make __stl_prime_list in comdat
[official-gcc.git] / gcc / tree-vect-loop.c
bloba209b4bb14db2433f0e84e9591cc56f66d8bfa03
1 /* Loop Vectorization
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
5 Ira Rosen <irar@il.ibm.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-pretty-print.h"
31 #include "gimple-pretty-print.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "cfgloop.h"
35 #include "cfglayout.h"
36 #include "expr.h"
37 #include "recog.h"
38 #include "optabs.h"
39 #include "params.h"
40 #include "diagnostic-core.h"
41 #include "tree-chrec.h"
42 #include "tree-scalar-evolution.h"
43 #include "tree-vectorizer.h"
44 #include "target.h"
46 /* Loop Vectorization Pass.
48 This pass tries to vectorize loops.
50 For example, the vectorizer transforms the following simple loop:
52 short a[N]; short b[N]; short c[N]; int i;
54 for (i=0; i<N; i++){
55 a[i] = b[i] + c[i];
58 as if it was manually vectorized by rewriting the source code into:
60 typedef int __attribute__((mode(V8HI))) v8hi;
61 short a[N]; short b[N]; short c[N]; int i;
62 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
63 v8hi va, vb, vc;
65 for (i=0; i<N/8; i++){
66 vb = pb[i];
67 vc = pc[i];
68 va = vb + vc;
69 pa[i] = va;
72 The main entry to this pass is vectorize_loops(), in which
73 the vectorizer applies a set of analyses on a given set of loops,
74 followed by the actual vectorization transformation for the loops that
75 had successfully passed the analysis phase.
76 Throughout this pass we make a distinction between two types of
77 data: scalars (which are represented by SSA_NAMES), and memory references
78 ("data-refs"). These two types of data require different handling both
79 during analysis and transformation. The types of data-refs that the
80 vectorizer currently supports are ARRAY_REFS which base is an array DECL
81 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
82 accesses are required to have a simple (consecutive) access pattern.
84 Analysis phase:
85 ===============
86 The driver for the analysis phase is vect_analyze_loop().
87 It applies a set of analyses, some of which rely on the scalar evolution
88 analyzer (scev) developed by Sebastian Pop.
90 During the analysis phase the vectorizer records some information
91 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
92 loop, as well as general information about the loop as a whole, which is
93 recorded in a "loop_vec_info" struct attached to each loop.
95 Transformation phase:
96 =====================
97 The loop transformation phase scans all the stmts in the loop, and
98 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
99 the loop that needs to be vectorized. It inserts the vector code sequence
100 just before the scalar stmt S, and records a pointer to the vector code
101 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
102 attached to S). This pointer will be used for the vectorization of following
103 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
104 otherwise, we rely on dead code elimination for removing it.
106 For example, say stmt S1 was vectorized into stmt VS1:
108 VS1: vb = px[i];
109 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
110 S2: a = b;
112 To vectorize stmt S2, the vectorizer first finds the stmt that defines
113 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
114 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
115 resulting sequence would be:
117 VS1: vb = px[i];
118 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
119 VS2: va = vb;
120 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
122 Operands that are not SSA_NAMEs, are data-refs that appear in
123 load/store operations (like 'x[i]' in S1), and are handled differently.
125 Target modeling:
126 =================
127 Currently the only target specific information that is used is the
128 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
129 Targets that can support different sizes of vectors, for now will need
130 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
131 flexibility will be added in the future.
133 Since we only vectorize operations which vector form can be
134 expressed using existing tree codes, to verify that an operation is
135 supported, the vectorizer checks the relevant optab at the relevant
136 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
137 the value found is CODE_FOR_nothing, then there's no target support, and
138 we can't vectorize the stmt.
140 For additional information on this project see:
141 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
144 /* Function vect_determine_vectorization_factor
146 Determine the vectorization factor (VF). VF is the number of data elements
147 that are operated upon in parallel in a single iteration of the vectorized
148 loop. For example, when vectorizing a loop that operates on 4byte elements,
149 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
150 elements can fit in a single vector register.
152 We currently support vectorization of loops in which all types operated upon
153 are of the same size. Therefore this function currently sets VF according to
154 the size of the types operated upon, and fails if there are multiple sizes
155 in the loop.
157 VF is also the factor by which the loop iterations are strip-mined, e.g.:
158 original loop:
159 for (i=0; i<N; i++){
160 a[i] = b[i] + c[i];
163 vectorized loop:
164 for (i=0; i<N; i+=VF){
165 a[i:VF] = b[i:VF] + c[i:VF];
169 static bool
170 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
172 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
173 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
174 int nbbs = loop->num_nodes;
175 gimple_stmt_iterator si;
176 unsigned int vectorization_factor = 0;
177 tree scalar_type;
178 gimple phi;
179 tree vectype;
180 unsigned int nunits;
181 stmt_vec_info stmt_info;
182 int i;
183 HOST_WIDE_INT dummy;
184 gimple stmt, pattern_stmt = NULL, pattern_def_stmt = NULL;
185 bool analyze_pattern_stmt = false, pattern_def = false;
187 if (vect_print_dump_info (REPORT_DETAILS))
188 fprintf (vect_dump, "=== vect_determine_vectorization_factor ===");
190 for (i = 0; i < nbbs; i++)
192 basic_block bb = bbs[i];
194 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
196 phi = gsi_stmt (si);
197 stmt_info = vinfo_for_stmt (phi);
198 if (vect_print_dump_info (REPORT_DETAILS))
200 fprintf (vect_dump, "==> examining phi: ");
201 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
204 gcc_assert (stmt_info);
206 if (STMT_VINFO_RELEVANT_P (stmt_info))
208 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
209 scalar_type = TREE_TYPE (PHI_RESULT (phi));
211 if (vect_print_dump_info (REPORT_DETAILS))
213 fprintf (vect_dump, "get vectype for scalar type: ");
214 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
217 vectype = get_vectype_for_scalar_type (scalar_type);
218 if (!vectype)
220 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
222 fprintf (vect_dump,
223 "not vectorized: unsupported data-type ");
224 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
226 return false;
228 STMT_VINFO_VECTYPE (stmt_info) = vectype;
230 if (vect_print_dump_info (REPORT_DETAILS))
232 fprintf (vect_dump, "vectype: ");
233 print_generic_expr (vect_dump, vectype, TDF_SLIM);
236 nunits = TYPE_VECTOR_SUBPARTS (vectype);
237 if (vect_print_dump_info (REPORT_DETAILS))
238 fprintf (vect_dump, "nunits = %d", nunits);
240 if (!vectorization_factor
241 || (nunits > vectorization_factor))
242 vectorization_factor = nunits;
246 for (si = gsi_start_bb (bb); !gsi_end_p (si) || analyze_pattern_stmt;)
248 tree vf_vectype;
250 if (analyze_pattern_stmt)
252 stmt = pattern_stmt;
253 analyze_pattern_stmt = false;
255 else
256 stmt = gsi_stmt (si);
258 stmt_info = vinfo_for_stmt (stmt);
260 if (vect_print_dump_info (REPORT_DETAILS))
262 fprintf (vect_dump, "==> examining statement: ");
263 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
266 gcc_assert (stmt_info);
268 /* Skip stmts which do not need to be vectorized. */
269 if (!STMT_VINFO_RELEVANT_P (stmt_info)
270 && !STMT_VINFO_LIVE_P (stmt_info))
272 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
273 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
274 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
275 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
277 stmt = pattern_stmt;
278 stmt_info = vinfo_for_stmt (pattern_stmt);
279 if (vect_print_dump_info (REPORT_DETAILS))
281 fprintf (vect_dump, "==> examining pattern statement: ");
282 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
285 else
287 if (vect_print_dump_info (REPORT_DETAILS))
288 fprintf (vect_dump, "skip.");
289 gsi_next (&si);
290 continue;
293 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
294 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
295 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
296 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
297 analyze_pattern_stmt = true;
299 /* If a pattern statement has a def stmt, analyze it too. */
300 if (is_pattern_stmt_p (stmt_info)
301 && (pattern_def_stmt = STMT_VINFO_PATTERN_DEF_STMT (stmt_info))
302 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_def_stmt))
303 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_def_stmt))))
305 if (pattern_def)
306 pattern_def = false;
307 else
309 if (vect_print_dump_info (REPORT_DETAILS))
311 fprintf (vect_dump, "==> examining pattern def stmt: ");
312 print_gimple_stmt (vect_dump, pattern_def_stmt, 0,
313 TDF_SLIM);
316 pattern_def = true;
317 stmt = pattern_def_stmt;
318 stmt_info = vinfo_for_stmt (stmt);
322 if (gimple_get_lhs (stmt) == NULL_TREE)
324 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
326 fprintf (vect_dump, "not vectorized: irregular stmt.");
327 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
329 return false;
332 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
334 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
336 fprintf (vect_dump, "not vectorized: vector stmt in loop:");
337 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
339 return false;
342 if (STMT_VINFO_VECTYPE (stmt_info))
344 /* The only case when a vectype had been already set is for stmts
345 that contain a dataref, or for "pattern-stmts" (stmts generated
346 by the vectorizer to represent/replace a certain idiom). */
347 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
348 || is_pattern_stmt_p (stmt_info));
349 vectype = STMT_VINFO_VECTYPE (stmt_info);
351 else
353 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
354 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
355 if (vect_print_dump_info (REPORT_DETAILS))
357 fprintf (vect_dump, "get vectype for scalar type: ");
358 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
360 vectype = get_vectype_for_scalar_type (scalar_type);
361 if (!vectype)
363 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
365 fprintf (vect_dump,
366 "not vectorized: unsupported data-type ");
367 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
369 return false;
372 STMT_VINFO_VECTYPE (stmt_info) = vectype;
375 /* The vectorization factor is according to the smallest
376 scalar type (or the largest vector size, but we only
377 support one vector size per loop). */
378 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
379 &dummy);
380 if (vect_print_dump_info (REPORT_DETAILS))
382 fprintf (vect_dump, "get vectype for scalar type: ");
383 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
385 vf_vectype = get_vectype_for_scalar_type (scalar_type);
386 if (!vf_vectype)
388 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
390 fprintf (vect_dump,
391 "not vectorized: unsupported data-type ");
392 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
394 return false;
397 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
398 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
400 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
402 fprintf (vect_dump,
403 "not vectorized: different sized vector "
404 "types in statement, ");
405 print_generic_expr (vect_dump, vectype, TDF_SLIM);
406 fprintf (vect_dump, " and ");
407 print_generic_expr (vect_dump, vf_vectype, TDF_SLIM);
409 return false;
412 if (vect_print_dump_info (REPORT_DETAILS))
414 fprintf (vect_dump, "vectype: ");
415 print_generic_expr (vect_dump, vf_vectype, TDF_SLIM);
418 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
419 if (vect_print_dump_info (REPORT_DETAILS))
420 fprintf (vect_dump, "nunits = %d", nunits);
422 if (!vectorization_factor
423 || (nunits > vectorization_factor))
424 vectorization_factor = nunits;
426 if (!analyze_pattern_stmt && !pattern_def)
427 gsi_next (&si);
431 /* TODO: Analyze cost. Decide if worth while to vectorize. */
432 if (vect_print_dump_info (REPORT_DETAILS))
433 fprintf (vect_dump, "vectorization factor = %d", vectorization_factor);
434 if (vectorization_factor <= 1)
436 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
437 fprintf (vect_dump, "not vectorized: unsupported data-type");
438 return false;
440 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
442 return true;
446 /* Function vect_is_simple_iv_evolution.
448 FORNOW: A simple evolution of an induction variables in the loop is
449 considered a polynomial evolution with constant step. */
451 static bool
452 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
453 tree * step)
455 tree init_expr;
456 tree step_expr;
457 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
459 /* When there is no evolution in this loop, the evolution function
460 is not "simple". */
461 if (evolution_part == NULL_TREE)
462 return false;
464 /* When the evolution is a polynomial of degree >= 2
465 the evolution function is not "simple". */
466 if (tree_is_chrec (evolution_part))
467 return false;
469 step_expr = evolution_part;
470 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
472 if (vect_print_dump_info (REPORT_DETAILS))
474 fprintf (vect_dump, "step: ");
475 print_generic_expr (vect_dump, step_expr, TDF_SLIM);
476 fprintf (vect_dump, ", init: ");
477 print_generic_expr (vect_dump, init_expr, TDF_SLIM);
480 *init = init_expr;
481 *step = step_expr;
483 if (TREE_CODE (step_expr) != INTEGER_CST)
485 if (vect_print_dump_info (REPORT_DETAILS))
486 fprintf (vect_dump, "step unknown.");
487 return false;
490 return true;
493 /* Function vect_analyze_scalar_cycles_1.
495 Examine the cross iteration def-use cycles of scalar variables
496 in LOOP. LOOP_VINFO represents the loop that is now being
497 considered for vectorization (can be LOOP, or an outer-loop
498 enclosing LOOP). */
500 static void
501 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
503 basic_block bb = loop->header;
504 tree dumy;
505 VEC(gimple,heap) *worklist = VEC_alloc (gimple, heap, 64);
506 gimple_stmt_iterator gsi;
507 bool double_reduc;
509 if (vect_print_dump_info (REPORT_DETAILS))
510 fprintf (vect_dump, "=== vect_analyze_scalar_cycles ===");
512 /* First - identify all inductions. Reduction detection assumes that all the
513 inductions have been identified, therefore, this order must not be
514 changed. */
515 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
517 gimple phi = gsi_stmt (gsi);
518 tree access_fn = NULL;
519 tree def = PHI_RESULT (phi);
520 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
522 if (vect_print_dump_info (REPORT_DETAILS))
524 fprintf (vect_dump, "Analyze phi: ");
525 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
528 /* Skip virtual phi's. The data dependences that are associated with
529 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
530 if (!is_gimple_reg (SSA_NAME_VAR (def)))
531 continue;
533 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
535 /* Analyze the evolution function. */
536 access_fn = analyze_scalar_evolution (loop, def);
537 if (access_fn)
538 STRIP_NOPS (access_fn);
539 if (access_fn && vect_print_dump_info (REPORT_DETAILS))
541 fprintf (vect_dump, "Access function of PHI: ");
542 print_generic_expr (vect_dump, access_fn, TDF_SLIM);
545 if (!access_fn
546 || !vect_is_simple_iv_evolution (loop->num, access_fn, &dumy, &dumy))
548 VEC_safe_push (gimple, heap, worklist, phi);
549 continue;
552 if (vect_print_dump_info (REPORT_DETAILS))
553 fprintf (vect_dump, "Detected induction.");
554 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
558 /* Second - identify all reductions and nested cycles. */
559 while (VEC_length (gimple, worklist) > 0)
561 gimple phi = VEC_pop (gimple, worklist);
562 tree def = PHI_RESULT (phi);
563 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
564 gimple reduc_stmt;
565 bool nested_cycle;
567 if (vect_print_dump_info (REPORT_DETAILS))
569 fprintf (vect_dump, "Analyze phi: ");
570 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
573 gcc_assert (is_gimple_reg (SSA_NAME_VAR (def)));
574 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
576 nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
577 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
578 &double_reduc);
579 if (reduc_stmt)
581 if (double_reduc)
583 if (vect_print_dump_info (REPORT_DETAILS))
584 fprintf (vect_dump, "Detected double reduction.");
586 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
587 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
588 vect_double_reduction_def;
590 else
592 if (nested_cycle)
594 if (vect_print_dump_info (REPORT_DETAILS))
595 fprintf (vect_dump, "Detected vectorizable nested cycle.");
597 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
598 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
599 vect_nested_cycle;
601 else
603 if (vect_print_dump_info (REPORT_DETAILS))
604 fprintf (vect_dump, "Detected reduction.");
606 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
607 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
608 vect_reduction_def;
609 /* Store the reduction cycles for possible vectorization in
610 loop-aware SLP. */
611 VEC_safe_push (gimple, heap,
612 LOOP_VINFO_REDUCTIONS (loop_vinfo),
613 reduc_stmt);
617 else
618 if (vect_print_dump_info (REPORT_DETAILS))
619 fprintf (vect_dump, "Unknown def-use cycle pattern.");
622 VEC_free (gimple, heap, worklist);
626 /* Function vect_analyze_scalar_cycles.
628 Examine the cross iteration def-use cycles of scalar variables, by
629 analyzing the loop-header PHIs of scalar variables. Classify each
630 cycle as one of the following: invariant, induction, reduction, unknown.
631 We do that for the loop represented by LOOP_VINFO, and also to its
632 inner-loop, if exists.
633 Examples for scalar cycles:
635 Example1: reduction:
637 loop1:
638 for (i=0; i<N; i++)
639 sum += a[i];
641 Example2: induction:
643 loop2:
644 for (i=0; i<N; i++)
645 a[i] = i; */
647 static void
648 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
650 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
652 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
654 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
655 Reductions in such inner-loop therefore have different properties than
656 the reductions in the nest that gets vectorized:
657 1. When vectorized, they are executed in the same order as in the original
658 scalar loop, so we can't change the order of computation when
659 vectorizing them.
660 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
661 current checks are too strict. */
663 if (loop->inner)
664 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
667 /* Function vect_get_loop_niters.
669 Determine how many iterations the loop is executed.
670 If an expression that represents the number of iterations
671 can be constructed, place it in NUMBER_OF_ITERATIONS.
672 Return the loop exit condition. */
674 static gimple
675 vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
677 tree niters;
679 if (vect_print_dump_info (REPORT_DETAILS))
680 fprintf (vect_dump, "=== get_loop_niters ===");
682 niters = number_of_exit_cond_executions (loop);
684 if (niters != NULL_TREE
685 && niters != chrec_dont_know)
687 *number_of_iterations = niters;
689 if (vect_print_dump_info (REPORT_DETAILS))
691 fprintf (vect_dump, "==> get_loop_niters:" );
692 print_generic_expr (vect_dump, *number_of_iterations, TDF_SLIM);
696 return get_loop_exit_condition (loop);
700 /* Function bb_in_loop_p
702 Used as predicate for dfs order traversal of the loop bbs. */
704 static bool
705 bb_in_loop_p (const_basic_block bb, const void *data)
707 const struct loop *const loop = (const struct loop *)data;
708 if (flow_bb_inside_loop_p (loop, bb))
709 return true;
710 return false;
714 /* Function new_loop_vec_info.
716 Create and initialize a new loop_vec_info struct for LOOP, as well as
717 stmt_vec_info structs for all the stmts in LOOP. */
719 static loop_vec_info
720 new_loop_vec_info (struct loop *loop)
722 loop_vec_info res;
723 basic_block *bbs;
724 gimple_stmt_iterator si;
725 unsigned int i, nbbs;
727 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
728 LOOP_VINFO_LOOP (res) = loop;
730 bbs = get_loop_body (loop);
732 /* Create/Update stmt_info for all stmts in the loop. */
733 for (i = 0; i < loop->num_nodes; i++)
735 basic_block bb = bbs[i];
737 /* BBs in a nested inner-loop will have been already processed (because
738 we will have called vect_analyze_loop_form for any nested inner-loop).
739 Therefore, for stmts in an inner-loop we just want to update the
740 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
741 loop_info of the outer-loop we are currently considering to vectorize
742 (instead of the loop_info of the inner-loop).
743 For stmts in other BBs we need to create a stmt_info from scratch. */
744 if (bb->loop_father != loop)
746 /* Inner-loop bb. */
747 gcc_assert (loop->inner && bb->loop_father == loop->inner);
748 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
750 gimple phi = gsi_stmt (si);
751 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
752 loop_vec_info inner_loop_vinfo =
753 STMT_VINFO_LOOP_VINFO (stmt_info);
754 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
755 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
757 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
759 gimple stmt = gsi_stmt (si);
760 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
761 loop_vec_info inner_loop_vinfo =
762 STMT_VINFO_LOOP_VINFO (stmt_info);
763 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
764 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
767 else
769 /* bb in current nest. */
770 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
772 gimple phi = gsi_stmt (si);
773 gimple_set_uid (phi, 0);
774 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
777 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
779 gimple stmt = gsi_stmt (si);
780 gimple_set_uid (stmt, 0);
781 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
786 /* CHECKME: We want to visit all BBs before their successors (except for
787 latch blocks, for which this assertion wouldn't hold). In the simple
788 case of the loop forms we allow, a dfs order of the BBs would the same
789 as reversed postorder traversal, so we are safe. */
791 free (bbs);
792 bbs = XCNEWVEC (basic_block, loop->num_nodes);
793 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
794 bbs, loop->num_nodes, loop);
795 gcc_assert (nbbs == loop->num_nodes);
797 LOOP_VINFO_BBS (res) = bbs;
798 LOOP_VINFO_NITERS (res) = NULL;
799 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
800 LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
801 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
802 LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
803 LOOP_VINFO_VECT_FACTOR (res) = 0;
804 LOOP_VINFO_LOOP_NEST (res) = VEC_alloc (loop_p, heap, 3);
805 LOOP_VINFO_DATAREFS (res) = VEC_alloc (data_reference_p, heap, 10);
806 LOOP_VINFO_DDRS (res) = VEC_alloc (ddr_p, heap, 10 * 10);
807 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
808 LOOP_VINFO_MAY_MISALIGN_STMTS (res) =
809 VEC_alloc (gimple, heap,
810 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
811 LOOP_VINFO_MAY_ALIAS_DDRS (res) =
812 VEC_alloc (ddr_p, heap,
813 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
814 LOOP_VINFO_STRIDED_STORES (res) = VEC_alloc (gimple, heap, 10);
815 LOOP_VINFO_REDUCTIONS (res) = VEC_alloc (gimple, heap, 10);
816 LOOP_VINFO_REDUCTION_CHAINS (res) = VEC_alloc (gimple, heap, 10);
817 LOOP_VINFO_SLP_INSTANCES (res) = VEC_alloc (slp_instance, heap, 10);
818 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
819 LOOP_VINFO_PEELING_HTAB (res) = NULL;
820 LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
822 return res;
826 /* Function destroy_loop_vec_info.
828 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
829 stmts in the loop. */
831 void
832 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
834 struct loop *loop;
835 basic_block *bbs;
836 int nbbs;
837 gimple_stmt_iterator si;
838 int j;
839 VEC (slp_instance, heap) *slp_instances;
840 slp_instance instance;
842 if (!loop_vinfo)
843 return;
845 loop = LOOP_VINFO_LOOP (loop_vinfo);
847 bbs = LOOP_VINFO_BBS (loop_vinfo);
848 nbbs = loop->num_nodes;
850 if (!clean_stmts)
852 free (LOOP_VINFO_BBS (loop_vinfo));
853 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
854 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
855 VEC_free (loop_p, heap, LOOP_VINFO_LOOP_NEST (loop_vinfo));
856 VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
857 VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
859 free (loop_vinfo);
860 loop->aux = NULL;
861 return;
864 for (j = 0; j < nbbs; j++)
866 basic_block bb = bbs[j];
867 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
868 free_stmt_vec_info (gsi_stmt (si));
870 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
872 gimple stmt = gsi_stmt (si);
873 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
875 if (stmt_info)
877 /* Check if this statement has a related "pattern stmt"
878 (introduced by the vectorizer during the pattern recognition
879 pass). Free pattern's stmt_vec_info. */
880 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
881 && vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info)))
882 free_stmt_vec_info (STMT_VINFO_RELATED_STMT (stmt_info));
884 /* Free stmt_vec_info. */
885 free_stmt_vec_info (stmt);
888 gsi_next (&si);
892 free (LOOP_VINFO_BBS (loop_vinfo));
893 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
894 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
895 VEC_free (loop_p, heap, LOOP_VINFO_LOOP_NEST (loop_vinfo));
896 VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
897 VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
898 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
899 FOR_EACH_VEC_ELT (slp_instance, slp_instances, j, instance)
900 vect_free_slp_instance (instance);
902 VEC_free (slp_instance, heap, LOOP_VINFO_SLP_INSTANCES (loop_vinfo));
903 VEC_free (gimple, heap, LOOP_VINFO_STRIDED_STORES (loop_vinfo));
904 VEC_free (gimple, heap, LOOP_VINFO_REDUCTIONS (loop_vinfo));
905 VEC_free (gimple, heap, LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo));
907 if (LOOP_VINFO_PEELING_HTAB (loop_vinfo))
908 htab_delete (LOOP_VINFO_PEELING_HTAB (loop_vinfo));
910 free (loop_vinfo);
911 loop->aux = NULL;
915 /* Function vect_analyze_loop_1.
917 Apply a set of analyses on LOOP, and create a loop_vec_info struct
918 for it. The different analyses will record information in the
919 loop_vec_info struct. This is a subset of the analyses applied in
920 vect_analyze_loop, to be applied on an inner-loop nested in the loop
921 that is now considered for (outer-loop) vectorization. */
923 static loop_vec_info
924 vect_analyze_loop_1 (struct loop *loop)
926 loop_vec_info loop_vinfo;
928 if (vect_print_dump_info (REPORT_DETAILS))
929 fprintf (vect_dump, "===== analyze_loop_nest_1 =====");
931 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
933 loop_vinfo = vect_analyze_loop_form (loop);
934 if (!loop_vinfo)
936 if (vect_print_dump_info (REPORT_DETAILS))
937 fprintf (vect_dump, "bad inner-loop form.");
938 return NULL;
941 return loop_vinfo;
945 /* Function vect_analyze_loop_form.
947 Verify that certain CFG restrictions hold, including:
948 - the loop has a pre-header
949 - the loop has a single entry and exit
950 - the loop exit condition is simple enough, and the number of iterations
951 can be analyzed (a countable loop). */
953 loop_vec_info
954 vect_analyze_loop_form (struct loop *loop)
956 loop_vec_info loop_vinfo;
957 gimple loop_cond;
958 tree number_of_iterations = NULL;
959 loop_vec_info inner_loop_vinfo = NULL;
961 if (vect_print_dump_info (REPORT_DETAILS))
962 fprintf (vect_dump, "=== vect_analyze_loop_form ===");
964 /* Different restrictions apply when we are considering an inner-most loop,
965 vs. an outer (nested) loop.
966 (FORNOW. May want to relax some of these restrictions in the future). */
968 if (!loop->inner)
970 /* Inner-most loop. We currently require that the number of BBs is
971 exactly 2 (the header and latch). Vectorizable inner-most loops
972 look like this:
974 (pre-header)
976 header <--------+
977 | | |
978 | +--> latch --+
980 (exit-bb) */
982 if (loop->num_nodes != 2)
984 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
985 fprintf (vect_dump, "not vectorized: control flow in loop.");
986 return NULL;
989 if (empty_block_p (loop->header))
991 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
992 fprintf (vect_dump, "not vectorized: empty loop.");
993 return NULL;
996 else
998 struct loop *innerloop = loop->inner;
999 edge entryedge;
1001 /* Nested loop. We currently require that the loop is doubly-nested,
1002 contains a single inner loop, and the number of BBs is exactly 5.
1003 Vectorizable outer-loops look like this:
1005 (pre-header)
1007 header <---+
1009 inner-loop |
1011 tail ------+
1013 (exit-bb)
1015 The inner-loop has the properties expected of inner-most loops
1016 as described above. */
1018 if ((loop->inner)->inner || (loop->inner)->next)
1020 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1021 fprintf (vect_dump, "not vectorized: multiple nested loops.");
1022 return NULL;
1025 /* Analyze the inner-loop. */
1026 inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
1027 if (!inner_loop_vinfo)
1029 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1030 fprintf (vect_dump, "not vectorized: Bad inner loop.");
1031 return NULL;
1034 if (!expr_invariant_in_loop_p (loop,
1035 LOOP_VINFO_NITERS (inner_loop_vinfo)))
1037 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1038 fprintf (vect_dump,
1039 "not vectorized: inner-loop count not invariant.");
1040 destroy_loop_vec_info (inner_loop_vinfo, true);
1041 return NULL;
1044 if (loop->num_nodes != 5)
1046 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1047 fprintf (vect_dump, "not vectorized: control flow in loop.");
1048 destroy_loop_vec_info (inner_loop_vinfo, true);
1049 return NULL;
1052 gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
1053 entryedge = EDGE_PRED (innerloop->header, 0);
1054 if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
1055 entryedge = EDGE_PRED (innerloop->header, 1);
1057 if (entryedge->src != loop->header
1058 || !single_exit (innerloop)
1059 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1061 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1062 fprintf (vect_dump, "not vectorized: unsupported outerloop form.");
1063 destroy_loop_vec_info (inner_loop_vinfo, true);
1064 return NULL;
1067 if (vect_print_dump_info (REPORT_DETAILS))
1068 fprintf (vect_dump, "Considering outer-loop vectorization.");
1071 if (!single_exit (loop)
1072 || EDGE_COUNT (loop->header->preds) != 2)
1074 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1076 if (!single_exit (loop))
1077 fprintf (vect_dump, "not vectorized: multiple exits.");
1078 else if (EDGE_COUNT (loop->header->preds) != 2)
1079 fprintf (vect_dump, "not vectorized: too many incoming edges.");
1081 if (inner_loop_vinfo)
1082 destroy_loop_vec_info (inner_loop_vinfo, true);
1083 return NULL;
1086 /* We assume that the loop exit condition is at the end of the loop. i.e,
1087 that the loop is represented as a do-while (with a proper if-guard
1088 before the loop if needed), where the loop header contains all the
1089 executable statements, and the latch is empty. */
1090 if (!empty_block_p (loop->latch)
1091 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1093 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1094 fprintf (vect_dump, "not vectorized: unexpected loop form.");
1095 if (inner_loop_vinfo)
1096 destroy_loop_vec_info (inner_loop_vinfo, true);
1097 return NULL;
1100 /* Make sure there exists a single-predecessor exit bb: */
1101 if (!single_pred_p (single_exit (loop)->dest))
1103 edge e = single_exit (loop);
1104 if (!(e->flags & EDGE_ABNORMAL))
1106 split_loop_exit_edge (e);
1107 if (vect_print_dump_info (REPORT_DETAILS))
1108 fprintf (vect_dump, "split exit edge.");
1110 else
1112 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1113 fprintf (vect_dump, "not vectorized: abnormal loop exit edge.");
1114 if (inner_loop_vinfo)
1115 destroy_loop_vec_info (inner_loop_vinfo, true);
1116 return NULL;
1120 loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
1121 if (!loop_cond)
1123 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1124 fprintf (vect_dump, "not vectorized: complicated exit condition.");
1125 if (inner_loop_vinfo)
1126 destroy_loop_vec_info (inner_loop_vinfo, true);
1127 return NULL;
1130 if (!number_of_iterations)
1132 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1133 fprintf (vect_dump,
1134 "not vectorized: number of iterations cannot be computed.");
1135 if (inner_loop_vinfo)
1136 destroy_loop_vec_info (inner_loop_vinfo, true);
1137 return NULL;
1140 if (chrec_contains_undetermined (number_of_iterations))
1142 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1143 fprintf (vect_dump, "Infinite number of iterations.");
1144 if (inner_loop_vinfo)
1145 destroy_loop_vec_info (inner_loop_vinfo, true);
1146 return NULL;
1149 if (!NITERS_KNOWN_P (number_of_iterations))
1151 if (vect_print_dump_info (REPORT_DETAILS))
1153 fprintf (vect_dump, "Symbolic number of iterations is ");
1154 print_generic_expr (vect_dump, number_of_iterations, TDF_DETAILS);
1157 else if (TREE_INT_CST_LOW (number_of_iterations) == 0)
1159 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1160 fprintf (vect_dump, "not vectorized: number of iterations = 0.");
1161 if (inner_loop_vinfo)
1162 destroy_loop_vec_info (inner_loop_vinfo, false);
1163 return NULL;
1166 loop_vinfo = new_loop_vec_info (loop);
1167 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1168 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1170 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1172 /* CHECKME: May want to keep it around it in the future. */
1173 if (inner_loop_vinfo)
1174 destroy_loop_vec_info (inner_loop_vinfo, false);
1176 gcc_assert (!loop->aux);
1177 loop->aux = loop_vinfo;
1178 return loop_vinfo;
1182 /* Get cost by calling cost target builtin. */
1184 static inline int
1185 vect_get_cost (enum vect_cost_for_stmt type_of_cost)
1187 tree dummy_type = NULL;
1188 int dummy = 0;
1190 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1191 dummy_type, dummy);
1195 /* Function vect_analyze_loop_operations.
1197 Scan the loop stmts and make sure they are all vectorizable. */
1199 static bool
1200 vect_analyze_loop_operations (loop_vec_info loop_vinfo, bool slp)
1202 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1203 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1204 int nbbs = loop->num_nodes;
1205 gimple_stmt_iterator si;
1206 unsigned int vectorization_factor = 0;
1207 int i;
1208 gimple phi;
1209 stmt_vec_info stmt_info;
1210 bool need_to_vectorize = false;
1211 int min_profitable_iters;
1212 int min_scalar_loop_bound;
1213 unsigned int th;
1214 bool only_slp_in_loop = true, ok;
1216 if (vect_print_dump_info (REPORT_DETAILS))
1217 fprintf (vect_dump, "=== vect_analyze_loop_operations ===");
1219 gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1220 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1221 if (slp)
1223 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1224 vectorization factor of the loop is the unrolling factor required by
1225 the SLP instances. If that unrolling factor is 1, we say, that we
1226 perform pure SLP on loop - cross iteration parallelism is not
1227 exploited. */
1228 for (i = 0; i < nbbs; i++)
1230 basic_block bb = bbs[i];
1231 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1233 gimple stmt = gsi_stmt (si);
1234 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1235 gcc_assert (stmt_info);
1236 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1237 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1238 && !PURE_SLP_STMT (stmt_info))
1239 /* STMT needs both SLP and loop-based vectorization. */
1240 only_slp_in_loop = false;
1244 if (only_slp_in_loop)
1245 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1246 else
1247 vectorization_factor = least_common_multiple (vectorization_factor,
1248 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1250 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1251 if (vect_print_dump_info (REPORT_DETAILS))
1252 fprintf (vect_dump, "Updating vectorization factor to %d ",
1253 vectorization_factor);
1256 for (i = 0; i < nbbs; i++)
1258 basic_block bb = bbs[i];
1260 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1262 phi = gsi_stmt (si);
1263 ok = true;
1265 stmt_info = vinfo_for_stmt (phi);
1266 if (vect_print_dump_info (REPORT_DETAILS))
1268 fprintf (vect_dump, "examining phi: ");
1269 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1272 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1273 (i.e., a phi in the tail of the outer-loop). */
1274 if (! is_loop_header_bb_p (bb))
1276 /* FORNOW: we currently don't support the case that these phis
1277 are not used in the outerloop (unless it is double reduction,
1278 i.e., this phi is vect_reduction_def), cause this case
1279 requires to actually do something here. */
1280 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
1281 || STMT_VINFO_LIVE_P (stmt_info))
1282 && STMT_VINFO_DEF_TYPE (stmt_info)
1283 != vect_double_reduction_def)
1285 if (vect_print_dump_info (REPORT_DETAILS))
1286 fprintf (vect_dump,
1287 "Unsupported loop-closed phi in outer-loop.");
1288 return false;
1291 /* If PHI is used in the outer loop, we check that its operand
1292 is defined in the inner loop. */
1293 if (STMT_VINFO_RELEVANT_P (stmt_info))
1295 tree phi_op;
1296 gimple op_def_stmt;
1298 if (gimple_phi_num_args (phi) != 1)
1299 return false;
1301 phi_op = PHI_ARG_DEF (phi, 0);
1302 if (TREE_CODE (phi_op) != SSA_NAME)
1303 return false;
1305 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1306 if (!op_def_stmt || !vinfo_for_stmt (op_def_stmt))
1307 return false;
1309 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1310 != vect_used_in_outer
1311 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1312 != vect_used_in_outer_by_reduction)
1313 return false;
1316 continue;
1319 gcc_assert (stmt_info);
1321 if (STMT_VINFO_LIVE_P (stmt_info))
1323 /* FORNOW: not yet supported. */
1324 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1325 fprintf (vect_dump, "not vectorized: value used after loop.");
1326 return false;
1329 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1330 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1332 /* A scalar-dependence cycle that we don't support. */
1333 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1334 fprintf (vect_dump, "not vectorized: scalar dependence cycle.");
1335 return false;
1338 if (STMT_VINFO_RELEVANT_P (stmt_info))
1340 need_to_vectorize = true;
1341 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
1342 ok = vectorizable_induction (phi, NULL, NULL);
1345 if (!ok)
1347 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1349 fprintf (vect_dump,
1350 "not vectorized: relevant phi not supported: ");
1351 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1353 return false;
1357 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1359 gimple stmt = gsi_stmt (si);
1360 if (!vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1361 return false;
1363 } /* bbs */
1365 /* All operations in the loop are either irrelevant (deal with loop
1366 control, or dead), or only used outside the loop and can be moved
1367 out of the loop (e.g. invariants, inductions). The loop can be
1368 optimized away by scalar optimizations. We're better off not
1369 touching this loop. */
1370 if (!need_to_vectorize)
1372 if (vect_print_dump_info (REPORT_DETAILS))
1373 fprintf (vect_dump,
1374 "All the computation can be taken out of the loop.");
1375 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1376 fprintf (vect_dump,
1377 "not vectorized: redundant loop. no profit to vectorize.");
1378 return false;
1381 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1382 && vect_print_dump_info (REPORT_DETAILS))
1383 fprintf (vect_dump,
1384 "vectorization_factor = %d, niters = " HOST_WIDE_INT_PRINT_DEC,
1385 vectorization_factor, LOOP_VINFO_INT_NITERS (loop_vinfo));
1387 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1388 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1390 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1391 fprintf (vect_dump, "not vectorized: iteration count too small.");
1392 if (vect_print_dump_info (REPORT_DETAILS))
1393 fprintf (vect_dump,"not vectorized: iteration count smaller than "
1394 "vectorization factor.");
1395 return false;
1398 /* Analyze cost. Decide if worth while to vectorize. */
1400 /* Once VF is set, SLP costs should be updated since the number of created
1401 vector stmts depends on VF. */
1402 vect_update_slp_costs_according_to_vf (loop_vinfo);
1404 min_profitable_iters = vect_estimate_min_profitable_iters (loop_vinfo);
1405 LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
1407 if (min_profitable_iters < 0)
1409 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1410 fprintf (vect_dump, "not vectorized: vectorization not profitable.");
1411 if (vect_print_dump_info (REPORT_DETAILS))
1412 fprintf (vect_dump, "not vectorized: vector version will never be "
1413 "profitable.");
1414 return false;
1417 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1418 * vectorization_factor) - 1);
1420 /* Use the cost model only if it is more conservative than user specified
1421 threshold. */
1423 th = (unsigned) min_scalar_loop_bound;
1424 if (min_profitable_iters
1425 && (!min_scalar_loop_bound
1426 || min_profitable_iters > min_scalar_loop_bound))
1427 th = (unsigned) min_profitable_iters;
1429 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1430 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
1432 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1433 fprintf (vect_dump, "not vectorized: vectorization not "
1434 "profitable.");
1435 if (vect_print_dump_info (REPORT_DETAILS))
1436 fprintf (vect_dump, "not vectorized: iteration count smaller than "
1437 "user specified loop bound parameter or minimum "
1438 "profitable iterations (whichever is more conservative).");
1439 return false;
1442 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1443 || LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0
1444 || LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
1446 if (vect_print_dump_info (REPORT_DETAILS))
1447 fprintf (vect_dump, "epilog loop required.");
1448 if (!vect_can_advance_ivs_p (loop_vinfo))
1450 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1451 fprintf (vect_dump,
1452 "not vectorized: can't create epilog loop 1.");
1453 return false;
1455 if (!slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1457 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1458 fprintf (vect_dump,
1459 "not vectorized: can't create epilog loop 2.");
1460 return false;
1464 return true;
1468 /* Function vect_analyze_loop_2.
1470 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1471 for it. The different analyses will record information in the
1472 loop_vec_info struct. */
1473 static bool
1474 vect_analyze_loop_2 (loop_vec_info loop_vinfo)
1476 bool ok, slp = false;
1477 int max_vf = MAX_VECTORIZATION_FACTOR;
1478 int min_vf = 2;
1480 /* Find all data references in the loop (which correspond to vdefs/vuses)
1481 and analyze their evolution in the loop. Also adjust the minimal
1482 vectorization factor according to the loads and stores.
1484 FORNOW: Handle only simple, array references, which
1485 alignment can be forced, and aligned pointer-references. */
1487 ok = vect_analyze_data_refs (loop_vinfo, NULL, &min_vf);
1488 if (!ok)
1490 if (vect_print_dump_info (REPORT_DETAILS))
1491 fprintf (vect_dump, "bad data references.");
1492 return false;
1495 /* Classify all cross-iteration scalar data-flow cycles.
1496 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1498 vect_analyze_scalar_cycles (loop_vinfo);
1500 vect_pattern_recog (loop_vinfo);
1502 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1504 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1505 if (!ok)
1507 if (vect_print_dump_info (REPORT_DETAILS))
1508 fprintf (vect_dump, "unexpected pattern.");
1509 return false;
1512 /* Analyze data dependences between the data-refs in the loop
1513 and adjust the maximum vectorization factor according to
1514 the dependences.
1515 FORNOW: fail at the first data dependence that we encounter. */
1517 ok = vect_analyze_data_ref_dependences (loop_vinfo, NULL, &max_vf);
1518 if (!ok
1519 || max_vf < min_vf)
1521 if (vect_print_dump_info (REPORT_DETAILS))
1522 fprintf (vect_dump, "bad data dependence.");
1523 return false;
1526 ok = vect_determine_vectorization_factor (loop_vinfo);
1527 if (!ok)
1529 if (vect_print_dump_info (REPORT_DETAILS))
1530 fprintf (vect_dump, "can't determine vectorization factor.");
1531 return false;
1533 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1535 if (vect_print_dump_info (REPORT_DETAILS))
1536 fprintf (vect_dump, "bad data dependence.");
1537 return false;
1540 /* Analyze the alignment of the data-refs in the loop.
1541 Fail if a data reference is found that cannot be vectorized. */
1543 ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
1544 if (!ok)
1546 if (vect_print_dump_info (REPORT_DETAILS))
1547 fprintf (vect_dump, "bad data alignment.");
1548 return false;
1551 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1552 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1554 ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
1555 if (!ok)
1557 if (vect_print_dump_info (REPORT_DETAILS))
1558 fprintf (vect_dump, "bad data access.");
1559 return false;
1562 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
1563 It is important to call pruning after vect_analyze_data_ref_accesses,
1564 since we use grouping information gathered by interleaving analysis. */
1565 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
1566 if (!ok)
1568 if (vect_print_dump_info (REPORT_DETAILS))
1569 fprintf (vect_dump, "too long list of versioning for alias "
1570 "run-time tests.");
1571 return false;
1574 /* This pass will decide on using loop versioning and/or loop peeling in
1575 order to enhance the alignment of data references in the loop. */
1577 ok = vect_enhance_data_refs_alignment (loop_vinfo);
1578 if (!ok)
1580 if (vect_print_dump_info (REPORT_DETAILS))
1581 fprintf (vect_dump, "bad data alignment.");
1582 return false;
1585 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1586 ok = vect_analyze_slp (loop_vinfo, NULL);
1587 if (ok)
1589 /* Decide which possible SLP instances to SLP. */
1590 slp = vect_make_slp_decision (loop_vinfo);
1592 /* Find stmts that need to be both vectorized and SLPed. */
1593 vect_detect_hybrid_slp (loop_vinfo);
1595 else
1596 return false;
1598 /* Scan all the operations in the loop and make sure they are
1599 vectorizable. */
1601 ok = vect_analyze_loop_operations (loop_vinfo, slp);
1602 if (!ok)
1604 if (vect_print_dump_info (REPORT_DETAILS))
1605 fprintf (vect_dump, "bad operation or unsupported loop bound.");
1606 return false;
1609 return true;
1612 /* Function vect_analyze_loop.
1614 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1615 for it. The different analyses will record information in the
1616 loop_vec_info struct. */
1617 loop_vec_info
1618 vect_analyze_loop (struct loop *loop)
1620 loop_vec_info loop_vinfo;
1621 unsigned int vector_sizes;
1623 /* Autodetect first vector size we try. */
1624 current_vector_size = 0;
1625 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
1627 if (vect_print_dump_info (REPORT_DETAILS))
1628 fprintf (vect_dump, "===== analyze_loop_nest =====");
1630 if (loop_outer (loop)
1631 && loop_vec_info_for_loop (loop_outer (loop))
1632 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
1634 if (vect_print_dump_info (REPORT_DETAILS))
1635 fprintf (vect_dump, "outer-loop already vectorized.");
1636 return NULL;
1639 while (1)
1641 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
1642 loop_vinfo = vect_analyze_loop_form (loop);
1643 if (!loop_vinfo)
1645 if (vect_print_dump_info (REPORT_DETAILS))
1646 fprintf (vect_dump, "bad loop form.");
1647 return NULL;
1650 if (vect_analyze_loop_2 (loop_vinfo))
1652 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
1654 return loop_vinfo;
1657 destroy_loop_vec_info (loop_vinfo, true);
1659 vector_sizes &= ~current_vector_size;
1660 if (vector_sizes == 0
1661 || current_vector_size == 0)
1662 return NULL;
1664 /* Try the next biggest vector size. */
1665 current_vector_size = 1 << floor_log2 (vector_sizes);
1666 if (vect_print_dump_info (REPORT_DETAILS))
1667 fprintf (vect_dump, "***** Re-trying analysis with "
1668 "vector size %d\n", current_vector_size);
1673 /* Function reduction_code_for_scalar_code
1675 Input:
1676 CODE - tree_code of a reduction operations.
1678 Output:
1679 REDUC_CODE - the corresponding tree-code to be used to reduce the
1680 vector of partial results into a single scalar result (which
1681 will also reside in a vector) or ERROR_MARK if the operation is
1682 a supported reduction operation, but does not have such tree-code.
1684 Return FALSE if CODE currently cannot be vectorized as reduction. */
1686 static bool
1687 reduction_code_for_scalar_code (enum tree_code code,
1688 enum tree_code *reduc_code)
1690 switch (code)
1692 case MAX_EXPR:
1693 *reduc_code = REDUC_MAX_EXPR;
1694 return true;
1696 case MIN_EXPR:
1697 *reduc_code = REDUC_MIN_EXPR;
1698 return true;
1700 case PLUS_EXPR:
1701 *reduc_code = REDUC_PLUS_EXPR;
1702 return true;
1704 case MULT_EXPR:
1705 case MINUS_EXPR:
1706 case BIT_IOR_EXPR:
1707 case BIT_XOR_EXPR:
1708 case BIT_AND_EXPR:
1709 *reduc_code = ERROR_MARK;
1710 return true;
1712 default:
1713 return false;
1718 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
1719 STMT is printed with a message MSG. */
1721 static void
1722 report_vect_op (gimple stmt, const char *msg)
1724 fprintf (vect_dump, "%s", msg);
1725 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
1729 /* Detect SLP reduction of the form:
1731 #a1 = phi <a5, a0>
1732 a2 = operation (a1)
1733 a3 = operation (a2)
1734 a4 = operation (a3)
1735 a5 = operation (a4)
1737 #a = phi <a5>
1739 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
1740 FIRST_STMT is the first reduction stmt in the chain
1741 (a2 = operation (a1)).
1743 Return TRUE if a reduction chain was detected. */
1745 static bool
1746 vect_is_slp_reduction (loop_vec_info loop_info, gimple phi, gimple first_stmt)
1748 struct loop *loop = (gimple_bb (phi))->loop_father;
1749 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
1750 enum tree_code code;
1751 gimple current_stmt = NULL, loop_use_stmt = NULL, first, next_stmt;
1752 stmt_vec_info use_stmt_info, current_stmt_info;
1753 tree lhs;
1754 imm_use_iterator imm_iter;
1755 use_operand_p use_p;
1756 int nloop_uses, size = 0, n_out_of_loop_uses;
1757 bool found = false;
1759 if (loop != vect_loop)
1760 return false;
1762 lhs = PHI_RESULT (phi);
1763 code = gimple_assign_rhs_code (first_stmt);
1764 while (1)
1766 nloop_uses = 0;
1767 n_out_of_loop_uses = 0;
1768 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
1770 gimple use_stmt = USE_STMT (use_p);
1771 if (is_gimple_debug (use_stmt))
1772 continue;
1774 use_stmt = USE_STMT (use_p);
1776 /* Check if we got back to the reduction phi. */
1777 if (use_stmt == phi)
1779 loop_use_stmt = use_stmt;
1780 found = true;
1781 break;
1784 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
1786 if (vinfo_for_stmt (use_stmt)
1787 && !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
1789 loop_use_stmt = use_stmt;
1790 nloop_uses++;
1793 else
1794 n_out_of_loop_uses++;
1796 /* There are can be either a single use in the loop or two uses in
1797 phi nodes. */
1798 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
1799 return false;
1802 if (found)
1803 break;
1805 /* We reached a statement with no loop uses. */
1806 if (nloop_uses == 0)
1807 return false;
1809 /* This is a loop exit phi, and we haven't reached the reduction phi. */
1810 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
1811 return false;
1813 if (!is_gimple_assign (loop_use_stmt)
1814 || code != gimple_assign_rhs_code (loop_use_stmt)
1815 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
1816 return false;
1818 /* Insert USE_STMT into reduction chain. */
1819 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
1820 if (current_stmt)
1822 current_stmt_info = vinfo_for_stmt (current_stmt);
1823 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
1824 GROUP_FIRST_ELEMENT (use_stmt_info)
1825 = GROUP_FIRST_ELEMENT (current_stmt_info);
1827 else
1828 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
1830 lhs = gimple_assign_lhs (loop_use_stmt);
1831 current_stmt = loop_use_stmt;
1832 size++;
1835 if (!found || loop_use_stmt != phi || size < 2)
1836 return false;
1838 /* Swap the operands, if needed, to make the reduction operand be the second
1839 operand. */
1840 lhs = PHI_RESULT (phi);
1841 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
1842 while (next_stmt)
1844 if (gimple_assign_rhs2 (next_stmt) == lhs)
1846 tree op = gimple_assign_rhs1 (next_stmt);
1847 gimple def_stmt = NULL;
1849 if (TREE_CODE (op) == SSA_NAME)
1850 def_stmt = SSA_NAME_DEF_STMT (op);
1852 /* Check that the other def is either defined in the loop
1853 ("vect_internal_def"), or it's an induction (defined by a
1854 loop-header phi-node). */
1855 if (def_stmt
1856 && gimple_bb (def_stmt)
1857 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
1858 && (is_gimple_assign (def_stmt)
1859 || is_gimple_call (def_stmt)
1860 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
1861 == vect_induction_def
1862 || (gimple_code (def_stmt) == GIMPLE_PHI
1863 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
1864 == vect_internal_def
1865 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
1867 lhs = gimple_assign_lhs (next_stmt);
1868 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
1869 continue;
1872 return false;
1874 else
1876 tree op = gimple_assign_rhs2 (next_stmt);
1877 gimple def_stmt = NULL;
1879 if (TREE_CODE (op) == SSA_NAME)
1880 def_stmt = SSA_NAME_DEF_STMT (op);
1882 /* Check that the other def is either defined in the loop
1883 ("vect_internal_def"), or it's an induction (defined by a
1884 loop-header phi-node). */
1885 if (def_stmt
1886 && gimple_bb (def_stmt)
1887 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
1888 && (is_gimple_assign (def_stmt)
1889 || is_gimple_call (def_stmt)
1890 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
1891 == vect_induction_def
1892 || (gimple_code (def_stmt) == GIMPLE_PHI
1893 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
1894 == vect_internal_def
1895 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
1897 if (vect_print_dump_info (REPORT_DETAILS))
1899 fprintf (vect_dump, "swapping oprnds: ");
1900 print_gimple_stmt (vect_dump, next_stmt, 0, TDF_SLIM);
1903 swap_tree_operands (next_stmt,
1904 gimple_assign_rhs1_ptr (next_stmt),
1905 gimple_assign_rhs2_ptr (next_stmt));
1906 mark_symbols_for_renaming (next_stmt);
1908 else
1909 return false;
1912 lhs = gimple_assign_lhs (next_stmt);
1913 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
1916 /* Save the chain for further analysis in SLP detection. */
1917 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
1918 VEC_safe_push (gimple, heap, LOOP_VINFO_REDUCTION_CHAINS (loop_info), first);
1919 GROUP_SIZE (vinfo_for_stmt (first)) = size;
1921 return true;
1925 /* Function vect_is_simple_reduction_1
1927 (1) Detect a cross-iteration def-use cycle that represents a simple
1928 reduction computation. We look for the following pattern:
1930 loop_header:
1931 a1 = phi < a0, a2 >
1932 a3 = ...
1933 a2 = operation (a3, a1)
1935 such that:
1936 1. operation is commutative and associative and it is safe to
1937 change the order of the computation (if CHECK_REDUCTION is true)
1938 2. no uses for a2 in the loop (a2 is used out of the loop)
1939 3. no uses of a1 in the loop besides the reduction operation
1940 4. no uses of a1 outside the loop.
1942 Conditions 1,4 are tested here.
1943 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
1945 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
1946 nested cycles, if CHECK_REDUCTION is false.
1948 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
1949 reductions:
1951 a1 = phi < a0, a2 >
1952 inner loop (def of a3)
1953 a2 = phi < a3 >
1955 If MODIFY is true it tries also to rework the code in-place to enable
1956 detection of more reduction patterns. For the time being we rewrite
1957 "res -= RHS" into "rhs += -RHS" when it seems worthwhile.
1960 static gimple
1961 vect_is_simple_reduction_1 (loop_vec_info loop_info, gimple phi,
1962 bool check_reduction, bool *double_reduc,
1963 bool modify)
1965 struct loop *loop = (gimple_bb (phi))->loop_father;
1966 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
1967 edge latch_e = loop_latch_edge (loop);
1968 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
1969 gimple def_stmt, def1 = NULL, def2 = NULL;
1970 enum tree_code orig_code, code;
1971 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
1972 tree type;
1973 int nloop_uses;
1974 tree name;
1975 imm_use_iterator imm_iter;
1976 use_operand_p use_p;
1977 bool phi_def;
1979 *double_reduc = false;
1981 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
1982 otherwise, we assume outer loop vectorization. */
1983 gcc_assert ((check_reduction && loop == vect_loop)
1984 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
1986 name = PHI_RESULT (phi);
1987 nloop_uses = 0;
1988 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
1990 gimple use_stmt = USE_STMT (use_p);
1991 if (is_gimple_debug (use_stmt))
1992 continue;
1994 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
1996 if (vect_print_dump_info (REPORT_DETAILS))
1997 fprintf (vect_dump, "intermediate value used outside loop.");
1999 return NULL;
2002 if (vinfo_for_stmt (use_stmt)
2003 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2004 nloop_uses++;
2005 if (nloop_uses > 1)
2007 if (vect_print_dump_info (REPORT_DETAILS))
2008 fprintf (vect_dump, "reduction used in loop.");
2009 return NULL;
2013 if (TREE_CODE (loop_arg) != SSA_NAME)
2015 if (vect_print_dump_info (REPORT_DETAILS))
2017 fprintf (vect_dump, "reduction: not ssa_name: ");
2018 print_generic_expr (vect_dump, loop_arg, TDF_SLIM);
2020 return NULL;
2023 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2024 if (!def_stmt)
2026 if (vect_print_dump_info (REPORT_DETAILS))
2027 fprintf (vect_dump, "reduction: no def_stmt.");
2028 return NULL;
2031 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
2033 if (vect_print_dump_info (REPORT_DETAILS))
2034 print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM);
2035 return NULL;
2038 if (is_gimple_assign (def_stmt))
2040 name = gimple_assign_lhs (def_stmt);
2041 phi_def = false;
2043 else
2045 name = PHI_RESULT (def_stmt);
2046 phi_def = true;
2049 nloop_uses = 0;
2050 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2052 gimple use_stmt = USE_STMT (use_p);
2053 if (is_gimple_debug (use_stmt))
2054 continue;
2055 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
2056 && vinfo_for_stmt (use_stmt)
2057 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2058 nloop_uses++;
2059 if (nloop_uses > 1)
2061 if (vect_print_dump_info (REPORT_DETAILS))
2062 fprintf (vect_dump, "reduction used in loop.");
2063 return NULL;
2067 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2068 defined in the inner loop. */
2069 if (phi_def)
2071 op1 = PHI_ARG_DEF (def_stmt, 0);
2073 if (gimple_phi_num_args (def_stmt) != 1
2074 || TREE_CODE (op1) != SSA_NAME)
2076 if (vect_print_dump_info (REPORT_DETAILS))
2077 fprintf (vect_dump, "unsupported phi node definition.");
2079 return NULL;
2082 def1 = SSA_NAME_DEF_STMT (op1);
2083 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2084 && loop->inner
2085 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2086 && is_gimple_assign (def1))
2088 if (vect_print_dump_info (REPORT_DETAILS))
2089 report_vect_op (def_stmt, "detected double reduction: ");
2091 *double_reduc = true;
2092 return def_stmt;
2095 return NULL;
2098 code = orig_code = gimple_assign_rhs_code (def_stmt);
2100 /* We can handle "res -= x[i]", which is non-associative by
2101 simply rewriting this into "res += -x[i]". Avoid changing
2102 gimple instruction for the first simple tests and only do this
2103 if we're allowed to change code at all. */
2104 if (code == MINUS_EXPR
2105 && modify
2106 && (op1 = gimple_assign_rhs1 (def_stmt))
2107 && TREE_CODE (op1) == SSA_NAME
2108 && SSA_NAME_DEF_STMT (op1) == phi)
2109 code = PLUS_EXPR;
2111 if (check_reduction
2112 && (!commutative_tree_code (code) || !associative_tree_code (code)))
2114 if (vect_print_dump_info (REPORT_DETAILS))
2115 report_vect_op (def_stmt, "reduction: not commutative/associative: ");
2116 return NULL;
2119 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
2121 if (code != COND_EXPR)
2123 if (vect_print_dump_info (REPORT_DETAILS))
2124 report_vect_op (def_stmt, "reduction: not binary operation: ");
2126 return NULL;
2129 op3 = gimple_assign_rhs1 (def_stmt);
2130 if (COMPARISON_CLASS_P (op3))
2132 op4 = TREE_OPERAND (op3, 1);
2133 op3 = TREE_OPERAND (op3, 0);
2136 op1 = gimple_assign_rhs2 (def_stmt);
2137 op2 = gimple_assign_rhs3 (def_stmt);
2139 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2141 if (vect_print_dump_info (REPORT_DETAILS))
2142 report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
2144 return NULL;
2147 else
2149 op1 = gimple_assign_rhs1 (def_stmt);
2150 op2 = gimple_assign_rhs2 (def_stmt);
2152 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2154 if (vect_print_dump_info (REPORT_DETAILS))
2155 report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
2157 return NULL;
2161 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2162 if ((TREE_CODE (op1) == SSA_NAME
2163 && !types_compatible_p (type,TREE_TYPE (op1)))
2164 || (TREE_CODE (op2) == SSA_NAME
2165 && !types_compatible_p (type, TREE_TYPE (op2)))
2166 || (op3 && TREE_CODE (op3) == SSA_NAME
2167 && !types_compatible_p (type, TREE_TYPE (op3)))
2168 || (op4 && TREE_CODE (op4) == SSA_NAME
2169 && !types_compatible_p (type, TREE_TYPE (op4))))
2171 if (vect_print_dump_info (REPORT_DETAILS))
2173 fprintf (vect_dump, "reduction: multiple types: operation type: ");
2174 print_generic_expr (vect_dump, type, TDF_SLIM);
2175 fprintf (vect_dump, ", operands types: ");
2176 print_generic_expr (vect_dump, TREE_TYPE (op1), TDF_SLIM);
2177 fprintf (vect_dump, ",");
2178 print_generic_expr (vect_dump, TREE_TYPE (op2), TDF_SLIM);
2179 if (op3)
2181 fprintf (vect_dump, ",");
2182 print_generic_expr (vect_dump, TREE_TYPE (op3), TDF_SLIM);
2185 if (op4)
2187 fprintf (vect_dump, ",");
2188 print_generic_expr (vect_dump, TREE_TYPE (op4), TDF_SLIM);
2192 return NULL;
2195 /* Check that it's ok to change the order of the computation.
2196 Generally, when vectorizing a reduction we change the order of the
2197 computation. This may change the behavior of the program in some
2198 cases, so we need to check that this is ok. One exception is when
2199 vectorizing an outer-loop: the inner-loop is executed sequentially,
2200 and therefore vectorizing reductions in the inner-loop during
2201 outer-loop vectorization is safe. */
2203 /* CHECKME: check for !flag_finite_math_only too? */
2204 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
2205 && check_reduction)
2207 /* Changing the order of operations changes the semantics. */
2208 if (vect_print_dump_info (REPORT_DETAILS))
2209 report_vect_op (def_stmt, "reduction: unsafe fp math optimization: ");
2210 return NULL;
2212 else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
2213 && check_reduction)
2215 /* Changing the order of operations changes the semantics. */
2216 if (vect_print_dump_info (REPORT_DETAILS))
2217 report_vect_op (def_stmt, "reduction: unsafe int math optimization: ");
2218 return NULL;
2220 else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
2222 /* Changing the order of operations changes the semantics. */
2223 if (vect_print_dump_info (REPORT_DETAILS))
2224 report_vect_op (def_stmt,
2225 "reduction: unsafe fixed-point math optimization: ");
2226 return NULL;
2229 /* If we detected "res -= x[i]" earlier, rewrite it into
2230 "res += -x[i]" now. If this turns out to be useless reassoc
2231 will clean it up again. */
2232 if (orig_code == MINUS_EXPR)
2234 tree rhs = gimple_assign_rhs2 (def_stmt);
2235 tree negrhs = make_ssa_name (SSA_NAME_VAR (rhs), NULL);
2236 gimple negate_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, negrhs,
2237 rhs, NULL);
2238 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
2239 set_vinfo_for_stmt (negate_stmt, new_stmt_vec_info (negate_stmt,
2240 loop_info, NULL));
2241 gsi_insert_before (&gsi, negate_stmt, GSI_NEW_STMT);
2242 gimple_assign_set_rhs2 (def_stmt, negrhs);
2243 gimple_assign_set_rhs_code (def_stmt, PLUS_EXPR);
2244 update_stmt (def_stmt);
2247 /* Reduction is safe. We're dealing with one of the following:
2248 1) integer arithmetic and no trapv
2249 2) floating point arithmetic, and special flags permit this optimization
2250 3) nested cycle (i.e., outer loop vectorization). */
2251 if (TREE_CODE (op1) == SSA_NAME)
2252 def1 = SSA_NAME_DEF_STMT (op1);
2254 if (TREE_CODE (op2) == SSA_NAME)
2255 def2 = SSA_NAME_DEF_STMT (op2);
2257 if (code != COND_EXPR
2258 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
2260 if (vect_print_dump_info (REPORT_DETAILS))
2261 report_vect_op (def_stmt, "reduction: no defs for operands: ");
2262 return NULL;
2265 /* Check that one def is the reduction def, defined by PHI,
2266 the other def is either defined in the loop ("vect_internal_def"),
2267 or it's an induction (defined by a loop-header phi-node). */
2269 if (def2 && def2 == phi
2270 && (code == COND_EXPR
2271 || !def1 || gimple_nop_p (def1)
2272 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
2273 && (is_gimple_assign (def1)
2274 || is_gimple_call (def1)
2275 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2276 == vect_induction_def
2277 || (gimple_code (def1) == GIMPLE_PHI
2278 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2279 == vect_internal_def
2280 && !is_loop_header_bb_p (gimple_bb (def1)))))))
2282 if (vect_print_dump_info (REPORT_DETAILS))
2283 report_vect_op (def_stmt, "detected reduction: ");
2284 return def_stmt;
2287 if (def1 && def1 == phi
2288 && (code == COND_EXPR
2289 || !def2 || gimple_nop_p (def2)
2290 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
2291 && (is_gimple_assign (def2)
2292 || is_gimple_call (def2)
2293 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2294 == vect_induction_def
2295 || (gimple_code (def2) == GIMPLE_PHI
2296 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2297 == vect_internal_def
2298 && !is_loop_header_bb_p (gimple_bb (def2)))))))
2300 if (check_reduction)
2302 /* Swap operands (just for simplicity - so that the rest of the code
2303 can assume that the reduction variable is always the last (second)
2304 argument). */
2305 if (vect_print_dump_info (REPORT_DETAILS))
2306 report_vect_op (def_stmt,
2307 "detected reduction: need to swap operands: ");
2309 swap_tree_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
2310 gimple_assign_rhs2_ptr (def_stmt));
2312 else
2314 if (vect_print_dump_info (REPORT_DETAILS))
2315 report_vect_op (def_stmt, "detected reduction: ");
2318 return def_stmt;
2321 /* Try to find SLP reduction chain. */
2322 if (check_reduction && vect_is_slp_reduction (loop_info, phi, def_stmt))
2324 if (vect_print_dump_info (REPORT_DETAILS))
2325 report_vect_op (def_stmt, "reduction: detected reduction chain: ");
2327 return def_stmt;
2330 if (vect_print_dump_info (REPORT_DETAILS))
2331 report_vect_op (def_stmt, "reduction: unknown pattern: ");
2333 return NULL;
2336 /* Wrapper around vect_is_simple_reduction_1, that won't modify code
2337 in-place. Arguments as there. */
2339 static gimple
2340 vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
2341 bool check_reduction, bool *double_reduc)
2343 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2344 double_reduc, false);
2347 /* Wrapper around vect_is_simple_reduction_1, which will modify code
2348 in-place if it enables detection of more reductions. Arguments
2349 as there. */
2351 gimple
2352 vect_force_simple_reduction (loop_vec_info loop_info, gimple phi,
2353 bool check_reduction, bool *double_reduc)
2355 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2356 double_reduc, true);
2359 /* Calculate the cost of one scalar iteration of the loop. */
2361 vect_get_single_scalar_iteraion_cost (loop_vec_info loop_vinfo)
2363 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2364 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2365 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
2366 int innerloop_iters, i, stmt_cost;
2368 /* Count statements in scalar loop. Using this as scalar cost for a single
2369 iteration for now.
2371 TODO: Add outer loop support.
2373 TODO: Consider assigning different costs to different scalar
2374 statements. */
2376 /* FORNOW. */
2377 innerloop_iters = 1;
2378 if (loop->inner)
2379 innerloop_iters = 50; /* FIXME */
2381 for (i = 0; i < nbbs; i++)
2383 gimple_stmt_iterator si;
2384 basic_block bb = bbs[i];
2386 if (bb->loop_father == loop->inner)
2387 factor = innerloop_iters;
2388 else
2389 factor = 1;
2391 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2393 gimple stmt = gsi_stmt (si);
2394 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2396 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
2397 continue;
2399 /* Skip stmts that are not vectorized inside the loop. */
2400 if (stmt_info
2401 && !STMT_VINFO_RELEVANT_P (stmt_info)
2402 && (!STMT_VINFO_LIVE_P (stmt_info)
2403 || STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def))
2404 continue;
2406 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
2408 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
2409 stmt_cost = vect_get_cost (scalar_load);
2410 else
2411 stmt_cost = vect_get_cost (scalar_store);
2413 else
2414 stmt_cost = vect_get_cost (scalar_stmt);
2416 scalar_single_iter_cost += stmt_cost * factor;
2419 return scalar_single_iter_cost;
2422 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
2424 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
2425 int *peel_iters_epilogue,
2426 int scalar_single_iter_cost)
2428 int peel_guard_costs = 0;
2429 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2431 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2433 *peel_iters_epilogue = vf/2;
2434 if (vect_print_dump_info (REPORT_COST))
2435 fprintf (vect_dump, "cost model: "
2436 "epilogue peel iters set to vf/2 because "
2437 "loop iterations are unknown .");
2439 /* If peeled iterations are known but number of scalar loop
2440 iterations are unknown, count a taken branch per peeled loop. */
2441 peel_guard_costs = 2 * vect_get_cost (cond_branch_taken);
2443 else
2445 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
2446 peel_iters_prologue = niters < peel_iters_prologue ?
2447 niters : peel_iters_prologue;
2448 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
2449 /* If we need to peel for gaps, but no peeling is required, we have to
2450 peel VF iterations. */
2451 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
2452 *peel_iters_epilogue = vf;
2455 return (peel_iters_prologue * scalar_single_iter_cost)
2456 + (*peel_iters_epilogue * scalar_single_iter_cost)
2457 + peel_guard_costs;
2460 /* Function vect_estimate_min_profitable_iters
2462 Return the number of iterations required for the vector version of the
2463 loop to be profitable relative to the cost of the scalar version of the
2464 loop.
2466 TODO: Take profile info into account before making vectorization
2467 decisions, if available. */
2470 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo)
2472 int i;
2473 int min_profitable_iters;
2474 int peel_iters_prologue;
2475 int peel_iters_epilogue;
2476 int vec_inside_cost = 0;
2477 int vec_outside_cost = 0;
2478 int scalar_single_iter_cost = 0;
2479 int scalar_outside_cost = 0;
2480 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2481 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2482 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2483 int nbbs = loop->num_nodes;
2484 int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
2485 int peel_guard_costs = 0;
2486 int innerloop_iters = 0, factor;
2487 VEC (slp_instance, heap) *slp_instances;
2488 slp_instance instance;
2490 /* Cost model disabled. */
2491 if (!flag_vect_cost_model)
2493 if (vect_print_dump_info (REPORT_COST))
2494 fprintf (vect_dump, "cost model disabled.");
2495 return 0;
2498 /* Requires loop versioning tests to handle misalignment. */
2499 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2501 /* FIXME: Make cost depend on complexity of individual check. */
2502 vec_outside_cost +=
2503 VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
2504 if (vect_print_dump_info (REPORT_COST))
2505 fprintf (vect_dump, "cost model: Adding cost of checks for loop "
2506 "versioning to treat misalignment.\n");
2509 /* Requires loop versioning with alias checks. */
2510 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2512 /* FIXME: Make cost depend on complexity of individual check. */
2513 vec_outside_cost +=
2514 VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
2515 if (vect_print_dump_info (REPORT_COST))
2516 fprintf (vect_dump, "cost model: Adding cost of checks for loop "
2517 "versioning aliasing.\n");
2520 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2521 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2522 vec_outside_cost += vect_get_cost (cond_branch_taken);
2524 /* Count statements in scalar loop. Using this as scalar cost for a single
2525 iteration for now.
2527 TODO: Add outer loop support.
2529 TODO: Consider assigning different costs to different scalar
2530 statements. */
2532 /* FORNOW. */
2533 if (loop->inner)
2534 innerloop_iters = 50; /* FIXME */
2536 for (i = 0; i < nbbs; i++)
2538 gimple_stmt_iterator si;
2539 basic_block bb = bbs[i];
2541 if (bb->loop_father == loop->inner)
2542 factor = innerloop_iters;
2543 else
2544 factor = 1;
2546 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2548 gimple stmt = gsi_stmt (si);
2549 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2550 /* Skip stmts that are not vectorized inside the loop. */
2551 if (!STMT_VINFO_RELEVANT_P (stmt_info)
2552 && (!STMT_VINFO_LIVE_P (stmt_info)
2553 || STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def))
2554 continue;
2555 vec_inside_cost += STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) * factor;
2556 /* FIXME: for stmts in the inner-loop in outer-loop vectorization,
2557 some of the "outside" costs are generated inside the outer-loop. */
2558 vec_outside_cost += STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info);
2562 scalar_single_iter_cost = vect_get_single_scalar_iteraion_cost (loop_vinfo);
2564 /* Add additional cost for the peeled instructions in prologue and epilogue
2565 loop.
2567 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
2568 at compile-time - we assume it's vf/2 (the worst would be vf-1).
2570 TODO: Build an expression that represents peel_iters for prologue and
2571 epilogue to be used in a run-time test. */
2573 if (npeel < 0)
2575 peel_iters_prologue = vf/2;
2576 if (vect_print_dump_info (REPORT_COST))
2577 fprintf (vect_dump, "cost model: "
2578 "prologue peel iters set to vf/2.");
2580 /* If peeling for alignment is unknown, loop bound of main loop becomes
2581 unknown. */
2582 peel_iters_epilogue = vf/2;
2583 if (vect_print_dump_info (REPORT_COST))
2584 fprintf (vect_dump, "cost model: "
2585 "epilogue peel iters set to vf/2 because "
2586 "peeling for alignment is unknown .");
2588 /* If peeled iterations are unknown, count a taken branch and a not taken
2589 branch per peeled loop. Even if scalar loop iterations are known,
2590 vector iterations are not known since peeled prologue iterations are
2591 not known. Hence guards remain the same. */
2592 peel_guard_costs += 2 * (vect_get_cost (cond_branch_taken)
2593 + vect_get_cost (cond_branch_not_taken));
2594 vec_outside_cost += (peel_iters_prologue * scalar_single_iter_cost)
2595 + (peel_iters_epilogue * scalar_single_iter_cost)
2596 + peel_guard_costs;
2598 else
2600 peel_iters_prologue = npeel;
2601 vec_outside_cost += vect_get_known_peeling_cost (loop_vinfo,
2602 peel_iters_prologue, &peel_iters_epilogue,
2603 scalar_single_iter_cost);
2606 /* FORNOW: The scalar outside cost is incremented in one of the
2607 following ways:
2609 1. The vectorizer checks for alignment and aliasing and generates
2610 a condition that allows dynamic vectorization. A cost model
2611 check is ANDED with the versioning condition. Hence scalar code
2612 path now has the added cost of the versioning check.
2614 if (cost > th & versioning_check)
2615 jmp to vector code
2617 Hence run-time scalar is incremented by not-taken branch cost.
2619 2. The vectorizer then checks if a prologue is required. If the
2620 cost model check was not done before during versioning, it has to
2621 be done before the prologue check.
2623 if (cost <= th)
2624 prologue = scalar_iters
2625 if (prologue == 0)
2626 jmp to vector code
2627 else
2628 execute prologue
2629 if (prologue == num_iters)
2630 go to exit
2632 Hence the run-time scalar cost is incremented by a taken branch,
2633 plus a not-taken branch, plus a taken branch cost.
2635 3. The vectorizer then checks if an epilogue is required. If the
2636 cost model check was not done before during prologue check, it
2637 has to be done with the epilogue check.
2639 if (prologue == 0)
2640 jmp to vector code
2641 else
2642 execute prologue
2643 if (prologue == num_iters)
2644 go to exit
2645 vector code:
2646 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
2647 jmp to epilogue
2649 Hence the run-time scalar cost should be incremented by 2 taken
2650 branches.
2652 TODO: The back end may reorder the BBS's differently and reverse
2653 conditions/branch directions. Change the estimates below to
2654 something more reasonable. */
2656 /* If the number of iterations is known and we do not do versioning, we can
2657 decide whether to vectorize at compile time. Hence the scalar version
2658 do not carry cost model guard costs. */
2659 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2660 || LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2661 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2663 /* Cost model check occurs at versioning. */
2664 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2665 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2666 scalar_outside_cost += vect_get_cost (cond_branch_not_taken);
2667 else
2669 /* Cost model check occurs at prologue generation. */
2670 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2671 scalar_outside_cost += 2 * vect_get_cost (cond_branch_taken)
2672 + vect_get_cost (cond_branch_not_taken);
2673 /* Cost model check occurs at epilogue generation. */
2674 else
2675 scalar_outside_cost += 2 * vect_get_cost (cond_branch_taken);
2679 /* Add SLP costs. */
2680 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
2681 FOR_EACH_VEC_ELT (slp_instance, slp_instances, i, instance)
2683 vec_outside_cost += SLP_INSTANCE_OUTSIDE_OF_LOOP_COST (instance);
2684 vec_inside_cost += SLP_INSTANCE_INSIDE_OF_LOOP_COST (instance);
2687 /* Calculate number of iterations required to make the vector version
2688 profitable, relative to the loop bodies only. The following condition
2689 must hold true:
2690 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
2691 where
2692 SIC = scalar iteration cost, VIC = vector iteration cost,
2693 VOC = vector outside cost, VF = vectorization factor,
2694 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
2695 SOC = scalar outside cost for run time cost model check. */
2697 if ((scalar_single_iter_cost * vf) > vec_inside_cost)
2699 if (vec_outside_cost <= 0)
2700 min_profitable_iters = 1;
2701 else
2703 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
2704 - vec_inside_cost * peel_iters_prologue
2705 - vec_inside_cost * peel_iters_epilogue)
2706 / ((scalar_single_iter_cost * vf)
2707 - vec_inside_cost);
2709 if ((scalar_single_iter_cost * vf * min_profitable_iters)
2710 <= ((vec_inside_cost * min_profitable_iters)
2711 + ((vec_outside_cost - scalar_outside_cost) * vf)))
2712 min_profitable_iters++;
2715 /* vector version will never be profitable. */
2716 else
2718 if (vect_print_dump_info (REPORT_COST))
2719 fprintf (vect_dump, "cost model: the vector iteration cost = %d "
2720 "divided by the scalar iteration cost = %d "
2721 "is greater or equal to the vectorization factor = %d.",
2722 vec_inside_cost, scalar_single_iter_cost, vf);
2723 return -1;
2726 if (vect_print_dump_info (REPORT_COST))
2728 fprintf (vect_dump, "Cost model analysis: \n");
2729 fprintf (vect_dump, " Vector inside of loop cost: %d\n",
2730 vec_inside_cost);
2731 fprintf (vect_dump, " Vector outside of loop cost: %d\n",
2732 vec_outside_cost);
2733 fprintf (vect_dump, " Scalar iteration cost: %d\n",
2734 scalar_single_iter_cost);
2735 fprintf (vect_dump, " Scalar outside cost: %d\n", scalar_outside_cost);
2736 fprintf (vect_dump, " prologue iterations: %d\n",
2737 peel_iters_prologue);
2738 fprintf (vect_dump, " epilogue iterations: %d\n",
2739 peel_iters_epilogue);
2740 fprintf (vect_dump, " Calculated minimum iters for profitability: %d\n",
2741 min_profitable_iters);
2744 min_profitable_iters =
2745 min_profitable_iters < vf ? vf : min_profitable_iters;
2747 /* Because the condition we create is:
2748 if (niters <= min_profitable_iters)
2749 then skip the vectorized loop. */
2750 min_profitable_iters--;
2752 if (vect_print_dump_info (REPORT_COST))
2753 fprintf (vect_dump, " Profitability threshold = %d\n",
2754 min_profitable_iters);
2756 return min_profitable_iters;
2760 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
2761 functions. Design better to avoid maintenance issues. */
2763 /* Function vect_model_reduction_cost.
2765 Models cost for a reduction operation, including the vector ops
2766 generated within the strip-mine loop, the initial definition before
2767 the loop, and the epilogue code that must be generated. */
2769 static bool
2770 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
2771 int ncopies)
2773 int outer_cost = 0;
2774 enum tree_code code;
2775 optab optab;
2776 tree vectype;
2777 gimple stmt, orig_stmt;
2778 tree reduction_op;
2779 enum machine_mode mode;
2780 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2781 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2784 /* Cost of reduction op inside loop. */
2785 STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info)
2786 += ncopies * vect_get_cost (vector_stmt);
2788 stmt = STMT_VINFO_STMT (stmt_info);
2790 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
2792 case GIMPLE_SINGLE_RHS:
2793 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
2794 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
2795 break;
2796 case GIMPLE_UNARY_RHS:
2797 reduction_op = gimple_assign_rhs1 (stmt);
2798 break;
2799 case GIMPLE_BINARY_RHS:
2800 reduction_op = gimple_assign_rhs2 (stmt);
2801 break;
2802 case GIMPLE_TERNARY_RHS:
2803 reduction_op = gimple_assign_rhs3 (stmt);
2804 break;
2805 default:
2806 gcc_unreachable ();
2809 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
2810 if (!vectype)
2812 if (vect_print_dump_info (REPORT_COST))
2814 fprintf (vect_dump, "unsupported data-type ");
2815 print_generic_expr (vect_dump, TREE_TYPE (reduction_op), TDF_SLIM);
2817 return false;
2820 mode = TYPE_MODE (vectype);
2821 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
2823 if (!orig_stmt)
2824 orig_stmt = STMT_VINFO_STMT (stmt_info);
2826 code = gimple_assign_rhs_code (orig_stmt);
2828 /* Add in cost for initial definition. */
2829 outer_cost += vect_get_cost (scalar_to_vec);
2831 /* Determine cost of epilogue code.
2833 We have a reduction operator that will reduce the vector in one statement.
2834 Also requires scalar extract. */
2836 if (!nested_in_vect_loop_p (loop, orig_stmt))
2838 if (reduc_code != ERROR_MARK)
2839 outer_cost += vect_get_cost (vector_stmt)
2840 + vect_get_cost (vec_to_scalar);
2841 else
2843 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
2844 tree bitsize =
2845 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
2846 int element_bitsize = tree_low_cst (bitsize, 1);
2847 int nelements = vec_size_in_bits / element_bitsize;
2849 optab = optab_for_tree_code (code, vectype, optab_default);
2851 /* We have a whole vector shift available. */
2852 if (VECTOR_MODE_P (mode)
2853 && optab_handler (optab, mode) != CODE_FOR_nothing
2854 && optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
2855 /* Final reduction via vector shifts and the reduction operator. Also
2856 requires scalar extract. */
2857 outer_cost += ((exact_log2(nelements) * 2)
2858 * vect_get_cost (vector_stmt)
2859 + vect_get_cost (vec_to_scalar));
2860 else
2861 /* Use extracts and reduction op for final reduction. For N elements,
2862 we have N extracts and N-1 reduction ops. */
2863 outer_cost += ((nelements + nelements - 1)
2864 * vect_get_cost (vector_stmt));
2868 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info) = outer_cost;
2870 if (vect_print_dump_info (REPORT_COST))
2871 fprintf (vect_dump, "vect_model_reduction_cost: inside_cost = %d, "
2872 "outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
2873 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
2875 return true;
2879 /* Function vect_model_induction_cost.
2881 Models cost for induction operations. */
2883 static void
2884 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
2886 /* loop cost for vec_loop. */
2887 STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info)
2888 = ncopies * vect_get_cost (vector_stmt);
2889 /* prologue cost for vec_init and vec_step. */
2890 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info)
2891 = 2 * vect_get_cost (scalar_to_vec);
2893 if (vect_print_dump_info (REPORT_COST))
2894 fprintf (vect_dump, "vect_model_induction_cost: inside_cost = %d, "
2895 "outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
2896 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
2900 /* Function get_initial_def_for_induction
2902 Input:
2903 STMT - a stmt that performs an induction operation in the loop.
2904 IV_PHI - the initial value of the induction variable
2906 Output:
2907 Return a vector variable, initialized with the first VF values of
2908 the induction variable. E.g., for an iv with IV_PHI='X' and
2909 evolution S, for a vector of 4 units, we want to return:
2910 [X, X + S, X + 2*S, X + 3*S]. */
2912 static tree
2913 get_initial_def_for_induction (gimple iv_phi)
2915 stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
2916 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
2917 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2918 tree scalar_type;
2919 tree vectype;
2920 int nunits;
2921 edge pe = loop_preheader_edge (loop);
2922 struct loop *iv_loop;
2923 basic_block new_bb;
2924 tree vec, vec_init, vec_step, t;
2925 tree access_fn;
2926 tree new_var;
2927 tree new_name;
2928 gimple init_stmt, induction_phi, new_stmt;
2929 tree induc_def, vec_def, vec_dest;
2930 tree init_expr, step_expr;
2931 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2932 int i;
2933 bool ok;
2934 int ncopies;
2935 tree expr;
2936 stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
2937 bool nested_in_vect_loop = false;
2938 gimple_seq stmts = NULL;
2939 imm_use_iterator imm_iter;
2940 use_operand_p use_p;
2941 gimple exit_phi;
2942 edge latch_e;
2943 tree loop_arg;
2944 gimple_stmt_iterator si;
2945 basic_block bb = gimple_bb (iv_phi);
2946 tree stepvectype;
2947 tree resvectype;
2949 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
2950 if (nested_in_vect_loop_p (loop, iv_phi))
2952 nested_in_vect_loop = true;
2953 iv_loop = loop->inner;
2955 else
2956 iv_loop = loop;
2957 gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
2959 latch_e = loop_latch_edge (iv_loop);
2960 loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
2962 access_fn = analyze_scalar_evolution (iv_loop, PHI_RESULT (iv_phi));
2963 gcc_assert (access_fn);
2964 STRIP_NOPS (access_fn);
2965 ok = vect_is_simple_iv_evolution (iv_loop->num, access_fn,
2966 &init_expr, &step_expr);
2967 gcc_assert (ok);
2968 pe = loop_preheader_edge (iv_loop);
2970 scalar_type = TREE_TYPE (init_expr);
2971 vectype = get_vectype_for_scalar_type (scalar_type);
2972 resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
2973 gcc_assert (vectype);
2974 nunits = TYPE_VECTOR_SUBPARTS (vectype);
2975 ncopies = vf / nunits;
2977 gcc_assert (phi_info);
2978 gcc_assert (ncopies >= 1);
2980 /* Find the first insertion point in the BB. */
2981 si = gsi_after_labels (bb);
2983 /* Create the vector that holds the initial_value of the induction. */
2984 if (nested_in_vect_loop)
2986 /* iv_loop is nested in the loop to be vectorized. init_expr had already
2987 been created during vectorization of previous stmts. We obtain it
2988 from the STMT_VINFO_VEC_STMT of the defining stmt. */
2989 tree iv_def = PHI_ARG_DEF_FROM_EDGE (iv_phi,
2990 loop_preheader_edge (iv_loop));
2991 vec_init = vect_get_vec_def_for_operand (iv_def, iv_phi, NULL);
2993 else
2995 /* iv_loop is the loop to be vectorized. Create:
2996 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
2997 new_var = vect_get_new_vect_var (scalar_type, vect_scalar_var, "var_");
2998 add_referenced_var (new_var);
3000 new_name = force_gimple_operand (init_expr, &stmts, false, new_var);
3001 if (stmts)
3003 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3004 gcc_assert (!new_bb);
3007 t = NULL_TREE;
3008 t = tree_cons (NULL_TREE, new_name, t);
3009 for (i = 1; i < nunits; i++)
3011 /* Create: new_name_i = new_name + step_expr */
3012 enum tree_code code = POINTER_TYPE_P (scalar_type)
3013 ? POINTER_PLUS_EXPR : PLUS_EXPR;
3014 init_stmt = gimple_build_assign_with_ops (code, new_var,
3015 new_name, step_expr);
3016 new_name = make_ssa_name (new_var, init_stmt);
3017 gimple_assign_set_lhs (init_stmt, new_name);
3019 new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
3020 gcc_assert (!new_bb);
3022 if (vect_print_dump_info (REPORT_DETAILS))
3024 fprintf (vect_dump, "created new init_stmt: ");
3025 print_gimple_stmt (vect_dump, init_stmt, 0, TDF_SLIM);
3027 t = tree_cons (NULL_TREE, new_name, t);
3029 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
3030 vec = build_constructor_from_list (vectype, nreverse (t));
3031 vec_init = vect_init_vector (iv_phi, vec, vectype, NULL);
3035 /* Create the vector that holds the step of the induction. */
3036 if (nested_in_vect_loop)
3037 /* iv_loop is nested in the loop to be vectorized. Generate:
3038 vec_step = [S, S, S, S] */
3039 new_name = step_expr;
3040 else
3042 /* iv_loop is the loop to be vectorized. Generate:
3043 vec_step = [VF*S, VF*S, VF*S, VF*S] */
3044 expr = build_int_cst (TREE_TYPE (step_expr), vf);
3045 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3046 expr, step_expr);
3049 t = unshare_expr (new_name);
3050 gcc_assert (CONSTANT_CLASS_P (new_name));
3051 stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
3052 gcc_assert (stepvectype);
3053 vec = build_vector_from_val (stepvectype, t);
3054 vec_step = vect_init_vector (iv_phi, vec, stepvectype, NULL);
3057 /* Create the following def-use cycle:
3058 loop prolog:
3059 vec_init = ...
3060 vec_step = ...
3061 loop:
3062 vec_iv = PHI <vec_init, vec_loop>
3064 STMT
3066 vec_loop = vec_iv + vec_step; */
3068 /* Create the induction-phi that defines the induction-operand. */
3069 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
3070 add_referenced_var (vec_dest);
3071 induction_phi = create_phi_node (vec_dest, iv_loop->header);
3072 set_vinfo_for_stmt (induction_phi,
3073 new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
3074 induc_def = PHI_RESULT (induction_phi);
3076 /* Create the iv update inside the loop */
3077 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3078 induc_def, vec_step);
3079 vec_def = make_ssa_name (vec_dest, new_stmt);
3080 gimple_assign_set_lhs (new_stmt, vec_def);
3081 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3082 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
3083 NULL));
3085 /* Set the arguments of the phi node: */
3086 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
3087 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
3088 UNKNOWN_LOCATION);
3091 /* In case that vectorization factor (VF) is bigger than the number
3092 of elements that we can fit in a vectype (nunits), we have to generate
3093 more than one vector stmt - i.e - we need to "unroll" the
3094 vector stmt by a factor VF/nunits. For more details see documentation
3095 in vectorizable_operation. */
3097 if (ncopies > 1)
3099 stmt_vec_info prev_stmt_vinfo;
3100 /* FORNOW. This restriction should be relaxed. */
3101 gcc_assert (!nested_in_vect_loop);
3103 /* Create the vector that holds the step of the induction. */
3104 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
3105 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3106 expr, step_expr);
3107 t = unshare_expr (new_name);
3108 gcc_assert (CONSTANT_CLASS_P (new_name));
3109 vec = build_vector_from_val (stepvectype, t);
3110 vec_step = vect_init_vector (iv_phi, vec, stepvectype, NULL);
3112 vec_def = induc_def;
3113 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
3114 for (i = 1; i < ncopies; i++)
3116 /* vec_i = vec_prev + vec_step */
3117 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3118 vec_def, vec_step);
3119 vec_def = make_ssa_name (vec_dest, new_stmt);
3120 gimple_assign_set_lhs (new_stmt, vec_def);
3122 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3123 if (!useless_type_conversion_p (resvectype, vectype))
3125 new_stmt = gimple_build_assign_with_ops
3126 (VIEW_CONVERT_EXPR,
3127 vect_get_new_vect_var (resvectype, vect_simple_var,
3128 "vec_iv_"),
3129 build1 (VIEW_CONVERT_EXPR, resvectype,
3130 gimple_assign_lhs (new_stmt)), NULL_TREE);
3131 gimple_assign_set_lhs (new_stmt,
3132 make_ssa_name
3133 (gimple_assign_lhs (new_stmt), new_stmt));
3134 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3136 set_vinfo_for_stmt (new_stmt,
3137 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3138 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
3139 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
3143 if (nested_in_vect_loop)
3145 /* Find the loop-closed exit-phi of the induction, and record
3146 the final vector of induction results: */
3147 exit_phi = NULL;
3148 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
3150 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (USE_STMT (use_p))))
3152 exit_phi = USE_STMT (use_p);
3153 break;
3156 if (exit_phi)
3158 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
3159 /* FORNOW. Currently not supporting the case that an inner-loop induction
3160 is not used in the outer-loop (i.e. only outside the outer-loop). */
3161 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
3162 && !STMT_VINFO_LIVE_P (stmt_vinfo));
3164 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
3165 if (vect_print_dump_info (REPORT_DETAILS))
3167 fprintf (vect_dump, "vector of inductions after inner-loop:");
3168 print_gimple_stmt (vect_dump, new_stmt, 0, TDF_SLIM);
3174 if (vect_print_dump_info (REPORT_DETAILS))
3176 fprintf (vect_dump, "transform induction: created def-use cycle: ");
3177 print_gimple_stmt (vect_dump, induction_phi, 0, TDF_SLIM);
3178 fprintf (vect_dump, "\n");
3179 print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (vec_def), 0, TDF_SLIM);
3182 STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
3183 if (!useless_type_conversion_p (resvectype, vectype))
3185 new_stmt = gimple_build_assign_with_ops
3186 (VIEW_CONVERT_EXPR,
3187 vect_get_new_vect_var (resvectype, vect_simple_var, "vec_iv_"),
3188 build1 (VIEW_CONVERT_EXPR, resvectype, induc_def), NULL_TREE);
3189 induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3190 gimple_assign_set_lhs (new_stmt, induc_def);
3191 si = gsi_start_bb (bb);
3192 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3193 set_vinfo_for_stmt (new_stmt,
3194 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3195 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
3196 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
3199 return induc_def;
3203 /* Function get_initial_def_for_reduction
3205 Input:
3206 STMT - a stmt that performs a reduction operation in the loop.
3207 INIT_VAL - the initial value of the reduction variable
3209 Output:
3210 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
3211 of the reduction (used for adjusting the epilog - see below).
3212 Return a vector variable, initialized according to the operation that STMT
3213 performs. This vector will be used as the initial value of the
3214 vector of partial results.
3216 Option1 (adjust in epilog): Initialize the vector as follows:
3217 add/bit or/xor: [0,0,...,0,0]
3218 mult/bit and: [1,1,...,1,1]
3219 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
3220 and when necessary (e.g. add/mult case) let the caller know
3221 that it needs to adjust the result by init_val.
3223 Option2: Initialize the vector as follows:
3224 add/bit or/xor: [init_val,0,0,...,0]
3225 mult/bit and: [init_val,1,1,...,1]
3226 min/max/cond_expr: [init_val,init_val,...,init_val]
3227 and no adjustments are needed.
3229 For example, for the following code:
3231 s = init_val;
3232 for (i=0;i<n;i++)
3233 s = s + a[i];
3235 STMT is 's = s + a[i]', and the reduction variable is 's'.
3236 For a vector of 4 units, we want to return either [0,0,0,init_val],
3237 or [0,0,0,0] and let the caller know that it needs to adjust
3238 the result at the end by 'init_val'.
3240 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
3241 initialization vector is simpler (same element in all entries), if
3242 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
3244 A cost model should help decide between these two schemes. */
3246 tree
3247 get_initial_def_for_reduction (gimple stmt, tree init_val,
3248 tree *adjustment_def)
3250 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
3251 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3252 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3253 tree scalar_type = TREE_TYPE (init_val);
3254 tree vectype = get_vectype_for_scalar_type (scalar_type);
3255 int nunits;
3256 enum tree_code code = gimple_assign_rhs_code (stmt);
3257 tree def_for_init;
3258 tree init_def;
3259 tree t = NULL_TREE;
3260 int i;
3261 bool nested_in_vect_loop = false;
3262 tree init_value;
3263 REAL_VALUE_TYPE real_init_val = dconst0;
3264 int int_init_val = 0;
3265 gimple def_stmt = NULL;
3267 gcc_assert (vectype);
3268 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3270 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
3271 || SCALAR_FLOAT_TYPE_P (scalar_type));
3273 if (nested_in_vect_loop_p (loop, stmt))
3274 nested_in_vect_loop = true;
3275 else
3276 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
3278 /* In case of double reduction we only create a vector variable to be put
3279 in the reduction phi node. The actual statement creation is done in
3280 vect_create_epilog_for_reduction. */
3281 if (adjustment_def && nested_in_vect_loop
3282 && TREE_CODE (init_val) == SSA_NAME
3283 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
3284 && gimple_code (def_stmt) == GIMPLE_PHI
3285 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
3286 && vinfo_for_stmt (def_stmt)
3287 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
3288 == vect_double_reduction_def)
3290 *adjustment_def = NULL;
3291 return vect_create_destination_var (init_val, vectype);
3294 if (TREE_CONSTANT (init_val))
3296 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3297 init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
3298 else
3299 init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
3301 else
3302 init_value = init_val;
3304 switch (code)
3306 case WIDEN_SUM_EXPR:
3307 case DOT_PROD_EXPR:
3308 case PLUS_EXPR:
3309 case MINUS_EXPR:
3310 case BIT_IOR_EXPR:
3311 case BIT_XOR_EXPR:
3312 case MULT_EXPR:
3313 case BIT_AND_EXPR:
3314 /* ADJUSMENT_DEF is NULL when called from
3315 vect_create_epilog_for_reduction to vectorize double reduction. */
3316 if (adjustment_def)
3318 if (nested_in_vect_loop)
3319 *adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
3320 NULL);
3321 else
3322 *adjustment_def = init_val;
3325 if (code == MULT_EXPR)
3327 real_init_val = dconst1;
3328 int_init_val = 1;
3331 if (code == BIT_AND_EXPR)
3332 int_init_val = -1;
3334 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3335 def_for_init = build_real (scalar_type, real_init_val);
3336 else
3337 def_for_init = build_int_cst (scalar_type, int_init_val);
3339 /* Create a vector of '0' or '1' except the first element. */
3340 for (i = nunits - 2; i >= 0; --i)
3341 t = tree_cons (NULL_TREE, def_for_init, t);
3343 /* Option1: the first element is '0' or '1' as well. */
3344 if (adjustment_def)
3346 t = tree_cons (NULL_TREE, def_for_init, t);
3347 init_def = build_vector (vectype, t);
3348 break;
3351 /* Option2: the first element is INIT_VAL. */
3352 t = tree_cons (NULL_TREE, init_value, t);
3353 if (TREE_CONSTANT (init_val))
3354 init_def = build_vector (vectype, t);
3355 else
3356 init_def = build_constructor_from_list (vectype, t);
3358 break;
3360 case MIN_EXPR:
3361 case MAX_EXPR:
3362 case COND_EXPR:
3363 if (adjustment_def)
3365 *adjustment_def = NULL_TREE;
3366 init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
3367 break;
3370 init_def = build_vector_from_val (vectype, init_value);
3371 break;
3373 default:
3374 gcc_unreachable ();
3377 return init_def;
3381 /* Function vect_create_epilog_for_reduction
3383 Create code at the loop-epilog to finalize the result of a reduction
3384 computation.
3386 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
3387 reduction statements.
3388 STMT is the scalar reduction stmt that is being vectorized.
3389 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
3390 number of elements that we can fit in a vectype (nunits). In this case
3391 we have to generate more than one vector stmt - i.e - we need to "unroll"
3392 the vector stmt by a factor VF/nunits. For more details see documentation
3393 in vectorizable_operation.
3394 REDUC_CODE is the tree-code for the epilog reduction.
3395 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
3396 computation.
3397 REDUC_INDEX is the index of the operand in the right hand side of the
3398 statement that is defined by REDUCTION_PHI.
3399 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
3400 SLP_NODE is an SLP node containing a group of reduction statements. The
3401 first one in this group is STMT.
3403 This function:
3404 1. Creates the reduction def-use cycles: sets the arguments for
3405 REDUCTION_PHIS:
3406 The loop-entry argument is the vectorized initial-value of the reduction.
3407 The loop-latch argument is taken from VECT_DEFS - the vector of partial
3408 sums.
3409 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
3410 by applying the operation specified by REDUC_CODE if available, or by
3411 other means (whole-vector shifts or a scalar loop).
3412 The function also creates a new phi node at the loop exit to preserve
3413 loop-closed form, as illustrated below.
3415 The flow at the entry to this function:
3417 loop:
3418 vec_def = phi <null, null> # REDUCTION_PHI
3419 VECT_DEF = vector_stmt # vectorized form of STMT
3420 s_loop = scalar_stmt # (scalar) STMT
3421 loop_exit:
3422 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3423 use <s_out0>
3424 use <s_out0>
3426 The above is transformed by this function into:
3428 loop:
3429 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3430 VECT_DEF = vector_stmt # vectorized form of STMT
3431 s_loop = scalar_stmt # (scalar) STMT
3432 loop_exit:
3433 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3434 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3435 v_out2 = reduce <v_out1>
3436 s_out3 = extract_field <v_out2, 0>
3437 s_out4 = adjust_result <s_out3>
3438 use <s_out4>
3439 use <s_out4>
3442 static void
3443 vect_create_epilog_for_reduction (VEC (tree, heap) *vect_defs, gimple stmt,
3444 int ncopies, enum tree_code reduc_code,
3445 VEC (gimple, heap) *reduction_phis,
3446 int reduc_index, bool double_reduc,
3447 slp_tree slp_node)
3449 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3450 stmt_vec_info prev_phi_info;
3451 tree vectype;
3452 enum machine_mode mode;
3453 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3454 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
3455 basic_block exit_bb;
3456 tree scalar_dest;
3457 tree scalar_type;
3458 gimple new_phi = NULL, phi;
3459 gimple_stmt_iterator exit_gsi;
3460 tree vec_dest;
3461 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
3462 gimple epilog_stmt = NULL;
3463 enum tree_code code = gimple_assign_rhs_code (stmt);
3464 gimple exit_phi;
3465 tree bitsize, bitpos;
3466 tree adjustment_def = NULL;
3467 tree vec_initial_def = NULL;
3468 tree reduction_op, expr, def;
3469 tree orig_name, scalar_result;
3470 imm_use_iterator imm_iter, phi_imm_iter;
3471 use_operand_p use_p, phi_use_p;
3472 bool extract_scalar_result = false;
3473 gimple use_stmt, orig_stmt, reduction_phi = NULL;
3474 bool nested_in_vect_loop = false;
3475 VEC (gimple, heap) *new_phis = NULL;
3476 enum vect_def_type dt = vect_unknown_def_type;
3477 int j, i;
3478 VEC (tree, heap) *scalar_results = NULL;
3479 unsigned int group_size = 1, k, ratio;
3480 VEC (tree, heap) *vec_initial_defs = NULL;
3481 VEC (gimple, heap) *phis;
3482 bool slp_reduc = false;
3483 tree new_phi_result;
3485 if (slp_node)
3486 group_size = VEC_length (gimple, SLP_TREE_SCALAR_STMTS (slp_node));
3488 if (nested_in_vect_loop_p (loop, stmt))
3490 outer_loop = loop;
3491 loop = loop->inner;
3492 nested_in_vect_loop = true;
3493 gcc_assert (!slp_node);
3496 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3498 case GIMPLE_SINGLE_RHS:
3499 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3500 == ternary_op);
3501 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3502 break;
3503 case GIMPLE_UNARY_RHS:
3504 reduction_op = gimple_assign_rhs1 (stmt);
3505 break;
3506 case GIMPLE_BINARY_RHS:
3507 reduction_op = reduc_index ?
3508 gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt);
3509 break;
3510 case GIMPLE_TERNARY_RHS:
3511 reduction_op = gimple_op (stmt, reduc_index + 1);
3512 break;
3513 default:
3514 gcc_unreachable ();
3517 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3518 gcc_assert (vectype);
3519 mode = TYPE_MODE (vectype);
3521 /* 1. Create the reduction def-use cycle:
3522 Set the arguments of REDUCTION_PHIS, i.e., transform
3524 loop:
3525 vec_def = phi <null, null> # REDUCTION_PHI
3526 VECT_DEF = vector_stmt # vectorized form of STMT
3529 into:
3531 loop:
3532 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3533 VECT_DEF = vector_stmt # vectorized form of STMT
3536 (in case of SLP, do it for all the phis). */
3538 /* Get the loop-entry arguments. */
3539 if (slp_node)
3540 vect_get_vec_defs (reduction_op, NULL_TREE, stmt, &vec_initial_defs,
3541 NULL, slp_node, reduc_index);
3542 else
3544 vec_initial_defs = VEC_alloc (tree, heap, 1);
3545 /* For the case of reduction, vect_get_vec_def_for_operand returns
3546 the scalar def before the loop, that defines the initial value
3547 of the reduction variable. */
3548 vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
3549 &adjustment_def);
3550 VEC_quick_push (tree, vec_initial_defs, vec_initial_def);
3553 /* Set phi nodes arguments. */
3554 FOR_EACH_VEC_ELT (gimple, reduction_phis, i, phi)
3556 tree vec_init_def = VEC_index (tree, vec_initial_defs, i);
3557 tree def = VEC_index (tree, vect_defs, i);
3558 for (j = 0; j < ncopies; j++)
3560 /* Set the loop-entry arg of the reduction-phi. */
3561 add_phi_arg (phi, vec_init_def, loop_preheader_edge (loop),
3562 UNKNOWN_LOCATION);
3564 /* Set the loop-latch arg for the reduction-phi. */
3565 if (j > 0)
3566 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
3568 add_phi_arg (phi, def, loop_latch_edge (loop), UNKNOWN_LOCATION);
3570 if (vect_print_dump_info (REPORT_DETAILS))
3572 fprintf (vect_dump, "transform reduction: created def-use"
3573 " cycle: ");
3574 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
3575 fprintf (vect_dump, "\n");
3576 print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (def), 0,
3577 TDF_SLIM);
3580 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
3584 VEC_free (tree, heap, vec_initial_defs);
3586 /* 2. Create epilog code.
3587 The reduction epilog code operates across the elements of the vector
3588 of partial results computed by the vectorized loop.
3589 The reduction epilog code consists of:
3591 step 1: compute the scalar result in a vector (v_out2)
3592 step 2: extract the scalar result (s_out3) from the vector (v_out2)
3593 step 3: adjust the scalar result (s_out3) if needed.
3595 Step 1 can be accomplished using one the following three schemes:
3596 (scheme 1) using reduc_code, if available.
3597 (scheme 2) using whole-vector shifts, if available.
3598 (scheme 3) using a scalar loop. In this case steps 1+2 above are
3599 combined.
3601 The overall epilog code looks like this:
3603 s_out0 = phi <s_loop> # original EXIT_PHI
3604 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3605 v_out2 = reduce <v_out1> # step 1
3606 s_out3 = extract_field <v_out2, 0> # step 2
3607 s_out4 = adjust_result <s_out3> # step 3
3609 (step 3 is optional, and steps 1 and 2 may be combined).
3610 Lastly, the uses of s_out0 are replaced by s_out4. */
3613 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
3614 v_out1 = phi <VECT_DEF>
3615 Store them in NEW_PHIS. */
3617 exit_bb = single_exit (loop)->dest;
3618 prev_phi_info = NULL;
3619 new_phis = VEC_alloc (gimple, heap, VEC_length (tree, vect_defs));
3620 FOR_EACH_VEC_ELT (tree, vect_defs, i, def)
3622 for (j = 0; j < ncopies; j++)
3624 phi = create_phi_node (SSA_NAME_VAR (def), exit_bb);
3625 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
3626 if (j == 0)
3627 VEC_quick_push (gimple, new_phis, phi);
3628 else
3630 def = vect_get_vec_def_for_stmt_copy (dt, def);
3631 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
3634 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
3635 prev_phi_info = vinfo_for_stmt (phi);
3639 /* The epilogue is created for the outer-loop, i.e., for the loop being
3640 vectorized. */
3641 if (double_reduc)
3643 loop = outer_loop;
3644 exit_bb = single_exit (loop)->dest;
3647 exit_gsi = gsi_after_labels (exit_bb);
3649 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
3650 (i.e. when reduc_code is not available) and in the final adjustment
3651 code (if needed). Also get the original scalar reduction variable as
3652 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
3653 represents a reduction pattern), the tree-code and scalar-def are
3654 taken from the original stmt that the pattern-stmt (STMT) replaces.
3655 Otherwise (it is a regular reduction) - the tree-code and scalar-def
3656 are taken from STMT. */
3658 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3659 if (!orig_stmt)
3661 /* Regular reduction */
3662 orig_stmt = stmt;
3664 else
3666 /* Reduction pattern */
3667 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
3668 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
3669 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
3672 code = gimple_assign_rhs_code (orig_stmt);
3673 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
3674 partial results are added and not subtracted. */
3675 if (code == MINUS_EXPR)
3676 code = PLUS_EXPR;
3678 scalar_dest = gimple_assign_lhs (orig_stmt);
3679 scalar_type = TREE_TYPE (scalar_dest);
3680 scalar_results = VEC_alloc (tree, heap, group_size);
3681 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
3682 bitsize = TYPE_SIZE (scalar_type);
3684 /* In case this is a reduction in an inner-loop while vectorizing an outer
3685 loop - we don't need to extract a single scalar result at the end of the
3686 inner-loop (unless it is double reduction, i.e., the use of reduction is
3687 outside the outer-loop). The final vector of partial results will be used
3688 in the vectorized outer-loop, or reduced to a scalar result at the end of
3689 the outer-loop. */
3690 if (nested_in_vect_loop && !double_reduc)
3691 goto vect_finalize_reduction;
3693 /* SLP reduction without reduction chain, e.g.,
3694 # a1 = phi <a2, a0>
3695 # b1 = phi <b2, b0>
3696 a2 = operation (a1)
3697 b2 = operation (b1) */
3698 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
3700 /* In case of reduction chain, e.g.,
3701 # a1 = phi <a3, a0>
3702 a2 = operation (a1)
3703 a3 = operation (a2),
3705 we may end up with more than one vector result. Here we reduce them to
3706 one vector. */
3707 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
3709 tree first_vect = PHI_RESULT (VEC_index (gimple, new_phis, 0));
3710 tree tmp;
3711 gimple new_vec_stmt = NULL;
3713 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3714 for (k = 1; k < VEC_length (gimple, new_phis); k++)
3716 gimple next_phi = VEC_index (gimple, new_phis, k);
3717 tree second_vect = PHI_RESULT (next_phi);
3719 tmp = build2 (code, vectype, first_vect, second_vect);
3720 new_vec_stmt = gimple_build_assign (vec_dest, tmp);
3721 first_vect = make_ssa_name (vec_dest, new_vec_stmt);
3722 gimple_assign_set_lhs (new_vec_stmt, first_vect);
3723 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
3726 new_phi_result = first_vect;
3727 if (new_vec_stmt)
3729 VEC_truncate (gimple, new_phis, 0);
3730 VEC_safe_push (gimple, heap, new_phis, new_vec_stmt);
3733 else
3734 new_phi_result = PHI_RESULT (VEC_index (gimple, new_phis, 0));
3736 /* 2.3 Create the reduction code, using one of the three schemes described
3737 above. In SLP we simply need to extract all the elements from the
3738 vector (without reducing them), so we use scalar shifts. */
3739 if (reduc_code != ERROR_MARK && !slp_reduc)
3741 tree tmp;
3743 /*** Case 1: Create:
3744 v_out2 = reduc_expr <v_out1> */
3746 if (vect_print_dump_info (REPORT_DETAILS))
3747 fprintf (vect_dump, "Reduce using direct vector reduction.");
3749 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3750 tmp = build1 (reduc_code, vectype, new_phi_result);
3751 epilog_stmt = gimple_build_assign (vec_dest, tmp);
3752 new_temp = make_ssa_name (vec_dest, epilog_stmt);
3753 gimple_assign_set_lhs (epilog_stmt, new_temp);
3754 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3756 extract_scalar_result = true;
3758 else
3760 enum tree_code shift_code = ERROR_MARK;
3761 bool have_whole_vector_shift = true;
3762 int bit_offset;
3763 int element_bitsize = tree_low_cst (bitsize, 1);
3764 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
3765 tree vec_temp;
3767 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3768 shift_code = VEC_RSHIFT_EXPR;
3769 else
3770 have_whole_vector_shift = false;
3772 /* Regardless of whether we have a whole vector shift, if we're
3773 emulating the operation via tree-vect-generic, we don't want
3774 to use it. Only the first round of the reduction is likely
3775 to still be profitable via emulation. */
3776 /* ??? It might be better to emit a reduction tree code here, so that
3777 tree-vect-generic can expand the first round via bit tricks. */
3778 if (!VECTOR_MODE_P (mode))
3779 have_whole_vector_shift = false;
3780 else
3782 optab optab = optab_for_tree_code (code, vectype, optab_default);
3783 if (optab_handler (optab, mode) == CODE_FOR_nothing)
3784 have_whole_vector_shift = false;
3787 if (have_whole_vector_shift && !slp_reduc)
3789 /*** Case 2: Create:
3790 for (offset = VS/2; offset >= element_size; offset/=2)
3792 Create: va' = vec_shift <va, offset>
3793 Create: va = vop <va, va'>
3794 } */
3796 if (vect_print_dump_info (REPORT_DETAILS))
3797 fprintf (vect_dump, "Reduce using vector shifts");
3799 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3800 new_temp = new_phi_result;
3801 for (bit_offset = vec_size_in_bits/2;
3802 bit_offset >= element_bitsize;
3803 bit_offset /= 2)
3805 tree bitpos = size_int (bit_offset);
3807 epilog_stmt = gimple_build_assign_with_ops (shift_code,
3808 vec_dest, new_temp, bitpos);
3809 new_name = make_ssa_name (vec_dest, epilog_stmt);
3810 gimple_assign_set_lhs (epilog_stmt, new_name);
3811 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3813 epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
3814 new_name, new_temp);
3815 new_temp = make_ssa_name (vec_dest, epilog_stmt);
3816 gimple_assign_set_lhs (epilog_stmt, new_temp);
3817 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3820 extract_scalar_result = true;
3822 else
3824 tree rhs;
3826 /*** Case 3: Create:
3827 s = extract_field <v_out2, 0>
3828 for (offset = element_size;
3829 offset < vector_size;
3830 offset += element_size;)
3832 Create: s' = extract_field <v_out2, offset>
3833 Create: s = op <s, s'> // For non SLP cases
3834 } */
3836 if (vect_print_dump_info (REPORT_DETAILS))
3837 fprintf (vect_dump, "Reduce using scalar code. ");
3839 vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
3840 FOR_EACH_VEC_ELT (gimple, new_phis, i, new_phi)
3842 if (gimple_code (new_phi) == GIMPLE_PHI)
3843 vec_temp = PHI_RESULT (new_phi);
3844 else
3845 vec_temp = gimple_assign_lhs (new_phi);
3846 rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
3847 bitsize_zero_node);
3848 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
3849 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
3850 gimple_assign_set_lhs (epilog_stmt, new_temp);
3851 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3853 /* In SLP we don't need to apply reduction operation, so we just
3854 collect s' values in SCALAR_RESULTS. */
3855 if (slp_reduc)
3856 VEC_safe_push (tree, heap, scalar_results, new_temp);
3858 for (bit_offset = element_bitsize;
3859 bit_offset < vec_size_in_bits;
3860 bit_offset += element_bitsize)
3862 tree bitpos = bitsize_int (bit_offset);
3863 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
3864 bitsize, bitpos);
3866 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
3867 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
3868 gimple_assign_set_lhs (epilog_stmt, new_name);
3869 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3871 if (slp_reduc)
3873 /* In SLP we don't need to apply reduction operation, so
3874 we just collect s' values in SCALAR_RESULTS. */
3875 new_temp = new_name;
3876 VEC_safe_push (tree, heap, scalar_results, new_name);
3878 else
3880 epilog_stmt = gimple_build_assign_with_ops (code,
3881 new_scalar_dest, new_name, new_temp);
3882 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
3883 gimple_assign_set_lhs (epilog_stmt, new_temp);
3884 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3889 /* The only case where we need to reduce scalar results in SLP, is
3890 unrolling. If the size of SCALAR_RESULTS is greater than
3891 GROUP_SIZE, we reduce them combining elements modulo
3892 GROUP_SIZE. */
3893 if (slp_reduc)
3895 tree res, first_res, new_res;
3896 gimple new_stmt;
3898 /* Reduce multiple scalar results in case of SLP unrolling. */
3899 for (j = group_size; VEC_iterate (tree, scalar_results, j, res);
3900 j++)
3902 first_res = VEC_index (tree, scalar_results, j % group_size);
3903 new_stmt = gimple_build_assign_with_ops (code,
3904 new_scalar_dest, first_res, res);
3905 new_res = make_ssa_name (new_scalar_dest, new_stmt);
3906 gimple_assign_set_lhs (new_stmt, new_res);
3907 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
3908 VEC_replace (tree, scalar_results, j % group_size, new_res);
3911 else
3912 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
3913 VEC_safe_push (tree, heap, scalar_results, new_temp);
3915 extract_scalar_result = false;
3919 /* 2.4 Extract the final scalar result. Create:
3920 s_out3 = extract_field <v_out2, bitpos> */
3922 if (extract_scalar_result)
3924 tree rhs;
3926 if (vect_print_dump_info (REPORT_DETAILS))
3927 fprintf (vect_dump, "extract scalar result");
3929 if (BYTES_BIG_ENDIAN)
3930 bitpos = size_binop (MULT_EXPR,
3931 bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
3932 TYPE_SIZE (scalar_type));
3933 else
3934 bitpos = bitsize_zero_node;
3936 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
3937 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
3938 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
3939 gimple_assign_set_lhs (epilog_stmt, new_temp);
3940 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3941 VEC_safe_push (tree, heap, scalar_results, new_temp);
3944 vect_finalize_reduction:
3946 if (double_reduc)
3947 loop = loop->inner;
3949 /* 2.5 Adjust the final result by the initial value of the reduction
3950 variable. (When such adjustment is not needed, then
3951 'adjustment_def' is zero). For example, if code is PLUS we create:
3952 new_temp = loop_exit_def + adjustment_def */
3954 if (adjustment_def)
3956 gcc_assert (!slp_reduc);
3957 if (nested_in_vect_loop)
3959 new_phi = VEC_index (gimple, new_phis, 0);
3960 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
3961 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
3962 new_dest = vect_create_destination_var (scalar_dest, vectype);
3964 else
3966 new_temp = VEC_index (tree, scalar_results, 0);
3967 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
3968 expr = build2 (code, scalar_type, new_temp, adjustment_def);
3969 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
3972 epilog_stmt = gimple_build_assign (new_dest, expr);
3973 new_temp = make_ssa_name (new_dest, epilog_stmt);
3974 gimple_assign_set_lhs (epilog_stmt, new_temp);
3975 SSA_NAME_DEF_STMT (new_temp) = epilog_stmt;
3976 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3977 if (nested_in_vect_loop)
3979 set_vinfo_for_stmt (epilog_stmt,
3980 new_stmt_vec_info (epilog_stmt, loop_vinfo,
3981 NULL));
3982 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
3983 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
3985 if (!double_reduc)
3986 VEC_quick_push (tree, scalar_results, new_temp);
3987 else
3988 VEC_replace (tree, scalar_results, 0, new_temp);
3990 else
3991 VEC_replace (tree, scalar_results, 0, new_temp);
3993 VEC_replace (gimple, new_phis, 0, epilog_stmt);
3996 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
3997 phis with new adjusted scalar results, i.e., replace use <s_out0>
3998 with use <s_out4>.
4000 Transform:
4001 loop_exit:
4002 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4003 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4004 v_out2 = reduce <v_out1>
4005 s_out3 = extract_field <v_out2, 0>
4006 s_out4 = adjust_result <s_out3>
4007 use <s_out0>
4008 use <s_out0>
4010 into:
4012 loop_exit:
4013 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4014 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4015 v_out2 = reduce <v_out1>
4016 s_out3 = extract_field <v_out2, 0>
4017 s_out4 = adjust_result <s_out3>
4018 use <s_out4>
4019 use <s_out4> */
4022 /* In SLP reduction chain we reduce vector results into one vector if
4023 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
4024 the last stmt in the reduction chain, since we are looking for the loop
4025 exit phi node. */
4026 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4028 scalar_dest = gimple_assign_lhs (VEC_index (gimple,
4029 SLP_TREE_SCALAR_STMTS (slp_node),
4030 group_size - 1));
4031 group_size = 1;
4034 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
4035 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
4036 need to match SCALAR_RESULTS with corresponding statements. The first
4037 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
4038 the first vector stmt, etc.
4039 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
4040 if (group_size > VEC_length (gimple, new_phis))
4042 ratio = group_size / VEC_length (gimple, new_phis);
4043 gcc_assert (!(group_size % VEC_length (gimple, new_phis)));
4045 else
4046 ratio = 1;
4048 for (k = 0; k < group_size; k++)
4050 if (k % ratio == 0)
4052 epilog_stmt = VEC_index (gimple, new_phis, k / ratio);
4053 reduction_phi = VEC_index (gimple, reduction_phis, k / ratio);
4056 if (slp_reduc)
4058 gimple current_stmt = VEC_index (gimple,
4059 SLP_TREE_SCALAR_STMTS (slp_node), k);
4061 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
4062 /* SLP statements can't participate in patterns. */
4063 gcc_assert (!orig_stmt);
4064 scalar_dest = gimple_assign_lhs (current_stmt);
4067 phis = VEC_alloc (gimple, heap, 3);
4068 /* Find the loop-closed-use at the loop exit of the original scalar
4069 result. (The reduction result is expected to have two immediate uses -
4070 one at the latch block, and one at the loop exit). */
4071 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4072 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
4073 VEC_safe_push (gimple, heap, phis, USE_STMT (use_p));
4075 /* We expect to have found an exit_phi because of loop-closed-ssa
4076 form. */
4077 gcc_assert (!VEC_empty (gimple, phis));
4079 FOR_EACH_VEC_ELT (gimple, phis, i, exit_phi)
4081 if (outer_loop)
4083 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
4084 gimple vect_phi;
4086 /* FORNOW. Currently not supporting the case that an inner-loop
4087 reduction is not used in the outer-loop (but only outside the
4088 outer-loop), unless it is double reduction. */
4089 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
4090 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
4091 || double_reduc);
4093 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
4094 if (!double_reduc
4095 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
4096 != vect_double_reduction_def)
4097 continue;
4099 /* Handle double reduction:
4101 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
4102 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
4103 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
4104 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
4106 At that point the regular reduction (stmt2 and stmt3) is
4107 already vectorized, as well as the exit phi node, stmt4.
4108 Here we vectorize the phi node of double reduction, stmt1, and
4109 update all relevant statements. */
4111 /* Go through all the uses of s2 to find double reduction phi
4112 node, i.e., stmt1 above. */
4113 orig_name = PHI_RESULT (exit_phi);
4114 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4116 stmt_vec_info use_stmt_vinfo = vinfo_for_stmt (use_stmt);
4117 stmt_vec_info new_phi_vinfo;
4118 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
4119 basic_block bb = gimple_bb (use_stmt);
4120 gimple use;
4122 /* Check that USE_STMT is really double reduction phi
4123 node. */
4124 if (gimple_code (use_stmt) != GIMPLE_PHI
4125 || gimple_phi_num_args (use_stmt) != 2
4126 || !use_stmt_vinfo
4127 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
4128 != vect_double_reduction_def
4129 || bb->loop_father != outer_loop)
4130 continue;
4132 /* Create vector phi node for double reduction:
4133 vs1 = phi <vs0, vs2>
4134 vs1 was created previously in this function by a call to
4135 vect_get_vec_def_for_operand and is stored in
4136 vec_initial_def;
4137 vs2 is defined by EPILOG_STMT, the vectorized EXIT_PHI;
4138 vs0 is created here. */
4140 /* Create vector phi node. */
4141 vect_phi = create_phi_node (vec_initial_def, bb);
4142 new_phi_vinfo = new_stmt_vec_info (vect_phi,
4143 loop_vec_info_for_loop (outer_loop), NULL);
4144 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
4146 /* Create vs0 - initial def of the double reduction phi. */
4147 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
4148 loop_preheader_edge (outer_loop));
4149 init_def = get_initial_def_for_reduction (stmt,
4150 preheader_arg, NULL);
4151 vect_phi_init = vect_init_vector (use_stmt, init_def,
4152 vectype, NULL);
4154 /* Update phi node arguments with vs0 and vs2. */
4155 add_phi_arg (vect_phi, vect_phi_init,
4156 loop_preheader_edge (outer_loop),
4157 UNKNOWN_LOCATION);
4158 add_phi_arg (vect_phi, PHI_RESULT (epilog_stmt),
4159 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
4160 if (vect_print_dump_info (REPORT_DETAILS))
4162 fprintf (vect_dump, "created double reduction phi "
4163 "node: ");
4164 print_gimple_stmt (vect_dump, vect_phi, 0, TDF_SLIM);
4167 vect_phi_res = PHI_RESULT (vect_phi);
4169 /* Replace the use, i.e., set the correct vs1 in the regular
4170 reduction phi node. FORNOW, NCOPIES is always 1, so the
4171 loop is redundant. */
4172 use = reduction_phi;
4173 for (j = 0; j < ncopies; j++)
4175 edge pr_edge = loop_preheader_edge (loop);
4176 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
4177 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
4183 VEC_free (gimple, heap, phis);
4184 if (nested_in_vect_loop)
4186 if (double_reduc)
4187 loop = outer_loop;
4188 else
4189 continue;
4192 phis = VEC_alloc (gimple, heap, 3);
4193 /* Find the loop-closed-use at the loop exit of the original scalar
4194 result. (The reduction result is expected to have two immediate uses,
4195 one at the latch block, and one at the loop exit). For double
4196 reductions we are looking for exit phis of the outer loop. */
4197 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4199 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
4200 VEC_safe_push (gimple, heap, phis, USE_STMT (use_p));
4201 else
4203 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
4205 tree phi_res = PHI_RESULT (USE_STMT (use_p));
4207 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
4209 if (!flow_bb_inside_loop_p (loop,
4210 gimple_bb (USE_STMT (phi_use_p))))
4211 VEC_safe_push (gimple, heap, phis,
4212 USE_STMT (phi_use_p));
4218 FOR_EACH_VEC_ELT (gimple, phis, i, exit_phi)
4220 /* Replace the uses: */
4221 orig_name = PHI_RESULT (exit_phi);
4222 scalar_result = VEC_index (tree, scalar_results, k);
4223 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4224 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
4225 SET_USE (use_p, scalar_result);
4228 VEC_free (gimple, heap, phis);
4231 VEC_free (tree, heap, scalar_results);
4232 VEC_free (gimple, heap, new_phis);
4236 /* Function vectorizable_reduction.
4238 Check if STMT performs a reduction operation that can be vectorized.
4239 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4240 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
4241 Return FALSE if not a vectorizable STMT, TRUE otherwise.
4243 This function also handles reduction idioms (patterns) that have been
4244 recognized in advance during vect_pattern_recog. In this case, STMT may be
4245 of this form:
4246 X = pattern_expr (arg0, arg1, ..., X)
4247 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
4248 sequence that had been detected and replaced by the pattern-stmt (STMT).
4250 In some cases of reduction patterns, the type of the reduction variable X is
4251 different than the type of the other arguments of STMT.
4252 In such cases, the vectype that is used when transforming STMT into a vector
4253 stmt is different than the vectype that is used to determine the
4254 vectorization factor, because it consists of a different number of elements
4255 than the actual number of elements that are being operated upon in parallel.
4257 For example, consider an accumulation of shorts into an int accumulator.
4258 On some targets it's possible to vectorize this pattern operating on 8
4259 shorts at a time (hence, the vectype for purposes of determining the
4260 vectorization factor should be V8HI); on the other hand, the vectype that
4261 is used to create the vector form is actually V4SI (the type of the result).
4263 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
4264 indicates what is the actual level of parallelism (V8HI in the example), so
4265 that the right vectorization factor would be derived. This vectype
4266 corresponds to the type of arguments to the reduction stmt, and should *NOT*
4267 be used to create the vectorized stmt. The right vectype for the vectorized
4268 stmt is obtained from the type of the result X:
4269 get_vectype_for_scalar_type (TREE_TYPE (X))
4271 This means that, contrary to "regular" reductions (or "regular" stmts in
4272 general), the following equation:
4273 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
4274 does *NOT* necessarily hold for reduction patterns. */
4276 bool
4277 vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
4278 gimple *vec_stmt, slp_tree slp_node)
4280 tree vec_dest;
4281 tree scalar_dest;
4282 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
4283 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4284 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
4285 tree vectype_in = NULL_TREE;
4286 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4287 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4288 enum tree_code code, orig_code, epilog_reduc_code;
4289 enum machine_mode vec_mode;
4290 int op_type;
4291 optab optab, reduc_optab;
4292 tree new_temp = NULL_TREE;
4293 tree def;
4294 gimple def_stmt;
4295 enum vect_def_type dt;
4296 gimple new_phi = NULL;
4297 tree scalar_type;
4298 bool is_simple_use;
4299 gimple orig_stmt;
4300 stmt_vec_info orig_stmt_info;
4301 tree expr = NULL_TREE;
4302 int i;
4303 int ncopies;
4304 int epilog_copies;
4305 stmt_vec_info prev_stmt_info, prev_phi_info;
4306 bool single_defuse_cycle = false;
4307 tree reduc_def = NULL_TREE;
4308 gimple new_stmt = NULL;
4309 int j;
4310 tree ops[3];
4311 bool nested_cycle = false, found_nested_cycle_def = false;
4312 gimple reduc_def_stmt = NULL;
4313 /* The default is that the reduction variable is the last in statement. */
4314 int reduc_index = 2;
4315 bool double_reduc = false, dummy;
4316 basic_block def_bb;
4317 struct loop * def_stmt_loop, *outer_loop = NULL;
4318 tree def_arg;
4319 gimple def_arg_stmt;
4320 VEC (tree, heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL, *vect_defs = NULL;
4321 VEC (gimple, heap) *phis = NULL;
4322 int vec_num;
4323 tree def0, def1, tem, op0, op1 = NULL_TREE;
4325 /* In case of reduction chain we switch to the first stmt in the chain, but
4326 we don't update STMT_INFO, since only the last stmt is marked as reduction
4327 and has reduction properties. */
4328 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4329 stmt = GROUP_FIRST_ELEMENT (stmt_info);
4331 if (nested_in_vect_loop_p (loop, stmt))
4333 outer_loop = loop;
4334 loop = loop->inner;
4335 nested_cycle = true;
4338 /* 1. Is vectorizable reduction? */
4339 /* Not supportable if the reduction variable is used in the loop, unless
4340 it's a reduction chain. */
4341 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
4342 && !GROUP_FIRST_ELEMENT (stmt_info))
4343 return false;
4345 /* Reductions that are not used even in an enclosing outer-loop,
4346 are expected to be "live" (used out of the loop). */
4347 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
4348 && !STMT_VINFO_LIVE_P (stmt_info))
4349 return false;
4351 /* Make sure it was already recognized as a reduction computation. */
4352 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
4353 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
4354 return false;
4356 /* 2. Has this been recognized as a reduction pattern?
4358 Check if STMT represents a pattern that has been recognized
4359 in earlier analysis stages. For stmts that represent a pattern,
4360 the STMT_VINFO_RELATED_STMT field records the last stmt in
4361 the original sequence that constitutes the pattern. */
4363 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4364 if (orig_stmt)
4366 orig_stmt_info = vinfo_for_stmt (orig_stmt);
4367 gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt);
4368 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
4369 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
4372 /* 3. Check the operands of the operation. The first operands are defined
4373 inside the loop body. The last operand is the reduction variable,
4374 which is defined by the loop-header-phi. */
4376 gcc_assert (is_gimple_assign (stmt));
4378 /* Flatten RHS. */
4379 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
4381 case GIMPLE_SINGLE_RHS:
4382 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
4383 if (op_type == ternary_op)
4385 tree rhs = gimple_assign_rhs1 (stmt);
4386 ops[0] = TREE_OPERAND (rhs, 0);
4387 ops[1] = TREE_OPERAND (rhs, 1);
4388 ops[2] = TREE_OPERAND (rhs, 2);
4389 code = TREE_CODE (rhs);
4391 else
4392 return false;
4393 break;
4395 case GIMPLE_BINARY_RHS:
4396 code = gimple_assign_rhs_code (stmt);
4397 op_type = TREE_CODE_LENGTH (code);
4398 gcc_assert (op_type == binary_op);
4399 ops[0] = gimple_assign_rhs1 (stmt);
4400 ops[1] = gimple_assign_rhs2 (stmt);
4401 break;
4403 case GIMPLE_TERNARY_RHS:
4404 code = gimple_assign_rhs_code (stmt);
4405 op_type = TREE_CODE_LENGTH (code);
4406 gcc_assert (op_type == ternary_op);
4407 ops[0] = gimple_assign_rhs1 (stmt);
4408 ops[1] = gimple_assign_rhs2 (stmt);
4409 ops[2] = gimple_assign_rhs3 (stmt);
4410 break;
4412 case GIMPLE_UNARY_RHS:
4413 return false;
4415 default:
4416 gcc_unreachable ();
4419 if (code == COND_EXPR && slp_node)
4420 return false;
4422 scalar_dest = gimple_assign_lhs (stmt);
4423 scalar_type = TREE_TYPE (scalar_dest);
4424 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
4425 && !SCALAR_FLOAT_TYPE_P (scalar_type))
4426 return false;
4428 /* Do not try to vectorize bit-precision reductions. */
4429 if ((TYPE_PRECISION (scalar_type)
4430 != GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
4431 return false;
4433 /* All uses but the last are expected to be defined in the loop.
4434 The last use is the reduction variable. In case of nested cycle this
4435 assumption is not true: we use reduc_index to record the index of the
4436 reduction variable. */
4437 for (i = 0; i < op_type-1; i++)
4439 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
4440 if (i == 0 && code == COND_EXPR)
4441 continue;
4443 is_simple_use = vect_is_simple_use_1 (ops[i], loop_vinfo, NULL,
4444 &def_stmt, &def, &dt, &tem);
4445 if (!vectype_in)
4446 vectype_in = tem;
4447 gcc_assert (is_simple_use);
4449 if (dt != vect_internal_def
4450 && dt != vect_external_def
4451 && dt != vect_constant_def
4452 && dt != vect_induction_def
4453 && !(dt == vect_nested_cycle && nested_cycle))
4454 return false;
4456 if (dt == vect_nested_cycle)
4458 found_nested_cycle_def = true;
4459 reduc_def_stmt = def_stmt;
4460 reduc_index = i;
4464 is_simple_use = vect_is_simple_use_1 (ops[i], loop_vinfo, NULL, &def_stmt,
4465 &def, &dt, &tem);
4466 if (!vectype_in)
4467 vectype_in = tem;
4468 gcc_assert (is_simple_use);
4469 gcc_assert (dt == vect_reduction_def
4470 || dt == vect_nested_cycle
4471 || ((dt == vect_internal_def || dt == vect_external_def
4472 || dt == vect_constant_def || dt == vect_induction_def)
4473 && nested_cycle && found_nested_cycle_def));
4474 if (!found_nested_cycle_def)
4475 reduc_def_stmt = def_stmt;
4477 gcc_assert (gimple_code (reduc_def_stmt) == GIMPLE_PHI);
4478 if (orig_stmt)
4479 gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo,
4480 reduc_def_stmt,
4481 !nested_cycle,
4482 &dummy));
4483 else
4485 gimple tmp = vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
4486 !nested_cycle, &dummy);
4487 /* We changed STMT to be the first stmt in reduction chain, hence we
4488 check that in this case the first element in the chain is STMT. */
4489 gcc_assert (stmt == tmp
4490 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
4493 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
4494 return false;
4496 if (slp_node || PURE_SLP_STMT (stmt_info))
4497 ncopies = 1;
4498 else
4499 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4500 / TYPE_VECTOR_SUBPARTS (vectype_in));
4502 gcc_assert (ncopies >= 1);
4504 vec_mode = TYPE_MODE (vectype_in);
4506 if (code == COND_EXPR)
4508 if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0, NULL))
4510 if (vect_print_dump_info (REPORT_DETAILS))
4511 fprintf (vect_dump, "unsupported condition in reduction");
4513 return false;
4516 else
4518 /* 4. Supportable by target? */
4520 /* 4.1. check support for the operation in the loop */
4521 optab = optab_for_tree_code (code, vectype_in, optab_default);
4522 if (!optab)
4524 if (vect_print_dump_info (REPORT_DETAILS))
4525 fprintf (vect_dump, "no optab.");
4527 return false;
4530 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
4532 if (vect_print_dump_info (REPORT_DETAILS))
4533 fprintf (vect_dump, "op not supported by target.");
4535 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
4536 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4537 < vect_min_worthwhile_factor (code))
4538 return false;
4540 if (vect_print_dump_info (REPORT_DETAILS))
4541 fprintf (vect_dump, "proceeding using word mode.");
4544 /* Worthwhile without SIMD support? */
4545 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
4546 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4547 < vect_min_worthwhile_factor (code))
4549 if (vect_print_dump_info (REPORT_DETAILS))
4550 fprintf (vect_dump, "not worthwhile without SIMD support.");
4552 return false;
4556 /* 4.2. Check support for the epilog operation.
4558 If STMT represents a reduction pattern, then the type of the
4559 reduction variable may be different than the type of the rest
4560 of the arguments. For example, consider the case of accumulation
4561 of shorts into an int accumulator; The original code:
4562 S1: int_a = (int) short_a;
4563 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
4565 was replaced with:
4566 STMT: int_acc = widen_sum <short_a, int_acc>
4568 This means that:
4569 1. The tree-code that is used to create the vector operation in the
4570 epilog code (that reduces the partial results) is not the
4571 tree-code of STMT, but is rather the tree-code of the original
4572 stmt from the pattern that STMT is replacing. I.e, in the example
4573 above we want to use 'widen_sum' in the loop, but 'plus' in the
4574 epilog.
4575 2. The type (mode) we use to check available target support
4576 for the vector operation to be created in the *epilog*, is
4577 determined by the type of the reduction variable (in the example
4578 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
4579 However the type (mode) we use to check available target support
4580 for the vector operation to be created *inside the loop*, is
4581 determined by the type of the other arguments to STMT (in the
4582 example we'd check this: optab_handler (widen_sum_optab,
4583 vect_short_mode)).
4585 This is contrary to "regular" reductions, in which the types of all
4586 the arguments are the same as the type of the reduction variable.
4587 For "regular" reductions we can therefore use the same vector type
4588 (and also the same tree-code) when generating the epilog code and
4589 when generating the code inside the loop. */
4591 if (orig_stmt)
4593 /* This is a reduction pattern: get the vectype from the type of the
4594 reduction variable, and get the tree-code from orig_stmt. */
4595 orig_code = gimple_assign_rhs_code (orig_stmt);
4596 gcc_assert (vectype_out);
4597 vec_mode = TYPE_MODE (vectype_out);
4599 else
4601 /* Regular reduction: use the same vectype and tree-code as used for
4602 the vector code inside the loop can be used for the epilog code. */
4603 orig_code = code;
4606 if (nested_cycle)
4608 def_bb = gimple_bb (reduc_def_stmt);
4609 def_stmt_loop = def_bb->loop_father;
4610 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
4611 loop_preheader_edge (def_stmt_loop));
4612 if (TREE_CODE (def_arg) == SSA_NAME
4613 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
4614 && gimple_code (def_arg_stmt) == GIMPLE_PHI
4615 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
4616 && vinfo_for_stmt (def_arg_stmt)
4617 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
4618 == vect_double_reduction_def)
4619 double_reduc = true;
4622 epilog_reduc_code = ERROR_MARK;
4623 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
4625 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
4626 optab_default);
4627 if (!reduc_optab)
4629 if (vect_print_dump_info (REPORT_DETAILS))
4630 fprintf (vect_dump, "no optab for reduction.");
4632 epilog_reduc_code = ERROR_MARK;
4635 if (reduc_optab
4636 && optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
4638 if (vect_print_dump_info (REPORT_DETAILS))
4639 fprintf (vect_dump, "reduc op not supported by target.");
4641 epilog_reduc_code = ERROR_MARK;
4644 else
4646 if (!nested_cycle || double_reduc)
4648 if (vect_print_dump_info (REPORT_DETAILS))
4649 fprintf (vect_dump, "no reduc code for scalar code.");
4651 return false;
4655 if (double_reduc && ncopies > 1)
4657 if (vect_print_dump_info (REPORT_DETAILS))
4658 fprintf (vect_dump, "multiple types in double reduction");
4660 return false;
4663 /* In case of widenning multiplication by a constant, we update the type
4664 of the constant to be the type of the other operand. We check that the
4665 constant fits the type in the pattern recognition pass. */
4666 if (code == DOT_PROD_EXPR
4667 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
4669 if (TREE_CODE (ops[0]) == INTEGER_CST)
4670 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
4671 else if (TREE_CODE (ops[1]) == INTEGER_CST)
4672 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
4673 else
4675 if (vect_print_dump_info (REPORT_DETAILS))
4676 fprintf (vect_dump, "invalid types in dot-prod");
4678 return false;
4682 if (!vec_stmt) /* transformation not required. */
4684 if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
4685 return false;
4686 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
4687 return true;
4690 /** Transform. **/
4692 if (vect_print_dump_info (REPORT_DETAILS))
4693 fprintf (vect_dump, "transform reduction.");
4695 /* FORNOW: Multiple types are not supported for condition. */
4696 if (code == COND_EXPR)
4697 gcc_assert (ncopies == 1);
4699 /* Create the destination vector */
4700 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
4702 /* In case the vectorization factor (VF) is bigger than the number
4703 of elements that we can fit in a vectype (nunits), we have to generate
4704 more than one vector stmt - i.e - we need to "unroll" the
4705 vector stmt by a factor VF/nunits. For more details see documentation
4706 in vectorizable_operation. */
4708 /* If the reduction is used in an outer loop we need to generate
4709 VF intermediate results, like so (e.g. for ncopies=2):
4710 r0 = phi (init, r0)
4711 r1 = phi (init, r1)
4712 r0 = x0 + r0;
4713 r1 = x1 + r1;
4714 (i.e. we generate VF results in 2 registers).
4715 In this case we have a separate def-use cycle for each copy, and therefore
4716 for each copy we get the vector def for the reduction variable from the
4717 respective phi node created for this copy.
4719 Otherwise (the reduction is unused in the loop nest), we can combine
4720 together intermediate results, like so (e.g. for ncopies=2):
4721 r = phi (init, r)
4722 r = x0 + r;
4723 r = x1 + r;
4724 (i.e. we generate VF/2 results in a single register).
4725 In this case for each copy we get the vector def for the reduction variable
4726 from the vectorized reduction operation generated in the previous iteration.
4729 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
4731 single_defuse_cycle = true;
4732 epilog_copies = 1;
4734 else
4735 epilog_copies = ncopies;
4737 prev_stmt_info = NULL;
4738 prev_phi_info = NULL;
4739 if (slp_node)
4741 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
4742 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype_out)
4743 == TYPE_VECTOR_SUBPARTS (vectype_in));
4745 else
4747 vec_num = 1;
4748 vec_oprnds0 = VEC_alloc (tree, heap, 1);
4749 if (op_type == ternary_op)
4750 vec_oprnds1 = VEC_alloc (tree, heap, 1);
4753 phis = VEC_alloc (gimple, heap, vec_num);
4754 vect_defs = VEC_alloc (tree, heap, vec_num);
4755 if (!slp_node)
4756 VEC_quick_push (tree, vect_defs, NULL_TREE);
4758 for (j = 0; j < ncopies; j++)
4760 if (j == 0 || !single_defuse_cycle)
4762 for (i = 0; i < vec_num; i++)
4764 /* Create the reduction-phi that defines the reduction
4765 operand. */
4766 new_phi = create_phi_node (vec_dest, loop->header);
4767 set_vinfo_for_stmt (new_phi,
4768 new_stmt_vec_info (new_phi, loop_vinfo,
4769 NULL));
4770 if (j == 0 || slp_node)
4771 VEC_quick_push (gimple, phis, new_phi);
4775 if (code == COND_EXPR)
4777 gcc_assert (!slp_node);
4778 vectorizable_condition (stmt, gsi, vec_stmt,
4779 PHI_RESULT (VEC_index (gimple, phis, 0)),
4780 reduc_index, NULL);
4781 /* Multiple types are not supported for condition. */
4782 break;
4785 /* Handle uses. */
4786 if (j == 0)
4788 op0 = ops[!reduc_index];
4789 if (op_type == ternary_op)
4791 if (reduc_index == 0)
4792 op1 = ops[2];
4793 else
4794 op1 = ops[1];
4797 if (slp_node)
4798 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
4799 slp_node, -1);
4800 else
4802 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
4803 stmt, NULL);
4804 VEC_quick_push (tree, vec_oprnds0, loop_vec_def0);
4805 if (op_type == ternary_op)
4807 loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt,
4808 NULL);
4809 VEC_quick_push (tree, vec_oprnds1, loop_vec_def1);
4813 else
4815 if (!slp_node)
4817 enum vect_def_type dt;
4818 gimple dummy_stmt;
4819 tree dummy;
4821 vect_is_simple_use (ops[!reduc_index], loop_vinfo, NULL,
4822 &dummy_stmt, &dummy, &dt);
4823 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt,
4824 loop_vec_def0);
4825 VEC_replace (tree, vec_oprnds0, 0, loop_vec_def0);
4826 if (op_type == ternary_op)
4828 vect_is_simple_use (op1, loop_vinfo, NULL, &dummy_stmt,
4829 &dummy, &dt);
4830 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
4831 loop_vec_def1);
4832 VEC_replace (tree, vec_oprnds1, 0, loop_vec_def1);
4836 if (single_defuse_cycle)
4837 reduc_def = gimple_assign_lhs (new_stmt);
4839 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
4842 FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, def0)
4844 if (slp_node)
4845 reduc_def = PHI_RESULT (VEC_index (gimple, phis, i));
4846 else
4848 if (!single_defuse_cycle || j == 0)
4849 reduc_def = PHI_RESULT (new_phi);
4852 def1 = ((op_type == ternary_op)
4853 ? VEC_index (tree, vec_oprnds1, i) : NULL);
4854 if (op_type == binary_op)
4856 if (reduc_index == 0)
4857 expr = build2 (code, vectype_out, reduc_def, def0);
4858 else
4859 expr = build2 (code, vectype_out, def0, reduc_def);
4861 else
4863 if (reduc_index == 0)
4864 expr = build3 (code, vectype_out, reduc_def, def0, def1);
4865 else
4867 if (reduc_index == 1)
4868 expr = build3 (code, vectype_out, def0, reduc_def, def1);
4869 else
4870 expr = build3 (code, vectype_out, def0, def1, reduc_def);
4874 new_stmt = gimple_build_assign (vec_dest, expr);
4875 new_temp = make_ssa_name (vec_dest, new_stmt);
4876 gimple_assign_set_lhs (new_stmt, new_temp);
4877 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4879 if (slp_node)
4881 VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
4882 VEC_quick_push (tree, vect_defs, new_temp);
4884 else
4885 VEC_replace (tree, vect_defs, 0, new_temp);
4888 if (slp_node)
4889 continue;
4891 if (j == 0)
4892 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
4893 else
4894 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4896 prev_stmt_info = vinfo_for_stmt (new_stmt);
4897 prev_phi_info = vinfo_for_stmt (new_phi);
4900 /* Finalize the reduction-phi (set its arguments) and create the
4901 epilog reduction code. */
4902 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
4904 new_temp = gimple_assign_lhs (*vec_stmt);
4905 VEC_replace (tree, vect_defs, 0, new_temp);
4908 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
4909 epilog_reduc_code, phis, reduc_index,
4910 double_reduc, slp_node);
4912 VEC_free (gimple, heap, phis);
4913 VEC_free (tree, heap, vec_oprnds0);
4914 if (vec_oprnds1)
4915 VEC_free (tree, heap, vec_oprnds1);
4917 return true;
4920 /* Function vect_min_worthwhile_factor.
4922 For a loop where we could vectorize the operation indicated by CODE,
4923 return the minimum vectorization factor that makes it worthwhile
4924 to use generic vectors. */
4926 vect_min_worthwhile_factor (enum tree_code code)
4928 switch (code)
4930 case PLUS_EXPR:
4931 case MINUS_EXPR:
4932 case NEGATE_EXPR:
4933 return 4;
4935 case BIT_AND_EXPR:
4936 case BIT_IOR_EXPR:
4937 case BIT_XOR_EXPR:
4938 case BIT_NOT_EXPR:
4939 return 2;
4941 default:
4942 return INT_MAX;
4947 /* Function vectorizable_induction
4949 Check if PHI performs an induction computation that can be vectorized.
4950 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
4951 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
4952 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
4954 bool
4955 vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
4956 gimple *vec_stmt)
4958 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
4959 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4960 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4961 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4962 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
4963 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
4964 tree vec_def;
4966 gcc_assert (ncopies >= 1);
4967 /* FORNOW. This restriction should be relaxed. */
4968 if (nested_in_vect_loop_p (loop, phi) && ncopies > 1)
4970 if (vect_print_dump_info (REPORT_DETAILS))
4971 fprintf (vect_dump, "multiple types in nested loop.");
4972 return false;
4975 if (!STMT_VINFO_RELEVANT_P (stmt_info))
4976 return false;
4978 /* FORNOW: SLP not supported. */
4979 if (STMT_SLP_TYPE (stmt_info))
4980 return false;
4982 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
4984 if (gimple_code (phi) != GIMPLE_PHI)
4985 return false;
4987 if (!vec_stmt) /* transformation not required. */
4989 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
4990 if (vect_print_dump_info (REPORT_DETAILS))
4991 fprintf (vect_dump, "=== vectorizable_induction ===");
4992 vect_model_induction_cost (stmt_info, ncopies);
4993 return true;
4996 /** Transform. **/
4998 if (vect_print_dump_info (REPORT_DETAILS))
4999 fprintf (vect_dump, "transform induction phi.");
5001 vec_def = get_initial_def_for_induction (phi);
5002 *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
5003 return true;
5006 /* Function vectorizable_live_operation.
5008 STMT computes a value that is used outside the loop. Check if
5009 it can be supported. */
5011 bool
5012 vectorizable_live_operation (gimple stmt,
5013 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5014 gimple *vec_stmt ATTRIBUTE_UNUSED)
5016 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5017 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5018 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5019 int i;
5020 int op_type;
5021 tree op;
5022 tree def;
5023 gimple def_stmt;
5024 enum vect_def_type dt;
5025 enum tree_code code;
5026 enum gimple_rhs_class rhs_class;
5028 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
5030 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
5031 return false;
5033 if (!is_gimple_assign (stmt))
5034 return false;
5036 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
5037 return false;
5039 /* FORNOW. CHECKME. */
5040 if (nested_in_vect_loop_p (loop, stmt))
5041 return false;
5043 code = gimple_assign_rhs_code (stmt);
5044 op_type = TREE_CODE_LENGTH (code);
5045 rhs_class = get_gimple_rhs_class (code);
5046 gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
5047 gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
5049 /* FORNOW: support only if all uses are invariant. This means
5050 that the scalar operations can remain in place, unvectorized.
5051 The original last scalar value that they compute will be used. */
5053 for (i = 0; i < op_type; i++)
5055 if (rhs_class == GIMPLE_SINGLE_RHS)
5056 op = TREE_OPERAND (gimple_op (stmt, 1), i);
5057 else
5058 op = gimple_op (stmt, i + 1);
5059 if (op
5060 && !vect_is_simple_use (op, loop_vinfo, NULL, &def_stmt, &def, &dt))
5062 if (vect_print_dump_info (REPORT_DETAILS))
5063 fprintf (vect_dump, "use not simple.");
5064 return false;
5067 if (dt != vect_external_def && dt != vect_constant_def)
5068 return false;
5071 /* No transformation is required for the cases we currently support. */
5072 return true;
5075 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
5077 static void
5078 vect_loop_kill_debug_uses (struct loop *loop, gimple stmt)
5080 ssa_op_iter op_iter;
5081 imm_use_iterator imm_iter;
5082 def_operand_p def_p;
5083 gimple ustmt;
5085 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
5087 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
5089 basic_block bb;
5091 if (!is_gimple_debug (ustmt))
5092 continue;
5094 bb = gimple_bb (ustmt);
5096 if (!flow_bb_inside_loop_p (loop, bb))
5098 if (gimple_debug_bind_p (ustmt))
5100 if (vect_print_dump_info (REPORT_DETAILS))
5101 fprintf (vect_dump, "killing debug use");
5103 gimple_debug_bind_reset_value (ustmt);
5104 update_stmt (ustmt);
5106 else
5107 gcc_unreachable ();
5113 /* Function vect_transform_loop.
5115 The analysis phase has determined that the loop is vectorizable.
5116 Vectorize the loop - created vectorized stmts to replace the scalar
5117 stmts in the loop, and update the loop exit condition. */
5119 void
5120 vect_transform_loop (loop_vec_info loop_vinfo)
5122 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5123 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
5124 int nbbs = loop->num_nodes;
5125 gimple_stmt_iterator si;
5126 int i;
5127 tree ratio = NULL;
5128 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5129 bool strided_store;
5130 bool slp_scheduled = false;
5131 unsigned int nunits;
5132 tree cond_expr = NULL_TREE;
5133 gimple_seq cond_expr_stmt_list = NULL;
5134 bool do_peeling_for_loop_bound;
5135 gimple stmt, pattern_stmt, pattern_def_stmt;
5136 bool transform_pattern_stmt = false, pattern_def = false;
5138 if (vect_print_dump_info (REPORT_DETAILS))
5139 fprintf (vect_dump, "=== vec_transform_loop ===");
5141 /* Peel the loop if there are data refs with unknown alignment.
5142 Only one data ref with unknown store is allowed. */
5144 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
5145 vect_do_peeling_for_alignment (loop_vinfo);
5147 do_peeling_for_loop_bound
5148 = (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
5149 || (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
5150 && LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0)
5151 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo));
5153 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
5154 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
5155 vect_loop_versioning (loop_vinfo,
5156 !do_peeling_for_loop_bound,
5157 &cond_expr, &cond_expr_stmt_list);
5159 /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
5160 compile time constant), or it is a constant that doesn't divide by the
5161 vectorization factor, then an epilog loop needs to be created.
5162 We therefore duplicate the loop: the original loop will be vectorized,
5163 and will compute the first (n/VF) iterations. The second copy of the loop
5164 will remain scalar and will compute the remaining (n%VF) iterations.
5165 (VF is the vectorization factor). */
5167 if (do_peeling_for_loop_bound)
5168 vect_do_peeling_for_loop_bound (loop_vinfo, &ratio,
5169 cond_expr, cond_expr_stmt_list);
5170 else
5171 ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
5172 LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
5174 /* 1) Make sure the loop header has exactly two entries
5175 2) Make sure we have a preheader basic block. */
5177 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
5179 split_edge (loop_preheader_edge (loop));
5181 /* FORNOW: the vectorizer supports only loops which body consist
5182 of one basic block (header + empty latch). When the vectorizer will
5183 support more involved loop forms, the order by which the BBs are
5184 traversed need to be reconsidered. */
5186 for (i = 0; i < nbbs; i++)
5188 basic_block bb = bbs[i];
5189 stmt_vec_info stmt_info;
5190 gimple phi;
5192 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5194 phi = gsi_stmt (si);
5195 if (vect_print_dump_info (REPORT_DETAILS))
5197 fprintf (vect_dump, "------>vectorizing phi: ");
5198 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
5200 stmt_info = vinfo_for_stmt (phi);
5201 if (!stmt_info)
5202 continue;
5204 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5205 vect_loop_kill_debug_uses (loop, phi);
5207 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5208 && !STMT_VINFO_LIVE_P (stmt_info))
5209 continue;
5211 if ((TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
5212 != (unsigned HOST_WIDE_INT) vectorization_factor)
5213 && vect_print_dump_info (REPORT_DETAILS))
5214 fprintf (vect_dump, "multiple-types.");
5216 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
5218 if (vect_print_dump_info (REPORT_DETAILS))
5219 fprintf (vect_dump, "transform phi.");
5220 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
5224 pattern_stmt = NULL;
5225 for (si = gsi_start_bb (bb); !gsi_end_p (si) || transform_pattern_stmt;)
5227 bool is_store;
5229 if (transform_pattern_stmt)
5231 stmt = pattern_stmt;
5232 transform_pattern_stmt = false;
5234 else
5235 stmt = gsi_stmt (si);
5237 if (vect_print_dump_info (REPORT_DETAILS))
5239 fprintf (vect_dump, "------>vectorizing statement: ");
5240 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
5243 stmt_info = vinfo_for_stmt (stmt);
5245 /* vector stmts created in the outer-loop during vectorization of
5246 stmts in an inner-loop may not have a stmt_info, and do not
5247 need to be vectorized. */
5248 if (!stmt_info)
5250 gsi_next (&si);
5251 continue;
5254 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5255 vect_loop_kill_debug_uses (loop, stmt);
5257 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5258 && !STMT_VINFO_LIVE_P (stmt_info))
5260 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5261 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5262 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5263 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5265 stmt = pattern_stmt;
5266 stmt_info = vinfo_for_stmt (stmt);
5268 else
5270 gsi_next (&si);
5271 continue;
5274 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5275 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5276 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5277 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5278 transform_pattern_stmt = true;
5280 /* If pattern statement has a def stmt, vectorize it too. */
5281 if (is_pattern_stmt_p (stmt_info)
5282 && (pattern_def_stmt = STMT_VINFO_PATTERN_DEF_STMT (stmt_info))
5283 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_def_stmt))
5284 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_def_stmt))))
5286 if (pattern_def)
5287 pattern_def = false;
5288 else
5290 if (vect_print_dump_info (REPORT_DETAILS))
5292 fprintf (vect_dump, "==> vectorizing pattern def"
5293 " stmt: ");
5294 print_gimple_stmt (vect_dump, pattern_def_stmt, 0,
5295 TDF_SLIM);
5298 pattern_def = true;
5299 stmt = pattern_def_stmt;
5300 stmt_info = vinfo_for_stmt (stmt);
5304 gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
5305 nunits = (unsigned int) TYPE_VECTOR_SUBPARTS (
5306 STMT_VINFO_VECTYPE (stmt_info));
5307 if (!STMT_SLP_TYPE (stmt_info)
5308 && nunits != (unsigned int) vectorization_factor
5309 && vect_print_dump_info (REPORT_DETAILS))
5310 /* For SLP VF is set according to unrolling factor, and not to
5311 vector size, hence for SLP this print is not valid. */
5312 fprintf (vect_dump, "multiple-types.");
5314 /* SLP. Schedule all the SLP instances when the first SLP stmt is
5315 reached. */
5316 if (STMT_SLP_TYPE (stmt_info))
5318 if (!slp_scheduled)
5320 slp_scheduled = true;
5322 if (vect_print_dump_info (REPORT_DETAILS))
5323 fprintf (vect_dump, "=== scheduling SLP instances ===");
5325 vect_schedule_slp (loop_vinfo, NULL);
5328 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
5329 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
5331 if (!transform_pattern_stmt && !pattern_def)
5332 gsi_next (&si);
5333 continue;
5337 /* -------- vectorize statement ------------ */
5338 if (vect_print_dump_info (REPORT_DETAILS))
5339 fprintf (vect_dump, "transform statement.");
5341 strided_store = false;
5342 is_store = vect_transform_stmt (stmt, &si, &strided_store, NULL, NULL);
5343 if (is_store)
5345 if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
5347 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
5348 interleaving chain was completed - free all the stores in
5349 the chain. */
5350 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
5351 gsi_remove (&si, true);
5352 continue;
5354 else
5356 /* Free the attached stmt_vec_info and remove the stmt. */
5357 free_stmt_vec_info (stmt);
5358 gsi_remove (&si, true);
5359 continue;
5363 if (!transform_pattern_stmt && !pattern_def)
5364 gsi_next (&si);
5365 } /* stmts in BB */
5366 } /* BBs in loop */
5368 slpeel_make_loop_iterate_ntimes (loop, ratio);
5370 /* The memory tags and pointers in vectorized statements need to
5371 have their SSA forms updated. FIXME, why can't this be delayed
5372 until all the loops have been transformed? */
5373 update_ssa (TODO_update_ssa);
5375 if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
5376 fprintf (vect_dump, "LOOP VECTORIZED.");
5377 if (loop->inner && vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
5378 fprintf (vect_dump, "OUTER LOOP VECTORIZED.");