have not yet seen. Instead,
626 // define_global_names is called after parsing is over to connect
627 // undefined names at package scope with names defined at global
633 // Look up a name in the current block, without searching enclosing
637 Gogo::lookup_in_block(const std::string
& name
) const
639 go_assert(!this->functions_
.empty());
640 go_assert(!this->functions_
.back().blocks
.empty());
641 return this->functions_
.back().blocks
.back()->bindings()->lookup_local(name
);
644 // Look up a name in the global namespace.
647 Gogo::lookup_global(const char* name
) const
649 return this->globals_
->lookup(name
);
652 // Add an imported package.
655 Gogo::add_imported_package(const std::string
& real_name
,
656 const std::string
& alias_arg
,
657 bool is_alias_exported
,
658 const std::string
& pkgpath
,
660 bool* padd_to_globals
)
662 Package
* ret
= this->register_package(pkgpath
, location
);
663 ret
->set_package_name(real_name
, location
);
665 *padd_to_globals
= false;
667 if (alias_arg
== ".")
668 *padd_to_globals
= true;
669 else if (alias_arg
== "_")
670 ret
->set_uses_sink_alias();
673 std::string alias
= alias_arg
;
677 is_alias_exported
= Lex::is_exported_name(alias
);
679 alias
= this->pack_hidden_name(alias
, is_alias_exported
);
680 Named_object
* no
= this->package_
->bindings()->add_package(alias
, ret
);
681 if (!no
->is_package())
688 // Register a package. This package may or may not be imported. This
689 // returns the Package structure for the package, creating if it
690 // necessary. LOCATION is the location of the import statement that
691 // led us to see this package.
694 Gogo::register_package(const std::string
& pkgpath
, Location location
)
696 Package
* package
= NULL
;
697 std::pair
<Packages::iterator
, bool> ins
=
698 this->packages_
.insert(std::make_pair(pkgpath
, package
));
701 // We have seen this package name before.
702 package
= ins
.first
->second
;
703 go_assert(package
!= NULL
&& package
->pkgpath() == pkgpath
);
704 if (Linemap::is_unknown_location(package
->location()))
705 package
->set_location(location
);
709 // First time we have seen this package name.
710 package
= new Package(pkgpath
, location
);
711 go_assert(ins
.first
->second
== NULL
);
712 ins
.first
->second
= package
;
718 // Start compiling a function.
721 Gogo::start_function(const std::string
& name
, Function_type
* type
,
722 bool add_method_to_type
, Location location
)
724 bool at_top_level
= this->functions_
.empty();
726 Block
* block
= new Block(NULL
, location
);
728 Function
* enclosing
= (at_top_level
730 : this->functions_
.back().function
->func_value());
732 Function
* function
= new Function(type
, enclosing
, block
, location
);
734 if (type
->is_method())
736 const Typed_identifier
* receiver
= type
->receiver();
737 Variable
* this_param
= new Variable(receiver
->type(), NULL
, false,
738 true, true, location
);
739 std::string rname
= receiver
->name();
740 if (rname
.empty() || Gogo::is_sink_name(rname
))
742 // We need to give receivers a name since they wind up in
743 // DECL_ARGUMENTS. FIXME.
744 static unsigned int count
;
746 snprintf(buf
, sizeof buf
, "r.%u", count
);
750 block
->bindings()->add_variable(rname
, NULL
, this_param
);
753 const Typed_identifier_list
* parameters
= type
->parameters();
754 bool is_varargs
= type
->is_varargs();
755 if (parameters
!= NULL
)
757 for (Typed_identifier_list::const_iterator p
= parameters
->begin();
758 p
!= parameters
->end();
761 Variable
* param
= new Variable(p
->type(), NULL
, false, true, false,
763 if (is_varargs
&& p
+ 1 == parameters
->end())
764 param
->set_is_varargs_parameter();
766 std::string pname
= p
->name();
767 if (pname
.empty() || Gogo::is_sink_name(pname
))
769 // We need to give parameters a name since they wind up
770 // in DECL_ARGUMENTS. FIXME.
771 static unsigned int count
;
773 snprintf(buf
, sizeof buf
, "p.%u", count
);
777 block
->bindings()->add_variable(pname
, NULL
, param
);
781 function
->create_result_variables(this);
783 const std::string
* pname
;
784 std::string nested_name
;
785 bool is_init
= false;
786 if (Gogo::unpack_hidden_name(name
) == "init" && !type
->is_method())
788 if ((type
->parameters() != NULL
&& !type
->parameters()->empty())
789 || (type
->results() != NULL
&& !type
->results()->empty()))
791 "func init must have no arguments and no return values");
792 // There can be multiple "init" functions, so give them each a
794 static int init_count
;
796 snprintf(buf
, sizeof buf
, ".$init%d", init_count
);
799 pname
= &nested_name
;
802 else if (!name
.empty())
806 // Invent a name for a nested function.
807 static int nested_count
;
809 snprintf(buf
, sizeof buf
, ".$nested%d", nested_count
);
812 pname
= &nested_name
;
816 if (Gogo::is_sink_name(*pname
))
818 static int sink_count
;
820 snprintf(buf
, sizeof buf
, ".$sink%d", sink_count
);
822 ret
= this->package_
->bindings()->add_function(buf
, NULL
, function
);
823 ret
->func_value()->set_is_sink();
825 else if (!type
->is_method())
827 ret
= this->package_
->bindings()->add_function(*pname
, NULL
, function
);
828 if (!ret
->is_function() || ret
->func_value() != function
)
830 // Redefinition error. Invent a name to avoid knockon
832 static int redefinition_count
;
834 snprintf(buf
, sizeof buf
, ".$redefined%d", redefinition_count
);
835 ++redefinition_count
;
836 ret
= this->package_
->bindings()->add_function(buf
, NULL
, function
);
841 if (!add_method_to_type
)
842 ret
= Named_object::make_function(name
, NULL
, function
);
845 go_assert(at_top_level
);
846 Type
* rtype
= type
->receiver()->type();
848 // We want to look through the pointer created by the
849 // parser, without getting an error if the type is not yet
851 if (rtype
->classification() == Type::TYPE_POINTER
)
852 rtype
= rtype
->points_to();
854 if (rtype
->is_error_type())
855 ret
= Named_object::make_function(name
, NULL
, function
);
856 else if (rtype
->named_type() != NULL
)
858 ret
= rtype
->named_type()->add_method(name
, function
);
859 if (!ret
->is_function())
861 // Redefinition error.
862 ret
= Named_object::make_function(name
, NULL
, function
);
865 else if (rtype
->forward_declaration_type() != NULL
)
867 Named_object
* type_no
=
868 rtype
->forward_declaration_type()->named_object();
869 if (type_no
->is_unknown())
871 // If we are seeing methods it really must be a
872 // type. Declare it as such. An alternative would
873 // be to support lists of methods for unknown
874 // expressions. Either way the error messages if
875 // this is not a type are going to get confusing.
876 Named_object
* declared
=
877 this->declare_package_type(type_no
->name(),
878 type_no
->location());
880 == type_no
->unknown_value()->real_named_object());
882 ret
= rtype
->forward_declaration_type()->add_method(name
,
888 this->package_
->bindings()->add_method(ret
);
891 this->functions_
.resize(this->functions_
.size() + 1);
892 Open_function
& of(this->functions_
.back());
894 of
.blocks
.push_back(block
);
898 this->init_functions_
.push_back(ret
);
899 this->need_init_fn_
= true;
905 // Finish compiling a function.
908 Gogo::finish_function(Location location
)
910 this->finish_block(location
);
911 go_assert(this->functions_
.back().blocks
.empty());
912 this->functions_
.pop_back();
915 // Return the current function.
918 Gogo::current_function() const
920 go_assert(!this->functions_
.empty());
921 return this->functions_
.back().function
;
924 // Start a new block.
927 Gogo::start_block(Location location
)
929 go_assert(!this->functions_
.empty());
930 Block
* block
= new Block(this->current_block(), location
);
931 this->functions_
.back().blocks
.push_back(block
);
937 Gogo::finish_block(Location location
)
939 go_assert(!this->functions_
.empty());
940 go_assert(!this->functions_
.back().blocks
.empty());
941 Block
* block
= this->functions_
.back().blocks
.back();
942 this->functions_
.back().blocks
.pop_back();
943 block
->set_end_location(location
);
947 // Add an erroneous name.
950 Gogo::add_erroneous_name(const std::string
& name
)
952 return this->package_
->bindings()->add_erroneous_name(name
);
955 // Add an unknown name.
958 Gogo::add_unknown_name(const std::string
& name
, Location location
)
960 return this->package_
->bindings()->add_unknown_name(name
, location
);
963 // Declare a function.
966 Gogo::declare_function(const std::string
& name
, Function_type
* type
,
969 if (!type
->is_method())
970 return this->current_bindings()->add_function_declaration(name
, NULL
, type
,
974 // We don't bother to add this to the list of global
976 Type
* rtype
= type
->receiver()->type();
978 // We want to look through the pointer created by the
979 // parser, without getting an error if the type is not yet
981 if (rtype
->classification() == Type::TYPE_POINTER
)
982 rtype
= rtype
->points_to();
984 if (rtype
->is_error_type())
986 else if (rtype
->named_type() != NULL
)
987 return rtype
->named_type()->add_method_declaration(name
, NULL
, type
,
989 else if (rtype
->forward_declaration_type() != NULL
)
991 Forward_declaration_type
* ftype
= rtype
->forward_declaration_type();
992 return ftype
->add_method_declaration(name
, NULL
, type
, location
);
999 // Add a label definition.
1002 Gogo::add_label_definition(const std::string
& label_name
,
1005 go_assert(!this->functions_
.empty());
1006 Function
* func
= this->functions_
.back().function
->func_value();
1007 Label
* label
= func
->add_label_definition(this, label_name
, location
);
1008 this->add_statement(Statement::make_label_statement(label
, location
));
1012 // Add a label reference.
1015 Gogo::add_label_reference(const std::string
& label_name
,
1016 Location location
, bool issue_goto_errors
)
1018 go_assert(!this->functions_
.empty());
1019 Function
* func
= this->functions_
.back().function
->func_value();
1020 return func
->add_label_reference(this, label_name
, location
,
1024 // Return the current binding state.
1027 Gogo::bindings_snapshot(Location location
)
1029 return new Bindings_snapshot(this->current_block(), location
);
1035 Gogo::add_statement(Statement
* statement
)
1037 go_assert(!this->functions_
.empty()
1038 && !this->functions_
.back().blocks
.empty());
1039 this->functions_
.back().blocks
.back()->add_statement(statement
);
1045 Gogo::add_block(Block
* block
, Location location
)
1047 go_assert(!this->functions_
.empty()
1048 && !this->functions_
.back().blocks
.empty());
1049 Statement
* statement
= Statement::make_block_statement(block
, location
);
1050 this->functions_
.back().blocks
.back()->add_statement(statement
);
1056 Gogo::add_constant(const Typed_identifier
& tid
, Expression
* expr
,
1059 return this->current_bindings()->add_constant(tid
, NULL
, expr
, iota_value
);
1065 Gogo::add_type(const std::string
& name
, Type
* type
, Location location
)
1067 Named_object
* no
= this->current_bindings()->add_type(name
, NULL
, type
,
1069 if (!this->in_global_scope() && no
->is_type())
1071 Named_object
* f
= this->functions_
.back().function
;
1073 if (f
->is_function())
1074 index
= f
->func_value()->new_local_type_index();
1077 no
->type_value()->set_in_function(f
, index
);
1081 // Add a named type.
1084 Gogo::add_named_type(Named_type
* type
)
1086 go_assert(this->in_global_scope());
1087 this->current_bindings()->add_named_type(type
);
1093 Gogo::declare_type(const std::string
& name
, Location location
)
1095 Bindings
* bindings
= this->current_bindings();
1096 Named_object
* no
= bindings
->add_type_declaration(name
, NULL
, location
);
1097 if (!this->in_global_scope() && no
->is_type_declaration())
1099 Named_object
* f
= this->functions_
.back().function
;
1101 if (f
->is_function())
1102 index
= f
->func_value()->new_local_type_index();
1105 no
->type_declaration_value()->set_in_function(f
, index
);
1110 // Declare a type at the package level.
1113 Gogo::declare_package_type(const std::string
& name
, Location location
)
1115 return this->package_
->bindings()->add_type_declaration(name
, NULL
, location
);
1118 // Declare a function at the package level.
1121 Gogo::declare_package_function(const std::string
& name
, Function_type
* type
,
1124 return this->package_
->bindings()->add_function_declaration(name
, NULL
, type
,
1128 // Define a type which was already declared.
1131 Gogo::define_type(Named_object
* no
, Named_type
* type
)
1133 this->current_bindings()->define_type(no
, type
);
1139 Gogo::add_variable(const std::string
& name
, Variable
* variable
)
1141 Named_object
* no
= this->current_bindings()->add_variable(name
, NULL
,
1144 // In a function the middle-end wants to see a DECL_EXPR node.
1146 && no
->is_variable()
1147 && !no
->var_value()->is_parameter()
1148 && !this->functions_
.empty())
1149 this->add_statement(Statement::make_variable_declaration(no
));
1154 // Add a sink--a reference to the blank identifier _.
1159 return Named_object::make_sink();
1162 // Add a named object.
1165 Gogo::add_named_object(Named_object
* no
)
1167 this->current_bindings()->add_named_object(no
);
1170 // Mark all local variables used. This is used when some types of
1171 // parse error occur.
1174 Gogo::mark_locals_used()
1176 for (Open_functions::iterator pf
= this->functions_
.begin();
1177 pf
!= this->functions_
.end();
1180 for (std::vector
<Block
*>::iterator pb
= pf
->blocks
.begin();
1181 pb
!= pf
->blocks
.end();
1183 (*pb
)->bindings()->mark_locals_used();
1187 // Record that we've seen an interface type.
1190 Gogo::record_interface_type(Interface_type
* itype
)
1192 this->interface_types_
.push_back(itype
);
1195 // Return an erroneous name that indicates that an error has already
1199 Gogo::erroneous_name()
1201 static int erroneous_count
;
1203 snprintf(name
, sizeof name
, "$erroneous%d", erroneous_count
);
1208 // Return whether a name is an erroneous name.
1211 Gogo::is_erroneous_name(const std::string
& name
)
1213 return name
.compare(0, 10, "$erroneous") == 0;
1216 // Return a name for a thunk object.
1221 static int thunk_count
;
1222 char thunk_name
[50];
1223 snprintf(thunk_name
, sizeof thunk_name
, "$thunk%d", thunk_count
);
1228 // Return whether a function is a thunk.
1231 Gogo::is_thunk(const Named_object
* no
)
1233 return no
->name().compare(0, 6, "$thunk") == 0;
1236 // Define the global names. We do this only after parsing all the
1237 // input files, because the program might define the global names
1241 Gogo::define_global_names()
1243 for (Bindings::const_declarations_iterator p
=
1244 this->globals_
->begin_declarations();
1245 p
!= this->globals_
->end_declarations();
1248 Named_object
* global_no
= p
->second
;
1249 std::string
name(Gogo::pack_hidden_name(global_no
->name(), false));
1250 Named_object
* no
= this->package_
->bindings()->lookup(name
);
1254 if (no
->is_type_declaration())
1256 if (global_no
->is_type())
1258 if (no
->type_declaration_value()->has_methods())
1259 error_at(no
->location(),
1260 "may not define methods for global type");
1261 no
->set_type_value(global_no
->type_value());
1265 error_at(no
->location(), "expected type");
1266 Type
* errtype
= Type::make_error_type();
1268 Named_object::make_type("erroneous_type", NULL
, errtype
,
1269 Linemap::predeclared_location());
1270 no
->set_type_value(err
->type_value());
1273 else if (no
->is_unknown())
1274 no
->unknown_value()->set_real_named_object(global_no
);
1277 // Give an error if any name is defined in both the package block
1278 // and the file block. For example, this can happen if one file
1279 // imports "fmt" and another file defines a global variable fmt.
1280 for (Bindings::const_declarations_iterator p
=
1281 this->package_
->bindings()->begin_declarations();
1282 p
!= this->package_
->bindings()->end_declarations();
1285 if (p
->second
->is_unknown()
1286 && p
->second
->unknown_value()->real_named_object() == NULL
)
1288 // No point in warning about an undefined name, as we will
1289 // get other errors later anyhow.
1292 File_block_names::const_iterator pf
=
1293 this->file_block_names_
.find(p
->second
->name());
1294 if (pf
!= this->file_block_names_
.end())
1296 std::string n
= p
->second
->message_name();
1297 error_at(p
->second
->location(),
1298 "%qs defined as both imported name and global name",
1300 inform(pf
->second
, "%qs imported here", n
.c_str());
1303 // No package scope identifier may be named "init".
1304 if (!p
->second
->is_function()
1305 && Gogo::unpack_hidden_name(p
->second
->name()) == "init")
1307 error_at(p
->second
->location(),
1308 "cannot declare init - must be func");
1313 // Clear out names in file scope.
1316 Gogo::clear_file_scope()
1318 this->package_
->bindings()->clear_file_scope(this);
1320 // Warn about packages which were imported but not used.
1321 bool quiet
= saw_errors();
1322 for (Packages::iterator p
= this->packages_
.begin();
1323 p
!= this->packages_
.end();
1326 Package
* package
= p
->second
;
1327 if (package
!= this->package_
1328 && package
->is_imported()
1330 && !package
->uses_sink_alias()
1332 error_at(package
->location(), "imported and not used: %s",
1333 Gogo::message_name(package
->package_name()).c_str());
1334 package
->clear_is_imported();
1335 package
->clear_uses_sink_alias();
1336 package
->clear_used();
1340 // Queue up a type specific function for later writing. These are
1341 // written out in write_specific_type_functions, called after the
1342 // parse tree is lowered.
1345 Gogo::queue_specific_type_function(Type
* type
, Named_type
* name
,
1346 const std::string
& hash_name
,
1347 Function_type
* hash_fntype
,
1348 const std::string
& equal_name
,
1349 Function_type
* equal_fntype
)
1351 go_assert(!this->specific_type_functions_are_written_
);
1352 go_assert(!this->in_global_scope());
1353 Specific_type_function
* tsf
= new Specific_type_function(type
, name
,
1358 this->specific_type_functions_
.push_back(tsf
);
1361 // Look for types which need specific hash or equality functions.
1363 class Specific_type_functions
: public Traverse
1366 Specific_type_functions(Gogo
* gogo
)
1367 : Traverse(traverse_types
),
1379 Specific_type_functions::type(Type
* t
)
1381 Named_object
* hash_fn
;
1382 Named_object
* equal_fn
;
1383 switch (t
->classification())
1385 case Type::TYPE_NAMED
:
1387 Named_type
* nt
= t
->named_type();
1388 if (!t
->compare_is_identity(this->gogo_
) && t
->is_comparable())
1389 t
->type_functions(this->gogo_
, nt
, NULL
, NULL
, &hash_fn
, &equal_fn
);
1391 // If this is a struct type, we don't want to make functions
1392 // for the unnamed struct.
1393 Type
* rt
= nt
->real_type();
1394 if (rt
->struct_type() == NULL
)
1396 if (Type::traverse(rt
, this) == TRAVERSE_EXIT
)
1397 return TRAVERSE_EXIT
;
1401 // If this type is defined in another package, then we don't
1402 // need to worry about the unexported fields.
1403 bool is_defined_elsewhere
= nt
->named_object()->package() != NULL
;
1404 const Struct_field_list
* fields
= rt
->struct_type()->fields();
1405 for (Struct_field_list::const_iterator p
= fields
->begin();
1409 if (is_defined_elsewhere
1410 && Gogo::is_hidden_name(p
->field_name()))
1412 if (Type::traverse(p
->type(), this) == TRAVERSE_EXIT
)
1413 return TRAVERSE_EXIT
;
1417 return TRAVERSE_SKIP_COMPONENTS
;
1420 case Type::TYPE_STRUCT
:
1421 case Type::TYPE_ARRAY
:
1422 if (!t
->compare_is_identity(this->gogo_
) && t
->is_comparable())
1423 t
->type_functions(this->gogo_
, NULL
, NULL
, NULL
, &hash_fn
, &equal_fn
);
1430 return TRAVERSE_CONTINUE
;
1433 // Write out type specific functions.
1436 Gogo::write_specific_type_functions()
1438 Specific_type_functions
stf(this);
1439 this->traverse(&stf
);
1441 while (!this->specific_type_functions_
.empty())
1443 Specific_type_function
* tsf
= this->specific_type_functions_
.back();
1444 this->specific_type_functions_
.pop_back();
1445 tsf
->type
->write_specific_type_functions(this, tsf
->name
,
1452 this->specific_type_functions_are_written_
= true;
1455 // Traverse the tree.
1458 Gogo::traverse(Traverse
* traverse
)
1460 // Traverse the current package first for consistency. The other
1461 // packages will only contain imported types, constants, and
1463 if (this->package_
->bindings()->traverse(traverse
, true) == TRAVERSE_EXIT
)
1465 for (Packages::const_iterator p
= this->packages_
.begin();
1466 p
!= this->packages_
.end();
1469 if (p
->second
!= this->package_
)
1471 if (p
->second
->bindings()->traverse(traverse
, true) == TRAVERSE_EXIT
)
1477 // Add a type to verify. This is used for types of sink variables, in
1478 // order to give appropriate error messages.
1481 Gogo::add_type_to_verify(Type
* type
)
1483 this->verify_types_
.push_back(type
);
1486 // Traversal class used to verify types.
1488 class Verify_types
: public Traverse
1492 : Traverse(traverse_types
)
1499 // Verify that a type is correct.
1502 Verify_types::type(Type
* t
)
1505 return TRAVERSE_SKIP_COMPONENTS
;
1506 return TRAVERSE_CONTINUE
;
1509 // Verify that all types are correct.
1512 Gogo::verify_types()
1514 Verify_types traverse
;
1515 this->traverse(&traverse
);
1517 for (std::vector
<Type
*>::iterator p
= this->verify_types_
.begin();
1518 p
!= this->verify_types_
.end();
1521 this->verify_types_
.clear();
1524 // Traversal class used to lower parse tree.
1526 class Lower_parse_tree
: public Traverse
1529 Lower_parse_tree(Gogo
* gogo
, Named_object
* function
)
1530 : Traverse(traverse_variables
1531 | traverse_constants
1532 | traverse_functions
1533 | traverse_statements
1534 | traverse_expressions
),
1535 gogo_(gogo
), function_(function
), iota_value_(-1), inserter_()
1539 set_inserter(const Statement_inserter
* inserter
)
1540 { this->inserter_
= *inserter
; }
1543 variable(Named_object
*);
1546 constant(Named_object
*, bool);
1549 function(Named_object
*);
1552 statement(Block
*, size_t* pindex
, Statement
*);
1555 expression(Expression
**);
1560 // The function we are traversing.
1561 Named_object
* function_
;
1562 // Value to use for the predeclared constant iota.
1564 // Current statement inserter for use by expressions.
1565 Statement_inserter inserter_
;
1571 Lower_parse_tree::variable(Named_object
* no
)
1573 if (!no
->is_variable())
1574 return TRAVERSE_CONTINUE
;
1576 if (no
->is_variable() && no
->var_value()->is_global())
1578 // Global variables can have loops in their initialization
1579 // expressions. This is handled in lower_init_expression.
1580 no
->var_value()->lower_init_expression(this->gogo_
, this->function_
,
1582 return TRAVERSE_CONTINUE
;
1585 // This is a local variable. We are going to return
1586 // TRAVERSE_SKIP_COMPONENTS here because we want to traverse the
1587 // initialization expression when we reach the variable declaration
1588 // statement. However, that means that we need to traverse the type
1590 if (no
->var_value()->has_type())
1592 Type
* type
= no
->var_value()->type();
1595 if (Type::traverse(type
, this) == TRAVERSE_EXIT
)
1596 return TRAVERSE_EXIT
;
1599 go_assert(!no
->var_value()->has_pre_init());
1601 return TRAVERSE_SKIP_COMPONENTS
;
1604 // Lower constants. We handle constants specially so that we can set
1605 // the right value for the predeclared constant iota. This works in
1606 // conjunction with the way we lower Const_expression objects.
1609 Lower_parse_tree::constant(Named_object
* no
, bool)
1611 Named_constant
* nc
= no
->const_value();
1613 // Don't get into trouble if the constant's initializer expression
1614 // refers to the constant itself.
1616 return TRAVERSE_CONTINUE
;
1619 go_assert(this->iota_value_
== -1);
1620 this->iota_value_
= nc
->iota_value();
1621 nc
->traverse_expression(this);
1622 this->iota_value_
= -1;
1624 nc
->clear_lowering();
1626 // We will traverse the expression a second time, but that will be
1629 return TRAVERSE_CONTINUE
;
1632 // Lower the body of a function, and set the closure type. Record the
1633 // function while lowering it, so that we can pass it down when
1634 // lowering an expression.
1637 Lower_parse_tree::function(Named_object
* no
)
1639 no
->func_value()->set_closure_type();
1641 go_assert(this->function_
== NULL
);
1642 this->function_
= no
;
1643 int t
= no
->func_value()->traverse(this);
1644 this->function_
= NULL
;
1646 if (t
== TRAVERSE_EXIT
)
1648 return TRAVERSE_SKIP_COMPONENTS
;
1651 // Lower statement parse trees.
1654 Lower_parse_tree::statement(Block
* block
, size_t* pindex
, Statement
* sorig
)
1656 // Because we explicitly traverse the statement's contents
1657 // ourselves, we want to skip block statements here. There is
1658 // nothing to lower in a block statement.
1659 if (sorig
->is_block_statement())
1660 return TRAVERSE_CONTINUE
;
1662 Statement_inserter
hold_inserter(this->inserter_
);
1663 this->inserter_
= Statement_inserter(block
, pindex
);
1665 // Lower the expressions first.
1666 int t
= sorig
->traverse_contents(this);
1667 if (t
== TRAVERSE_EXIT
)
1669 this->inserter_
= hold_inserter
;
1673 // Keep lowering until nothing changes.
1674 Statement
* s
= sorig
;
1677 Statement
* snew
= s
->lower(this->gogo_
, this->function_
, block
,
1682 t
= s
->traverse_contents(this);
1683 if (t
== TRAVERSE_EXIT
)
1685 this->inserter_
= hold_inserter
;
1691 block
->replace_statement(*pindex
, s
);
1693 this->inserter_
= hold_inserter
;
1694 return TRAVERSE_SKIP_COMPONENTS
;
1697 // Lower expression parse trees.
1700 Lower_parse_tree::expression(Expression
** pexpr
)
1702 // We have to lower all subexpressions first, so that we can get
1703 // their type if necessary. This is awkward, because we don't have
1704 // a postorder traversal pass.
1705 if ((*pexpr
)->traverse_subexpressions(this) == TRAVERSE_EXIT
)
1706 return TRAVERSE_EXIT
;
1707 // Keep lowering until nothing changes.
1710 Expression
* e
= *pexpr
;
1711 Expression
* enew
= e
->lower(this->gogo_
, this->function_
,
1712 &this->inserter_
, this->iota_value_
);
1715 if (enew
->traverse_subexpressions(this) == TRAVERSE_EXIT
)
1716 return TRAVERSE_EXIT
;
1719 return TRAVERSE_SKIP_COMPONENTS
;
1722 // Lower the parse tree. This is called after the parse is complete,
1723 // when all names should be resolved.
1726 Gogo::lower_parse_tree()
1728 Lower_parse_tree
lower_parse_tree(this, NULL
);
1729 this->traverse(&lower_parse_tree
);
1735 Gogo::lower_block(Named_object
* function
, Block
* block
)
1737 Lower_parse_tree
lower_parse_tree(this, function
);
1738 block
->traverse(&lower_parse_tree
);
1741 // Lower an expression. INSERTER may be NULL, in which case the
1742 // expression had better not need to create any temporaries.
1745 Gogo::lower_expression(Named_object
* function
, Statement_inserter
* inserter
,
1748 Lower_parse_tree
lower_parse_tree(this, function
);
1749 if (inserter
!= NULL
)
1750 lower_parse_tree
.set_inserter(inserter
);
1751 lower_parse_tree
.expression(pexpr
);
1754 // Lower a constant. This is called when lowering a reference to a
1755 // constant. We have to make sure that the constant has already been
1759 Gogo::lower_constant(Named_object
* no
)
1761 go_assert(no
->is_const());
1762 Lower_parse_tree
lower(this, NULL
);
1763 lower
.constant(no
, false);
1766 // Traverse the tree to create function descriptors as needed.
1768 class Create_function_descriptors
: public Traverse
1771 Create_function_descriptors(Gogo
* gogo
)
1772 : Traverse(traverse_functions
| traverse_expressions
),
1777 function(Named_object
*);
1780 expression(Expression
**);
1786 // Create a descriptor for every top-level exported function.
1789 Create_function_descriptors::function(Named_object
* no
)
1791 if (no
->is_function()
1792 && no
->func_value()->enclosing() == NULL
1793 && !no
->func_value()->is_method()
1794 && !Gogo::is_hidden_name(no
->name())
1795 && !Gogo::is_thunk(no
))
1796 no
->func_value()->descriptor(this->gogo_
, no
);
1798 return TRAVERSE_CONTINUE
;
1801 // If we see a function referenced in any way other than calling it,
1802 // create a descriptor for it.
1805 Create_function_descriptors::expression(Expression
** pexpr
)
1807 Expression
* expr
= *pexpr
;
1809 Func_expression
* fe
= expr
->func_expression();
1812 // We would not get here for a call to this function, so this is
1813 // a reference to a function other than calling it. We need a
1815 if (fe
->closure() != NULL
)
1816 return TRAVERSE_CONTINUE
;
1817 Named_object
* no
= fe
->named_object();
1818 if (no
->is_function() && !no
->func_value()->is_method())
1819 no
->func_value()->descriptor(this->gogo_
, no
);
1820 else if (no
->is_function_declaration()
1821 && !no
->func_declaration_value()->type()->is_method()
1822 && !Linemap::is_predeclared_location(no
->location()))
1823 no
->func_declaration_value()->descriptor(this->gogo_
, no
);
1824 return TRAVERSE_CONTINUE
;
1827 Bound_method_expression
* bme
= expr
->bound_method_expression();
1830 // We would not get here for a call to this method, so this is a
1831 // method value. We need to create a thunk.
1832 Bound_method_expression::create_thunk(this->gogo_
, bme
->method(),
1834 return TRAVERSE_CONTINUE
;
1837 Interface_field_reference_expression
* ifre
=
1838 expr
->interface_field_reference_expression();
1841 // We would not get here for a call to this interface method, so
1842 // this is a method value. We need to create a thunk.
1843 Interface_type
* type
= ifre
->expr()->type()->interface_type();
1845 Interface_field_reference_expression::create_thunk(this->gogo_
, type
,
1847 return TRAVERSE_CONTINUE
;
1850 Call_expression
* ce
= expr
->call_expression();
1853 Expression
* fn
= ce
->fn();
1854 if (fn
->func_expression() != NULL
1855 || fn
->bound_method_expression() != NULL
1856 || fn
->interface_field_reference_expression() != NULL
)
1858 // Traverse the arguments but not the function.
1859 Expression_list
* args
= ce
->args();
1862 if (args
->traverse(this) == TRAVERSE_EXIT
)
1863 return TRAVERSE_EXIT
;
1865 return TRAVERSE_SKIP_COMPONENTS
;
1869 return TRAVERSE_CONTINUE
;
1872 // Create function descriptors as needed. We need a function
1873 // descriptor for all exported functions and for all functions that
1874 // are referenced without being called.
1877 Gogo::create_function_descriptors()
1879 // Create a function descriptor for any exported function that is
1880 // declared in this package. This is so that we have a descriptor
1881 // for functions written in assembly. Gather the descriptors first
1882 // so that we don't add declarations while looping over them.
1883 std::vector
<Named_object
*> fndecls
;
1884 Bindings
* b
= this->package_
->bindings();
1885 for (Bindings::const_declarations_iterator p
= b
->begin_declarations();
1886 p
!= b
->end_declarations();
1889 Named_object
* no
= p
->second
;
1890 if (no
->is_function_declaration()
1891 && !no
->func_declaration_value()->type()->is_method()
1892 && !Linemap::is_predeclared_location(no
->location())
1893 && !Gogo::is_hidden_name(no
->name()))
1894 fndecls
.push_back(no
);
1896 for (std::vector
<Named_object
*>::const_iterator p
= fndecls
.begin();
1899 (*p
)->func_declaration_value()->descriptor(this, *p
);
1902 Create_function_descriptors
cfd(this);
1903 this->traverse(&cfd
);
1906 // Look for interface types to finalize methods of inherited
1909 class Finalize_methods
: public Traverse
1912 Finalize_methods(Gogo
* gogo
)
1913 : Traverse(traverse_types
),
1924 // Finalize the methods of an interface type.
1927 Finalize_methods::type(Type
* t
)
1929 // Check the classification so that we don't finalize the methods
1930 // twice for a named interface type.
1931 switch (t
->classification())
1933 case Type::TYPE_INTERFACE
:
1934 t
->interface_type()->finalize_methods();
1937 case Type::TYPE_NAMED
:
1939 // We have to finalize the methods of the real type first.
1940 // But if the real type is a struct type, then we only want to
1941 // finalize the methods of the field types, not of the struct
1942 // type itself. We don't want to add methods to the struct,
1943 // since it has a name.
1944 Named_type
* nt
= t
->named_type();
1945 Type
* rt
= nt
->real_type();
1946 if (rt
->classification() != Type::TYPE_STRUCT
)
1948 if (Type::traverse(rt
, this) == TRAVERSE_EXIT
)
1949 return TRAVERSE_EXIT
;
1953 if (rt
->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT
)
1954 return TRAVERSE_EXIT
;
1957 nt
->finalize_methods(this->gogo_
);
1959 // If this type is defined in a different package, then finalize the
1960 // types of all the methods, since we won't see them otherwise.
1961 if (nt
->named_object()->package() != NULL
&& nt
->has_any_methods())
1963 const Methods
* methods
= nt
->methods();
1964 for (Methods::const_iterator p
= methods
->begin();
1965 p
!= methods
->end();
1968 if (Type::traverse(p
->second
->type(), this) == TRAVERSE_EXIT
)
1969 return TRAVERSE_EXIT
;
1973 // Finalize the types of all methods that are declared but not
1974 // defined, since we won't see the declarations otherwise.
1975 if (nt
->named_object()->package() == NULL
1976 && nt
->local_methods() != NULL
)
1978 const Bindings
* methods
= nt
->local_methods();
1979 for (Bindings::const_declarations_iterator p
=
1980 methods
->begin_declarations();
1981 p
!= methods
->end_declarations();
1984 if (p
->second
->is_function_declaration())
1986 Type
* mt
= p
->second
->func_declaration_value()->type();
1987 if (Type::traverse(mt
, this) == TRAVERSE_EXIT
)
1988 return TRAVERSE_EXIT
;
1993 return TRAVERSE_SKIP_COMPONENTS
;
1996 case Type::TYPE_STRUCT
:
1997 // Traverse the field types first in case there is an embedded
1998 // field with methods that the struct should inherit.
1999 if (t
->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT
)
2000 return TRAVERSE_EXIT
;
2001 t
->struct_type()->finalize_methods(this->gogo_
);
2002 return TRAVERSE_SKIP_COMPONENTS
;
2008 return TRAVERSE_CONTINUE
;
2011 // Finalize method lists and build stub methods for types.
2014 Gogo::finalize_methods()
2016 Finalize_methods
finalize(this);
2017 this->traverse(&finalize
);
2020 // Set types for unspecified variables and constants.
2023 Gogo::determine_types()
2025 Bindings
* bindings
= this->current_bindings();
2026 for (Bindings::const_definitions_iterator p
= bindings
->begin_definitions();
2027 p
!= bindings
->end_definitions();
2030 if ((*p
)->is_function())
2031 (*p
)->func_value()->determine_types();
2032 else if ((*p
)->is_variable())
2033 (*p
)->var_value()->determine_type();
2034 else if ((*p
)->is_const())
2035 (*p
)->const_value()->determine_type();
2037 // See if a variable requires us to build an initialization
2038 // function. We know that we will see all global variables
2040 if (!this->need_init_fn_
&& (*p
)->is_variable())
2042 Variable
* variable
= (*p
)->var_value();
2044 // If this is a global variable which requires runtime
2045 // initialization, we need an initialization function.
2046 if (!variable
->is_global())
2048 else if (variable
->init() == NULL
)
2050 else if (variable
->type()->interface_type() != NULL
)
2051 this->need_init_fn_
= true;
2052 else if (variable
->init()->is_constant())
2054 else if (!variable
->init()->is_composite_literal())
2055 this->need_init_fn_
= true;
2056 else if (variable
->init()->is_nonconstant_composite_literal())
2057 this->need_init_fn_
= true;
2059 // If this is a global variable which holds a pointer value,
2060 // then we need an initialization function to register it as a
2062 if (variable
->is_global() && variable
->type()->has_pointer())
2063 this->need_init_fn_
= true;
2067 // Determine the types of constants in packages.
2068 for (Packages::const_iterator p
= this->packages_
.begin();
2069 p
!= this->packages_
.end();
2071 p
->second
->determine_types();
2074 // Traversal class used for type checking.
2076 class Check_types_traverse
: public Traverse
2079 Check_types_traverse(Gogo
* gogo
)
2080 : Traverse(traverse_variables
2081 | traverse_constants
2082 | traverse_functions
2083 | traverse_statements
2084 | traverse_expressions
),
2089 variable(Named_object
*);
2092 constant(Named_object
*, bool);
2095 function(Named_object
*);
2098 statement(Block
*, size_t* pindex
, Statement
*);
2101 expression(Expression
**);
2108 // Check that a variable initializer has the right type.
2111 Check_types_traverse::variable(Named_object
* named_object
)
2113 if (named_object
->is_variable())
2115 Variable
* var
= named_object
->var_value();
2117 // Give error if variable type is not defined.
2118 var
->type()->base();
2120 Expression
* init
= var
->init();
2123 && !Type::are_assignable(var
->type(), init
->type(), &reason
))
2126 error_at(var
->location(), "incompatible type in initialization");
2128 error_at(var
->location(),
2129 "incompatible type in initialization (%s)",
2133 else if (!var
->is_used()
2134 && !var
->is_global()
2135 && !var
->is_parameter()
2136 && !var
->is_receiver()
2137 && !var
->type()->is_error()
2138 && (init
== NULL
|| !init
->is_error_expression())
2139 && !Lex::is_invalid_identifier(named_object
->name()))
2140 error_at(var
->location(), "%qs declared and not used",
2141 named_object
->message_name().c_str());
2143 return TRAVERSE_CONTINUE
;
2146 // Check that a constant initializer has the right type.
2149 Check_types_traverse::constant(Named_object
* named_object
, bool)
2151 Named_constant
* constant
= named_object
->const_value();
2152 Type
* ctype
= constant
->type();
2153 if (ctype
->integer_type() == NULL
2154 && ctype
->float_type() == NULL
2155 && ctype
->complex_type() == NULL
2156 && !ctype
->is_boolean_type()
2157 && !ctype
->is_string_type())
2159 if (ctype
->is_nil_type())
2160 error_at(constant
->location(), "const initializer cannot be nil");
2161 else if (!ctype
->is_error())
2162 error_at(constant
->location(), "invalid constant type");
2163 constant
->set_error();
2165 else if (!constant
->expr()->is_constant())
2167 error_at(constant
->expr()->location(), "expression is not constant");
2168 constant
->set_error();
2170 else if (!Type::are_assignable(constant
->type(), constant
->expr()->type(),
2173 error_at(constant
->location(),
2174 "initialization expression has wrong type");
2175 constant
->set_error();
2177 return TRAVERSE_CONTINUE
;
2180 // There are no types to check in a function, but this is where we
2181 // issue warnings about labels which are defined but not referenced.
2184 Check_types_traverse::function(Named_object
* no
)
2186 no
->func_value()->check_labels();
2187 return TRAVERSE_CONTINUE
;
2190 // Check that types are valid in a statement.
2193 Check_types_traverse::statement(Block
*, size_t*, Statement
* s
)
2195 s
->check_types(this->gogo_
);
2196 return TRAVERSE_CONTINUE
;
2199 // Check that types are valid in an expression.
2202 Check_types_traverse::expression(Expression
** expr
)
2204 (*expr
)->check_types(this->gogo_
);
2205 return TRAVERSE_CONTINUE
;
2208 // Check that types are valid.
2213 Check_types_traverse
traverse(this);
2214 this->traverse(&traverse
);
2217 // Check the types in a single block.
2220 Gogo::check_types_in_block(Block
* block
)
2222 Check_types_traverse
traverse(this);
2223 block
->traverse(&traverse
);
2226 // A traversal class used to find a single shortcut operator within an
2229 class Find_shortcut
: public Traverse
2233 : Traverse(traverse_blocks
2234 | traverse_statements
2235 | traverse_expressions
),
2239 // A pointer to the expression which was found, or NULL if none was
2243 { return this->found_
; }
2248 { return TRAVERSE_SKIP_COMPONENTS
; }
2251 statement(Block
*, size_t*, Statement
*)
2252 { return TRAVERSE_SKIP_COMPONENTS
; }
2255 expression(Expression
**);
2258 Expression
** found_
;
2261 // Find a shortcut expression.
2264 Find_shortcut::expression(Expression
** pexpr
)
2266 Expression
* expr
= *pexpr
;
2267 Binary_expression
* be
= expr
->binary_expression();
2269 return TRAVERSE_CONTINUE
;
2270 Operator op
= be
->op();
2271 if (op
!= OPERATOR_OROR
&& op
!= OPERATOR_ANDAND
)
2272 return TRAVERSE_CONTINUE
;
2273 go_assert(this->found_
== NULL
);
2274 this->found_
= pexpr
;
2275 return TRAVERSE_EXIT
;
2278 // A traversal class used to turn shortcut operators into explicit if
2281 class Shortcuts
: public Traverse
2284 Shortcuts(Gogo
* gogo
)
2285 : Traverse(traverse_variables
2286 | traverse_statements
),
2292 variable(Named_object
*);
2295 statement(Block
*, size_t*, Statement
*);
2298 // Convert a shortcut operator.
2300 convert_shortcut(Block
* enclosing
, Expression
** pshortcut
);
2306 // Remove shortcut operators in a single statement.
2309 Shortcuts::statement(Block
* block
, size_t* pindex
, Statement
* s
)
2311 // FIXME: This approach doesn't work for switch statements, because
2312 // we add the new statements before the whole switch when we need to
2313 // instead add them just before the switch expression. The right
2314 // fix is probably to lower switch statements with nonconstant cases
2315 // to a series of conditionals.
2316 if (s
->switch_statement() != NULL
)
2317 return TRAVERSE_CONTINUE
;
2321 Find_shortcut find_shortcut
;
2323 // If S is a variable declaration, then ordinary traversal won't
2324 // do anything. We want to explicitly traverse the
2325 // initialization expression if there is one.
2326 Variable_declaration_statement
* vds
= s
->variable_declaration_statement();
2327 Expression
* init
= NULL
;
2329 s
->traverse_contents(&find_shortcut
);
2332 init
= vds
->var()->var_value()->init();
2334 return TRAVERSE_CONTINUE
;
2335 init
->traverse(&init
, &find_shortcut
);
2337 Expression
** pshortcut
= find_shortcut
.found();
2338 if (pshortcut
== NULL
)
2339 return TRAVERSE_CONTINUE
;
2341 Statement
* snew
= this->convert_shortcut(block
, pshortcut
);
2342 block
->insert_statement_before(*pindex
, snew
);
2345 if (pshortcut
== &init
)
2346 vds
->var()->var_value()->set_init(init
);
2350 // Remove shortcut operators in the initializer of a global variable.
2353 Shortcuts::variable(Named_object
* no
)
2355 if (no
->is_result_variable())
2356 return TRAVERSE_CONTINUE
;
2357 Variable
* var
= no
->var_value();
2358 Expression
* init
= var
->init();
2359 if (!var
->is_global() || init
== NULL
)
2360 return TRAVERSE_CONTINUE
;
2364 Find_shortcut find_shortcut
;
2365 init
->traverse(&init
, &find_shortcut
);
2366 Expression
** pshortcut
= find_shortcut
.found();
2367 if (pshortcut
== NULL
)
2368 return TRAVERSE_CONTINUE
;
2370 Statement
* snew
= this->convert_shortcut(NULL
, pshortcut
);
2371 var
->add_preinit_statement(this->gogo_
, snew
);
2372 if (pshortcut
== &init
)
2373 var
->set_init(init
);
2377 // Given an expression which uses a shortcut operator, return a
2378 // statement which implements it, and update *PSHORTCUT accordingly.
2381 Shortcuts::convert_shortcut(Block
* enclosing
, Expression
** pshortcut
)
2383 Binary_expression
* shortcut
= (*pshortcut
)->binary_expression();
2384 Expression
* left
= shortcut
->left();
2385 Expression
* right
= shortcut
->right();
2386 Location loc
= shortcut
->location();
2388 Block
* retblock
= new Block(enclosing
, loc
);
2389 retblock
->set_end_location(loc
);
2391 Temporary_statement
* ts
= Statement::make_temporary(shortcut
->type(),
2393 retblock
->add_statement(ts
);
2395 Block
* block
= new Block(retblock
, loc
);
2396 block
->set_end_location(loc
);
2397 Expression
* tmpref
= Expression::make_temporary_reference(ts
, loc
);
2398 Statement
* assign
= Statement::make_assignment(tmpref
, right
, loc
);
2399 block
->add_statement(assign
);
2401 Expression
* cond
= Expression::make_temporary_reference(ts
, loc
);
2402 if (shortcut
->binary_expression()->op() == OPERATOR_OROR
)
2403 cond
= Expression::make_unary(OPERATOR_NOT
, cond
, loc
);
2405 Statement
* if_statement
= Statement::make_if_statement(cond
, block
, NULL
,
2407 retblock
->add_statement(if_statement
);
2409 *pshortcut
= Expression::make_temporary_reference(ts
, loc
);
2413 // Now convert any shortcut operators in LEFT and RIGHT.
2414 Shortcuts
shortcuts(this->gogo_
);
2415 retblock
->traverse(&shortcuts
);
2417 return Statement::make_block_statement(retblock
, loc
);
2420 // Turn shortcut operators into explicit if statements. Doing this
2421 // considerably simplifies the order of evaluation rules.
2424 Gogo::remove_shortcuts()
2426 Shortcuts
shortcuts(this);
2427 this->traverse(&shortcuts
);
2430 // A traversal class which finds all the expressions which must be
2431 // evaluated in order within a statement or larger expression. This
2432 // is used to implement the rules about order of evaluation.
2434 class Find_eval_ordering
: public Traverse
2437 typedef std::vector
<Expression
**> Expression_pointers
;
2440 Find_eval_ordering()
2441 : Traverse(traverse_blocks
2442 | traverse_statements
2443 | traverse_expressions
),
2449 { return this->exprs_
.size(); }
2451 typedef Expression_pointers::const_iterator const_iterator
;
2455 { return this->exprs_
.begin(); }
2459 { return this->exprs_
.end(); }
2464 { return TRAVERSE_SKIP_COMPONENTS
; }
2467 statement(Block
*, size_t*, Statement
*)
2468 { return TRAVERSE_SKIP_COMPONENTS
; }
2471 expression(Expression
**);
2474 // A list of pointers to expressions with side-effects.
2475 Expression_pointers exprs_
;
2478 // If an expression must be evaluated in order, put it on the list.
2481 Find_eval_ordering::expression(Expression
** expression_pointer
)
2483 // We have to look at subexpressions before this one.
2484 if ((*expression_pointer
)->traverse_subexpressions(this) == TRAVERSE_EXIT
)
2485 return TRAVERSE_EXIT
;
2486 if ((*expression_pointer
)->must_eval_in_order())
2487 this->exprs_
.push_back(expression_pointer
);
2488 return TRAVERSE_SKIP_COMPONENTS
;
2491 // A traversal class for ordering evaluations.
2493 class Order_eval
: public Traverse
2496 Order_eval(Gogo
* gogo
)
2497 : Traverse(traverse_variables
2498 | traverse_statements
),
2503 variable(Named_object
*);
2506 statement(Block
*, size_t*, Statement
*);
2513 // Implement the order of evaluation rules for a statement.
2516 Order_eval::statement(Block
* block
, size_t* pindex
, Statement
* s
)
2518 // FIXME: This approach doesn't work for switch statements, because
2519 // we add the new statements before the whole switch when we need to
2520 // instead add them just before the switch expression. The right
2521 // fix is probably to lower switch statements with nonconstant cases
2522 // to a series of conditionals.
2523 if (s
->switch_statement() != NULL
)
2524 return TRAVERSE_CONTINUE
;
2526 Find_eval_ordering find_eval_ordering
;
2528 // If S is a variable declaration, then ordinary traversal won't do
2529 // anything. We want to explicitly traverse the initialization
2530 // expression if there is one.
2531 Variable_declaration_statement
* vds
= s
->variable_declaration_statement();
2532 Expression
* init
= NULL
;
2533 Expression
* orig_init
= NULL
;
2535 s
->traverse_contents(&find_eval_ordering
);
2538 init
= vds
->var()->var_value()->init();
2540 return TRAVERSE_CONTINUE
;
2543 // It might seem that this could be
2544 // init->traverse_subexpressions. Unfortunately that can fail
2547 // newvar, err := call(arg())
2548 // Here newvar will have an init of call result 0 of
2549 // call(arg()). If we only traverse subexpressions, we will
2550 // only find arg(), and we won't bother to move anything out.
2551 // Then we get to the assignment to err, we will traverse the
2552 // whole statement, and this time we will find both call() and
2553 // arg(), and so we will move them out. This will cause them to
2554 // be put into temporary variables before the assignment to err
2555 // but after the declaration of newvar. To avoid that problem,
2556 // we traverse the entire expression here.
2557 Expression::traverse(&init
, &find_eval_ordering
);
2560 size_t c
= find_eval_ordering
.size();
2562 return TRAVERSE_CONTINUE
;
2564 // If there is only one expression with a side-effect, we can
2565 // usually leave it in place.
2568 switch (s
->classification())
2570 case Statement::STATEMENT_ASSIGNMENT
:
2571 // For an assignment statement, we need to evaluate an
2572 // expression on the right hand side before we evaluate any
2573 // index expression on the left hand side, so for that case
2574 // we always move the expression. Otherwise we mishandle
2575 // m[0] = len(m) where m is a map.
2578 case Statement::STATEMENT_EXPRESSION
:
2580 // If this is a call statement that doesn't return any
2581 // values, it will not have been counted as a value to
2582 // move. We need to move any subexpressions in case they
2583 // are themselves call statements that require passing a
2585 Expression
* expr
= s
->expression_statement()->expr();
2586 if (expr
->call_expression() != NULL
2587 && expr
->call_expression()->result_count() == 0)
2589 return TRAVERSE_CONTINUE
;
2593 // We can leave the expression in place.
2594 return TRAVERSE_CONTINUE
;
2598 bool is_thunk
= s
->thunk_statement() != NULL
;
2599 for (Find_eval_ordering::const_iterator p
= find_eval_ordering
.begin();
2600 p
!= find_eval_ordering
.end();
2603 Expression
** pexpr
= *p
;
2605 // The last expression in a thunk will be the call passed to go
2606 // or defer, which we must not evaluate early.
2607 if (is_thunk
&& p
+ 1 == find_eval_ordering
.end())
2610 Location loc
= (*pexpr
)->location();
2612 if ((*pexpr
)->call_expression() == NULL
2613 || (*pexpr
)->call_expression()->result_count() < 2)
2615 Temporary_statement
* ts
= Statement::make_temporary(NULL
, *pexpr
,
2618 *pexpr
= Expression::make_temporary_reference(ts
, loc
);
2622 // A call expression which returns multiple results needs to
2623 // be handled specially. We can't create a temporary
2624 // because there is no type to give it. Any actual uses of
2625 // the values will be done via Call_result_expressions.
2626 s
= Statement::make_statement(*pexpr
, true);
2629 block
->insert_statement_before(*pindex
, s
);
2633 if (init
!= orig_init
)
2634 vds
->var()->var_value()->set_init(init
);
2636 return TRAVERSE_CONTINUE
;
2639 // Implement the order of evaluation rules for the initializer of a
2643 Order_eval::variable(Named_object
* no
)
2645 if (no
->is_result_variable())
2646 return TRAVERSE_CONTINUE
;
2647 Variable
* var
= no
->var_value();
2648 Expression
* init
= var
->init();
2649 if (!var
->is_global() || init
== NULL
)
2650 return TRAVERSE_CONTINUE
;
2652 Find_eval_ordering find_eval_ordering
;
2653 Expression::traverse(&init
, &find_eval_ordering
);
2655 if (find_eval_ordering
.size() <= 1)
2657 // If there is only one expression with a side-effect, we can
2658 // leave it in place.
2659 return TRAVERSE_SKIP_COMPONENTS
;
2662 Expression
* orig_init
= init
;
2664 for (Find_eval_ordering::const_iterator p
= find_eval_ordering
.begin();
2665 p
!= find_eval_ordering
.end();
2668 Expression
** pexpr
= *p
;
2669 Location loc
= (*pexpr
)->location();
2671 if ((*pexpr
)->call_expression() == NULL
2672 || (*pexpr
)->call_expression()->result_count() < 2)
2674 Temporary_statement
* ts
= Statement::make_temporary(NULL
, *pexpr
,
2677 *pexpr
= Expression::make_temporary_reference(ts
, loc
);
2681 // A call expression which returns multiple results needs to
2682 // be handled specially.
2683 s
= Statement::make_statement(*pexpr
, true);
2685 var
->add_preinit_statement(this->gogo_
, s
);
2688 if (init
!= orig_init
)
2689 var
->set_init(init
);
2691 return TRAVERSE_SKIP_COMPONENTS
;
2694 // Use temporary variables to implement the order of evaluation rules.
2697 Gogo::order_evaluations()
2699 Order_eval
order_eval(this);
2700 this->traverse(&order_eval
);
2703 // Traversal to convert calls to the predeclared recover function to
2704 // pass in an argument indicating whether it can recover from a panic
2707 class Convert_recover
: public Traverse
2710 Convert_recover(Named_object
* arg
)
2711 : Traverse(traverse_expressions
),
2717 expression(Expression
**);
2720 // The argument to pass to the function.
2724 // Convert calls to recover.
2727 Convert_recover::expression(Expression
** pp
)
2729 Call_expression
* ce
= (*pp
)->call_expression();
2730 if (ce
!= NULL
&& ce
->is_recover_call())
2731 ce
->set_recover_arg(Expression::make_var_reference(this->arg_
,
2733 return TRAVERSE_CONTINUE
;
2736 // Traversal for build_recover_thunks.
2738 class Build_recover_thunks
: public Traverse
2741 Build_recover_thunks(Gogo
* gogo
)
2742 : Traverse(traverse_functions
),
2747 function(Named_object
*);
2751 can_recover_arg(Location
);
2757 // If this function calls recover, turn it into a thunk.
2760 Build_recover_thunks::function(Named_object
* orig_no
)
2762 Function
* orig_func
= orig_no
->func_value();
2763 if (!orig_func
->calls_recover()
2764 || orig_func
->is_recover_thunk()
2765 || orig_func
->has_recover_thunk())
2766 return TRAVERSE_CONTINUE
;
2768 Gogo
* gogo
= this->gogo_
;
2769 Location location
= orig_func
->location();
2774 Function_type
* orig_fntype
= orig_func
->type();
2775 Typed_identifier_list
* new_params
= new Typed_identifier_list();
2776 std::string receiver_name
;
2777 if (orig_fntype
->is_method())
2779 const Typed_identifier
* receiver
= orig_fntype
->receiver();
2780 snprintf(buf
, sizeof buf
, "rt.%u", count
);
2782 receiver_name
= buf
;
2783 new_params
->push_back(Typed_identifier(receiver_name
, receiver
->type(),
2784 receiver
->location()));
2786 const Typed_identifier_list
* orig_params
= orig_fntype
->parameters();
2787 if (orig_params
!= NULL
&& !orig_params
->empty())
2789 for (Typed_identifier_list::const_iterator p
= orig_params
->begin();
2790 p
!= orig_params
->end();
2793 snprintf(buf
, sizeof buf
, "pt.%u", count
);
2795 new_params
->push_back(Typed_identifier(buf
, p
->type(),
2799 snprintf(buf
, sizeof buf
, "pr.%u", count
);
2801 std::string can_recover_name
= buf
;
2802 new_params
->push_back(Typed_identifier(can_recover_name
,
2803 Type::lookup_bool_type(),
2804 orig_fntype
->location()));
2806 const Typed_identifier_list
* orig_results
= orig_fntype
->results();
2807 Typed_identifier_list
* new_results
;
2808 if (orig_results
== NULL
|| orig_results
->empty())
2812 new_results
= new Typed_identifier_list();
2813 for (Typed_identifier_list::const_iterator p
= orig_results
->begin();
2814 p
!= orig_results
->end();
2816 new_results
->push_back(Typed_identifier("", p
->type(), p
->location()));
2819 Function_type
*new_fntype
= Type::make_function_type(NULL
, new_params
,
2821 orig_fntype
->location());
2822 if (orig_fntype
->is_varargs())
2823 new_fntype
->set_is_varargs();
2825 std::string name
= orig_no
->name() + "$recover";
2826 Named_object
*new_no
= gogo
->start_function(name
, new_fntype
, false,
2828 Function
*new_func
= new_no
->func_value();
2829 if (orig_func
->enclosing() != NULL
)
2830 new_func
->set_enclosing(orig_func
->enclosing());
2832 // We build the code for the original function attached to the new
2833 // function, and then swap the original and new function bodies.
2834 // This means that existing references to the original function will
2835 // then refer to the new function. That makes this code a little
2836 // confusing, in that the reference to NEW_NO really refers to the
2837 // other function, not the one we are building.
2839 Expression
* closure
= NULL
;
2840 if (orig_func
->needs_closure())
2842 // For the new function we are creating, declare a new parameter
2843 // variable NEW_CLOSURE_NO and set it to be the closure variable
2844 // of the function. This will be set to the closure value
2845 // passed in by the caller. Then pass a reference to this
2846 // variable as the closure value when calling the original
2847 // function. In other words, simply pass the closure value
2848 // through the thunk we are creating.
2849 Named_object
* orig_closure_no
= orig_func
->closure_var();
2850 Variable
* orig_closure_var
= orig_closure_no
->var_value();
2851 Variable
* new_var
= new Variable(orig_closure_var
->type(), NULL
, false,
2852 false, false, location
);
2853 snprintf(buf
, sizeof buf
, "closure.%u", count
);
2855 Named_object
* new_closure_no
= Named_object::make_variable(buf
, NULL
,
2857 new_func
->set_closure_var(new_closure_no
);
2858 closure
= Expression::make_var_reference(new_closure_no
, location
);
2861 Expression
* fn
= Expression::make_func_reference(new_no
, closure
, location
);
2863 Expression_list
* args
= new Expression_list();
2864 if (new_params
!= NULL
)
2866 // Note that we skip the last parameter, which is the boolean
2867 // indicating whether recover can succed.
2868 for (Typed_identifier_list::const_iterator p
= new_params
->begin();
2869 p
+ 1 != new_params
->end();
2872 Named_object
* p_no
= gogo
->lookup(p
->name(), NULL
);
2873 go_assert(p_no
!= NULL
2874 && p_no
->is_variable()
2875 && p_no
->var_value()->is_parameter());
2876 args
->push_back(Expression::make_var_reference(p_no
, location
));
2879 args
->push_back(this->can_recover_arg(location
));
2881 gogo
->start_block(location
);
2883 Call_expression
* call
= Expression::make_call(fn
, args
, false, location
);
2885 // Any varargs call has already been lowered.
2886 call
->set_varargs_are_lowered();
2888 Statement
* s
= Statement::make_return_from_call(call
, location
);
2889 s
->determine_types();
2890 gogo
->add_statement(s
);
2892 Block
* b
= gogo
->finish_block(location
);
2894 gogo
->add_block(b
, location
);
2896 // Lower the call in case it returns multiple results.
2897 gogo
->lower_block(new_no
, b
);
2899 gogo
->finish_function(location
);
2901 // Swap the function bodies and types.
2902 new_func
->swap_for_recover(orig_func
);
2903 orig_func
->set_is_recover_thunk();
2904 new_func
->set_calls_recover();
2905 new_func
->set_has_recover_thunk();
2907 Bindings
* orig_bindings
= orig_func
->block()->bindings();
2908 Bindings
* new_bindings
= new_func
->block()->bindings();
2909 if (orig_fntype
->is_method())
2911 // We changed the receiver to be a regular parameter. We have
2912 // to update the binding accordingly in both functions.
2913 Named_object
* orig_rec_no
= orig_bindings
->lookup_local(receiver_name
);
2914 go_assert(orig_rec_no
!= NULL
2915 && orig_rec_no
->is_variable()
2916 && !orig_rec_no
->var_value()->is_receiver());
2917 orig_rec_no
->var_value()->set_is_receiver();
2919 const std::string
& new_receiver_name(orig_fntype
->receiver()->name());
2920 Named_object
* new_rec_no
= new_bindings
->lookup_local(new_receiver_name
);
2921 if (new_rec_no
== NULL
)
2922 go_assert(saw_errors());
2925 go_assert(new_rec_no
->is_variable()
2926 && new_rec_no
->var_value()->is_receiver());
2927 new_rec_no
->var_value()->set_is_not_receiver();
2931 // Because we flipped blocks but not types, the can_recover
2932 // parameter appears in the (now) old bindings as a parameter.
2933 // Change it to a local variable, whereupon it will be discarded.
2934 Named_object
* can_recover_no
= orig_bindings
->lookup_local(can_recover_name
);
2935 go_assert(can_recover_no
!= NULL
2936 && can_recover_no
->is_variable()
2937 && can_recover_no
->var_value()->is_parameter());
2938 orig_bindings
->remove_binding(can_recover_no
);
2940 // Add the can_recover argument to the (now) new bindings, and
2941 // attach it to any recover statements.
2942 Variable
* can_recover_var
= new Variable(Type::lookup_bool_type(), NULL
,
2943 false, true, false, location
);
2944 can_recover_no
= new_bindings
->add_variable(can_recover_name
, NULL
,
2946 Convert_recover
convert_recover(can_recover_no
);
2947 new_func
->traverse(&convert_recover
);
2949 // Update the function pointers in any named results.
2950 new_func
->update_result_variables();
2951 orig_func
->update_result_variables();
2953 return TRAVERSE_CONTINUE
;
2956 // Return the expression to pass for the .can_recover parameter to the
2957 // new function. This indicates whether a call to recover may return
2958 // non-nil. The expression is
2959 // __go_can_recover(__builtin_return_address()).
2962 Build_recover_thunks::can_recover_arg(Location location
)
2964 static Named_object
* builtin_return_address
;
2965 if (builtin_return_address
== NULL
)
2967 const Location bloc
= Linemap::predeclared_location();
2969 Typed_identifier_list
* param_types
= new Typed_identifier_list();
2970 Type
* uint_type
= Type::lookup_integer_type("uint");
2971 param_types
->push_back(Typed_identifier("l", uint_type
, bloc
));
2973 Typed_identifier_list
* return_types
= new Typed_identifier_list();
2974 Type
* voidptr_type
= Type::make_pointer_type(Type::make_void_type());
2975 return_types
->push_back(Typed_identifier("", voidptr_type
, bloc
));
2977 Function_type
* fntype
= Type::make_function_type(NULL
, param_types
,
2978 return_types
, bloc
);
2979 builtin_return_address
=
2980 Named_object::make_function_declaration("__builtin_return_address",
2981 NULL
, fntype
, bloc
);
2982 const char* n
= "__builtin_return_address";
2983 builtin_return_address
->func_declaration_value()->set_asm_name(n
);
2986 static Named_object
* can_recover
;
2987 if (can_recover
== NULL
)
2989 const Location bloc
= Linemap::predeclared_location();
2990 Typed_identifier_list
* param_types
= new Typed_identifier_list();
2991 Type
* voidptr_type
= Type::make_pointer_type(Type::make_void_type());
2992 param_types
->push_back(Typed_identifier("a", voidptr_type
, bloc
));
2993 Type
* boolean_type
= Type::lookup_bool_type();
2994 Typed_identifier_list
* results
= new Typed_identifier_list();
2995 results
->push_back(Typed_identifier("", boolean_type
, bloc
));
2996 Function_type
* fntype
= Type::make_function_type(NULL
, param_types
,
2998 can_recover
= Named_object::make_function_declaration("__go_can_recover",
3001 can_recover
->func_declaration_value()->set_asm_name("__go_can_recover");
3004 Expression
* fn
= Expression::make_func_reference(builtin_return_address
,
3008 mpz_init_set_ui(zval
, 0UL);
3009 Expression
* zexpr
= Expression::make_integer(&zval
, NULL
, location
);
3011 Expression_list
*args
= new Expression_list();
3012 args
->push_back(zexpr
);
3014 Expression
* call
= Expression::make_call(fn
, args
, false, location
);
3016 args
= new Expression_list();
3017 args
->push_back(call
);
3019 fn
= Expression::make_func_reference(can_recover
, NULL
, location
);
3020 return Expression::make_call(fn
, args
, false, location
);
3023 // Build thunks for functions which call recover. We build a new
3024 // function with an extra parameter, which is whether a call to
3025 // recover can succeed. We then move the body of this function to
3026 // that one. We then turn this function into a thunk which calls the
3027 // new one, passing the value of
3028 // __go_can_recover(__builtin_return_address()). The function will be
3029 // marked as not splitting the stack. This will cooperate with the
3030 // implementation of defer to make recover do the right thing.
3033 Gogo::build_recover_thunks()
3035 Build_recover_thunks
build_recover_thunks(this);
3036 this->traverse(&build_recover_thunks
);
3039 // Look for named types to see whether we need to create an interface
3042 class Build_method_tables
: public Traverse
3045 Build_method_tables(Gogo
* gogo
,
3046 const std::vector
<Interface_type
*>& interfaces
)
3047 : Traverse(traverse_types
),
3048 gogo_(gogo
), interfaces_(interfaces
)
3057 // A list of locally defined interfaces which have hidden methods.
3058 const std::vector
<Interface_type
*>& interfaces_
;
3061 // Build all required interface method tables for types. We need to
3062 // ensure that we have an interface method table for every interface
3063 // which has a hidden method, for every named type which implements
3064 // that interface. Normally we can just build interface method tables
3065 // as we need them. However, in some cases we can require an
3066 // interface method table for an interface defined in a different
3067 // package for a type defined in that package. If that interface and
3068 // type both use a hidden method, that is OK. However, we will not be
3069 // able to build that interface method table when we need it, because
3070 // the type's hidden method will be static. So we have to build it
3071 // here, and just refer it from other packages as needed.
3074 Gogo::build_interface_method_tables()
3079 std::vector
<Interface_type
*> hidden_interfaces
;
3080 hidden_interfaces
.reserve(this->interface_types_
.size());
3081 for (std::vector
<Interface_type
*>::const_iterator pi
=
3082 this->interface_types_
.begin();
3083 pi
!= this->interface_types_
.end();
3086 const Typed_identifier_list
* methods
= (*pi
)->methods();
3087 if (methods
== NULL
)
3089 for (Typed_identifier_list::const_iterator pm
= methods
->begin();
3090 pm
!= methods
->end();
3093 if (Gogo::is_hidden_name(pm
->name()))
3095 hidden_interfaces
.push_back(*pi
);
3101 if (!hidden_interfaces
.empty())
3103 // Now traverse the tree looking for all named types.
3104 Build_method_tables
bmt(this, hidden_interfaces
);
3105 this->traverse(&bmt
);
3108 // We no longer need the list of interfaces.
3110 this->interface_types_
.clear();
3113 // This is called for each type. For a named type, for each of the
3114 // interfaces with hidden methods that it implements, create the
3118 Build_method_tables::type(Type
* type
)
3120 Named_type
* nt
= type
->named_type();
3121 Struct_type
* st
= type
->struct_type();
3122 if (nt
!= NULL
|| st
!= NULL
)
3124 for (std::vector
<Interface_type
*>::const_iterator p
=
3125 this->interfaces_
.begin();
3126 p
!= this->interfaces_
.end();
3129 // We ask whether a pointer to the named type implements the
3130 // interface, because a pointer can implement more methods
3134 if ((*p
)->implements_interface(Type::make_pointer_type(nt
),
3137 nt
->interface_method_table(this->gogo_
, *p
, false);
3138 nt
->interface_method_table(this->gogo_
, *p
, true);
3143 if ((*p
)->implements_interface(Type::make_pointer_type(st
),
3146 st
->interface_method_table(this->gogo_
, *p
, false);
3147 st
->interface_method_table(this->gogo_
, *p
, true);
3152 return TRAVERSE_CONTINUE
;
3155 // Traversal class used to check for return statements.
3157 class Check_return_statements_traverse
: public Traverse
3160 Check_return_statements_traverse()
3161 : Traverse(traverse_functions
)
3165 function(Named_object
*);
3168 // Check that a function has a return statement if it needs one.
3171 Check_return_statements_traverse::function(Named_object
* no
)
3173 Function
* func
= no
->func_value();
3174 const Function_type
* fntype
= func
->type();
3175 const Typed_identifier_list
* results
= fntype
->results();
3177 // We only need a return statement if there is a return value.
3178 if (results
== NULL
|| results
->empty())
3179 return TRAVERSE_CONTINUE
;
3181 if (func
->block()->may_fall_through())
3182 error_at(func
->block()->end_location(),
3183 "missing return at end of function");
3185 return TRAVERSE_CONTINUE
;
3188 // Check return statements.
3191 Gogo::check_return_statements()
3193 Check_return_statements_traverse traverse
;
3194 this->traverse(&traverse
);
3197 // Work out the package priority. It is one more than the maximum
3198 // priority of an imported package.
3201 Gogo::package_priority() const
3204 for (Packages::const_iterator p
= this->packages_
.begin();
3205 p
!= this->packages_
.end();
3207 if (p
->second
->priority() > priority
)
3208 priority
= p
->second
->priority();
3209 return priority
+ 1;
3212 // Export identifiers as requested.
3217 // For now we always stream to a section. Later we may want to
3218 // support streaming to a separate file.
3219 Stream_to_section stream
;
3221 Export
exp(&stream
);
3222 exp
.register_builtin_types(this);
3223 exp
.export_globals(this->package_name(),
3225 this->package_priority(),
3227 (this->need_init_fn_
&& !this->is_main_package()
3228 ? this->get_init_fn_name()
3230 this->imported_init_fns_
,
3231 this->package_
->bindings());
3234 // Find the blocks in order to convert named types defined in blocks.
3236 class Convert_named_types
: public Traverse
3239 Convert_named_types(Gogo
* gogo
)
3240 : Traverse(traverse_blocks
),
3246 block(Block
* block
);
3253 Convert_named_types::block(Block
* block
)
3255 this->gogo_
->convert_named_types_in_bindings(block
->bindings());
3256 return TRAVERSE_CONTINUE
;
3259 // Convert all named types to the backend representation. Since named
3260 // types can refer to other types, this needs to be done in the right
3261 // sequence, which is handled by Named_type::convert. Here we arrange
3262 // to call that for each named type.
3265 Gogo::convert_named_types()
3267 this->convert_named_types_in_bindings(this->globals_
);
3268 for (Packages::iterator p
= this->packages_
.begin();
3269 p
!= this->packages_
.end();
3272 Package
* package
= p
->second
;
3273 this->convert_named_types_in_bindings(package
->bindings());
3276 Convert_named_types
cnt(this);
3277 this->traverse(&cnt
);
3279 // Make all the builtin named types used for type descriptors, and
3280 // then convert them. They will only be written out if they are
3282 Type::make_type_descriptor_type();
3283 Type::make_type_descriptor_ptr_type();
3284 Function_type::make_function_type_descriptor_type();
3285 Pointer_type::make_pointer_type_descriptor_type();
3286 Struct_type::make_struct_type_descriptor_type();
3287 Array_type::make_array_type_descriptor_type();
3288 Array_type::make_slice_type_descriptor_type();
3289 Map_type::make_map_type_descriptor_type();
3290 Map_type::make_map_descriptor_type();
3291 Channel_type::make_chan_type_descriptor_type();
3292 Interface_type::make_interface_type_descriptor_type();
3293 Expression::make_func_descriptor_type();
3294 Type::convert_builtin_named_types(this);
3296 Runtime::convert_types(this);
3298 this->named_types_are_converted_
= true;
3301 // Convert all names types in a set of bindings.
3304 Gogo::convert_named_types_in_bindings(Bindings
* bindings
)
3306 for (Bindings::const_definitions_iterator p
= bindings
->begin_definitions();
3307 p
!= bindings
->end_definitions();
3310 if ((*p
)->is_type())
3311 (*p
)->type_value()->convert(this);
3317 Function::Function(Function_type
* type
, Function
* enclosing
, Block
* block
,
3319 : type_(type
), enclosing_(enclosing
), results_(NULL
),
3320 closure_var_(NULL
), block_(block
), location_(location
), labels_(),
3321 local_type_count_(0), descriptor_(NULL
), fndecl_(NULL
), defer_stack_(NULL
),
3322 is_sink_(false), results_are_named_(false), nointerface_(false),
3323 is_unnamed_type_stub_method_(false), calls_recover_(false),
3324 is_recover_thunk_(false), has_recover_thunk_(false),
3325 in_unique_section_(false)
3329 // Create the named result variables.
3332 Function::create_result_variables(Gogo
* gogo
)
3334 const Typed_identifier_list
* results
= this->type_
->results();
3335 if (results
== NULL
|| results
->empty())
3338 if (!results
->front().name().empty())
3339 this->results_are_named_
= true;
3341 this->results_
= new Results();
3342 this->results_
->reserve(results
->size());
3344 Block
* block
= this->block_
;
3346 for (Typed_identifier_list::const_iterator p
= results
->begin();
3347 p
!= results
->end();
3350 std::string name
= p
->name();
3351 if (name
.empty() || Gogo::is_sink_name(name
))
3353 static int result_counter
;
3355 snprintf(buf
, sizeof buf
, "$ret%d", result_counter
);
3357 name
= gogo
->pack_hidden_name(buf
, false);
3359 Result_variable
* result
= new Result_variable(p
->type(), this, index
,
3361 Named_object
* no
= block
->bindings()->add_result_variable(name
, result
);
3362 if (no
->is_result_variable())
3363 this->results_
->push_back(no
);
3366 static int dummy_result_count
;
3368 snprintf(buf
, sizeof buf
, "$dret%d", dummy_result_count
);
3369 ++dummy_result_count
;
3370 name
= gogo
->pack_hidden_name(buf
, false);
3371 no
= block
->bindings()->add_result_variable(name
, result
);
3372 go_assert(no
->is_result_variable());
3373 this->results_
->push_back(no
);
3378 // Update the named result variables when cloning a function which
3382 Function::update_result_variables()
3384 if (this->results_
== NULL
)
3387 for (Results::iterator p
= this->results_
->begin();
3388 p
!= this->results_
->end();
3390 (*p
)->result_var_value()->set_function(this);
3393 // Return the closure variable, creating it if necessary.
3396 Function::closure_var()
3398 if (this->closure_var_
== NULL
)
3400 go_assert(this->descriptor_
== NULL
);
3401 // We don't know the type of the variable yet. We add fields as
3403 Location loc
= this->type_
->location();
3404 Struct_field_list
* sfl
= new Struct_field_list
;
3405 Type
* struct_type
= Type::make_struct_type(sfl
, loc
);
3406 Variable
* var
= new Variable(Type::make_pointer_type(struct_type
),
3407 NULL
, false, false, false, loc
);
3409 this->closure_var_
= Named_object::make_variable("$closure", NULL
, var
);
3410 // Note that the new variable is not in any binding contour.
3412 return this->closure_var_
;
3415 // Set the type of the closure variable.
3418 Function::set_closure_type()
3420 if (this->closure_var_
== NULL
)
3422 Named_object
* closure
= this->closure_var_
;
3423 Struct_type
* st
= closure
->var_value()->type()->deref()->struct_type();
3425 // The first field of a closure is always a pointer to the function
3427 Type
* voidptr_type
= Type::make_pointer_type(Type::make_void_type());
3428 st
->push_field(Struct_field(Typed_identifier(".$f", voidptr_type
,
3431 unsigned int index
= 1;
3432 for (Closure_fields::const_iterator p
= this->closure_fields_
.begin();
3433 p
!= this->closure_fields_
.end();
3436 Named_object
* no
= p
->first
;
3438 snprintf(buf
, sizeof buf
, "%u", index
);
3439 std::string n
= no
->name() + buf
;
3441 if (no
->is_variable())
3442 var_type
= no
->var_value()->type();
3444 var_type
= no
->result_var_value()->type();
3445 Type
* field_type
= Type::make_pointer_type(var_type
);
3446 st
->push_field(Struct_field(Typed_identifier(n
, field_type
, p
->second
)));
3450 // Return whether this function is a method.
3453 Function::is_method() const
3455 return this->type_
->is_method();
3458 // Add a label definition.
3461 Function::add_label_definition(Gogo
* gogo
, const std::string
& label_name
,
3464 Label
* lnull
= NULL
;
3465 std::pair
<Labels::iterator
, bool> ins
=
3466 this->labels_
.insert(std::make_pair(label_name
, lnull
));
3470 // This is a new label.
3471 label
= new Label(label_name
);
3472 ins
.first
->second
= label
;
3476 // The label was already in the hash table.
3477 label
= ins
.first
->second
;
3478 if (label
->is_defined())
3480 error_at(location
, "label %qs already defined",
3481 Gogo::message_name(label_name
).c_str());
3482 inform(label
->location(), "previous definition of %qs was here",
3483 Gogo::message_name(label_name
).c_str());
3484 return new Label(label_name
);
3488 label
->define(location
, gogo
->bindings_snapshot(location
));
3490 // Issue any errors appropriate for any previous goto's to this
3492 const std::vector
<Bindings_snapshot
*>& refs(label
->refs());
3493 for (std::vector
<Bindings_snapshot
*>::const_iterator p
= refs
.begin();
3496 (*p
)->check_goto_to(gogo
->current_block());
3497 label
->clear_refs();
3502 // Add a reference to a label.
3505 Function::add_label_reference(Gogo
* gogo
, const std::string
& label_name
,
3506 Location location
, bool issue_goto_errors
)
3508 Label
* lnull
= NULL
;
3509 std::pair
<Labels::iterator
, bool> ins
=
3510 this->labels_
.insert(std::make_pair(label_name
, lnull
));
3514 // The label was already in the hash table.
3515 label
= ins
.first
->second
;
3519 go_assert(ins
.first
->second
== NULL
);
3520 label
= new Label(label_name
);
3521 ins
.first
->second
= label
;
3524 label
->set_is_used();
3526 if (issue_goto_errors
)
3528 Bindings_snapshot
* snapshot
= label
->snapshot();
3529 if (snapshot
!= NULL
)
3530 snapshot
->check_goto_from(gogo
->current_block(), location
);
3532 label
->add_snapshot_ref(gogo
->bindings_snapshot(location
));
3538 // Warn about labels that are defined but not used.
3541 Function::check_labels() const
3543 for (Labels::const_iterator p
= this->labels_
.begin();
3544 p
!= this->labels_
.end();
3547 Label
* label
= p
->second
;
3548 if (!label
->is_used())
3549 error_at(label
->location(), "label %qs defined and not used",
3550 Gogo::message_name(label
->name()).c_str());
3554 // Swap one function with another. This is used when building the
3555 // thunk we use to call a function which calls recover. It may not
3556 // work for any other case.
3559 Function::swap_for_recover(Function
*x
)
3561 go_assert(this->enclosing_
== x
->enclosing_
);
3562 std::swap(this->results_
, x
->results_
);
3563 std::swap(this->closure_var_
, x
->closure_var_
);
3564 std::swap(this->block_
, x
->block_
);
3565 go_assert(this->location_
== x
->location_
);
3566 go_assert(this->fndecl_
== NULL
&& x
->fndecl_
== NULL
);
3567 go_assert(this->defer_stack_
== NULL
&& x
->defer_stack_
== NULL
);
3570 // Traverse the tree.
3573 Function::traverse(Traverse
* traverse
)
3575 unsigned int traverse_mask
= traverse
->traverse_mask();
3578 & (Traverse::traverse_types
| Traverse::traverse_expressions
))
3581 if (Type::traverse(this->type_
, traverse
) == TRAVERSE_EXIT
)
3582 return TRAVERSE_EXIT
;
3585 // FIXME: We should check traverse_functions here if nested
3586 // functions are stored in block bindings.
3587 if (this->block_
!= NULL
3589 & (Traverse::traverse_variables
3590 | Traverse::traverse_constants
3591 | Traverse::traverse_blocks
3592 | Traverse::traverse_statements
3593 | Traverse::traverse_expressions
3594 | Traverse::traverse_types
)) != 0)
3596 if (this->block_
->traverse(traverse
) == TRAVERSE_EXIT
)
3597 return TRAVERSE_EXIT
;
3600 return TRAVERSE_CONTINUE
;
3603 // Work out types for unspecified variables and constants.
3606 Function::determine_types()
3608 if (this->block_
!= NULL
)
3609 this->block_
->determine_types();
3612 // Return the function descriptor, the value you get when you refer to
3613 // the function in Go code without calling it.
3616 Function::descriptor(Gogo
*, Named_object
* no
)
3618 go_assert(!this->is_method());
3619 go_assert(this->closure_var_
== NULL
);
3620 if (this->descriptor_
== NULL
)
3621 this->descriptor_
= Expression::make_func_descriptor(no
);
3622 return this->descriptor_
;
3625 // Get a pointer to the variable representing the defer stack for this
3626 // function, making it if necessary. The value of the variable is set
3627 // by the runtime routines to true if the function is returning,
3628 // rather than panicing through. A pointer to this variable is used
3629 // as a marker for the functions on the defer stack associated with
3630 // this function. A function-specific variable permits inlining a
3631 // function which uses defer.
3634 Function::defer_stack(Location location
)
3636 if (this->defer_stack_
== NULL
)
3638 Type
* t
= Type::lookup_bool_type();
3639 Expression
* n
= Expression::make_boolean(false, location
);
3640 this->defer_stack_
= Statement::make_temporary(t
, n
, location
);
3641 this->defer_stack_
->set_is_address_taken();
3643 Expression
* ref
= Expression::make_temporary_reference(this->defer_stack_
,
3645 return Expression::make_unary(OPERATOR_AND
, ref
, location
);
3648 // Export the function.
3651 Function::export_func(Export
* exp
, const std::string
& name
) const
3653 Function::export_func_with_type(exp
, name
, this->type_
);
3656 // Export a function with a type.
3659 Function::export_func_with_type(Export
* exp
, const std::string
& name
,
3660 const Function_type
* fntype
)
3662 exp
->write_c_string("func ");
3664 if (fntype
->is_method())
3666 exp
->write_c_string("(");
3667 const Typed_identifier
* receiver
= fntype
->receiver();
3668 exp
->write_name(receiver
->name());
3669 exp
->write_c_string(" ");
3670 exp
->write_type(receiver
->type());
3671 exp
->write_c_string(") ");
3674 exp
->write_string(name
);
3676 exp
->write_c_string(" (");
3677 const Typed_identifier_list
* parameters
= fntype
->parameters();
3678 if (parameters
!= NULL
)
3680 bool is_varargs
= fntype
->is_varargs();
3682 for (Typed_identifier_list::const_iterator p
= parameters
->begin();
3683 p
!= parameters
->end();
3689 exp
->write_c_string(", ");
3690 exp
->write_name(p
->name());
3691 exp
->write_c_string(" ");
3692 if (!is_varargs
|| p
+ 1 != parameters
->end())
3693 exp
->write_type(p
->type());
3696 exp
->write_c_string("...");
3697 exp
->write_type(p
->type()->array_type()->element_type());
3701 exp
->write_c_string(")");
3703 const Typed_identifier_list
* results
= fntype
->results();
3704 if (results
!= NULL
)
3706 if (results
->size() == 1 && results
->begin()->name().empty())
3708 exp
->write_c_string(" ");
3709 exp
->write_type(results
->begin()->type());
3713 exp
->write_c_string(" (");
3715 for (Typed_identifier_list::const_iterator p
= results
->begin();
3716 p
!= results
->end();
3722 exp
->write_c_string(", ");
3723 exp
->write_name(p
->name());
3724 exp
->write_c_string(" ");
3725 exp
->write_type(p
->type());
3727 exp
->write_c_string(")");
3730 exp
->write_c_string(";\n");
3733 // Import a function.
3736 Function::import_func(Import
* imp
, std::string
* pname
,
3737 Typed_identifier
** preceiver
,
3738 Typed_identifier_list
** pparameters
,
3739 Typed_identifier_list
** presults
,
3742 imp
->require_c_string("func ");
3745 if (imp
->peek_char() == '(')
3747 imp
->require_c_string("(");
3748 std::string name
= imp
->read_name();
3749 imp
->require_c_string(" ");
3750 Type
* rtype
= imp
->read_type();
3751 *preceiver
= new Typed_identifier(name
, rtype
, imp
->location());
3752 imp
->require_c_string(") ");
3755 *pname
= imp
->read_identifier();
3757 Typed_identifier_list
* parameters
;
3758 *is_varargs
= false;
3759 imp
->require_c_string(" (");
3760 if (imp
->peek_char() == ')')
3764 parameters
= new Typed_identifier_list();
3767 std::string name
= imp
->read_name();
3768 imp
->require_c_string(" ");
3770 if (imp
->match_c_string("..."))
3776 Type
* ptype
= imp
->read_type();
3778 ptype
= Type::make_array_type(ptype
, NULL
);
3779 parameters
->push_back(Typed_identifier(name
, ptype
,
3781 if (imp
->peek_char() != ',')
3783 go_assert(!*is_varargs
);
3784 imp
->require_c_string(", ");
3787 imp
->require_c_string(")");
3788 *pparameters
= parameters
;
3790 Typed_identifier_list
* results
;
3791 if (imp
->peek_char() != ' ')
3795 results
= new Typed_identifier_list();
3796 imp
->require_c_string(" ");
3797 if (imp
->peek_char() != '(')
3799 Type
* rtype
= imp
->read_type();
3800 results
->push_back(Typed_identifier("", rtype
, imp
->location()));
3804 imp
->require_c_string("(");
3807 std::string name
= imp
->read_name();
3808 imp
->require_c_string(" ");
3809 Type
* rtype
= imp
->read_type();
3810 results
->push_back(Typed_identifier(name
, rtype
,
3812 if (imp
->peek_char() != ',')
3814 imp
->require_c_string(", ");
3816 imp
->require_c_string(")");
3819 imp
->require_c_string(";\n");
3820 *presults
= results
;
3823 // Get the backend representation.
3826 Function::get_or_make_decl(Gogo
* gogo
, Named_object
* no
)
3828 if (this->fndecl_
== NULL
)
3830 std::string asm_name
;
3831 bool is_visible
= false;
3832 if (no
->package() != NULL
)
3834 else if (this->enclosing_
!= NULL
|| Gogo::is_thunk(no
))
3836 else if (Gogo::unpack_hidden_name(no
->name()) == "init"
3837 && !this->type_
->is_method())
3839 else if (Gogo::unpack_hidden_name(no
->name()) == "main"
3840 && gogo
->is_main_package())
3842 // Methods have to be public even if they are hidden because
3843 // they can be pulled into type descriptors when using
3844 // anonymous fields.
3845 else if (!Gogo::is_hidden_name(no
->name())
3846 || this->type_
->is_method())
3848 if (!this->is_unnamed_type_stub_method_
)
3850 std::string pkgpath
= gogo
->pkgpath_symbol();
3851 if (this->type_
->is_method()
3852 && Gogo::is_hidden_name(no
->name())
3853 && Gogo::hidden_name_pkgpath(no
->name()) != gogo
->pkgpath())
3855 // This is a method we created for an unexported
3856 // method of an imported embedded type. We need to
3857 // use the pkgpath of the imported package to avoid
3858 // a possible name collision. See bug478 for a test
3860 pkgpath
= Gogo::hidden_name_pkgpath(no
->name());
3861 pkgpath
= Gogo::pkgpath_for_symbol(pkgpath
);
3865 asm_name
.append(1, '.');
3866 asm_name
.append(Gogo::unpack_hidden_name(no
->name()));
3867 if (this->type_
->is_method())
3869 asm_name
.append(1, '.');
3870 Type
* rtype
= this->type_
->receiver()->type();
3871 asm_name
.append(rtype
->mangled_name(gogo
));
3875 // If a function calls the predeclared recover function, we
3876 // can't inline it, because recover behaves differently in a
3877 // function passed directly to defer. If this is a recover
3878 // thunk that we built to test whether a function can be
3879 // recovered, we can't inline it, because that will mess up
3880 // our return address comparison.
3881 bool is_inlinable
= !(this->calls_recover_
|| this->is_recover_thunk_
);
3883 // If this is a thunk created to call a function which calls
3884 // the predeclared recover function, we need to disable
3885 // stack splitting for the thunk.
3886 bool disable_split_stack
= this->is_recover_thunk_
;
3888 Btype
* functype
= this->type_
->get_backend_fntype(gogo
);
3890 gogo
->backend()->function(functype
, no
->get_id(gogo
), asm_name
,
3891 is_visible
, false, is_inlinable
,
3892 disable_split_stack
,
3893 this->in_unique_section_
, this->location());
3895 return this->fndecl_
;
3900 Block::Block(Block
* enclosing
, Location location
)
3901 : enclosing_(enclosing
), statements_(),
3902 bindings_(new Bindings(enclosing
== NULL
3904 : enclosing
->bindings())),
3905 start_location_(location
),
3906 end_location_(UNKNOWN_LOCATION
)
3910 // Add a statement to a block.
3913 Block::add_statement(Statement
* statement
)
3915 this->statements_
.push_back(statement
);
3918 // Add a statement to the front of a block. This is slow but is only
3919 // used for reference counts of parameters.
3922 Block::add_statement_at_front(Statement
* statement
)
3924 this->statements_
.insert(this->statements_
.begin(), statement
);
3927 // Replace a statement in a block.
3930 Block::replace_statement(size_t index
, Statement
* s
)
3932 go_assert(index
< this->statements_
.size());
3933 this->statements_
[index
] = s
;
3936 // Add a statement before another statement.
3939 Block::insert_statement_before(size_t index
, Statement
* s
)
3941 go_assert(index
< this->statements_
.size());
3942 this->statements_
.insert(this->statements_
.begin() + index
, s
);
3945 // Add a statement after another statement.
3948 Block::insert_statement_after(size_t index
, Statement
* s
)
3950 go_assert(index
< this->statements_
.size());
3951 this->statements_
.insert(this->statements_
.begin() + index
+ 1, s
);
3954 // Traverse the tree.
3957 Block::traverse(Traverse
* traverse
)
3959 unsigned int traverse_mask
= traverse
->traverse_mask();
3961 if ((traverse_mask
& Traverse::traverse_blocks
) != 0)
3963 int t
= traverse
->block(this);
3964 if (t
== TRAVERSE_EXIT
)
3965 return TRAVERSE_EXIT
;
3966 else if (t
== TRAVERSE_SKIP_COMPONENTS
)
3967 return TRAVERSE_CONTINUE
;
3971 & (Traverse::traverse_variables
3972 | Traverse::traverse_constants
3973 | Traverse::traverse_expressions
3974 | Traverse::traverse_types
)) != 0)
3976 const unsigned int e_or_t
= (Traverse::traverse_expressions
3977 | Traverse::traverse_types
);
3978 const unsigned int e_or_t_or_s
= (e_or_t
3979 | Traverse::traverse_statements
);
3980 for (Bindings::const_definitions_iterator pb
=
3981 this->bindings_
->begin_definitions();
3982 pb
!= this->bindings_
->end_definitions();
3985 int t
= TRAVERSE_CONTINUE
;
3986 switch ((*pb
)->classification())
3988 case Named_object::NAMED_OBJECT_CONST
:
3989 if ((traverse_mask
& Traverse::traverse_constants
) != 0)
3990 t
= traverse
->constant(*pb
, false);
3991 if (t
== TRAVERSE_CONTINUE
3992 && (traverse_mask
& e_or_t
) != 0)
3994 Type
* tc
= (*pb
)->const_value()->type();
3996 && Type::traverse(tc
, traverse
) == TRAVERSE_EXIT
)
3997 return TRAVERSE_EXIT
;
3998 t
= (*pb
)->const_value()->traverse_expression(traverse
);
4002 case Named_object::NAMED_OBJECT_VAR
:
4003 case Named_object::NAMED_OBJECT_RESULT_VAR
:
4004 if ((traverse_mask
& Traverse::traverse_variables
) != 0)
4005 t
= traverse
->variable(*pb
);
4006 if (t
== TRAVERSE_CONTINUE
4007 && (traverse_mask
& e_or_t
) != 0)
4009 if ((*pb
)->is_result_variable()
4010 || (*pb
)->var_value()->has_type())
4012 Type
* tv
= ((*pb
)->is_variable()
4013 ? (*pb
)->var_value()->type()
4014 : (*pb
)->result_var_value()->type());
4016 && Type::traverse(tv
, traverse
) == TRAVERSE_EXIT
)
4017 return TRAVERSE_EXIT
;
4020 if (t
== TRAVERSE_CONTINUE
4021 && (traverse_mask
& e_or_t_or_s
) != 0
4022 && (*pb
)->is_variable())
4023 t
= (*pb
)->var_value()->traverse_expression(traverse
,
4027 case Named_object::NAMED_OBJECT_FUNC
:
4028 case Named_object::NAMED_OBJECT_FUNC_DECLARATION
:
4031 case Named_object::NAMED_OBJECT_TYPE
:
4032 if ((traverse_mask
& e_or_t
) != 0)
4033 t
= Type::traverse((*pb
)->type_value(), traverse
);
4036 case Named_object::NAMED_OBJECT_TYPE_DECLARATION
:
4037 case Named_object::NAMED_OBJECT_UNKNOWN
:
4038 case Named_object::NAMED_OBJECT_ERRONEOUS
:
4041 case Named_object::NAMED_OBJECT_PACKAGE
:
4042 case Named_object::NAMED_OBJECT_SINK
:
4049 if (t
== TRAVERSE_EXIT
)
4050 return TRAVERSE_EXIT
;
4054 // No point in checking traverse_mask here--if we got here we always
4055 // want to walk the statements. The traversal can insert new
4056 // statements before or after the current statement. Inserting
4057 // statements before the current statement requires updating I via
4058 // the pointer; those statements will not be traversed. Any new
4059 // statements inserted after the current statement will be traversed
4061 for (size_t i
= 0; i
< this->statements_
.size(); ++i
)
4063 if (this->statements_
[i
]->traverse(this, &i
, traverse
) == TRAVERSE_EXIT
)
4064 return TRAVERSE_EXIT
;
4067 return TRAVERSE_CONTINUE
;
4070 // Work out types for unspecified variables and constants.
4073 Block::determine_types()
4075 for (Bindings::const_definitions_iterator pb
=
4076 this->bindings_
->begin_definitions();
4077 pb
!= this->bindings_
->end_definitions();
4080 if ((*pb
)->is_variable())
4081 (*pb
)->var_value()->determine_type();
4082 else if ((*pb
)->is_const())
4083 (*pb
)->const_value()->determine_type();
4086 for (std::vector
<Statement
*>::const_iterator ps
= this->statements_
.begin();
4087 ps
!= this->statements_
.end();
4089 (*ps
)->determine_types();
4092 // Return true if the statements in this block may fall through.
4095 Block::may_fall_through() const
4097 if (this->statements_
.empty())
4099 return this->statements_
.back()->may_fall_through();
4102 // Convert a block to the backend representation.
4105 Block::get_backend(Translate_context
* context
)
4107 Gogo
* gogo
= context
->gogo();
4108 Named_object
* function
= context
->function();
4109 std::vector
<Bvariable
*> vars
;
4110 vars
.reserve(this->bindings_
->size_definitions());
4111 for (Bindings::const_definitions_iterator pv
=
4112 this->bindings_
->begin_definitions();
4113 pv
!= this->bindings_
->end_definitions();
4116 if ((*pv
)->is_variable() && !(*pv
)->var_value()->is_parameter())
4117 vars
.push_back((*pv
)->get_backend_variable(gogo
, function
));
4120 // FIXME: Permitting FUNCTION to be NULL here is a temporary measure
4121 // until we have a proper representation of the init function.
4122 Bfunction
* bfunction
;
4123 if (function
== NULL
)
4126 bfunction
= tree_to_function(function
->func_value()->get_decl());
4127 Bblock
* ret
= context
->backend()->block(bfunction
, context
->bblock(),
4128 vars
, this->start_location_
,
4129 this->end_location_
);
4131 Translate_context
subcontext(gogo
, function
, this, ret
);
4132 std::vector
<Bstatement
*> bstatements
;
4133 bstatements
.reserve(this->statements_
.size());
4134 for (std::vector
<Statement
*>::const_iterator p
= this->statements_
.begin();
4135 p
!= this->statements_
.end();
4137 bstatements
.push_back((*p
)->get_backend(&subcontext
));
4139 context
->backend()->block_add_statements(ret
, bstatements
);
4144 // Class Bindings_snapshot.
4146 Bindings_snapshot::Bindings_snapshot(const Block
* b
, Location location
)
4147 : block_(b
), counts_(), location_(location
)
4151 this->counts_
.push_back(b
->bindings()->size_definitions());
4156 // Report errors appropriate for a goto from B to this.
4159 Bindings_snapshot::check_goto_from(const Block
* b
, Location loc
)
4162 if (!this->check_goto_block(loc
, b
, this->block_
, &dummy
))
4164 this->check_goto_defs(loc
, this->block_
,
4165 this->block_
->bindings()->size_definitions(),
4169 // Report errors appropriate for a goto from this to B.
4172 Bindings_snapshot::check_goto_to(const Block
* b
)
4175 if (!this->check_goto_block(this->location_
, this->block_
, b
, &index
))
4177 this->check_goto_defs(this->location_
, b
, this->counts_
[index
],
4178 b
->bindings()->size_definitions());
4181 // Report errors appropriate for a goto at LOC from BFROM to BTO.
4182 // Return true if all is well, false if we reported an error. If this
4183 // returns true, it sets *PINDEX to the number of blocks BTO is above
4187 Bindings_snapshot::check_goto_block(Location loc
, const Block
* bfrom
,
4188 const Block
* bto
, size_t* pindex
)
4190 // It is an error if BTO is not either BFROM or above BFROM.
4192 for (const Block
* pb
= bfrom
; pb
!= bto
; pb
= pb
->enclosing(), ++index
)
4196 error_at(loc
, "goto jumps into block");
4197 inform(bto
->start_location(), "goto target block starts here");
4205 // Report errors appropriate for a goto at LOC ending at BLOCK, where
4206 // CFROM is the number of names defined at the point of the goto and
4207 // CTO is the number of names defined at the point of the label.
4210 Bindings_snapshot::check_goto_defs(Location loc
, const Block
* block
,
4211 size_t cfrom
, size_t cto
)
4215 Bindings::const_definitions_iterator p
=
4216 block
->bindings()->begin_definitions();
4217 for (size_t i
= 0; i
< cfrom
; ++i
)
4219 go_assert(p
!= block
->bindings()->end_definitions());
4222 go_assert(p
!= block
->bindings()->end_definitions());
4224 std::string n
= (*p
)->message_name();
4225 error_at(loc
, "goto jumps over declaration of %qs", n
.c_str());
4226 inform((*p
)->location(), "%qs defined here", n
.c_str());
4230 // Class Function_declaration.
4232 // Return the function descriptor.
4235 Function_declaration::descriptor(Gogo
*, Named_object
* no
)
4237 go_assert(!this->fntype_
->is_method());
4238 if (this->descriptor_
== NULL
)
4239 this->descriptor_
= Expression::make_func_descriptor(no
);
4240 return this->descriptor_
;
4245 Variable::Variable(Type
* type
, Expression
* init
, bool is_global
,
4246 bool is_parameter
, bool is_receiver
,
4248 : type_(type
), init_(init
), preinit_(NULL
), location_(location
),
4249 backend_(NULL
), is_global_(is_global
), is_parameter_(is_parameter
),
4250 is_receiver_(is_receiver
), is_varargs_parameter_(false), is_used_(false),
4251 is_address_taken_(false), is_non_escaping_address_taken_(false),
4252 seen_(false), init_is_lowered_(false), type_from_init_tuple_(false),
4253 type_from_range_index_(false), type_from_range_value_(false),
4254 type_from_chan_element_(false), is_type_switch_var_(false),
4255 determined_type_(false), in_unique_section_(false)
4257 go_assert(type
!= NULL
|| init
!= NULL
);
4258 go_assert(!is_parameter
|| init
== NULL
);
4261 // Traverse the initializer expression.
4264 Variable::traverse_expression(Traverse
* traverse
, unsigned int traverse_mask
)
4266 if (this->preinit_
!= NULL
)
4268 if (this->preinit_
->traverse(traverse
) == TRAVERSE_EXIT
)
4269 return TRAVERSE_EXIT
;
4271 if (this->init_
!= NULL
4273 & (Traverse::traverse_expressions
| Traverse::traverse_types
))
4276 if (Expression::traverse(&this->init_
, traverse
) == TRAVERSE_EXIT
)
4277 return TRAVERSE_EXIT
;
4279 return TRAVERSE_CONTINUE
;
4282 // Lower the initialization expression after parsing is complete.
4285 Variable::lower_init_expression(Gogo
* gogo
, Named_object
* function
,
4286 Statement_inserter
* inserter
)
4288 Named_object
* dep
= gogo
->var_depends_on(this);
4289 if (dep
!= NULL
&& dep
->is_variable())
4290 dep
->var_value()->lower_init_expression(gogo
, function
, inserter
);
4292 if (this->init_
!= NULL
&& !this->init_is_lowered_
)
4296 // We will give an error elsewhere, this is just to prevent
4297 // an infinite loop.
4302 Statement_inserter global_inserter
;
4303 if (this->is_global_
)
4305 global_inserter
= Statement_inserter(gogo
, this);
4306 inserter
= &global_inserter
;
4309 gogo
->lower_expression(function
, inserter
, &this->init_
);
4311 this->seen_
= false;
4313 this->init_is_lowered_
= true;
4317 // Get the preinit block.
4320 Variable::preinit_block(Gogo
* gogo
)
4322 go_assert(this->is_global_
);
4323 if (this->preinit_
== NULL
)
4324 this->preinit_
= new Block(NULL
, this->location());
4326 // If a global variable has a preinitialization statement, then we
4327 // need to have an initialization function.
4328 gogo
->set_need_init_fn();
4330 return this->preinit_
;
4333 // Add a statement to be run before the initialization expression.
4336 Variable::add_preinit_statement(Gogo
* gogo
, Statement
* s
)
4338 Block
* b
= this->preinit_block(gogo
);
4339 b
->add_statement(s
);
4340 b
->set_end_location(s
->location());
4343 // Whether this variable has a type.
4346 Variable::has_type() const
4348 if (this->type_
== NULL
)
4351 // A variable created in a type switch case nil does not actually
4352 // have a type yet. It will be changed to use the initializer's
4353 // type in determine_type.
4354 if (this->is_type_switch_var_
4355 && this->type_
->is_nil_constant_as_type())
4361 // In an assignment which sets a variable to a tuple of EXPR, return
4362 // the type of the first element of the tuple.
4365 Variable::type_from_tuple(Expression
* expr
, bool report_error
) const
4367 if (expr
->map_index_expression() != NULL
)
4369 Map_type
* mt
= expr
->map_index_expression()->get_map_type();
4371 return Type::make_error_type();
4372 return mt
->val_type();
4374 else if (expr
->receive_expression() != NULL
)
4376 Expression
* channel
= expr
->receive_expression()->channel();
4377 Type
* channel_type
= channel
->type();
4378 if (channel_type
->channel_type() == NULL
)
4379 return Type::make_error_type();
4380 return channel_type
->channel_type()->element_type();
4385 error_at(this->location(), "invalid tuple definition");
4386 return Type::make_error_type();
4390 // Given EXPR used in a range clause, return either the index type or
4391 // the value type of the range, depending upon GET_INDEX_TYPE.
4394 Variable::type_from_range(Expression
* expr
, bool get_index_type
,
4395 bool report_error
) const
4397 Type
* t
= expr
->type();
4398 if (t
->array_type() != NULL
4399 || (t
->points_to() != NULL
4400 && t
->points_to()->array_type() != NULL
4401 && !t
->points_to()->is_slice_type()))
4404 return Type::lookup_integer_type("int");
4406 return t
->deref()->array_type()->element_type();
4408 else if (t
->is_string_type())
4411 return Type::lookup_integer_type("int");
4413 return Type::lookup_integer_type("int32");
4415 else if (t
->map_type() != NULL
)
4418 return t
->map_type()->key_type();
4420 return t
->map_type()->val_type();
4422 else if (t
->channel_type() != NULL
)
4425 return t
->channel_type()->element_type();
4429 error_at(this->location(),
4430 "invalid definition of value variable for channel range");
4431 return Type::make_error_type();
4437 error_at(this->location(), "invalid type for range clause");
4438 return Type::make_error_type();
4442 // EXPR should be a channel. Return the channel's element type.
4445 Variable::type_from_chan_element(Expression
* expr
, bool report_error
) const
4447 Type
* t
= expr
->type();
4448 if (t
->channel_type() != NULL
)
4449 return t
->channel_type()->element_type();
4453 error_at(this->location(), "expected channel");
4454 return Type::make_error_type();
4458 // Return the type of the Variable. This may be called before
4459 // Variable::determine_type is called, which means that we may need to
4460 // get the type from the initializer. FIXME: If we combine lowering
4461 // with type determination, then this should be unnecessary.
4466 // A variable in a type switch with a nil case will have the wrong
4467 // type here. This gets fixed up in determine_type, below.
4468 Type
* type
= this->type_
;
4469 Expression
* init
= this->init_
;
4470 if (this->is_type_switch_var_
4471 && this->type_
->is_nil_constant_as_type())
4473 Type_guard_expression
* tge
= this->init_
->type_guard_expression();
4474 go_assert(tge
!= NULL
);
4481 if (this->type_
== NULL
|| !this->type_
->is_error_type())
4483 error_at(this->location_
, "variable initializer refers to itself");
4484 this->type_
= Type::make_error_type();
4493 else if (this->type_from_init_tuple_
)
4494 type
= this->type_from_tuple(init
, false);
4495 else if (this->type_from_range_index_
|| this->type_from_range_value_
)
4496 type
= this->type_from_range(init
, this->type_from_range_index_
, false);
4497 else if (this->type_from_chan_element_
)
4498 type
= this->type_from_chan_element(init
, false);
4501 go_assert(init
!= NULL
);
4502 type
= init
->type();
4503 go_assert(type
!= NULL
);
4505 // Variables should not have abstract types.
4506 if (type
->is_abstract())
4507 type
= type
->make_non_abstract_type();
4509 if (type
->is_void_type())
4510 type
= Type::make_error_type();
4513 this->seen_
= false;
4518 // Fetch the type from a const pointer, in which case it should have
4519 // been set already.
4522 Variable::type() const
4524 go_assert(this->type_
!= NULL
);
4528 // Set the type if necessary.
4531 Variable::determine_type()
4533 if (this->determined_type_
)
4535 this->determined_type_
= true;
4537 if (this->preinit_
!= NULL
)
4538 this->preinit_
->determine_types();
4540 // A variable in a type switch with a nil case will have the wrong
4541 // type here. It will have an initializer which is a type guard.
4542 // We want to initialize it to the value without the type guard, and
4543 // use the type of that value as well.
4544 if (this->is_type_switch_var_
&& this->type_
->is_nil_constant_as_type())
4546 Type_guard_expression
* tge
= this->init_
->type_guard_expression();
4547 go_assert(tge
!= NULL
);
4549 this->init_
= tge
->expr();
4552 if (this->init_
== NULL
)
4553 go_assert(this->type_
!= NULL
&& !this->type_
->is_abstract());
4554 else if (this->type_from_init_tuple_
)
4556 Expression
*init
= this->init_
;
4557 init
->determine_type_no_context();
4558 this->type_
= this->type_from_tuple(init
, true);
4561 else if (this->type_from_range_index_
|| this->type_from_range_value_
)
4563 Expression
* init
= this->init_
;
4564 init
->determine_type_no_context();
4565 this->type_
= this->type_from_range(init
, this->type_from_range_index_
,
4569 else if (this->type_from_chan_element_
)
4571 Expression
* init
= this->init_
;
4572 init
->determine_type_no_context();
4573 this->type_
= this->type_from_chan_element(init
, true);
4578 Type_context
context(this->type_
, false);
4579 this->init_
->determine_type(&context
);
4580 if (this->type_
== NULL
)
4582 Type
* type
= this->init_
->type();
4583 go_assert(type
!= NULL
);
4584 if (type
->is_abstract())
4585 type
= type
->make_non_abstract_type();
4587 if (type
->is_void_type())
4589 error_at(this->location_
, "variable has no type");
4590 type
= Type::make_error_type();
4592 else if (type
->is_nil_type())
4594 error_at(this->location_
, "variable defined to nil type");
4595 type
= Type::make_error_type();
4597 else if (type
->is_call_multiple_result_type())
4599 error_at(this->location_
,
4600 "single variable set to multiple-value function call");
4601 type
= Type::make_error_type();
4609 // Export the variable
4612 Variable::export_var(Export
* exp
, const std::string
& name
) const
4614 go_assert(this->is_global_
);
4615 exp
->write_c_string("var ");
4616 exp
->write_string(name
);
4617 exp
->write_c_string(" ");
4618 exp
->write_type(this->type());
4619 exp
->write_c_string(";\n");
4622 // Import a variable.
4625 Variable::import_var(Import
* imp
, std::string
* pname
, Type
** ptype
)
4627 imp
->require_c_string("var ");
4628 *pname
= imp
->read_identifier();
4629 imp
->require_c_string(" ");
4630 *ptype
= imp
->read_type();
4631 imp
->require_c_string(";\n");
4634 // Convert a variable to the backend representation.
4637 Variable::get_backend_variable(Gogo
* gogo
, Named_object
* function
,
4638 const Package
* package
, const std::string
& name
)
4640 if (this->backend_
== NULL
)
4642 Backend
* backend
= gogo
->backend();
4643 Type
* type
= this->type_
;
4644 if (type
->is_error_type()
4645 || (type
->is_undefined()
4646 && (!this->is_global_
|| package
== NULL
)))
4647 this->backend_
= backend
->error_variable();
4650 bool is_parameter
= this->is_parameter_
;
4651 if (this->is_receiver_
&& type
->points_to() == NULL
)
4652 is_parameter
= false;
4653 if (this->is_in_heap())
4655 is_parameter
= false;
4656 type
= Type::make_pointer_type(type
);
4659 std::string n
= Gogo::unpack_hidden_name(name
);
4660 Btype
* btype
= type
->get_backend(gogo
);
4663 if (this->is_global_
)
4664 bvar
= backend
->global_variable((package
== NULL
4665 ? gogo
->package_name()
4666 : package
->package_name()),
4668 ? gogo
->pkgpath_symbol()
4669 : package
->pkgpath_symbol()),
4673 Gogo::is_hidden_name(name
),
4674 this->in_unique_section_
,
4676 else if (function
== NULL
)
4678 go_assert(saw_errors());
4679 bvar
= backend
->error_variable();
4683 tree fndecl
= function
->func_value()->get_decl();
4684 Bfunction
* bfunction
= tree_to_function(fndecl
);
4685 bool is_address_taken
= (this->is_non_escaping_address_taken_
4686 && !this->is_in_heap());
4688 bvar
= backend
->parameter_variable(bfunction
, n
, btype
,
4692 bvar
= backend
->local_variable(bfunction
, n
, btype
,
4696 this->backend_
= bvar
;
4699 return this->backend_
;
4702 // Class Result_variable.
4704 // Convert a result variable to the backend representation.
4707 Result_variable::get_backend_variable(Gogo
* gogo
, Named_object
* function
,
4708 const std::string
& name
)
4710 if (this->backend_
== NULL
)
4712 Backend
* backend
= gogo
->backend();
4713 Type
* type
= this->type_
;
4714 if (type
->is_error())
4715 this->backend_
= backend
->error_variable();
4718 if (this->is_in_heap())
4719 type
= Type::make_pointer_type(type
);
4720 Btype
* btype
= type
->get_backend(gogo
);
4721 tree fndecl
= function
->func_value()->get_decl();
4722 Bfunction
* bfunction
= tree_to_function(fndecl
);
4723 std::string n
= Gogo::unpack_hidden_name(name
);
4724 bool is_address_taken
= (this->is_non_escaping_address_taken_
4725 && !this->is_in_heap());
4726 this->backend_
= backend
->local_variable(bfunction
, n
, btype
,
4731 return this->backend_
;
4734 // Class Named_constant.
4736 // Traverse the initializer expression.
4739 Named_constant::traverse_expression(Traverse
* traverse
)
4741 return Expression::traverse(&this->expr_
, traverse
);
4744 // Determine the type of the constant.
4747 Named_constant::determine_type()
4749 if (this->type_
!= NULL
)
4751 Type_context
context(this->type_
, false);
4752 this->expr_
->determine_type(&context
);
4756 // A constant may have an abstract type.
4757 Type_context
context(NULL
, true);
4758 this->expr_
->determine_type(&context
);
4759 this->type_
= this->expr_
->type();
4760 go_assert(this->type_
!= NULL
);
4764 // Indicate that we found and reported an error for this constant.
4767 Named_constant::set_error()
4769 this->type_
= Type::make_error_type();
4770 this->expr_
= Expression::make_error(this->location_
);
4773 // Export a constant.
4776 Named_constant::export_const(Export
* exp
, const std::string
& name
) const
4778 exp
->write_c_string("const ");
4779 exp
->write_string(name
);
4780 exp
->write_c_string(" ");
4781 if (!this->type_
->is_abstract())
4783 exp
->write_type(this->type_
);
4784 exp
->write_c_string(" ");
4786 exp
->write_c_string("= ");
4787 this->expr()->export_expression(exp
);
4788 exp
->write_c_string(";\n");
4791 // Import a constant.
4794 Named_constant::import_const(Import
* imp
, std::string
* pname
, Type
** ptype
,
4797 imp
->require_c_string("const ");
4798 *pname
= imp
->read_identifier();
4799 imp
->require_c_string(" ");
4800 if (imp
->peek_char() == '=')
4804 *ptype
= imp
->read_type();
4805 imp
->require_c_string(" ");
4807 imp
->require_c_string("= ");
4808 *pexpr
= Expression::import_expression(imp
);
4809 imp
->require_c_string(";\n");
4815 Type_declaration::add_method(const std::string
& name
, Function
* function
)
4817 Named_object
* ret
= Named_object::make_function(name
, NULL
, function
);
4818 this->methods_
.push_back(ret
);
4822 // Add a method declaration.
4825 Type_declaration::add_method_declaration(const std::string
& name
,
4827 Function_type
* type
,
4830 Named_object
* ret
= Named_object::make_function_declaration(name
, package
,
4832 this->methods_
.push_back(ret
);
4836 // Return whether any methods ere defined.
4839 Type_declaration::has_methods() const
4841 return !this->methods_
.empty();
4844 // Define methods for the real type.
4847 Type_declaration::define_methods(Named_type
* nt
)
4849 for (std::vector
<Named_object
*>::const_iterator p
= this->methods_
.begin();
4850 p
!= this->methods_
.end();
4852 nt
->add_existing_method(*p
);
4855 // We are using the type. Return true if we should issue a warning.
4858 Type_declaration::using_type()
4860 bool ret
= !this->issued_warning_
;
4861 this->issued_warning_
= true;
4865 // Class Unknown_name.
4867 // Set the real named object.
4870 Unknown_name::set_real_named_object(Named_object
* no
)
4872 go_assert(this->real_named_object_
== NULL
);
4873 go_assert(!no
->is_unknown());
4874 this->real_named_object_
= no
;
4877 // Class Named_object.
4879 Named_object::Named_object(const std::string
& name
,
4880 const Package
* package
,
4881 Classification classification
)
4882 : name_(name
), package_(package
), classification_(classification
),
4885 if (Gogo::is_sink_name(name
))
4886 go_assert(classification
== NAMED_OBJECT_SINK
);
4889 // Make an unknown name. This is used by the parser. The name must
4890 // be resolved later. Unknown names are only added in the current
4894 Named_object::make_unknown_name(const std::string
& name
,
4897 Named_object
* named_object
= new Named_object(name
, NULL
,
4898 NAMED_OBJECT_UNKNOWN
);
4899 Unknown_name
* value
= new Unknown_name(location
);
4900 named_object
->u_
.unknown_value
= value
;
4901 return named_object
;
4907 Named_object::make_constant(const Typed_identifier
& tid
,
4908 const Package
* package
, Expression
* expr
,
4911 Named_object
* named_object
= new Named_object(tid
.name(), package
,
4912 NAMED_OBJECT_CONST
);
4913 Named_constant
* named_constant
= new Named_constant(tid
.type(), expr
,
4916 named_object
->u_
.const_value
= named_constant
;
4917 return named_object
;
4920 // Make a named type.
4923 Named_object::make_type(const std::string
& name
, const Package
* package
,
4924 Type
* type
, Location location
)
4926 Named_object
* named_object
= new Named_object(name
, package
,
4928 Named_type
* named_type
= Type::make_named_type(named_object
, type
, location
);
4929 named_object
->u_
.type_value
= named_type
;
4930 return named_object
;
4933 // Make a type declaration.
4936 Named_object::make_type_declaration(const std::string
& name
,
4937 const Package
* package
,
4940 Named_object
* named_object
= new Named_object(name
, package
,
4941 NAMED_OBJECT_TYPE_DECLARATION
);
4942 Type_declaration
* type_declaration
= new Type_declaration(location
);
4943 named_object
->u_
.type_declaration
= type_declaration
;
4944 return named_object
;
4950 Named_object::make_variable(const std::string
& name
, const Package
* package
,
4953 Named_object
* named_object
= new Named_object(name
, package
,
4955 named_object
->u_
.var_value
= variable
;
4956 return named_object
;
4959 // Make a result variable.
4962 Named_object::make_result_variable(const std::string
& name
,
4963 Result_variable
* result
)
4965 Named_object
* named_object
= new Named_object(name
, NULL
,
4966 NAMED_OBJECT_RESULT_VAR
);
4967 named_object
->u_
.result_var_value
= result
;
4968 return named_object
;
4971 // Make a sink. This is used for the special blank identifier _.
4974 Named_object::make_sink()
4976 return new Named_object("_", NULL
, NAMED_OBJECT_SINK
);
4979 // Make a named function.
4982 Named_object::make_function(const std::string
& name
, const Package
* package
,
4985 Named_object
* named_object
= new Named_object(name
, package
,
4987 named_object
->u_
.func_value
= function
;
4988 return named_object
;
4991 // Make a function declaration.
4994 Named_object::make_function_declaration(const std::string
& name
,
4995 const Package
* package
,
4996 Function_type
* fntype
,
4999 Named_object
* named_object
= new Named_object(name
, package
,
5000 NAMED_OBJECT_FUNC_DECLARATION
);
5001 Function_declaration
*func_decl
= new Function_declaration(fntype
, location
);
5002 named_object
->u_
.func_declaration_value
= func_decl
;
5003 return named_object
;
5009 Named_object::make_package(const std::string
& alias
, Package
* package
)
5011 Named_object
* named_object
= new Named_object(alias
, NULL
,
5012 NAMED_OBJECT_PACKAGE
);
5013 named_object
->u_
.package_value
= package
;
5014 return named_object
;
5017 // Return the name to use in an error message.
5020 Named_object::message_name() const
5022 if (this->package_
== NULL
)
5023 return Gogo::message_name(this->name_
);
5025 if (this->package_
->has_package_name())
5026 ret
= this->package_
->package_name();
5028 ret
= this->package_
->pkgpath();
5029 ret
= Gogo::message_name(ret
);
5031 ret
+= Gogo::message_name(this->name_
);
5035 // Set the type when a declaration is defined.
5038 Named_object::set_type_value(Named_type
* named_type
)
5040 go_assert(this->classification_
== NAMED_OBJECT_TYPE_DECLARATION
);
5041 Type_declaration
* td
= this->u_
.type_declaration
;
5042 td
->define_methods(named_type
);
5044 Named_object
* in_function
= td
->in_function(&index
);
5045 if (in_function
!= NULL
)
5046 named_type
->set_in_function(in_function
, index
);
5048 this->classification_
= NAMED_OBJECT_TYPE
;
5049 this->u_
.type_value
= named_type
;
5052 // Define a function which was previously declared.
5055 Named_object::set_function_value(Function
* function
)
5057 go_assert(this->classification_
== NAMED_OBJECT_FUNC_DECLARATION
);
5058 if (this->func_declaration_value()->has_descriptor())
5060 Expression
* descriptor
=
5061 this->func_declaration_value()->descriptor(NULL
, NULL
);
5062 function
->set_descriptor(descriptor
);
5064 this->classification_
= NAMED_OBJECT_FUNC
;
5065 // FIXME: We should free the old value.
5066 this->u_
.func_value
= function
;
5069 // Declare an unknown object as a type declaration.
5072 Named_object::declare_as_type()
5074 go_assert(this->classification_
== NAMED_OBJECT_UNKNOWN
);
5075 Unknown_name
* unk
= this->u_
.unknown_value
;
5076 this->classification_
= NAMED_OBJECT_TYPE_DECLARATION
;
5077 this->u_
.type_declaration
= new Type_declaration(unk
->location());
5081 // Return the location of a named object.
5084 Named_object::location() const
5086 switch (this->classification_
)
5089 case NAMED_OBJECT_UNINITIALIZED
:
5092 case NAMED_OBJECT_ERRONEOUS
:
5093 return Linemap::unknown_location();
5095 case NAMED_OBJECT_UNKNOWN
:
5096 return this->unknown_value()->location();
5098 case NAMED_OBJECT_CONST
:
5099 return this->const_value()->location();
5101 case NAMED_OBJECT_TYPE
:
5102 return this->type_value()->location();
5104 case NAMED_OBJECT_TYPE_DECLARATION
:
5105 return this->type_declaration_value()->location();
5107 case NAMED_OBJECT_VAR
:
5108 return this->var_value()->location();
5110 case NAMED_OBJECT_RESULT_VAR
:
5111 return this->result_var_value()->location();
5113 case NAMED_OBJECT_SINK
:
5116 case NAMED_OBJECT_FUNC
:
5117 return this->func_value()->location();
5119 case NAMED_OBJECT_FUNC_DECLARATION
:
5120 return this->func_declaration_value()->location();
5122 case NAMED_OBJECT_PACKAGE
:
5123 return this->package_value()->location();
5127 // Export a named object.
5130 Named_object::export_named_object(Export
* exp
) const
5132 switch (this->classification_
)
5135 case NAMED_OBJECT_UNINITIALIZED
:
5136 case NAMED_OBJECT_UNKNOWN
:
5139 case NAMED_OBJECT_ERRONEOUS
:
5142 case NAMED_OBJECT_CONST
:
5143 this->const_value()->export_const(exp
, this->name_
);
5146 case NAMED_OBJECT_TYPE
:
5147 this->type_value()->export_named_type(exp
, this->name_
);
5150 case NAMED_OBJECT_TYPE_DECLARATION
:
5151 error_at(this->type_declaration_value()->location(),
5152 "attempt to export %<%s%> which was declared but not defined",
5153 this->message_name().c_str());
5156 case NAMED_OBJECT_FUNC_DECLARATION
:
5157 this->func_declaration_value()->export_func(exp
, this->name_
);
5160 case NAMED_OBJECT_VAR
:
5161 this->var_value()->export_var(exp
, this->name_
);
5164 case NAMED_OBJECT_RESULT_VAR
:
5165 case NAMED_OBJECT_SINK
:
5168 case NAMED_OBJECT_FUNC
:
5169 this->func_value()->export_func(exp
, this->name_
);
5174 // Convert a variable to the backend representation.
5177 Named_object::get_backend_variable(Gogo
* gogo
, Named_object
* function
)
5179 if (this->classification_
== NAMED_OBJECT_VAR
)
5180 return this->var_value()->get_backend_variable(gogo
, function
,
5181 this->package_
, this->name_
);
5182 else if (this->classification_
== NAMED_OBJECT_RESULT_VAR
)
5183 return this->result_var_value()->get_backend_variable(gogo
, function
,
5190 // Return the external identifier for this object.
5193 Named_object::get_id(Gogo
* gogo
)
5195 go_assert(!this->is_variable() && !this->is_result_variable());
5196 std::string decl_name
;
5197 if (this->is_function_declaration()
5198 && !this->func_declaration_value()->asm_name().empty())
5199 decl_name
= this->func_declaration_value()->asm_name();
5200 else if (this->is_type()
5201 && Linemap::is_predeclared_location(this->type_value()->location()))
5203 // We don't need the package name for builtin types.
5204 decl_name
= Gogo::unpack_hidden_name(this->name_
);
5208 std::string package_name
;
5209 if (this->package_
== NULL
)
5210 package_name
= gogo
->package_name();
5212 package_name
= this->package_
->package_name();
5214 // Note that this will be misleading if this is an unexported
5215 // method generated for an embedded imported type. In that case
5216 // the unexported method should have the package name of the
5217 // package from which it is imported, but we are going to give
5218 // it our package name. Fixing this would require knowing the
5219 // package name, but we only know the package path. It might be
5220 // better to use package paths here anyhow. This doesn't affect
5221 // the assembler code, because we always set that name in
5222 // Function::get_or_make_decl anyhow. FIXME.
5224 decl_name
= package_name
+ '.' + Gogo::unpack_hidden_name(this->name_
);
5226 Function_type
* fntype
;
5227 if (this->is_function())
5228 fntype
= this->func_value()->type();
5229 else if (this->is_function_declaration())
5230 fntype
= this->func_declaration_value()->type();
5233 if (fntype
!= NULL
&& fntype
->is_method())
5235 decl_name
.push_back('.');
5236 decl_name
.append(fntype
->receiver()->type()->mangled_name(gogo
));
5239 if (this->is_type())
5242 const Named_object
* in_function
= this->type_value()->in_function(&index
);
5243 if (in_function
!= NULL
)
5245 decl_name
+= '$' + Gogo::unpack_hidden_name(in_function
->name());
5249 snprintf(buf
, sizeof buf
, "%u", index
);
5260 Bindings::Bindings(Bindings
* enclosing
)
5261 : enclosing_(enclosing
), named_objects_(), bindings_()
5268 Bindings::clear_file_scope(Gogo
* gogo
)
5270 Contour::iterator p
= this->bindings_
.begin();
5271 while (p
!= this->bindings_
.end())
5274 if (p
->second
->package() != NULL
)
5276 else if (p
->second
->is_package())
5278 else if (p
->second
->is_function()
5279 && !p
->second
->func_value()->type()->is_method()
5280 && Gogo::unpack_hidden_name(p
->second
->name()) == "init")
5289 gogo
->add_file_block_name(p
->second
->name(), p
->second
->location());
5290 p
= this->bindings_
.erase(p
);
5295 // Look up a symbol.
5298 Bindings::lookup(const std::string
& name
) const
5300 Contour::const_iterator p
= this->bindings_
.find(name
);
5301 if (p
!= this->bindings_
.end())
5302 return p
->second
->resolve();
5303 else if (this->enclosing_
!= NULL
)
5304 return this->enclosing_
->lookup(name
);
5309 // Look up a symbol locally.
5312 Bindings::lookup_local(const std::string
& name
) const
5314 Contour::const_iterator p
= this->bindings_
.find(name
);
5315 if (p
== this->bindings_
.end())
5320 // Remove an object from a set of bindings. This is used for a
5321 // special case in thunks for functions which call recover.
5324 Bindings::remove_binding(Named_object
* no
)
5326 Contour::iterator pb
= this->bindings_
.find(no
->name());
5327 go_assert(pb
!= this->bindings_
.end());
5328 this->bindings_
.erase(pb
);
5329 for (std::vector
<Named_object
*>::iterator pn
= this->named_objects_
.begin();
5330 pn
!= this->named_objects_
.end();
5335 this->named_objects_
.erase(pn
);
5342 // Add a method to the list of objects. This is not added to the
5343 // lookup table. This is so that we have a single list of objects
5344 // declared at the top level, which we walk through when it's time to
5345 // convert to trees.
5348 Bindings::add_method(Named_object
* method
)
5350 this->named_objects_
.push_back(method
);
5353 // Add a generic Named_object to a Contour.
5356 Bindings::add_named_object_to_contour(Contour
* contour
,
5357 Named_object
* named_object
)
5359 go_assert(named_object
== named_object
->resolve());
5360 const std::string
& name(named_object
->name());
5361 go_assert(!Gogo::is_sink_name(name
));
5363 std::pair
<Contour::iterator
, bool> ins
=
5364 contour
->insert(std::make_pair(name
, named_object
));
5367 // The name was already there.
5368 if (named_object
->package() != NULL
5369 && ins
.first
->second
->package() == named_object
->package()
5370 && (ins
.first
->second
->classification()
5371 == named_object
->classification()))
5373 // This is a second import of the same object.
5374 return ins
.first
->second
;
5376 ins
.first
->second
= this->new_definition(ins
.first
->second
,
5378 return ins
.first
->second
;
5382 // Don't push declarations on the list. We push them on when
5383 // and if we find the definitions. That way we genericize the
5384 // functions in order.
5385 if (!named_object
->is_type_declaration()
5386 && !named_object
->is_function_declaration()
5387 && !named_object
->is_unknown())
5388 this->named_objects_
.push_back(named_object
);
5389 return named_object
;
5393 // We had an existing named object OLD_OBJECT, and we've seen a new
5394 // one NEW_OBJECT with the same name. FIXME: This does not free the
5395 // new object when we don't need it.
5398 Bindings::new_definition(Named_object
* old_object
, Named_object
* new_object
)
5400 if (new_object
->is_erroneous() && !old_object
->is_erroneous())
5404 switch (old_object
->classification())
5407 case Named_object::NAMED_OBJECT_UNINITIALIZED
:
5410 case Named_object::NAMED_OBJECT_ERRONEOUS
:
5413 case Named_object::NAMED_OBJECT_UNKNOWN
:
5415 Named_object
* real
= old_object
->unknown_value()->real_named_object();
5417 return this->new_definition(real
, new_object
);
5418 go_assert(!new_object
->is_unknown());
5419 old_object
->unknown_value()->set_real_named_object(new_object
);
5420 if (!new_object
->is_type_declaration()
5421 && !new_object
->is_function_declaration())
5422 this->named_objects_
.push_back(new_object
);
5426 case Named_object::NAMED_OBJECT_CONST
:
5429 case Named_object::NAMED_OBJECT_TYPE
:
5430 if (new_object
->is_type_declaration())
5434 case Named_object::NAMED_OBJECT_TYPE_DECLARATION
:
5435 if (new_object
->is_type_declaration())
5437 if (new_object
->is_type())
5439 old_object
->set_type_value(new_object
->type_value());
5440 new_object
->type_value()->set_named_object(old_object
);
5441 this->named_objects_
.push_back(old_object
);
5446 case Named_object::NAMED_OBJECT_VAR
:
5447 case Named_object::NAMED_OBJECT_RESULT_VAR
:
5448 // We have already given an error in the parser for cases where
5449 // one parameter or result variable redeclares another one.
5450 if ((new_object
->is_variable()
5451 && new_object
->var_value()->is_parameter())
5452 || new_object
->is_result_variable())
5456 case Named_object::NAMED_OBJECT_SINK
:
5459 case Named_object::NAMED_OBJECT_FUNC
:
5460 if (new_object
->is_function_declaration())
5462 if (!new_object
->func_declaration_value()->asm_name().empty())
5463 sorry("__asm__ for function definitions");
5464 Function_type
* old_type
= old_object
->func_value()->type();
5465 Function_type
* new_type
=
5466 new_object
->func_declaration_value()->type();
5467 if (old_type
->is_valid_redeclaration(new_type
, &reason
))
5472 case Named_object::NAMED_OBJECT_FUNC_DECLARATION
:
5474 Function_type
* old_type
= old_object
->func_declaration_value()->type();
5475 if (new_object
->is_function_declaration())
5477 Function_type
* new_type
=
5478 new_object
->func_declaration_value()->type();
5479 if (old_type
->is_valid_redeclaration(new_type
, &reason
))
5482 if (new_object
->is_function())
5484 Function_type
* new_type
= new_object
->func_value()->type();
5485 if (old_type
->is_valid_redeclaration(new_type
, &reason
))
5487 if (!old_object
->func_declaration_value()->asm_name().empty())
5488 sorry("__asm__ for function definitions");
5489 old_object
->set_function_value(new_object
->func_value());
5490 this->named_objects_
.push_back(old_object
);
5497 case Named_object::NAMED_OBJECT_PACKAGE
:
5501 std::string n
= old_object
->message_name();
5503 error_at(new_object
->location(), "redefinition of %qs", n
.c_str());
5505 error_at(new_object
->location(), "redefinition of %qs: %s", n
.c_str(),
5508 inform(old_object
->location(), "previous definition of %qs was here",
5514 // Add a named type.
5517 Bindings::add_named_type(Named_type
* named_type
)
5519 return this->add_named_object(named_type
->named_object());
5525 Bindings::add_function(const std::string
& name
, const Package
* package
,
5528 return this->add_named_object(Named_object::make_function(name
, package
,
5532 // Add a function declaration.
5535 Bindings::add_function_declaration(const std::string
& name
,
5536 const Package
* package
,
5537 Function_type
* type
,
5540 Named_object
* no
= Named_object::make_function_declaration(name
, package
,
5542 return this->add_named_object(no
);
5545 // Define a type which was previously declared.
5548 Bindings::define_type(Named_object
* no
, Named_type
* type
)
5550 no
->set_type_value(type
);
5551 this->named_objects_
.push_back(no
);
5554 // Mark all local variables as used. This is used for some types of
5558 Bindings::mark_locals_used()
5560 for (std::vector
<Named_object
*>::iterator p
= this->named_objects_
.begin();
5561 p
!= this->named_objects_
.end();
5563 if ((*p
)->is_variable())
5564 (*p
)->var_value()->set_is_used();
5567 // Traverse bindings.
5570 Bindings::traverse(Traverse
* traverse
, bool is_global
)
5572 unsigned int traverse_mask
= traverse
->traverse_mask();
5574 // We don't use an iterator because we permit the traversal to add
5575 // new global objects.
5576 const unsigned int e_or_t
= (Traverse::traverse_expressions
5577 | Traverse::traverse_types
);
5578 const unsigned int e_or_t_or_s
= (e_or_t
5579 | Traverse::traverse_statements
);
5580 for (size_t i
= 0; i
< this->named_objects_
.size(); ++i
)
5582 Named_object
* p
= this->named_objects_
[i
];
5583 int t
= TRAVERSE_CONTINUE
;
5584 switch (p
->classification())
5586 case Named_object::NAMED_OBJECT_CONST
:
5587 if ((traverse_mask
& Traverse::traverse_constants
) != 0)
5588 t
= traverse
->constant(p
, is_global
);
5589 if (t
== TRAVERSE_CONTINUE
5590 && (traverse_mask
& e_or_t
) != 0)
5592 Type
* tc
= p
->const_value()->type();
5594 && Type::traverse(tc
, traverse
) == TRAVERSE_EXIT
)
5595 return TRAVERSE_EXIT
;
5596 t
= p
->const_value()->traverse_expression(traverse
);
5600 case Named_object::NAMED_OBJECT_VAR
:
5601 case Named_object::NAMED_OBJECT_RESULT_VAR
:
5602 if ((traverse_mask
& Traverse::traverse_variables
) != 0)
5603 t
= traverse
->variable(p
);
5604 if (t
== TRAVERSE_CONTINUE
5605 && (traverse_mask
& e_or_t
) != 0)
5607 if (p
->is_result_variable()
5608 || p
->var_value()->has_type())
5610 Type
* tv
= (p
->is_variable()
5611 ? p
->var_value()->type()
5612 : p
->result_var_value()->type());
5614 && Type::traverse(tv
, traverse
) == TRAVERSE_EXIT
)
5615 return TRAVERSE_EXIT
;
5618 if (t
== TRAVERSE_CONTINUE
5619 && (traverse_mask
& e_or_t_or_s
) != 0
5620 && p
->is_variable())
5621 t
= p
->var_value()->traverse_expression(traverse
, traverse_mask
);
5624 case Named_object::NAMED_OBJECT_FUNC
:
5625 if ((traverse_mask
& Traverse::traverse_functions
) != 0)
5626 t
= traverse
->function(p
);
5628 if (t
== TRAVERSE_CONTINUE
5630 & (Traverse::traverse_variables
5631 | Traverse::traverse_constants
5632 | Traverse::traverse_functions
5633 | Traverse::traverse_blocks
5634 | Traverse::traverse_statements
5635 | Traverse::traverse_expressions
5636 | Traverse::traverse_types
)) != 0)
5637 t
= p
->func_value()->traverse(traverse
);
5640 case Named_object::NAMED_OBJECT_PACKAGE
:
5641 // These are traversed in Gogo::traverse.
5642 go_assert(is_global
);
5645 case Named_object::NAMED_OBJECT_TYPE
:
5646 if ((traverse_mask
& e_or_t
) != 0)
5647 t
= Type::traverse(p
->type_value(), traverse
);
5650 case Named_object::NAMED_OBJECT_TYPE_DECLARATION
:
5651 case Named_object::NAMED_OBJECT_FUNC_DECLARATION
:
5652 case Named_object::NAMED_OBJECT_UNKNOWN
:
5653 case Named_object::NAMED_OBJECT_ERRONEOUS
:
5656 case Named_object::NAMED_OBJECT_SINK
:
5661 if (t
== TRAVERSE_EXIT
)
5662 return TRAVERSE_EXIT
;
5665 // If we need to traverse types, check the function declarations,
5666 // which have types. Also check any methods of a type declaration.
5667 if ((traverse_mask
& e_or_t
) != 0)
5669 for (Bindings::const_declarations_iterator p
=
5670 this->begin_declarations();
5671 p
!= this->end_declarations();
5674 if (p
->second
->is_function_declaration())
5676 if (Type::traverse(p
->second
->func_declaration_value()->type(),
5679 return TRAVERSE_EXIT
;
5681 else if (p
->second
->is_type_declaration())
5683 const std::vector
<Named_object
*>* methods
=
5684 p
->second
->type_declaration_value()->methods();
5685 for (std::vector
<Named_object
*>::const_iterator pm
=
5687 pm
!= methods
->end();
5690 Named_object
* no
= *pm
;
5692 if (no
->is_function())
5693 t
= no
->func_value()->type();
5694 else if (no
->is_function_declaration())
5695 t
= no
->func_declaration_value()->type();
5698 if (Type::traverse(t
, traverse
) == TRAVERSE_EXIT
)
5699 return TRAVERSE_EXIT
;
5705 return TRAVERSE_CONTINUE
;
5710 // Clear any references to this label.
5715 for (std::vector
<Bindings_snapshot
*>::iterator p
= this->refs_
.begin();
5716 p
!= this->refs_
.end();
5719 this->refs_
.clear();
5722 // Get the backend representation for a label.
5725 Label::get_backend_label(Translate_context
* context
)
5727 if (this->blabel_
== NULL
)
5729 Function
* function
= context
->function()->func_value();
5730 tree fndecl
= function
->get_decl();
5731 Bfunction
* bfunction
= tree_to_function(fndecl
);
5732 this->blabel_
= context
->backend()->label(bfunction
, this->name_
,
5735 return this->blabel_
;
5738 // Return an expression for the address of this label.
5741 Label::get_addr(Translate_context
* context
, Location location
)
5743 Blabel
* label
= this->get_backend_label(context
);
5744 return context
->backend()->label_address(label
, location
);
5747 // Class Unnamed_label.
5749 // Get the backend representation for an unnamed label.
5752 Unnamed_label::get_blabel(Translate_context
* context
)
5754 if (this->blabel_
== NULL
)
5756 Function
* function
= context
->function()->func_value();
5757 tree fndecl
= function
->get_decl();
5758 Bfunction
* bfunction
= tree_to_function(fndecl
);
5759 this->blabel_
= context
->backend()->label(bfunction
, "",
5762 return this->blabel_
;
5765 // Return a statement which defines this unnamed label.
5768 Unnamed_label::get_definition(Translate_context
* context
)
5770 Blabel
* blabel
= this->get_blabel(context
);
5771 return context
->backend()->label_definition_statement(blabel
);
5774 // Return a goto statement to this unnamed label.
5777 Unnamed_label::get_goto(Translate_context
* context
, Location location
)
5779 Blabel
* blabel
= this->get_blabel(context
);
5780 return context
->backend()->goto_statement(blabel
, location
);
5785 Package::Package(const std::string
& pkgpath
, Location location
)
5786 : pkgpath_(pkgpath
), pkgpath_symbol_(Gogo::pkgpath_for_symbol(pkgpath
)),
5787 package_name_(), bindings_(new Bindings(NULL
)), priority_(0),
5788 location_(location
), used_(false), is_imported_(false),
5789 uses_sink_alias_(false)
5791 go_assert(!pkgpath
.empty());
5795 // Set the package name.
5798 Package::set_package_name(const std::string
& package_name
, Location location
)
5800 go_assert(!package_name
.empty());
5801 if (this->package_name_
.empty())
5802 this->package_name_
= package_name
;
5803 else if (this->package_name_
!= package_name
)
5805 "saw two different packages with the same package path %s: %s, %s",
5806 this->pkgpath_
.c_str(), this->package_name_
.c_str(),
5807 package_name
.c_str());
5810 // Set the priority. We may see multiple priorities for an imported
5811 // package; we want to use the largest one.
5814 Package::set_priority(int priority
)
5816 if (priority
> this->priority_
)
5817 this->priority_
= priority
;
5820 // Determine types of constants. Everything else in a package
5821 // (variables, function declarations) should already have a fixed
5822 // type. Constants may have abstract types.
5825 Package::determine_types()
5827 Bindings
* bindings
= this->bindings_
;
5828 for (Bindings::const_definitions_iterator p
= bindings
->begin_definitions();
5829 p
!= bindings
->end_definitions();
5832 if ((*p
)->is_const())
5833 (*p
)->const_value()->determine_type();
5841 Traverse::~Traverse()
5843 if (this->types_seen_
!= NULL
)
5844 delete this->types_seen_
;
5845 if (this->expressions_seen_
!= NULL
)
5846 delete this->expressions_seen_
;
5849 // Record that we are looking at a type, and return true if we have
5853 Traverse::remember_type(const Type
* type
)
5855 if (type
->is_error_type())
5857 go_assert((this->traverse_mask() & traverse_types
) != 0
5858 || (this->traverse_mask() & traverse_expressions
) != 0);
5859 // We mostly only have to remember named types. But it turns out
5860 // that an interface type can refer to itself without using a name
5861 // by relying on interface inheritance, as in
5862 // type I interface { F() interface{I} }
5863 if (type
->classification() != Type::TYPE_NAMED
5864 && type
->classification() != Type::TYPE_INTERFACE
)
5866 if (this->types_seen_
== NULL
)
5867 this->types_seen_
= new Types_seen();
5868 std::pair
<Types_seen::iterator
, bool> ins
= this->types_seen_
->insert(type
);
5872 // Record that we are looking at an expression, and return true if we
5873 // have already seen it.
5876 Traverse::remember_expression(const Expression
* expression
)
5878 go_assert((this->traverse_mask() & traverse_types
) != 0
5879 || (this->traverse_mask() & traverse_expressions
) != 0);
5880 if (this->expressions_seen_
== NULL
)
5881 this->expressions_seen_
= new Expressions_seen();
5882 std::pair
<Expressions_seen::iterator
, bool> ins
=
5883 this->expressions_seen_
->insert(expression
);
5887 // The default versions of these functions should never be called: the
5888 // traversal mask indicates which functions may be called.
5891 Traverse::variable(Named_object
*)
5897 Traverse::constant(Named_object
*, bool)
5903 Traverse::function(Named_object
*)
5909 Traverse::block(Block
*)
5915 Traverse::statement(Block
*, size_t*, Statement
*)
5921 Traverse::expression(Expression
**)
5927 Traverse::type(Type
*)
5932 // Class Statement_inserter.
5935 Statement_inserter::insert(Statement
* s
)
5937 if (this->block_
!= NULL
)
5939 go_assert(this->pindex_
!= NULL
);
5940 this->block_
->insert_statement_before(*this->pindex_
, s
);
5943 else if (this->var_
!= NULL
)
5944 this->var_
->add_preinit_statement(this->gogo_
, s
);
5946 go_assert(saw_errors());