make __stl_prime_list in comdat
[official-gcc.git] / gcc / ipa-inline.h
blob6df7867b019ca37d874f0cd0e1b7422b296ccf14
1 /* Inlining decision heuristics.
2 Copyright (C) 2003, 2004, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Representation of inline parameters that do depend on context function is
23 inlined into (i.e. known constant values of function parameters.
25 Conditions that are interesting for function body are collected into CONDS
26 vector. They are of simple for function_param OP VAL, where VAL is
27 IPA invariant. The conditions are then refered by predicates. */
29 typedef struct GTY(()) condition
31 tree val;
32 int operand_num;
33 enum tree_code code;
34 } condition;
36 DEF_VEC_O (condition);
37 DEF_VEC_ALLOC_O (condition, gc);
39 typedef VEC(condition,gc) *conditions;
41 /* Representation of predicates i.e. formulas using conditions defined
42 above. Predicates are simple logical formulas in conjunctive-disjunctive
43 form.
45 Predicate is array of clauses terminated by 0. Every clause must be true
46 in order to make predicate true.
47 Clauses are represented as bitmaps of conditions. One of conditions
48 must be true in order for clause to be true. */
50 #define MAX_CLAUSES 8
51 typedef unsigned int clause_t;
52 struct GTY(()) predicate
54 clause_t clause[MAX_CLAUSES + 1];
57 /* Represnetation of function body size and time depending on the inline
58 context. We keep simple array of record, every containing of predicate
59 and time/size to account.
61 We keep values scaled up, so fractional sizes and times can be
62 accounted. */
63 #define INLINE_SIZE_SCALE 2
64 #define INLINE_TIME_SCALE (CGRAPH_FREQ_BASE * 2)
65 typedef struct GTY(()) size_time_entry
67 struct predicate predicate;
68 int size;
69 int time;
70 } size_time_entry;
71 DEF_VEC_O (size_time_entry);
72 DEF_VEC_ALLOC_O (size_time_entry, gc);
74 /* Function inlining information. */
75 struct GTY(()) inline_summary
77 /* Information about the function body itself. */
79 /* Estimated stack frame consumption by the function. */
80 HOST_WIDE_INT estimated_self_stack_size;
81 /* Size of the function body. */
82 int self_size;
83 /* Time of the function body. */
84 int self_time;
86 /* False when there something makes inlining impossible (such as va_arg). */
87 unsigned inlinable : 1;
89 /* Information about function that will result after applying all the
90 inline decisions present in the callgraph. Generally kept up to
91 date only for functions that are not inline clones. */
93 /* Estimated stack frame consumption by the function. */
94 HOST_WIDE_INT estimated_stack_size;
95 /* Expected offset of the stack frame of inlined function. */
96 HOST_WIDE_INT stack_frame_offset;
97 /* Estimated size of the function after inlining. */
98 int time;
99 int size;
101 /* Conditional size/time information. The summaries are being
102 merged during inlining. */
103 conditions conds;
104 VEC(size_time_entry,gc) *entry;
108 typedef struct inline_summary inline_summary_t;
109 DEF_VEC_O(inline_summary_t);
110 DEF_VEC_ALLOC_O(inline_summary_t,gc);
111 extern GTY(()) VEC(inline_summary_t,gc) *inline_summary_vec;
113 /* Information kept about parameter of call site. */
114 struct inline_param_summary
116 /* REG_BR_PROB_BASE based probability that parameter will change in between
117 two invocation of the calls.
118 I.e. loop invariant parameters
119 REG_BR_PROB_BASE/estimated_iterations and regular
120 parameters REG_BR_PROB_BASE.
122 Value 0 is reserved for compile time invariants. */
123 int change_prob;
125 typedef struct inline_param_summary inline_param_summary_t;
126 DEF_VEC_O(inline_param_summary_t);
127 DEF_VEC_ALLOC_O(inline_param_summary_t,heap);
129 /* Information kept about callgraph edges. */
130 struct inline_edge_summary
132 /* Estimated size and time of the call statement. */
133 int call_stmt_size;
134 int call_stmt_time;
135 /* Depth of loop nest, 0 means no nesting. */
136 unsigned short int loop_depth;
137 struct predicate *predicate;
138 /* Array indexed by parameters.
139 0 means that parameter change all the time, REG_BR_PROB_BASE means
140 that parameter is constant. */
141 VEC (inline_param_summary_t, heap) *param;
144 typedef struct inline_edge_summary inline_edge_summary_t;
145 DEF_VEC_O(inline_edge_summary_t);
146 DEF_VEC_ALLOC_O(inline_edge_summary_t,heap);
147 extern VEC(inline_edge_summary_t,heap) *inline_edge_summary_vec;
149 typedef struct edge_growth_cache_entry
151 int time, size;
152 } edge_growth_cache_entry;
153 DEF_VEC_O(edge_growth_cache_entry);
154 DEF_VEC_ALLOC_O(edge_growth_cache_entry,heap);
156 extern VEC(int,heap) *node_growth_cache;
157 extern VEC(edge_growth_cache_entry,heap) *edge_growth_cache;
159 /* In ipa-inline-analysis.c */
160 void debug_inline_summary (struct cgraph_node *);
161 void dump_inline_summaries (FILE *f);
162 void dump_inline_summary (FILE * f, struct cgraph_node *node);
163 void inline_generate_summary (void);
164 void inline_read_summary (void);
165 void inline_write_summary (cgraph_node_set, varpool_node_set);
166 void inline_free_summary (void);
167 void initialize_inline_failed (struct cgraph_edge *);
168 int estimate_time_after_inlining (struct cgraph_node *, struct cgraph_edge *);
169 int estimate_size_after_inlining (struct cgraph_node *, struct cgraph_edge *);
170 void estimate_ipcp_clone_size_and_time (struct cgraph_node *,
171 VEC (tree, heap) *known_vals,
172 int *, int *);
173 int do_estimate_growth (struct cgraph_node *);
174 void inline_merge_summary (struct cgraph_edge *edge);
175 int do_estimate_edge_growth (struct cgraph_edge *edge);
176 int do_estimate_edge_time (struct cgraph_edge *edge);
177 void initialize_growth_caches (void);
178 void free_growth_caches (void);
179 void compute_inline_parameters (struct cgraph_node *, bool);
181 /* In ipa-inline-transform.c */
182 bool inline_call (struct cgraph_edge *, bool, VEC (cgraph_edge_p, heap) **, int *);
183 unsigned int inline_transform (struct cgraph_node *);
184 void clone_inlined_nodes (struct cgraph_edge *e, bool, bool, int *);
186 extern int ncalls_inlined;
187 extern int nfunctions_inlined;
189 static inline struct inline_summary *
190 inline_summary (struct cgraph_node *node)
192 return VEC_index (inline_summary_t, inline_summary_vec, node->uid);
195 static inline struct inline_edge_summary *
196 inline_edge_summary (struct cgraph_edge *edge)
198 return VEC_index (inline_edge_summary_t,
199 inline_edge_summary_vec, edge->uid);
202 /* Return estimated unit growth after inlning all calls to NODE.
203 Quick accesors to the inline growth caches.
204 For convenience we keep zero 0 as unknown. Because growth
205 can be both positive and negative, we simply increase positive
206 growths by 1. */
207 static inline int
208 estimate_growth (struct cgraph_node *node)
210 int ret;
211 if ((int)VEC_length (int, node_growth_cache) <= node->uid
212 || !(ret = VEC_index (int, node_growth_cache, node->uid)))
213 return do_estimate_growth (node);
214 return ret - (ret > 0);
218 /* Return estimated callee growth after inlining EDGE. */
220 static inline int
221 estimate_edge_growth (struct cgraph_edge *edge)
223 int ret;
224 if ((int)VEC_length (edge_growth_cache_entry, edge_growth_cache) <= edge->uid
225 || !(ret = VEC_index (edge_growth_cache_entry,
226 edge_growth_cache,
227 edge->uid)->size))
228 return do_estimate_edge_growth (edge);
229 return ret - (ret > 0);
233 /* Return estimated callee runtime increase after inlning
234 EDGE. */
236 static inline int
237 estimate_edge_time (struct cgraph_edge *edge)
239 int ret;
240 if ((int)VEC_length (edge_growth_cache_entry, edge_growth_cache) <= edge->uid
241 || !(ret = VEC_index (edge_growth_cache_entry,
242 edge_growth_cache,
243 edge->uid)->time))
244 return do_estimate_edge_time (edge);
245 return ret - (ret > 0);
249 /* Reset cached value for NODE. */
251 static inline void
252 reset_node_growth_cache (struct cgraph_node *node)
254 if ((int)VEC_length (int, node_growth_cache) > node->uid)
255 VEC_replace (int, node_growth_cache, node->uid, 0);
258 /* Reset cached value for EDGE. */
260 static inline void
261 reset_edge_growth_cache (struct cgraph_edge *edge)
263 if ((int)VEC_length (edge_growth_cache_entry, edge_growth_cache) > edge->uid)
265 struct edge_growth_cache_entry zero = {0, 0};
266 VEC_replace (edge_growth_cache_entry, edge_growth_cache, edge->uid, &zero);