1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "diagnostic-core.h"
39 #include "tree-scalar-evolution.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-chrec.h"
42 #include "gimple-fold.h"
47 /* Type of value ranges. See value_range_d for a description of these
49 enum value_range_type
{ VR_UNDEFINED
, VR_RANGE
, VR_ANTI_RANGE
, VR_VARYING
};
51 /* Range of values that can be associated with an SSA_NAME after VRP
55 /* Lattice value represented by this range. */
56 enum value_range_type type
;
58 /* Minimum and maximum values represented by this range. These
59 values should be interpreted as follows:
61 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
64 - If TYPE == VR_RANGE then MIN holds the minimum value and
65 MAX holds the maximum value of the range [MIN, MAX].
67 - If TYPE == ANTI_RANGE the variable is known to NOT
68 take any values in the range [MIN, MAX]. */
72 /* Set of SSA names whose value ranges are equivalent to this one.
73 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
77 typedef struct value_range_d value_range_t
;
79 /* Set of SSA names found live during the RPO traversal of the function
80 for still active basic-blocks. */
83 /* Return true if the SSA name NAME is live on the edge E. */
86 live_on_edge (edge e
, tree name
)
88 return (live
[e
->dest
->index
]
89 && TEST_BIT (live
[e
->dest
->index
], SSA_NAME_VERSION (name
)));
92 /* Local functions. */
93 static int compare_values (tree val1
, tree val2
);
94 static int compare_values_warnv (tree val1
, tree val2
, bool *);
95 static void vrp_meet (value_range_t
*, value_range_t
*);
96 static tree
vrp_evaluate_conditional_warnv_with_ops (enum tree_code
,
97 tree
, tree
, bool, bool *,
100 /* Location information for ASSERT_EXPRs. Each instance of this
101 structure describes an ASSERT_EXPR for an SSA name. Since a single
102 SSA name may have more than one assertion associated with it, these
103 locations are kept in a linked list attached to the corresponding
105 struct assert_locus_d
107 /* Basic block where the assertion would be inserted. */
110 /* Some assertions need to be inserted on an edge (e.g., assertions
111 generated by COND_EXPRs). In those cases, BB will be NULL. */
114 /* Pointer to the statement that generated this assertion. */
115 gimple_stmt_iterator si
;
117 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
118 enum tree_code comp_code
;
120 /* Value being compared against. */
123 /* Expression to compare. */
126 /* Next node in the linked list. */
127 struct assert_locus_d
*next
;
130 typedef struct assert_locus_d
*assert_locus_t
;
132 /* If bit I is present, it means that SSA name N_i has a list of
133 assertions that should be inserted in the IL. */
134 static bitmap need_assert_for
;
136 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
137 holds a list of ASSERT_LOCUS_T nodes that describe where
138 ASSERT_EXPRs for SSA name N_I should be inserted. */
139 static assert_locus_t
*asserts_for
;
141 /* Value range array. After propagation, VR_VALUE[I] holds the range
142 of values that SSA name N_I may take. */
143 static unsigned num_vr_values
;
144 static value_range_t
**vr_value
;
145 static bool values_propagated
;
147 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
148 number of executable edges we saw the last time we visited the
150 static int *vr_phi_edge_counts
;
157 static VEC (edge
, heap
) *to_remove_edges
;
158 DEF_VEC_O(switch_update
);
159 DEF_VEC_ALLOC_O(switch_update
, heap
);
160 static VEC (switch_update
, heap
) *to_update_switch_stmts
;
163 /* Return the maximum value for TYPE. */
166 vrp_val_max (const_tree type
)
168 if (!INTEGRAL_TYPE_P (type
))
171 return TYPE_MAX_VALUE (type
);
174 /* Return the minimum value for TYPE. */
177 vrp_val_min (const_tree type
)
179 if (!INTEGRAL_TYPE_P (type
))
182 return TYPE_MIN_VALUE (type
);
185 /* Return whether VAL is equal to the maximum value of its type. This
186 will be true for a positive overflow infinity. We can't do a
187 simple equality comparison with TYPE_MAX_VALUE because C typedefs
188 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
189 to the integer constant with the same value in the type. */
192 vrp_val_is_max (const_tree val
)
194 tree type_max
= vrp_val_max (TREE_TYPE (val
));
195 return (val
== type_max
196 || (type_max
!= NULL_TREE
197 && operand_equal_p (val
, type_max
, 0)));
200 /* Return whether VAL is equal to the minimum value of its type. This
201 will be true for a negative overflow infinity. */
204 vrp_val_is_min (const_tree val
)
206 tree type_min
= vrp_val_min (TREE_TYPE (val
));
207 return (val
== type_min
208 || (type_min
!= NULL_TREE
209 && operand_equal_p (val
, type_min
, 0)));
213 /* Return whether TYPE should use an overflow infinity distinct from
214 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
215 represent a signed overflow during VRP computations. An infinity
216 is distinct from a half-range, which will go from some number to
217 TYPE_{MIN,MAX}_VALUE. */
220 needs_overflow_infinity (const_tree type
)
222 return INTEGRAL_TYPE_P (type
) && !TYPE_OVERFLOW_WRAPS (type
);
225 /* Return whether TYPE can support our overflow infinity
226 representation: we use the TREE_OVERFLOW flag, which only exists
227 for constants. If TYPE doesn't support this, we don't optimize
228 cases which would require signed overflow--we drop them to
232 supports_overflow_infinity (const_tree type
)
234 tree min
= vrp_val_min (type
), max
= vrp_val_max (type
);
235 #ifdef ENABLE_CHECKING
236 gcc_assert (needs_overflow_infinity (type
));
238 return (min
!= NULL_TREE
239 && CONSTANT_CLASS_P (min
)
241 && CONSTANT_CLASS_P (max
));
244 /* VAL is the maximum or minimum value of a type. Return a
245 corresponding overflow infinity. */
248 make_overflow_infinity (tree val
)
250 gcc_checking_assert (val
!= NULL_TREE
&& CONSTANT_CLASS_P (val
));
251 val
= copy_node (val
);
252 TREE_OVERFLOW (val
) = 1;
256 /* Return a negative overflow infinity for TYPE. */
259 negative_overflow_infinity (tree type
)
261 gcc_checking_assert (supports_overflow_infinity (type
));
262 return make_overflow_infinity (vrp_val_min (type
));
265 /* Return a positive overflow infinity for TYPE. */
268 positive_overflow_infinity (tree type
)
270 gcc_checking_assert (supports_overflow_infinity (type
));
271 return make_overflow_infinity (vrp_val_max (type
));
274 /* Return whether VAL is a negative overflow infinity. */
277 is_negative_overflow_infinity (const_tree val
)
279 return (needs_overflow_infinity (TREE_TYPE (val
))
280 && CONSTANT_CLASS_P (val
)
281 && TREE_OVERFLOW (val
)
282 && vrp_val_is_min (val
));
285 /* Return whether VAL is a positive overflow infinity. */
288 is_positive_overflow_infinity (const_tree val
)
290 return (needs_overflow_infinity (TREE_TYPE (val
))
291 && CONSTANT_CLASS_P (val
)
292 && TREE_OVERFLOW (val
)
293 && vrp_val_is_max (val
));
296 /* Return whether VAL is a positive or negative overflow infinity. */
299 is_overflow_infinity (const_tree val
)
301 return (needs_overflow_infinity (TREE_TYPE (val
))
302 && CONSTANT_CLASS_P (val
)
303 && TREE_OVERFLOW (val
)
304 && (vrp_val_is_min (val
) || vrp_val_is_max (val
)));
307 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
310 stmt_overflow_infinity (gimple stmt
)
312 if (is_gimple_assign (stmt
)
313 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt
)) ==
315 return is_overflow_infinity (gimple_assign_rhs1 (stmt
));
319 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
320 the same value with TREE_OVERFLOW clear. This can be used to avoid
321 confusing a regular value with an overflow value. */
324 avoid_overflow_infinity (tree val
)
326 if (!is_overflow_infinity (val
))
329 if (vrp_val_is_max (val
))
330 return vrp_val_max (TREE_TYPE (val
));
333 gcc_checking_assert (vrp_val_is_min (val
));
334 return vrp_val_min (TREE_TYPE (val
));
339 /* Return true if ARG is marked with the nonnull attribute in the
340 current function signature. */
343 nonnull_arg_p (const_tree arg
)
345 tree t
, attrs
, fntype
;
346 unsigned HOST_WIDE_INT arg_num
;
348 gcc_assert (TREE_CODE (arg
) == PARM_DECL
&& POINTER_TYPE_P (TREE_TYPE (arg
)));
350 /* The static chain decl is always non null. */
351 if (arg
== cfun
->static_chain_decl
)
354 fntype
= TREE_TYPE (current_function_decl
);
355 attrs
= lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype
));
357 /* If "nonnull" wasn't specified, we know nothing about the argument. */
358 if (attrs
== NULL_TREE
)
361 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
362 if (TREE_VALUE (attrs
) == NULL_TREE
)
365 /* Get the position number for ARG in the function signature. */
366 for (arg_num
= 1, t
= DECL_ARGUMENTS (current_function_decl
);
368 t
= DECL_CHAIN (t
), arg_num
++)
374 gcc_assert (t
== arg
);
376 /* Now see if ARG_NUM is mentioned in the nonnull list. */
377 for (t
= TREE_VALUE (attrs
); t
; t
= TREE_CHAIN (t
))
379 if (compare_tree_int (TREE_VALUE (t
), arg_num
) == 0)
387 /* Set value range VR to VR_VARYING. */
390 set_value_range_to_varying (value_range_t
*vr
)
392 vr
->type
= VR_VARYING
;
393 vr
->min
= vr
->max
= NULL_TREE
;
395 bitmap_clear (vr
->equiv
);
399 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
402 set_value_range (value_range_t
*vr
, enum value_range_type t
, tree min
,
403 tree max
, bitmap equiv
)
405 #if defined ENABLE_CHECKING
406 /* Check the validity of the range. */
407 if (t
== VR_RANGE
|| t
== VR_ANTI_RANGE
)
411 gcc_assert (min
&& max
);
413 if (INTEGRAL_TYPE_P (TREE_TYPE (min
)) && t
== VR_ANTI_RANGE
)
414 gcc_assert (!vrp_val_is_min (min
) || !vrp_val_is_max (max
));
416 cmp
= compare_values (min
, max
);
417 gcc_assert (cmp
== 0 || cmp
== -1 || cmp
== -2);
419 if (needs_overflow_infinity (TREE_TYPE (min
)))
420 gcc_assert (!is_overflow_infinity (min
)
421 || !is_overflow_infinity (max
));
424 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
425 gcc_assert (min
== NULL_TREE
&& max
== NULL_TREE
);
427 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
428 gcc_assert (equiv
== NULL
|| bitmap_empty_p (equiv
));
435 /* Since updating the equivalence set involves deep copying the
436 bitmaps, only do it if absolutely necessary. */
437 if (vr
->equiv
== NULL
439 vr
->equiv
= BITMAP_ALLOC (NULL
);
441 if (equiv
!= vr
->equiv
)
443 if (equiv
&& !bitmap_empty_p (equiv
))
444 bitmap_copy (vr
->equiv
, equiv
);
446 bitmap_clear (vr
->equiv
);
451 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
452 This means adjusting T, MIN and MAX representing the case of a
453 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
454 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
455 In corner cases where MAX+1 or MIN-1 wraps this will fall back
457 This routine exists to ease canonicalization in the case where we
458 extract ranges from var + CST op limit. */
461 set_and_canonicalize_value_range (value_range_t
*vr
, enum value_range_type t
,
462 tree min
, tree max
, bitmap equiv
)
464 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
466 && t
!= VR_ANTI_RANGE
)
467 || TREE_CODE (min
) != INTEGER_CST
468 || TREE_CODE (max
) != INTEGER_CST
)
470 set_value_range (vr
, t
, min
, max
, equiv
);
474 /* Wrong order for min and max, to swap them and the VR type we need
476 if (tree_int_cst_lt (max
, min
))
478 tree one
= build_int_cst (TREE_TYPE (min
), 1);
479 tree tmp
= int_const_binop (PLUS_EXPR
, max
, one
);
480 max
= int_const_binop (MINUS_EXPR
, min
, one
);
483 /* There's one corner case, if we had [C+1, C] before we now have
484 that again. But this represents an empty value range, so drop
485 to varying in this case. */
486 if (tree_int_cst_lt (max
, min
))
488 set_value_range_to_varying (vr
);
492 t
= t
== VR_RANGE
? VR_ANTI_RANGE
: VR_RANGE
;
495 /* Anti-ranges that can be represented as ranges should be so. */
496 if (t
== VR_ANTI_RANGE
)
498 bool is_min
= vrp_val_is_min (min
);
499 bool is_max
= vrp_val_is_max (max
);
501 if (is_min
&& is_max
)
503 /* We cannot deal with empty ranges, drop to varying. */
504 set_value_range_to_varying (vr
);
508 /* As a special exception preserve non-null ranges. */
509 && !(TYPE_UNSIGNED (TREE_TYPE (min
))
510 && integer_zerop (max
)))
512 tree one
= build_int_cst (TREE_TYPE (max
), 1);
513 min
= int_const_binop (PLUS_EXPR
, max
, one
);
514 max
= vrp_val_max (TREE_TYPE (max
));
519 tree one
= build_int_cst (TREE_TYPE (min
), 1);
520 max
= int_const_binop (MINUS_EXPR
, min
, one
);
521 min
= vrp_val_min (TREE_TYPE (min
));
526 set_value_range (vr
, t
, min
, max
, equiv
);
529 /* Copy value range FROM into value range TO. */
532 copy_value_range (value_range_t
*to
, value_range_t
*from
)
534 set_value_range (to
, from
->type
, from
->min
, from
->max
, from
->equiv
);
537 /* Set value range VR to a single value. This function is only called
538 with values we get from statements, and exists to clear the
539 TREE_OVERFLOW flag so that we don't think we have an overflow
540 infinity when we shouldn't. */
543 set_value_range_to_value (value_range_t
*vr
, tree val
, bitmap equiv
)
545 gcc_assert (is_gimple_min_invariant (val
));
546 val
= avoid_overflow_infinity (val
);
547 set_value_range (vr
, VR_RANGE
, val
, val
, equiv
);
550 /* Set value range VR to a non-negative range of type TYPE.
551 OVERFLOW_INFINITY indicates whether to use an overflow infinity
552 rather than TYPE_MAX_VALUE; this should be true if we determine
553 that the range is nonnegative based on the assumption that signed
554 overflow does not occur. */
557 set_value_range_to_nonnegative (value_range_t
*vr
, tree type
,
558 bool overflow_infinity
)
562 if (overflow_infinity
&& !supports_overflow_infinity (type
))
564 set_value_range_to_varying (vr
);
568 zero
= build_int_cst (type
, 0);
569 set_value_range (vr
, VR_RANGE
, zero
,
571 ? positive_overflow_infinity (type
)
572 : TYPE_MAX_VALUE (type
)),
576 /* Set value range VR to a non-NULL range of type TYPE. */
579 set_value_range_to_nonnull (value_range_t
*vr
, tree type
)
581 tree zero
= build_int_cst (type
, 0);
582 set_value_range (vr
, VR_ANTI_RANGE
, zero
, zero
, vr
->equiv
);
586 /* Set value range VR to a NULL range of type TYPE. */
589 set_value_range_to_null (value_range_t
*vr
, tree type
)
591 set_value_range_to_value (vr
, build_int_cst (type
, 0), vr
->equiv
);
595 /* Set value range VR to a range of a truthvalue of type TYPE. */
598 set_value_range_to_truthvalue (value_range_t
*vr
, tree type
)
600 if (TYPE_PRECISION (type
) == 1)
601 set_value_range_to_varying (vr
);
603 set_value_range (vr
, VR_RANGE
,
604 build_int_cst (type
, 0), build_int_cst (type
, 1),
609 /* Set value range VR to VR_UNDEFINED. */
612 set_value_range_to_undefined (value_range_t
*vr
)
614 vr
->type
= VR_UNDEFINED
;
615 vr
->min
= vr
->max
= NULL_TREE
;
617 bitmap_clear (vr
->equiv
);
621 /* If abs (min) < abs (max), set VR to [-max, max], if
622 abs (min) >= abs (max), set VR to [-min, min]. */
625 abs_extent_range (value_range_t
*vr
, tree min
, tree max
)
629 gcc_assert (TREE_CODE (min
) == INTEGER_CST
);
630 gcc_assert (TREE_CODE (max
) == INTEGER_CST
);
631 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min
)));
632 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min
)));
633 min
= fold_unary (ABS_EXPR
, TREE_TYPE (min
), min
);
634 max
= fold_unary (ABS_EXPR
, TREE_TYPE (max
), max
);
635 if (TREE_OVERFLOW (min
) || TREE_OVERFLOW (max
))
637 set_value_range_to_varying (vr
);
640 cmp
= compare_values (min
, max
);
642 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), max
);
643 else if (cmp
== 0 || cmp
== 1)
646 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), min
);
650 set_value_range_to_varying (vr
);
653 set_and_canonicalize_value_range (vr
, VR_RANGE
, min
, max
, NULL
);
657 /* Return value range information for VAR.
659 If we have no values ranges recorded (ie, VRP is not running), then
660 return NULL. Otherwise create an empty range if none existed for VAR. */
662 static value_range_t
*
663 get_value_range (const_tree var
)
665 static const struct value_range_d vr_const_varying
666 = { VR_VARYING
, NULL_TREE
, NULL_TREE
, NULL
};
669 unsigned ver
= SSA_NAME_VERSION (var
);
671 /* If we have no recorded ranges, then return NULL. */
675 /* If we query the range for a new SSA name return an unmodifiable VARYING.
676 We should get here at most from the substitute-and-fold stage which
677 will never try to change values. */
678 if (ver
>= num_vr_values
)
679 return CONST_CAST (value_range_t
*, &vr_const_varying
);
685 /* After propagation finished do not allocate new value-ranges. */
686 if (values_propagated
)
687 return CONST_CAST (value_range_t
*, &vr_const_varying
);
689 /* Create a default value range. */
690 vr_value
[ver
] = vr
= XCNEW (value_range_t
);
692 /* Defer allocating the equivalence set. */
695 /* If VAR is a default definition of a parameter, the variable can
696 take any value in VAR's type. */
697 sym
= SSA_NAME_VAR (var
);
698 if (SSA_NAME_IS_DEFAULT_DEF (var
)
699 && TREE_CODE (sym
) == PARM_DECL
)
701 /* Try to use the "nonnull" attribute to create ~[0, 0]
702 anti-ranges for pointers. Note that this is only valid with
703 default definitions of PARM_DECLs. */
704 if (POINTER_TYPE_P (TREE_TYPE (sym
))
705 && nonnull_arg_p (sym
))
706 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
708 set_value_range_to_varying (vr
);
714 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
717 vrp_operand_equal_p (const_tree val1
, const_tree val2
)
721 if (!val1
|| !val2
|| !operand_equal_p (val1
, val2
, 0))
723 if (is_overflow_infinity (val1
))
724 return is_overflow_infinity (val2
);
728 /* Return true, if the bitmaps B1 and B2 are equal. */
731 vrp_bitmap_equal_p (const_bitmap b1
, const_bitmap b2
)
734 || ((!b1
|| bitmap_empty_p (b1
))
735 && (!b2
|| bitmap_empty_p (b2
)))
737 && bitmap_equal_p (b1
, b2
)));
740 /* Update the value range and equivalence set for variable VAR to
741 NEW_VR. Return true if NEW_VR is different from VAR's previous
744 NOTE: This function assumes that NEW_VR is a temporary value range
745 object created for the sole purpose of updating VAR's range. The
746 storage used by the equivalence set from NEW_VR will be freed by
747 this function. Do not call update_value_range when NEW_VR
748 is the range object associated with another SSA name. */
751 update_value_range (const_tree var
, value_range_t
*new_vr
)
753 value_range_t
*old_vr
;
756 /* Update the value range, if necessary. */
757 old_vr
= get_value_range (var
);
758 is_new
= old_vr
->type
!= new_vr
->type
759 || !vrp_operand_equal_p (old_vr
->min
, new_vr
->min
)
760 || !vrp_operand_equal_p (old_vr
->max
, new_vr
->max
)
761 || !vrp_bitmap_equal_p (old_vr
->equiv
, new_vr
->equiv
);
764 set_value_range (old_vr
, new_vr
->type
, new_vr
->min
, new_vr
->max
,
767 BITMAP_FREE (new_vr
->equiv
);
773 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
774 point where equivalence processing can be turned on/off. */
777 add_equivalence (bitmap
*equiv
, const_tree var
)
779 unsigned ver
= SSA_NAME_VERSION (var
);
780 value_range_t
*vr
= vr_value
[ver
];
783 *equiv
= BITMAP_ALLOC (NULL
);
784 bitmap_set_bit (*equiv
, ver
);
786 bitmap_ior_into (*equiv
, vr
->equiv
);
790 /* Return true if VR is ~[0, 0]. */
793 range_is_nonnull (value_range_t
*vr
)
795 return vr
->type
== VR_ANTI_RANGE
796 && integer_zerop (vr
->min
)
797 && integer_zerop (vr
->max
);
801 /* Return true if VR is [0, 0]. */
804 range_is_null (value_range_t
*vr
)
806 return vr
->type
== VR_RANGE
807 && integer_zerop (vr
->min
)
808 && integer_zerop (vr
->max
);
811 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
815 range_int_cst_p (value_range_t
*vr
)
817 return (vr
->type
== VR_RANGE
818 && TREE_CODE (vr
->max
) == INTEGER_CST
819 && TREE_CODE (vr
->min
) == INTEGER_CST
820 && !TREE_OVERFLOW (vr
->max
)
821 && !TREE_OVERFLOW (vr
->min
));
824 /* Return true if VR is a INTEGER_CST singleton. */
827 range_int_cst_singleton_p (value_range_t
*vr
)
829 return (range_int_cst_p (vr
)
830 && tree_int_cst_equal (vr
->min
, vr
->max
));
833 /* Return true if value range VR involves at least one symbol. */
836 symbolic_range_p (value_range_t
*vr
)
838 return (!is_gimple_min_invariant (vr
->min
)
839 || !is_gimple_min_invariant (vr
->max
));
842 /* Return true if value range VR uses an overflow infinity. */
845 overflow_infinity_range_p (value_range_t
*vr
)
847 return (vr
->type
== VR_RANGE
848 && (is_overflow_infinity (vr
->min
)
849 || is_overflow_infinity (vr
->max
)));
852 /* Return false if we can not make a valid comparison based on VR;
853 this will be the case if it uses an overflow infinity and overflow
854 is not undefined (i.e., -fno-strict-overflow is in effect).
855 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
856 uses an overflow infinity. */
859 usable_range_p (value_range_t
*vr
, bool *strict_overflow_p
)
861 gcc_assert (vr
->type
== VR_RANGE
);
862 if (is_overflow_infinity (vr
->min
))
864 *strict_overflow_p
= true;
865 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->min
)))
868 if (is_overflow_infinity (vr
->max
))
870 *strict_overflow_p
= true;
871 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->max
)))
878 /* Return true if the result of assignment STMT is know to be non-negative.
879 If the return value is based on the assumption that signed overflow is
880 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
881 *STRICT_OVERFLOW_P.*/
884 gimple_assign_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
886 enum tree_code code
= gimple_assign_rhs_code (stmt
);
887 switch (get_gimple_rhs_class (code
))
889 case GIMPLE_UNARY_RHS
:
890 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
891 gimple_expr_type (stmt
),
892 gimple_assign_rhs1 (stmt
),
894 case GIMPLE_BINARY_RHS
:
895 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
896 gimple_expr_type (stmt
),
897 gimple_assign_rhs1 (stmt
),
898 gimple_assign_rhs2 (stmt
),
900 case GIMPLE_TERNARY_RHS
:
902 case GIMPLE_SINGLE_RHS
:
903 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt
),
905 case GIMPLE_INVALID_RHS
:
912 /* Return true if return value of call STMT is know to be non-negative.
913 If the return value is based on the assumption that signed overflow is
914 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
915 *STRICT_OVERFLOW_P.*/
918 gimple_call_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
920 tree arg0
= gimple_call_num_args (stmt
) > 0 ?
921 gimple_call_arg (stmt
, 0) : NULL_TREE
;
922 tree arg1
= gimple_call_num_args (stmt
) > 1 ?
923 gimple_call_arg (stmt
, 1) : NULL_TREE
;
925 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt
),
926 gimple_call_fndecl (stmt
),
932 /* Return true if STMT is know to to compute a non-negative value.
933 If the return value is based on the assumption that signed overflow is
934 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
935 *STRICT_OVERFLOW_P.*/
938 gimple_stmt_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
940 switch (gimple_code (stmt
))
943 return gimple_assign_nonnegative_warnv_p (stmt
, strict_overflow_p
);
945 return gimple_call_nonnegative_warnv_p (stmt
, strict_overflow_p
);
951 /* Return true if the result of assignment STMT is know to be non-zero.
952 If the return value is based on the assumption that signed overflow is
953 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
954 *STRICT_OVERFLOW_P.*/
957 gimple_assign_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
959 enum tree_code code
= gimple_assign_rhs_code (stmt
);
960 switch (get_gimple_rhs_class (code
))
962 case GIMPLE_UNARY_RHS
:
963 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
964 gimple_expr_type (stmt
),
965 gimple_assign_rhs1 (stmt
),
967 case GIMPLE_BINARY_RHS
:
968 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
969 gimple_expr_type (stmt
),
970 gimple_assign_rhs1 (stmt
),
971 gimple_assign_rhs2 (stmt
),
973 case GIMPLE_TERNARY_RHS
:
975 case GIMPLE_SINGLE_RHS
:
976 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt
),
978 case GIMPLE_INVALID_RHS
:
985 /* Return true if STMT is know to to compute a non-zero value.
986 If the return value is based on the assumption that signed overflow is
987 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
988 *STRICT_OVERFLOW_P.*/
991 gimple_stmt_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
993 switch (gimple_code (stmt
))
996 return gimple_assign_nonzero_warnv_p (stmt
, strict_overflow_p
);
998 return gimple_alloca_call_p (stmt
);
1004 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1008 vrp_stmt_computes_nonzero (gimple stmt
, bool *strict_overflow_p
)
1010 if (gimple_stmt_nonzero_warnv_p (stmt
, strict_overflow_p
))
1013 /* If we have an expression of the form &X->a, then the expression
1014 is nonnull if X is nonnull. */
1015 if (is_gimple_assign (stmt
)
1016 && gimple_assign_rhs_code (stmt
) == ADDR_EXPR
)
1018 tree expr
= gimple_assign_rhs1 (stmt
);
1019 tree base
= get_base_address (TREE_OPERAND (expr
, 0));
1021 if (base
!= NULL_TREE
1022 && TREE_CODE (base
) == MEM_REF
1023 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
1025 value_range_t
*vr
= get_value_range (TREE_OPERAND (base
, 0));
1026 if (range_is_nonnull (vr
))
1034 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1035 a gimple invariant, or SSA_NAME +- CST. */
1038 valid_value_p (tree expr
)
1040 if (TREE_CODE (expr
) == SSA_NAME
)
1043 if (TREE_CODE (expr
) == PLUS_EXPR
1044 || TREE_CODE (expr
) == MINUS_EXPR
)
1045 return (TREE_CODE (TREE_OPERAND (expr
, 0)) == SSA_NAME
1046 && TREE_CODE (TREE_OPERAND (expr
, 1)) == INTEGER_CST
);
1048 return is_gimple_min_invariant (expr
);
1054 -2 if those are incomparable. */
1056 operand_less_p (tree val
, tree val2
)
1058 /* LT is folded faster than GE and others. Inline the common case. */
1059 if (TREE_CODE (val
) == INTEGER_CST
&& TREE_CODE (val2
) == INTEGER_CST
)
1061 if (TYPE_UNSIGNED (TREE_TYPE (val
)))
1062 return INT_CST_LT_UNSIGNED (val
, val2
);
1065 if (INT_CST_LT (val
, val2
))
1073 fold_defer_overflow_warnings ();
1075 tcmp
= fold_binary_to_constant (LT_EXPR
, boolean_type_node
, val
, val2
);
1077 fold_undefer_and_ignore_overflow_warnings ();
1080 || TREE_CODE (tcmp
) != INTEGER_CST
)
1083 if (!integer_zerop (tcmp
))
1087 /* val >= val2, not considering overflow infinity. */
1088 if (is_negative_overflow_infinity (val
))
1089 return is_negative_overflow_infinity (val2
) ? 0 : 1;
1090 else if (is_positive_overflow_infinity (val2
))
1091 return is_positive_overflow_infinity (val
) ? 0 : 1;
1096 /* Compare two values VAL1 and VAL2. Return
1098 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1101 +1 if VAL1 > VAL2, and
1104 This is similar to tree_int_cst_compare but supports pointer values
1105 and values that cannot be compared at compile time.
1107 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1108 true if the return value is only valid if we assume that signed
1109 overflow is undefined. */
1112 compare_values_warnv (tree val1
, tree val2
, bool *strict_overflow_p
)
1117 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1119 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1
))
1120 == POINTER_TYPE_P (TREE_TYPE (val2
)));
1121 /* Convert the two values into the same type. This is needed because
1122 sizetype causes sign extension even for unsigned types. */
1123 val2
= fold_convert (TREE_TYPE (val1
), val2
);
1124 STRIP_USELESS_TYPE_CONVERSION (val2
);
1126 if ((TREE_CODE (val1
) == SSA_NAME
1127 || TREE_CODE (val1
) == PLUS_EXPR
1128 || TREE_CODE (val1
) == MINUS_EXPR
)
1129 && (TREE_CODE (val2
) == SSA_NAME
1130 || TREE_CODE (val2
) == PLUS_EXPR
1131 || TREE_CODE (val2
) == MINUS_EXPR
))
1133 tree n1
, c1
, n2
, c2
;
1134 enum tree_code code1
, code2
;
1136 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1137 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1138 same name, return -2. */
1139 if (TREE_CODE (val1
) == SSA_NAME
)
1147 code1
= TREE_CODE (val1
);
1148 n1
= TREE_OPERAND (val1
, 0);
1149 c1
= TREE_OPERAND (val1
, 1);
1150 if (tree_int_cst_sgn (c1
) == -1)
1152 if (is_negative_overflow_infinity (c1
))
1154 c1
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c1
), c1
);
1157 code1
= code1
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1161 if (TREE_CODE (val2
) == SSA_NAME
)
1169 code2
= TREE_CODE (val2
);
1170 n2
= TREE_OPERAND (val2
, 0);
1171 c2
= TREE_OPERAND (val2
, 1);
1172 if (tree_int_cst_sgn (c2
) == -1)
1174 if (is_negative_overflow_infinity (c2
))
1176 c2
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c2
), c2
);
1179 code2
= code2
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1183 /* Both values must use the same name. */
1187 if (code1
== SSA_NAME
1188 && code2
== SSA_NAME
)
1192 /* If overflow is defined we cannot simplify more. */
1193 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1
)))
1196 if (strict_overflow_p
!= NULL
1197 && (code1
== SSA_NAME
|| !TREE_NO_WARNING (val1
))
1198 && (code2
== SSA_NAME
|| !TREE_NO_WARNING (val2
)))
1199 *strict_overflow_p
= true;
1201 if (code1
== SSA_NAME
)
1203 if (code2
== PLUS_EXPR
)
1204 /* NAME < NAME + CST */
1206 else if (code2
== MINUS_EXPR
)
1207 /* NAME > NAME - CST */
1210 else if (code1
== PLUS_EXPR
)
1212 if (code2
== SSA_NAME
)
1213 /* NAME + CST > NAME */
1215 else if (code2
== PLUS_EXPR
)
1216 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1217 return compare_values_warnv (c1
, c2
, strict_overflow_p
);
1218 else if (code2
== MINUS_EXPR
)
1219 /* NAME + CST1 > NAME - CST2 */
1222 else if (code1
== MINUS_EXPR
)
1224 if (code2
== SSA_NAME
)
1225 /* NAME - CST < NAME */
1227 else if (code2
== PLUS_EXPR
)
1228 /* NAME - CST1 < NAME + CST2 */
1230 else if (code2
== MINUS_EXPR
)
1231 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1232 C1 and C2 are swapped in the call to compare_values. */
1233 return compare_values_warnv (c2
, c1
, strict_overflow_p
);
1239 /* We cannot compare non-constants. */
1240 if (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
))
1243 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
1245 /* We cannot compare overflowed values, except for overflow
1247 if (TREE_OVERFLOW (val1
) || TREE_OVERFLOW (val2
))
1249 if (strict_overflow_p
!= NULL
)
1250 *strict_overflow_p
= true;
1251 if (is_negative_overflow_infinity (val1
))
1252 return is_negative_overflow_infinity (val2
) ? 0 : -1;
1253 else if (is_negative_overflow_infinity (val2
))
1255 else if (is_positive_overflow_infinity (val1
))
1256 return is_positive_overflow_infinity (val2
) ? 0 : 1;
1257 else if (is_positive_overflow_infinity (val2
))
1262 return tree_int_cst_compare (val1
, val2
);
1268 /* First see if VAL1 and VAL2 are not the same. */
1269 if (val1
== val2
|| operand_equal_p (val1
, val2
, 0))
1272 /* If VAL1 is a lower address than VAL2, return -1. */
1273 if (operand_less_p (val1
, val2
) == 1)
1276 /* If VAL1 is a higher address than VAL2, return +1. */
1277 if (operand_less_p (val2
, val1
) == 1)
1280 /* If VAL1 is different than VAL2, return +2.
1281 For integer constants we either have already returned -1 or 1
1282 or they are equivalent. We still might succeed in proving
1283 something about non-trivial operands. */
1284 if (TREE_CODE (val1
) != INTEGER_CST
1285 || TREE_CODE (val2
) != INTEGER_CST
)
1287 t
= fold_binary_to_constant (NE_EXPR
, boolean_type_node
, val1
, val2
);
1288 if (t
&& integer_onep (t
))
1296 /* Compare values like compare_values_warnv, but treat comparisons of
1297 nonconstants which rely on undefined overflow as incomparable. */
1300 compare_values (tree val1
, tree val2
)
1306 ret
= compare_values_warnv (val1
, val2
, &sop
);
1308 && (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
)))
1314 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1315 0 if VAL is not inside VR,
1316 -2 if we cannot tell either way.
1318 FIXME, the current semantics of this functions are a bit quirky
1319 when taken in the context of VRP. In here we do not care
1320 about VR's type. If VR is the anti-range ~[3, 5] the call
1321 value_inside_range (4, VR) will return 1.
1323 This is counter-intuitive in a strict sense, but the callers
1324 currently expect this. They are calling the function
1325 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1326 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1329 This also applies to value_ranges_intersect_p and
1330 range_includes_zero_p. The semantics of VR_RANGE and
1331 VR_ANTI_RANGE should be encoded here, but that also means
1332 adapting the users of these functions to the new semantics.
1334 Benchmark compile/20001226-1.c compilation time after changing this
1338 value_inside_range (tree val
, value_range_t
* vr
)
1342 cmp1
= operand_less_p (val
, vr
->min
);
1348 cmp2
= operand_less_p (vr
->max
, val
);
1356 /* Return true if value ranges VR0 and VR1 have a non-empty
1359 Benchmark compile/20001226-1.c compilation time after changing this
1364 value_ranges_intersect_p (value_range_t
*vr0
, value_range_t
*vr1
)
1366 /* The value ranges do not intersect if the maximum of the first range is
1367 less than the minimum of the second range or vice versa.
1368 When those relations are unknown, we can't do any better. */
1369 if (operand_less_p (vr0
->max
, vr1
->min
) != 0)
1371 if (operand_less_p (vr1
->max
, vr0
->min
) != 0)
1377 /* Return true if VR includes the value zero, false otherwise. FIXME,
1378 currently this will return false for an anti-range like ~[-4, 3].
1379 This will be wrong when the semantics of value_inside_range are
1380 modified (currently the users of this function expect these
1384 range_includes_zero_p (value_range_t
*vr
)
1388 gcc_assert (vr
->type
!= VR_UNDEFINED
1389 && vr
->type
!= VR_VARYING
1390 && !symbolic_range_p (vr
));
1392 zero
= build_int_cst (TREE_TYPE (vr
->min
), 0);
1393 return (value_inside_range (zero
, vr
) == 1);
1396 /* Return true if *VR is know to only contain nonnegative values. */
1399 value_range_nonnegative_p (value_range_t
*vr
)
1401 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1402 which would return a useful value should be encoded as a
1404 if (vr
->type
== VR_RANGE
)
1406 int result
= compare_values (vr
->min
, integer_zero_node
);
1407 return (result
== 0 || result
== 1);
1413 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1414 false otherwise or if no value range information is available. */
1417 ssa_name_nonnegative_p (const_tree t
)
1419 value_range_t
*vr
= get_value_range (t
);
1421 if (INTEGRAL_TYPE_P (t
)
1422 && TYPE_UNSIGNED (t
))
1428 return value_range_nonnegative_p (vr
);
1431 /* If *VR has a value rante that is a single constant value return that,
1432 otherwise return NULL_TREE. */
1435 value_range_constant_singleton (value_range_t
*vr
)
1437 if (vr
->type
== VR_RANGE
1438 && operand_equal_p (vr
->min
, vr
->max
, 0)
1439 && is_gimple_min_invariant (vr
->min
))
1445 /* If OP has a value range with a single constant value return that,
1446 otherwise return NULL_TREE. This returns OP itself if OP is a
1450 op_with_constant_singleton_value_range (tree op
)
1452 if (is_gimple_min_invariant (op
))
1455 if (TREE_CODE (op
) != SSA_NAME
)
1458 return value_range_constant_singleton (get_value_range (op
));
1461 /* Return true if op is in a boolean [0, 1] value-range. */
1464 op_with_boolean_value_range_p (tree op
)
1468 if (TYPE_PRECISION (TREE_TYPE (op
)) == 1)
1471 if (integer_zerop (op
)
1472 || integer_onep (op
))
1475 if (TREE_CODE (op
) != SSA_NAME
)
1478 vr
= get_value_range (op
);
1479 return (vr
->type
== VR_RANGE
1480 && integer_zerop (vr
->min
)
1481 && integer_onep (vr
->max
));
1484 /* Extract value range information from an ASSERT_EXPR EXPR and store
1488 extract_range_from_assert (value_range_t
*vr_p
, tree expr
)
1490 tree var
, cond
, limit
, min
, max
, type
;
1491 value_range_t
*var_vr
, *limit_vr
;
1492 enum tree_code cond_code
;
1494 var
= ASSERT_EXPR_VAR (expr
);
1495 cond
= ASSERT_EXPR_COND (expr
);
1497 gcc_assert (COMPARISON_CLASS_P (cond
));
1499 /* Find VAR in the ASSERT_EXPR conditional. */
1500 if (var
== TREE_OPERAND (cond
, 0)
1501 || TREE_CODE (TREE_OPERAND (cond
, 0)) == PLUS_EXPR
1502 || TREE_CODE (TREE_OPERAND (cond
, 0)) == NOP_EXPR
)
1504 /* If the predicate is of the form VAR COMP LIMIT, then we just
1505 take LIMIT from the RHS and use the same comparison code. */
1506 cond_code
= TREE_CODE (cond
);
1507 limit
= TREE_OPERAND (cond
, 1);
1508 cond
= TREE_OPERAND (cond
, 0);
1512 /* If the predicate is of the form LIMIT COMP VAR, then we need
1513 to flip around the comparison code to create the proper range
1515 cond_code
= swap_tree_comparison (TREE_CODE (cond
));
1516 limit
= TREE_OPERAND (cond
, 0);
1517 cond
= TREE_OPERAND (cond
, 1);
1520 limit
= avoid_overflow_infinity (limit
);
1522 type
= TREE_TYPE (var
);
1523 gcc_assert (limit
!= var
);
1525 /* For pointer arithmetic, we only keep track of pointer equality
1527 if (POINTER_TYPE_P (type
) && cond_code
!= NE_EXPR
&& cond_code
!= EQ_EXPR
)
1529 set_value_range_to_varying (vr_p
);
1533 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1534 try to use LIMIT's range to avoid creating symbolic ranges
1536 limit_vr
= (TREE_CODE (limit
) == SSA_NAME
) ? get_value_range (limit
) : NULL
;
1538 /* LIMIT's range is only interesting if it has any useful information. */
1540 && (limit_vr
->type
== VR_UNDEFINED
1541 || limit_vr
->type
== VR_VARYING
1542 || symbolic_range_p (limit_vr
)))
1545 /* Initially, the new range has the same set of equivalences of
1546 VAR's range. This will be revised before returning the final
1547 value. Since assertions may be chained via mutually exclusive
1548 predicates, we will need to trim the set of equivalences before
1550 gcc_assert (vr_p
->equiv
== NULL
);
1551 add_equivalence (&vr_p
->equiv
, var
);
1553 /* Extract a new range based on the asserted comparison for VAR and
1554 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1555 will only use it for equality comparisons (EQ_EXPR). For any
1556 other kind of assertion, we cannot derive a range from LIMIT's
1557 anti-range that can be used to describe the new range. For
1558 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1559 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1560 no single range for x_2 that could describe LE_EXPR, so we might
1561 as well build the range [b_4, +INF] for it.
1562 One special case we handle is extracting a range from a
1563 range test encoded as (unsigned)var + CST <= limit. */
1564 if (TREE_CODE (cond
) == NOP_EXPR
1565 || TREE_CODE (cond
) == PLUS_EXPR
)
1567 if (TREE_CODE (cond
) == PLUS_EXPR
)
1569 min
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (TREE_OPERAND (cond
, 1)),
1570 TREE_OPERAND (cond
, 1));
1571 max
= int_const_binop (PLUS_EXPR
, limit
, min
);
1572 cond
= TREE_OPERAND (cond
, 0);
1576 min
= build_int_cst (TREE_TYPE (var
), 0);
1580 /* Make sure to not set TREE_OVERFLOW on the final type
1581 conversion. We are willingly interpreting large positive
1582 unsigned values as negative singed values here. */
1583 min
= force_fit_type_double (TREE_TYPE (var
), tree_to_double_int (min
),
1585 max
= force_fit_type_double (TREE_TYPE (var
), tree_to_double_int (max
),
1588 /* We can transform a max, min range to an anti-range or
1589 vice-versa. Use set_and_canonicalize_value_range which does
1591 if (cond_code
== LE_EXPR
)
1592 set_and_canonicalize_value_range (vr_p
, VR_RANGE
,
1593 min
, max
, vr_p
->equiv
);
1594 else if (cond_code
== GT_EXPR
)
1595 set_and_canonicalize_value_range (vr_p
, VR_ANTI_RANGE
,
1596 min
, max
, vr_p
->equiv
);
1600 else if (cond_code
== EQ_EXPR
)
1602 enum value_range_type range_type
;
1606 range_type
= limit_vr
->type
;
1607 min
= limit_vr
->min
;
1608 max
= limit_vr
->max
;
1612 range_type
= VR_RANGE
;
1617 set_value_range (vr_p
, range_type
, min
, max
, vr_p
->equiv
);
1619 /* When asserting the equality VAR == LIMIT and LIMIT is another
1620 SSA name, the new range will also inherit the equivalence set
1622 if (TREE_CODE (limit
) == SSA_NAME
)
1623 add_equivalence (&vr_p
->equiv
, limit
);
1625 else if (cond_code
== NE_EXPR
)
1627 /* As described above, when LIMIT's range is an anti-range and
1628 this assertion is an inequality (NE_EXPR), then we cannot
1629 derive anything from the anti-range. For instance, if
1630 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1631 not imply that VAR's range is [0, 0]. So, in the case of
1632 anti-ranges, we just assert the inequality using LIMIT and
1635 If LIMIT_VR is a range, we can only use it to build a new
1636 anti-range if LIMIT_VR is a single-valued range. For
1637 instance, if LIMIT_VR is [0, 1], the predicate
1638 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1639 Rather, it means that for value 0 VAR should be ~[0, 0]
1640 and for value 1, VAR should be ~[1, 1]. We cannot
1641 represent these ranges.
1643 The only situation in which we can build a valid
1644 anti-range is when LIMIT_VR is a single-valued range
1645 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1646 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1648 && limit_vr
->type
== VR_RANGE
1649 && compare_values (limit_vr
->min
, limit_vr
->max
) == 0)
1651 min
= limit_vr
->min
;
1652 max
= limit_vr
->max
;
1656 /* In any other case, we cannot use LIMIT's range to build a
1657 valid anti-range. */
1661 /* If MIN and MAX cover the whole range for their type, then
1662 just use the original LIMIT. */
1663 if (INTEGRAL_TYPE_P (type
)
1664 && vrp_val_is_min (min
)
1665 && vrp_val_is_max (max
))
1668 set_value_range (vr_p
, VR_ANTI_RANGE
, min
, max
, vr_p
->equiv
);
1670 else if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
1672 min
= TYPE_MIN_VALUE (type
);
1674 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1678 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1679 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1681 max
= limit_vr
->max
;
1684 /* If the maximum value forces us to be out of bounds, simply punt.
1685 It would be pointless to try and do anything more since this
1686 all should be optimized away above us. */
1687 if ((cond_code
== LT_EXPR
1688 && compare_values (max
, min
) == 0)
1689 || (CONSTANT_CLASS_P (max
) && TREE_OVERFLOW (max
)))
1690 set_value_range_to_varying (vr_p
);
1693 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1694 if (cond_code
== LT_EXPR
)
1696 tree one
= build_int_cst (TREE_TYPE (max
), 1);
1697 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (max
), max
, one
);
1699 TREE_NO_WARNING (max
) = 1;
1702 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1705 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
1707 max
= TYPE_MAX_VALUE (type
);
1709 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1713 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1714 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1716 min
= limit_vr
->min
;
1719 /* If the minimum value forces us to be out of bounds, simply punt.
1720 It would be pointless to try and do anything more since this
1721 all should be optimized away above us. */
1722 if ((cond_code
== GT_EXPR
1723 && compare_values (min
, max
) == 0)
1724 || (CONSTANT_CLASS_P (min
) && TREE_OVERFLOW (min
)))
1725 set_value_range_to_varying (vr_p
);
1728 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1729 if (cond_code
== GT_EXPR
)
1731 tree one
= build_int_cst (TREE_TYPE (min
), 1);
1732 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (min
), min
, one
);
1734 TREE_NO_WARNING (min
) = 1;
1737 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1743 /* If VAR already had a known range, it may happen that the new
1744 range we have computed and VAR's range are not compatible. For
1748 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1750 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1752 While the above comes from a faulty program, it will cause an ICE
1753 later because p_8 and p_6 will have incompatible ranges and at
1754 the same time will be considered equivalent. A similar situation
1758 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1760 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1762 Again i_6 and i_7 will have incompatible ranges. It would be
1763 pointless to try and do anything with i_7's range because
1764 anything dominated by 'if (i_5 < 5)' will be optimized away.
1765 Note, due to the wa in which simulation proceeds, the statement
1766 i_7 = ASSERT_EXPR <...> we would never be visited because the
1767 conditional 'if (i_5 < 5)' always evaluates to false. However,
1768 this extra check does not hurt and may protect against future
1769 changes to VRP that may get into a situation similar to the
1770 NULL pointer dereference example.
1772 Note that these compatibility tests are only needed when dealing
1773 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1774 are both anti-ranges, they will always be compatible, because two
1775 anti-ranges will always have a non-empty intersection. */
1777 var_vr
= get_value_range (var
);
1779 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1780 ranges or anti-ranges. */
1781 if (vr_p
->type
== VR_VARYING
1782 || vr_p
->type
== VR_UNDEFINED
1783 || var_vr
->type
== VR_VARYING
1784 || var_vr
->type
== VR_UNDEFINED
1785 || symbolic_range_p (vr_p
)
1786 || symbolic_range_p (var_vr
))
1789 if (var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_RANGE
)
1791 /* If the two ranges have a non-empty intersection, we can
1792 refine the resulting range. Since the assert expression
1793 creates an equivalency and at the same time it asserts a
1794 predicate, we can take the intersection of the two ranges to
1795 get better precision. */
1796 if (value_ranges_intersect_p (var_vr
, vr_p
))
1798 /* Use the larger of the two minimums. */
1799 if (compare_values (vr_p
->min
, var_vr
->min
) == -1)
1804 /* Use the smaller of the two maximums. */
1805 if (compare_values (vr_p
->max
, var_vr
->max
) == 1)
1810 set_value_range (vr_p
, vr_p
->type
, min
, max
, vr_p
->equiv
);
1814 /* The two ranges do not intersect, set the new range to
1815 VARYING, because we will not be able to do anything
1816 meaningful with it. */
1817 set_value_range_to_varying (vr_p
);
1820 else if ((var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_ANTI_RANGE
)
1821 || (var_vr
->type
== VR_ANTI_RANGE
&& vr_p
->type
== VR_RANGE
))
1823 /* A range and an anti-range will cancel each other only if
1824 their ends are the same. For instance, in the example above,
1825 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1826 so VR_P should be set to VR_VARYING. */
1827 if (compare_values (var_vr
->min
, vr_p
->min
) == 0
1828 && compare_values (var_vr
->max
, vr_p
->max
) == 0)
1829 set_value_range_to_varying (vr_p
);
1832 tree min
, max
, anti_min
, anti_max
, real_min
, real_max
;
1835 /* We want to compute the logical AND of the two ranges;
1836 there are three cases to consider.
1839 1. The VR_ANTI_RANGE range is completely within the
1840 VR_RANGE and the endpoints of the ranges are
1841 different. In that case the resulting range
1842 should be whichever range is more precise.
1843 Typically that will be the VR_RANGE.
1845 2. The VR_ANTI_RANGE is completely disjoint from
1846 the VR_RANGE. In this case the resulting range
1847 should be the VR_RANGE.
1849 3. There is some overlap between the VR_ANTI_RANGE
1852 3a. If the high limit of the VR_ANTI_RANGE resides
1853 within the VR_RANGE, then the result is a new
1854 VR_RANGE starting at the high limit of the
1855 VR_ANTI_RANGE + 1 and extending to the
1856 high limit of the original VR_RANGE.
1858 3b. If the low limit of the VR_ANTI_RANGE resides
1859 within the VR_RANGE, then the result is a new
1860 VR_RANGE starting at the low limit of the original
1861 VR_RANGE and extending to the low limit of the
1862 VR_ANTI_RANGE - 1. */
1863 if (vr_p
->type
== VR_ANTI_RANGE
)
1865 anti_min
= vr_p
->min
;
1866 anti_max
= vr_p
->max
;
1867 real_min
= var_vr
->min
;
1868 real_max
= var_vr
->max
;
1872 anti_min
= var_vr
->min
;
1873 anti_max
= var_vr
->max
;
1874 real_min
= vr_p
->min
;
1875 real_max
= vr_p
->max
;
1879 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1880 not including any endpoints. */
1881 if (compare_values (anti_max
, real_max
) == -1
1882 && compare_values (anti_min
, real_min
) == 1)
1884 /* If the range is covering the whole valid range of
1885 the type keep the anti-range. */
1886 if (!vrp_val_is_min (real_min
)
1887 || !vrp_val_is_max (real_max
))
1888 set_value_range (vr_p
, VR_RANGE
, real_min
,
1889 real_max
, vr_p
->equiv
);
1891 /* Case 2, VR_ANTI_RANGE completely disjoint from
1893 else if (compare_values (anti_min
, real_max
) == 1
1894 || compare_values (anti_max
, real_min
) == -1)
1896 set_value_range (vr_p
, VR_RANGE
, real_min
,
1897 real_max
, vr_p
->equiv
);
1899 /* Case 3a, the anti-range extends into the low
1900 part of the real range. Thus creating a new
1901 low for the real range. */
1902 else if (((cmp
= compare_values (anti_max
, real_min
)) == 1
1904 && compare_values (anti_max
, real_max
) == -1)
1906 gcc_assert (!is_positive_overflow_infinity (anti_max
));
1907 if (needs_overflow_infinity (TREE_TYPE (anti_max
))
1908 && vrp_val_is_max (anti_max
))
1910 if (!supports_overflow_infinity (TREE_TYPE (var_vr
->min
)))
1912 set_value_range_to_varying (vr_p
);
1915 min
= positive_overflow_infinity (TREE_TYPE (var_vr
->min
));
1917 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr
->min
)))
1918 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (var_vr
->min
),
1920 build_int_cst (TREE_TYPE (var_vr
->min
), 1));
1922 min
= fold_build_pointer_plus_hwi (anti_max
, 1);
1924 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1926 /* Case 3b, the anti-range extends into the high
1927 part of the real range. Thus creating a new
1928 higher for the real range. */
1929 else if (compare_values (anti_min
, real_min
) == 1
1930 && ((cmp
= compare_values (anti_min
, real_max
)) == -1
1933 gcc_assert (!is_negative_overflow_infinity (anti_min
));
1934 if (needs_overflow_infinity (TREE_TYPE (anti_min
))
1935 && vrp_val_is_min (anti_min
))
1937 if (!supports_overflow_infinity (TREE_TYPE (var_vr
->min
)))
1939 set_value_range_to_varying (vr_p
);
1942 max
= negative_overflow_infinity (TREE_TYPE (var_vr
->min
));
1944 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr
->min
)))
1945 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (var_vr
->min
),
1947 build_int_cst (TREE_TYPE (var_vr
->min
), 1));
1949 max
= fold_build_pointer_plus_hwi (anti_min
, -1);
1951 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1958 /* Extract range information from SSA name VAR and store it in VR. If
1959 VAR has an interesting range, use it. Otherwise, create the
1960 range [VAR, VAR] and return it. This is useful in situations where
1961 we may have conditionals testing values of VARYING names. For
1968 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1972 extract_range_from_ssa_name (value_range_t
*vr
, tree var
)
1974 value_range_t
*var_vr
= get_value_range (var
);
1976 if (var_vr
->type
!= VR_UNDEFINED
&& var_vr
->type
!= VR_VARYING
)
1977 copy_value_range (vr
, var_vr
);
1979 set_value_range (vr
, VR_RANGE
, var
, var
, NULL
);
1981 add_equivalence (&vr
->equiv
, var
);
1985 /* Wrapper around int_const_binop. If the operation overflows and we
1986 are not using wrapping arithmetic, then adjust the result to be
1987 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1988 NULL_TREE if we need to use an overflow infinity representation but
1989 the type does not support it. */
1992 vrp_int_const_binop (enum tree_code code
, tree val1
, tree val2
)
1996 res
= int_const_binop (code
, val1
, val2
);
1998 /* If we are using unsigned arithmetic, operate symbolically
1999 on -INF and +INF as int_const_binop only handles signed overflow. */
2000 if (TYPE_UNSIGNED (TREE_TYPE (val1
)))
2002 int checkz
= compare_values (res
, val1
);
2003 bool overflow
= false;
2005 /* Ensure that res = val1 [+*] val2 >= val1
2006 or that res = val1 - val2 <= val1. */
2007 if ((code
== PLUS_EXPR
2008 && !(checkz
== 1 || checkz
== 0))
2009 || (code
== MINUS_EXPR
2010 && !(checkz
== 0 || checkz
== -1)))
2014 /* Checking for multiplication overflow is done by dividing the
2015 output of the multiplication by the first input of the
2016 multiplication. If the result of that division operation is
2017 not equal to the second input of the multiplication, then the
2018 multiplication overflowed. */
2019 else if (code
== MULT_EXPR
&& !integer_zerop (val1
))
2021 tree tmp
= int_const_binop (TRUNC_DIV_EXPR
,
2024 int check
= compare_values (tmp
, val2
);
2032 res
= copy_node (res
);
2033 TREE_OVERFLOW (res
) = 1;
2037 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1
)))
2038 /* If the singed operation wraps then int_const_binop has done
2039 everything we want. */
2041 else if ((TREE_OVERFLOW (res
)
2042 && !TREE_OVERFLOW (val1
)
2043 && !TREE_OVERFLOW (val2
))
2044 || is_overflow_infinity (val1
)
2045 || is_overflow_infinity (val2
))
2047 /* If the operation overflowed but neither VAL1 nor VAL2 are
2048 overflown, return -INF or +INF depending on the operation
2049 and the combination of signs of the operands. */
2050 int sgn1
= tree_int_cst_sgn (val1
);
2051 int sgn2
= tree_int_cst_sgn (val2
);
2053 if (needs_overflow_infinity (TREE_TYPE (res
))
2054 && !supports_overflow_infinity (TREE_TYPE (res
)))
2057 /* We have to punt on adding infinities of different signs,
2058 since we can't tell what the sign of the result should be.
2059 Likewise for subtracting infinities of the same sign. */
2060 if (((code
== PLUS_EXPR
&& sgn1
!= sgn2
)
2061 || (code
== MINUS_EXPR
&& sgn1
== sgn2
))
2062 && is_overflow_infinity (val1
)
2063 && is_overflow_infinity (val2
))
2066 /* Don't try to handle division or shifting of infinities. */
2067 if ((code
== TRUNC_DIV_EXPR
2068 || code
== FLOOR_DIV_EXPR
2069 || code
== CEIL_DIV_EXPR
2070 || code
== EXACT_DIV_EXPR
2071 || code
== ROUND_DIV_EXPR
2072 || code
== RSHIFT_EXPR
)
2073 && (is_overflow_infinity (val1
)
2074 || is_overflow_infinity (val2
)))
2077 /* Notice that we only need to handle the restricted set of
2078 operations handled by extract_range_from_binary_expr.
2079 Among them, only multiplication, addition and subtraction
2080 can yield overflow without overflown operands because we
2081 are working with integral types only... except in the
2082 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2083 for division too. */
2085 /* For multiplication, the sign of the overflow is given
2086 by the comparison of the signs of the operands. */
2087 if ((code
== MULT_EXPR
&& sgn1
== sgn2
)
2088 /* For addition, the operands must be of the same sign
2089 to yield an overflow. Its sign is therefore that
2090 of one of the operands, for example the first. For
2091 infinite operands X + -INF is negative, not positive. */
2092 || (code
== PLUS_EXPR
2094 ? !is_negative_overflow_infinity (val2
)
2095 : is_positive_overflow_infinity (val2
)))
2096 /* For subtraction, non-infinite operands must be of
2097 different signs to yield an overflow. Its sign is
2098 therefore that of the first operand or the opposite of
2099 that of the second operand. A first operand of 0 counts
2100 as positive here, for the corner case 0 - (-INF), which
2101 overflows, but must yield +INF. For infinite operands 0
2102 - INF is negative, not positive. */
2103 || (code
== MINUS_EXPR
2105 ? !is_positive_overflow_infinity (val2
)
2106 : is_negative_overflow_infinity (val2
)))
2107 /* We only get in here with positive shift count, so the
2108 overflow direction is the same as the sign of val1.
2109 Actually rshift does not overflow at all, but we only
2110 handle the case of shifting overflowed -INF and +INF. */
2111 || (code
== RSHIFT_EXPR
2113 /* For division, the only case is -INF / -1 = +INF. */
2114 || code
== TRUNC_DIV_EXPR
2115 || code
== FLOOR_DIV_EXPR
2116 || code
== CEIL_DIV_EXPR
2117 || code
== EXACT_DIV_EXPR
2118 || code
== ROUND_DIV_EXPR
)
2119 return (needs_overflow_infinity (TREE_TYPE (res
))
2120 ? positive_overflow_infinity (TREE_TYPE (res
))
2121 : TYPE_MAX_VALUE (TREE_TYPE (res
)));
2123 return (needs_overflow_infinity (TREE_TYPE (res
))
2124 ? negative_overflow_infinity (TREE_TYPE (res
))
2125 : TYPE_MIN_VALUE (TREE_TYPE (res
)));
2132 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
2133 bitmask if some bit is unset, it means for all numbers in the range
2134 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
2135 bitmask if some bit is set, it means for all numbers in the range
2136 the bit is 1, otherwise it might be 0 or 1. */
2139 zero_nonzero_bits_from_vr (value_range_t
*vr
,
2140 double_int
*may_be_nonzero
,
2141 double_int
*must_be_nonzero
)
2143 *may_be_nonzero
= double_int_minus_one
;
2144 *must_be_nonzero
= double_int_zero
;
2145 if (!range_int_cst_p (vr
))
2148 if (range_int_cst_singleton_p (vr
))
2150 *may_be_nonzero
= tree_to_double_int (vr
->min
);
2151 *must_be_nonzero
= *may_be_nonzero
;
2153 else if (tree_int_cst_sgn (vr
->min
) >= 0
2154 || tree_int_cst_sgn (vr
->max
) < 0)
2156 double_int dmin
= tree_to_double_int (vr
->min
);
2157 double_int dmax
= tree_to_double_int (vr
->max
);
2158 double_int xor_mask
= double_int_xor (dmin
, dmax
);
2159 *may_be_nonzero
= double_int_ior (dmin
, dmax
);
2160 *must_be_nonzero
= double_int_and (dmin
, dmax
);
2161 if (xor_mask
.high
!= 0)
2163 unsigned HOST_WIDE_INT mask
2164 = ((unsigned HOST_WIDE_INT
) 1
2165 << floor_log2 (xor_mask
.high
)) - 1;
2166 may_be_nonzero
->low
= ALL_ONES
;
2167 may_be_nonzero
->high
|= mask
;
2168 must_be_nonzero
->low
= 0;
2169 must_be_nonzero
->high
&= ~mask
;
2171 else if (xor_mask
.low
!= 0)
2173 unsigned HOST_WIDE_INT mask
2174 = ((unsigned HOST_WIDE_INT
) 1
2175 << floor_log2 (xor_mask
.low
)) - 1;
2176 may_be_nonzero
->low
|= mask
;
2177 must_be_nonzero
->low
&= ~mask
;
2184 /* Helper to extract a value-range *VR for a multiplicative operation
2188 extract_range_from_multiplicative_op_1 (value_range_t
*vr
,
2189 enum tree_code code
,
2190 value_range_t
*vr0
, value_range_t
*vr1
)
2192 enum value_range_type type
;
2199 /* Multiplications, divisions and shifts are a bit tricky to handle,
2200 depending on the mix of signs we have in the two ranges, we
2201 need to operate on different values to get the minimum and
2202 maximum values for the new range. One approach is to figure
2203 out all the variations of range combinations and do the
2206 However, this involves several calls to compare_values and it
2207 is pretty convoluted. It's simpler to do the 4 operations
2208 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2209 MAX1) and then figure the smallest and largest values to form
2211 gcc_assert (code
== MULT_EXPR
2212 || code
== TRUNC_DIV_EXPR
2213 || code
== FLOOR_DIV_EXPR
2214 || code
== CEIL_DIV_EXPR
2215 || code
== EXACT_DIV_EXPR
2216 || code
== ROUND_DIV_EXPR
2217 || code
== RSHIFT_EXPR
);
2218 gcc_assert ((vr0
->type
== VR_RANGE
2219 || (code
== MULT_EXPR
&& vr0
->type
== VR_ANTI_RANGE
))
2220 && vr0
->type
== vr1
->type
);
2224 /* Compute the 4 cross operations. */
2226 val
[0] = vrp_int_const_binop (code
, vr0
->min
, vr1
->min
);
2227 if (val
[0] == NULL_TREE
)
2230 if (vr1
->max
== vr1
->min
)
2234 val
[1] = vrp_int_const_binop (code
, vr0
->min
, vr1
->max
);
2235 if (val
[1] == NULL_TREE
)
2239 if (vr0
->max
== vr0
->min
)
2243 val
[2] = vrp_int_const_binop (code
, vr0
->max
, vr1
->min
);
2244 if (val
[2] == NULL_TREE
)
2248 if (vr0
->min
== vr0
->max
|| vr1
->min
== vr1
->max
)
2252 val
[3] = vrp_int_const_binop (code
, vr0
->max
, vr1
->max
);
2253 if (val
[3] == NULL_TREE
)
2259 set_value_range_to_varying (vr
);
2263 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2267 for (i
= 1; i
< 4; i
++)
2269 if (!is_gimple_min_invariant (min
)
2270 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2271 || !is_gimple_min_invariant (max
)
2272 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2277 if (!is_gimple_min_invariant (val
[i
])
2278 || (TREE_OVERFLOW (val
[i
])
2279 && !is_overflow_infinity (val
[i
])))
2281 /* If we found an overflowed value, set MIN and MAX
2282 to it so that we set the resulting range to
2288 if (compare_values (val
[i
], min
) == -1)
2291 if (compare_values (val
[i
], max
) == 1)
2296 /* If either MIN or MAX overflowed, then set the resulting range to
2297 VARYING. But we do accept an overflow infinity
2299 if (min
== NULL_TREE
2300 || !is_gimple_min_invariant (min
)
2301 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2303 || !is_gimple_min_invariant (max
)
2304 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2306 set_value_range_to_varying (vr
);
2312 2) [-INF, +-INF(OVF)]
2313 3) [+-INF(OVF), +INF]
2314 4) [+-INF(OVF), +-INF(OVF)]
2315 We learn nothing when we have INF and INF(OVF) on both sides.
2316 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2318 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
2319 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
2321 set_value_range_to_varying (vr
);
2325 cmp
= compare_values (min
, max
);
2326 if (cmp
== -2 || cmp
== 1)
2328 /* If the new range has its limits swapped around (MIN > MAX),
2329 then the operation caused one of them to wrap around, mark
2330 the new range VARYING. */
2331 set_value_range_to_varying (vr
);
2334 set_value_range (vr
, type
, min
, max
, NULL
);
2337 /* Extract range information from a binary operation CODE based on
2338 the ranges of each of its operands, *VR0 and *VR1 with resulting
2339 type EXPR_TYPE. The resulting range is stored in *VR. */
2342 extract_range_from_binary_expr_1 (value_range_t
*vr
,
2343 enum tree_code code
, tree expr_type
,
2344 value_range_t
*vr0_
, value_range_t
*vr1_
)
2346 value_range_t vr0
= *vr0_
, vr1
= *vr1_
;
2347 enum value_range_type type
;
2348 tree min
= NULL_TREE
, max
= NULL_TREE
;
2351 if (!INTEGRAL_TYPE_P (expr_type
)
2352 && !POINTER_TYPE_P (expr_type
))
2354 set_value_range_to_varying (vr
);
2358 /* Not all binary expressions can be applied to ranges in a
2359 meaningful way. Handle only arithmetic operations. */
2360 if (code
!= PLUS_EXPR
2361 && code
!= MINUS_EXPR
2362 && code
!= POINTER_PLUS_EXPR
2363 && code
!= MULT_EXPR
2364 && code
!= TRUNC_DIV_EXPR
2365 && code
!= FLOOR_DIV_EXPR
2366 && code
!= CEIL_DIV_EXPR
2367 && code
!= EXACT_DIV_EXPR
2368 && code
!= ROUND_DIV_EXPR
2369 && code
!= TRUNC_MOD_EXPR
2370 && code
!= RSHIFT_EXPR
2373 && code
!= BIT_AND_EXPR
2374 && code
!= BIT_IOR_EXPR
2375 && code
!= BIT_XOR_EXPR
)
2377 set_value_range_to_varying (vr
);
2381 /* If both ranges are UNDEFINED, so is the result. */
2382 if (vr0
.type
== VR_UNDEFINED
&& vr1
.type
== VR_UNDEFINED
)
2384 set_value_range_to_undefined (vr
);
2387 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2388 code. At some point we may want to special-case operations that
2389 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2391 else if (vr0
.type
== VR_UNDEFINED
)
2392 set_value_range_to_varying (&vr0
);
2393 else if (vr1
.type
== VR_UNDEFINED
)
2394 set_value_range_to_varying (&vr1
);
2396 /* The type of the resulting value range defaults to VR0.TYPE. */
2399 /* Refuse to operate on VARYING ranges, ranges of different kinds
2400 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2401 because we may be able to derive a useful range even if one of
2402 the operands is VR_VARYING or symbolic range. Similarly for
2403 divisions. TODO, we may be able to derive anti-ranges in
2405 if (code
!= BIT_AND_EXPR
2406 && code
!= BIT_IOR_EXPR
2407 && code
!= TRUNC_DIV_EXPR
2408 && code
!= FLOOR_DIV_EXPR
2409 && code
!= CEIL_DIV_EXPR
2410 && code
!= EXACT_DIV_EXPR
2411 && code
!= ROUND_DIV_EXPR
2412 && code
!= TRUNC_MOD_EXPR
2413 && (vr0
.type
== VR_VARYING
2414 || vr1
.type
== VR_VARYING
2415 || vr0
.type
!= vr1
.type
2416 || symbolic_range_p (&vr0
)
2417 || symbolic_range_p (&vr1
)))
2419 set_value_range_to_varying (vr
);
2423 /* Now evaluate the expression to determine the new range. */
2424 if (POINTER_TYPE_P (expr_type
))
2426 if (code
== MIN_EXPR
|| code
== MAX_EXPR
)
2428 /* For MIN/MAX expressions with pointers, we only care about
2429 nullness, if both are non null, then the result is nonnull.
2430 If both are null, then the result is null. Otherwise they
2432 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2433 set_value_range_to_nonnull (vr
, expr_type
);
2434 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2435 set_value_range_to_null (vr
, expr_type
);
2437 set_value_range_to_varying (vr
);
2439 else if (code
== POINTER_PLUS_EXPR
)
2441 /* For pointer types, we are really only interested in asserting
2442 whether the expression evaluates to non-NULL. */
2443 if (range_is_nonnull (&vr0
) || range_is_nonnull (&vr1
))
2444 set_value_range_to_nonnull (vr
, expr_type
);
2445 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2446 set_value_range_to_null (vr
, expr_type
);
2448 set_value_range_to_varying (vr
);
2450 else if (code
== BIT_AND_EXPR
)
2452 /* For pointer types, we are really only interested in asserting
2453 whether the expression evaluates to non-NULL. */
2454 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2455 set_value_range_to_nonnull (vr
, expr_type
);
2456 else if (range_is_null (&vr0
) || range_is_null (&vr1
))
2457 set_value_range_to_null (vr
, expr_type
);
2459 set_value_range_to_varying (vr
);
2462 set_value_range_to_varying (vr
);
2467 /* For integer ranges, apply the operation to each end of the
2468 range and see what we end up with. */
2469 if (code
== PLUS_EXPR
)
2471 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2472 VR_VARYING. It would take more effort to compute a precise
2473 range for such a case. For example, if we have op0 == 1 and
2474 op1 == -1 with their ranges both being ~[0,0], we would have
2475 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2476 Note that we are guaranteed to have vr0.type == vr1.type at
2478 if (vr0
.type
== VR_ANTI_RANGE
)
2480 set_value_range_to_varying (vr
);
2484 /* For operations that make the resulting range directly
2485 proportional to the original ranges, apply the operation to
2486 the same end of each range. */
2487 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
2488 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
2490 /* If both additions overflowed the range kind is still correct.
2491 This happens regularly with subtracting something in unsigned
2493 ??? See PR30318 for all the cases we do not handle. */
2494 if ((TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2495 && (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2497 min
= build_int_cst_wide (TREE_TYPE (min
),
2498 TREE_INT_CST_LOW (min
),
2499 TREE_INT_CST_HIGH (min
));
2500 max
= build_int_cst_wide (TREE_TYPE (max
),
2501 TREE_INT_CST_LOW (max
),
2502 TREE_INT_CST_HIGH (max
));
2505 else if (code
== MIN_EXPR
2506 || code
== MAX_EXPR
)
2508 if (vr0
.type
== VR_ANTI_RANGE
)
2510 /* For MIN_EXPR and MAX_EXPR with two VR_ANTI_RANGEs,
2511 the resulting VR_ANTI_RANGE is the same - intersection
2512 of the two ranges. */
2513 min
= vrp_int_const_binop (MAX_EXPR
, vr0
.min
, vr1
.min
);
2514 max
= vrp_int_const_binop (MIN_EXPR
, vr0
.max
, vr1
.max
);
2518 /* For operations that make the resulting range directly
2519 proportional to the original ranges, apply the operation to
2520 the same end of each range. */
2521 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
2522 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
2525 else if (code
== MULT_EXPR
)
2527 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2528 drop to VR_VARYING. It would take more effort to compute a
2529 precise range for such a case. For example, if we have
2530 op0 == 65536 and op1 == 65536 with their ranges both being
2531 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2532 we cannot claim that the product is in ~[0,0]. Note that we
2533 are guaranteed to have vr0.type == vr1.type at this
2535 if (vr0
.type
== VR_ANTI_RANGE
2536 && !TYPE_OVERFLOW_UNDEFINED (expr_type
))
2538 set_value_range_to_varying (vr
);
2542 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2545 else if (code
== RSHIFT_EXPR
)
2547 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2548 then drop to VR_VARYING. Outside of this range we get undefined
2549 behavior from the shift operation. We cannot even trust
2550 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2551 shifts, and the operation at the tree level may be widened. */
2552 if (code
== RSHIFT_EXPR
)
2554 if (vr1
.type
!= VR_RANGE
2555 || !value_range_nonnegative_p (&vr1
)
2556 || TREE_CODE (vr1
.max
) != INTEGER_CST
2557 || compare_tree_int (vr1
.max
,
2558 TYPE_PRECISION (expr_type
) - 1) == 1)
2560 set_value_range_to_varying (vr
);
2565 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2568 else if (code
== TRUNC_DIV_EXPR
2569 || code
== FLOOR_DIV_EXPR
2570 || code
== CEIL_DIV_EXPR
2571 || code
== EXACT_DIV_EXPR
2572 || code
== ROUND_DIV_EXPR
)
2574 if (vr0
.type
!= VR_RANGE
|| symbolic_range_p (&vr0
))
2576 /* For division, if op1 has VR_RANGE but op0 does not, something
2577 can be deduced just from that range. Say [min, max] / [4, max]
2578 gives [min / 4, max / 4] range. */
2579 if (vr1
.type
== VR_RANGE
2580 && !symbolic_range_p (&vr1
)
2581 && !range_includes_zero_p (&vr1
))
2583 vr0
.type
= type
= VR_RANGE
;
2584 vr0
.min
= vrp_val_min (expr_type
);
2585 vr0
.max
= vrp_val_max (expr_type
);
2589 set_value_range_to_varying (vr
);
2594 /* For divisions, if flag_non_call_exceptions is true, we must
2595 not eliminate a division by zero. */
2596 if (cfun
->can_throw_non_call_exceptions
2597 && (vr1
.type
!= VR_RANGE
2598 || symbolic_range_p (&vr1
)
2599 || range_includes_zero_p (&vr1
)))
2601 set_value_range_to_varying (vr
);
2605 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2606 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2608 if (vr0
.type
== VR_RANGE
2609 && (vr1
.type
!= VR_RANGE
2610 || symbolic_range_p (&vr1
)
2611 || range_includes_zero_p (&vr1
)))
2613 tree zero
= build_int_cst (TREE_TYPE (vr0
.min
), 0);
2618 if (TYPE_UNSIGNED (expr_type
)
2619 || value_range_nonnegative_p (&vr1
))
2621 /* For unsigned division or when divisor is known
2622 to be non-negative, the range has to cover
2623 all numbers from 0 to max for positive max
2624 and all numbers from min to 0 for negative min. */
2625 cmp
= compare_values (vr0
.max
, zero
);
2628 else if (cmp
== 0 || cmp
== 1)
2632 cmp
= compare_values (vr0
.min
, zero
);
2635 else if (cmp
== 0 || cmp
== -1)
2642 /* Otherwise the range is -max .. max or min .. -min
2643 depending on which bound is bigger in absolute value,
2644 as the division can change the sign. */
2645 abs_extent_range (vr
, vr0
.min
, vr0
.max
);
2648 if (type
== VR_VARYING
)
2650 set_value_range_to_varying (vr
);
2656 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2660 else if (code
== TRUNC_MOD_EXPR
)
2662 if (vr1
.type
!= VR_RANGE
2663 || symbolic_range_p (&vr1
)
2664 || range_includes_zero_p (&vr1
)
2665 || vrp_val_is_min (vr1
.min
))
2667 set_value_range_to_varying (vr
);
2671 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
2672 max
= fold_unary_to_constant (ABS_EXPR
, expr_type
, vr1
.min
);
2673 if (tree_int_cst_lt (max
, vr1
.max
))
2675 max
= int_const_binop (MINUS_EXPR
, max
, integer_one_node
);
2676 /* If the dividend is non-negative the modulus will be
2677 non-negative as well. */
2678 if (TYPE_UNSIGNED (expr_type
)
2679 || value_range_nonnegative_p (&vr0
))
2680 min
= build_int_cst (TREE_TYPE (max
), 0);
2682 min
= fold_unary_to_constant (NEGATE_EXPR
, expr_type
, max
);
2684 else if (code
== MINUS_EXPR
)
2686 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2687 VR_VARYING. It would take more effort to compute a precise
2688 range for such a case. For example, if we have op0 == 1 and
2689 op1 == 1 with their ranges both being ~[0,0], we would have
2690 op0 - op1 == 0, so we cannot claim that the difference is in
2691 ~[0,0]. Note that we are guaranteed to have
2692 vr0.type == vr1.type at this point. */
2693 if (vr0
.type
== VR_ANTI_RANGE
)
2695 set_value_range_to_varying (vr
);
2699 /* For MINUS_EXPR, apply the operation to the opposite ends of
2701 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.max
);
2702 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.min
);
2704 else if (code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
|| code
== BIT_XOR_EXPR
)
2706 bool int_cst_range0
, int_cst_range1
;
2707 double_int may_be_nonzero0
, may_be_nonzero1
;
2708 double_int must_be_nonzero0
, must_be_nonzero1
;
2710 int_cst_range0
= zero_nonzero_bits_from_vr (&vr0
, &may_be_nonzero0
,
2712 int_cst_range1
= zero_nonzero_bits_from_vr (&vr1
, &may_be_nonzero1
,
2716 if (code
== BIT_AND_EXPR
)
2719 min
= double_int_to_tree (expr_type
,
2720 double_int_and (must_be_nonzero0
,
2722 dmax
= double_int_and (may_be_nonzero0
, may_be_nonzero1
);
2723 /* If both input ranges contain only negative values we can
2724 truncate the result range maximum to the minimum of the
2725 input range maxima. */
2726 if (int_cst_range0
&& int_cst_range1
2727 && tree_int_cst_sgn (vr0
.max
) < 0
2728 && tree_int_cst_sgn (vr1
.max
) < 0)
2730 dmax
= double_int_min (dmax
, tree_to_double_int (vr0
.max
),
2731 TYPE_UNSIGNED (expr_type
));
2732 dmax
= double_int_min (dmax
, tree_to_double_int (vr1
.max
),
2733 TYPE_UNSIGNED (expr_type
));
2735 /* If either input range contains only non-negative values
2736 we can truncate the result range maximum to the respective
2737 maximum of the input range. */
2738 if (int_cst_range0
&& tree_int_cst_sgn (vr0
.min
) >= 0)
2739 dmax
= double_int_min (dmax
, tree_to_double_int (vr0
.max
),
2740 TYPE_UNSIGNED (expr_type
));
2741 if (int_cst_range1
&& tree_int_cst_sgn (vr1
.min
) >= 0)
2742 dmax
= double_int_min (dmax
, tree_to_double_int (vr1
.max
),
2743 TYPE_UNSIGNED (expr_type
));
2744 max
= double_int_to_tree (expr_type
, dmax
);
2746 else if (code
== BIT_IOR_EXPR
)
2749 max
= double_int_to_tree (expr_type
,
2750 double_int_ior (may_be_nonzero0
,
2752 dmin
= double_int_ior (must_be_nonzero0
, must_be_nonzero1
);
2753 /* If the input ranges contain only positive values we can
2754 truncate the minimum of the result range to the maximum
2755 of the input range minima. */
2756 if (int_cst_range0
&& int_cst_range1
2757 && tree_int_cst_sgn (vr0
.min
) >= 0
2758 && tree_int_cst_sgn (vr1
.min
) >= 0)
2760 dmin
= double_int_max (dmin
, tree_to_double_int (vr0
.min
),
2761 TYPE_UNSIGNED (expr_type
));
2762 dmin
= double_int_max (dmin
, tree_to_double_int (vr1
.min
),
2763 TYPE_UNSIGNED (expr_type
));
2765 /* If either input range contains only negative values
2766 we can truncate the minimum of the result range to the
2767 respective minimum range. */
2768 if (int_cst_range0
&& tree_int_cst_sgn (vr0
.max
) < 0)
2769 dmin
= double_int_max (dmin
, tree_to_double_int (vr0
.min
),
2770 TYPE_UNSIGNED (expr_type
));
2771 if (int_cst_range1
&& tree_int_cst_sgn (vr1
.max
) < 0)
2772 dmin
= double_int_max (dmin
, tree_to_double_int (vr1
.min
),
2773 TYPE_UNSIGNED (expr_type
));
2774 min
= double_int_to_tree (expr_type
, dmin
);
2776 else if (code
== BIT_XOR_EXPR
)
2778 double_int result_zero_bits
, result_one_bits
;
2780 = double_int_ior (double_int_and (must_be_nonzero0
,
2783 (double_int_ior (may_be_nonzero0
,
2786 = double_int_ior (double_int_and
2788 double_int_not (may_be_nonzero1
)),
2791 double_int_not (may_be_nonzero0
)));
2792 max
= double_int_to_tree (expr_type
,
2793 double_int_not (result_zero_bits
));
2794 min
= double_int_to_tree (expr_type
, result_one_bits
);
2795 /* If the range has all positive or all negative values the
2796 result is better than VARYING. */
2797 if (tree_int_cst_sgn (min
) < 0
2798 || tree_int_cst_sgn (max
) >= 0)
2801 max
= min
= NULL_TREE
;
2807 /* If either MIN or MAX overflowed, then set the resulting range to
2808 VARYING. But we do accept an overflow infinity
2810 if (min
== NULL_TREE
2811 || !is_gimple_min_invariant (min
)
2812 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2814 || !is_gimple_min_invariant (max
)
2815 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2817 set_value_range_to_varying (vr
);
2823 2) [-INF, +-INF(OVF)]
2824 3) [+-INF(OVF), +INF]
2825 4) [+-INF(OVF), +-INF(OVF)]
2826 We learn nothing when we have INF and INF(OVF) on both sides.
2827 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2829 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
2830 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
2832 set_value_range_to_varying (vr
);
2836 cmp
= compare_values (min
, max
);
2837 if (cmp
== -2 || cmp
== 1)
2839 /* If the new range has its limits swapped around (MIN > MAX),
2840 then the operation caused one of them to wrap around, mark
2841 the new range VARYING. */
2842 set_value_range_to_varying (vr
);
2845 set_value_range (vr
, type
, min
, max
, NULL
);
2848 /* Extract range information from a binary expression OP0 CODE OP1 based on
2849 the ranges of each of its operands with resulting type EXPR_TYPE.
2850 The resulting range is stored in *VR. */
2853 extract_range_from_binary_expr (value_range_t
*vr
,
2854 enum tree_code code
,
2855 tree expr_type
, tree op0
, tree op1
)
2857 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
2858 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
2860 /* Get value ranges for each operand. For constant operands, create
2861 a new value range with the operand to simplify processing. */
2862 if (TREE_CODE (op0
) == SSA_NAME
)
2863 vr0
= *(get_value_range (op0
));
2864 else if (is_gimple_min_invariant (op0
))
2865 set_value_range_to_value (&vr0
, op0
, NULL
);
2867 set_value_range_to_varying (&vr0
);
2869 if (TREE_CODE (op1
) == SSA_NAME
)
2870 vr1
= *(get_value_range (op1
));
2871 else if (is_gimple_min_invariant (op1
))
2872 set_value_range_to_value (&vr1
, op1
, NULL
);
2874 set_value_range_to_varying (&vr1
);
2876 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &vr0
, &vr1
);
2879 /* Extract range information from a unary operation CODE based on
2880 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
2881 The The resulting range is stored in *VR. */
2884 extract_range_from_unary_expr_1 (value_range_t
*vr
,
2885 enum tree_code code
, tree type
,
2886 value_range_t
*vr0_
, tree op0_type
)
2888 value_range_t vr0
= *vr0_
;
2890 /* VRP only operates on integral and pointer types. */
2891 if (!(INTEGRAL_TYPE_P (op0_type
)
2892 || POINTER_TYPE_P (op0_type
))
2893 || !(INTEGRAL_TYPE_P (type
)
2894 || POINTER_TYPE_P (type
)))
2896 set_value_range_to_varying (vr
);
2900 /* If VR0 is UNDEFINED, so is the result. */
2901 if (vr0
.type
== VR_UNDEFINED
)
2903 set_value_range_to_undefined (vr
);
2907 if (CONVERT_EXPR_CODE_P (code
))
2909 tree inner_type
= op0_type
;
2910 tree outer_type
= type
;
2912 /* If the expression evaluates to a pointer, we are only interested in
2913 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2914 if (POINTER_TYPE_P (type
))
2916 if (range_is_nonnull (&vr0
))
2917 set_value_range_to_nonnull (vr
, type
);
2918 else if (range_is_null (&vr0
))
2919 set_value_range_to_null (vr
, type
);
2921 set_value_range_to_varying (vr
);
2925 /* If VR0 is varying and we increase the type precision, assume
2926 a full range for the following transformation. */
2927 if (vr0
.type
== VR_VARYING
2928 && INTEGRAL_TYPE_P (inner_type
)
2929 && TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
))
2931 vr0
.type
= VR_RANGE
;
2932 vr0
.min
= TYPE_MIN_VALUE (inner_type
);
2933 vr0
.max
= TYPE_MAX_VALUE (inner_type
);
2936 /* If VR0 is a constant range or anti-range and the conversion is
2937 not truncating we can convert the min and max values and
2938 canonicalize the resulting range. Otherwise we can do the
2939 conversion if the size of the range is less than what the
2940 precision of the target type can represent and the range is
2941 not an anti-range. */
2942 if ((vr0
.type
== VR_RANGE
2943 || vr0
.type
== VR_ANTI_RANGE
)
2944 && TREE_CODE (vr0
.min
) == INTEGER_CST
2945 && TREE_CODE (vr0
.max
) == INTEGER_CST
2946 && (!is_overflow_infinity (vr0
.min
)
2947 || (vr0
.type
== VR_RANGE
2948 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
2949 && needs_overflow_infinity (outer_type
)
2950 && supports_overflow_infinity (outer_type
)))
2951 && (!is_overflow_infinity (vr0
.max
)
2952 || (vr0
.type
== VR_RANGE
2953 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
2954 && needs_overflow_infinity (outer_type
)
2955 && supports_overflow_infinity (outer_type
)))
2956 && (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
2957 || (vr0
.type
== VR_RANGE
2958 && integer_zerop (int_const_binop (RSHIFT_EXPR
,
2959 int_const_binop (MINUS_EXPR
, vr0
.max
, vr0
.min
),
2960 size_int (TYPE_PRECISION (outer_type
)))))))
2962 tree new_min
, new_max
;
2963 new_min
= force_fit_type_double (outer_type
,
2964 tree_to_double_int (vr0
.min
),
2966 new_max
= force_fit_type_double (outer_type
,
2967 tree_to_double_int (vr0
.max
),
2969 if (is_overflow_infinity (vr0
.min
))
2970 new_min
= negative_overflow_infinity (outer_type
);
2971 if (is_overflow_infinity (vr0
.max
))
2972 new_max
= positive_overflow_infinity (outer_type
);
2973 set_and_canonicalize_value_range (vr
, vr0
.type
,
2974 new_min
, new_max
, NULL
);
2978 set_value_range_to_varying (vr
);
2981 else if (code
== NEGATE_EXPR
)
2983 /* -X is simply 0 - X, so re-use existing code that also handles
2984 anti-ranges fine. */
2985 value_range_t zero
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
2986 set_value_range_to_value (&zero
, build_int_cst (type
, 0), NULL
);
2987 extract_range_from_binary_expr_1 (vr
, MINUS_EXPR
, type
, &zero
, &vr0
);
2990 else if (code
== ABS_EXPR
)
2995 /* Pass through vr0 in the easy cases. */
2996 if (TYPE_UNSIGNED (type
)
2997 || value_range_nonnegative_p (&vr0
))
2999 copy_value_range (vr
, &vr0
);
3003 /* For the remaining varying or symbolic ranges we can't do anything
3005 if (vr0
.type
== VR_VARYING
3006 || symbolic_range_p (&vr0
))
3008 set_value_range_to_varying (vr
);
3012 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3014 if (!TYPE_OVERFLOW_UNDEFINED (type
)
3015 && ((vr0
.type
== VR_RANGE
3016 && vrp_val_is_min (vr0
.min
))
3017 || (vr0
.type
== VR_ANTI_RANGE
3018 && !vrp_val_is_min (vr0
.min
))))
3020 set_value_range_to_varying (vr
);
3024 /* ABS_EXPR may flip the range around, if the original range
3025 included negative values. */
3026 if (is_overflow_infinity (vr0
.min
))
3027 min
= positive_overflow_infinity (type
);
3028 else if (!vrp_val_is_min (vr0
.min
))
3029 min
= fold_unary_to_constant (code
, type
, vr0
.min
);
3030 else if (!needs_overflow_infinity (type
))
3031 min
= TYPE_MAX_VALUE (type
);
3032 else if (supports_overflow_infinity (type
))
3033 min
= positive_overflow_infinity (type
);
3036 set_value_range_to_varying (vr
);
3040 if (is_overflow_infinity (vr0
.max
))
3041 max
= positive_overflow_infinity (type
);
3042 else if (!vrp_val_is_min (vr0
.max
))
3043 max
= fold_unary_to_constant (code
, type
, vr0
.max
);
3044 else if (!needs_overflow_infinity (type
))
3045 max
= TYPE_MAX_VALUE (type
);
3046 else if (supports_overflow_infinity (type
)
3047 /* We shouldn't generate [+INF, +INF] as set_value_range
3048 doesn't like this and ICEs. */
3049 && !is_positive_overflow_infinity (min
))
3050 max
= positive_overflow_infinity (type
);
3053 set_value_range_to_varying (vr
);
3057 cmp
= compare_values (min
, max
);
3059 /* If a VR_ANTI_RANGEs contains zero, then we have
3060 ~[-INF, min(MIN, MAX)]. */
3061 if (vr0
.type
== VR_ANTI_RANGE
)
3063 if (range_includes_zero_p (&vr0
))
3065 /* Take the lower of the two values. */
3069 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3070 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3071 flag_wrapv is set and the original anti-range doesn't include
3072 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3073 if (TYPE_OVERFLOW_WRAPS (type
))
3075 tree type_min_value
= TYPE_MIN_VALUE (type
);
3077 min
= (vr0
.min
!= type_min_value
3078 ? int_const_binop (PLUS_EXPR
, type_min_value
,
3084 if (overflow_infinity_range_p (&vr0
))
3085 min
= negative_overflow_infinity (type
);
3087 min
= TYPE_MIN_VALUE (type
);
3092 /* All else has failed, so create the range [0, INF], even for
3093 flag_wrapv since TYPE_MIN_VALUE is in the original
3095 vr0
.type
= VR_RANGE
;
3096 min
= build_int_cst (type
, 0);
3097 if (needs_overflow_infinity (type
))
3099 if (supports_overflow_infinity (type
))
3100 max
= positive_overflow_infinity (type
);
3103 set_value_range_to_varying (vr
);
3108 max
= TYPE_MAX_VALUE (type
);
3112 /* If the range contains zero then we know that the minimum value in the
3113 range will be zero. */
3114 else if (range_includes_zero_p (&vr0
))
3118 min
= build_int_cst (type
, 0);
3122 /* If the range was reversed, swap MIN and MAX. */
3131 cmp
= compare_values (min
, max
);
3132 if (cmp
== -2 || cmp
== 1)
3134 /* If the new range has its limits swapped around (MIN > MAX),
3135 then the operation caused one of them to wrap around, mark
3136 the new range VARYING. */
3137 set_value_range_to_varying (vr
);
3140 set_value_range (vr
, vr0
.type
, min
, max
, NULL
);
3143 else if (code
== BIT_NOT_EXPR
)
3145 /* ~X is simply -1 - X, so re-use existing code that also handles
3146 anti-ranges fine. */
3147 value_range_t minusone
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3148 set_value_range_to_value (&minusone
, build_int_cst (type
, -1), NULL
);
3149 extract_range_from_binary_expr_1 (vr
, MINUS_EXPR
,
3150 type
, &minusone
, &vr0
);
3153 else if (code
== PAREN_EXPR
)
3155 copy_value_range (vr
, &vr0
);
3159 /* For unhandled operations fall back to varying. */
3160 set_value_range_to_varying (vr
);
3165 /* Extract range information from a unary expression CODE OP0 based on
3166 the range of its operand with resulting type TYPE.
3167 The resulting range is stored in *VR. */
3170 extract_range_from_unary_expr (value_range_t
*vr
, enum tree_code code
,
3171 tree type
, tree op0
)
3173 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3175 /* Get value ranges for the operand. For constant operands, create
3176 a new value range with the operand to simplify processing. */
3177 if (TREE_CODE (op0
) == SSA_NAME
)
3178 vr0
= *(get_value_range (op0
));
3179 else if (is_gimple_min_invariant (op0
))
3180 set_value_range_to_value (&vr0
, op0
, NULL
);
3182 set_value_range_to_varying (&vr0
);
3184 extract_range_from_unary_expr_1 (vr
, code
, type
, &vr0
, TREE_TYPE (op0
));
3188 /* Extract range information from a conditional expression STMT based on
3189 the ranges of each of its operands and the expression code. */
3192 extract_range_from_cond_expr (value_range_t
*vr
, gimple stmt
)
3195 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3196 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3198 /* Get value ranges for each operand. For constant operands, create
3199 a new value range with the operand to simplify processing. */
3200 op0
= gimple_assign_rhs2 (stmt
);
3201 if (TREE_CODE (op0
) == SSA_NAME
)
3202 vr0
= *(get_value_range (op0
));
3203 else if (is_gimple_min_invariant (op0
))
3204 set_value_range_to_value (&vr0
, op0
, NULL
);
3206 set_value_range_to_varying (&vr0
);
3208 op1
= gimple_assign_rhs3 (stmt
);
3209 if (TREE_CODE (op1
) == SSA_NAME
)
3210 vr1
= *(get_value_range (op1
));
3211 else if (is_gimple_min_invariant (op1
))
3212 set_value_range_to_value (&vr1
, op1
, NULL
);
3214 set_value_range_to_varying (&vr1
);
3216 /* The resulting value range is the union of the operand ranges */
3217 vrp_meet (&vr0
, &vr1
);
3218 copy_value_range (vr
, &vr0
);
3222 /* Extract range information from a comparison expression EXPR based
3223 on the range of its operand and the expression code. */
3226 extract_range_from_comparison (value_range_t
*vr
, enum tree_code code
,
3227 tree type
, tree op0
, tree op1
)
3232 val
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, false, &sop
,
3235 /* A disadvantage of using a special infinity as an overflow
3236 representation is that we lose the ability to record overflow
3237 when we don't have an infinity. So we have to ignore a result
3238 which relies on overflow. */
3240 if (val
&& !is_overflow_infinity (val
) && !sop
)
3242 /* Since this expression was found on the RHS of an assignment,
3243 its type may be different from _Bool. Convert VAL to EXPR's
3245 val
= fold_convert (type
, val
);
3246 if (is_gimple_min_invariant (val
))
3247 set_value_range_to_value (vr
, val
, vr
->equiv
);
3249 set_value_range (vr
, VR_RANGE
, val
, val
, vr
->equiv
);
3252 /* The result of a comparison is always true or false. */
3253 set_value_range_to_truthvalue (vr
, type
);
3256 /* Try to derive a nonnegative or nonzero range out of STMT relying
3257 primarily on generic routines in fold in conjunction with range data.
3258 Store the result in *VR */
3261 extract_range_basic (value_range_t
*vr
, gimple stmt
)
3264 tree type
= gimple_expr_type (stmt
);
3266 if (INTEGRAL_TYPE_P (type
)
3267 && gimple_stmt_nonnegative_warnv_p (stmt
, &sop
))
3268 set_value_range_to_nonnegative (vr
, type
,
3269 sop
|| stmt_overflow_infinity (stmt
));
3270 else if (vrp_stmt_computes_nonzero (stmt
, &sop
)
3272 set_value_range_to_nonnull (vr
, type
);
3274 set_value_range_to_varying (vr
);
3278 /* Try to compute a useful range out of assignment STMT and store it
3282 extract_range_from_assignment (value_range_t
*vr
, gimple stmt
)
3284 enum tree_code code
= gimple_assign_rhs_code (stmt
);
3286 if (code
== ASSERT_EXPR
)
3287 extract_range_from_assert (vr
, gimple_assign_rhs1 (stmt
));
3288 else if (code
== SSA_NAME
)
3289 extract_range_from_ssa_name (vr
, gimple_assign_rhs1 (stmt
));
3290 else if (TREE_CODE_CLASS (code
) == tcc_binary
)
3291 extract_range_from_binary_expr (vr
, gimple_assign_rhs_code (stmt
),
3292 gimple_expr_type (stmt
),
3293 gimple_assign_rhs1 (stmt
),
3294 gimple_assign_rhs2 (stmt
));
3295 else if (TREE_CODE_CLASS (code
) == tcc_unary
)
3296 extract_range_from_unary_expr (vr
, gimple_assign_rhs_code (stmt
),
3297 gimple_expr_type (stmt
),
3298 gimple_assign_rhs1 (stmt
));
3299 else if (code
== COND_EXPR
)
3300 extract_range_from_cond_expr (vr
, stmt
);
3301 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3302 extract_range_from_comparison (vr
, gimple_assign_rhs_code (stmt
),
3303 gimple_expr_type (stmt
),
3304 gimple_assign_rhs1 (stmt
),
3305 gimple_assign_rhs2 (stmt
));
3306 else if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
3307 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt
)))
3308 set_value_range_to_value (vr
, gimple_assign_rhs1 (stmt
), NULL
);
3310 set_value_range_to_varying (vr
);
3312 if (vr
->type
== VR_VARYING
)
3313 extract_range_basic (vr
, stmt
);
3316 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3317 would be profitable to adjust VR using scalar evolution information
3318 for VAR. If so, update VR with the new limits. */
3321 adjust_range_with_scev (value_range_t
*vr
, struct loop
*loop
,
3322 gimple stmt
, tree var
)
3324 tree init
, step
, chrec
, tmin
, tmax
, min
, max
, type
, tem
;
3325 enum ev_direction dir
;
3327 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3328 better opportunities than a regular range, but I'm not sure. */
3329 if (vr
->type
== VR_ANTI_RANGE
)
3332 chrec
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, var
));
3334 /* Like in PR19590, scev can return a constant function. */
3335 if (is_gimple_min_invariant (chrec
))
3337 set_value_range_to_value (vr
, chrec
, vr
->equiv
);
3341 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
3344 init
= initial_condition_in_loop_num (chrec
, loop
->num
);
3345 tem
= op_with_constant_singleton_value_range (init
);
3348 step
= evolution_part_in_loop_num (chrec
, loop
->num
);
3349 tem
= op_with_constant_singleton_value_range (step
);
3353 /* If STEP is symbolic, we can't know whether INIT will be the
3354 minimum or maximum value in the range. Also, unless INIT is
3355 a simple expression, compare_values and possibly other functions
3356 in tree-vrp won't be able to handle it. */
3357 if (step
== NULL_TREE
3358 || !is_gimple_min_invariant (step
)
3359 || !valid_value_p (init
))
3362 dir
= scev_direction (chrec
);
3363 if (/* Do not adjust ranges if we do not know whether the iv increases
3364 or decreases, ... */
3365 dir
== EV_DIR_UNKNOWN
3366 /* ... or if it may wrap. */
3367 || scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
3371 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3372 negative_overflow_infinity and positive_overflow_infinity,
3373 because we have concluded that the loop probably does not
3376 type
= TREE_TYPE (var
);
3377 if (POINTER_TYPE_P (type
) || !TYPE_MIN_VALUE (type
))
3378 tmin
= lower_bound_in_type (type
, type
);
3380 tmin
= TYPE_MIN_VALUE (type
);
3381 if (POINTER_TYPE_P (type
) || !TYPE_MAX_VALUE (type
))
3382 tmax
= upper_bound_in_type (type
, type
);
3384 tmax
= TYPE_MAX_VALUE (type
);
3386 /* Try to use estimated number of iterations for the loop to constrain the
3387 final value in the evolution. */
3388 if (TREE_CODE (step
) == INTEGER_CST
3389 && is_gimple_val (init
)
3390 && (TREE_CODE (init
) != SSA_NAME
3391 || get_value_range (init
)->type
== VR_RANGE
))
3395 if (estimated_loop_iterations (loop
, true, &nit
))
3397 value_range_t maxvr
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3399 bool unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (step
));
3402 dtmp
= double_int_mul_with_sign (tree_to_double_int (step
), nit
,
3403 unsigned_p
, &overflow
);
3404 /* If the multiplication overflowed we can't do a meaningful
3405 adjustment. Likewise if the result doesn't fit in the type
3406 of the induction variable. For a signed type we have to
3407 check whether the result has the expected signedness which
3408 is that of the step as number of iterations is unsigned. */
3410 && double_int_fits_to_tree_p (TREE_TYPE (init
), dtmp
)
3412 || ((dtmp
.high
^ TREE_INT_CST_HIGH (step
)) >= 0)))
3414 tem
= double_int_to_tree (TREE_TYPE (init
), dtmp
);
3415 extract_range_from_binary_expr (&maxvr
, PLUS_EXPR
,
3416 TREE_TYPE (init
), init
, tem
);
3417 /* Likewise if the addition did. */
3418 if (maxvr
.type
== VR_RANGE
)
3427 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
3432 /* For VARYING or UNDEFINED ranges, just about anything we get
3433 from scalar evolutions should be better. */
3435 if (dir
== EV_DIR_DECREASES
)
3440 /* If we would create an invalid range, then just assume we
3441 know absolutely nothing. This may be over-conservative,
3442 but it's clearly safe, and should happen only in unreachable
3443 parts of code, or for invalid programs. */
3444 if (compare_values (min
, max
) == 1)
3447 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
3449 else if (vr
->type
== VR_RANGE
)
3454 if (dir
== EV_DIR_DECREASES
)
3456 /* INIT is the maximum value. If INIT is lower than VR->MAX
3457 but no smaller than VR->MIN, set VR->MAX to INIT. */
3458 if (compare_values (init
, max
) == -1)
3461 /* According to the loop information, the variable does not
3462 overflow. If we think it does, probably because of an
3463 overflow due to arithmetic on a different INF value,
3465 if (is_negative_overflow_infinity (min
)
3466 || compare_values (min
, tmin
) == -1)
3472 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3473 if (compare_values (init
, min
) == 1)
3476 if (is_positive_overflow_infinity (max
)
3477 || compare_values (tmax
, max
) == -1)
3481 /* If we just created an invalid range with the minimum
3482 greater than the maximum, we fail conservatively.
3483 This should happen only in unreachable
3484 parts of code, or for invalid programs. */
3485 if (compare_values (min
, max
) == 1)
3488 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
3492 /* Return true if VAR may overflow at STMT. This checks any available
3493 loop information to see if we can determine that VAR does not
3497 vrp_var_may_overflow (tree var
, gimple stmt
)
3500 tree chrec
, init
, step
;
3502 if (current_loops
== NULL
)
3505 l
= loop_containing_stmt (stmt
);
3510 chrec
= instantiate_parameters (l
, analyze_scalar_evolution (l
, var
));
3511 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
3514 init
= initial_condition_in_loop_num (chrec
, l
->num
);
3515 step
= evolution_part_in_loop_num (chrec
, l
->num
);
3517 if (step
== NULL_TREE
3518 || !is_gimple_min_invariant (step
)
3519 || !valid_value_p (init
))
3522 /* If we get here, we know something useful about VAR based on the
3523 loop information. If it wraps, it may overflow. */
3525 if (scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
3529 if (dump_file
&& (dump_flags
& TDF_DETAILS
) != 0)
3531 print_generic_expr (dump_file
, var
, 0);
3532 fprintf (dump_file
, ": loop information indicates does not overflow\n");
3539 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3541 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3542 all the values in the ranges.
3544 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3546 - Return NULL_TREE if it is not always possible to determine the
3547 value of the comparison.
3549 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3550 overflow infinity was used in the test. */
3554 compare_ranges (enum tree_code comp
, value_range_t
*vr0
, value_range_t
*vr1
,
3555 bool *strict_overflow_p
)
3557 /* VARYING or UNDEFINED ranges cannot be compared. */
3558 if (vr0
->type
== VR_VARYING
3559 || vr0
->type
== VR_UNDEFINED
3560 || vr1
->type
== VR_VARYING
3561 || vr1
->type
== VR_UNDEFINED
)
3564 /* Anti-ranges need to be handled separately. */
3565 if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
3567 /* If both are anti-ranges, then we cannot compute any
3569 if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
3572 /* These comparisons are never statically computable. */
3579 /* Equality can be computed only between a range and an
3580 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3581 if (vr0
->type
== VR_RANGE
)
3583 /* To simplify processing, make VR0 the anti-range. */
3584 value_range_t
*tmp
= vr0
;
3589 gcc_assert (comp
== NE_EXPR
|| comp
== EQ_EXPR
);
3591 if (compare_values_warnv (vr0
->min
, vr1
->min
, strict_overflow_p
) == 0
3592 && compare_values_warnv (vr0
->max
, vr1
->max
, strict_overflow_p
) == 0)
3593 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
3598 if (!usable_range_p (vr0
, strict_overflow_p
)
3599 || !usable_range_p (vr1
, strict_overflow_p
))
3602 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3603 operands around and change the comparison code. */
3604 if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
3607 comp
= (comp
== GT_EXPR
) ? LT_EXPR
: LE_EXPR
;
3613 if (comp
== EQ_EXPR
)
3615 /* Equality may only be computed if both ranges represent
3616 exactly one value. */
3617 if (compare_values_warnv (vr0
->min
, vr0
->max
, strict_overflow_p
) == 0
3618 && compare_values_warnv (vr1
->min
, vr1
->max
, strict_overflow_p
) == 0)
3620 int cmp_min
= compare_values_warnv (vr0
->min
, vr1
->min
,
3622 int cmp_max
= compare_values_warnv (vr0
->max
, vr1
->max
,
3624 if (cmp_min
== 0 && cmp_max
== 0)
3625 return boolean_true_node
;
3626 else if (cmp_min
!= -2 && cmp_max
!= -2)
3627 return boolean_false_node
;
3629 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3630 else if (compare_values_warnv (vr0
->min
, vr1
->max
,
3631 strict_overflow_p
) == 1
3632 || compare_values_warnv (vr1
->min
, vr0
->max
,
3633 strict_overflow_p
) == 1)
3634 return boolean_false_node
;
3638 else if (comp
== NE_EXPR
)
3642 /* If VR0 is completely to the left or completely to the right
3643 of VR1, they are always different. Notice that we need to
3644 make sure that both comparisons yield similar results to
3645 avoid comparing values that cannot be compared at
3647 cmp1
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
3648 cmp2
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
3649 if ((cmp1
== -1 && cmp2
== -1) || (cmp1
== 1 && cmp2
== 1))
3650 return boolean_true_node
;
3652 /* If VR0 and VR1 represent a single value and are identical,
3654 else if (compare_values_warnv (vr0
->min
, vr0
->max
,
3655 strict_overflow_p
) == 0
3656 && compare_values_warnv (vr1
->min
, vr1
->max
,
3657 strict_overflow_p
) == 0
3658 && compare_values_warnv (vr0
->min
, vr1
->min
,
3659 strict_overflow_p
) == 0
3660 && compare_values_warnv (vr0
->max
, vr1
->max
,
3661 strict_overflow_p
) == 0)
3662 return boolean_false_node
;
3664 /* Otherwise, they may or may not be different. */
3668 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
3672 /* If VR0 is to the left of VR1, return true. */
3673 tst
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
3674 if ((comp
== LT_EXPR
&& tst
== -1)
3675 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
3677 if (overflow_infinity_range_p (vr0
)
3678 || overflow_infinity_range_p (vr1
))
3679 *strict_overflow_p
= true;
3680 return boolean_true_node
;
3683 /* If VR0 is to the right of VR1, return false. */
3684 tst
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
3685 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
3686 || (comp
== LE_EXPR
&& tst
== 1))
3688 if (overflow_infinity_range_p (vr0
)
3689 || overflow_infinity_range_p (vr1
))
3690 *strict_overflow_p
= true;
3691 return boolean_false_node
;
3694 /* Otherwise, we don't know. */
3702 /* Given a value range VR, a value VAL and a comparison code COMP, return
3703 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3704 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3705 always returns false. Return NULL_TREE if it is not always
3706 possible to determine the value of the comparison. Also set
3707 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3708 infinity was used in the test. */
3711 compare_range_with_value (enum tree_code comp
, value_range_t
*vr
, tree val
,
3712 bool *strict_overflow_p
)
3714 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
3717 /* Anti-ranges need to be handled separately. */
3718 if (vr
->type
== VR_ANTI_RANGE
)
3720 /* For anti-ranges, the only predicates that we can compute at
3721 compile time are equality and inequality. */
3728 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3729 if (value_inside_range (val
, vr
) == 1)
3730 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
3735 if (!usable_range_p (vr
, strict_overflow_p
))
3738 if (comp
== EQ_EXPR
)
3740 /* EQ_EXPR may only be computed if VR represents exactly
3742 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0)
3744 int cmp
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
3746 return boolean_true_node
;
3747 else if (cmp
== -1 || cmp
== 1 || cmp
== 2)
3748 return boolean_false_node
;
3750 else if (compare_values_warnv (val
, vr
->min
, strict_overflow_p
) == -1
3751 || compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1)
3752 return boolean_false_node
;
3756 else if (comp
== NE_EXPR
)
3758 /* If VAL is not inside VR, then they are always different. */
3759 if (compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1
3760 || compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 1)
3761 return boolean_true_node
;
3763 /* If VR represents exactly one value equal to VAL, then return
3765 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0
3766 && compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 0)
3767 return boolean_false_node
;
3769 /* Otherwise, they may or may not be different. */
3772 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
3776 /* If VR is to the left of VAL, return true. */
3777 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
3778 if ((comp
== LT_EXPR
&& tst
== -1)
3779 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
3781 if (overflow_infinity_range_p (vr
))
3782 *strict_overflow_p
= true;
3783 return boolean_true_node
;
3786 /* If VR is to the right of VAL, return false. */
3787 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
3788 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
3789 || (comp
== LE_EXPR
&& tst
== 1))
3791 if (overflow_infinity_range_p (vr
))
3792 *strict_overflow_p
= true;
3793 return boolean_false_node
;
3796 /* Otherwise, we don't know. */
3799 else if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
3803 /* If VR is to the right of VAL, return true. */
3804 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
3805 if ((comp
== GT_EXPR
&& tst
== 1)
3806 || (comp
== GE_EXPR
&& (tst
== 0 || tst
== 1)))
3808 if (overflow_infinity_range_p (vr
))
3809 *strict_overflow_p
= true;
3810 return boolean_true_node
;
3813 /* If VR is to the left of VAL, return false. */
3814 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
3815 if ((comp
== GT_EXPR
&& (tst
== -1 || tst
== 0))
3816 || (comp
== GE_EXPR
&& tst
== -1))
3818 if (overflow_infinity_range_p (vr
))
3819 *strict_overflow_p
= true;
3820 return boolean_false_node
;
3823 /* Otherwise, we don't know. */
3831 /* Debugging dumps. */
3833 void dump_value_range (FILE *, value_range_t
*);
3834 void debug_value_range (value_range_t
*);
3835 void dump_all_value_ranges (FILE *);
3836 void debug_all_value_ranges (void);
3837 void dump_vr_equiv (FILE *, bitmap
);
3838 void debug_vr_equiv (bitmap
);
3841 /* Dump value range VR to FILE. */
3844 dump_value_range (FILE *file
, value_range_t
*vr
)
3847 fprintf (file
, "[]");
3848 else if (vr
->type
== VR_UNDEFINED
)
3849 fprintf (file
, "UNDEFINED");
3850 else if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
3852 tree type
= TREE_TYPE (vr
->min
);
3854 fprintf (file
, "%s[", (vr
->type
== VR_ANTI_RANGE
) ? "~" : "");
3856 if (is_negative_overflow_infinity (vr
->min
))
3857 fprintf (file
, "-INF(OVF)");
3858 else if (INTEGRAL_TYPE_P (type
)
3859 && !TYPE_UNSIGNED (type
)
3860 && vrp_val_is_min (vr
->min
))
3861 fprintf (file
, "-INF");
3863 print_generic_expr (file
, vr
->min
, 0);
3865 fprintf (file
, ", ");
3867 if (is_positive_overflow_infinity (vr
->max
))
3868 fprintf (file
, "+INF(OVF)");
3869 else if (INTEGRAL_TYPE_P (type
)
3870 && vrp_val_is_max (vr
->max
))
3871 fprintf (file
, "+INF");
3873 print_generic_expr (file
, vr
->max
, 0);
3875 fprintf (file
, "]");
3882 fprintf (file
, " EQUIVALENCES: { ");
3884 EXECUTE_IF_SET_IN_BITMAP (vr
->equiv
, 0, i
, bi
)
3886 print_generic_expr (file
, ssa_name (i
), 0);
3887 fprintf (file
, " ");
3891 fprintf (file
, "} (%u elements)", c
);
3894 else if (vr
->type
== VR_VARYING
)
3895 fprintf (file
, "VARYING");
3897 fprintf (file
, "INVALID RANGE");
3901 /* Dump value range VR to stderr. */
3904 debug_value_range (value_range_t
*vr
)
3906 dump_value_range (stderr
, vr
);
3907 fprintf (stderr
, "\n");
3911 /* Dump value ranges of all SSA_NAMEs to FILE. */
3914 dump_all_value_ranges (FILE *file
)
3918 for (i
= 0; i
< num_vr_values
; i
++)
3922 print_generic_expr (file
, ssa_name (i
), 0);
3923 fprintf (file
, ": ");
3924 dump_value_range (file
, vr_value
[i
]);
3925 fprintf (file
, "\n");
3929 fprintf (file
, "\n");
3933 /* Dump all value ranges to stderr. */
3936 debug_all_value_ranges (void)
3938 dump_all_value_ranges (stderr
);
3942 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3943 create a new SSA name N and return the assertion assignment
3944 'V = ASSERT_EXPR <V, V OP W>'. */
3947 build_assert_expr_for (tree cond
, tree v
)
3952 gcc_assert (TREE_CODE (v
) == SSA_NAME
);
3953 n
= duplicate_ssa_name (v
, NULL
);
3955 if (COMPARISON_CLASS_P (cond
))
3957 tree a
= build2 (ASSERT_EXPR
, TREE_TYPE (v
), v
, cond
);
3958 assertion
= gimple_build_assign (n
, a
);
3960 else if (TREE_CODE (cond
) == SSA_NAME
)
3962 /* Given V, build the assignment N = true. */
3963 gcc_assert (v
== cond
);
3964 assertion
= gimple_build_assign (n
, boolean_true_node
);
3969 SSA_NAME_DEF_STMT (n
) = assertion
;
3971 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3972 operand of the ASSERT_EXPR. Register the new name and the old one
3973 in the replacement table so that we can fix the SSA web after
3974 adding all the ASSERT_EXPRs. */
3975 register_new_name_mapping (n
, v
);
3981 /* Return false if EXPR is a predicate expression involving floating
3985 fp_predicate (gimple stmt
)
3987 GIMPLE_CHECK (stmt
, GIMPLE_COND
);
3989 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt
)));
3993 /* If the range of values taken by OP can be inferred after STMT executes,
3994 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3995 describes the inferred range. Return true if a range could be
3999 infer_value_range (gimple stmt
, tree op
, enum tree_code
*comp_code_p
, tree
*val_p
)
4002 *comp_code_p
= ERROR_MARK
;
4004 /* Do not attempt to infer anything in names that flow through
4006 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
4009 /* Similarly, don't infer anything from statements that may throw
4011 if (stmt_could_throw_p (stmt
))
4014 /* If STMT is the last statement of a basic block with no
4015 successors, there is no point inferring anything about any of its
4016 operands. We would not be able to find a proper insertion point
4017 for the assertion, anyway. */
4018 if (stmt_ends_bb_p (stmt
) && EDGE_COUNT (gimple_bb (stmt
)->succs
) == 0)
4021 /* We can only assume that a pointer dereference will yield
4022 non-NULL if -fdelete-null-pointer-checks is enabled. */
4023 if (flag_delete_null_pointer_checks
4024 && POINTER_TYPE_P (TREE_TYPE (op
))
4025 && gimple_code (stmt
) != GIMPLE_ASM
)
4027 unsigned num_uses
, num_loads
, num_stores
;
4029 count_uses_and_derefs (op
, stmt
, &num_uses
, &num_loads
, &num_stores
);
4030 if (num_loads
+ num_stores
> 0)
4032 *val_p
= build_int_cst (TREE_TYPE (op
), 0);
4033 *comp_code_p
= NE_EXPR
;
4042 void dump_asserts_for (FILE *, tree
);
4043 void debug_asserts_for (tree
);
4044 void dump_all_asserts (FILE *);
4045 void debug_all_asserts (void);
4047 /* Dump all the registered assertions for NAME to FILE. */
4050 dump_asserts_for (FILE *file
, tree name
)
4054 fprintf (file
, "Assertions to be inserted for ");
4055 print_generic_expr (file
, name
, 0);
4056 fprintf (file
, "\n");
4058 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
4061 fprintf (file
, "\t");
4062 print_gimple_stmt (file
, gsi_stmt (loc
->si
), 0, 0);
4063 fprintf (file
, "\n\tBB #%d", loc
->bb
->index
);
4066 fprintf (file
, "\n\tEDGE %d->%d", loc
->e
->src
->index
,
4067 loc
->e
->dest
->index
);
4068 dump_edge_info (file
, loc
->e
, 0);
4070 fprintf (file
, "\n\tPREDICATE: ");
4071 print_generic_expr (file
, name
, 0);
4072 fprintf (file
, " %s ", tree_code_name
[(int)loc
->comp_code
]);
4073 print_generic_expr (file
, loc
->val
, 0);
4074 fprintf (file
, "\n\n");
4078 fprintf (file
, "\n");
4082 /* Dump all the registered assertions for NAME to stderr. */
4085 debug_asserts_for (tree name
)
4087 dump_asserts_for (stderr
, name
);
4091 /* Dump all the registered assertions for all the names to FILE. */
4094 dump_all_asserts (FILE *file
)
4099 fprintf (file
, "\nASSERT_EXPRs to be inserted\n\n");
4100 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
4101 dump_asserts_for (file
, ssa_name (i
));
4102 fprintf (file
, "\n");
4106 /* Dump all the registered assertions for all the names to stderr. */
4109 debug_all_asserts (void)
4111 dump_all_asserts (stderr
);
4115 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4116 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4117 E->DEST, then register this location as a possible insertion point
4118 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4120 BB, E and SI provide the exact insertion point for the new
4121 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4122 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4123 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4124 must not be NULL. */
4127 register_new_assert_for (tree name
, tree expr
,
4128 enum tree_code comp_code
,
4132 gimple_stmt_iterator si
)
4134 assert_locus_t n
, loc
, last_loc
;
4135 basic_block dest_bb
;
4137 gcc_checking_assert (bb
== NULL
|| e
== NULL
);
4140 gcc_checking_assert (gimple_code (gsi_stmt (si
)) != GIMPLE_COND
4141 && gimple_code (gsi_stmt (si
)) != GIMPLE_SWITCH
);
4143 /* Never build an assert comparing against an integer constant with
4144 TREE_OVERFLOW set. This confuses our undefined overflow warning
4146 if (TREE_CODE (val
) == INTEGER_CST
4147 && TREE_OVERFLOW (val
))
4148 val
= build_int_cst_wide (TREE_TYPE (val
),
4149 TREE_INT_CST_LOW (val
), TREE_INT_CST_HIGH (val
));
4151 /* The new assertion A will be inserted at BB or E. We need to
4152 determine if the new location is dominated by a previously
4153 registered location for A. If we are doing an edge insertion,
4154 assume that A will be inserted at E->DEST. Note that this is not
4157 If E is a critical edge, it will be split. But even if E is
4158 split, the new block will dominate the same set of blocks that
4161 The reverse, however, is not true, blocks dominated by E->DEST
4162 will not be dominated by the new block created to split E. So,
4163 if the insertion location is on a critical edge, we will not use
4164 the new location to move another assertion previously registered
4165 at a block dominated by E->DEST. */
4166 dest_bb
= (bb
) ? bb
: e
->dest
;
4168 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4169 VAL at a block dominating DEST_BB, then we don't need to insert a new
4170 one. Similarly, if the same assertion already exists at a block
4171 dominated by DEST_BB and the new location is not on a critical
4172 edge, then update the existing location for the assertion (i.e.,
4173 move the assertion up in the dominance tree).
4175 Note, this is implemented as a simple linked list because there
4176 should not be more than a handful of assertions registered per
4177 name. If this becomes a performance problem, a table hashed by
4178 COMP_CODE and VAL could be implemented. */
4179 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
4183 if (loc
->comp_code
== comp_code
4185 || operand_equal_p (loc
->val
, val
, 0))
4186 && (loc
->expr
== expr
4187 || operand_equal_p (loc
->expr
, expr
, 0)))
4189 /* If the assertion NAME COMP_CODE VAL has already been
4190 registered at a basic block that dominates DEST_BB, then
4191 we don't need to insert the same assertion again. Note
4192 that we don't check strict dominance here to avoid
4193 replicating the same assertion inside the same basic
4194 block more than once (e.g., when a pointer is
4195 dereferenced several times inside a block).
4197 An exception to this rule are edge insertions. If the
4198 new assertion is to be inserted on edge E, then it will
4199 dominate all the other insertions that we may want to
4200 insert in DEST_BB. So, if we are doing an edge
4201 insertion, don't do this dominance check. */
4203 && dominated_by_p (CDI_DOMINATORS
, dest_bb
, loc
->bb
))
4206 /* Otherwise, if E is not a critical edge and DEST_BB
4207 dominates the existing location for the assertion, move
4208 the assertion up in the dominance tree by updating its
4209 location information. */
4210 if ((e
== NULL
|| !EDGE_CRITICAL_P (e
))
4211 && dominated_by_p (CDI_DOMINATORS
, loc
->bb
, dest_bb
))
4220 /* Update the last node of the list and move to the next one. */
4225 /* If we didn't find an assertion already registered for
4226 NAME COMP_CODE VAL, add a new one at the end of the list of
4227 assertions associated with NAME. */
4228 n
= XNEW (struct assert_locus_d
);
4232 n
->comp_code
= comp_code
;
4240 asserts_for
[SSA_NAME_VERSION (name
)] = n
;
4242 bitmap_set_bit (need_assert_for
, SSA_NAME_VERSION (name
));
4245 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4246 Extract a suitable test code and value and store them into *CODE_P and
4247 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4249 If no extraction was possible, return FALSE, otherwise return TRUE.
4251 If INVERT is true, then we invert the result stored into *CODE_P. */
4254 extract_code_and_val_from_cond_with_ops (tree name
, enum tree_code cond_code
,
4255 tree cond_op0
, tree cond_op1
,
4256 bool invert
, enum tree_code
*code_p
,
4259 enum tree_code comp_code
;
4262 /* Otherwise, we have a comparison of the form NAME COMP VAL
4263 or VAL COMP NAME. */
4264 if (name
== cond_op1
)
4266 /* If the predicate is of the form VAL COMP NAME, flip
4267 COMP around because we need to register NAME as the
4268 first operand in the predicate. */
4269 comp_code
= swap_tree_comparison (cond_code
);
4274 /* The comparison is of the form NAME COMP VAL, so the
4275 comparison code remains unchanged. */
4276 comp_code
= cond_code
;
4280 /* Invert the comparison code as necessary. */
4282 comp_code
= invert_tree_comparison (comp_code
, 0);
4284 /* VRP does not handle float types. */
4285 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val
)))
4288 /* Do not register always-false predicates.
4289 FIXME: this works around a limitation in fold() when dealing with
4290 enumerations. Given 'enum { N1, N2 } x;', fold will not
4291 fold 'if (x > N2)' to 'if (0)'. */
4292 if ((comp_code
== GT_EXPR
|| comp_code
== LT_EXPR
)
4293 && INTEGRAL_TYPE_P (TREE_TYPE (val
)))
4295 tree min
= TYPE_MIN_VALUE (TREE_TYPE (val
));
4296 tree max
= TYPE_MAX_VALUE (TREE_TYPE (val
));
4298 if (comp_code
== GT_EXPR
4300 || compare_values (val
, max
) == 0))
4303 if (comp_code
== LT_EXPR
4305 || compare_values (val
, min
) == 0))
4308 *code_p
= comp_code
;
4313 /* Try to register an edge assertion for SSA name NAME on edge E for
4314 the condition COND contributing to the conditional jump pointed to by BSI.
4315 Invert the condition COND if INVERT is true.
4316 Return true if an assertion for NAME could be registered. */
4319 register_edge_assert_for_2 (tree name
, edge e
, gimple_stmt_iterator bsi
,
4320 enum tree_code cond_code
,
4321 tree cond_op0
, tree cond_op1
, bool invert
)
4324 enum tree_code comp_code
;
4325 bool retval
= false;
4327 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
4330 invert
, &comp_code
, &val
))
4333 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4334 reachable from E. */
4335 if (live_on_edge (e
, name
)
4336 && !has_single_use (name
))
4338 register_new_assert_for (name
, name
, comp_code
, val
, NULL
, e
, bsi
);
4342 /* In the case of NAME <= CST and NAME being defined as
4343 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4344 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4345 This catches range and anti-range tests. */
4346 if ((comp_code
== LE_EXPR
4347 || comp_code
== GT_EXPR
)
4348 && TREE_CODE (val
) == INTEGER_CST
4349 && TYPE_UNSIGNED (TREE_TYPE (val
)))
4351 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4352 tree cst2
= NULL_TREE
, name2
= NULL_TREE
, name3
= NULL_TREE
;
4354 /* Extract CST2 from the (optional) addition. */
4355 if (is_gimple_assign (def_stmt
)
4356 && gimple_assign_rhs_code (def_stmt
) == PLUS_EXPR
)
4358 name2
= gimple_assign_rhs1 (def_stmt
);
4359 cst2
= gimple_assign_rhs2 (def_stmt
);
4360 if (TREE_CODE (name2
) == SSA_NAME
4361 && TREE_CODE (cst2
) == INTEGER_CST
)
4362 def_stmt
= SSA_NAME_DEF_STMT (name2
);
4365 /* Extract NAME2 from the (optional) sign-changing cast. */
4366 if (gimple_assign_cast_p (def_stmt
))
4368 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
))
4369 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
4370 && (TYPE_PRECISION (gimple_expr_type (def_stmt
))
4371 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))))
4372 name3
= gimple_assign_rhs1 (def_stmt
);
4375 /* If name3 is used later, create an ASSERT_EXPR for it. */
4376 if (name3
!= NULL_TREE
4377 && TREE_CODE (name3
) == SSA_NAME
4378 && (cst2
== NULL_TREE
4379 || TREE_CODE (cst2
) == INTEGER_CST
)
4380 && INTEGRAL_TYPE_P (TREE_TYPE (name3
))
4381 && live_on_edge (e
, name3
)
4382 && !has_single_use (name3
))
4386 /* Build an expression for the range test. */
4387 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), name3
);
4388 if (cst2
!= NULL_TREE
)
4389 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
4393 fprintf (dump_file
, "Adding assert for ");
4394 print_generic_expr (dump_file
, name3
, 0);
4395 fprintf (dump_file
, " from ");
4396 print_generic_expr (dump_file
, tmp
, 0);
4397 fprintf (dump_file
, "\n");
4400 register_new_assert_for (name3
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
4405 /* If name2 is used later, create an ASSERT_EXPR for it. */
4406 if (name2
!= NULL_TREE
4407 && TREE_CODE (name2
) == SSA_NAME
4408 && TREE_CODE (cst2
) == INTEGER_CST
4409 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
4410 && live_on_edge (e
, name2
)
4411 && !has_single_use (name2
))
4415 /* Build an expression for the range test. */
4417 if (TREE_TYPE (name
) != TREE_TYPE (name2
))
4418 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), tmp
);
4419 if (cst2
!= NULL_TREE
)
4420 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
4424 fprintf (dump_file
, "Adding assert for ");
4425 print_generic_expr (dump_file
, name2
, 0);
4426 fprintf (dump_file
, " from ");
4427 print_generic_expr (dump_file
, tmp
, 0);
4428 fprintf (dump_file
, "\n");
4431 register_new_assert_for (name2
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
4440 /* OP is an operand of a truth value expression which is known to have
4441 a particular value. Register any asserts for OP and for any
4442 operands in OP's defining statement.
4444 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4445 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4448 register_edge_assert_for_1 (tree op
, enum tree_code code
,
4449 edge e
, gimple_stmt_iterator bsi
)
4451 bool retval
= false;
4454 enum tree_code rhs_code
;
4456 /* We only care about SSA_NAMEs. */
4457 if (TREE_CODE (op
) != SSA_NAME
)
4460 /* We know that OP will have a zero or nonzero value. If OP is used
4461 more than once go ahead and register an assert for OP.
4463 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4464 it will always be set for OP (because OP is used in a COND_EXPR in
4466 if (!has_single_use (op
))
4468 val
= build_int_cst (TREE_TYPE (op
), 0);
4469 register_new_assert_for (op
, op
, code
, val
, NULL
, e
, bsi
);
4473 /* Now look at how OP is set. If it's set from a comparison,
4474 a truth operation or some bit operations, then we may be able
4475 to register information about the operands of that assignment. */
4476 op_def
= SSA_NAME_DEF_STMT (op
);
4477 if (gimple_code (op_def
) != GIMPLE_ASSIGN
)
4480 rhs_code
= gimple_assign_rhs_code (op_def
);
4482 if (TREE_CODE_CLASS (rhs_code
) == tcc_comparison
)
4484 bool invert
= (code
== EQ_EXPR
? true : false);
4485 tree op0
= gimple_assign_rhs1 (op_def
);
4486 tree op1
= gimple_assign_rhs2 (op_def
);
4488 if (TREE_CODE (op0
) == SSA_NAME
)
4489 retval
|= register_edge_assert_for_2 (op0
, e
, bsi
, rhs_code
, op0
, op1
,
4491 if (TREE_CODE (op1
) == SSA_NAME
)
4492 retval
|= register_edge_assert_for_2 (op1
, e
, bsi
, rhs_code
, op0
, op1
,
4495 else if ((code
== NE_EXPR
4496 && gimple_assign_rhs_code (op_def
) == BIT_AND_EXPR
)
4498 && gimple_assign_rhs_code (op_def
) == BIT_IOR_EXPR
))
4500 /* Recurse on each operand. */
4501 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4503 retval
|= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def
),
4506 else if (gimple_assign_rhs_code (op_def
) == BIT_NOT_EXPR
4507 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def
))) == 1)
4509 /* Recurse, flipping CODE. */
4510 code
= invert_tree_comparison (code
, false);
4511 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4514 else if (gimple_assign_rhs_code (op_def
) == SSA_NAME
)
4516 /* Recurse through the copy. */
4517 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4520 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def
)))
4522 /* Recurse through the type conversion. */
4523 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4530 /* Try to register an edge assertion for SSA name NAME on edge E for
4531 the condition COND contributing to the conditional jump pointed to by SI.
4532 Return true if an assertion for NAME could be registered. */
4535 register_edge_assert_for (tree name
, edge e
, gimple_stmt_iterator si
,
4536 enum tree_code cond_code
, tree cond_op0
,
4540 enum tree_code comp_code
;
4541 bool retval
= false;
4542 bool is_else_edge
= (e
->flags
& EDGE_FALSE_VALUE
) != 0;
4544 /* Do not attempt to infer anything in names that flow through
4546 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
4549 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
4555 /* Register ASSERT_EXPRs for name. */
4556 retval
|= register_edge_assert_for_2 (name
, e
, si
, cond_code
, cond_op0
,
4557 cond_op1
, is_else_edge
);
4560 /* If COND is effectively an equality test of an SSA_NAME against
4561 the value zero or one, then we may be able to assert values
4562 for SSA_NAMEs which flow into COND. */
4564 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
4565 statement of NAME we can assert both operands of the BIT_AND_EXPR
4566 have nonzero value. */
4567 if (((comp_code
== EQ_EXPR
&& integer_onep (val
))
4568 || (comp_code
== NE_EXPR
&& integer_zerop (val
))))
4570 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4572 if (is_gimple_assign (def_stmt
)
4573 && gimple_assign_rhs_code (def_stmt
) == BIT_AND_EXPR
)
4575 tree op0
= gimple_assign_rhs1 (def_stmt
);
4576 tree op1
= gimple_assign_rhs2 (def_stmt
);
4577 retval
|= register_edge_assert_for_1 (op0
, NE_EXPR
, e
, si
);
4578 retval
|= register_edge_assert_for_1 (op1
, NE_EXPR
, e
, si
);
4582 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
4583 statement of NAME we can assert both operands of the BIT_IOR_EXPR
4585 if (((comp_code
== EQ_EXPR
&& integer_zerop (val
))
4586 || (comp_code
== NE_EXPR
&& integer_onep (val
))))
4588 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4590 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4591 necessarily zero value, or if type-precision is one. */
4592 if (is_gimple_assign (def_stmt
)
4593 && (gimple_assign_rhs_code (def_stmt
) == BIT_IOR_EXPR
4594 && (TYPE_PRECISION (TREE_TYPE (name
)) == 1
4595 || comp_code
== EQ_EXPR
)))
4597 tree op0
= gimple_assign_rhs1 (def_stmt
);
4598 tree op1
= gimple_assign_rhs2 (def_stmt
);
4599 retval
|= register_edge_assert_for_1 (op0
, EQ_EXPR
, e
, si
);
4600 retval
|= register_edge_assert_for_1 (op1
, EQ_EXPR
, e
, si
);
4608 /* Determine whether the outgoing edges of BB should receive an
4609 ASSERT_EXPR for each of the operands of BB's LAST statement.
4610 The last statement of BB must be a COND_EXPR.
4612 If any of the sub-graphs rooted at BB have an interesting use of
4613 the predicate operands, an assert location node is added to the
4614 list of assertions for the corresponding operands. */
4617 find_conditional_asserts (basic_block bb
, gimple last
)
4620 gimple_stmt_iterator bsi
;
4626 need_assert
= false;
4627 bsi
= gsi_for_stmt (last
);
4629 /* Look for uses of the operands in each of the sub-graphs
4630 rooted at BB. We need to check each of the outgoing edges
4631 separately, so that we know what kind of ASSERT_EXPR to
4633 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4638 /* Register the necessary assertions for each operand in the
4639 conditional predicate. */
4640 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
4642 need_assert
|= register_edge_assert_for (op
, e
, bsi
,
4643 gimple_cond_code (last
),
4644 gimple_cond_lhs (last
),
4645 gimple_cond_rhs (last
));
4658 /* Compare two case labels sorting first by the destination bb index
4659 and then by the case value. */
4662 compare_case_labels (const void *p1
, const void *p2
)
4664 const struct case_info
*ci1
= (const struct case_info
*) p1
;
4665 const struct case_info
*ci2
= (const struct case_info
*) p2
;
4666 int idx1
= ci1
->bb
->index
;
4667 int idx2
= ci2
->bb
->index
;
4671 else if (idx1
== idx2
)
4673 /* Make sure the default label is first in a group. */
4674 if (!CASE_LOW (ci1
->expr
))
4676 else if (!CASE_LOW (ci2
->expr
))
4679 return tree_int_cst_compare (CASE_LOW (ci1
->expr
),
4680 CASE_LOW (ci2
->expr
));
4686 /* Determine whether the outgoing edges of BB should receive an
4687 ASSERT_EXPR for each of the operands of BB's LAST statement.
4688 The last statement of BB must be a SWITCH_EXPR.
4690 If any of the sub-graphs rooted at BB have an interesting use of
4691 the predicate operands, an assert location node is added to the
4692 list of assertions for the corresponding operands. */
4695 find_switch_asserts (basic_block bb
, gimple last
)
4698 gimple_stmt_iterator bsi
;
4701 struct case_info
*ci
;
4702 size_t n
= gimple_switch_num_labels (last
);
4703 #if GCC_VERSION >= 4000
4706 /* Work around GCC 3.4 bug (PR 37086). */
4707 volatile unsigned int idx
;
4710 need_assert
= false;
4711 bsi
= gsi_for_stmt (last
);
4712 op
= gimple_switch_index (last
);
4713 if (TREE_CODE (op
) != SSA_NAME
)
4716 /* Build a vector of case labels sorted by destination label. */
4717 ci
= XNEWVEC (struct case_info
, n
);
4718 for (idx
= 0; idx
< n
; ++idx
)
4720 ci
[idx
].expr
= gimple_switch_label (last
, idx
);
4721 ci
[idx
].bb
= label_to_block (CASE_LABEL (ci
[idx
].expr
));
4723 qsort (ci
, n
, sizeof (struct case_info
), compare_case_labels
);
4725 for (idx
= 0; idx
< n
; ++idx
)
4728 tree cl
= ci
[idx
].expr
;
4729 basic_block cbb
= ci
[idx
].bb
;
4731 min
= CASE_LOW (cl
);
4732 max
= CASE_HIGH (cl
);
4734 /* If there are multiple case labels with the same destination
4735 we need to combine them to a single value range for the edge. */
4736 if (idx
+ 1 < n
&& cbb
== ci
[idx
+ 1].bb
)
4738 /* Skip labels until the last of the group. */
4741 } while (idx
< n
&& cbb
== ci
[idx
].bb
);
4744 /* Pick up the maximum of the case label range. */
4745 if (CASE_HIGH (ci
[idx
].expr
))
4746 max
= CASE_HIGH (ci
[idx
].expr
);
4748 max
= CASE_LOW (ci
[idx
].expr
);
4751 /* Nothing to do if the range includes the default label until we
4752 can register anti-ranges. */
4753 if (min
== NULL_TREE
)
4756 /* Find the edge to register the assert expr on. */
4757 e
= find_edge (bb
, cbb
);
4759 /* Register the necessary assertions for the operand in the
4761 need_assert
|= register_edge_assert_for (op
, e
, bsi
,
4762 max
? GE_EXPR
: EQ_EXPR
,
4764 fold_convert (TREE_TYPE (op
),
4768 need_assert
|= register_edge_assert_for (op
, e
, bsi
, LE_EXPR
,
4770 fold_convert (TREE_TYPE (op
),
4780 /* Traverse all the statements in block BB looking for statements that
4781 may generate useful assertions for the SSA names in their operand.
4782 If a statement produces a useful assertion A for name N_i, then the
4783 list of assertions already generated for N_i is scanned to
4784 determine if A is actually needed.
4786 If N_i already had the assertion A at a location dominating the
4787 current location, then nothing needs to be done. Otherwise, the
4788 new location for A is recorded instead.
4790 1- For every statement S in BB, all the variables used by S are
4791 added to bitmap FOUND_IN_SUBGRAPH.
4793 2- If statement S uses an operand N in a way that exposes a known
4794 value range for N, then if N was not already generated by an
4795 ASSERT_EXPR, create a new assert location for N. For instance,
4796 if N is a pointer and the statement dereferences it, we can
4797 assume that N is not NULL.
4799 3- COND_EXPRs are a special case of #2. We can derive range
4800 information from the predicate but need to insert different
4801 ASSERT_EXPRs for each of the sub-graphs rooted at the
4802 conditional block. If the last statement of BB is a conditional
4803 expression of the form 'X op Y', then
4805 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4807 b) If the conditional is the only entry point to the sub-graph
4808 corresponding to the THEN_CLAUSE, recurse into it. On
4809 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4810 an ASSERT_EXPR is added for the corresponding variable.
4812 c) Repeat step (b) on the ELSE_CLAUSE.
4814 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4823 In this case, an assertion on the THEN clause is useful to
4824 determine that 'a' is always 9 on that edge. However, an assertion
4825 on the ELSE clause would be unnecessary.
4827 4- If BB does not end in a conditional expression, then we recurse
4828 into BB's dominator children.
4830 At the end of the recursive traversal, every SSA name will have a
4831 list of locations where ASSERT_EXPRs should be added. When a new
4832 location for name N is found, it is registered by calling
4833 register_new_assert_for. That function keeps track of all the
4834 registered assertions to prevent adding unnecessary assertions.
4835 For instance, if a pointer P_4 is dereferenced more than once in a
4836 dominator tree, only the location dominating all the dereference of
4837 P_4 will receive an ASSERT_EXPR.
4839 If this function returns true, then it means that there are names
4840 for which we need to generate ASSERT_EXPRs. Those assertions are
4841 inserted by process_assert_insertions. */
4844 find_assert_locations_1 (basic_block bb
, sbitmap live
)
4846 gimple_stmt_iterator si
;
4851 need_assert
= false;
4852 last
= last_stmt (bb
);
4854 /* If BB's last statement is a conditional statement involving integer
4855 operands, determine if we need to add ASSERT_EXPRs. */
4857 && gimple_code (last
) == GIMPLE_COND
4858 && !fp_predicate (last
)
4859 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
4860 need_assert
|= find_conditional_asserts (bb
, last
);
4862 /* If BB's last statement is a switch statement involving integer
4863 operands, determine if we need to add ASSERT_EXPRs. */
4865 && gimple_code (last
) == GIMPLE_SWITCH
4866 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
4867 need_assert
|= find_switch_asserts (bb
, last
);
4869 /* Traverse all the statements in BB marking used names and looking
4870 for statements that may infer assertions for their used operands. */
4871 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
4877 stmt
= gsi_stmt (si
);
4879 if (is_gimple_debug (stmt
))
4882 /* See if we can derive an assertion for any of STMT's operands. */
4883 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
4886 enum tree_code comp_code
;
4888 /* Mark OP in our live bitmap. */
4889 SET_BIT (live
, SSA_NAME_VERSION (op
));
4891 /* If OP is used in such a way that we can infer a value
4892 range for it, and we don't find a previous assertion for
4893 it, create a new assertion location node for OP. */
4894 if (infer_value_range (stmt
, op
, &comp_code
, &value
))
4896 /* If we are able to infer a nonzero value range for OP,
4897 then walk backwards through the use-def chain to see if OP
4898 was set via a typecast.
4900 If so, then we can also infer a nonzero value range
4901 for the operand of the NOP_EXPR. */
4902 if (comp_code
== NE_EXPR
&& integer_zerop (value
))
4905 gimple def_stmt
= SSA_NAME_DEF_STMT (t
);
4907 while (is_gimple_assign (def_stmt
)
4908 && gimple_assign_rhs_code (def_stmt
) == NOP_EXPR
4910 (gimple_assign_rhs1 (def_stmt
)) == SSA_NAME
4912 (TREE_TYPE (gimple_assign_rhs1 (def_stmt
))))
4914 t
= gimple_assign_rhs1 (def_stmt
);
4915 def_stmt
= SSA_NAME_DEF_STMT (t
);
4917 /* Note we want to register the assert for the
4918 operand of the NOP_EXPR after SI, not after the
4920 if (! has_single_use (t
))
4922 register_new_assert_for (t
, t
, comp_code
, value
,
4929 /* If OP is used only once, namely in this STMT, don't
4930 bother creating an ASSERT_EXPR for it. Such an
4931 ASSERT_EXPR would do nothing but increase compile time. */
4932 if (!has_single_use (op
))
4934 register_new_assert_for (op
, op
, comp_code
, value
,
4942 /* Traverse all PHI nodes in BB marking used operands. */
4943 for (si
= gsi_start_phis (bb
); !gsi_end_p(si
); gsi_next (&si
))
4945 use_operand_p arg_p
;
4947 phi
= gsi_stmt (si
);
4949 FOR_EACH_PHI_ARG (arg_p
, phi
, i
, SSA_OP_USE
)
4951 tree arg
= USE_FROM_PTR (arg_p
);
4952 if (TREE_CODE (arg
) == SSA_NAME
)
4953 SET_BIT (live
, SSA_NAME_VERSION (arg
));
4960 /* Do an RPO walk over the function computing SSA name liveness
4961 on-the-fly and deciding on assert expressions to insert.
4962 Returns true if there are assert expressions to be inserted. */
4965 find_assert_locations (void)
4967 int *rpo
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
4968 int *bb_rpo
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
4969 int *last_rpo
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
4973 live
= XCNEWVEC (sbitmap
, last_basic_block
+ NUM_FIXED_BLOCKS
);
4974 rpo_cnt
= pre_and_rev_post_order_compute (NULL
, rpo
, false);
4975 for (i
= 0; i
< rpo_cnt
; ++i
)
4978 need_asserts
= false;
4979 for (i
= rpo_cnt
-1; i
>= 0; --i
)
4981 basic_block bb
= BASIC_BLOCK (rpo
[i
]);
4987 live
[rpo
[i
]] = sbitmap_alloc (num_ssa_names
);
4988 sbitmap_zero (live
[rpo
[i
]]);
4991 /* Process BB and update the live information with uses in
4993 need_asserts
|= find_assert_locations_1 (bb
, live
[rpo
[i
]]);
4995 /* Merge liveness into the predecessor blocks and free it. */
4996 if (!sbitmap_empty_p (live
[rpo
[i
]]))
4999 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5001 int pred
= e
->src
->index
;
5002 if (e
->flags
& EDGE_DFS_BACK
)
5007 live
[pred
] = sbitmap_alloc (num_ssa_names
);
5008 sbitmap_zero (live
[pred
]);
5010 sbitmap_a_or_b (live
[pred
], live
[pred
], live
[rpo
[i
]]);
5012 if (bb_rpo
[pred
] < pred_rpo
)
5013 pred_rpo
= bb_rpo
[pred
];
5016 /* Record the RPO number of the last visited block that needs
5017 live information from this block. */
5018 last_rpo
[rpo
[i
]] = pred_rpo
;
5022 sbitmap_free (live
[rpo
[i
]]);
5023 live
[rpo
[i
]] = NULL
;
5026 /* We can free all successors live bitmaps if all their
5027 predecessors have been visited already. */
5028 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5029 if (last_rpo
[e
->dest
->index
] == i
5030 && live
[e
->dest
->index
])
5032 sbitmap_free (live
[e
->dest
->index
]);
5033 live
[e
->dest
->index
] = NULL
;
5038 XDELETEVEC (bb_rpo
);
5039 XDELETEVEC (last_rpo
);
5040 for (i
= 0; i
< last_basic_block
+ NUM_FIXED_BLOCKS
; ++i
)
5042 sbitmap_free (live
[i
]);
5045 return need_asserts
;
5048 /* Create an ASSERT_EXPR for NAME and insert it in the location
5049 indicated by LOC. Return true if we made any edge insertions. */
5052 process_assert_insertions_for (tree name
, assert_locus_t loc
)
5054 /* Build the comparison expression NAME_i COMP_CODE VAL. */
5061 /* If we have X <=> X do not insert an assert expr for that. */
5062 if (loc
->expr
== loc
->val
)
5065 cond
= build2 (loc
->comp_code
, boolean_type_node
, loc
->expr
, loc
->val
);
5066 assert_stmt
= build_assert_expr_for (cond
, name
);
5069 /* We have been asked to insert the assertion on an edge. This
5070 is used only by COND_EXPR and SWITCH_EXPR assertions. */
5071 gcc_checking_assert (gimple_code (gsi_stmt (loc
->si
)) == GIMPLE_COND
5072 || (gimple_code (gsi_stmt (loc
->si
))
5075 gsi_insert_on_edge (loc
->e
, assert_stmt
);
5079 /* Otherwise, we can insert right after LOC->SI iff the
5080 statement must not be the last statement in the block. */
5081 stmt
= gsi_stmt (loc
->si
);
5082 if (!stmt_ends_bb_p (stmt
))
5084 gsi_insert_after (&loc
->si
, assert_stmt
, GSI_SAME_STMT
);
5088 /* If STMT must be the last statement in BB, we can only insert new
5089 assertions on the non-abnormal edge out of BB. Note that since
5090 STMT is not control flow, there may only be one non-abnormal edge
5092 FOR_EACH_EDGE (e
, ei
, loc
->bb
->succs
)
5093 if (!(e
->flags
& EDGE_ABNORMAL
))
5095 gsi_insert_on_edge (e
, assert_stmt
);
5103 /* Process all the insertions registered for every name N_i registered
5104 in NEED_ASSERT_FOR. The list of assertions to be inserted are
5105 found in ASSERTS_FOR[i]. */
5108 process_assert_insertions (void)
5112 bool update_edges_p
= false;
5113 int num_asserts
= 0;
5115 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5116 dump_all_asserts (dump_file
);
5118 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
5120 assert_locus_t loc
= asserts_for
[i
];
5125 assert_locus_t next
= loc
->next
;
5126 update_edges_p
|= process_assert_insertions_for (ssa_name (i
), loc
);
5134 gsi_commit_edge_inserts ();
5136 statistics_counter_event (cfun
, "Number of ASSERT_EXPR expressions inserted",
5141 /* Traverse the flowgraph looking for conditional jumps to insert range
5142 expressions. These range expressions are meant to provide information
5143 to optimizations that need to reason in terms of value ranges. They
5144 will not be expanded into RTL. For instance, given:
5153 this pass will transform the code into:
5159 x = ASSERT_EXPR <x, x < y>
5164 y = ASSERT_EXPR <y, x <= y>
5168 The idea is that once copy and constant propagation have run, other
5169 optimizations will be able to determine what ranges of values can 'x'
5170 take in different paths of the code, simply by checking the reaching
5171 definition of 'x'. */
5174 insert_range_assertions (void)
5176 need_assert_for
= BITMAP_ALLOC (NULL
);
5177 asserts_for
= XCNEWVEC (assert_locus_t
, num_ssa_names
);
5179 calculate_dominance_info (CDI_DOMINATORS
);
5181 if (find_assert_locations ())
5183 process_assert_insertions ();
5184 update_ssa (TODO_update_ssa_no_phi
);
5187 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5189 fprintf (dump_file
, "\nSSA form after inserting ASSERT_EXPRs\n");
5190 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
5194 BITMAP_FREE (need_assert_for
);
5197 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
5198 and "struct" hacks. If VRP can determine that the
5199 array subscript is a constant, check if it is outside valid
5200 range. If the array subscript is a RANGE, warn if it is
5201 non-overlapping with valid range.
5202 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
5205 check_array_ref (location_t location
, tree ref
, bool ignore_off_by_one
)
5207 value_range_t
* vr
= NULL
;
5208 tree low_sub
, up_sub
;
5209 tree low_bound
, up_bound
, up_bound_p1
;
5212 if (TREE_NO_WARNING (ref
))
5215 low_sub
= up_sub
= TREE_OPERAND (ref
, 1);
5216 up_bound
= array_ref_up_bound (ref
);
5218 /* Can not check flexible arrays. */
5220 || TREE_CODE (up_bound
) != INTEGER_CST
)
5223 /* Accesses to trailing arrays via pointers may access storage
5224 beyond the types array bounds. */
5225 base
= get_base_address (ref
);
5226 if (base
&& TREE_CODE (base
) == MEM_REF
)
5228 tree cref
, next
= NULL_TREE
;
5230 if (TREE_CODE (TREE_OPERAND (ref
, 0)) != COMPONENT_REF
)
5233 cref
= TREE_OPERAND (ref
, 0);
5234 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref
, 0))) == RECORD_TYPE
)
5235 for (next
= DECL_CHAIN (TREE_OPERAND (cref
, 1));
5236 next
&& TREE_CODE (next
) != FIELD_DECL
;
5237 next
= DECL_CHAIN (next
))
5240 /* If this is the last field in a struct type or a field in a
5241 union type do not warn. */
5246 low_bound
= array_ref_low_bound (ref
);
5247 up_bound_p1
= int_const_binop (PLUS_EXPR
, up_bound
, integer_one_node
);
5249 if (TREE_CODE (low_sub
) == SSA_NAME
)
5251 vr
= get_value_range (low_sub
);
5252 if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
5254 low_sub
= vr
->type
== VR_RANGE
? vr
->max
: vr
->min
;
5255 up_sub
= vr
->type
== VR_RANGE
? vr
->min
: vr
->max
;
5259 if (vr
&& vr
->type
== VR_ANTI_RANGE
)
5261 if (TREE_CODE (up_sub
) == INTEGER_CST
5262 && tree_int_cst_lt (up_bound
, up_sub
)
5263 && TREE_CODE (low_sub
) == INTEGER_CST
5264 && tree_int_cst_lt (low_sub
, low_bound
))
5266 warning_at (location
, OPT_Warray_bounds
,
5267 "array subscript is outside array bounds");
5268 TREE_NO_WARNING (ref
) = 1;
5271 else if (TREE_CODE (up_sub
) == INTEGER_CST
5272 && (ignore_off_by_one
5273 ? (tree_int_cst_lt (up_bound
, up_sub
)
5274 && !tree_int_cst_equal (up_bound_p1
, up_sub
))
5275 : (tree_int_cst_lt (up_bound
, up_sub
)
5276 || tree_int_cst_equal (up_bound_p1
, up_sub
))))
5278 warning_at (location
, OPT_Warray_bounds
,
5279 "array subscript is above array bounds");
5280 TREE_NO_WARNING (ref
) = 1;
5282 else if (TREE_CODE (low_sub
) == INTEGER_CST
5283 && tree_int_cst_lt (low_sub
, low_bound
))
5285 warning_at (location
, OPT_Warray_bounds
,
5286 "array subscript is below array bounds");
5287 TREE_NO_WARNING (ref
) = 1;
5291 /* Searches if the expr T, located at LOCATION computes
5292 address of an ARRAY_REF, and call check_array_ref on it. */
5295 search_for_addr_array (tree t
, location_t location
)
5297 while (TREE_CODE (t
) == SSA_NAME
)
5299 gimple g
= SSA_NAME_DEF_STMT (t
);
5301 if (gimple_code (g
) != GIMPLE_ASSIGN
)
5304 if (get_gimple_rhs_class (gimple_assign_rhs_code (g
))
5305 != GIMPLE_SINGLE_RHS
)
5308 t
= gimple_assign_rhs1 (g
);
5312 /* We are only interested in addresses of ARRAY_REF's. */
5313 if (TREE_CODE (t
) != ADDR_EXPR
)
5316 /* Check each ARRAY_REFs in the reference chain. */
5319 if (TREE_CODE (t
) == ARRAY_REF
)
5320 check_array_ref (location
, t
, true /*ignore_off_by_one*/);
5322 t
= TREE_OPERAND (t
, 0);
5324 while (handled_component_p (t
));
5326 if (TREE_CODE (t
) == MEM_REF
5327 && TREE_CODE (TREE_OPERAND (t
, 0)) == ADDR_EXPR
5328 && !TREE_NO_WARNING (t
))
5330 tree tem
= TREE_OPERAND (TREE_OPERAND (t
, 0), 0);
5331 tree low_bound
, up_bound
, el_sz
;
5333 if (TREE_CODE (TREE_TYPE (tem
)) != ARRAY_TYPE
5334 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem
))) == ARRAY_TYPE
5335 || !TYPE_DOMAIN (TREE_TYPE (tem
)))
5338 low_bound
= TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
5339 up_bound
= TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
5340 el_sz
= TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem
)));
5342 || TREE_CODE (low_bound
) != INTEGER_CST
5344 || TREE_CODE (up_bound
) != INTEGER_CST
5346 || TREE_CODE (el_sz
) != INTEGER_CST
)
5349 idx
= mem_ref_offset (t
);
5350 idx
= double_int_sdiv (idx
, tree_to_double_int (el_sz
), TRUNC_DIV_EXPR
);
5351 if (double_int_scmp (idx
, double_int_zero
) < 0)
5353 warning_at (location
, OPT_Warray_bounds
,
5354 "array subscript is below array bounds");
5355 TREE_NO_WARNING (t
) = 1;
5357 else if (double_int_scmp (idx
,
5360 (tree_to_double_int (up_bound
),
5362 (tree_to_double_int (low_bound
))),
5363 double_int_one
)) > 0)
5365 warning_at (location
, OPT_Warray_bounds
,
5366 "array subscript is above array bounds");
5367 TREE_NO_WARNING (t
) = 1;
5372 /* walk_tree() callback that checks if *TP is
5373 an ARRAY_REF inside an ADDR_EXPR (in which an array
5374 subscript one outside the valid range is allowed). Call
5375 check_array_ref for each ARRAY_REF found. The location is
5379 check_array_bounds (tree
*tp
, int *walk_subtree
, void *data
)
5382 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5383 location_t location
;
5385 if (EXPR_HAS_LOCATION (t
))
5386 location
= EXPR_LOCATION (t
);
5389 location_t
*locp
= (location_t
*) wi
->info
;
5393 *walk_subtree
= TRUE
;
5395 if (TREE_CODE (t
) == ARRAY_REF
)
5396 check_array_ref (location
, t
, false /*ignore_off_by_one*/);
5398 if (TREE_CODE (t
) == MEM_REF
5399 || (TREE_CODE (t
) == RETURN_EXPR
&& TREE_OPERAND (t
, 0)))
5400 search_for_addr_array (TREE_OPERAND (t
, 0), location
);
5402 if (TREE_CODE (t
) == ADDR_EXPR
)
5403 *walk_subtree
= FALSE
;
5408 /* Walk over all statements of all reachable BBs and call check_array_bounds
5412 check_all_array_refs (void)
5415 gimple_stmt_iterator si
;
5421 bool executable
= false;
5423 /* Skip blocks that were found to be unreachable. */
5424 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5425 executable
|= !!(e
->flags
& EDGE_EXECUTABLE
);
5429 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
5431 gimple stmt
= gsi_stmt (si
);
5432 struct walk_stmt_info wi
;
5433 if (!gimple_has_location (stmt
))
5436 if (is_gimple_call (stmt
))
5439 size_t n
= gimple_call_num_args (stmt
);
5440 for (i
= 0; i
< n
; i
++)
5442 tree arg
= gimple_call_arg (stmt
, i
);
5443 search_for_addr_array (arg
, gimple_location (stmt
));
5448 memset (&wi
, 0, sizeof (wi
));
5449 wi
.info
= CONST_CAST (void *, (const void *)
5450 gimple_location_ptr (stmt
));
5452 walk_gimple_op (gsi_stmt (si
),
5460 /* Convert range assertion expressions into the implied copies and
5461 copy propagate away the copies. Doing the trivial copy propagation
5462 here avoids the need to run the full copy propagation pass after
5465 FIXME, this will eventually lead to copy propagation removing the
5466 names that had useful range information attached to them. For
5467 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5468 then N_i will have the range [3, +INF].
5470 However, by converting the assertion into the implied copy
5471 operation N_i = N_j, we will then copy-propagate N_j into the uses
5472 of N_i and lose the range information. We may want to hold on to
5473 ASSERT_EXPRs a little while longer as the ranges could be used in
5474 things like jump threading.
5476 The problem with keeping ASSERT_EXPRs around is that passes after
5477 VRP need to handle them appropriately.
5479 Another approach would be to make the range information a first
5480 class property of the SSA_NAME so that it can be queried from
5481 any pass. This is made somewhat more complex by the need for
5482 multiple ranges to be associated with one SSA_NAME. */
5485 remove_range_assertions (void)
5488 gimple_stmt_iterator si
;
5490 /* Note that the BSI iterator bump happens at the bottom of the
5491 loop and no bump is necessary if we're removing the statement
5492 referenced by the current BSI. */
5494 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
);)
5496 gimple stmt
= gsi_stmt (si
);
5499 if (is_gimple_assign (stmt
)
5500 && gimple_assign_rhs_code (stmt
) == ASSERT_EXPR
)
5502 tree rhs
= gimple_assign_rhs1 (stmt
);
5504 tree cond
= fold (ASSERT_EXPR_COND (rhs
));
5505 use_operand_p use_p
;
5506 imm_use_iterator iter
;
5508 gcc_assert (cond
!= boolean_false_node
);
5510 /* Propagate the RHS into every use of the LHS. */
5511 var
= ASSERT_EXPR_VAR (rhs
);
5512 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
,
5513 gimple_assign_lhs (stmt
))
5514 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
5516 SET_USE (use_p
, var
);
5517 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
5520 /* And finally, remove the copy, it is not needed. */
5521 gsi_remove (&si
, true);
5522 release_defs (stmt
);
5530 /* Return true if STMT is interesting for VRP. */
5533 stmt_interesting_for_vrp (gimple stmt
)
5535 if (gimple_code (stmt
) == GIMPLE_PHI
5536 && is_gimple_reg (gimple_phi_result (stmt
))
5537 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt
)))
5538 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt
)))))
5540 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
5542 tree lhs
= gimple_get_lhs (stmt
);
5544 /* In general, assignments with virtual operands are not useful
5545 for deriving ranges, with the obvious exception of calls to
5546 builtin functions. */
5547 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
5548 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
5549 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
5550 && ((is_gimple_call (stmt
)
5551 && gimple_call_fndecl (stmt
) != NULL_TREE
5552 && DECL_BUILT_IN (gimple_call_fndecl (stmt
)))
5553 || !gimple_vuse (stmt
)))
5556 else if (gimple_code (stmt
) == GIMPLE_COND
5557 || gimple_code (stmt
) == GIMPLE_SWITCH
)
5564 /* Initialize local data structures for VRP. */
5567 vrp_initialize (void)
5571 values_propagated
= false;
5572 num_vr_values
= num_ssa_names
;
5573 vr_value
= XCNEWVEC (value_range_t
*, num_vr_values
);
5574 vr_phi_edge_counts
= XCNEWVEC (int, num_ssa_names
);
5578 gimple_stmt_iterator si
;
5580 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
5582 gimple phi
= gsi_stmt (si
);
5583 if (!stmt_interesting_for_vrp (phi
))
5585 tree lhs
= PHI_RESULT (phi
);
5586 set_value_range_to_varying (get_value_range (lhs
));
5587 prop_set_simulate_again (phi
, false);
5590 prop_set_simulate_again (phi
, true);
5593 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
5595 gimple stmt
= gsi_stmt (si
);
5597 /* If the statement is a control insn, then we do not
5598 want to avoid simulating the statement once. Failure
5599 to do so means that those edges will never get added. */
5600 if (stmt_ends_bb_p (stmt
))
5601 prop_set_simulate_again (stmt
, true);
5602 else if (!stmt_interesting_for_vrp (stmt
))
5606 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, i
, SSA_OP_DEF
)
5607 set_value_range_to_varying (get_value_range (def
));
5608 prop_set_simulate_again (stmt
, false);
5611 prop_set_simulate_again (stmt
, true);
5616 /* Return the singleton value-range for NAME or NAME. */
5619 vrp_valueize (tree name
)
5621 if (TREE_CODE (name
) == SSA_NAME
)
5623 value_range_t
*vr
= get_value_range (name
);
5624 if (vr
->type
== VR_RANGE
5625 && (vr
->min
== vr
->max
5626 || operand_equal_p (vr
->min
, vr
->max
, 0)))
5632 /* Visit assignment STMT. If it produces an interesting range, record
5633 the SSA name in *OUTPUT_P. */
5635 static enum ssa_prop_result
5636 vrp_visit_assignment_or_call (gimple stmt
, tree
*output_p
)
5640 enum gimple_code code
= gimple_code (stmt
);
5641 lhs
= gimple_get_lhs (stmt
);
5643 /* We only keep track of ranges in integral and pointer types. */
5644 if (TREE_CODE (lhs
) == SSA_NAME
5645 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
5646 /* It is valid to have NULL MIN/MAX values on a type. See
5647 build_range_type. */
5648 && TYPE_MIN_VALUE (TREE_TYPE (lhs
))
5649 && TYPE_MAX_VALUE (TREE_TYPE (lhs
)))
5650 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
5652 value_range_t new_vr
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
5654 /* Try folding the statement to a constant first. */
5655 tree tem
= gimple_fold_stmt_to_constant (stmt
, vrp_valueize
);
5656 if (tem
&& !is_overflow_infinity (tem
))
5657 set_value_range (&new_vr
, VR_RANGE
, tem
, tem
, NULL
);
5658 /* Then dispatch to value-range extracting functions. */
5659 else if (code
== GIMPLE_CALL
)
5660 extract_range_basic (&new_vr
, stmt
);
5662 extract_range_from_assignment (&new_vr
, stmt
);
5664 if (update_value_range (lhs
, &new_vr
))
5668 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5670 fprintf (dump_file
, "Found new range for ");
5671 print_generic_expr (dump_file
, lhs
, 0);
5672 fprintf (dump_file
, ": ");
5673 dump_value_range (dump_file
, &new_vr
);
5674 fprintf (dump_file
, "\n\n");
5677 if (new_vr
.type
== VR_VARYING
)
5678 return SSA_PROP_VARYING
;
5680 return SSA_PROP_INTERESTING
;
5683 return SSA_PROP_NOT_INTERESTING
;
5686 /* Every other statement produces no useful ranges. */
5687 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
5688 set_value_range_to_varying (get_value_range (def
));
5690 return SSA_PROP_VARYING
;
5693 /* Helper that gets the value range of the SSA_NAME with version I
5694 or a symbolic range containing the SSA_NAME only if the value range
5695 is varying or undefined. */
5697 static inline value_range_t
5698 get_vr_for_comparison (int i
)
5700 value_range_t vr
= *get_value_range (ssa_name (i
));
5702 /* If name N_i does not have a valid range, use N_i as its own
5703 range. This allows us to compare against names that may
5704 have N_i in their ranges. */
5705 if (vr
.type
== VR_VARYING
|| vr
.type
== VR_UNDEFINED
)
5708 vr
.min
= ssa_name (i
);
5709 vr
.max
= ssa_name (i
);
5715 /* Compare all the value ranges for names equivalent to VAR with VAL
5716 using comparison code COMP. Return the same value returned by
5717 compare_range_with_value, including the setting of
5718 *STRICT_OVERFLOW_P. */
5721 compare_name_with_value (enum tree_code comp
, tree var
, tree val
,
5722 bool *strict_overflow_p
)
5728 int used_strict_overflow
;
5730 value_range_t equiv_vr
;
5732 /* Get the set of equivalences for VAR. */
5733 e
= get_value_range (var
)->equiv
;
5735 /* Start at -1. Set it to 0 if we do a comparison without relying
5736 on overflow, or 1 if all comparisons rely on overflow. */
5737 used_strict_overflow
= -1;
5739 /* Compare vars' value range with val. */
5740 equiv_vr
= get_vr_for_comparison (SSA_NAME_VERSION (var
));
5742 retval
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
5744 used_strict_overflow
= sop
? 1 : 0;
5746 /* If the equiv set is empty we have done all work we need to do. */
5750 && used_strict_overflow
> 0)
5751 *strict_overflow_p
= true;
5755 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
5757 equiv_vr
= get_vr_for_comparison (i
);
5759 t
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
5762 /* If we get different answers from different members
5763 of the equivalence set this check must be in a dead
5764 code region. Folding it to a trap representation
5765 would be correct here. For now just return don't-know. */
5775 used_strict_overflow
= 0;
5776 else if (used_strict_overflow
< 0)
5777 used_strict_overflow
= 1;
5782 && used_strict_overflow
> 0)
5783 *strict_overflow_p
= true;
5789 /* Given a comparison code COMP and names N1 and N2, compare all the
5790 ranges equivalent to N1 against all the ranges equivalent to N2
5791 to determine the value of N1 COMP N2. Return the same value
5792 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5793 whether we relied on an overflow infinity in the comparison. */
5797 compare_names (enum tree_code comp
, tree n1
, tree n2
,
5798 bool *strict_overflow_p
)
5802 bitmap_iterator bi1
, bi2
;
5804 int used_strict_overflow
;
5805 static bitmap_obstack
*s_obstack
= NULL
;
5806 static bitmap s_e1
= NULL
, s_e2
= NULL
;
5808 /* Compare the ranges of every name equivalent to N1 against the
5809 ranges of every name equivalent to N2. */
5810 e1
= get_value_range (n1
)->equiv
;
5811 e2
= get_value_range (n2
)->equiv
;
5813 /* Use the fake bitmaps if e1 or e2 are not available. */
5814 if (s_obstack
== NULL
)
5816 s_obstack
= XNEW (bitmap_obstack
);
5817 bitmap_obstack_initialize (s_obstack
);
5818 s_e1
= BITMAP_ALLOC (s_obstack
);
5819 s_e2
= BITMAP_ALLOC (s_obstack
);
5826 /* Add N1 and N2 to their own set of equivalences to avoid
5827 duplicating the body of the loop just to check N1 and N2
5829 bitmap_set_bit (e1
, SSA_NAME_VERSION (n1
));
5830 bitmap_set_bit (e2
, SSA_NAME_VERSION (n2
));
5832 /* If the equivalence sets have a common intersection, then the two
5833 names can be compared without checking their ranges. */
5834 if (bitmap_intersect_p (e1
, e2
))
5836 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5837 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5839 return (comp
== EQ_EXPR
|| comp
== GE_EXPR
|| comp
== LE_EXPR
)
5841 : boolean_false_node
;
5844 /* Start at -1. Set it to 0 if we do a comparison without relying
5845 on overflow, or 1 if all comparisons rely on overflow. */
5846 used_strict_overflow
= -1;
5848 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5849 N2 to their own set of equivalences to avoid duplicating the body
5850 of the loop just to check N1 and N2 ranges. */
5851 EXECUTE_IF_SET_IN_BITMAP (e1
, 0, i1
, bi1
)
5853 value_range_t vr1
= get_vr_for_comparison (i1
);
5855 t
= retval
= NULL_TREE
;
5856 EXECUTE_IF_SET_IN_BITMAP (e2
, 0, i2
, bi2
)
5860 value_range_t vr2
= get_vr_for_comparison (i2
);
5862 t
= compare_ranges (comp
, &vr1
, &vr2
, &sop
);
5865 /* If we get different answers from different members
5866 of the equivalence set this check must be in a dead
5867 code region. Folding it to a trap representation
5868 would be correct here. For now just return don't-know. */
5872 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5873 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5879 used_strict_overflow
= 0;
5880 else if (used_strict_overflow
< 0)
5881 used_strict_overflow
= 1;
5887 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5888 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5889 if (used_strict_overflow
> 0)
5890 *strict_overflow_p
= true;
5895 /* None of the equivalent ranges are useful in computing this
5897 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5898 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5902 /* Helper function for vrp_evaluate_conditional_warnv. */
5905 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code
,
5907 bool * strict_overflow_p
)
5909 value_range_t
*vr0
, *vr1
;
5911 vr0
= (TREE_CODE (op0
) == SSA_NAME
) ? get_value_range (op0
) : NULL
;
5912 vr1
= (TREE_CODE (op1
) == SSA_NAME
) ? get_value_range (op1
) : NULL
;
5915 return compare_ranges (code
, vr0
, vr1
, strict_overflow_p
);
5916 else if (vr0
&& vr1
== NULL
)
5917 return compare_range_with_value (code
, vr0
, op1
, strict_overflow_p
);
5918 else if (vr0
== NULL
&& vr1
)
5919 return (compare_range_with_value
5920 (swap_tree_comparison (code
), vr1
, op0
, strict_overflow_p
));
5924 /* Helper function for vrp_evaluate_conditional_warnv. */
5927 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code
, tree op0
,
5928 tree op1
, bool use_equiv_p
,
5929 bool *strict_overflow_p
, bool *only_ranges
)
5933 *only_ranges
= true;
5935 /* We only deal with integral and pointer types. */
5936 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
5937 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
5943 && (ret
= vrp_evaluate_conditional_warnv_with_ops_using_ranges
5944 (code
, op0
, op1
, strict_overflow_p
)))
5946 *only_ranges
= false;
5947 if (TREE_CODE (op0
) == SSA_NAME
&& TREE_CODE (op1
) == SSA_NAME
)
5948 return compare_names (code
, op0
, op1
, strict_overflow_p
);
5949 else if (TREE_CODE (op0
) == SSA_NAME
)
5950 return compare_name_with_value (code
, op0
, op1
, strict_overflow_p
);
5951 else if (TREE_CODE (op1
) == SSA_NAME
)
5952 return (compare_name_with_value
5953 (swap_tree_comparison (code
), op1
, op0
, strict_overflow_p
));
5956 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code
, op0
, op1
,
5961 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5962 information. Return NULL if the conditional can not be evaluated.
5963 The ranges of all the names equivalent with the operands in COND
5964 will be used when trying to compute the value. If the result is
5965 based on undefined signed overflow, issue a warning if
5969 vrp_evaluate_conditional (enum tree_code code
, tree op0
, tree op1
, gimple stmt
)
5975 /* Some passes and foldings leak constants with overflow flag set
5976 into the IL. Avoid doing wrong things with these and bail out. */
5977 if ((TREE_CODE (op0
) == INTEGER_CST
5978 && TREE_OVERFLOW (op0
))
5979 || (TREE_CODE (op1
) == INTEGER_CST
5980 && TREE_OVERFLOW (op1
)))
5984 ret
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, true, &sop
,
5989 enum warn_strict_overflow_code wc
;
5990 const char* warnmsg
;
5992 if (is_gimple_min_invariant (ret
))
5994 wc
= WARN_STRICT_OVERFLOW_CONDITIONAL
;
5995 warnmsg
= G_("assuming signed overflow does not occur when "
5996 "simplifying conditional to constant");
6000 wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
6001 warnmsg
= G_("assuming signed overflow does not occur when "
6002 "simplifying conditional");
6005 if (issue_strict_overflow_warning (wc
))
6007 location_t location
;
6009 if (!gimple_has_location (stmt
))
6010 location
= input_location
;
6012 location
= gimple_location (stmt
);
6013 warning_at (location
, OPT_Wstrict_overflow
, "%s", warnmsg
);
6017 if (warn_type_limits
6018 && ret
&& only_ranges
6019 && TREE_CODE_CLASS (code
) == tcc_comparison
6020 && TREE_CODE (op0
) == SSA_NAME
)
6022 /* If the comparison is being folded and the operand on the LHS
6023 is being compared against a constant value that is outside of
6024 the natural range of OP0's type, then the predicate will
6025 always fold regardless of the value of OP0. If -Wtype-limits
6026 was specified, emit a warning. */
6027 tree type
= TREE_TYPE (op0
);
6028 value_range_t
*vr0
= get_value_range (op0
);
6030 if (vr0
->type
!= VR_VARYING
6031 && INTEGRAL_TYPE_P (type
)
6032 && vrp_val_is_min (vr0
->min
)
6033 && vrp_val_is_max (vr0
->max
)
6034 && is_gimple_min_invariant (op1
))
6036 location_t location
;
6038 if (!gimple_has_location (stmt
))
6039 location
= input_location
;
6041 location
= gimple_location (stmt
);
6043 warning_at (location
, OPT_Wtype_limits
,
6045 ? G_("comparison always false "
6046 "due to limited range of data type")
6047 : G_("comparison always true "
6048 "due to limited range of data type"));
6056 /* Visit conditional statement STMT. If we can determine which edge
6057 will be taken out of STMT's basic block, record it in
6058 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6059 SSA_PROP_VARYING. */
6061 static enum ssa_prop_result
6062 vrp_visit_cond_stmt (gimple stmt
, edge
*taken_edge_p
)
6067 *taken_edge_p
= NULL
;
6069 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6074 fprintf (dump_file
, "\nVisiting conditional with predicate: ");
6075 print_gimple_stmt (dump_file
, stmt
, 0, 0);
6076 fprintf (dump_file
, "\nWith known ranges\n");
6078 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, i
, SSA_OP_USE
)
6080 fprintf (dump_file
, "\t");
6081 print_generic_expr (dump_file
, use
, 0);
6082 fprintf (dump_file
, ": ");
6083 dump_value_range (dump_file
, vr_value
[SSA_NAME_VERSION (use
)]);
6086 fprintf (dump_file
, "\n");
6089 /* Compute the value of the predicate COND by checking the known
6090 ranges of each of its operands.
6092 Note that we cannot evaluate all the equivalent ranges here
6093 because those ranges may not yet be final and with the current
6094 propagation strategy, we cannot determine when the value ranges
6095 of the names in the equivalence set have changed.
6097 For instance, given the following code fragment
6101 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
6105 Assume that on the first visit to i_14, i_5 has the temporary
6106 range [8, 8] because the second argument to the PHI function is
6107 not yet executable. We derive the range ~[0, 0] for i_14 and the
6108 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
6109 the first time, since i_14 is equivalent to the range [8, 8], we
6110 determine that the predicate is always false.
6112 On the next round of propagation, i_13 is determined to be
6113 VARYING, which causes i_5 to drop down to VARYING. So, another
6114 visit to i_14 is scheduled. In this second visit, we compute the
6115 exact same range and equivalence set for i_14, namely ~[0, 0] and
6116 { i_5 }. But we did not have the previous range for i_5
6117 registered, so vrp_visit_assignment thinks that the range for
6118 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
6119 is not visited again, which stops propagation from visiting
6120 statements in the THEN clause of that if().
6122 To properly fix this we would need to keep the previous range
6123 value for the names in the equivalence set. This way we would've
6124 discovered that from one visit to the other i_5 changed from
6125 range [8, 8] to VR_VARYING.
6127 However, fixing this apparent limitation may not be worth the
6128 additional checking. Testing on several code bases (GCC, DLV,
6129 MICO, TRAMP3D and SPEC2000) showed that doing this results in
6130 4 more predicates folded in SPEC. */
6133 val
= vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt
),
6134 gimple_cond_lhs (stmt
),
6135 gimple_cond_rhs (stmt
),
6140 *taken_edge_p
= find_taken_edge (gimple_bb (stmt
), val
);
6143 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6145 "\nIgnoring predicate evaluation because "
6146 "it assumes that signed overflow is undefined");
6151 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6153 fprintf (dump_file
, "\nPredicate evaluates to: ");
6154 if (val
== NULL_TREE
)
6155 fprintf (dump_file
, "DON'T KNOW\n");
6157 print_generic_stmt (dump_file
, val
, 0);
6160 return (*taken_edge_p
) ? SSA_PROP_INTERESTING
: SSA_PROP_VARYING
;
6163 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
6164 that includes the value VAL. The search is restricted to the range
6165 [START_IDX, n - 1] where n is the size of VEC.
6167 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
6170 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
6171 it is placed in IDX and false is returned.
6173 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
6177 find_case_label_index (gimple stmt
, size_t start_idx
, tree val
, size_t *idx
)
6179 size_t n
= gimple_switch_num_labels (stmt
);
6182 /* Find case label for minimum of the value range or the next one.
6183 At each iteration we are searching in [low, high - 1]. */
6185 for (low
= start_idx
, high
= n
; high
!= low
; )
6189 /* Note that i != high, so we never ask for n. */
6190 size_t i
= (high
+ low
) / 2;
6191 t
= gimple_switch_label (stmt
, i
);
6193 /* Cache the result of comparing CASE_LOW and val. */
6194 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
6198 /* Ranges cannot be empty. */
6207 if (CASE_HIGH (t
) != NULL
6208 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
6220 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
6221 for values between MIN and MAX. The first index is placed in MIN_IDX. The
6222 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
6223 then MAX_IDX < MIN_IDX.
6224 Returns true if the default label is not needed. */
6227 find_case_label_range (gimple stmt
, tree min
, tree max
, size_t *min_idx
,
6231 bool min_take_default
= !find_case_label_index (stmt
, 1, min
, &i
);
6232 bool max_take_default
= !find_case_label_index (stmt
, i
, max
, &j
);
6236 && max_take_default
)
6238 /* Only the default case label reached.
6239 Return an empty range. */
6246 bool take_default
= min_take_default
|| max_take_default
;
6250 if (max_take_default
)
6253 /* If the case label range is continuous, we do not need
6254 the default case label. Verify that. */
6255 high
= CASE_LOW (gimple_switch_label (stmt
, i
));
6256 if (CASE_HIGH (gimple_switch_label (stmt
, i
)))
6257 high
= CASE_HIGH (gimple_switch_label (stmt
, i
));
6258 for (k
= i
+ 1; k
<= j
; ++k
)
6260 low
= CASE_LOW (gimple_switch_label (stmt
, k
));
6261 if (!integer_onep (int_const_binop (MINUS_EXPR
, low
, high
)))
6263 take_default
= true;
6267 if (CASE_HIGH (gimple_switch_label (stmt
, k
)))
6268 high
= CASE_HIGH (gimple_switch_label (stmt
, k
));
6273 return !take_default
;
6277 /* Visit switch statement STMT. If we can determine which edge
6278 will be taken out of STMT's basic block, record it in
6279 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6280 SSA_PROP_VARYING. */
6282 static enum ssa_prop_result
6283 vrp_visit_switch_stmt (gimple stmt
, edge
*taken_edge_p
)
6287 size_t i
= 0, j
= 0;
6290 *taken_edge_p
= NULL
;
6291 op
= gimple_switch_index (stmt
);
6292 if (TREE_CODE (op
) != SSA_NAME
)
6293 return SSA_PROP_VARYING
;
6295 vr
= get_value_range (op
);
6296 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6298 fprintf (dump_file
, "\nVisiting switch expression with operand ");
6299 print_generic_expr (dump_file
, op
, 0);
6300 fprintf (dump_file
, " with known range ");
6301 dump_value_range (dump_file
, vr
);
6302 fprintf (dump_file
, "\n");
6305 if (vr
->type
!= VR_RANGE
6306 || symbolic_range_p (vr
))
6307 return SSA_PROP_VARYING
;
6309 /* Find the single edge that is taken from the switch expression. */
6310 take_default
= !find_case_label_range (stmt
, vr
->min
, vr
->max
, &i
, &j
);
6312 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6316 gcc_assert (take_default
);
6317 val
= gimple_switch_default_label (stmt
);
6321 /* Check if labels with index i to j and maybe the default label
6322 are all reaching the same label. */
6324 val
= gimple_switch_label (stmt
, i
);
6326 && CASE_LABEL (gimple_switch_default_label (stmt
))
6327 != CASE_LABEL (val
))
6329 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6330 fprintf (dump_file
, " not a single destination for this "
6332 return SSA_PROP_VARYING
;
6334 for (++i
; i
<= j
; ++i
)
6336 if (CASE_LABEL (gimple_switch_label (stmt
, i
)) != CASE_LABEL (val
))
6338 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6339 fprintf (dump_file
, " not a single destination for this "
6341 return SSA_PROP_VARYING
;
6346 *taken_edge_p
= find_edge (gimple_bb (stmt
),
6347 label_to_block (CASE_LABEL (val
)));
6349 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6351 fprintf (dump_file
, " will take edge to ");
6352 print_generic_stmt (dump_file
, CASE_LABEL (val
), 0);
6355 return SSA_PROP_INTERESTING
;
6359 /* Evaluate statement STMT. If the statement produces a useful range,
6360 return SSA_PROP_INTERESTING and record the SSA name with the
6361 interesting range into *OUTPUT_P.
6363 If STMT is a conditional branch and we can determine its truth
6364 value, the taken edge is recorded in *TAKEN_EDGE_P.
6366 If STMT produces a varying value, return SSA_PROP_VARYING. */
6368 static enum ssa_prop_result
6369 vrp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
6374 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6376 fprintf (dump_file
, "\nVisiting statement:\n");
6377 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
6378 fprintf (dump_file
, "\n");
6381 if (!stmt_interesting_for_vrp (stmt
))
6382 gcc_assert (stmt_ends_bb_p (stmt
));
6383 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
6385 /* In general, assignments with virtual operands are not useful
6386 for deriving ranges, with the obvious exception of calls to
6387 builtin functions. */
6388 if ((is_gimple_call (stmt
)
6389 && gimple_call_fndecl (stmt
) != NULL_TREE
6390 && DECL_BUILT_IN (gimple_call_fndecl (stmt
)))
6391 || !gimple_vuse (stmt
))
6392 return vrp_visit_assignment_or_call (stmt
, output_p
);
6394 else if (gimple_code (stmt
) == GIMPLE_COND
)
6395 return vrp_visit_cond_stmt (stmt
, taken_edge_p
);
6396 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
6397 return vrp_visit_switch_stmt (stmt
, taken_edge_p
);
6399 /* All other statements produce nothing of interest for VRP, so mark
6400 their outputs varying and prevent further simulation. */
6401 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
6402 set_value_range_to_varying (get_value_range (def
));
6404 return SSA_PROP_VARYING
;
6408 /* Meet operation for value ranges. Given two value ranges VR0 and
6409 VR1, store in VR0 a range that contains both VR0 and VR1. This
6410 may not be the smallest possible such range. */
6413 vrp_meet (value_range_t
*vr0
, value_range_t
*vr1
)
6415 if (vr0
->type
== VR_UNDEFINED
)
6417 copy_value_range (vr0
, vr1
);
6421 if (vr1
->type
== VR_UNDEFINED
)
6423 /* Nothing to do. VR0 already has the resulting range. */
6427 if (vr0
->type
== VR_VARYING
)
6429 /* Nothing to do. VR0 already has the resulting range. */
6433 if (vr1
->type
== VR_VARYING
)
6435 set_value_range_to_varying (vr0
);
6439 if (vr0
->type
== VR_RANGE
&& vr1
->type
== VR_RANGE
)
6444 /* Compute the convex hull of the ranges. The lower limit of
6445 the new range is the minimum of the two ranges. If they
6446 cannot be compared, then give up. */
6447 cmp
= compare_values (vr0
->min
, vr1
->min
);
6448 if (cmp
== 0 || cmp
== 1)
6455 /* Similarly, the upper limit of the new range is the maximum
6456 of the two ranges. If they cannot be compared, then
6458 cmp
= compare_values (vr0
->max
, vr1
->max
);
6459 if (cmp
== 0 || cmp
== -1)
6466 /* Check for useless ranges. */
6467 if (INTEGRAL_TYPE_P (TREE_TYPE (min
))
6468 && ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
6469 && (vrp_val_is_max (max
) || is_overflow_infinity (max
))))
6472 /* The resulting set of equivalences is the intersection of
6474 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
6475 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
6476 else if (vr0
->equiv
&& !vr1
->equiv
)
6477 bitmap_clear (vr0
->equiv
);
6479 set_value_range (vr0
, vr0
->type
, min
, max
, vr0
->equiv
);
6481 else if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
6483 /* Two anti-ranges meet only if their complements intersect.
6484 Only handle the case of identical ranges. */
6485 if (compare_values (vr0
->min
, vr1
->min
) == 0
6486 && compare_values (vr0
->max
, vr1
->max
) == 0
6487 && compare_values (vr0
->min
, vr0
->max
) == 0)
6489 /* The resulting set of equivalences is the intersection of
6491 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
6492 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
6493 else if (vr0
->equiv
&& !vr1
->equiv
)
6494 bitmap_clear (vr0
->equiv
);
6499 else if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
6501 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6502 only handle the case where the ranges have an empty intersection.
6503 The result of the meet operation is the anti-range. */
6504 if (!symbolic_range_p (vr0
)
6505 && !symbolic_range_p (vr1
)
6506 && !value_ranges_intersect_p (vr0
, vr1
))
6508 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6509 set. We need to compute the intersection of the two
6510 equivalence sets. */
6511 if (vr1
->type
== VR_ANTI_RANGE
)
6512 set_value_range (vr0
, vr1
->type
, vr1
->min
, vr1
->max
, vr0
->equiv
);
6514 /* The resulting set of equivalences is the intersection of
6516 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
6517 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
6518 else if (vr0
->equiv
&& !vr1
->equiv
)
6519 bitmap_clear (vr0
->equiv
);
6530 /* Failed to find an efficient meet. Before giving up and setting
6531 the result to VARYING, see if we can at least derive a useful
6532 anti-range. FIXME, all this nonsense about distinguishing
6533 anti-ranges from ranges is necessary because of the odd
6534 semantics of range_includes_zero_p and friends. */
6535 if (!symbolic_range_p (vr0
)
6536 && ((vr0
->type
== VR_RANGE
&& !range_includes_zero_p (vr0
))
6537 || (vr0
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr0
)))
6538 && !symbolic_range_p (vr1
)
6539 && ((vr1
->type
== VR_RANGE
&& !range_includes_zero_p (vr1
))
6540 || (vr1
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr1
))))
6542 set_value_range_to_nonnull (vr0
, TREE_TYPE (vr0
->min
));
6544 /* Since this meet operation did not result from the meeting of
6545 two equivalent names, VR0 cannot have any equivalences. */
6547 bitmap_clear (vr0
->equiv
);
6550 set_value_range_to_varying (vr0
);
6554 /* Visit all arguments for PHI node PHI that flow through executable
6555 edges. If a valid value range can be derived from all the incoming
6556 value ranges, set a new range for the LHS of PHI. */
6558 static enum ssa_prop_result
6559 vrp_visit_phi_node (gimple phi
)
6562 tree lhs
= PHI_RESULT (phi
);
6563 value_range_t
*lhs_vr
= get_value_range (lhs
);
6564 value_range_t vr_result
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
6565 int edges
, old_edges
;
6568 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6570 fprintf (dump_file
, "\nVisiting PHI node: ");
6571 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
6575 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
6577 edge e
= gimple_phi_arg_edge (phi
, i
);
6579 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6582 "\n Argument #%d (%d -> %d %sexecutable)\n",
6583 (int) i
, e
->src
->index
, e
->dest
->index
,
6584 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
6587 if (e
->flags
& EDGE_EXECUTABLE
)
6589 tree arg
= PHI_ARG_DEF (phi
, i
);
6590 value_range_t vr_arg
;
6594 if (TREE_CODE (arg
) == SSA_NAME
)
6596 vr_arg
= *(get_value_range (arg
));
6600 if (is_overflow_infinity (arg
))
6602 arg
= copy_node (arg
);
6603 TREE_OVERFLOW (arg
) = 0;
6606 vr_arg
.type
= VR_RANGE
;
6609 vr_arg
.equiv
= NULL
;
6612 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6614 fprintf (dump_file
, "\t");
6615 print_generic_expr (dump_file
, arg
, dump_flags
);
6616 fprintf (dump_file
, "\n\tValue: ");
6617 dump_value_range (dump_file
, &vr_arg
);
6618 fprintf (dump_file
, "\n");
6621 vrp_meet (&vr_result
, &vr_arg
);
6623 if (vr_result
.type
== VR_VARYING
)
6628 if (vr_result
.type
== VR_VARYING
)
6630 else if (vr_result
.type
== VR_UNDEFINED
)
6633 old_edges
= vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)];
6634 vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)] = edges
;
6636 /* To prevent infinite iterations in the algorithm, derive ranges
6637 when the new value is slightly bigger or smaller than the
6638 previous one. We don't do this if we have seen a new executable
6639 edge; this helps us avoid an overflow infinity for conditionals
6640 which are not in a loop. */
6642 && gimple_phi_num_args (phi
) > 1
6643 && edges
== old_edges
)
6645 int cmp_min
= compare_values (lhs_vr
->min
, vr_result
.min
);
6646 int cmp_max
= compare_values (lhs_vr
->max
, vr_result
.max
);
6648 /* For non VR_RANGE or for pointers fall back to varying if
6649 the range changed. */
6650 if ((lhs_vr
->type
!= VR_RANGE
|| vr_result
.type
!= VR_RANGE
6651 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
6652 && (cmp_min
!= 0 || cmp_max
!= 0))
6655 /* If the new minimum is smaller or larger than the previous
6656 one, go all the way to -INF. In the first case, to avoid
6657 iterating millions of times to reach -INF, and in the
6658 other case to avoid infinite bouncing between different
6660 if (cmp_min
> 0 || cmp_min
< 0)
6662 if (!needs_overflow_infinity (TREE_TYPE (vr_result
.min
))
6663 || !vrp_var_may_overflow (lhs
, phi
))
6664 vr_result
.min
= TYPE_MIN_VALUE (TREE_TYPE (vr_result
.min
));
6665 else if (supports_overflow_infinity (TREE_TYPE (vr_result
.min
)))
6667 negative_overflow_infinity (TREE_TYPE (vr_result
.min
));
6670 /* Similarly, if the new maximum is smaller or larger than
6671 the previous one, go all the way to +INF. */
6672 if (cmp_max
< 0 || cmp_max
> 0)
6674 if (!needs_overflow_infinity (TREE_TYPE (vr_result
.max
))
6675 || !vrp_var_may_overflow (lhs
, phi
))
6676 vr_result
.max
= TYPE_MAX_VALUE (TREE_TYPE (vr_result
.max
));
6677 else if (supports_overflow_infinity (TREE_TYPE (vr_result
.max
)))
6679 positive_overflow_infinity (TREE_TYPE (vr_result
.max
));
6682 /* If we dropped either bound to +-INF then if this is a loop
6683 PHI node SCEV may known more about its value-range. */
6684 if ((cmp_min
> 0 || cmp_min
< 0
6685 || cmp_max
< 0 || cmp_max
> 0)
6687 && (l
= loop_containing_stmt (phi
))
6688 && l
->header
== gimple_bb (phi
))
6689 adjust_range_with_scev (&vr_result
, l
, phi
, lhs
);
6691 /* If we will end up with a (-INF, +INF) range, set it to
6692 VARYING. Same if the previous max value was invalid for
6693 the type and we end up with vr_result.min > vr_result.max. */
6694 if ((vrp_val_is_max (vr_result
.max
)
6695 && vrp_val_is_min (vr_result
.min
))
6696 || compare_values (vr_result
.min
,
6701 /* If the new range is different than the previous value, keep
6704 if (update_value_range (lhs
, &vr_result
))
6706 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6708 fprintf (dump_file
, "Found new range for ");
6709 print_generic_expr (dump_file
, lhs
, 0);
6710 fprintf (dump_file
, ": ");
6711 dump_value_range (dump_file
, &vr_result
);
6712 fprintf (dump_file
, "\n\n");
6715 return SSA_PROP_INTERESTING
;
6718 /* Nothing changed, don't add outgoing edges. */
6719 return SSA_PROP_NOT_INTERESTING
;
6721 /* No match found. Set the LHS to VARYING. */
6723 set_value_range_to_varying (lhs_vr
);
6724 return SSA_PROP_VARYING
;
6727 /* Simplify boolean operations if the source is known
6728 to be already a boolean. */
6730 simplify_truth_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
6732 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
6734 bool need_conversion
;
6736 /* We handle only !=/== case here. */
6737 gcc_assert (rhs_code
== EQ_EXPR
|| rhs_code
== NE_EXPR
);
6739 op0
= gimple_assign_rhs1 (stmt
);
6740 if (!op_with_boolean_value_range_p (op0
))
6743 op1
= gimple_assign_rhs2 (stmt
);
6744 if (!op_with_boolean_value_range_p (op1
))
6747 /* Reduce number of cases to handle to NE_EXPR. As there is no
6748 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
6749 if (rhs_code
== EQ_EXPR
)
6751 if (TREE_CODE (op1
) == INTEGER_CST
)
6752 op1
= int_const_binop (BIT_XOR_EXPR
, op1
, integer_one_node
);
6757 lhs
= gimple_assign_lhs (stmt
);
6759 = !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (op0
));
6761 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
6763 && !TYPE_UNSIGNED (TREE_TYPE (op0
))
6764 && TYPE_PRECISION (TREE_TYPE (op0
)) == 1
6765 && TYPE_PRECISION (TREE_TYPE (lhs
)) > 1)
6768 /* For A != 0 we can substitute A itself. */
6769 if (integer_zerop (op1
))
6770 gimple_assign_set_rhs_with_ops (gsi
,
6772 ? NOP_EXPR
: TREE_CODE (op0
),
6774 /* For A != B we substitute A ^ B. Either with conversion. */
6775 else if (need_conversion
)
6778 tree tem
= create_tmp_reg (TREE_TYPE (op0
), NULL
);
6779 newop
= gimple_build_assign_with_ops (BIT_XOR_EXPR
, tem
, op0
, op1
);
6780 tem
= make_ssa_name (tem
, newop
);
6781 gimple_assign_set_lhs (newop
, tem
);
6782 gsi_insert_before (gsi
, newop
, GSI_SAME_STMT
);
6783 update_stmt (newop
);
6784 gimple_assign_set_rhs_with_ops (gsi
, NOP_EXPR
, tem
, NULL_TREE
);
6788 gimple_assign_set_rhs_with_ops (gsi
, BIT_XOR_EXPR
, op0
, op1
);
6789 update_stmt (gsi_stmt (*gsi
));
6794 /* Simplify a division or modulo operator to a right shift or
6795 bitwise and if the first operand is unsigned or is greater
6796 than zero and the second operand is an exact power of two. */
6799 simplify_div_or_mod_using_ranges (gimple stmt
)
6801 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
6803 tree op0
= gimple_assign_rhs1 (stmt
);
6804 tree op1
= gimple_assign_rhs2 (stmt
);
6805 value_range_t
*vr
= get_value_range (gimple_assign_rhs1 (stmt
));
6807 if (TYPE_UNSIGNED (TREE_TYPE (op0
)))
6809 val
= integer_one_node
;
6815 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
, &sop
);
6819 && integer_onep (val
)
6820 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
6822 location_t location
;
6824 if (!gimple_has_location (stmt
))
6825 location
= input_location
;
6827 location
= gimple_location (stmt
);
6828 warning_at (location
, OPT_Wstrict_overflow
,
6829 "assuming signed overflow does not occur when "
6830 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
6834 if (val
&& integer_onep (val
))
6838 if (rhs_code
== TRUNC_DIV_EXPR
)
6840 t
= build_int_cst (integer_type_node
, tree_log2 (op1
));
6841 gimple_assign_set_rhs_code (stmt
, RSHIFT_EXPR
);
6842 gimple_assign_set_rhs1 (stmt
, op0
);
6843 gimple_assign_set_rhs2 (stmt
, t
);
6847 t
= build_int_cst (TREE_TYPE (op1
), 1);
6848 t
= int_const_binop (MINUS_EXPR
, op1
, t
);
6849 t
= fold_convert (TREE_TYPE (op0
), t
);
6851 gimple_assign_set_rhs_code (stmt
, BIT_AND_EXPR
);
6852 gimple_assign_set_rhs1 (stmt
, op0
);
6853 gimple_assign_set_rhs2 (stmt
, t
);
6863 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6864 ABS_EXPR. If the operand is <= 0, then simplify the
6865 ABS_EXPR into a NEGATE_EXPR. */
6868 simplify_abs_using_ranges (gimple stmt
)
6871 tree op
= gimple_assign_rhs1 (stmt
);
6872 tree type
= TREE_TYPE (op
);
6873 value_range_t
*vr
= get_value_range (op
);
6875 if (TYPE_UNSIGNED (type
))
6877 val
= integer_zero_node
;
6883 val
= compare_range_with_value (LE_EXPR
, vr
, integer_zero_node
, &sop
);
6887 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
,
6892 if (integer_zerop (val
))
6893 val
= integer_one_node
;
6894 else if (integer_onep (val
))
6895 val
= integer_zero_node
;
6900 && (integer_onep (val
) || integer_zerop (val
)))
6902 if (sop
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
6904 location_t location
;
6906 if (!gimple_has_location (stmt
))
6907 location
= input_location
;
6909 location
= gimple_location (stmt
);
6910 warning_at (location
, OPT_Wstrict_overflow
,
6911 "assuming signed overflow does not occur when "
6912 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
6915 gimple_assign_set_rhs1 (stmt
, op
);
6916 if (integer_onep (val
))
6917 gimple_assign_set_rhs_code (stmt
, NEGATE_EXPR
);
6919 gimple_assign_set_rhs_code (stmt
, SSA_NAME
);
6928 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
6929 If all the bits that are being cleared by & are already
6930 known to be zero from VR, or all the bits that are being
6931 set by | are already known to be one from VR, the bit
6932 operation is redundant. */
6935 simplify_bit_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
6937 tree op0
= gimple_assign_rhs1 (stmt
);
6938 tree op1
= gimple_assign_rhs2 (stmt
);
6939 tree op
= NULL_TREE
;
6940 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
6941 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
6942 double_int may_be_nonzero0
, may_be_nonzero1
;
6943 double_int must_be_nonzero0
, must_be_nonzero1
;
6946 if (TREE_CODE (op0
) == SSA_NAME
)
6947 vr0
= *(get_value_range (op0
));
6948 else if (is_gimple_min_invariant (op0
))
6949 set_value_range_to_value (&vr0
, op0
, NULL
);
6953 if (TREE_CODE (op1
) == SSA_NAME
)
6954 vr1
= *(get_value_range (op1
));
6955 else if (is_gimple_min_invariant (op1
))
6956 set_value_range_to_value (&vr1
, op1
, NULL
);
6960 if (!zero_nonzero_bits_from_vr (&vr0
, &may_be_nonzero0
, &must_be_nonzero0
))
6962 if (!zero_nonzero_bits_from_vr (&vr1
, &may_be_nonzero1
, &must_be_nonzero1
))
6965 switch (gimple_assign_rhs_code (stmt
))
6968 mask
= double_int_and_not (may_be_nonzero0
, must_be_nonzero1
);
6969 if (double_int_zero_p (mask
))
6974 mask
= double_int_and_not (may_be_nonzero1
, must_be_nonzero0
);
6975 if (double_int_zero_p (mask
))
6982 mask
= double_int_and_not (may_be_nonzero0
, must_be_nonzero1
);
6983 if (double_int_zero_p (mask
))
6988 mask
= double_int_and_not (may_be_nonzero1
, must_be_nonzero0
);
6989 if (double_int_zero_p (mask
))
6999 if (op
== NULL_TREE
)
7002 gimple_assign_set_rhs_with_ops (gsi
, TREE_CODE (op
), op
, NULL
);
7003 update_stmt (gsi_stmt (*gsi
));
7007 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
7008 a known value range VR.
7010 If there is one and only one value which will satisfy the
7011 conditional, then return that value. Else return NULL. */
7014 test_for_singularity (enum tree_code cond_code
, tree op0
,
7015 tree op1
, value_range_t
*vr
)
7020 /* Extract minimum/maximum values which satisfy the
7021 the conditional as it was written. */
7022 if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
7024 /* This should not be negative infinity; there is no overflow
7026 min
= TYPE_MIN_VALUE (TREE_TYPE (op0
));
7029 if (cond_code
== LT_EXPR
&& !is_overflow_infinity (max
))
7031 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
7032 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (op0
), max
, one
);
7034 TREE_NO_WARNING (max
) = 1;
7037 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
7039 /* This should not be positive infinity; there is no overflow
7041 max
= TYPE_MAX_VALUE (TREE_TYPE (op0
));
7044 if (cond_code
== GT_EXPR
&& !is_overflow_infinity (min
))
7046 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
7047 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (op0
), min
, one
);
7049 TREE_NO_WARNING (min
) = 1;
7053 /* Now refine the minimum and maximum values using any
7054 value range information we have for op0. */
7057 if (compare_values (vr
->min
, min
) == 1)
7059 if (compare_values (vr
->max
, max
) == -1)
7062 /* If the new min/max values have converged to a single value,
7063 then there is only one value which can satisfy the condition,
7064 return that value. */
7065 if (operand_equal_p (min
, max
, 0) && is_gimple_min_invariant (min
))
7071 /* Simplify a conditional using a relational operator to an equality
7072 test if the range information indicates only one value can satisfy
7073 the original conditional. */
7076 simplify_cond_using_ranges (gimple stmt
)
7078 tree op0
= gimple_cond_lhs (stmt
);
7079 tree op1
= gimple_cond_rhs (stmt
);
7080 enum tree_code cond_code
= gimple_cond_code (stmt
);
7082 if (cond_code
!= NE_EXPR
7083 && cond_code
!= EQ_EXPR
7084 && TREE_CODE (op0
) == SSA_NAME
7085 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
7086 && is_gimple_min_invariant (op1
))
7088 value_range_t
*vr
= get_value_range (op0
);
7090 /* If we have range information for OP0, then we might be
7091 able to simplify this conditional. */
7092 if (vr
->type
== VR_RANGE
)
7094 tree new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
);
7100 fprintf (dump_file
, "Simplified relational ");
7101 print_gimple_stmt (dump_file
, stmt
, 0, 0);
7102 fprintf (dump_file
, " into ");
7105 gimple_cond_set_code (stmt
, EQ_EXPR
);
7106 gimple_cond_set_lhs (stmt
, op0
);
7107 gimple_cond_set_rhs (stmt
, new_tree
);
7113 print_gimple_stmt (dump_file
, stmt
, 0, 0);
7114 fprintf (dump_file
, "\n");
7120 /* Try again after inverting the condition. We only deal
7121 with integral types here, so no need to worry about
7122 issues with inverting FP comparisons. */
7123 cond_code
= invert_tree_comparison (cond_code
, false);
7124 new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
);
7130 fprintf (dump_file
, "Simplified relational ");
7131 print_gimple_stmt (dump_file
, stmt
, 0, 0);
7132 fprintf (dump_file
, " into ");
7135 gimple_cond_set_code (stmt
, NE_EXPR
);
7136 gimple_cond_set_lhs (stmt
, op0
);
7137 gimple_cond_set_rhs (stmt
, new_tree
);
7143 print_gimple_stmt (dump_file
, stmt
, 0, 0);
7144 fprintf (dump_file
, "\n");
7155 /* Simplify a switch statement using the value range of the switch
7159 simplify_switch_using_ranges (gimple stmt
)
7161 tree op
= gimple_switch_index (stmt
);
7166 size_t i
= 0, j
= 0, n
, n2
;
7170 if (TREE_CODE (op
) == SSA_NAME
)
7172 vr
= get_value_range (op
);
7174 /* We can only handle integer ranges. */
7175 if (vr
->type
!= VR_RANGE
7176 || symbolic_range_p (vr
))
7179 /* Find case label for min/max of the value range. */
7180 take_default
= !find_case_label_range (stmt
, vr
->min
, vr
->max
, &i
, &j
);
7182 else if (TREE_CODE (op
) == INTEGER_CST
)
7184 take_default
= !find_case_label_index (stmt
, 1, op
, &i
);
7198 n
= gimple_switch_num_labels (stmt
);
7200 /* Bail out if this is just all edges taken. */
7206 /* Build a new vector of taken case labels. */
7207 vec2
= make_tree_vec (j
- i
+ 1 + (int)take_default
);
7210 /* Add the default edge, if necessary. */
7212 TREE_VEC_ELT (vec2
, n2
++) = gimple_switch_default_label (stmt
);
7214 for (; i
<= j
; ++i
, ++n2
)
7215 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, i
);
7217 /* Mark needed edges. */
7218 for (i
= 0; i
< n2
; ++i
)
7220 e
= find_edge (gimple_bb (stmt
),
7221 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2
, i
))));
7222 e
->aux
= (void *)-1;
7225 /* Queue not needed edges for later removal. */
7226 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
7228 if (e
->aux
== (void *)-1)
7234 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7236 fprintf (dump_file
, "removing unreachable case label\n");
7238 VEC_safe_push (edge
, heap
, to_remove_edges
, e
);
7239 e
->flags
&= ~EDGE_EXECUTABLE
;
7242 /* And queue an update for the stmt. */
7245 VEC_safe_push (switch_update
, heap
, to_update_switch_stmts
, &su
);
7249 /* Simplify an integral conversion from an SSA name in STMT. */
7252 simplify_conversion_using_ranges (gimple stmt
)
7254 tree innerop
, middleop
, finaltype
;
7256 value_range_t
*innervr
;
7257 double_int innermin
, innermax
, middlemin
, middlemax
;
7259 finaltype
= TREE_TYPE (gimple_assign_lhs (stmt
));
7260 if (!INTEGRAL_TYPE_P (finaltype
))
7262 middleop
= gimple_assign_rhs1 (stmt
);
7263 def_stmt
= SSA_NAME_DEF_STMT (middleop
);
7264 if (!is_gimple_assign (def_stmt
)
7265 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
)))
7267 innerop
= gimple_assign_rhs1 (def_stmt
);
7268 if (TREE_CODE (innerop
) != SSA_NAME
)
7271 /* Get the value-range of the inner operand. */
7272 innervr
= get_value_range (innerop
);
7273 if (innervr
->type
!= VR_RANGE
7274 || TREE_CODE (innervr
->min
) != INTEGER_CST
7275 || TREE_CODE (innervr
->max
) != INTEGER_CST
)
7278 /* Simulate the conversion chain to check if the result is equal if
7279 the middle conversion is removed. */
7280 innermin
= tree_to_double_int (innervr
->min
);
7281 innermax
= tree_to_double_int (innervr
->max
);
7282 middlemin
= double_int_ext (innermin
, TYPE_PRECISION (TREE_TYPE (middleop
)),
7283 TYPE_UNSIGNED (TREE_TYPE (middleop
)));
7284 middlemax
= double_int_ext (innermax
, TYPE_PRECISION (TREE_TYPE (middleop
)),
7285 TYPE_UNSIGNED (TREE_TYPE (middleop
)));
7286 /* If the middle values are not equal to the original values fail.
7287 But only if the inner cast truncates (thus we ignore differences
7288 in extension to handle the case going from a range to an anti-range
7290 if ((TYPE_PRECISION (TREE_TYPE (innerop
))
7291 > TYPE_PRECISION (TREE_TYPE (middleop
)))
7292 && (!double_int_equal_p (innermin
, middlemin
)
7293 || !double_int_equal_p (innermax
, middlemax
)))
7295 /* Require that the final conversion applied to both the original
7296 and the intermediate range produces the same result. */
7297 if (!double_int_equal_p (double_int_ext (middlemin
,
7298 TYPE_PRECISION (finaltype
),
7299 TYPE_UNSIGNED (finaltype
)),
7300 double_int_ext (innermin
,
7301 TYPE_PRECISION (finaltype
),
7302 TYPE_UNSIGNED (finaltype
)))
7303 || !double_int_equal_p (double_int_ext (middlemax
,
7304 TYPE_PRECISION (finaltype
),
7305 TYPE_UNSIGNED (finaltype
)),
7306 double_int_ext (innermax
,
7307 TYPE_PRECISION (finaltype
),
7308 TYPE_UNSIGNED (finaltype
))))
7311 gimple_assign_set_rhs1 (stmt
, innerop
);
7316 /* Return whether the value range *VR fits in an integer type specified
7317 by PRECISION and UNSIGNED_P. */
7320 range_fits_type_p (value_range_t
*vr
, unsigned precision
, bool unsigned_p
)
7323 unsigned src_precision
;
7326 /* We can only handle integral and pointer types. */
7327 src_type
= TREE_TYPE (vr
->min
);
7328 if (!INTEGRAL_TYPE_P (src_type
)
7329 && !POINTER_TYPE_P (src_type
))
7332 /* An extension is always fine, so is an identity transform. */
7333 src_precision
= TYPE_PRECISION (TREE_TYPE (vr
->min
));
7334 if (src_precision
< precision
7335 || (src_precision
== precision
7336 && TYPE_UNSIGNED (src_type
) == unsigned_p
))
7339 /* Now we can only handle ranges with constant bounds. */
7340 if (vr
->type
!= VR_RANGE
7341 || TREE_CODE (vr
->min
) != INTEGER_CST
7342 || TREE_CODE (vr
->max
) != INTEGER_CST
)
7345 /* For precision-preserving sign-changes the MSB of the double-int
7347 if (src_precision
== precision
7348 && (TREE_INT_CST_HIGH (vr
->min
) | TREE_INT_CST_HIGH (vr
->max
)) < 0)
7351 /* Then we can perform the conversion on both ends and compare
7352 the result for equality. */
7353 tem
= double_int_ext (tree_to_double_int (vr
->min
), precision
, unsigned_p
);
7354 if (!double_int_equal_p (tree_to_double_int (vr
->min
), tem
))
7356 tem
= double_int_ext (tree_to_double_int (vr
->max
), precision
, unsigned_p
);
7357 if (!double_int_equal_p (tree_to_double_int (vr
->max
), tem
))
7363 /* Simplify a conversion from integral SSA name to float in STMT. */
7366 simplify_float_conversion_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
7368 tree rhs1
= gimple_assign_rhs1 (stmt
);
7369 value_range_t
*vr
= get_value_range (rhs1
);
7370 enum machine_mode fltmode
= TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt
)));
7371 enum machine_mode mode
;
7375 /* We can only handle constant ranges. */
7376 if (vr
->type
!= VR_RANGE
7377 || TREE_CODE (vr
->min
) != INTEGER_CST
7378 || TREE_CODE (vr
->max
) != INTEGER_CST
)
7381 /* First check if we can use a signed type in place of an unsigned. */
7382 if (TYPE_UNSIGNED (TREE_TYPE (rhs1
))
7383 && (can_float_p (fltmode
, TYPE_MODE (TREE_TYPE (rhs1
)), 0)
7384 != CODE_FOR_nothing
)
7385 && range_fits_type_p (vr
, GET_MODE_PRECISION
7386 (TYPE_MODE (TREE_TYPE (rhs1
))), 0))
7387 mode
= TYPE_MODE (TREE_TYPE (rhs1
));
7388 /* If we can do the conversion in the current input mode do nothing. */
7389 else if (can_float_p (fltmode
, TYPE_MODE (TREE_TYPE (rhs1
)),
7390 TYPE_UNSIGNED (TREE_TYPE (rhs1
))))
7392 /* Otherwise search for a mode we can use, starting from the narrowest
7393 integer mode available. */
7396 mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
7399 /* If we cannot do a signed conversion to float from mode
7400 or if the value-range does not fit in the signed type
7401 try with a wider mode. */
7402 if (can_float_p (fltmode
, mode
, 0) != CODE_FOR_nothing
7403 && range_fits_type_p (vr
, GET_MODE_PRECISION (mode
), 0))
7406 mode
= GET_MODE_WIDER_MODE (mode
);
7407 /* But do not widen the input. Instead leave that to the
7408 optabs expansion code. */
7409 if (GET_MODE_PRECISION (mode
) > TYPE_PRECISION (TREE_TYPE (rhs1
)))
7412 while (mode
!= VOIDmode
);
7413 if (mode
== VOIDmode
)
7417 /* It works, insert a truncation or sign-change before the
7418 float conversion. */
7419 tem
= create_tmp_var (build_nonstandard_integer_type
7420 (GET_MODE_PRECISION (mode
), 0), NULL
);
7421 conv
= gimple_build_assign_with_ops (NOP_EXPR
, tem
, rhs1
, NULL_TREE
);
7422 tem
= make_ssa_name (tem
, conv
);
7423 gimple_assign_set_lhs (conv
, tem
);
7424 gsi_insert_before (gsi
, conv
, GSI_SAME_STMT
);
7425 gimple_assign_set_rhs1 (stmt
, tem
);
7431 /* Simplify STMT using ranges if possible. */
7434 simplify_stmt_using_ranges (gimple_stmt_iterator
*gsi
)
7436 gimple stmt
= gsi_stmt (*gsi
);
7437 if (is_gimple_assign (stmt
))
7439 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
7440 tree rhs1
= gimple_assign_rhs1 (stmt
);
7446 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
7447 if the RHS is zero or one, and the LHS are known to be boolean
7449 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
7450 return simplify_truth_ops_using_ranges (gsi
, stmt
);
7453 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
7454 and BIT_AND_EXPR respectively if the first operand is greater
7455 than zero and the second operand is an exact power of two. */
7456 case TRUNC_DIV_EXPR
:
7457 case TRUNC_MOD_EXPR
:
7458 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
7459 && integer_pow2p (gimple_assign_rhs2 (stmt
)))
7460 return simplify_div_or_mod_using_ranges (stmt
);
7463 /* Transform ABS (X) into X or -X as appropriate. */
7465 if (TREE_CODE (rhs1
) == SSA_NAME
7466 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
7467 return simplify_abs_using_ranges (stmt
);
7472 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
7473 if all the bits being cleared are already cleared or
7474 all the bits being set are already set. */
7475 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
7476 return simplify_bit_ops_using_ranges (gsi
, stmt
);
7480 if (TREE_CODE (rhs1
) == SSA_NAME
7481 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
7482 return simplify_conversion_using_ranges (stmt
);
7486 if (TREE_CODE (rhs1
) == SSA_NAME
7487 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
7488 return simplify_float_conversion_using_ranges (gsi
, stmt
);
7495 else if (gimple_code (stmt
) == GIMPLE_COND
)
7496 return simplify_cond_using_ranges (stmt
);
7497 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
7498 return simplify_switch_using_ranges (stmt
);
7503 /* If the statement pointed by SI has a predicate whose value can be
7504 computed using the value range information computed by VRP, compute
7505 its value and return true. Otherwise, return false. */
7508 fold_predicate_in (gimple_stmt_iterator
*si
)
7510 bool assignment_p
= false;
7512 gimple stmt
= gsi_stmt (*si
);
7514 if (is_gimple_assign (stmt
)
7515 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
)) == tcc_comparison
)
7517 assignment_p
= true;
7518 val
= vrp_evaluate_conditional (gimple_assign_rhs_code (stmt
),
7519 gimple_assign_rhs1 (stmt
),
7520 gimple_assign_rhs2 (stmt
),
7523 else if (gimple_code (stmt
) == GIMPLE_COND
)
7524 val
= vrp_evaluate_conditional (gimple_cond_code (stmt
),
7525 gimple_cond_lhs (stmt
),
7526 gimple_cond_rhs (stmt
),
7534 val
= fold_convert (gimple_expr_type (stmt
), val
);
7538 fprintf (dump_file
, "Folding predicate ");
7539 print_gimple_expr (dump_file
, stmt
, 0, 0);
7540 fprintf (dump_file
, " to ");
7541 print_generic_expr (dump_file
, val
, 0);
7542 fprintf (dump_file
, "\n");
7545 if (is_gimple_assign (stmt
))
7546 gimple_assign_set_rhs_from_tree (si
, val
);
7549 gcc_assert (gimple_code (stmt
) == GIMPLE_COND
);
7550 if (integer_zerop (val
))
7551 gimple_cond_make_false (stmt
);
7552 else if (integer_onep (val
))
7553 gimple_cond_make_true (stmt
);
7564 /* Callback for substitute_and_fold folding the stmt at *SI. */
7567 vrp_fold_stmt (gimple_stmt_iterator
*si
)
7569 if (fold_predicate_in (si
))
7572 return simplify_stmt_using_ranges (si
);
7575 /* Stack of dest,src equivalency pairs that need to be restored after
7576 each attempt to thread a block's incoming edge to an outgoing edge.
7578 A NULL entry is used to mark the end of pairs which need to be
7580 static VEC(tree
,heap
) *stack
;
7582 /* A trivial wrapper so that we can present the generic jump threading
7583 code with a simple API for simplifying statements. STMT is the
7584 statement we want to simplify, WITHIN_STMT provides the location
7585 for any overflow warnings. */
7588 simplify_stmt_for_jump_threading (gimple stmt
, gimple within_stmt
)
7590 /* We only use VRP information to simplify conditionals. This is
7591 overly conservative, but it's unclear if doing more would be
7592 worth the compile time cost. */
7593 if (gimple_code (stmt
) != GIMPLE_COND
)
7596 return vrp_evaluate_conditional (gimple_cond_code (stmt
),
7597 gimple_cond_lhs (stmt
),
7598 gimple_cond_rhs (stmt
), within_stmt
);
7601 /* Blocks which have more than one predecessor and more than
7602 one successor present jump threading opportunities, i.e.,
7603 when the block is reached from a specific predecessor, we
7604 may be able to determine which of the outgoing edges will
7605 be traversed. When this optimization applies, we are able
7606 to avoid conditionals at runtime and we may expose secondary
7607 optimization opportunities.
7609 This routine is effectively a driver for the generic jump
7610 threading code. It basically just presents the generic code
7611 with edges that may be suitable for jump threading.
7613 Unlike DOM, we do not iterate VRP if jump threading was successful.
7614 While iterating may expose new opportunities for VRP, it is expected
7615 those opportunities would be very limited and the compile time cost
7616 to expose those opportunities would be significant.
7618 As jump threading opportunities are discovered, they are registered
7619 for later realization. */
7622 identify_jump_threads (void)
7629 /* Ugh. When substituting values earlier in this pass we can
7630 wipe the dominance information. So rebuild the dominator
7631 information as we need it within the jump threading code. */
7632 calculate_dominance_info (CDI_DOMINATORS
);
7634 /* We do not allow VRP information to be used for jump threading
7635 across a back edge in the CFG. Otherwise it becomes too
7636 difficult to avoid eliminating loop exit tests. Of course
7637 EDGE_DFS_BACK is not accurate at this time so we have to
7639 mark_dfs_back_edges ();
7641 /* Do not thread across edges we are about to remove. Just marking
7642 them as EDGE_DFS_BACK will do. */
7643 FOR_EACH_VEC_ELT (edge
, to_remove_edges
, i
, e
)
7644 e
->flags
|= EDGE_DFS_BACK
;
7646 /* Allocate our unwinder stack to unwind any temporary equivalences
7647 that might be recorded. */
7648 stack
= VEC_alloc (tree
, heap
, 20);
7650 /* To avoid lots of silly node creation, we create a single
7651 conditional and just modify it in-place when attempting to
7653 dummy
= gimple_build_cond (EQ_EXPR
,
7654 integer_zero_node
, integer_zero_node
,
7657 /* Walk through all the blocks finding those which present a
7658 potential jump threading opportunity. We could set this up
7659 as a dominator walker and record data during the walk, but
7660 I doubt it's worth the effort for the classes of jump
7661 threading opportunities we are trying to identify at this
7662 point in compilation. */
7667 /* If the generic jump threading code does not find this block
7668 interesting, then there is nothing to do. */
7669 if (! potentially_threadable_block (bb
))
7672 /* We only care about blocks ending in a COND_EXPR. While there
7673 may be some value in handling SWITCH_EXPR here, I doubt it's
7674 terribly important. */
7675 last
= gsi_stmt (gsi_last_bb (bb
));
7677 /* We're basically looking for a switch or any kind of conditional with
7678 integral or pointer type arguments. Note the type of the second
7679 argument will be the same as the first argument, so no need to
7680 check it explicitly. */
7681 if (gimple_code (last
) == GIMPLE_SWITCH
7682 || (gimple_code (last
) == GIMPLE_COND
7683 && TREE_CODE (gimple_cond_lhs (last
)) == SSA_NAME
7684 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
)))
7685 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
))))
7686 && (TREE_CODE (gimple_cond_rhs (last
)) == SSA_NAME
7687 || is_gimple_min_invariant (gimple_cond_rhs (last
)))))
7691 /* We've got a block with multiple predecessors and multiple
7692 successors which also ends in a suitable conditional or
7693 switch statement. For each predecessor, see if we can thread
7694 it to a specific successor. */
7695 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7697 /* Do not thread across back edges or abnormal edges
7699 if (e
->flags
& (EDGE_DFS_BACK
| EDGE_COMPLEX
))
7702 thread_across_edge (dummy
, e
, true, &stack
,
7703 simplify_stmt_for_jump_threading
);
7708 /* We do not actually update the CFG or SSA graphs at this point as
7709 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7710 handle ASSERT_EXPRs gracefully. */
7713 /* We identified all the jump threading opportunities earlier, but could
7714 not transform the CFG at that time. This routine transforms the
7715 CFG and arranges for the dominator tree to be rebuilt if necessary.
7717 Note the SSA graph update will occur during the normal TODO
7718 processing by the pass manager. */
7720 finalize_jump_threads (void)
7722 thread_through_all_blocks (false);
7723 VEC_free (tree
, heap
, stack
);
7727 /* Traverse all the blocks folding conditionals with known ranges. */
7734 values_propagated
= true;
7738 fprintf (dump_file
, "\nValue ranges after VRP:\n\n");
7739 dump_all_value_ranges (dump_file
);
7740 fprintf (dump_file
, "\n");
7743 substitute_and_fold (op_with_constant_singleton_value_range
,
7744 vrp_fold_stmt
, false);
7746 if (warn_array_bounds
)
7747 check_all_array_refs ();
7749 /* We must identify jump threading opportunities before we release
7750 the datastructures built by VRP. */
7751 identify_jump_threads ();
7753 /* Free allocated memory. */
7754 for (i
= 0; i
< num_vr_values
; i
++)
7757 BITMAP_FREE (vr_value
[i
]->equiv
);
7762 free (vr_phi_edge_counts
);
7764 /* So that we can distinguish between VRP data being available
7765 and not available. */
7767 vr_phi_edge_counts
= NULL
;
7771 /* Main entry point to VRP (Value Range Propagation). This pass is
7772 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7773 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7774 Programming Language Design and Implementation, pp. 67-78, 1995.
7775 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7777 This is essentially an SSA-CCP pass modified to deal with ranges
7778 instead of constants.
7780 While propagating ranges, we may find that two or more SSA name
7781 have equivalent, though distinct ranges. For instance,
7784 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7786 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7790 In the code above, pointer p_5 has range [q_2, q_2], but from the
7791 code we can also determine that p_5 cannot be NULL and, if q_2 had
7792 a non-varying range, p_5's range should also be compatible with it.
7794 These equivalences are created by two expressions: ASSERT_EXPR and
7795 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7796 result of another assertion, then we can use the fact that p_5 and
7797 p_4 are equivalent when evaluating p_5's range.
7799 Together with value ranges, we also propagate these equivalences
7800 between names so that we can take advantage of information from
7801 multiple ranges when doing final replacement. Note that this
7802 equivalency relation is transitive but not symmetric.
7804 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7805 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7806 in contexts where that assertion does not hold (e.g., in line 6).
7808 TODO, the main difference between this pass and Patterson's is that
7809 we do not propagate edge probabilities. We only compute whether
7810 edges can be taken or not. That is, instead of having a spectrum
7811 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7812 DON'T KNOW. In the future, it may be worthwhile to propagate
7813 probabilities to aid branch prediction. */
7822 loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS
);
7823 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
7826 insert_range_assertions ();
7828 /* Estimate number of iterations - but do not use undefined behavior
7829 for this. We can't do this lazily as other functions may compute
7830 this using undefined behavior. */
7831 free_numbers_of_iterations_estimates ();
7832 estimate_numbers_of_iterations (false);
7834 to_remove_edges
= VEC_alloc (edge
, heap
, 10);
7835 to_update_switch_stmts
= VEC_alloc (switch_update
, heap
, 5);
7836 threadedge_initialize_values ();
7839 ssa_propagate (vrp_visit_stmt
, vrp_visit_phi_node
);
7842 free_numbers_of_iterations_estimates ();
7844 /* ASSERT_EXPRs must be removed before finalizing jump threads
7845 as finalizing jump threads calls the CFG cleanup code which
7846 does not properly handle ASSERT_EXPRs. */
7847 remove_range_assertions ();
7849 /* If we exposed any new variables, go ahead and put them into
7850 SSA form now, before we handle jump threading. This simplifies
7851 interactions between rewriting of _DECL nodes into SSA form
7852 and rewriting SSA_NAME nodes into SSA form after block
7853 duplication and CFG manipulation. */
7854 update_ssa (TODO_update_ssa
);
7856 finalize_jump_threads ();
7858 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7859 CFG in a broken state and requires a cfg_cleanup run. */
7860 FOR_EACH_VEC_ELT (edge
, to_remove_edges
, i
, e
)
7862 /* Update SWITCH_EXPR case label vector. */
7863 FOR_EACH_VEC_ELT (switch_update
, to_update_switch_stmts
, i
, su
)
7866 size_t n
= TREE_VEC_LENGTH (su
->vec
);
7868 gimple_switch_set_num_labels (su
->stmt
, n
);
7869 for (j
= 0; j
< n
; j
++)
7870 gimple_switch_set_label (su
->stmt
, j
, TREE_VEC_ELT (su
->vec
, j
));
7871 /* As we may have replaced the default label with a regular one
7872 make sure to make it a real default label again. This ensures
7873 optimal expansion. */
7874 label
= gimple_switch_default_label (su
->stmt
);
7875 CASE_LOW (label
) = NULL_TREE
;
7876 CASE_HIGH (label
) = NULL_TREE
;
7879 if (VEC_length (edge
, to_remove_edges
) > 0)
7880 free_dominance_info (CDI_DOMINATORS
);
7882 VEC_free (edge
, heap
, to_remove_edges
);
7883 VEC_free (switch_update
, heap
, to_update_switch_stmts
);
7884 threadedge_finalize_values ();
7887 loop_optimizer_finalize ();
7894 return flag_tree_vrp
!= 0;
7897 struct gimple_opt_pass pass_vrp
=
7902 gate_vrp
, /* gate */
7903 execute_vrp
, /* execute */
7906 0, /* static_pass_number */
7907 TV_TREE_VRP
, /* tv_id */
7908 PROP_ssa
, /* properties_required */
7909 0, /* properties_provided */
7910 0, /* properties_destroyed */
7911 0, /* todo_flags_start */
7916 | TODO_ggc_collect
/* todo_flags_finish */