make __stl_prime_list in comdat
[official-gcc.git] / gcc / fold-const.c
blobe4c258903f7660acbfd9bcd52dd2cb6794c7523a
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /*@@ This file should be rewritten to use an arbitrary precision
23 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
24 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
25 @@ The routines that translate from the ap rep should
26 @@ warn if precision et. al. is lost.
27 @@ This would also make life easier when this technology is used
28 @@ for cross-compilers. */
30 /* The entry points in this file are fold, size_int_wide and size_binop.
32 fold takes a tree as argument and returns a simplified tree.
34 size_binop takes a tree code for an arithmetic operation
35 and two operands that are trees, and produces a tree for the
36 result, assuming the type comes from `sizetype'.
38 size_int takes an integer value, and creates a tree constant
39 with type from `sizetype'.
41 Note: Since the folders get called on non-gimple code as well as
42 gimple code, we need to handle GIMPLE tuples as well as their
43 corresponding tree equivalents. */
45 #include "config.h"
46 #include "system.h"
47 #include "coretypes.h"
48 #include "tm.h"
49 #include "flags.h"
50 #include "tree.h"
51 #include "realmpfr.h"
52 #include "rtl.h"
53 #include "expr.h"
54 #include "tm_p.h"
55 #include "target.h"
56 #include "diagnostic-core.h"
57 #include "intl.h"
58 #include "ggc.h"
59 #include "hashtab.h"
60 #include "langhooks.h"
61 #include "md5.h"
62 #include "gimple.h"
63 #include "tree-flow.h"
65 /* Nonzero if we are folding constants inside an initializer; zero
66 otherwise. */
67 int folding_initializer = 0;
69 /* The following constants represent a bit based encoding of GCC's
70 comparison operators. This encoding simplifies transformations
71 on relational comparison operators, such as AND and OR. */
72 enum comparison_code {
73 COMPCODE_FALSE = 0,
74 COMPCODE_LT = 1,
75 COMPCODE_EQ = 2,
76 COMPCODE_LE = 3,
77 COMPCODE_GT = 4,
78 COMPCODE_LTGT = 5,
79 COMPCODE_GE = 6,
80 COMPCODE_ORD = 7,
81 COMPCODE_UNORD = 8,
82 COMPCODE_UNLT = 9,
83 COMPCODE_UNEQ = 10,
84 COMPCODE_UNLE = 11,
85 COMPCODE_UNGT = 12,
86 COMPCODE_NE = 13,
87 COMPCODE_UNGE = 14,
88 COMPCODE_TRUE = 15
91 static bool negate_mathfn_p (enum built_in_function);
92 static bool negate_expr_p (tree);
93 static tree negate_expr (tree);
94 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
95 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
96 static tree const_binop (enum tree_code, tree, tree);
97 static enum comparison_code comparison_to_compcode (enum tree_code);
98 static enum tree_code compcode_to_comparison (enum comparison_code);
99 static int operand_equal_for_comparison_p (tree, tree, tree);
100 static int twoval_comparison_p (tree, tree *, tree *, int *);
101 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
102 static tree pedantic_omit_one_operand_loc (location_t, tree, tree, tree);
103 static tree distribute_bit_expr (location_t, enum tree_code, tree, tree, tree);
104 static tree make_bit_field_ref (location_t, tree, tree,
105 HOST_WIDE_INT, HOST_WIDE_INT, int);
106 static tree optimize_bit_field_compare (location_t, enum tree_code,
107 tree, tree, tree);
108 static tree decode_field_reference (location_t, tree, HOST_WIDE_INT *,
109 HOST_WIDE_INT *,
110 enum machine_mode *, int *, int *,
111 tree *, tree *);
112 static int all_ones_mask_p (const_tree, int);
113 static tree sign_bit_p (tree, const_tree);
114 static int simple_operand_p (const_tree);
115 static bool simple_operand_p_2 (tree);
116 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
117 static tree range_predecessor (tree);
118 static tree range_successor (tree);
119 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
120 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
121 static tree unextend (tree, int, int, tree);
122 static tree optimize_minmax_comparison (location_t, enum tree_code,
123 tree, tree, tree);
124 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
125 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
126 static tree fold_binary_op_with_conditional_arg (location_t,
127 enum tree_code, tree,
128 tree, tree,
129 tree, tree, int);
130 static tree fold_mathfn_compare (location_t,
131 enum built_in_function, enum tree_code,
132 tree, tree, tree);
133 static tree fold_inf_compare (location_t, enum tree_code, tree, tree, tree);
134 static tree fold_div_compare (location_t, enum tree_code, tree, tree, tree);
135 static bool reorder_operands_p (const_tree, const_tree);
136 static tree fold_negate_const (tree, tree);
137 static tree fold_not_const (const_tree, tree);
138 static tree fold_relational_const (enum tree_code, tree, tree, tree);
139 static tree fold_convert_const (enum tree_code, tree, tree);
141 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
142 Otherwise, return LOC. */
144 static location_t
145 expr_location_or (tree t, location_t loc)
147 location_t tloc = EXPR_LOCATION (t);
148 return tloc != UNKNOWN_LOCATION ? tloc : loc;
151 /* Similar to protected_set_expr_location, but never modify x in place,
152 if location can and needs to be set, unshare it. */
154 static inline tree
155 protected_set_expr_location_unshare (tree x, location_t loc)
157 if (CAN_HAVE_LOCATION_P (x)
158 && EXPR_LOCATION (x) != loc
159 && !(TREE_CODE (x) == SAVE_EXPR
160 || TREE_CODE (x) == TARGET_EXPR
161 || TREE_CODE (x) == BIND_EXPR))
163 x = copy_node (x);
164 SET_EXPR_LOCATION (x, loc);
166 return x;
170 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
171 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
172 and SUM1. Then this yields nonzero if overflow occurred during the
173 addition.
175 Overflow occurs if A and B have the same sign, but A and SUM differ in
176 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
177 sign. */
178 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
180 /* If ARG2 divides ARG1 with zero remainder, carries out the division
181 of type CODE and returns the quotient.
182 Otherwise returns NULL_TREE. */
184 tree
185 div_if_zero_remainder (enum tree_code code, const_tree arg1, const_tree arg2)
187 double_int quo, rem;
188 int uns;
190 /* The sign of the division is according to operand two, that
191 does the correct thing for POINTER_PLUS_EXPR where we want
192 a signed division. */
193 uns = TYPE_UNSIGNED (TREE_TYPE (arg2));
194 if (TREE_CODE (TREE_TYPE (arg2)) == INTEGER_TYPE
195 && TYPE_IS_SIZETYPE (TREE_TYPE (arg2)))
196 uns = false;
198 quo = double_int_divmod (tree_to_double_int (arg1),
199 tree_to_double_int (arg2),
200 uns, code, &rem);
202 if (double_int_zero_p (rem))
203 return build_int_cst_wide (TREE_TYPE (arg1), quo.low, quo.high);
205 return NULL_TREE;
208 /* This is nonzero if we should defer warnings about undefined
209 overflow. This facility exists because these warnings are a
210 special case. The code to estimate loop iterations does not want
211 to issue any warnings, since it works with expressions which do not
212 occur in user code. Various bits of cleanup code call fold(), but
213 only use the result if it has certain characteristics (e.g., is a
214 constant); that code only wants to issue a warning if the result is
215 used. */
217 static int fold_deferring_overflow_warnings;
219 /* If a warning about undefined overflow is deferred, this is the
220 warning. Note that this may cause us to turn two warnings into
221 one, but that is fine since it is sufficient to only give one
222 warning per expression. */
224 static const char* fold_deferred_overflow_warning;
226 /* If a warning about undefined overflow is deferred, this is the
227 level at which the warning should be emitted. */
229 static enum warn_strict_overflow_code fold_deferred_overflow_code;
231 /* Start deferring overflow warnings. We could use a stack here to
232 permit nested calls, but at present it is not necessary. */
234 void
235 fold_defer_overflow_warnings (void)
237 ++fold_deferring_overflow_warnings;
240 /* Stop deferring overflow warnings. If there is a pending warning,
241 and ISSUE is true, then issue the warning if appropriate. STMT is
242 the statement with which the warning should be associated (used for
243 location information); STMT may be NULL. CODE is the level of the
244 warning--a warn_strict_overflow_code value. This function will use
245 the smaller of CODE and the deferred code when deciding whether to
246 issue the warning. CODE may be zero to mean to always use the
247 deferred code. */
249 void
250 fold_undefer_overflow_warnings (bool issue, const_gimple stmt, int code)
252 const char *warnmsg;
253 location_t locus;
255 gcc_assert (fold_deferring_overflow_warnings > 0);
256 --fold_deferring_overflow_warnings;
257 if (fold_deferring_overflow_warnings > 0)
259 if (fold_deferred_overflow_warning != NULL
260 && code != 0
261 && code < (int) fold_deferred_overflow_code)
262 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
263 return;
266 warnmsg = fold_deferred_overflow_warning;
267 fold_deferred_overflow_warning = NULL;
269 if (!issue || warnmsg == NULL)
270 return;
272 if (gimple_no_warning_p (stmt))
273 return;
275 /* Use the smallest code level when deciding to issue the
276 warning. */
277 if (code == 0 || code > (int) fold_deferred_overflow_code)
278 code = fold_deferred_overflow_code;
280 if (!issue_strict_overflow_warning (code))
281 return;
283 if (stmt == NULL)
284 locus = input_location;
285 else
286 locus = gimple_location (stmt);
287 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
290 /* Stop deferring overflow warnings, ignoring any deferred
291 warnings. */
293 void
294 fold_undefer_and_ignore_overflow_warnings (void)
296 fold_undefer_overflow_warnings (false, NULL, 0);
299 /* Whether we are deferring overflow warnings. */
301 bool
302 fold_deferring_overflow_warnings_p (void)
304 return fold_deferring_overflow_warnings > 0;
307 /* This is called when we fold something based on the fact that signed
308 overflow is undefined. */
310 static void
311 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
313 if (fold_deferring_overflow_warnings > 0)
315 if (fold_deferred_overflow_warning == NULL
316 || wc < fold_deferred_overflow_code)
318 fold_deferred_overflow_warning = gmsgid;
319 fold_deferred_overflow_code = wc;
322 else if (issue_strict_overflow_warning (wc))
323 warning (OPT_Wstrict_overflow, gmsgid);
326 /* Return true if the built-in mathematical function specified by CODE
327 is odd, i.e. -f(x) == f(-x). */
329 static bool
330 negate_mathfn_p (enum built_in_function code)
332 switch (code)
334 CASE_FLT_FN (BUILT_IN_ASIN):
335 CASE_FLT_FN (BUILT_IN_ASINH):
336 CASE_FLT_FN (BUILT_IN_ATAN):
337 CASE_FLT_FN (BUILT_IN_ATANH):
338 CASE_FLT_FN (BUILT_IN_CASIN):
339 CASE_FLT_FN (BUILT_IN_CASINH):
340 CASE_FLT_FN (BUILT_IN_CATAN):
341 CASE_FLT_FN (BUILT_IN_CATANH):
342 CASE_FLT_FN (BUILT_IN_CBRT):
343 CASE_FLT_FN (BUILT_IN_CPROJ):
344 CASE_FLT_FN (BUILT_IN_CSIN):
345 CASE_FLT_FN (BUILT_IN_CSINH):
346 CASE_FLT_FN (BUILT_IN_CTAN):
347 CASE_FLT_FN (BUILT_IN_CTANH):
348 CASE_FLT_FN (BUILT_IN_ERF):
349 CASE_FLT_FN (BUILT_IN_LLROUND):
350 CASE_FLT_FN (BUILT_IN_LROUND):
351 CASE_FLT_FN (BUILT_IN_ROUND):
352 CASE_FLT_FN (BUILT_IN_SIN):
353 CASE_FLT_FN (BUILT_IN_SINH):
354 CASE_FLT_FN (BUILT_IN_TAN):
355 CASE_FLT_FN (BUILT_IN_TANH):
356 CASE_FLT_FN (BUILT_IN_TRUNC):
357 return true;
359 CASE_FLT_FN (BUILT_IN_LLRINT):
360 CASE_FLT_FN (BUILT_IN_LRINT):
361 CASE_FLT_FN (BUILT_IN_NEARBYINT):
362 CASE_FLT_FN (BUILT_IN_RINT):
363 return !flag_rounding_math;
365 default:
366 break;
368 return false;
371 /* Check whether we may negate an integer constant T without causing
372 overflow. */
374 bool
375 may_negate_without_overflow_p (const_tree t)
377 unsigned HOST_WIDE_INT val;
378 unsigned int prec;
379 tree type;
381 gcc_assert (TREE_CODE (t) == INTEGER_CST);
383 type = TREE_TYPE (t);
384 if (TYPE_UNSIGNED (type))
385 return false;
387 prec = TYPE_PRECISION (type);
388 if (prec > HOST_BITS_PER_WIDE_INT)
390 if (TREE_INT_CST_LOW (t) != 0)
391 return true;
392 prec -= HOST_BITS_PER_WIDE_INT;
393 val = TREE_INT_CST_HIGH (t);
395 else
396 val = TREE_INT_CST_LOW (t);
397 if (prec < HOST_BITS_PER_WIDE_INT)
398 val &= ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
399 return val != ((unsigned HOST_WIDE_INT) 1 << (prec - 1));
402 /* Determine whether an expression T can be cheaply negated using
403 the function negate_expr without introducing undefined overflow. */
405 static bool
406 negate_expr_p (tree t)
408 tree type;
410 if (t == 0)
411 return false;
413 type = TREE_TYPE (t);
415 STRIP_SIGN_NOPS (t);
416 switch (TREE_CODE (t))
418 case INTEGER_CST:
419 if (TYPE_OVERFLOW_WRAPS (type))
420 return true;
422 /* Check that -CST will not overflow type. */
423 return may_negate_without_overflow_p (t);
424 case BIT_NOT_EXPR:
425 return (INTEGRAL_TYPE_P (type)
426 && TYPE_OVERFLOW_WRAPS (type));
428 case FIXED_CST:
429 case NEGATE_EXPR:
430 return true;
432 case REAL_CST:
433 /* We want to canonicalize to positive real constants. Pretend
434 that only negative ones can be easily negated. */
435 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
437 case COMPLEX_CST:
438 return negate_expr_p (TREE_REALPART (t))
439 && negate_expr_p (TREE_IMAGPART (t));
441 case COMPLEX_EXPR:
442 return negate_expr_p (TREE_OPERAND (t, 0))
443 && negate_expr_p (TREE_OPERAND (t, 1));
445 case CONJ_EXPR:
446 return negate_expr_p (TREE_OPERAND (t, 0));
448 case PLUS_EXPR:
449 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
450 || HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
451 return false;
452 /* -(A + B) -> (-B) - A. */
453 if (negate_expr_p (TREE_OPERAND (t, 1))
454 && reorder_operands_p (TREE_OPERAND (t, 0),
455 TREE_OPERAND (t, 1)))
456 return true;
457 /* -(A + B) -> (-A) - B. */
458 return negate_expr_p (TREE_OPERAND (t, 0));
460 case MINUS_EXPR:
461 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
462 return !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
463 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
464 && reorder_operands_p (TREE_OPERAND (t, 0),
465 TREE_OPERAND (t, 1));
467 case MULT_EXPR:
468 if (TYPE_UNSIGNED (TREE_TYPE (t)))
469 break;
471 /* Fall through. */
473 case RDIV_EXPR:
474 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
475 return negate_expr_p (TREE_OPERAND (t, 1))
476 || negate_expr_p (TREE_OPERAND (t, 0));
477 break;
479 case TRUNC_DIV_EXPR:
480 case ROUND_DIV_EXPR:
481 case FLOOR_DIV_EXPR:
482 case CEIL_DIV_EXPR:
483 case EXACT_DIV_EXPR:
484 /* In general we can't negate A / B, because if A is INT_MIN and
485 B is 1, we may turn this into INT_MIN / -1 which is undefined
486 and actually traps on some architectures. But if overflow is
487 undefined, we can negate, because - (INT_MIN / 1) is an
488 overflow. */
489 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
490 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
491 break;
492 return negate_expr_p (TREE_OPERAND (t, 1))
493 || negate_expr_p (TREE_OPERAND (t, 0));
495 case NOP_EXPR:
496 /* Negate -((double)float) as (double)(-float). */
497 if (TREE_CODE (type) == REAL_TYPE)
499 tree tem = strip_float_extensions (t);
500 if (tem != t)
501 return negate_expr_p (tem);
503 break;
505 case CALL_EXPR:
506 /* Negate -f(x) as f(-x). */
507 if (negate_mathfn_p (builtin_mathfn_code (t)))
508 return negate_expr_p (CALL_EXPR_ARG (t, 0));
509 break;
511 case RSHIFT_EXPR:
512 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
513 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
515 tree op1 = TREE_OPERAND (t, 1);
516 if (TREE_INT_CST_HIGH (op1) == 0
517 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
518 == TREE_INT_CST_LOW (op1))
519 return true;
521 break;
523 default:
524 break;
526 return false;
529 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
530 simplification is possible.
531 If negate_expr_p would return true for T, NULL_TREE will never be
532 returned. */
534 static tree
535 fold_negate_expr (location_t loc, tree t)
537 tree type = TREE_TYPE (t);
538 tree tem;
540 switch (TREE_CODE (t))
542 /* Convert - (~A) to A + 1. */
543 case BIT_NOT_EXPR:
544 if (INTEGRAL_TYPE_P (type))
545 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
546 build_int_cst (type, 1));
547 break;
549 case INTEGER_CST:
550 tem = fold_negate_const (t, type);
551 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
552 || !TYPE_OVERFLOW_TRAPS (type))
553 return tem;
554 break;
556 case REAL_CST:
557 tem = fold_negate_const (t, type);
558 /* Two's complement FP formats, such as c4x, may overflow. */
559 if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
560 return tem;
561 break;
563 case FIXED_CST:
564 tem = fold_negate_const (t, type);
565 return tem;
567 case COMPLEX_CST:
569 tree rpart = negate_expr (TREE_REALPART (t));
570 tree ipart = negate_expr (TREE_IMAGPART (t));
572 if ((TREE_CODE (rpart) == REAL_CST
573 && TREE_CODE (ipart) == REAL_CST)
574 || (TREE_CODE (rpart) == INTEGER_CST
575 && TREE_CODE (ipart) == INTEGER_CST))
576 return build_complex (type, rpart, ipart);
578 break;
580 case COMPLEX_EXPR:
581 if (negate_expr_p (t))
582 return fold_build2_loc (loc, COMPLEX_EXPR, type,
583 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
584 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
585 break;
587 case CONJ_EXPR:
588 if (negate_expr_p (t))
589 return fold_build1_loc (loc, CONJ_EXPR, type,
590 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
591 break;
593 case NEGATE_EXPR:
594 return TREE_OPERAND (t, 0);
596 case PLUS_EXPR:
597 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
598 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
600 /* -(A + B) -> (-B) - A. */
601 if (negate_expr_p (TREE_OPERAND (t, 1))
602 && reorder_operands_p (TREE_OPERAND (t, 0),
603 TREE_OPERAND (t, 1)))
605 tem = negate_expr (TREE_OPERAND (t, 1));
606 return fold_build2_loc (loc, MINUS_EXPR, type,
607 tem, TREE_OPERAND (t, 0));
610 /* -(A + B) -> (-A) - B. */
611 if (negate_expr_p (TREE_OPERAND (t, 0)))
613 tem = negate_expr (TREE_OPERAND (t, 0));
614 return fold_build2_loc (loc, MINUS_EXPR, type,
615 tem, TREE_OPERAND (t, 1));
618 break;
620 case MINUS_EXPR:
621 /* - (A - B) -> B - A */
622 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
623 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
624 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
625 return fold_build2_loc (loc, MINUS_EXPR, type,
626 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
627 break;
629 case MULT_EXPR:
630 if (TYPE_UNSIGNED (type))
631 break;
633 /* Fall through. */
635 case RDIV_EXPR:
636 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type)))
638 tem = TREE_OPERAND (t, 1);
639 if (negate_expr_p (tem))
640 return fold_build2_loc (loc, TREE_CODE (t), type,
641 TREE_OPERAND (t, 0), negate_expr (tem));
642 tem = TREE_OPERAND (t, 0);
643 if (negate_expr_p (tem))
644 return fold_build2_loc (loc, TREE_CODE (t), type,
645 negate_expr (tem), TREE_OPERAND (t, 1));
647 break;
649 case TRUNC_DIV_EXPR:
650 case ROUND_DIV_EXPR:
651 case FLOOR_DIV_EXPR:
652 case CEIL_DIV_EXPR:
653 case EXACT_DIV_EXPR:
654 /* In general we can't negate A / B, because if A is INT_MIN and
655 B is 1, we may turn this into INT_MIN / -1 which is undefined
656 and actually traps on some architectures. But if overflow is
657 undefined, we can negate, because - (INT_MIN / 1) is an
658 overflow. */
659 if (!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
661 const char * const warnmsg = G_("assuming signed overflow does not "
662 "occur when negating a division");
663 tem = TREE_OPERAND (t, 1);
664 if (negate_expr_p (tem))
666 if (INTEGRAL_TYPE_P (type)
667 && (TREE_CODE (tem) != INTEGER_CST
668 || integer_onep (tem)))
669 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
670 return fold_build2_loc (loc, TREE_CODE (t), type,
671 TREE_OPERAND (t, 0), negate_expr (tem));
673 tem = TREE_OPERAND (t, 0);
674 if (negate_expr_p (tem))
676 if (INTEGRAL_TYPE_P (type)
677 && (TREE_CODE (tem) != INTEGER_CST
678 || tree_int_cst_equal (tem, TYPE_MIN_VALUE (type))))
679 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
680 return fold_build2_loc (loc, TREE_CODE (t), type,
681 negate_expr (tem), TREE_OPERAND (t, 1));
684 break;
686 case NOP_EXPR:
687 /* Convert -((double)float) into (double)(-float). */
688 if (TREE_CODE (type) == REAL_TYPE)
690 tem = strip_float_extensions (t);
691 if (tem != t && negate_expr_p (tem))
692 return fold_convert_loc (loc, type, negate_expr (tem));
694 break;
696 case CALL_EXPR:
697 /* Negate -f(x) as f(-x). */
698 if (negate_mathfn_p (builtin_mathfn_code (t))
699 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
701 tree fndecl, arg;
703 fndecl = get_callee_fndecl (t);
704 arg = negate_expr (CALL_EXPR_ARG (t, 0));
705 return build_call_expr_loc (loc, fndecl, 1, arg);
707 break;
709 case RSHIFT_EXPR:
710 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
711 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
713 tree op1 = TREE_OPERAND (t, 1);
714 if (TREE_INT_CST_HIGH (op1) == 0
715 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
716 == TREE_INT_CST_LOW (op1))
718 tree ntype = TYPE_UNSIGNED (type)
719 ? signed_type_for (type)
720 : unsigned_type_for (type);
721 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
722 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
723 return fold_convert_loc (loc, type, temp);
726 break;
728 default:
729 break;
732 return NULL_TREE;
735 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
736 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
737 return NULL_TREE. */
739 static tree
740 negate_expr (tree t)
742 tree type, tem;
743 location_t loc;
745 if (t == NULL_TREE)
746 return NULL_TREE;
748 loc = EXPR_LOCATION (t);
749 type = TREE_TYPE (t);
750 STRIP_SIGN_NOPS (t);
752 tem = fold_negate_expr (loc, t);
753 if (!tem)
754 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
755 return fold_convert_loc (loc, type, tem);
758 /* Split a tree IN into a constant, literal and variable parts that could be
759 combined with CODE to make IN. "constant" means an expression with
760 TREE_CONSTANT but that isn't an actual constant. CODE must be a
761 commutative arithmetic operation. Store the constant part into *CONP,
762 the literal in *LITP and return the variable part. If a part isn't
763 present, set it to null. If the tree does not decompose in this way,
764 return the entire tree as the variable part and the other parts as null.
766 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
767 case, we negate an operand that was subtracted. Except if it is a
768 literal for which we use *MINUS_LITP instead.
770 If NEGATE_P is true, we are negating all of IN, again except a literal
771 for which we use *MINUS_LITP instead.
773 If IN is itself a literal or constant, return it as appropriate.
775 Note that we do not guarantee that any of the three values will be the
776 same type as IN, but they will have the same signedness and mode. */
778 static tree
779 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
780 tree *minus_litp, int negate_p)
782 tree var = 0;
784 *conp = 0;
785 *litp = 0;
786 *minus_litp = 0;
788 /* Strip any conversions that don't change the machine mode or signedness. */
789 STRIP_SIGN_NOPS (in);
791 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
792 || TREE_CODE (in) == FIXED_CST)
793 *litp = in;
794 else if (TREE_CODE (in) == code
795 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
796 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
797 /* We can associate addition and subtraction together (even
798 though the C standard doesn't say so) for integers because
799 the value is not affected. For reals, the value might be
800 affected, so we can't. */
801 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
802 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
804 tree op0 = TREE_OPERAND (in, 0);
805 tree op1 = TREE_OPERAND (in, 1);
806 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
807 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
809 /* First see if either of the operands is a literal, then a constant. */
810 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
811 || TREE_CODE (op0) == FIXED_CST)
812 *litp = op0, op0 = 0;
813 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
814 || TREE_CODE (op1) == FIXED_CST)
815 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
817 if (op0 != 0 && TREE_CONSTANT (op0))
818 *conp = op0, op0 = 0;
819 else if (op1 != 0 && TREE_CONSTANT (op1))
820 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
822 /* If we haven't dealt with either operand, this is not a case we can
823 decompose. Otherwise, VAR is either of the ones remaining, if any. */
824 if (op0 != 0 && op1 != 0)
825 var = in;
826 else if (op0 != 0)
827 var = op0;
828 else
829 var = op1, neg_var_p = neg1_p;
831 /* Now do any needed negations. */
832 if (neg_litp_p)
833 *minus_litp = *litp, *litp = 0;
834 if (neg_conp_p)
835 *conp = negate_expr (*conp);
836 if (neg_var_p)
837 var = negate_expr (var);
839 else if (TREE_CONSTANT (in))
840 *conp = in;
841 else
842 var = in;
844 if (negate_p)
846 if (*litp)
847 *minus_litp = *litp, *litp = 0;
848 else if (*minus_litp)
849 *litp = *minus_litp, *minus_litp = 0;
850 *conp = negate_expr (*conp);
851 var = negate_expr (var);
854 return var;
857 /* Re-associate trees split by the above function. T1 and T2 are
858 either expressions to associate or null. Return the new
859 expression, if any. LOC is the location of the new expression. If
860 we build an operation, do it in TYPE and with CODE. */
862 static tree
863 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
865 if (t1 == 0)
866 return t2;
867 else if (t2 == 0)
868 return t1;
870 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
871 try to fold this since we will have infinite recursion. But do
872 deal with any NEGATE_EXPRs. */
873 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
874 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
876 if (code == PLUS_EXPR)
878 if (TREE_CODE (t1) == NEGATE_EXPR)
879 return build2_loc (loc, MINUS_EXPR, type,
880 fold_convert_loc (loc, type, t2),
881 fold_convert_loc (loc, type,
882 TREE_OPERAND (t1, 0)));
883 else if (TREE_CODE (t2) == NEGATE_EXPR)
884 return build2_loc (loc, MINUS_EXPR, type,
885 fold_convert_loc (loc, type, t1),
886 fold_convert_loc (loc, type,
887 TREE_OPERAND (t2, 0)));
888 else if (integer_zerop (t2))
889 return fold_convert_loc (loc, type, t1);
891 else if (code == MINUS_EXPR)
893 if (integer_zerop (t2))
894 return fold_convert_loc (loc, type, t1);
897 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
898 fold_convert_loc (loc, type, t2));
901 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
902 fold_convert_loc (loc, type, t2));
905 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
906 for use in int_const_binop, size_binop and size_diffop. */
908 static bool
909 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
911 if (TREE_CODE (type1) != INTEGER_TYPE && !POINTER_TYPE_P (type1))
912 return false;
913 if (TREE_CODE (type2) != INTEGER_TYPE && !POINTER_TYPE_P (type2))
914 return false;
916 switch (code)
918 case LSHIFT_EXPR:
919 case RSHIFT_EXPR:
920 case LROTATE_EXPR:
921 case RROTATE_EXPR:
922 return true;
924 default:
925 break;
928 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
929 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
930 && TYPE_MODE (type1) == TYPE_MODE (type2);
934 /* Combine two integer constants ARG1 and ARG2 under operation CODE
935 to produce a new constant. Return NULL_TREE if we don't know how
936 to evaluate CODE at compile-time. */
938 tree
939 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2)
941 double_int op1, op2, res, tmp;
942 tree t;
943 tree type = TREE_TYPE (arg1);
944 bool uns = TYPE_UNSIGNED (type);
945 bool is_sizetype
946 = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
947 bool overflow = false;
949 op1 = tree_to_double_int (arg1);
950 op2 = tree_to_double_int (arg2);
952 switch (code)
954 case BIT_IOR_EXPR:
955 res = double_int_ior (op1, op2);
956 break;
958 case BIT_XOR_EXPR:
959 res = double_int_xor (op1, op2);
960 break;
962 case BIT_AND_EXPR:
963 res = double_int_and (op1, op2);
964 break;
966 case RSHIFT_EXPR:
967 res = double_int_rshift (op1, double_int_to_shwi (op2),
968 TYPE_PRECISION (type), !uns);
969 break;
971 case LSHIFT_EXPR:
972 /* It's unclear from the C standard whether shifts can overflow.
973 The following code ignores overflow; perhaps a C standard
974 interpretation ruling is needed. */
975 res = double_int_lshift (op1, double_int_to_shwi (op2),
976 TYPE_PRECISION (type), !uns);
977 break;
979 case RROTATE_EXPR:
980 res = double_int_rrotate (op1, double_int_to_shwi (op2),
981 TYPE_PRECISION (type));
982 break;
984 case LROTATE_EXPR:
985 res = double_int_lrotate (op1, double_int_to_shwi (op2),
986 TYPE_PRECISION (type));
987 break;
989 case PLUS_EXPR:
990 overflow = add_double (op1.low, op1.high, op2.low, op2.high,
991 &res.low, &res.high);
992 break;
994 case MINUS_EXPR:
995 neg_double (op2.low, op2.high, &res.low, &res.high);
996 add_double (op1.low, op1.high, res.low, res.high,
997 &res.low, &res.high);
998 overflow = OVERFLOW_SUM_SIGN (res.high, op2.high, op1.high);
999 break;
1001 case MULT_EXPR:
1002 overflow = mul_double (op1.low, op1.high, op2.low, op2.high,
1003 &res.low, &res.high);
1004 break;
1006 case TRUNC_DIV_EXPR:
1007 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1008 case EXACT_DIV_EXPR:
1009 /* This is a shortcut for a common special case. */
1010 if (op2.high == 0 && (HOST_WIDE_INT) op2.low > 0
1011 && !TREE_OVERFLOW (arg1)
1012 && !TREE_OVERFLOW (arg2)
1013 && op1.high == 0 && (HOST_WIDE_INT) op1.low >= 0)
1015 if (code == CEIL_DIV_EXPR)
1016 op1.low += op2.low - 1;
1018 res.low = op1.low / op2.low, res.high = 0;
1019 break;
1022 /* ... fall through ... */
1024 case ROUND_DIV_EXPR:
1025 if (double_int_zero_p (op2))
1026 return NULL_TREE;
1027 if (double_int_one_p (op2))
1029 res = op1;
1030 break;
1032 if (double_int_equal_p (op1, op2)
1033 && ! double_int_zero_p (op1))
1035 res = double_int_one;
1036 break;
1038 overflow = div_and_round_double (code, uns,
1039 op1.low, op1.high, op2.low, op2.high,
1040 &res.low, &res.high,
1041 &tmp.low, &tmp.high);
1042 break;
1044 case TRUNC_MOD_EXPR:
1045 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1046 /* This is a shortcut for a common special case. */
1047 if (op2.high == 0 && (HOST_WIDE_INT) op2.low > 0
1048 && !TREE_OVERFLOW (arg1)
1049 && !TREE_OVERFLOW (arg2)
1050 && op1.high == 0 && (HOST_WIDE_INT) op1.low >= 0)
1052 if (code == CEIL_MOD_EXPR)
1053 op1.low += op2.low - 1;
1054 res.low = op1.low % op2.low, res.high = 0;
1055 break;
1058 /* ... fall through ... */
1060 case ROUND_MOD_EXPR:
1061 if (double_int_zero_p (op2))
1062 return NULL_TREE;
1063 overflow = div_and_round_double (code, uns,
1064 op1.low, op1.high, op2.low, op2.high,
1065 &tmp.low, &tmp.high,
1066 &res.low, &res.high);
1067 break;
1069 case MIN_EXPR:
1070 res = double_int_min (op1, op2, uns);
1071 break;
1073 case MAX_EXPR:
1074 res = double_int_max (op1, op2, uns);
1075 break;
1077 default:
1078 return NULL_TREE;
1081 t = force_fit_type_double (TREE_TYPE (arg1), res, 1,
1082 ((!uns || is_sizetype) && overflow)
1083 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1085 return t;
1088 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1089 constant. We assume ARG1 and ARG2 have the same data type, or at least
1090 are the same kind of constant and the same machine mode. Return zero if
1091 combining the constants is not allowed in the current operating mode. */
1093 static tree
1094 const_binop (enum tree_code code, tree arg1, tree arg2)
1096 /* Sanity check for the recursive cases. */
1097 if (!arg1 || !arg2)
1098 return NULL_TREE;
1100 STRIP_NOPS (arg1);
1101 STRIP_NOPS (arg2);
1103 if (TREE_CODE (arg1) == INTEGER_CST)
1104 return int_const_binop (code, arg1, arg2);
1106 if (TREE_CODE (arg1) == REAL_CST)
1108 enum machine_mode mode;
1109 REAL_VALUE_TYPE d1;
1110 REAL_VALUE_TYPE d2;
1111 REAL_VALUE_TYPE value;
1112 REAL_VALUE_TYPE result;
1113 bool inexact;
1114 tree t, type;
1116 /* The following codes are handled by real_arithmetic. */
1117 switch (code)
1119 case PLUS_EXPR:
1120 case MINUS_EXPR:
1121 case MULT_EXPR:
1122 case RDIV_EXPR:
1123 case MIN_EXPR:
1124 case MAX_EXPR:
1125 break;
1127 default:
1128 return NULL_TREE;
1131 d1 = TREE_REAL_CST (arg1);
1132 d2 = TREE_REAL_CST (arg2);
1134 type = TREE_TYPE (arg1);
1135 mode = TYPE_MODE (type);
1137 /* Don't perform operation if we honor signaling NaNs and
1138 either operand is a NaN. */
1139 if (HONOR_SNANS (mode)
1140 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1141 return NULL_TREE;
1143 /* Don't perform operation if it would raise a division
1144 by zero exception. */
1145 if (code == RDIV_EXPR
1146 && REAL_VALUES_EQUAL (d2, dconst0)
1147 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1148 return NULL_TREE;
1150 /* If either operand is a NaN, just return it. Otherwise, set up
1151 for floating-point trap; we return an overflow. */
1152 if (REAL_VALUE_ISNAN (d1))
1153 return arg1;
1154 else if (REAL_VALUE_ISNAN (d2))
1155 return arg2;
1157 inexact = real_arithmetic (&value, code, &d1, &d2);
1158 real_convert (&result, mode, &value);
1160 /* Don't constant fold this floating point operation if
1161 the result has overflowed and flag_trapping_math. */
1162 if (flag_trapping_math
1163 && MODE_HAS_INFINITIES (mode)
1164 && REAL_VALUE_ISINF (result)
1165 && !REAL_VALUE_ISINF (d1)
1166 && !REAL_VALUE_ISINF (d2))
1167 return NULL_TREE;
1169 /* Don't constant fold this floating point operation if the
1170 result may dependent upon the run-time rounding mode and
1171 flag_rounding_math is set, or if GCC's software emulation
1172 is unable to accurately represent the result. */
1173 if ((flag_rounding_math
1174 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1175 && (inexact || !real_identical (&result, &value)))
1176 return NULL_TREE;
1178 t = build_real (type, result);
1180 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1181 return t;
1184 if (TREE_CODE (arg1) == FIXED_CST)
1186 FIXED_VALUE_TYPE f1;
1187 FIXED_VALUE_TYPE f2;
1188 FIXED_VALUE_TYPE result;
1189 tree t, type;
1190 int sat_p;
1191 bool overflow_p;
1193 /* The following codes are handled by fixed_arithmetic. */
1194 switch (code)
1196 case PLUS_EXPR:
1197 case MINUS_EXPR:
1198 case MULT_EXPR:
1199 case TRUNC_DIV_EXPR:
1200 f2 = TREE_FIXED_CST (arg2);
1201 break;
1203 case LSHIFT_EXPR:
1204 case RSHIFT_EXPR:
1205 f2.data.high = TREE_INT_CST_HIGH (arg2);
1206 f2.data.low = TREE_INT_CST_LOW (arg2);
1207 f2.mode = SImode;
1208 break;
1210 default:
1211 return NULL_TREE;
1214 f1 = TREE_FIXED_CST (arg1);
1215 type = TREE_TYPE (arg1);
1216 sat_p = TYPE_SATURATING (type);
1217 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1218 t = build_fixed (type, result);
1219 /* Propagate overflow flags. */
1220 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1221 TREE_OVERFLOW (t) = 1;
1222 return t;
1225 if (TREE_CODE (arg1) == COMPLEX_CST)
1227 tree type = TREE_TYPE (arg1);
1228 tree r1 = TREE_REALPART (arg1);
1229 tree i1 = TREE_IMAGPART (arg1);
1230 tree r2 = TREE_REALPART (arg2);
1231 tree i2 = TREE_IMAGPART (arg2);
1232 tree real, imag;
1234 switch (code)
1236 case PLUS_EXPR:
1237 case MINUS_EXPR:
1238 real = const_binop (code, r1, r2);
1239 imag = const_binop (code, i1, i2);
1240 break;
1242 case MULT_EXPR:
1243 if (COMPLEX_FLOAT_TYPE_P (type))
1244 return do_mpc_arg2 (arg1, arg2, type,
1245 /* do_nonfinite= */ folding_initializer,
1246 mpc_mul);
1248 real = const_binop (MINUS_EXPR,
1249 const_binop (MULT_EXPR, r1, r2),
1250 const_binop (MULT_EXPR, i1, i2));
1251 imag = const_binop (PLUS_EXPR,
1252 const_binop (MULT_EXPR, r1, i2),
1253 const_binop (MULT_EXPR, i1, r2));
1254 break;
1256 case RDIV_EXPR:
1257 if (COMPLEX_FLOAT_TYPE_P (type))
1258 return do_mpc_arg2 (arg1, arg2, type,
1259 /* do_nonfinite= */ folding_initializer,
1260 mpc_div);
1261 /* Fallthru ... */
1262 case TRUNC_DIV_EXPR:
1263 case CEIL_DIV_EXPR:
1264 case FLOOR_DIV_EXPR:
1265 case ROUND_DIV_EXPR:
1266 if (flag_complex_method == 0)
1268 /* Keep this algorithm in sync with
1269 tree-complex.c:expand_complex_div_straight().
1271 Expand complex division to scalars, straightforward algorithm.
1272 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1273 t = br*br + bi*bi
1275 tree magsquared
1276 = const_binop (PLUS_EXPR,
1277 const_binop (MULT_EXPR, r2, r2),
1278 const_binop (MULT_EXPR, i2, i2));
1279 tree t1
1280 = const_binop (PLUS_EXPR,
1281 const_binop (MULT_EXPR, r1, r2),
1282 const_binop (MULT_EXPR, i1, i2));
1283 tree t2
1284 = const_binop (MINUS_EXPR,
1285 const_binop (MULT_EXPR, i1, r2),
1286 const_binop (MULT_EXPR, r1, i2));
1288 real = const_binop (code, t1, magsquared);
1289 imag = const_binop (code, t2, magsquared);
1291 else
1293 /* Keep this algorithm in sync with
1294 tree-complex.c:expand_complex_div_wide().
1296 Expand complex division to scalars, modified algorithm to minimize
1297 overflow with wide input ranges. */
1298 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1299 fold_abs_const (r2, TREE_TYPE (type)),
1300 fold_abs_const (i2, TREE_TYPE (type)));
1302 if (integer_nonzerop (compare))
1304 /* In the TRUE branch, we compute
1305 ratio = br/bi;
1306 div = (br * ratio) + bi;
1307 tr = (ar * ratio) + ai;
1308 ti = (ai * ratio) - ar;
1309 tr = tr / div;
1310 ti = ti / div; */
1311 tree ratio = const_binop (code, r2, i2);
1312 tree div = const_binop (PLUS_EXPR, i2,
1313 const_binop (MULT_EXPR, r2, ratio));
1314 real = const_binop (MULT_EXPR, r1, ratio);
1315 real = const_binop (PLUS_EXPR, real, i1);
1316 real = const_binop (code, real, div);
1318 imag = const_binop (MULT_EXPR, i1, ratio);
1319 imag = const_binop (MINUS_EXPR, imag, r1);
1320 imag = const_binop (code, imag, div);
1322 else
1324 /* In the FALSE branch, we compute
1325 ratio = d/c;
1326 divisor = (d * ratio) + c;
1327 tr = (b * ratio) + a;
1328 ti = b - (a * ratio);
1329 tr = tr / div;
1330 ti = ti / div; */
1331 tree ratio = const_binop (code, i2, r2);
1332 tree div = const_binop (PLUS_EXPR, r2,
1333 const_binop (MULT_EXPR, i2, ratio));
1335 real = const_binop (MULT_EXPR, i1, ratio);
1336 real = const_binop (PLUS_EXPR, real, r1);
1337 real = const_binop (code, real, div);
1339 imag = const_binop (MULT_EXPR, r1, ratio);
1340 imag = const_binop (MINUS_EXPR, i1, imag);
1341 imag = const_binop (code, imag, div);
1344 break;
1346 default:
1347 return NULL_TREE;
1350 if (real && imag)
1351 return build_complex (type, real, imag);
1354 if (TREE_CODE (arg1) == VECTOR_CST)
1356 tree type = TREE_TYPE(arg1);
1357 int count = TYPE_VECTOR_SUBPARTS (type), i;
1358 tree elements1, elements2, list = NULL_TREE;
1360 if(TREE_CODE(arg2) != VECTOR_CST)
1361 return NULL_TREE;
1363 elements1 = TREE_VECTOR_CST_ELTS (arg1);
1364 elements2 = TREE_VECTOR_CST_ELTS (arg2);
1366 for (i = 0; i < count; i++)
1368 tree elem1, elem2, elem;
1370 /* The trailing elements can be empty and should be treated as 0 */
1371 if(!elements1)
1372 elem1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
1373 else
1375 elem1 = TREE_VALUE(elements1);
1376 elements1 = TREE_CHAIN (elements1);
1379 if(!elements2)
1380 elem2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
1381 else
1383 elem2 = TREE_VALUE(elements2);
1384 elements2 = TREE_CHAIN (elements2);
1387 elem = const_binop (code, elem1, elem2);
1389 /* It is possible that const_binop cannot handle the given
1390 code and return NULL_TREE */
1391 if(elem == NULL_TREE)
1392 return NULL_TREE;
1394 list = tree_cons (NULL_TREE, elem, list);
1396 return build_vector(type, nreverse(list));
1398 return NULL_TREE;
1401 /* Create a size type INT_CST node with NUMBER sign extended. KIND
1402 indicates which particular sizetype to create. */
1404 tree
1405 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1407 return build_int_cst (sizetype_tab[(int) kind], number);
1410 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1411 is a tree code. The type of the result is taken from the operands.
1412 Both must be equivalent integer types, ala int_binop_types_match_p.
1413 If the operands are constant, so is the result. */
1415 tree
1416 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1418 tree type = TREE_TYPE (arg0);
1420 if (arg0 == error_mark_node || arg1 == error_mark_node)
1421 return error_mark_node;
1423 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1424 TREE_TYPE (arg1)));
1426 /* Handle the special case of two integer constants faster. */
1427 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1429 /* And some specific cases even faster than that. */
1430 if (code == PLUS_EXPR)
1432 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1433 return arg1;
1434 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1435 return arg0;
1437 else if (code == MINUS_EXPR)
1439 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1440 return arg0;
1442 else if (code == MULT_EXPR)
1444 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1445 return arg1;
1448 /* Handle general case of two integer constants. */
1449 return int_const_binop (code, arg0, arg1);
1452 return fold_build2_loc (loc, code, type, arg0, arg1);
1455 /* Given two values, either both of sizetype or both of bitsizetype,
1456 compute the difference between the two values. Return the value
1457 in signed type corresponding to the type of the operands. */
1459 tree
1460 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1462 tree type = TREE_TYPE (arg0);
1463 tree ctype;
1465 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1466 TREE_TYPE (arg1)));
1468 /* If the type is already signed, just do the simple thing. */
1469 if (!TYPE_UNSIGNED (type))
1470 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1472 if (type == sizetype)
1473 ctype = ssizetype;
1474 else if (type == bitsizetype)
1475 ctype = sbitsizetype;
1476 else
1477 ctype = signed_type_for (type);
1479 /* If either operand is not a constant, do the conversions to the signed
1480 type and subtract. The hardware will do the right thing with any
1481 overflow in the subtraction. */
1482 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1483 return size_binop_loc (loc, MINUS_EXPR,
1484 fold_convert_loc (loc, ctype, arg0),
1485 fold_convert_loc (loc, ctype, arg1));
1487 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1488 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1489 overflow) and negate (which can't either). Special-case a result
1490 of zero while we're here. */
1491 if (tree_int_cst_equal (arg0, arg1))
1492 return build_int_cst (ctype, 0);
1493 else if (tree_int_cst_lt (arg1, arg0))
1494 return fold_convert_loc (loc, ctype,
1495 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1496 else
1497 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1498 fold_convert_loc (loc, ctype,
1499 size_binop_loc (loc,
1500 MINUS_EXPR,
1501 arg1, arg0)));
1504 /* A subroutine of fold_convert_const handling conversions of an
1505 INTEGER_CST to another integer type. */
1507 static tree
1508 fold_convert_const_int_from_int (tree type, const_tree arg1)
1510 tree t;
1512 /* Given an integer constant, make new constant with new type,
1513 appropriately sign-extended or truncated. */
1514 t = force_fit_type_double (type, tree_to_double_int (arg1),
1515 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1516 (TREE_INT_CST_HIGH (arg1) < 0
1517 && (TYPE_UNSIGNED (type)
1518 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1519 | TREE_OVERFLOW (arg1));
1521 return t;
1524 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1525 to an integer type. */
1527 static tree
1528 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
1530 int overflow = 0;
1531 tree t;
1533 /* The following code implements the floating point to integer
1534 conversion rules required by the Java Language Specification,
1535 that IEEE NaNs are mapped to zero and values that overflow
1536 the target precision saturate, i.e. values greater than
1537 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1538 are mapped to INT_MIN. These semantics are allowed by the
1539 C and C++ standards that simply state that the behavior of
1540 FP-to-integer conversion is unspecified upon overflow. */
1542 double_int val;
1543 REAL_VALUE_TYPE r;
1544 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1546 switch (code)
1548 case FIX_TRUNC_EXPR:
1549 real_trunc (&r, VOIDmode, &x);
1550 break;
1552 default:
1553 gcc_unreachable ();
1556 /* If R is NaN, return zero and show we have an overflow. */
1557 if (REAL_VALUE_ISNAN (r))
1559 overflow = 1;
1560 val = double_int_zero;
1563 /* See if R is less than the lower bound or greater than the
1564 upper bound. */
1566 if (! overflow)
1568 tree lt = TYPE_MIN_VALUE (type);
1569 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1570 if (REAL_VALUES_LESS (r, l))
1572 overflow = 1;
1573 val = tree_to_double_int (lt);
1577 if (! overflow)
1579 tree ut = TYPE_MAX_VALUE (type);
1580 if (ut)
1582 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1583 if (REAL_VALUES_LESS (u, r))
1585 overflow = 1;
1586 val = tree_to_double_int (ut);
1591 if (! overflow)
1592 real_to_integer2 ((HOST_WIDE_INT *) &val.low, &val.high, &r);
1594 t = force_fit_type_double (type, val, -1, overflow | TREE_OVERFLOW (arg1));
1595 return t;
1598 /* A subroutine of fold_convert_const handling conversions of a
1599 FIXED_CST to an integer type. */
1601 static tree
1602 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
1604 tree t;
1605 double_int temp, temp_trunc;
1606 unsigned int mode;
1608 /* Right shift FIXED_CST to temp by fbit. */
1609 temp = TREE_FIXED_CST (arg1).data;
1610 mode = TREE_FIXED_CST (arg1).mode;
1611 if (GET_MODE_FBIT (mode) < 2 * HOST_BITS_PER_WIDE_INT)
1613 temp = double_int_rshift (temp, GET_MODE_FBIT (mode),
1614 HOST_BITS_PER_DOUBLE_INT,
1615 SIGNED_FIXED_POINT_MODE_P (mode));
1617 /* Left shift temp to temp_trunc by fbit. */
1618 temp_trunc = double_int_lshift (temp, GET_MODE_FBIT (mode),
1619 HOST_BITS_PER_DOUBLE_INT,
1620 SIGNED_FIXED_POINT_MODE_P (mode));
1622 else
1624 temp = double_int_zero;
1625 temp_trunc = double_int_zero;
1628 /* If FIXED_CST is negative, we need to round the value toward 0.
1629 By checking if the fractional bits are not zero to add 1 to temp. */
1630 if (SIGNED_FIXED_POINT_MODE_P (mode)
1631 && double_int_negative_p (temp_trunc)
1632 && !double_int_equal_p (TREE_FIXED_CST (arg1).data, temp_trunc))
1633 temp = double_int_add (temp, double_int_one);
1635 /* Given a fixed-point constant, make new constant with new type,
1636 appropriately sign-extended or truncated. */
1637 t = force_fit_type_double (type, temp, -1,
1638 (double_int_negative_p (temp)
1639 && (TYPE_UNSIGNED (type)
1640 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1641 | TREE_OVERFLOW (arg1));
1643 return t;
1646 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1647 to another floating point type. */
1649 static tree
1650 fold_convert_const_real_from_real (tree type, const_tree arg1)
1652 REAL_VALUE_TYPE value;
1653 tree t;
1655 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
1656 t = build_real (type, value);
1658 /* If converting an infinity or NAN to a representation that doesn't
1659 have one, set the overflow bit so that we can produce some kind of
1660 error message at the appropriate point if necessary. It's not the
1661 most user-friendly message, but it's better than nothing. */
1662 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
1663 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
1664 TREE_OVERFLOW (t) = 1;
1665 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
1666 && !MODE_HAS_NANS (TYPE_MODE (type)))
1667 TREE_OVERFLOW (t) = 1;
1668 /* Regular overflow, conversion produced an infinity in a mode that
1669 can't represent them. */
1670 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
1671 && REAL_VALUE_ISINF (value)
1672 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
1673 TREE_OVERFLOW (t) = 1;
1674 else
1675 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1676 return t;
1679 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
1680 to a floating point type. */
1682 static tree
1683 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
1685 REAL_VALUE_TYPE value;
1686 tree t;
1688 real_convert_from_fixed (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1));
1689 t = build_real (type, value);
1691 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1692 return t;
1695 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
1696 to another fixed-point type. */
1698 static tree
1699 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
1701 FIXED_VALUE_TYPE value;
1702 tree t;
1703 bool overflow_p;
1705 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
1706 TYPE_SATURATING (type));
1707 t = build_fixed (type, value);
1709 /* Propagate overflow flags. */
1710 if (overflow_p | TREE_OVERFLOW (arg1))
1711 TREE_OVERFLOW (t) = 1;
1712 return t;
1715 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
1716 to a fixed-point type. */
1718 static tree
1719 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
1721 FIXED_VALUE_TYPE value;
1722 tree t;
1723 bool overflow_p;
1725 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type),
1726 TREE_INT_CST (arg1),
1727 TYPE_UNSIGNED (TREE_TYPE (arg1)),
1728 TYPE_SATURATING (type));
1729 t = build_fixed (type, value);
1731 /* Propagate overflow flags. */
1732 if (overflow_p | TREE_OVERFLOW (arg1))
1733 TREE_OVERFLOW (t) = 1;
1734 return t;
1737 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1738 to a fixed-point type. */
1740 static tree
1741 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
1743 FIXED_VALUE_TYPE value;
1744 tree t;
1745 bool overflow_p;
1747 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
1748 &TREE_REAL_CST (arg1),
1749 TYPE_SATURATING (type));
1750 t = build_fixed (type, value);
1752 /* Propagate overflow flags. */
1753 if (overflow_p | TREE_OVERFLOW (arg1))
1754 TREE_OVERFLOW (t) = 1;
1755 return t;
1758 /* Attempt to fold type conversion operation CODE of expression ARG1 to
1759 type TYPE. If no simplification can be done return NULL_TREE. */
1761 static tree
1762 fold_convert_const (enum tree_code code, tree type, tree arg1)
1764 if (TREE_TYPE (arg1) == type)
1765 return arg1;
1767 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
1768 || TREE_CODE (type) == OFFSET_TYPE)
1770 if (TREE_CODE (arg1) == INTEGER_CST)
1771 return fold_convert_const_int_from_int (type, arg1);
1772 else if (TREE_CODE (arg1) == REAL_CST)
1773 return fold_convert_const_int_from_real (code, type, arg1);
1774 else if (TREE_CODE (arg1) == FIXED_CST)
1775 return fold_convert_const_int_from_fixed (type, arg1);
1777 else if (TREE_CODE (type) == REAL_TYPE)
1779 if (TREE_CODE (arg1) == INTEGER_CST)
1780 return build_real_from_int_cst (type, arg1);
1781 else if (TREE_CODE (arg1) == REAL_CST)
1782 return fold_convert_const_real_from_real (type, arg1);
1783 else if (TREE_CODE (arg1) == FIXED_CST)
1784 return fold_convert_const_real_from_fixed (type, arg1);
1786 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
1788 if (TREE_CODE (arg1) == FIXED_CST)
1789 return fold_convert_const_fixed_from_fixed (type, arg1);
1790 else if (TREE_CODE (arg1) == INTEGER_CST)
1791 return fold_convert_const_fixed_from_int (type, arg1);
1792 else if (TREE_CODE (arg1) == REAL_CST)
1793 return fold_convert_const_fixed_from_real (type, arg1);
1795 return NULL_TREE;
1798 /* Construct a vector of zero elements of vector type TYPE. */
1800 static tree
1801 build_zero_vector (tree type)
1803 tree t;
1805 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
1806 return build_vector_from_val (type, t);
1809 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
1811 bool
1812 fold_convertible_p (const_tree type, const_tree arg)
1814 tree orig = TREE_TYPE (arg);
1816 if (type == orig)
1817 return true;
1819 if (TREE_CODE (arg) == ERROR_MARK
1820 || TREE_CODE (type) == ERROR_MARK
1821 || TREE_CODE (orig) == ERROR_MARK)
1822 return false;
1824 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
1825 return true;
1827 switch (TREE_CODE (type))
1829 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1830 case POINTER_TYPE: case REFERENCE_TYPE:
1831 case OFFSET_TYPE:
1832 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
1833 || TREE_CODE (orig) == OFFSET_TYPE)
1834 return true;
1835 return (TREE_CODE (orig) == VECTOR_TYPE
1836 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
1838 case REAL_TYPE:
1839 case FIXED_POINT_TYPE:
1840 case COMPLEX_TYPE:
1841 case VECTOR_TYPE:
1842 case VOID_TYPE:
1843 return TREE_CODE (type) == TREE_CODE (orig);
1845 default:
1846 return false;
1850 /* Convert expression ARG to type TYPE. Used by the middle-end for
1851 simple conversions in preference to calling the front-end's convert. */
1853 tree
1854 fold_convert_loc (location_t loc, tree type, tree arg)
1856 tree orig = TREE_TYPE (arg);
1857 tree tem;
1859 if (type == orig)
1860 return arg;
1862 if (TREE_CODE (arg) == ERROR_MARK
1863 || TREE_CODE (type) == ERROR_MARK
1864 || TREE_CODE (orig) == ERROR_MARK)
1865 return error_mark_node;
1867 switch (TREE_CODE (type))
1869 case POINTER_TYPE:
1870 case REFERENCE_TYPE:
1871 /* Handle conversions between pointers to different address spaces. */
1872 if (POINTER_TYPE_P (orig)
1873 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
1874 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
1875 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
1876 /* fall through */
1878 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1879 case OFFSET_TYPE:
1880 if (TREE_CODE (arg) == INTEGER_CST)
1882 tem = fold_convert_const (NOP_EXPR, type, arg);
1883 if (tem != NULL_TREE)
1884 return tem;
1886 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
1887 || TREE_CODE (orig) == OFFSET_TYPE)
1888 return fold_build1_loc (loc, NOP_EXPR, type, arg);
1889 if (TREE_CODE (orig) == COMPLEX_TYPE)
1890 return fold_convert_loc (loc, type,
1891 fold_build1_loc (loc, REALPART_EXPR,
1892 TREE_TYPE (orig), arg));
1893 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
1894 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
1895 return fold_build1_loc (loc, NOP_EXPR, type, arg);
1897 case REAL_TYPE:
1898 if (TREE_CODE (arg) == INTEGER_CST)
1900 tem = fold_convert_const (FLOAT_EXPR, type, arg);
1901 if (tem != NULL_TREE)
1902 return tem;
1904 else if (TREE_CODE (arg) == REAL_CST)
1906 tem = fold_convert_const (NOP_EXPR, type, arg);
1907 if (tem != NULL_TREE)
1908 return tem;
1910 else if (TREE_CODE (arg) == FIXED_CST)
1912 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
1913 if (tem != NULL_TREE)
1914 return tem;
1917 switch (TREE_CODE (orig))
1919 case INTEGER_TYPE:
1920 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
1921 case POINTER_TYPE: case REFERENCE_TYPE:
1922 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
1924 case REAL_TYPE:
1925 return fold_build1_loc (loc, NOP_EXPR, type, arg);
1927 case FIXED_POINT_TYPE:
1928 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
1930 case COMPLEX_TYPE:
1931 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
1932 return fold_convert_loc (loc, type, tem);
1934 default:
1935 gcc_unreachable ();
1938 case FIXED_POINT_TYPE:
1939 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
1940 || TREE_CODE (arg) == REAL_CST)
1942 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
1943 if (tem != NULL_TREE)
1944 goto fold_convert_exit;
1947 switch (TREE_CODE (orig))
1949 case FIXED_POINT_TYPE:
1950 case INTEGER_TYPE:
1951 case ENUMERAL_TYPE:
1952 case BOOLEAN_TYPE:
1953 case REAL_TYPE:
1954 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
1956 case COMPLEX_TYPE:
1957 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
1958 return fold_convert_loc (loc, type, tem);
1960 default:
1961 gcc_unreachable ();
1964 case COMPLEX_TYPE:
1965 switch (TREE_CODE (orig))
1967 case INTEGER_TYPE:
1968 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
1969 case POINTER_TYPE: case REFERENCE_TYPE:
1970 case REAL_TYPE:
1971 case FIXED_POINT_TYPE:
1972 return fold_build2_loc (loc, COMPLEX_EXPR, type,
1973 fold_convert_loc (loc, TREE_TYPE (type), arg),
1974 fold_convert_loc (loc, TREE_TYPE (type),
1975 integer_zero_node));
1976 case COMPLEX_TYPE:
1978 tree rpart, ipart;
1980 if (TREE_CODE (arg) == COMPLEX_EXPR)
1982 rpart = fold_convert_loc (loc, TREE_TYPE (type),
1983 TREE_OPERAND (arg, 0));
1984 ipart = fold_convert_loc (loc, TREE_TYPE (type),
1985 TREE_OPERAND (arg, 1));
1986 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
1989 arg = save_expr (arg);
1990 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
1991 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
1992 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
1993 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
1994 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
1997 default:
1998 gcc_unreachable ();
2001 case VECTOR_TYPE:
2002 if (integer_zerop (arg))
2003 return build_zero_vector (type);
2004 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2005 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2006 || TREE_CODE (orig) == VECTOR_TYPE);
2007 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2009 case VOID_TYPE:
2010 tem = fold_ignored_result (arg);
2011 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2013 default:
2014 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2015 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2016 gcc_unreachable ();
2018 fold_convert_exit:
2019 protected_set_expr_location_unshare (tem, loc);
2020 return tem;
2023 /* Return false if expr can be assumed not to be an lvalue, true
2024 otherwise. */
2026 static bool
2027 maybe_lvalue_p (const_tree x)
2029 /* We only need to wrap lvalue tree codes. */
2030 switch (TREE_CODE (x))
2032 case VAR_DECL:
2033 case PARM_DECL:
2034 case RESULT_DECL:
2035 case LABEL_DECL:
2036 case FUNCTION_DECL:
2037 case SSA_NAME:
2039 case COMPONENT_REF:
2040 case MEM_REF:
2041 case INDIRECT_REF:
2042 case ARRAY_REF:
2043 case ARRAY_RANGE_REF:
2044 case BIT_FIELD_REF:
2045 case OBJ_TYPE_REF:
2047 case REALPART_EXPR:
2048 case IMAGPART_EXPR:
2049 case PREINCREMENT_EXPR:
2050 case PREDECREMENT_EXPR:
2051 case SAVE_EXPR:
2052 case TRY_CATCH_EXPR:
2053 case WITH_CLEANUP_EXPR:
2054 case COMPOUND_EXPR:
2055 case MODIFY_EXPR:
2056 case TARGET_EXPR:
2057 case COND_EXPR:
2058 case BIND_EXPR:
2059 break;
2061 default:
2062 /* Assume the worst for front-end tree codes. */
2063 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2064 break;
2065 return false;
2068 return true;
2071 /* Return an expr equal to X but certainly not valid as an lvalue. */
2073 tree
2074 non_lvalue_loc (location_t loc, tree x)
2076 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2077 us. */
2078 if (in_gimple_form)
2079 return x;
2081 if (! maybe_lvalue_p (x))
2082 return x;
2083 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2086 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
2087 Zero means allow extended lvalues. */
2089 int pedantic_lvalues;
2091 /* When pedantic, return an expr equal to X but certainly not valid as a
2092 pedantic lvalue. Otherwise, return X. */
2094 static tree
2095 pedantic_non_lvalue_loc (location_t loc, tree x)
2097 if (pedantic_lvalues)
2098 return non_lvalue_loc (loc, x);
2100 return protected_set_expr_location_unshare (x, loc);
2103 /* Given a tree comparison code, return the code that is the logical inverse.
2104 It is generally not safe to do this for floating-point comparisons, except
2105 for EQ_EXPR and NE_EXPR, so we return ERROR_MARK in this case. */
2107 enum tree_code
2108 invert_tree_comparison (enum tree_code code, bool honor_nans)
2110 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR)
2111 return ERROR_MARK;
2113 switch (code)
2115 case EQ_EXPR:
2116 return NE_EXPR;
2117 case NE_EXPR:
2118 return EQ_EXPR;
2119 case GT_EXPR:
2120 return honor_nans ? UNLE_EXPR : LE_EXPR;
2121 case GE_EXPR:
2122 return honor_nans ? UNLT_EXPR : LT_EXPR;
2123 case LT_EXPR:
2124 return honor_nans ? UNGE_EXPR : GE_EXPR;
2125 case LE_EXPR:
2126 return honor_nans ? UNGT_EXPR : GT_EXPR;
2127 case LTGT_EXPR:
2128 return UNEQ_EXPR;
2129 case UNEQ_EXPR:
2130 return LTGT_EXPR;
2131 case UNGT_EXPR:
2132 return LE_EXPR;
2133 case UNGE_EXPR:
2134 return LT_EXPR;
2135 case UNLT_EXPR:
2136 return GE_EXPR;
2137 case UNLE_EXPR:
2138 return GT_EXPR;
2139 case ORDERED_EXPR:
2140 return UNORDERED_EXPR;
2141 case UNORDERED_EXPR:
2142 return ORDERED_EXPR;
2143 default:
2144 gcc_unreachable ();
2148 /* Similar, but return the comparison that results if the operands are
2149 swapped. This is safe for floating-point. */
2151 enum tree_code
2152 swap_tree_comparison (enum tree_code code)
2154 switch (code)
2156 case EQ_EXPR:
2157 case NE_EXPR:
2158 case ORDERED_EXPR:
2159 case UNORDERED_EXPR:
2160 case LTGT_EXPR:
2161 case UNEQ_EXPR:
2162 return code;
2163 case GT_EXPR:
2164 return LT_EXPR;
2165 case GE_EXPR:
2166 return LE_EXPR;
2167 case LT_EXPR:
2168 return GT_EXPR;
2169 case LE_EXPR:
2170 return GE_EXPR;
2171 case UNGT_EXPR:
2172 return UNLT_EXPR;
2173 case UNGE_EXPR:
2174 return UNLE_EXPR;
2175 case UNLT_EXPR:
2176 return UNGT_EXPR;
2177 case UNLE_EXPR:
2178 return UNGE_EXPR;
2179 default:
2180 gcc_unreachable ();
2185 /* Convert a comparison tree code from an enum tree_code representation
2186 into a compcode bit-based encoding. This function is the inverse of
2187 compcode_to_comparison. */
2189 static enum comparison_code
2190 comparison_to_compcode (enum tree_code code)
2192 switch (code)
2194 case LT_EXPR:
2195 return COMPCODE_LT;
2196 case EQ_EXPR:
2197 return COMPCODE_EQ;
2198 case LE_EXPR:
2199 return COMPCODE_LE;
2200 case GT_EXPR:
2201 return COMPCODE_GT;
2202 case NE_EXPR:
2203 return COMPCODE_NE;
2204 case GE_EXPR:
2205 return COMPCODE_GE;
2206 case ORDERED_EXPR:
2207 return COMPCODE_ORD;
2208 case UNORDERED_EXPR:
2209 return COMPCODE_UNORD;
2210 case UNLT_EXPR:
2211 return COMPCODE_UNLT;
2212 case UNEQ_EXPR:
2213 return COMPCODE_UNEQ;
2214 case UNLE_EXPR:
2215 return COMPCODE_UNLE;
2216 case UNGT_EXPR:
2217 return COMPCODE_UNGT;
2218 case LTGT_EXPR:
2219 return COMPCODE_LTGT;
2220 case UNGE_EXPR:
2221 return COMPCODE_UNGE;
2222 default:
2223 gcc_unreachable ();
2227 /* Convert a compcode bit-based encoding of a comparison operator back
2228 to GCC's enum tree_code representation. This function is the
2229 inverse of comparison_to_compcode. */
2231 static enum tree_code
2232 compcode_to_comparison (enum comparison_code code)
2234 switch (code)
2236 case COMPCODE_LT:
2237 return LT_EXPR;
2238 case COMPCODE_EQ:
2239 return EQ_EXPR;
2240 case COMPCODE_LE:
2241 return LE_EXPR;
2242 case COMPCODE_GT:
2243 return GT_EXPR;
2244 case COMPCODE_NE:
2245 return NE_EXPR;
2246 case COMPCODE_GE:
2247 return GE_EXPR;
2248 case COMPCODE_ORD:
2249 return ORDERED_EXPR;
2250 case COMPCODE_UNORD:
2251 return UNORDERED_EXPR;
2252 case COMPCODE_UNLT:
2253 return UNLT_EXPR;
2254 case COMPCODE_UNEQ:
2255 return UNEQ_EXPR;
2256 case COMPCODE_UNLE:
2257 return UNLE_EXPR;
2258 case COMPCODE_UNGT:
2259 return UNGT_EXPR;
2260 case COMPCODE_LTGT:
2261 return LTGT_EXPR;
2262 case COMPCODE_UNGE:
2263 return UNGE_EXPR;
2264 default:
2265 gcc_unreachable ();
2269 /* Return a tree for the comparison which is the combination of
2270 doing the AND or OR (depending on CODE) of the two operations LCODE
2271 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2272 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2273 if this makes the transformation invalid. */
2275 tree
2276 combine_comparisons (location_t loc,
2277 enum tree_code code, enum tree_code lcode,
2278 enum tree_code rcode, tree truth_type,
2279 tree ll_arg, tree lr_arg)
2281 bool honor_nans = HONOR_NANS (TYPE_MODE (TREE_TYPE (ll_arg)));
2282 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2283 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2284 int compcode;
2286 switch (code)
2288 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2289 compcode = lcompcode & rcompcode;
2290 break;
2292 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2293 compcode = lcompcode | rcompcode;
2294 break;
2296 default:
2297 return NULL_TREE;
2300 if (!honor_nans)
2302 /* Eliminate unordered comparisons, as well as LTGT and ORD
2303 which are not used unless the mode has NaNs. */
2304 compcode &= ~COMPCODE_UNORD;
2305 if (compcode == COMPCODE_LTGT)
2306 compcode = COMPCODE_NE;
2307 else if (compcode == COMPCODE_ORD)
2308 compcode = COMPCODE_TRUE;
2310 else if (flag_trapping_math)
2312 /* Check that the original operation and the optimized ones will trap
2313 under the same condition. */
2314 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2315 && (lcompcode != COMPCODE_EQ)
2316 && (lcompcode != COMPCODE_ORD);
2317 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2318 && (rcompcode != COMPCODE_EQ)
2319 && (rcompcode != COMPCODE_ORD);
2320 bool trap = (compcode & COMPCODE_UNORD) == 0
2321 && (compcode != COMPCODE_EQ)
2322 && (compcode != COMPCODE_ORD);
2324 /* In a short-circuited boolean expression the LHS might be
2325 such that the RHS, if evaluated, will never trap. For
2326 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2327 if neither x nor y is NaN. (This is a mixed blessing: for
2328 example, the expression above will never trap, hence
2329 optimizing it to x < y would be invalid). */
2330 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2331 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2332 rtrap = false;
2334 /* If the comparison was short-circuited, and only the RHS
2335 trapped, we may now generate a spurious trap. */
2336 if (rtrap && !ltrap
2337 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2338 return NULL_TREE;
2340 /* If we changed the conditions that cause a trap, we lose. */
2341 if ((ltrap || rtrap) != trap)
2342 return NULL_TREE;
2345 if (compcode == COMPCODE_TRUE)
2346 return constant_boolean_node (true, truth_type);
2347 else if (compcode == COMPCODE_FALSE)
2348 return constant_boolean_node (false, truth_type);
2349 else
2351 enum tree_code tcode;
2353 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2354 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2358 /* Return nonzero if two operands (typically of the same tree node)
2359 are necessarily equal. If either argument has side-effects this
2360 function returns zero. FLAGS modifies behavior as follows:
2362 If OEP_ONLY_CONST is set, only return nonzero for constants.
2363 This function tests whether the operands are indistinguishable;
2364 it does not test whether they are equal using C's == operation.
2365 The distinction is important for IEEE floating point, because
2366 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2367 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2369 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2370 even though it may hold multiple values during a function.
2371 This is because a GCC tree node guarantees that nothing else is
2372 executed between the evaluation of its "operands" (which may often
2373 be evaluated in arbitrary order). Hence if the operands themselves
2374 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2375 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2376 unset means assuming isochronic (or instantaneous) tree equivalence.
2377 Unless comparing arbitrary expression trees, such as from different
2378 statements, this flag can usually be left unset.
2380 If OEP_PURE_SAME is set, then pure functions with identical arguments
2381 are considered the same. It is used when the caller has other ways
2382 to ensure that global memory is unchanged in between. */
2385 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2387 /* If either is ERROR_MARK, they aren't equal. */
2388 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2389 || TREE_TYPE (arg0) == error_mark_node
2390 || TREE_TYPE (arg1) == error_mark_node)
2391 return 0;
2393 /* Similar, if either does not have a type (like a released SSA name),
2394 they aren't equal. */
2395 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2396 return 0;
2398 /* Check equality of integer constants before bailing out due to
2399 precision differences. */
2400 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2401 return tree_int_cst_equal (arg0, arg1);
2403 /* If both types don't have the same signedness, then we can't consider
2404 them equal. We must check this before the STRIP_NOPS calls
2405 because they may change the signedness of the arguments. As pointers
2406 strictly don't have a signedness, require either two pointers or
2407 two non-pointers as well. */
2408 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2409 || POINTER_TYPE_P (TREE_TYPE (arg0)) != POINTER_TYPE_P (TREE_TYPE (arg1)))
2410 return 0;
2412 /* We cannot consider pointers to different address space equal. */
2413 if (POINTER_TYPE_P (TREE_TYPE (arg0)) && POINTER_TYPE_P (TREE_TYPE (arg1))
2414 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2415 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2416 return 0;
2418 /* If both types don't have the same precision, then it is not safe
2419 to strip NOPs. */
2420 if (TYPE_PRECISION (TREE_TYPE (arg0)) != TYPE_PRECISION (TREE_TYPE (arg1)))
2421 return 0;
2423 STRIP_NOPS (arg0);
2424 STRIP_NOPS (arg1);
2426 /* In case both args are comparisons but with different comparison
2427 code, try to swap the comparison operands of one arg to produce
2428 a match and compare that variant. */
2429 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2430 && COMPARISON_CLASS_P (arg0)
2431 && COMPARISON_CLASS_P (arg1))
2433 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2435 if (TREE_CODE (arg0) == swap_code)
2436 return operand_equal_p (TREE_OPERAND (arg0, 0),
2437 TREE_OPERAND (arg1, 1), flags)
2438 && operand_equal_p (TREE_OPERAND (arg0, 1),
2439 TREE_OPERAND (arg1, 0), flags);
2442 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2443 /* This is needed for conversions and for COMPONENT_REF.
2444 Might as well play it safe and always test this. */
2445 || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2446 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2447 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
2448 return 0;
2450 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2451 We don't care about side effects in that case because the SAVE_EXPR
2452 takes care of that for us. In all other cases, two expressions are
2453 equal if they have no side effects. If we have two identical
2454 expressions with side effects that should be treated the same due
2455 to the only side effects being identical SAVE_EXPR's, that will
2456 be detected in the recursive calls below.
2457 If we are taking an invariant address of two identical objects
2458 they are necessarily equal as well. */
2459 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2460 && (TREE_CODE (arg0) == SAVE_EXPR
2461 || (flags & OEP_CONSTANT_ADDRESS_OF)
2462 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2463 return 1;
2465 /* Next handle constant cases, those for which we can return 1 even
2466 if ONLY_CONST is set. */
2467 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2468 switch (TREE_CODE (arg0))
2470 case INTEGER_CST:
2471 return tree_int_cst_equal (arg0, arg1);
2473 case FIXED_CST:
2474 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
2475 TREE_FIXED_CST (arg1));
2477 case REAL_CST:
2478 if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
2479 TREE_REAL_CST (arg1)))
2480 return 1;
2483 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0))))
2485 /* If we do not distinguish between signed and unsigned zero,
2486 consider them equal. */
2487 if (real_zerop (arg0) && real_zerop (arg1))
2488 return 1;
2490 return 0;
2492 case VECTOR_CST:
2494 tree v1, v2;
2496 v1 = TREE_VECTOR_CST_ELTS (arg0);
2497 v2 = TREE_VECTOR_CST_ELTS (arg1);
2498 while (v1 && v2)
2500 if (!operand_equal_p (TREE_VALUE (v1), TREE_VALUE (v2),
2501 flags))
2502 return 0;
2503 v1 = TREE_CHAIN (v1);
2504 v2 = TREE_CHAIN (v2);
2507 return v1 == v2;
2510 case COMPLEX_CST:
2511 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2512 flags)
2513 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2514 flags));
2516 case STRING_CST:
2517 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2518 && ! memcmp (TREE_STRING_POINTER (arg0),
2519 TREE_STRING_POINTER (arg1),
2520 TREE_STRING_LENGTH (arg0)));
2522 case ADDR_EXPR:
2523 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2524 TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1)
2525 ? OEP_CONSTANT_ADDRESS_OF : 0);
2526 default:
2527 break;
2530 if (flags & OEP_ONLY_CONST)
2531 return 0;
2533 /* Define macros to test an operand from arg0 and arg1 for equality and a
2534 variant that allows null and views null as being different from any
2535 non-null value. In the latter case, if either is null, the both
2536 must be; otherwise, do the normal comparison. */
2537 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2538 TREE_OPERAND (arg1, N), flags)
2540 #define OP_SAME_WITH_NULL(N) \
2541 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2542 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2544 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2546 case tcc_unary:
2547 /* Two conversions are equal only if signedness and modes match. */
2548 switch (TREE_CODE (arg0))
2550 CASE_CONVERT:
2551 case FIX_TRUNC_EXPR:
2552 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2553 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2554 return 0;
2555 break;
2556 default:
2557 break;
2560 return OP_SAME (0);
2563 case tcc_comparison:
2564 case tcc_binary:
2565 if (OP_SAME (0) && OP_SAME (1))
2566 return 1;
2568 /* For commutative ops, allow the other order. */
2569 return (commutative_tree_code (TREE_CODE (arg0))
2570 && operand_equal_p (TREE_OPERAND (arg0, 0),
2571 TREE_OPERAND (arg1, 1), flags)
2572 && operand_equal_p (TREE_OPERAND (arg0, 1),
2573 TREE_OPERAND (arg1, 0), flags));
2575 case tcc_reference:
2576 /* If either of the pointer (or reference) expressions we are
2577 dereferencing contain a side effect, these cannot be equal. */
2578 if (TREE_SIDE_EFFECTS (arg0)
2579 || TREE_SIDE_EFFECTS (arg1))
2580 return 0;
2582 switch (TREE_CODE (arg0))
2584 case INDIRECT_REF:
2585 case REALPART_EXPR:
2586 case IMAGPART_EXPR:
2587 return OP_SAME (0);
2589 case MEM_REF:
2590 /* Require equal access sizes, and similar pointer types.
2591 We can have incomplete types for array references of
2592 variable-sized arrays from the Fortran frontent
2593 though. */
2594 return ((TYPE_SIZE (TREE_TYPE (arg0)) == TYPE_SIZE (TREE_TYPE (arg1))
2595 || (TYPE_SIZE (TREE_TYPE (arg0))
2596 && TYPE_SIZE (TREE_TYPE (arg1))
2597 && operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
2598 TYPE_SIZE (TREE_TYPE (arg1)), flags)))
2599 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (arg0, 1)))
2600 == TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (arg1, 1))))
2601 && OP_SAME (0) && OP_SAME (1));
2603 case ARRAY_REF:
2604 case ARRAY_RANGE_REF:
2605 /* Operands 2 and 3 may be null.
2606 Compare the array index by value if it is constant first as we
2607 may have different types but same value here. */
2608 return (OP_SAME (0)
2609 && (tree_int_cst_equal (TREE_OPERAND (arg0, 1),
2610 TREE_OPERAND (arg1, 1))
2611 || OP_SAME (1))
2612 && OP_SAME_WITH_NULL (2)
2613 && OP_SAME_WITH_NULL (3));
2615 case COMPONENT_REF:
2616 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
2617 may be NULL when we're called to compare MEM_EXPRs. */
2618 return OP_SAME_WITH_NULL (0)
2619 && OP_SAME (1)
2620 && OP_SAME_WITH_NULL (2);
2622 case BIT_FIELD_REF:
2623 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
2625 default:
2626 return 0;
2629 case tcc_expression:
2630 switch (TREE_CODE (arg0))
2632 case ADDR_EXPR:
2633 case TRUTH_NOT_EXPR:
2634 return OP_SAME (0);
2636 case TRUTH_ANDIF_EXPR:
2637 case TRUTH_ORIF_EXPR:
2638 return OP_SAME (0) && OP_SAME (1);
2640 case FMA_EXPR:
2641 case WIDEN_MULT_PLUS_EXPR:
2642 case WIDEN_MULT_MINUS_EXPR:
2643 if (!OP_SAME (2))
2644 return 0;
2645 /* The multiplcation operands are commutative. */
2646 /* FALLTHRU */
2648 case TRUTH_AND_EXPR:
2649 case TRUTH_OR_EXPR:
2650 case TRUTH_XOR_EXPR:
2651 if (OP_SAME (0) && OP_SAME (1))
2652 return 1;
2654 /* Otherwise take into account this is a commutative operation. */
2655 return (operand_equal_p (TREE_OPERAND (arg0, 0),
2656 TREE_OPERAND (arg1, 1), flags)
2657 && operand_equal_p (TREE_OPERAND (arg0, 1),
2658 TREE_OPERAND (arg1, 0), flags));
2660 case COND_EXPR:
2661 case VEC_COND_EXPR:
2662 case DOT_PROD_EXPR:
2663 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
2665 default:
2666 return 0;
2669 case tcc_vl_exp:
2670 switch (TREE_CODE (arg0))
2672 case CALL_EXPR:
2673 /* If the CALL_EXPRs call different functions, then they
2674 clearly can not be equal. */
2675 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
2676 flags))
2677 return 0;
2680 unsigned int cef = call_expr_flags (arg0);
2681 if (flags & OEP_PURE_SAME)
2682 cef &= ECF_CONST | ECF_PURE;
2683 else
2684 cef &= ECF_CONST;
2685 if (!cef)
2686 return 0;
2689 /* Now see if all the arguments are the same. */
2691 const_call_expr_arg_iterator iter0, iter1;
2692 const_tree a0, a1;
2693 for (a0 = first_const_call_expr_arg (arg0, &iter0),
2694 a1 = first_const_call_expr_arg (arg1, &iter1);
2695 a0 && a1;
2696 a0 = next_const_call_expr_arg (&iter0),
2697 a1 = next_const_call_expr_arg (&iter1))
2698 if (! operand_equal_p (a0, a1, flags))
2699 return 0;
2701 /* If we get here and both argument lists are exhausted
2702 then the CALL_EXPRs are equal. */
2703 return ! (a0 || a1);
2705 default:
2706 return 0;
2709 case tcc_declaration:
2710 /* Consider __builtin_sqrt equal to sqrt. */
2711 return (TREE_CODE (arg0) == FUNCTION_DECL
2712 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
2713 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
2714 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
2716 default:
2717 return 0;
2720 #undef OP_SAME
2721 #undef OP_SAME_WITH_NULL
2724 /* Similar to operand_equal_p, but see if ARG0 might have been made by
2725 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
2727 When in doubt, return 0. */
2729 static int
2730 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
2732 int unsignedp1, unsignedpo;
2733 tree primarg0, primarg1, primother;
2734 unsigned int correct_width;
2736 if (operand_equal_p (arg0, arg1, 0))
2737 return 1;
2739 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
2740 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
2741 return 0;
2743 /* Discard any conversions that don't change the modes of ARG0 and ARG1
2744 and see if the inner values are the same. This removes any
2745 signedness comparison, which doesn't matter here. */
2746 primarg0 = arg0, primarg1 = arg1;
2747 STRIP_NOPS (primarg0);
2748 STRIP_NOPS (primarg1);
2749 if (operand_equal_p (primarg0, primarg1, 0))
2750 return 1;
2752 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
2753 actual comparison operand, ARG0.
2755 First throw away any conversions to wider types
2756 already present in the operands. */
2758 primarg1 = get_narrower (arg1, &unsignedp1);
2759 primother = get_narrower (other, &unsignedpo);
2761 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
2762 if (unsignedp1 == unsignedpo
2763 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
2764 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
2766 tree type = TREE_TYPE (arg0);
2768 /* Make sure shorter operand is extended the right way
2769 to match the longer operand. */
2770 primarg1 = fold_convert (signed_or_unsigned_type_for
2771 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
2773 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
2774 return 1;
2777 return 0;
2780 /* See if ARG is an expression that is either a comparison or is performing
2781 arithmetic on comparisons. The comparisons must only be comparing
2782 two different values, which will be stored in *CVAL1 and *CVAL2; if
2783 they are nonzero it means that some operands have already been found.
2784 No variables may be used anywhere else in the expression except in the
2785 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
2786 the expression and save_expr needs to be called with CVAL1 and CVAL2.
2788 If this is true, return 1. Otherwise, return zero. */
2790 static int
2791 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
2793 enum tree_code code = TREE_CODE (arg);
2794 enum tree_code_class tclass = TREE_CODE_CLASS (code);
2796 /* We can handle some of the tcc_expression cases here. */
2797 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
2798 tclass = tcc_unary;
2799 else if (tclass == tcc_expression
2800 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
2801 || code == COMPOUND_EXPR))
2802 tclass = tcc_binary;
2804 else if (tclass == tcc_expression && code == SAVE_EXPR
2805 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
2807 /* If we've already found a CVAL1 or CVAL2, this expression is
2808 two complex to handle. */
2809 if (*cval1 || *cval2)
2810 return 0;
2812 tclass = tcc_unary;
2813 *save_p = 1;
2816 switch (tclass)
2818 case tcc_unary:
2819 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
2821 case tcc_binary:
2822 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
2823 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2824 cval1, cval2, save_p));
2826 case tcc_constant:
2827 return 1;
2829 case tcc_expression:
2830 if (code == COND_EXPR)
2831 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
2832 cval1, cval2, save_p)
2833 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2834 cval1, cval2, save_p)
2835 && twoval_comparison_p (TREE_OPERAND (arg, 2),
2836 cval1, cval2, save_p));
2837 return 0;
2839 case tcc_comparison:
2840 /* First see if we can handle the first operand, then the second. For
2841 the second operand, we know *CVAL1 can't be zero. It must be that
2842 one side of the comparison is each of the values; test for the
2843 case where this isn't true by failing if the two operands
2844 are the same. */
2846 if (operand_equal_p (TREE_OPERAND (arg, 0),
2847 TREE_OPERAND (arg, 1), 0))
2848 return 0;
2850 if (*cval1 == 0)
2851 *cval1 = TREE_OPERAND (arg, 0);
2852 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
2854 else if (*cval2 == 0)
2855 *cval2 = TREE_OPERAND (arg, 0);
2856 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
2858 else
2859 return 0;
2861 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
2863 else if (*cval2 == 0)
2864 *cval2 = TREE_OPERAND (arg, 1);
2865 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
2867 else
2868 return 0;
2870 return 1;
2872 default:
2873 return 0;
2877 /* ARG is a tree that is known to contain just arithmetic operations and
2878 comparisons. Evaluate the operations in the tree substituting NEW0 for
2879 any occurrence of OLD0 as an operand of a comparison and likewise for
2880 NEW1 and OLD1. */
2882 static tree
2883 eval_subst (location_t loc, tree arg, tree old0, tree new0,
2884 tree old1, tree new1)
2886 tree type = TREE_TYPE (arg);
2887 enum tree_code code = TREE_CODE (arg);
2888 enum tree_code_class tclass = TREE_CODE_CLASS (code);
2890 /* We can handle some of the tcc_expression cases here. */
2891 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
2892 tclass = tcc_unary;
2893 else if (tclass == tcc_expression
2894 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2895 tclass = tcc_binary;
2897 switch (tclass)
2899 case tcc_unary:
2900 return fold_build1_loc (loc, code, type,
2901 eval_subst (loc, TREE_OPERAND (arg, 0),
2902 old0, new0, old1, new1));
2904 case tcc_binary:
2905 return fold_build2_loc (loc, code, type,
2906 eval_subst (loc, TREE_OPERAND (arg, 0),
2907 old0, new0, old1, new1),
2908 eval_subst (loc, TREE_OPERAND (arg, 1),
2909 old0, new0, old1, new1));
2911 case tcc_expression:
2912 switch (code)
2914 case SAVE_EXPR:
2915 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
2916 old1, new1);
2918 case COMPOUND_EXPR:
2919 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
2920 old1, new1);
2922 case COND_EXPR:
2923 return fold_build3_loc (loc, code, type,
2924 eval_subst (loc, TREE_OPERAND (arg, 0),
2925 old0, new0, old1, new1),
2926 eval_subst (loc, TREE_OPERAND (arg, 1),
2927 old0, new0, old1, new1),
2928 eval_subst (loc, TREE_OPERAND (arg, 2),
2929 old0, new0, old1, new1));
2930 default:
2931 break;
2933 /* Fall through - ??? */
2935 case tcc_comparison:
2937 tree arg0 = TREE_OPERAND (arg, 0);
2938 tree arg1 = TREE_OPERAND (arg, 1);
2940 /* We need to check both for exact equality and tree equality. The
2941 former will be true if the operand has a side-effect. In that
2942 case, we know the operand occurred exactly once. */
2944 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
2945 arg0 = new0;
2946 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
2947 arg0 = new1;
2949 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
2950 arg1 = new0;
2951 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
2952 arg1 = new1;
2954 return fold_build2_loc (loc, code, type, arg0, arg1);
2957 default:
2958 return arg;
2962 /* Return a tree for the case when the result of an expression is RESULT
2963 converted to TYPE and OMITTED was previously an operand of the expression
2964 but is now not needed (e.g., we folded OMITTED * 0).
2966 If OMITTED has side effects, we must evaluate it. Otherwise, just do
2967 the conversion of RESULT to TYPE. */
2969 tree
2970 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
2972 tree t = fold_convert_loc (loc, type, result);
2974 /* If the resulting operand is an empty statement, just return the omitted
2975 statement casted to void. */
2976 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
2977 return build1_loc (loc, NOP_EXPR, void_type_node,
2978 fold_ignored_result (omitted));
2980 if (TREE_SIDE_EFFECTS (omitted))
2981 return build2_loc (loc, COMPOUND_EXPR, type,
2982 fold_ignored_result (omitted), t);
2984 return non_lvalue_loc (loc, t);
2987 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
2989 static tree
2990 pedantic_omit_one_operand_loc (location_t loc, tree type, tree result,
2991 tree omitted)
2993 tree t = fold_convert_loc (loc, type, result);
2995 /* If the resulting operand is an empty statement, just return the omitted
2996 statement casted to void. */
2997 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
2998 return build1_loc (loc, NOP_EXPR, void_type_node,
2999 fold_ignored_result (omitted));
3001 if (TREE_SIDE_EFFECTS (omitted))
3002 return build2_loc (loc, COMPOUND_EXPR, type,
3003 fold_ignored_result (omitted), t);
3005 return pedantic_non_lvalue_loc (loc, t);
3008 /* Return a tree for the case when the result of an expression is RESULT
3009 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3010 of the expression but are now not needed.
3012 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3013 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3014 evaluated before OMITTED2. Otherwise, if neither has side effects,
3015 just do the conversion of RESULT to TYPE. */
3017 tree
3018 omit_two_operands_loc (location_t loc, tree type, tree result,
3019 tree omitted1, tree omitted2)
3021 tree t = fold_convert_loc (loc, type, result);
3023 if (TREE_SIDE_EFFECTS (omitted2))
3024 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3025 if (TREE_SIDE_EFFECTS (omitted1))
3026 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3028 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3032 /* Return a simplified tree node for the truth-negation of ARG. This
3033 never alters ARG itself. We assume that ARG is an operation that
3034 returns a truth value (0 or 1).
3036 FIXME: one would think we would fold the result, but it causes
3037 problems with the dominator optimizer. */
3039 tree
3040 fold_truth_not_expr (location_t loc, tree arg)
3042 tree type = TREE_TYPE (arg);
3043 enum tree_code code = TREE_CODE (arg);
3044 location_t loc1, loc2;
3046 /* If this is a comparison, we can simply invert it, except for
3047 floating-point non-equality comparisons, in which case we just
3048 enclose a TRUTH_NOT_EXPR around what we have. */
3050 if (TREE_CODE_CLASS (code) == tcc_comparison)
3052 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3053 if (FLOAT_TYPE_P (op_type)
3054 && flag_trapping_math
3055 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3056 && code != NE_EXPR && code != EQ_EXPR)
3057 return NULL_TREE;
3059 code = invert_tree_comparison (code, HONOR_NANS (TYPE_MODE (op_type)));
3060 if (code == ERROR_MARK)
3061 return NULL_TREE;
3063 return build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3064 TREE_OPERAND (arg, 1));
3067 switch (code)
3069 case INTEGER_CST:
3070 return constant_boolean_node (integer_zerop (arg), type);
3072 case TRUTH_AND_EXPR:
3073 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3074 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3075 return build2_loc (loc, TRUTH_OR_EXPR, type,
3076 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3077 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3079 case TRUTH_OR_EXPR:
3080 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3081 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3082 return build2_loc (loc, TRUTH_AND_EXPR, type,
3083 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3084 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3086 case TRUTH_XOR_EXPR:
3087 /* Here we can invert either operand. We invert the first operand
3088 unless the second operand is a TRUTH_NOT_EXPR in which case our
3089 result is the XOR of the first operand with the inside of the
3090 negation of the second operand. */
3092 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3093 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3094 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3095 else
3096 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3097 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3098 TREE_OPERAND (arg, 1));
3100 case TRUTH_ANDIF_EXPR:
3101 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3102 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3103 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3104 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3105 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3107 case TRUTH_ORIF_EXPR:
3108 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3109 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3110 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3111 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3112 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3114 case TRUTH_NOT_EXPR:
3115 return TREE_OPERAND (arg, 0);
3117 case COND_EXPR:
3119 tree arg1 = TREE_OPERAND (arg, 1);
3120 tree arg2 = TREE_OPERAND (arg, 2);
3122 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3123 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3125 /* A COND_EXPR may have a throw as one operand, which
3126 then has void type. Just leave void operands
3127 as they are. */
3128 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3129 VOID_TYPE_P (TREE_TYPE (arg1))
3130 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3131 VOID_TYPE_P (TREE_TYPE (arg2))
3132 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3135 case COMPOUND_EXPR:
3136 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3137 return build2_loc (loc, COMPOUND_EXPR, type,
3138 TREE_OPERAND (arg, 0),
3139 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3141 case NON_LVALUE_EXPR:
3142 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3143 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3145 CASE_CONVERT:
3146 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3147 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3149 /* ... fall through ... */
3151 case FLOAT_EXPR:
3152 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3153 return build1_loc (loc, TREE_CODE (arg), type,
3154 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3156 case BIT_AND_EXPR:
3157 if (!integer_onep (TREE_OPERAND (arg, 1)))
3158 return NULL_TREE;
3159 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3161 case SAVE_EXPR:
3162 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3164 case CLEANUP_POINT_EXPR:
3165 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3166 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3167 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3169 default:
3170 return NULL_TREE;
3174 /* Return a simplified tree node for the truth-negation of ARG. This
3175 never alters ARG itself. We assume that ARG is an operation that
3176 returns a truth value (0 or 1).
3178 FIXME: one would think we would fold the result, but it causes
3179 problems with the dominator optimizer. */
3181 tree
3182 invert_truthvalue_loc (location_t loc, tree arg)
3184 tree tem;
3186 if (TREE_CODE (arg) == ERROR_MARK)
3187 return arg;
3189 tem = fold_truth_not_expr (loc, arg);
3190 if (!tem)
3191 tem = build1_loc (loc, TRUTH_NOT_EXPR, TREE_TYPE (arg), arg);
3193 return tem;
3196 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
3197 operands are another bit-wise operation with a common input. If so,
3198 distribute the bit operations to save an operation and possibly two if
3199 constants are involved. For example, convert
3200 (A | B) & (A | C) into A | (B & C)
3201 Further simplification will occur if B and C are constants.
3203 If this optimization cannot be done, 0 will be returned. */
3205 static tree
3206 distribute_bit_expr (location_t loc, enum tree_code code, tree type,
3207 tree arg0, tree arg1)
3209 tree common;
3210 tree left, right;
3212 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3213 || TREE_CODE (arg0) == code
3214 || (TREE_CODE (arg0) != BIT_AND_EXPR
3215 && TREE_CODE (arg0) != BIT_IOR_EXPR))
3216 return 0;
3218 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
3220 common = TREE_OPERAND (arg0, 0);
3221 left = TREE_OPERAND (arg0, 1);
3222 right = TREE_OPERAND (arg1, 1);
3224 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
3226 common = TREE_OPERAND (arg0, 0);
3227 left = TREE_OPERAND (arg0, 1);
3228 right = TREE_OPERAND (arg1, 0);
3230 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
3232 common = TREE_OPERAND (arg0, 1);
3233 left = TREE_OPERAND (arg0, 0);
3234 right = TREE_OPERAND (arg1, 1);
3236 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
3238 common = TREE_OPERAND (arg0, 1);
3239 left = TREE_OPERAND (arg0, 0);
3240 right = TREE_OPERAND (arg1, 0);
3242 else
3243 return 0;
3245 common = fold_convert_loc (loc, type, common);
3246 left = fold_convert_loc (loc, type, left);
3247 right = fold_convert_loc (loc, type, right);
3248 return fold_build2_loc (loc, TREE_CODE (arg0), type, common,
3249 fold_build2_loc (loc, code, type, left, right));
3252 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3253 with code CODE. This optimization is unsafe. */
3254 static tree
3255 distribute_real_division (location_t loc, enum tree_code code, tree type,
3256 tree arg0, tree arg1)
3258 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3259 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3261 /* (A / C) +- (B / C) -> (A +- B) / C. */
3262 if (mul0 == mul1
3263 && operand_equal_p (TREE_OPERAND (arg0, 1),
3264 TREE_OPERAND (arg1, 1), 0))
3265 return fold_build2_loc (loc, mul0 ? MULT_EXPR : RDIV_EXPR, type,
3266 fold_build2_loc (loc, code, type,
3267 TREE_OPERAND (arg0, 0),
3268 TREE_OPERAND (arg1, 0)),
3269 TREE_OPERAND (arg0, 1));
3271 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3272 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3273 TREE_OPERAND (arg1, 0), 0)
3274 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3275 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3277 REAL_VALUE_TYPE r0, r1;
3278 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3279 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3280 if (!mul0)
3281 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3282 if (!mul1)
3283 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3284 real_arithmetic (&r0, code, &r0, &r1);
3285 return fold_build2_loc (loc, MULT_EXPR, type,
3286 TREE_OPERAND (arg0, 0),
3287 build_real (type, r0));
3290 return NULL_TREE;
3293 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3294 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3296 static tree
3297 make_bit_field_ref (location_t loc, tree inner, tree type,
3298 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos, int unsignedp)
3300 tree result, bftype;
3302 if (bitpos == 0)
3304 tree size = TYPE_SIZE (TREE_TYPE (inner));
3305 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3306 || POINTER_TYPE_P (TREE_TYPE (inner)))
3307 && host_integerp (size, 0)
3308 && tree_low_cst (size, 0) == bitsize)
3309 return fold_convert_loc (loc, type, inner);
3312 bftype = type;
3313 if (TYPE_PRECISION (bftype) != bitsize
3314 || TYPE_UNSIGNED (bftype) == !unsignedp)
3315 bftype = build_nonstandard_integer_type (bitsize, 0);
3317 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
3318 size_int (bitsize), bitsize_int (bitpos));
3320 if (bftype != type)
3321 result = fold_convert_loc (loc, type, result);
3323 return result;
3326 /* Optimize a bit-field compare.
3328 There are two cases: First is a compare against a constant and the
3329 second is a comparison of two items where the fields are at the same
3330 bit position relative to the start of a chunk (byte, halfword, word)
3331 large enough to contain it. In these cases we can avoid the shift
3332 implicit in bitfield extractions.
3334 For constants, we emit a compare of the shifted constant with the
3335 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3336 compared. For two fields at the same position, we do the ANDs with the
3337 similar mask and compare the result of the ANDs.
3339 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3340 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3341 are the left and right operands of the comparison, respectively.
3343 If the optimization described above can be done, we return the resulting
3344 tree. Otherwise we return zero. */
3346 static tree
3347 optimize_bit_field_compare (location_t loc, enum tree_code code,
3348 tree compare_type, tree lhs, tree rhs)
3350 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3351 tree type = TREE_TYPE (lhs);
3352 tree signed_type, unsigned_type;
3353 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3354 enum machine_mode lmode, rmode, nmode;
3355 int lunsignedp, runsignedp;
3356 int lvolatilep = 0, rvolatilep = 0;
3357 tree linner, rinner = NULL_TREE;
3358 tree mask;
3359 tree offset;
3361 /* Get all the information about the extractions being done. If the bit size
3362 if the same as the size of the underlying object, we aren't doing an
3363 extraction at all and so can do nothing. We also don't want to
3364 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3365 then will no longer be able to replace it. */
3366 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3367 &lunsignedp, &lvolatilep, false);
3368 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3369 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
3370 return 0;
3372 if (!const_p)
3374 /* If this is not a constant, we can only do something if bit positions,
3375 sizes, and signedness are the same. */
3376 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3377 &runsignedp, &rvolatilep, false);
3379 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3380 || lunsignedp != runsignedp || offset != 0
3381 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
3382 return 0;
3385 /* See if we can find a mode to refer to this field. We should be able to,
3386 but fail if we can't. */
3387 if (lvolatilep
3388 && GET_MODE_BITSIZE (lmode) > 0
3389 && flag_strict_volatile_bitfields > 0)
3390 nmode = lmode;
3391 else
3392 nmode = get_best_mode (lbitsize, lbitpos, 0, 0,
3393 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3394 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3395 TYPE_ALIGN (TREE_TYPE (rinner))),
3396 word_mode, lvolatilep || rvolatilep);
3397 if (nmode == VOIDmode)
3398 return 0;
3400 /* Set signed and unsigned types of the precision of this mode for the
3401 shifts below. */
3402 signed_type = lang_hooks.types.type_for_mode (nmode, 0);
3403 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3405 /* Compute the bit position and size for the new reference and our offset
3406 within it. If the new reference is the same size as the original, we
3407 won't optimize anything, so return zero. */
3408 nbitsize = GET_MODE_BITSIZE (nmode);
3409 nbitpos = lbitpos & ~ (nbitsize - 1);
3410 lbitpos -= nbitpos;
3411 if (nbitsize == lbitsize)
3412 return 0;
3414 if (BYTES_BIG_ENDIAN)
3415 lbitpos = nbitsize - lbitsize - lbitpos;
3417 /* Make the mask to be used against the extracted field. */
3418 mask = build_int_cst_type (unsigned_type, -1);
3419 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
3420 mask = const_binop (RSHIFT_EXPR, mask,
3421 size_int (nbitsize - lbitsize - lbitpos));
3423 if (! const_p)
3424 /* If not comparing with constant, just rework the comparison
3425 and return. */
3426 return fold_build2_loc (loc, code, compare_type,
3427 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3428 make_bit_field_ref (loc, linner,
3429 unsigned_type,
3430 nbitsize, nbitpos,
3432 mask),
3433 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3434 make_bit_field_ref (loc, rinner,
3435 unsigned_type,
3436 nbitsize, nbitpos,
3438 mask));
3440 /* Otherwise, we are handling the constant case. See if the constant is too
3441 big for the field. Warn and return a tree of for 0 (false) if so. We do
3442 this not only for its own sake, but to avoid having to test for this
3443 error case below. If we didn't, we might generate wrong code.
3445 For unsigned fields, the constant shifted right by the field length should
3446 be all zero. For signed fields, the high-order bits should agree with
3447 the sign bit. */
3449 if (lunsignedp)
3451 if (! integer_zerop (const_binop (RSHIFT_EXPR,
3452 fold_convert_loc (loc,
3453 unsigned_type, rhs),
3454 size_int (lbitsize))))
3456 warning (0, "comparison is always %d due to width of bit-field",
3457 code == NE_EXPR);
3458 return constant_boolean_node (code == NE_EXPR, compare_type);
3461 else
3463 tree tem = const_binop (RSHIFT_EXPR,
3464 fold_convert_loc (loc, signed_type, rhs),
3465 size_int (lbitsize - 1));
3466 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
3468 warning (0, "comparison is always %d due to width of bit-field",
3469 code == NE_EXPR);
3470 return constant_boolean_node (code == NE_EXPR, compare_type);
3474 /* Single-bit compares should always be against zero. */
3475 if (lbitsize == 1 && ! integer_zerop (rhs))
3477 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3478 rhs = build_int_cst (type, 0);
3481 /* Make a new bitfield reference, shift the constant over the
3482 appropriate number of bits and mask it with the computed mask
3483 (in case this was a signed field). If we changed it, make a new one. */
3484 lhs = make_bit_field_ref (loc, linner, unsigned_type, nbitsize, nbitpos, 1);
3485 if (lvolatilep)
3487 TREE_SIDE_EFFECTS (lhs) = 1;
3488 TREE_THIS_VOLATILE (lhs) = 1;
3491 rhs = const_binop (BIT_AND_EXPR,
3492 const_binop (LSHIFT_EXPR,
3493 fold_convert_loc (loc, unsigned_type, rhs),
3494 size_int (lbitpos)),
3495 mask);
3497 lhs = build2_loc (loc, code, compare_type,
3498 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
3499 return lhs;
3502 /* Subroutine for fold_truth_andor_1: decode a field reference.
3504 If EXP is a comparison reference, we return the innermost reference.
3506 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3507 set to the starting bit number.
3509 If the innermost field can be completely contained in a mode-sized
3510 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3512 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3513 otherwise it is not changed.
3515 *PUNSIGNEDP is set to the signedness of the field.
3517 *PMASK is set to the mask used. This is either contained in a
3518 BIT_AND_EXPR or derived from the width of the field.
3520 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3522 Return 0 if this is not a component reference or is one that we can't
3523 do anything with. */
3525 static tree
3526 decode_field_reference (location_t loc, tree exp, HOST_WIDE_INT *pbitsize,
3527 HOST_WIDE_INT *pbitpos, enum machine_mode *pmode,
3528 int *punsignedp, int *pvolatilep,
3529 tree *pmask, tree *pand_mask)
3531 tree outer_type = 0;
3532 tree and_mask = 0;
3533 tree mask, inner, offset;
3534 tree unsigned_type;
3535 unsigned int precision;
3537 /* All the optimizations using this function assume integer fields.
3538 There are problems with FP fields since the type_for_size call
3539 below can fail for, e.g., XFmode. */
3540 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
3541 return 0;
3543 /* We are interested in the bare arrangement of bits, so strip everything
3544 that doesn't affect the machine mode. However, record the type of the
3545 outermost expression if it may matter below. */
3546 if (CONVERT_EXPR_P (exp)
3547 || TREE_CODE (exp) == NON_LVALUE_EXPR)
3548 outer_type = TREE_TYPE (exp);
3549 STRIP_NOPS (exp);
3551 if (TREE_CODE (exp) == BIT_AND_EXPR)
3553 and_mask = TREE_OPERAND (exp, 1);
3554 exp = TREE_OPERAND (exp, 0);
3555 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
3556 if (TREE_CODE (and_mask) != INTEGER_CST)
3557 return 0;
3560 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
3561 punsignedp, pvolatilep, false);
3562 if ((inner == exp && and_mask == 0)
3563 || *pbitsize < 0 || offset != 0
3564 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
3565 return 0;
3567 /* If the number of bits in the reference is the same as the bitsize of
3568 the outer type, then the outer type gives the signedness. Otherwise
3569 (in case of a small bitfield) the signedness is unchanged. */
3570 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
3571 *punsignedp = TYPE_UNSIGNED (outer_type);
3573 /* Compute the mask to access the bitfield. */
3574 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
3575 precision = TYPE_PRECISION (unsigned_type);
3577 mask = build_int_cst_type (unsigned_type, -1);
3579 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3580 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3582 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3583 if (and_mask != 0)
3584 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3585 fold_convert_loc (loc, unsigned_type, and_mask), mask);
3587 *pmask = mask;
3588 *pand_mask = and_mask;
3589 return inner;
3592 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
3593 bit positions. */
3595 static int
3596 all_ones_mask_p (const_tree mask, int size)
3598 tree type = TREE_TYPE (mask);
3599 unsigned int precision = TYPE_PRECISION (type);
3600 tree tmask;
3602 tmask = build_int_cst_type (signed_type_for (type), -1);
3604 return
3605 tree_int_cst_equal (mask,
3606 const_binop (RSHIFT_EXPR,
3607 const_binop (LSHIFT_EXPR, tmask,
3608 size_int (precision - size)),
3609 size_int (precision - size)));
3612 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
3613 represents the sign bit of EXP's type. If EXP represents a sign
3614 or zero extension, also test VAL against the unextended type.
3615 The return value is the (sub)expression whose sign bit is VAL,
3616 or NULL_TREE otherwise. */
3618 static tree
3619 sign_bit_p (tree exp, const_tree val)
3621 unsigned HOST_WIDE_INT mask_lo, lo;
3622 HOST_WIDE_INT mask_hi, hi;
3623 int width;
3624 tree t;
3626 /* Tree EXP must have an integral type. */
3627 t = TREE_TYPE (exp);
3628 if (! INTEGRAL_TYPE_P (t))
3629 return NULL_TREE;
3631 /* Tree VAL must be an integer constant. */
3632 if (TREE_CODE (val) != INTEGER_CST
3633 || TREE_OVERFLOW (val))
3634 return NULL_TREE;
3636 width = TYPE_PRECISION (t);
3637 if (width > HOST_BITS_PER_WIDE_INT)
3639 hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
3640 lo = 0;
3642 mask_hi = ((unsigned HOST_WIDE_INT) -1
3643 >> (2 * HOST_BITS_PER_WIDE_INT - width));
3644 mask_lo = -1;
3646 else
3648 hi = 0;
3649 lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
3651 mask_hi = 0;
3652 mask_lo = ((unsigned HOST_WIDE_INT) -1
3653 >> (HOST_BITS_PER_WIDE_INT - width));
3656 /* We mask off those bits beyond TREE_TYPE (exp) so that we can
3657 treat VAL as if it were unsigned. */
3658 if ((TREE_INT_CST_HIGH (val) & mask_hi) == hi
3659 && (TREE_INT_CST_LOW (val) & mask_lo) == lo)
3660 return exp;
3662 /* Handle extension from a narrower type. */
3663 if (TREE_CODE (exp) == NOP_EXPR
3664 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
3665 return sign_bit_p (TREE_OPERAND (exp, 0), val);
3667 return NULL_TREE;
3670 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
3671 to be evaluated unconditionally. */
3673 static int
3674 simple_operand_p (const_tree exp)
3676 /* Strip any conversions that don't change the machine mode. */
3677 STRIP_NOPS (exp);
3679 return (CONSTANT_CLASS_P (exp)
3680 || TREE_CODE (exp) == SSA_NAME
3681 || (DECL_P (exp)
3682 && ! TREE_ADDRESSABLE (exp)
3683 && ! TREE_THIS_VOLATILE (exp)
3684 && ! DECL_NONLOCAL (exp)
3685 /* Don't regard global variables as simple. They may be
3686 allocated in ways unknown to the compiler (shared memory,
3687 #pragma weak, etc). */
3688 && ! TREE_PUBLIC (exp)
3689 && ! DECL_EXTERNAL (exp)
3690 /* Loading a static variable is unduly expensive, but global
3691 registers aren't expensive. */
3692 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
3695 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
3696 to be evaluated unconditionally.
3697 I addition to simple_operand_p, we assume that comparisons, conversions,
3698 and logic-not operations are simple, if their operands are simple, too. */
3700 static bool
3701 simple_operand_p_2 (tree exp)
3703 enum tree_code code;
3705 if (TREE_SIDE_EFFECTS (exp)
3706 || tree_could_trap_p (exp))
3707 return false;
3709 while (CONVERT_EXPR_P (exp))
3710 exp = TREE_OPERAND (exp, 0);
3712 code = TREE_CODE (exp);
3714 if (TREE_CODE_CLASS (code) == tcc_comparison)
3715 return (simple_operand_p (TREE_OPERAND (exp, 0))
3716 && simple_operand_p (TREE_OPERAND (exp, 1)));
3718 if (code == TRUTH_NOT_EXPR)
3719 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
3721 return simple_operand_p (exp);
3725 /* The following functions are subroutines to fold_range_test and allow it to
3726 try to change a logical combination of comparisons into a range test.
3728 For example, both
3729 X == 2 || X == 3 || X == 4 || X == 5
3731 X >= 2 && X <= 5
3732 are converted to
3733 (unsigned) (X - 2) <= 3
3735 We describe each set of comparisons as being either inside or outside
3736 a range, using a variable named like IN_P, and then describe the
3737 range with a lower and upper bound. If one of the bounds is omitted,
3738 it represents either the highest or lowest value of the type.
3740 In the comments below, we represent a range by two numbers in brackets
3741 preceded by a "+" to designate being inside that range, or a "-" to
3742 designate being outside that range, so the condition can be inverted by
3743 flipping the prefix. An omitted bound is represented by a "-". For
3744 example, "- [-, 10]" means being outside the range starting at the lowest
3745 possible value and ending at 10, in other words, being greater than 10.
3746 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
3747 always false.
3749 We set up things so that the missing bounds are handled in a consistent
3750 manner so neither a missing bound nor "true" and "false" need to be
3751 handled using a special case. */
3753 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
3754 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
3755 and UPPER1_P are nonzero if the respective argument is an upper bound
3756 and zero for a lower. TYPE, if nonzero, is the type of the result; it
3757 must be specified for a comparison. ARG1 will be converted to ARG0's
3758 type if both are specified. */
3760 static tree
3761 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
3762 tree arg1, int upper1_p)
3764 tree tem;
3765 int result;
3766 int sgn0, sgn1;
3768 /* If neither arg represents infinity, do the normal operation.
3769 Else, if not a comparison, return infinity. Else handle the special
3770 comparison rules. Note that most of the cases below won't occur, but
3771 are handled for consistency. */
3773 if (arg0 != 0 && arg1 != 0)
3775 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
3776 arg0, fold_convert (TREE_TYPE (arg0), arg1));
3777 STRIP_NOPS (tem);
3778 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
3781 if (TREE_CODE_CLASS (code) != tcc_comparison)
3782 return 0;
3784 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
3785 for neither. In real maths, we cannot assume open ended ranges are
3786 the same. But, this is computer arithmetic, where numbers are finite.
3787 We can therefore make the transformation of any unbounded range with
3788 the value Z, Z being greater than any representable number. This permits
3789 us to treat unbounded ranges as equal. */
3790 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
3791 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
3792 switch (code)
3794 case EQ_EXPR:
3795 result = sgn0 == sgn1;
3796 break;
3797 case NE_EXPR:
3798 result = sgn0 != sgn1;
3799 break;
3800 case LT_EXPR:
3801 result = sgn0 < sgn1;
3802 break;
3803 case LE_EXPR:
3804 result = sgn0 <= sgn1;
3805 break;
3806 case GT_EXPR:
3807 result = sgn0 > sgn1;
3808 break;
3809 case GE_EXPR:
3810 result = sgn0 >= sgn1;
3811 break;
3812 default:
3813 gcc_unreachable ();
3816 return constant_boolean_node (result, type);
3819 /* Helper routine for make_range. Perform one step for it, return
3820 new expression if the loop should continue or NULL_TREE if it should
3821 stop. */
3823 tree
3824 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
3825 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
3826 bool *strict_overflow_p)
3828 tree arg0_type = TREE_TYPE (arg0);
3829 tree n_low, n_high, low = *p_low, high = *p_high;
3830 int in_p = *p_in_p, n_in_p;
3832 switch (code)
3834 case TRUTH_NOT_EXPR:
3835 *p_in_p = ! in_p;
3836 return arg0;
3838 case EQ_EXPR: case NE_EXPR:
3839 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
3840 /* We can only do something if the range is testing for zero
3841 and if the second operand is an integer constant. Note that
3842 saying something is "in" the range we make is done by
3843 complementing IN_P since it will set in the initial case of
3844 being not equal to zero; "out" is leaving it alone. */
3845 if (low == NULL_TREE || high == NULL_TREE
3846 || ! integer_zerop (low) || ! integer_zerop (high)
3847 || TREE_CODE (arg1) != INTEGER_CST)
3848 return NULL_TREE;
3850 switch (code)
3852 case NE_EXPR: /* - [c, c] */
3853 low = high = arg1;
3854 break;
3855 case EQ_EXPR: /* + [c, c] */
3856 in_p = ! in_p, low = high = arg1;
3857 break;
3858 case GT_EXPR: /* - [-, c] */
3859 low = 0, high = arg1;
3860 break;
3861 case GE_EXPR: /* + [c, -] */
3862 in_p = ! in_p, low = arg1, high = 0;
3863 break;
3864 case LT_EXPR: /* - [c, -] */
3865 low = arg1, high = 0;
3866 break;
3867 case LE_EXPR: /* + [-, c] */
3868 in_p = ! in_p, low = 0, high = arg1;
3869 break;
3870 default:
3871 gcc_unreachable ();
3874 /* If this is an unsigned comparison, we also know that EXP is
3875 greater than or equal to zero. We base the range tests we make
3876 on that fact, so we record it here so we can parse existing
3877 range tests. We test arg0_type since often the return type
3878 of, e.g. EQ_EXPR, is boolean. */
3879 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
3881 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3882 in_p, low, high, 1,
3883 build_int_cst (arg0_type, 0),
3884 NULL_TREE))
3885 return NULL_TREE;
3887 in_p = n_in_p, low = n_low, high = n_high;
3889 /* If the high bound is missing, but we have a nonzero low
3890 bound, reverse the range so it goes from zero to the low bound
3891 minus 1. */
3892 if (high == 0 && low && ! integer_zerop (low))
3894 in_p = ! in_p;
3895 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
3896 integer_one_node, 0);
3897 low = build_int_cst (arg0_type, 0);
3901 *p_low = low;
3902 *p_high = high;
3903 *p_in_p = in_p;
3904 return arg0;
3906 case NEGATE_EXPR:
3907 /* (-x) IN [a,b] -> x in [-b, -a] */
3908 n_low = range_binop (MINUS_EXPR, exp_type,
3909 build_int_cst (exp_type, 0),
3910 0, high, 1);
3911 n_high = range_binop (MINUS_EXPR, exp_type,
3912 build_int_cst (exp_type, 0),
3913 0, low, 0);
3914 if (n_high != 0 && TREE_OVERFLOW (n_high))
3915 return NULL_TREE;
3916 goto normalize;
3918 case BIT_NOT_EXPR:
3919 /* ~ X -> -X - 1 */
3920 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
3921 build_int_cst (exp_type, 1));
3923 case PLUS_EXPR:
3924 case MINUS_EXPR:
3925 if (TREE_CODE (arg1) != INTEGER_CST)
3926 return NULL_TREE;
3928 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
3929 move a constant to the other side. */
3930 if (!TYPE_UNSIGNED (arg0_type)
3931 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
3932 return NULL_TREE;
3934 /* If EXP is signed, any overflow in the computation is undefined,
3935 so we don't worry about it so long as our computations on
3936 the bounds don't overflow. For unsigned, overflow is defined
3937 and this is exactly the right thing. */
3938 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3939 arg0_type, low, 0, arg1, 0);
3940 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3941 arg0_type, high, 1, arg1, 0);
3942 if ((n_low != 0 && TREE_OVERFLOW (n_low))
3943 || (n_high != 0 && TREE_OVERFLOW (n_high)))
3944 return NULL_TREE;
3946 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
3947 *strict_overflow_p = true;
3949 normalize:
3950 /* Check for an unsigned range which has wrapped around the maximum
3951 value thus making n_high < n_low, and normalize it. */
3952 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
3954 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
3955 integer_one_node, 0);
3956 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
3957 integer_one_node, 0);
3959 /* If the range is of the form +/- [ x+1, x ], we won't
3960 be able to normalize it. But then, it represents the
3961 whole range or the empty set, so make it
3962 +/- [ -, - ]. */
3963 if (tree_int_cst_equal (n_low, low)
3964 && tree_int_cst_equal (n_high, high))
3965 low = high = 0;
3966 else
3967 in_p = ! in_p;
3969 else
3970 low = n_low, high = n_high;
3972 *p_low = low;
3973 *p_high = high;
3974 *p_in_p = in_p;
3975 return arg0;
3977 CASE_CONVERT:
3978 case NON_LVALUE_EXPR:
3979 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
3980 return NULL_TREE;
3982 if (! INTEGRAL_TYPE_P (arg0_type)
3983 || (low != 0 && ! int_fits_type_p (low, arg0_type))
3984 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
3985 return NULL_TREE;
3987 n_low = low, n_high = high;
3989 if (n_low != 0)
3990 n_low = fold_convert_loc (loc, arg0_type, n_low);
3992 if (n_high != 0)
3993 n_high = fold_convert_loc (loc, arg0_type, n_high);
3995 /* If we're converting arg0 from an unsigned type, to exp,
3996 a signed type, we will be doing the comparison as unsigned.
3997 The tests above have already verified that LOW and HIGH
3998 are both positive.
4000 So we have to ensure that we will handle large unsigned
4001 values the same way that the current signed bounds treat
4002 negative values. */
4004 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4006 tree high_positive;
4007 tree equiv_type;
4008 /* For fixed-point modes, we need to pass the saturating flag
4009 as the 2nd parameter. */
4010 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4011 equiv_type
4012 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4013 TYPE_SATURATING (arg0_type));
4014 else
4015 equiv_type
4016 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4018 /* A range without an upper bound is, naturally, unbounded.
4019 Since convert would have cropped a very large value, use
4020 the max value for the destination type. */
4021 high_positive
4022 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4023 : TYPE_MAX_VALUE (arg0_type);
4025 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4026 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4027 fold_convert_loc (loc, arg0_type,
4028 high_positive),
4029 build_int_cst (arg0_type, 1));
4031 /* If the low bound is specified, "and" the range with the
4032 range for which the original unsigned value will be
4033 positive. */
4034 if (low != 0)
4036 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4037 1, fold_convert_loc (loc, arg0_type,
4038 integer_zero_node),
4039 high_positive))
4040 return NULL_TREE;
4042 in_p = (n_in_p == in_p);
4044 else
4046 /* Otherwise, "or" the range with the range of the input
4047 that will be interpreted as negative. */
4048 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4049 1, fold_convert_loc (loc, arg0_type,
4050 integer_zero_node),
4051 high_positive))
4052 return NULL_TREE;
4054 in_p = (in_p != n_in_p);
4058 *p_low = n_low;
4059 *p_high = n_high;
4060 *p_in_p = in_p;
4061 return arg0;
4063 default:
4064 return NULL_TREE;
4068 /* Given EXP, a logical expression, set the range it is testing into
4069 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4070 actually being tested. *PLOW and *PHIGH will be made of the same
4071 type as the returned expression. If EXP is not a comparison, we
4072 will most likely not be returning a useful value and range. Set
4073 *STRICT_OVERFLOW_P to true if the return value is only valid
4074 because signed overflow is undefined; otherwise, do not change
4075 *STRICT_OVERFLOW_P. */
4077 tree
4078 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4079 bool *strict_overflow_p)
4081 enum tree_code code;
4082 tree arg0, arg1 = NULL_TREE;
4083 tree exp_type, nexp;
4084 int in_p;
4085 tree low, high;
4086 location_t loc = EXPR_LOCATION (exp);
4088 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4089 and see if we can refine the range. Some of the cases below may not
4090 happen, but it doesn't seem worth worrying about this. We "continue"
4091 the outer loop when we've changed something; otherwise we "break"
4092 the switch, which will "break" the while. */
4094 in_p = 0;
4095 low = high = build_int_cst (TREE_TYPE (exp), 0);
4097 while (1)
4099 code = TREE_CODE (exp);
4100 exp_type = TREE_TYPE (exp);
4101 arg0 = NULL_TREE;
4103 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4105 if (TREE_OPERAND_LENGTH (exp) > 0)
4106 arg0 = TREE_OPERAND (exp, 0);
4107 if (TREE_CODE_CLASS (code) == tcc_binary
4108 || TREE_CODE_CLASS (code) == tcc_comparison
4109 || (TREE_CODE_CLASS (code) == tcc_expression
4110 && TREE_OPERAND_LENGTH (exp) > 1))
4111 arg1 = TREE_OPERAND (exp, 1);
4113 if (arg0 == NULL_TREE)
4114 break;
4116 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4117 &high, &in_p, strict_overflow_p);
4118 if (nexp == NULL_TREE)
4119 break;
4120 exp = nexp;
4123 /* If EXP is a constant, we can evaluate whether this is true or false. */
4124 if (TREE_CODE (exp) == INTEGER_CST)
4126 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4127 exp, 0, low, 0))
4128 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4129 exp, 1, high, 1)));
4130 low = high = 0;
4131 exp = 0;
4134 *pin_p = in_p, *plow = low, *phigh = high;
4135 return exp;
4138 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4139 type, TYPE, return an expression to test if EXP is in (or out of, depending
4140 on IN_P) the range. Return 0 if the test couldn't be created. */
4142 tree
4143 build_range_check (location_t loc, tree type, tree exp, int in_p,
4144 tree low, tree high)
4146 tree etype = TREE_TYPE (exp), value;
4148 #ifdef HAVE_canonicalize_funcptr_for_compare
4149 /* Disable this optimization for function pointer expressions
4150 on targets that require function pointer canonicalization. */
4151 if (HAVE_canonicalize_funcptr_for_compare
4152 && TREE_CODE (etype) == POINTER_TYPE
4153 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4154 return NULL_TREE;
4155 #endif
4157 if (! in_p)
4159 value = build_range_check (loc, type, exp, 1, low, high);
4160 if (value != 0)
4161 return invert_truthvalue_loc (loc, value);
4163 return 0;
4166 if (low == 0 && high == 0)
4167 return build_int_cst (type, 1);
4169 if (low == 0)
4170 return fold_build2_loc (loc, LE_EXPR, type, exp,
4171 fold_convert_loc (loc, etype, high));
4173 if (high == 0)
4174 return fold_build2_loc (loc, GE_EXPR, type, exp,
4175 fold_convert_loc (loc, etype, low));
4177 if (operand_equal_p (low, high, 0))
4178 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4179 fold_convert_loc (loc, etype, low));
4181 if (integer_zerop (low))
4183 if (! TYPE_UNSIGNED (etype))
4185 etype = unsigned_type_for (etype);
4186 high = fold_convert_loc (loc, etype, high);
4187 exp = fold_convert_loc (loc, etype, exp);
4189 return build_range_check (loc, type, exp, 1, 0, high);
4192 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4193 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4195 unsigned HOST_WIDE_INT lo;
4196 HOST_WIDE_INT hi;
4197 int prec;
4199 prec = TYPE_PRECISION (etype);
4200 if (prec <= HOST_BITS_PER_WIDE_INT)
4202 hi = 0;
4203 lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
4205 else
4207 hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
4208 lo = (unsigned HOST_WIDE_INT) -1;
4211 if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
4213 if (TYPE_UNSIGNED (etype))
4215 tree signed_etype = signed_type_for (etype);
4216 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4217 etype
4218 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4219 else
4220 etype = signed_etype;
4221 exp = fold_convert_loc (loc, etype, exp);
4223 return fold_build2_loc (loc, GT_EXPR, type, exp,
4224 build_int_cst (etype, 0));
4228 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4229 This requires wrap-around arithmetics for the type of the expression.
4230 First make sure that arithmetics in this type is valid, then make sure
4231 that it wraps around. */
4232 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4233 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4234 TYPE_UNSIGNED (etype));
4236 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4238 tree utype, minv, maxv;
4240 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4241 for the type in question, as we rely on this here. */
4242 utype = unsigned_type_for (etype);
4243 maxv = fold_convert_loc (loc, utype, TYPE_MAX_VALUE (etype));
4244 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4245 integer_one_node, 1);
4246 minv = fold_convert_loc (loc, utype, TYPE_MIN_VALUE (etype));
4248 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4249 minv, 1, maxv, 1)))
4250 etype = utype;
4251 else
4252 return 0;
4255 high = fold_convert_loc (loc, etype, high);
4256 low = fold_convert_loc (loc, etype, low);
4257 exp = fold_convert_loc (loc, etype, exp);
4259 value = const_binop (MINUS_EXPR, high, low);
4262 if (POINTER_TYPE_P (etype))
4264 if (value != 0 && !TREE_OVERFLOW (value))
4266 low = fold_build1_loc (loc, NEGATE_EXPR, TREE_TYPE (low), low);
4267 return build_range_check (loc, type,
4268 fold_build_pointer_plus_loc (loc, exp, low),
4269 1, build_int_cst (etype, 0), value);
4271 return 0;
4274 if (value != 0 && !TREE_OVERFLOW (value))
4275 return build_range_check (loc, type,
4276 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
4277 1, build_int_cst (etype, 0), value);
4279 return 0;
4282 /* Return the predecessor of VAL in its type, handling the infinite case. */
4284 static tree
4285 range_predecessor (tree val)
4287 tree type = TREE_TYPE (val);
4289 if (INTEGRAL_TYPE_P (type)
4290 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4291 return 0;
4292 else
4293 return range_binop (MINUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
4296 /* Return the successor of VAL in its type, handling the infinite case. */
4298 static tree
4299 range_successor (tree val)
4301 tree type = TREE_TYPE (val);
4303 if (INTEGRAL_TYPE_P (type)
4304 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4305 return 0;
4306 else
4307 return range_binop (PLUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
4310 /* Given two ranges, see if we can merge them into one. Return 1 if we
4311 can, 0 if we can't. Set the output range into the specified parameters. */
4313 bool
4314 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4315 tree high0, int in1_p, tree low1, tree high1)
4317 int no_overlap;
4318 int subset;
4319 int temp;
4320 tree tem;
4321 int in_p;
4322 tree low, high;
4323 int lowequal = ((low0 == 0 && low1 == 0)
4324 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4325 low0, 0, low1, 0)));
4326 int highequal = ((high0 == 0 && high1 == 0)
4327 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4328 high0, 1, high1, 1)));
4330 /* Make range 0 be the range that starts first, or ends last if they
4331 start at the same value. Swap them if it isn't. */
4332 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4333 low0, 0, low1, 0))
4334 || (lowequal
4335 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4336 high1, 1, high0, 1))))
4338 temp = in0_p, in0_p = in1_p, in1_p = temp;
4339 tem = low0, low0 = low1, low1 = tem;
4340 tem = high0, high0 = high1, high1 = tem;
4343 /* Now flag two cases, whether the ranges are disjoint or whether the
4344 second range is totally subsumed in the first. Note that the tests
4345 below are simplified by the ones above. */
4346 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4347 high0, 1, low1, 0));
4348 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4349 high1, 1, high0, 1));
4351 /* We now have four cases, depending on whether we are including or
4352 excluding the two ranges. */
4353 if (in0_p && in1_p)
4355 /* If they don't overlap, the result is false. If the second range
4356 is a subset it is the result. Otherwise, the range is from the start
4357 of the second to the end of the first. */
4358 if (no_overlap)
4359 in_p = 0, low = high = 0;
4360 else if (subset)
4361 in_p = 1, low = low1, high = high1;
4362 else
4363 in_p = 1, low = low1, high = high0;
4366 else if (in0_p && ! in1_p)
4368 /* If they don't overlap, the result is the first range. If they are
4369 equal, the result is false. If the second range is a subset of the
4370 first, and the ranges begin at the same place, we go from just after
4371 the end of the second range to the end of the first. If the second
4372 range is not a subset of the first, or if it is a subset and both
4373 ranges end at the same place, the range starts at the start of the
4374 first range and ends just before the second range.
4375 Otherwise, we can't describe this as a single range. */
4376 if (no_overlap)
4377 in_p = 1, low = low0, high = high0;
4378 else if (lowequal && highequal)
4379 in_p = 0, low = high = 0;
4380 else if (subset && lowequal)
4382 low = range_successor (high1);
4383 high = high0;
4384 in_p = 1;
4385 if (low == 0)
4387 /* We are in the weird situation where high0 > high1 but
4388 high1 has no successor. Punt. */
4389 return 0;
4392 else if (! subset || highequal)
4394 low = low0;
4395 high = range_predecessor (low1);
4396 in_p = 1;
4397 if (high == 0)
4399 /* low0 < low1 but low1 has no predecessor. Punt. */
4400 return 0;
4403 else
4404 return 0;
4407 else if (! in0_p && in1_p)
4409 /* If they don't overlap, the result is the second range. If the second
4410 is a subset of the first, the result is false. Otherwise,
4411 the range starts just after the first range and ends at the
4412 end of the second. */
4413 if (no_overlap)
4414 in_p = 1, low = low1, high = high1;
4415 else if (subset || highequal)
4416 in_p = 0, low = high = 0;
4417 else
4419 low = range_successor (high0);
4420 high = high1;
4421 in_p = 1;
4422 if (low == 0)
4424 /* high1 > high0 but high0 has no successor. Punt. */
4425 return 0;
4430 else
4432 /* The case where we are excluding both ranges. Here the complex case
4433 is if they don't overlap. In that case, the only time we have a
4434 range is if they are adjacent. If the second is a subset of the
4435 first, the result is the first. Otherwise, the range to exclude
4436 starts at the beginning of the first range and ends at the end of the
4437 second. */
4438 if (no_overlap)
4440 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4441 range_successor (high0),
4442 1, low1, 0)))
4443 in_p = 0, low = low0, high = high1;
4444 else
4446 /* Canonicalize - [min, x] into - [-, x]. */
4447 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4448 switch (TREE_CODE (TREE_TYPE (low0)))
4450 case ENUMERAL_TYPE:
4451 if (TYPE_PRECISION (TREE_TYPE (low0))
4452 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4453 break;
4454 /* FALLTHROUGH */
4455 case INTEGER_TYPE:
4456 if (tree_int_cst_equal (low0,
4457 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4458 low0 = 0;
4459 break;
4460 case POINTER_TYPE:
4461 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4462 && integer_zerop (low0))
4463 low0 = 0;
4464 break;
4465 default:
4466 break;
4469 /* Canonicalize - [x, max] into - [x, -]. */
4470 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4471 switch (TREE_CODE (TREE_TYPE (high1)))
4473 case ENUMERAL_TYPE:
4474 if (TYPE_PRECISION (TREE_TYPE (high1))
4475 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4476 break;
4477 /* FALLTHROUGH */
4478 case INTEGER_TYPE:
4479 if (tree_int_cst_equal (high1,
4480 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4481 high1 = 0;
4482 break;
4483 case POINTER_TYPE:
4484 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4485 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4486 high1, 1,
4487 integer_one_node, 1)))
4488 high1 = 0;
4489 break;
4490 default:
4491 break;
4494 /* The ranges might be also adjacent between the maximum and
4495 minimum values of the given type. For
4496 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4497 return + [x + 1, y - 1]. */
4498 if (low0 == 0 && high1 == 0)
4500 low = range_successor (high0);
4501 high = range_predecessor (low1);
4502 if (low == 0 || high == 0)
4503 return 0;
4505 in_p = 1;
4507 else
4508 return 0;
4511 else if (subset)
4512 in_p = 0, low = low0, high = high0;
4513 else
4514 in_p = 0, low = low0, high = high1;
4517 *pin_p = in_p, *plow = low, *phigh = high;
4518 return 1;
4522 /* Subroutine of fold, looking inside expressions of the form
4523 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4524 of the COND_EXPR. This function is being used also to optimize
4525 A op B ? C : A, by reversing the comparison first.
4527 Return a folded expression whose code is not a COND_EXPR
4528 anymore, or NULL_TREE if no folding opportunity is found. */
4530 static tree
4531 fold_cond_expr_with_comparison (location_t loc, tree type,
4532 tree arg0, tree arg1, tree arg2)
4534 enum tree_code comp_code = TREE_CODE (arg0);
4535 tree arg00 = TREE_OPERAND (arg0, 0);
4536 tree arg01 = TREE_OPERAND (arg0, 1);
4537 tree arg1_type = TREE_TYPE (arg1);
4538 tree tem;
4540 STRIP_NOPS (arg1);
4541 STRIP_NOPS (arg2);
4543 /* If we have A op 0 ? A : -A, consider applying the following
4544 transformations:
4546 A == 0? A : -A same as -A
4547 A != 0? A : -A same as A
4548 A >= 0? A : -A same as abs (A)
4549 A > 0? A : -A same as abs (A)
4550 A <= 0? A : -A same as -abs (A)
4551 A < 0? A : -A same as -abs (A)
4553 None of these transformations work for modes with signed
4554 zeros. If A is +/-0, the first two transformations will
4555 change the sign of the result (from +0 to -0, or vice
4556 versa). The last four will fix the sign of the result,
4557 even though the original expressions could be positive or
4558 negative, depending on the sign of A.
4560 Note that all these transformations are correct if A is
4561 NaN, since the two alternatives (A and -A) are also NaNs. */
4562 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type))
4563 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
4564 ? real_zerop (arg01)
4565 : integer_zerop (arg01))
4566 && ((TREE_CODE (arg2) == NEGATE_EXPR
4567 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
4568 /* In the case that A is of the form X-Y, '-A' (arg2) may
4569 have already been folded to Y-X, check for that. */
4570 || (TREE_CODE (arg1) == MINUS_EXPR
4571 && TREE_CODE (arg2) == MINUS_EXPR
4572 && operand_equal_p (TREE_OPERAND (arg1, 0),
4573 TREE_OPERAND (arg2, 1), 0)
4574 && operand_equal_p (TREE_OPERAND (arg1, 1),
4575 TREE_OPERAND (arg2, 0), 0))))
4576 switch (comp_code)
4578 case EQ_EXPR:
4579 case UNEQ_EXPR:
4580 tem = fold_convert_loc (loc, arg1_type, arg1);
4581 return pedantic_non_lvalue_loc (loc,
4582 fold_convert_loc (loc, type,
4583 negate_expr (tem)));
4584 case NE_EXPR:
4585 case LTGT_EXPR:
4586 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4587 case UNGE_EXPR:
4588 case UNGT_EXPR:
4589 if (flag_trapping_math)
4590 break;
4591 /* Fall through. */
4592 case GE_EXPR:
4593 case GT_EXPR:
4594 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4595 arg1 = fold_convert_loc (loc, signed_type_for
4596 (TREE_TYPE (arg1)), arg1);
4597 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4598 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
4599 case UNLE_EXPR:
4600 case UNLT_EXPR:
4601 if (flag_trapping_math)
4602 break;
4603 case LE_EXPR:
4604 case LT_EXPR:
4605 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4606 arg1 = fold_convert_loc (loc, signed_type_for
4607 (TREE_TYPE (arg1)), arg1);
4608 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4609 return negate_expr (fold_convert_loc (loc, type, tem));
4610 default:
4611 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4612 break;
4615 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
4616 A == 0 ? A : 0 is always 0 unless A is -0. Note that
4617 both transformations are correct when A is NaN: A != 0
4618 is then true, and A == 0 is false. */
4620 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type))
4621 && integer_zerop (arg01) && integer_zerop (arg2))
4623 if (comp_code == NE_EXPR)
4624 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4625 else if (comp_code == EQ_EXPR)
4626 return build_int_cst (type, 0);
4629 /* Try some transformations of A op B ? A : B.
4631 A == B? A : B same as B
4632 A != B? A : B same as A
4633 A >= B? A : B same as max (A, B)
4634 A > B? A : B same as max (B, A)
4635 A <= B? A : B same as min (A, B)
4636 A < B? A : B same as min (B, A)
4638 As above, these transformations don't work in the presence
4639 of signed zeros. For example, if A and B are zeros of
4640 opposite sign, the first two transformations will change
4641 the sign of the result. In the last four, the original
4642 expressions give different results for (A=+0, B=-0) and
4643 (A=-0, B=+0), but the transformed expressions do not.
4645 The first two transformations are correct if either A or B
4646 is a NaN. In the first transformation, the condition will
4647 be false, and B will indeed be chosen. In the case of the
4648 second transformation, the condition A != B will be true,
4649 and A will be chosen.
4651 The conversions to max() and min() are not correct if B is
4652 a number and A is not. The conditions in the original
4653 expressions will be false, so all four give B. The min()
4654 and max() versions would give a NaN instead. */
4655 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type))
4656 && operand_equal_for_comparison_p (arg01, arg2, arg00)
4657 /* Avoid these transformations if the COND_EXPR may be used
4658 as an lvalue in the C++ front-end. PR c++/19199. */
4659 && (in_gimple_form
4660 || (strcmp (lang_hooks.name, "GNU C++") != 0
4661 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
4662 || ! maybe_lvalue_p (arg1)
4663 || ! maybe_lvalue_p (arg2)))
4665 tree comp_op0 = arg00;
4666 tree comp_op1 = arg01;
4667 tree comp_type = TREE_TYPE (comp_op0);
4669 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
4670 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
4672 comp_type = type;
4673 comp_op0 = arg1;
4674 comp_op1 = arg2;
4677 switch (comp_code)
4679 case EQ_EXPR:
4680 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg2));
4681 case NE_EXPR:
4682 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4683 case LE_EXPR:
4684 case LT_EXPR:
4685 case UNLE_EXPR:
4686 case UNLT_EXPR:
4687 /* In C++ a ?: expression can be an lvalue, so put the
4688 operand which will be used if they are equal first
4689 so that we can convert this back to the
4690 corresponding COND_EXPR. */
4691 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4693 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
4694 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
4695 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
4696 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
4697 : fold_build2_loc (loc, MIN_EXPR, comp_type,
4698 comp_op1, comp_op0);
4699 return pedantic_non_lvalue_loc (loc,
4700 fold_convert_loc (loc, type, tem));
4702 break;
4703 case GE_EXPR:
4704 case GT_EXPR:
4705 case UNGE_EXPR:
4706 case UNGT_EXPR:
4707 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4709 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
4710 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
4711 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
4712 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
4713 : fold_build2_loc (loc, MAX_EXPR, comp_type,
4714 comp_op1, comp_op0);
4715 return pedantic_non_lvalue_loc (loc,
4716 fold_convert_loc (loc, type, tem));
4718 break;
4719 case UNEQ_EXPR:
4720 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4721 return pedantic_non_lvalue_loc (loc,
4722 fold_convert_loc (loc, type, arg2));
4723 break;
4724 case LTGT_EXPR:
4725 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4726 return pedantic_non_lvalue_loc (loc,
4727 fold_convert_loc (loc, type, arg1));
4728 break;
4729 default:
4730 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4731 break;
4735 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
4736 we might still be able to simplify this. For example,
4737 if C1 is one less or one more than C2, this might have started
4738 out as a MIN or MAX and been transformed by this function.
4739 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
4741 if (INTEGRAL_TYPE_P (type)
4742 && TREE_CODE (arg01) == INTEGER_CST
4743 && TREE_CODE (arg2) == INTEGER_CST)
4744 switch (comp_code)
4746 case EQ_EXPR:
4747 if (TREE_CODE (arg1) == INTEGER_CST)
4748 break;
4749 /* We can replace A with C1 in this case. */
4750 arg1 = fold_convert_loc (loc, type, arg01);
4751 return fold_build3_loc (loc, COND_EXPR, type, arg0, arg1, arg2);
4753 case LT_EXPR:
4754 /* If C1 is C2 + 1, this is min(A, C2), but use ARG00's type for
4755 MIN_EXPR, to preserve the signedness of the comparison. */
4756 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4757 OEP_ONLY_CONST)
4758 && operand_equal_p (arg01,
4759 const_binop (PLUS_EXPR, arg2,
4760 build_int_cst (type, 1)),
4761 OEP_ONLY_CONST))
4763 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
4764 fold_convert_loc (loc, TREE_TYPE (arg00),
4765 arg2));
4766 return pedantic_non_lvalue_loc (loc,
4767 fold_convert_loc (loc, type, tem));
4769 break;
4771 case LE_EXPR:
4772 /* If C1 is C2 - 1, this is min(A, C2), with the same care
4773 as above. */
4774 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4775 OEP_ONLY_CONST)
4776 && operand_equal_p (arg01,
4777 const_binop (MINUS_EXPR, arg2,
4778 build_int_cst (type, 1)),
4779 OEP_ONLY_CONST))
4781 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
4782 fold_convert_loc (loc, TREE_TYPE (arg00),
4783 arg2));
4784 return pedantic_non_lvalue_loc (loc,
4785 fold_convert_loc (loc, type, tem));
4787 break;
4789 case GT_EXPR:
4790 /* If C1 is C2 - 1, this is max(A, C2), but use ARG00's type for
4791 MAX_EXPR, to preserve the signedness of the comparison. */
4792 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4793 OEP_ONLY_CONST)
4794 && operand_equal_p (arg01,
4795 const_binop (MINUS_EXPR, arg2,
4796 build_int_cst (type, 1)),
4797 OEP_ONLY_CONST))
4799 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
4800 fold_convert_loc (loc, TREE_TYPE (arg00),
4801 arg2));
4802 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
4804 break;
4806 case GE_EXPR:
4807 /* If C1 is C2 + 1, this is max(A, C2), with the same care as above. */
4808 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4809 OEP_ONLY_CONST)
4810 && operand_equal_p (arg01,
4811 const_binop (PLUS_EXPR, arg2,
4812 build_int_cst (type, 1)),
4813 OEP_ONLY_CONST))
4815 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
4816 fold_convert_loc (loc, TREE_TYPE (arg00),
4817 arg2));
4818 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
4820 break;
4821 case NE_EXPR:
4822 break;
4823 default:
4824 gcc_unreachable ();
4827 return NULL_TREE;
4832 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
4833 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
4834 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
4835 false) >= 2)
4836 #endif
4838 /* EXP is some logical combination of boolean tests. See if we can
4839 merge it into some range test. Return the new tree if so. */
4841 static tree
4842 fold_range_test (location_t loc, enum tree_code code, tree type,
4843 tree op0, tree op1)
4845 int or_op = (code == TRUTH_ORIF_EXPR
4846 || code == TRUTH_OR_EXPR);
4847 int in0_p, in1_p, in_p;
4848 tree low0, low1, low, high0, high1, high;
4849 bool strict_overflow_p = false;
4850 tree lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
4851 tree rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
4852 tree tem;
4853 const char * const warnmsg = G_("assuming signed overflow does not occur "
4854 "when simplifying range test");
4856 /* If this is an OR operation, invert both sides; we will invert
4857 again at the end. */
4858 if (or_op)
4859 in0_p = ! in0_p, in1_p = ! in1_p;
4861 /* If both expressions are the same, if we can merge the ranges, and we
4862 can build the range test, return it or it inverted. If one of the
4863 ranges is always true or always false, consider it to be the same
4864 expression as the other. */
4865 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
4866 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
4867 in1_p, low1, high1)
4868 && 0 != (tem = (build_range_check (loc, type,
4869 lhs != 0 ? lhs
4870 : rhs != 0 ? rhs : integer_zero_node,
4871 in_p, low, high))))
4873 if (strict_overflow_p)
4874 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
4875 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
4878 /* On machines where the branch cost is expensive, if this is a
4879 short-circuited branch and the underlying object on both sides
4880 is the same, make a non-short-circuit operation. */
4881 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
4882 && lhs != 0 && rhs != 0
4883 && (code == TRUTH_ANDIF_EXPR
4884 || code == TRUTH_ORIF_EXPR)
4885 && operand_equal_p (lhs, rhs, 0))
4887 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
4888 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
4889 which cases we can't do this. */
4890 if (simple_operand_p (lhs))
4891 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
4892 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
4893 type, op0, op1);
4895 else if (!lang_hooks.decls.global_bindings_p ()
4896 && !CONTAINS_PLACEHOLDER_P (lhs))
4898 tree common = save_expr (lhs);
4900 if (0 != (lhs = build_range_check (loc, type, common,
4901 or_op ? ! in0_p : in0_p,
4902 low0, high0))
4903 && (0 != (rhs = build_range_check (loc, type, common,
4904 or_op ? ! in1_p : in1_p,
4905 low1, high1))))
4907 if (strict_overflow_p)
4908 fold_overflow_warning (warnmsg,
4909 WARN_STRICT_OVERFLOW_COMPARISON);
4910 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
4911 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
4912 type, lhs, rhs);
4917 return 0;
4920 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
4921 bit value. Arrange things so the extra bits will be set to zero if and
4922 only if C is signed-extended to its full width. If MASK is nonzero,
4923 it is an INTEGER_CST that should be AND'ed with the extra bits. */
4925 static tree
4926 unextend (tree c, int p, int unsignedp, tree mask)
4928 tree type = TREE_TYPE (c);
4929 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
4930 tree temp;
4932 if (p == modesize || unsignedp)
4933 return c;
4935 /* We work by getting just the sign bit into the low-order bit, then
4936 into the high-order bit, then sign-extend. We then XOR that value
4937 with C. */
4938 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1));
4939 temp = const_binop (BIT_AND_EXPR, temp, size_int (1));
4941 /* We must use a signed type in order to get an arithmetic right shift.
4942 However, we must also avoid introducing accidental overflows, so that
4943 a subsequent call to integer_zerop will work. Hence we must
4944 do the type conversion here. At this point, the constant is either
4945 zero or one, and the conversion to a signed type can never overflow.
4946 We could get an overflow if this conversion is done anywhere else. */
4947 if (TYPE_UNSIGNED (type))
4948 temp = fold_convert (signed_type_for (type), temp);
4950 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
4951 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
4952 if (mask != 0)
4953 temp = const_binop (BIT_AND_EXPR, temp,
4954 fold_convert (TREE_TYPE (c), mask));
4955 /* If necessary, convert the type back to match the type of C. */
4956 if (TYPE_UNSIGNED (type))
4957 temp = fold_convert (type, temp);
4959 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
4962 /* For an expression that has the form
4963 (A && B) || ~B
4965 (A || B) && ~B,
4966 we can drop one of the inner expressions and simplify to
4967 A || ~B
4969 A && ~B
4970 LOC is the location of the resulting expression. OP is the inner
4971 logical operation; the left-hand side in the examples above, while CMPOP
4972 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
4973 removing a condition that guards another, as in
4974 (A != NULL && A->...) || A == NULL
4975 which we must not transform. If RHS_ONLY is true, only eliminate the
4976 right-most operand of the inner logical operation. */
4978 static tree
4979 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
4980 bool rhs_only)
4982 tree type = TREE_TYPE (cmpop);
4983 enum tree_code code = TREE_CODE (cmpop);
4984 enum tree_code truthop_code = TREE_CODE (op);
4985 tree lhs = TREE_OPERAND (op, 0);
4986 tree rhs = TREE_OPERAND (op, 1);
4987 tree orig_lhs = lhs, orig_rhs = rhs;
4988 enum tree_code rhs_code = TREE_CODE (rhs);
4989 enum tree_code lhs_code = TREE_CODE (lhs);
4990 enum tree_code inv_code;
4992 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
4993 return NULL_TREE;
4995 if (TREE_CODE_CLASS (code) != tcc_comparison)
4996 return NULL_TREE;
4998 if (rhs_code == truthop_code)
5000 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5001 if (newrhs != NULL_TREE)
5003 rhs = newrhs;
5004 rhs_code = TREE_CODE (rhs);
5007 if (lhs_code == truthop_code && !rhs_only)
5009 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5010 if (newlhs != NULL_TREE)
5012 lhs = newlhs;
5013 lhs_code = TREE_CODE (lhs);
5017 inv_code = invert_tree_comparison (code, HONOR_NANS (TYPE_MODE (type)));
5018 if (inv_code == rhs_code
5019 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5020 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5021 return lhs;
5022 if (!rhs_only && inv_code == lhs_code
5023 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5024 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5025 return rhs;
5026 if (rhs != orig_rhs || lhs != orig_lhs)
5027 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5028 lhs, rhs);
5029 return NULL_TREE;
5032 /* Find ways of folding logical expressions of LHS and RHS:
5033 Try to merge two comparisons to the same innermost item.
5034 Look for range tests like "ch >= '0' && ch <= '9'".
5035 Look for combinations of simple terms on machines with expensive branches
5036 and evaluate the RHS unconditionally.
5038 For example, if we have p->a == 2 && p->b == 4 and we can make an
5039 object large enough to span both A and B, we can do this with a comparison
5040 against the object ANDed with the a mask.
5042 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5043 operations to do this with one comparison.
5045 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5046 function and the one above.
5048 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5049 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5051 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5052 two operands.
5054 We return the simplified tree or 0 if no optimization is possible. */
5056 static tree
5057 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5058 tree lhs, tree rhs)
5060 /* If this is the "or" of two comparisons, we can do something if
5061 the comparisons are NE_EXPR. If this is the "and", we can do something
5062 if the comparisons are EQ_EXPR. I.e.,
5063 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5065 WANTED_CODE is this operation code. For single bit fields, we can
5066 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5067 comparison for one-bit fields. */
5069 enum tree_code wanted_code;
5070 enum tree_code lcode, rcode;
5071 tree ll_arg, lr_arg, rl_arg, rr_arg;
5072 tree ll_inner, lr_inner, rl_inner, rr_inner;
5073 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5074 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5075 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5076 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5077 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5078 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5079 enum machine_mode lnmode, rnmode;
5080 tree ll_mask, lr_mask, rl_mask, rr_mask;
5081 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5082 tree l_const, r_const;
5083 tree lntype, rntype, result;
5084 HOST_WIDE_INT first_bit, end_bit;
5085 int volatilep;
5087 /* Start by getting the comparison codes. Fail if anything is volatile.
5088 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5089 it were surrounded with a NE_EXPR. */
5091 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5092 return 0;
5094 lcode = TREE_CODE (lhs);
5095 rcode = TREE_CODE (rhs);
5097 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5099 lhs = build2 (NE_EXPR, truth_type, lhs,
5100 build_int_cst (TREE_TYPE (lhs), 0));
5101 lcode = NE_EXPR;
5104 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5106 rhs = build2 (NE_EXPR, truth_type, rhs,
5107 build_int_cst (TREE_TYPE (rhs), 0));
5108 rcode = NE_EXPR;
5111 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5112 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5113 return 0;
5115 ll_arg = TREE_OPERAND (lhs, 0);
5116 lr_arg = TREE_OPERAND (lhs, 1);
5117 rl_arg = TREE_OPERAND (rhs, 0);
5118 rr_arg = TREE_OPERAND (rhs, 1);
5120 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5121 if (simple_operand_p (ll_arg)
5122 && simple_operand_p (lr_arg))
5124 if (operand_equal_p (ll_arg, rl_arg, 0)
5125 && operand_equal_p (lr_arg, rr_arg, 0))
5127 result = combine_comparisons (loc, code, lcode, rcode,
5128 truth_type, ll_arg, lr_arg);
5129 if (result)
5130 return result;
5132 else if (operand_equal_p (ll_arg, rr_arg, 0)
5133 && operand_equal_p (lr_arg, rl_arg, 0))
5135 result = combine_comparisons (loc, code, lcode,
5136 swap_tree_comparison (rcode),
5137 truth_type, ll_arg, lr_arg);
5138 if (result)
5139 return result;
5143 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5144 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5146 /* If the RHS can be evaluated unconditionally and its operands are
5147 simple, it wins to evaluate the RHS unconditionally on machines
5148 with expensive branches. In this case, this isn't a comparison
5149 that can be merged. */
5151 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5152 false) >= 2
5153 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5154 && simple_operand_p (rl_arg)
5155 && simple_operand_p (rr_arg))
5157 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5158 if (code == TRUTH_OR_EXPR
5159 && lcode == NE_EXPR && integer_zerop (lr_arg)
5160 && rcode == NE_EXPR && integer_zerop (rr_arg)
5161 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5162 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5163 return build2_loc (loc, NE_EXPR, truth_type,
5164 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5165 ll_arg, rl_arg),
5166 build_int_cst (TREE_TYPE (ll_arg), 0));
5168 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5169 if (code == TRUTH_AND_EXPR
5170 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5171 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5172 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5173 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5174 return build2_loc (loc, EQ_EXPR, truth_type,
5175 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5176 ll_arg, rl_arg),
5177 build_int_cst (TREE_TYPE (ll_arg), 0));
5180 /* See if the comparisons can be merged. Then get all the parameters for
5181 each side. */
5183 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5184 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5185 return 0;
5187 volatilep = 0;
5188 ll_inner = decode_field_reference (loc, ll_arg,
5189 &ll_bitsize, &ll_bitpos, &ll_mode,
5190 &ll_unsignedp, &volatilep, &ll_mask,
5191 &ll_and_mask);
5192 lr_inner = decode_field_reference (loc, lr_arg,
5193 &lr_bitsize, &lr_bitpos, &lr_mode,
5194 &lr_unsignedp, &volatilep, &lr_mask,
5195 &lr_and_mask);
5196 rl_inner = decode_field_reference (loc, rl_arg,
5197 &rl_bitsize, &rl_bitpos, &rl_mode,
5198 &rl_unsignedp, &volatilep, &rl_mask,
5199 &rl_and_mask);
5200 rr_inner = decode_field_reference (loc, rr_arg,
5201 &rr_bitsize, &rr_bitpos, &rr_mode,
5202 &rr_unsignedp, &volatilep, &rr_mask,
5203 &rr_and_mask);
5205 /* It must be true that the inner operation on the lhs of each
5206 comparison must be the same if we are to be able to do anything.
5207 Then see if we have constants. If not, the same must be true for
5208 the rhs's. */
5209 if (volatilep || ll_inner == 0 || rl_inner == 0
5210 || ! operand_equal_p (ll_inner, rl_inner, 0))
5211 return 0;
5213 if (TREE_CODE (lr_arg) == INTEGER_CST
5214 && TREE_CODE (rr_arg) == INTEGER_CST)
5215 l_const = lr_arg, r_const = rr_arg;
5216 else if (lr_inner == 0 || rr_inner == 0
5217 || ! operand_equal_p (lr_inner, rr_inner, 0))
5218 return 0;
5219 else
5220 l_const = r_const = 0;
5222 /* If either comparison code is not correct for our logical operation,
5223 fail. However, we can convert a one-bit comparison against zero into
5224 the opposite comparison against that bit being set in the field. */
5226 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5227 if (lcode != wanted_code)
5229 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5231 /* Make the left operand unsigned, since we are only interested
5232 in the value of one bit. Otherwise we are doing the wrong
5233 thing below. */
5234 ll_unsignedp = 1;
5235 l_const = ll_mask;
5237 else
5238 return 0;
5241 /* This is analogous to the code for l_const above. */
5242 if (rcode != wanted_code)
5244 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5246 rl_unsignedp = 1;
5247 r_const = rl_mask;
5249 else
5250 return 0;
5253 /* See if we can find a mode that contains both fields being compared on
5254 the left. If we can't, fail. Otherwise, update all constants and masks
5255 to be relative to a field of that size. */
5256 first_bit = MIN (ll_bitpos, rl_bitpos);
5257 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5258 lnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5259 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5260 volatilep);
5261 if (lnmode == VOIDmode)
5262 return 0;
5264 lnbitsize = GET_MODE_BITSIZE (lnmode);
5265 lnbitpos = first_bit & ~ (lnbitsize - 1);
5266 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5267 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5269 if (BYTES_BIG_ENDIAN)
5271 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5272 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5275 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5276 size_int (xll_bitpos));
5277 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5278 size_int (xrl_bitpos));
5280 if (l_const)
5282 l_const = fold_convert_loc (loc, lntype, l_const);
5283 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5284 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5285 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5286 fold_build1_loc (loc, BIT_NOT_EXPR,
5287 lntype, ll_mask))))
5289 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5291 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5294 if (r_const)
5296 r_const = fold_convert_loc (loc, lntype, r_const);
5297 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5298 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
5299 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5300 fold_build1_loc (loc, BIT_NOT_EXPR,
5301 lntype, rl_mask))))
5303 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5305 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5309 /* If the right sides are not constant, do the same for it. Also,
5310 disallow this optimization if a size or signedness mismatch occurs
5311 between the left and right sides. */
5312 if (l_const == 0)
5314 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5315 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5316 /* Make sure the two fields on the right
5317 correspond to the left without being swapped. */
5318 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5319 return 0;
5321 first_bit = MIN (lr_bitpos, rr_bitpos);
5322 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5323 rnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5324 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5325 volatilep);
5326 if (rnmode == VOIDmode)
5327 return 0;
5329 rnbitsize = GET_MODE_BITSIZE (rnmode);
5330 rnbitpos = first_bit & ~ (rnbitsize - 1);
5331 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5332 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5334 if (BYTES_BIG_ENDIAN)
5336 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5337 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5340 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5341 rntype, lr_mask),
5342 size_int (xlr_bitpos));
5343 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5344 rntype, rr_mask),
5345 size_int (xrr_bitpos));
5347 /* Make a mask that corresponds to both fields being compared.
5348 Do this for both items being compared. If the operands are the
5349 same size and the bits being compared are in the same position
5350 then we can do this by masking both and comparing the masked
5351 results. */
5352 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5353 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
5354 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5356 lhs = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5357 ll_unsignedp || rl_unsignedp);
5358 if (! all_ones_mask_p (ll_mask, lnbitsize))
5359 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5361 rhs = make_bit_field_ref (loc, lr_inner, rntype, rnbitsize, rnbitpos,
5362 lr_unsignedp || rr_unsignedp);
5363 if (! all_ones_mask_p (lr_mask, rnbitsize))
5364 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5366 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5369 /* There is still another way we can do something: If both pairs of
5370 fields being compared are adjacent, we may be able to make a wider
5371 field containing them both.
5373 Note that we still must mask the lhs/rhs expressions. Furthermore,
5374 the mask must be shifted to account for the shift done by
5375 make_bit_field_ref. */
5376 if ((ll_bitsize + ll_bitpos == rl_bitpos
5377 && lr_bitsize + lr_bitpos == rr_bitpos)
5378 || (ll_bitpos == rl_bitpos + rl_bitsize
5379 && lr_bitpos == rr_bitpos + rr_bitsize))
5381 tree type;
5383 lhs = make_bit_field_ref (loc, ll_inner, lntype,
5384 ll_bitsize + rl_bitsize,
5385 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
5386 rhs = make_bit_field_ref (loc, lr_inner, rntype,
5387 lr_bitsize + rr_bitsize,
5388 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
5390 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5391 size_int (MIN (xll_bitpos, xrl_bitpos)));
5392 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5393 size_int (MIN (xlr_bitpos, xrr_bitpos)));
5395 /* Convert to the smaller type before masking out unwanted bits. */
5396 type = lntype;
5397 if (lntype != rntype)
5399 if (lnbitsize > rnbitsize)
5401 lhs = fold_convert_loc (loc, rntype, lhs);
5402 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
5403 type = rntype;
5405 else if (lnbitsize < rnbitsize)
5407 rhs = fold_convert_loc (loc, lntype, rhs);
5408 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
5409 type = lntype;
5413 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5414 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5416 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5417 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5419 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5422 return 0;
5425 /* Handle the case of comparisons with constants. If there is something in
5426 common between the masks, those bits of the constants must be the same.
5427 If not, the condition is always false. Test for this to avoid generating
5428 incorrect code below. */
5429 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
5430 if (! integer_zerop (result)
5431 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
5432 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
5434 if (wanted_code == NE_EXPR)
5436 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5437 return constant_boolean_node (true, truth_type);
5439 else
5441 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5442 return constant_boolean_node (false, truth_type);
5446 /* Construct the expression we will return. First get the component
5447 reference we will make. Unless the mask is all ones the width of
5448 that field, perform the mask operation. Then compare with the
5449 merged constant. */
5450 result = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5451 ll_unsignedp || rl_unsignedp);
5453 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5454 if (! all_ones_mask_p (ll_mask, lnbitsize))
5455 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
5457 return build2_loc (loc, wanted_code, truth_type, result,
5458 const_binop (BIT_IOR_EXPR, l_const, r_const));
5461 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5462 constant. */
5464 static tree
5465 optimize_minmax_comparison (location_t loc, enum tree_code code, tree type,
5466 tree op0, tree op1)
5468 tree arg0 = op0;
5469 enum tree_code op_code;
5470 tree comp_const;
5471 tree minmax_const;
5472 int consts_equal, consts_lt;
5473 tree inner;
5475 STRIP_SIGN_NOPS (arg0);
5477 op_code = TREE_CODE (arg0);
5478 minmax_const = TREE_OPERAND (arg0, 1);
5479 comp_const = fold_convert_loc (loc, TREE_TYPE (arg0), op1);
5480 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
5481 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
5482 inner = TREE_OPERAND (arg0, 0);
5484 /* If something does not permit us to optimize, return the original tree. */
5485 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
5486 || TREE_CODE (comp_const) != INTEGER_CST
5487 || TREE_OVERFLOW (comp_const)
5488 || TREE_CODE (minmax_const) != INTEGER_CST
5489 || TREE_OVERFLOW (minmax_const))
5490 return NULL_TREE;
5492 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5493 and GT_EXPR, doing the rest with recursive calls using logical
5494 simplifications. */
5495 switch (code)
5497 case NE_EXPR: case LT_EXPR: case LE_EXPR:
5499 tree tem
5500 = optimize_minmax_comparison (loc,
5501 invert_tree_comparison (code, false),
5502 type, op0, op1);
5503 if (tem)
5504 return invert_truthvalue_loc (loc, tem);
5505 return NULL_TREE;
5508 case GE_EXPR:
5509 return
5510 fold_build2_loc (loc, TRUTH_ORIF_EXPR, type,
5511 optimize_minmax_comparison
5512 (loc, EQ_EXPR, type, arg0, comp_const),
5513 optimize_minmax_comparison
5514 (loc, GT_EXPR, type, arg0, comp_const));
5516 case EQ_EXPR:
5517 if (op_code == MAX_EXPR && consts_equal)
5518 /* MAX (X, 0) == 0 -> X <= 0 */
5519 return fold_build2_loc (loc, LE_EXPR, type, inner, comp_const);
5521 else if (op_code == MAX_EXPR && consts_lt)
5522 /* MAX (X, 0) == 5 -> X == 5 */
5523 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5525 else if (op_code == MAX_EXPR)
5526 /* MAX (X, 0) == -1 -> false */
5527 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5529 else if (consts_equal)
5530 /* MIN (X, 0) == 0 -> X >= 0 */
5531 return fold_build2_loc (loc, GE_EXPR, type, inner, comp_const);
5533 else if (consts_lt)
5534 /* MIN (X, 0) == 5 -> false */
5535 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5537 else
5538 /* MIN (X, 0) == -1 -> X == -1 */
5539 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5541 case GT_EXPR:
5542 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
5543 /* MAX (X, 0) > 0 -> X > 0
5544 MAX (X, 0) > 5 -> X > 5 */
5545 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5547 else if (op_code == MAX_EXPR)
5548 /* MAX (X, 0) > -1 -> true */
5549 return omit_one_operand_loc (loc, type, integer_one_node, inner);
5551 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5552 /* MIN (X, 0) > 0 -> false
5553 MIN (X, 0) > 5 -> false */
5554 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5556 else
5557 /* MIN (X, 0) > -1 -> X > -1 */
5558 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5560 default:
5561 return NULL_TREE;
5565 /* T is an integer expression that is being multiplied, divided, or taken a
5566 modulus (CODE says which and what kind of divide or modulus) by a
5567 constant C. See if we can eliminate that operation by folding it with
5568 other operations already in T. WIDE_TYPE, if non-null, is a type that
5569 should be used for the computation if wider than our type.
5571 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5572 (X * 2) + (Y * 4). We must, however, be assured that either the original
5573 expression would not overflow or that overflow is undefined for the type
5574 in the language in question.
5576 If we return a non-null expression, it is an equivalent form of the
5577 original computation, but need not be in the original type.
5579 We set *STRICT_OVERFLOW_P to true if the return values depends on
5580 signed overflow being undefined. Otherwise we do not change
5581 *STRICT_OVERFLOW_P. */
5583 static tree
5584 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
5585 bool *strict_overflow_p)
5587 /* To avoid exponential search depth, refuse to allow recursion past
5588 three levels. Beyond that (1) it's highly unlikely that we'll find
5589 something interesting and (2) we've probably processed it before
5590 when we built the inner expression. */
5592 static int depth;
5593 tree ret;
5595 if (depth > 3)
5596 return NULL;
5598 depth++;
5599 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
5600 depth--;
5602 return ret;
5605 static tree
5606 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
5607 bool *strict_overflow_p)
5609 tree type = TREE_TYPE (t);
5610 enum tree_code tcode = TREE_CODE (t);
5611 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
5612 > GET_MODE_SIZE (TYPE_MODE (type)))
5613 ? wide_type : type);
5614 tree t1, t2;
5615 int same_p = tcode == code;
5616 tree op0 = NULL_TREE, op1 = NULL_TREE;
5617 bool sub_strict_overflow_p;
5619 /* Don't deal with constants of zero here; they confuse the code below. */
5620 if (integer_zerop (c))
5621 return NULL_TREE;
5623 if (TREE_CODE_CLASS (tcode) == tcc_unary)
5624 op0 = TREE_OPERAND (t, 0);
5626 if (TREE_CODE_CLASS (tcode) == tcc_binary)
5627 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
5629 /* Note that we need not handle conditional operations here since fold
5630 already handles those cases. So just do arithmetic here. */
5631 switch (tcode)
5633 case INTEGER_CST:
5634 /* For a constant, we can always simplify if we are a multiply
5635 or (for divide and modulus) if it is a multiple of our constant. */
5636 if (code == MULT_EXPR
5637 || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c)))
5638 return const_binop (code, fold_convert (ctype, t),
5639 fold_convert (ctype, c));
5640 break;
5642 CASE_CONVERT: case NON_LVALUE_EXPR:
5643 /* If op0 is an expression ... */
5644 if ((COMPARISON_CLASS_P (op0)
5645 || UNARY_CLASS_P (op0)
5646 || BINARY_CLASS_P (op0)
5647 || VL_EXP_CLASS_P (op0)
5648 || EXPRESSION_CLASS_P (op0))
5649 /* ... and has wrapping overflow, and its type is smaller
5650 than ctype, then we cannot pass through as widening. */
5651 && ((TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0))
5652 && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
5653 && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
5654 && (TYPE_PRECISION (ctype)
5655 > TYPE_PRECISION (TREE_TYPE (op0))))
5656 /* ... or this is a truncation (t is narrower than op0),
5657 then we cannot pass through this narrowing. */
5658 || (TYPE_PRECISION (type)
5659 < TYPE_PRECISION (TREE_TYPE (op0)))
5660 /* ... or signedness changes for division or modulus,
5661 then we cannot pass through this conversion. */
5662 || (code != MULT_EXPR
5663 && (TYPE_UNSIGNED (ctype)
5664 != TYPE_UNSIGNED (TREE_TYPE (op0))))
5665 /* ... or has undefined overflow while the converted to
5666 type has not, we cannot do the operation in the inner type
5667 as that would introduce undefined overflow. */
5668 || (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))
5669 && !TYPE_OVERFLOW_UNDEFINED (type))))
5670 break;
5672 /* Pass the constant down and see if we can make a simplification. If
5673 we can, replace this expression with the inner simplification for
5674 possible later conversion to our or some other type. */
5675 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
5676 && TREE_CODE (t2) == INTEGER_CST
5677 && !TREE_OVERFLOW (t2)
5678 && (0 != (t1 = extract_muldiv (op0, t2, code,
5679 code == MULT_EXPR
5680 ? ctype : NULL_TREE,
5681 strict_overflow_p))))
5682 return t1;
5683 break;
5685 case ABS_EXPR:
5686 /* If widening the type changes it from signed to unsigned, then we
5687 must avoid building ABS_EXPR itself as unsigned. */
5688 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
5690 tree cstype = (*signed_type_for) (ctype);
5691 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
5692 != 0)
5694 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
5695 return fold_convert (ctype, t1);
5697 break;
5699 /* If the constant is negative, we cannot simplify this. */
5700 if (tree_int_cst_sgn (c) == -1)
5701 break;
5702 /* FALLTHROUGH */
5703 case NEGATE_EXPR:
5704 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
5705 != 0)
5706 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
5707 break;
5709 case MIN_EXPR: case MAX_EXPR:
5710 /* If widening the type changes the signedness, then we can't perform
5711 this optimization as that changes the result. */
5712 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
5713 break;
5715 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
5716 sub_strict_overflow_p = false;
5717 if ((t1 = extract_muldiv (op0, c, code, wide_type,
5718 &sub_strict_overflow_p)) != 0
5719 && (t2 = extract_muldiv (op1, c, code, wide_type,
5720 &sub_strict_overflow_p)) != 0)
5722 if (tree_int_cst_sgn (c) < 0)
5723 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
5724 if (sub_strict_overflow_p)
5725 *strict_overflow_p = true;
5726 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5727 fold_convert (ctype, t2));
5729 break;
5731 case LSHIFT_EXPR: case RSHIFT_EXPR:
5732 /* If the second operand is constant, this is a multiplication
5733 or floor division, by a power of two, so we can treat it that
5734 way unless the multiplier or divisor overflows. Signed
5735 left-shift overflow is implementation-defined rather than
5736 undefined in C90, so do not convert signed left shift into
5737 multiplication. */
5738 if (TREE_CODE (op1) == INTEGER_CST
5739 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
5740 /* const_binop may not detect overflow correctly,
5741 so check for it explicitly here. */
5742 && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
5743 && TREE_INT_CST_HIGH (op1) == 0
5744 && 0 != (t1 = fold_convert (ctype,
5745 const_binop (LSHIFT_EXPR,
5746 size_one_node,
5747 op1)))
5748 && !TREE_OVERFLOW (t1))
5749 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
5750 ? MULT_EXPR : FLOOR_DIV_EXPR,
5751 ctype,
5752 fold_convert (ctype, op0),
5753 t1),
5754 c, code, wide_type, strict_overflow_p);
5755 break;
5757 case PLUS_EXPR: case MINUS_EXPR:
5758 /* See if we can eliminate the operation on both sides. If we can, we
5759 can return a new PLUS or MINUS. If we can't, the only remaining
5760 cases where we can do anything are if the second operand is a
5761 constant. */
5762 sub_strict_overflow_p = false;
5763 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
5764 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
5765 if (t1 != 0 && t2 != 0
5766 && (code == MULT_EXPR
5767 /* If not multiplication, we can only do this if both operands
5768 are divisible by c. */
5769 || (multiple_of_p (ctype, op0, c)
5770 && multiple_of_p (ctype, op1, c))))
5772 if (sub_strict_overflow_p)
5773 *strict_overflow_p = true;
5774 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5775 fold_convert (ctype, t2));
5778 /* If this was a subtraction, negate OP1 and set it to be an addition.
5779 This simplifies the logic below. */
5780 if (tcode == MINUS_EXPR)
5782 tcode = PLUS_EXPR, op1 = negate_expr (op1);
5783 /* If OP1 was not easily negatable, the constant may be OP0. */
5784 if (TREE_CODE (op0) == INTEGER_CST)
5786 tree tem = op0;
5787 op0 = op1;
5788 op1 = tem;
5789 tem = t1;
5790 t1 = t2;
5791 t2 = tem;
5795 if (TREE_CODE (op1) != INTEGER_CST)
5796 break;
5798 /* If either OP1 or C are negative, this optimization is not safe for
5799 some of the division and remainder types while for others we need
5800 to change the code. */
5801 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
5803 if (code == CEIL_DIV_EXPR)
5804 code = FLOOR_DIV_EXPR;
5805 else if (code == FLOOR_DIV_EXPR)
5806 code = CEIL_DIV_EXPR;
5807 else if (code != MULT_EXPR
5808 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
5809 break;
5812 /* If it's a multiply or a division/modulus operation of a multiple
5813 of our constant, do the operation and verify it doesn't overflow. */
5814 if (code == MULT_EXPR
5815 || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c)))
5817 op1 = const_binop (code, fold_convert (ctype, op1),
5818 fold_convert (ctype, c));
5819 /* We allow the constant to overflow with wrapping semantics. */
5820 if (op1 == 0
5821 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
5822 break;
5824 else
5825 break;
5827 /* If we have an unsigned type is not a sizetype, we cannot widen
5828 the operation since it will change the result if the original
5829 computation overflowed. */
5830 if (TYPE_UNSIGNED (ctype)
5831 && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
5832 && ctype != type)
5833 break;
5835 /* If we were able to eliminate our operation from the first side,
5836 apply our operation to the second side and reform the PLUS. */
5837 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
5838 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
5840 /* The last case is if we are a multiply. In that case, we can
5841 apply the distributive law to commute the multiply and addition
5842 if the multiplication of the constants doesn't overflow. */
5843 if (code == MULT_EXPR)
5844 return fold_build2 (tcode, ctype,
5845 fold_build2 (code, ctype,
5846 fold_convert (ctype, op0),
5847 fold_convert (ctype, c)),
5848 op1);
5850 break;
5852 case MULT_EXPR:
5853 /* We have a special case here if we are doing something like
5854 (C * 8) % 4 since we know that's zero. */
5855 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
5856 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
5857 /* If the multiplication can overflow we cannot optimize this.
5858 ??? Until we can properly mark individual operations as
5859 not overflowing we need to treat sizetype special here as
5860 stor-layout relies on this opimization to make
5861 DECL_FIELD_BIT_OFFSET always a constant. */
5862 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
5863 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
5864 && TYPE_IS_SIZETYPE (TREE_TYPE (t))))
5865 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
5866 && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c)))
5868 *strict_overflow_p = true;
5869 return omit_one_operand (type, integer_zero_node, op0);
5872 /* ... fall through ... */
5874 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
5875 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
5876 /* If we can extract our operation from the LHS, do so and return a
5877 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
5878 do something only if the second operand is a constant. */
5879 if (same_p
5880 && (t1 = extract_muldiv (op0, c, code, wide_type,
5881 strict_overflow_p)) != 0)
5882 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5883 fold_convert (ctype, op1));
5884 else if (tcode == MULT_EXPR && code == MULT_EXPR
5885 && (t1 = extract_muldiv (op1, c, code, wide_type,
5886 strict_overflow_p)) != 0)
5887 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5888 fold_convert (ctype, t1));
5889 else if (TREE_CODE (op1) != INTEGER_CST)
5890 return 0;
5892 /* If these are the same operation types, we can associate them
5893 assuming no overflow. */
5894 if (tcode == code)
5896 double_int mul;
5897 int overflow_p;
5898 mul = double_int_mul_with_sign
5899 (double_int_ext
5900 (tree_to_double_int (op1),
5901 TYPE_PRECISION (ctype), TYPE_UNSIGNED (ctype)),
5902 double_int_ext
5903 (tree_to_double_int (c),
5904 TYPE_PRECISION (ctype), TYPE_UNSIGNED (ctype)),
5905 false, &overflow_p);
5906 overflow_p = (((!TYPE_UNSIGNED (ctype)
5907 || (TREE_CODE (ctype) == INTEGER_TYPE
5908 && TYPE_IS_SIZETYPE (ctype)))
5909 && overflow_p)
5910 | TREE_OVERFLOW (c) | TREE_OVERFLOW (op1));
5911 if (!double_int_fits_to_tree_p (ctype, mul)
5912 && ((TYPE_UNSIGNED (ctype) && tcode != MULT_EXPR)
5913 || !TYPE_UNSIGNED (ctype)
5914 || (TREE_CODE (ctype) == INTEGER_TYPE
5915 && TYPE_IS_SIZETYPE (ctype))))
5916 overflow_p = 1;
5917 if (!overflow_p)
5918 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5919 double_int_to_tree (ctype, mul));
5922 /* If these operations "cancel" each other, we have the main
5923 optimizations of this pass, which occur when either constant is a
5924 multiple of the other, in which case we replace this with either an
5925 operation or CODE or TCODE.
5927 If we have an unsigned type that is not a sizetype, we cannot do
5928 this since it will change the result if the original computation
5929 overflowed. */
5930 if ((TYPE_OVERFLOW_UNDEFINED (ctype)
5931 || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
5932 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
5933 || (tcode == MULT_EXPR
5934 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
5935 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
5936 && code != MULT_EXPR)))
5938 if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c)))
5940 if (TYPE_OVERFLOW_UNDEFINED (ctype))
5941 *strict_overflow_p = true;
5942 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5943 fold_convert (ctype,
5944 const_binop (TRUNC_DIV_EXPR,
5945 op1, c)));
5947 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1)))
5949 if (TYPE_OVERFLOW_UNDEFINED (ctype))
5950 *strict_overflow_p = true;
5951 return fold_build2 (code, ctype, fold_convert (ctype, op0),
5952 fold_convert (ctype,
5953 const_binop (TRUNC_DIV_EXPR,
5954 c, op1)));
5957 break;
5959 default:
5960 break;
5963 return 0;
5966 /* Return a node which has the indicated constant VALUE (either 0 or
5967 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
5968 and is of the indicated TYPE. */
5970 tree
5971 constant_boolean_node (bool value, tree type)
5973 if (type == integer_type_node)
5974 return value ? integer_one_node : integer_zero_node;
5975 else if (type == boolean_type_node)
5976 return value ? boolean_true_node : boolean_false_node;
5977 else if (TREE_CODE (type) == VECTOR_TYPE)
5978 return build_vector_from_val (type,
5979 build_int_cst (TREE_TYPE (type),
5980 value ? -1 : 0));
5981 else
5982 return fold_convert (type, value ? integer_one_node : integer_zero_node);
5986 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
5987 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
5988 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
5989 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
5990 COND is the first argument to CODE; otherwise (as in the example
5991 given here), it is the second argument. TYPE is the type of the
5992 original expression. Return NULL_TREE if no simplification is
5993 possible. */
5995 static tree
5996 fold_binary_op_with_conditional_arg (location_t loc,
5997 enum tree_code code,
5998 tree type, tree op0, tree op1,
5999 tree cond, tree arg, int cond_first_p)
6001 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6002 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6003 tree test, true_value, false_value;
6004 tree lhs = NULL_TREE;
6005 tree rhs = NULL_TREE;
6007 if (TREE_CODE (cond) == COND_EXPR)
6009 test = TREE_OPERAND (cond, 0);
6010 true_value = TREE_OPERAND (cond, 1);
6011 false_value = TREE_OPERAND (cond, 2);
6012 /* If this operand throws an expression, then it does not make
6013 sense to try to perform a logical or arithmetic operation
6014 involving it. */
6015 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6016 lhs = true_value;
6017 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6018 rhs = false_value;
6020 else
6022 tree testtype = TREE_TYPE (cond);
6023 test = cond;
6024 true_value = constant_boolean_node (true, testtype);
6025 false_value = constant_boolean_node (false, testtype);
6028 /* This transformation is only worthwhile if we don't have to wrap ARG
6029 in a SAVE_EXPR and the operation can be simplified on at least one
6030 of the branches once its pushed inside the COND_EXPR. */
6031 if (!TREE_CONSTANT (arg)
6032 && (TREE_SIDE_EFFECTS (arg)
6033 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6034 return NULL_TREE;
6036 arg = fold_convert_loc (loc, arg_type, arg);
6037 if (lhs == 0)
6039 true_value = fold_convert_loc (loc, cond_type, true_value);
6040 if (cond_first_p)
6041 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6042 else
6043 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6045 if (rhs == 0)
6047 false_value = fold_convert_loc (loc, cond_type, false_value);
6048 if (cond_first_p)
6049 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6050 else
6051 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6054 /* Check that we have simplified at least one of the branches. */
6055 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6056 return NULL_TREE;
6058 return fold_build3_loc (loc, COND_EXPR, type, test, lhs, rhs);
6062 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6064 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6065 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6066 ADDEND is the same as X.
6068 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6069 and finite. The problematic cases are when X is zero, and its mode
6070 has signed zeros. In the case of rounding towards -infinity,
6071 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6072 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6074 bool
6075 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6077 if (!real_zerop (addend))
6078 return false;
6080 /* Don't allow the fold with -fsignaling-nans. */
6081 if (HONOR_SNANS (TYPE_MODE (type)))
6082 return false;
6084 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6085 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
6086 return true;
6088 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6089 if (TREE_CODE (addend) == REAL_CST
6090 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6091 negate = !negate;
6093 /* The mode has signed zeros, and we have to honor their sign.
6094 In this situation, there is only one case we can return true for.
6095 X - 0 is the same as X unless rounding towards -infinity is
6096 supported. */
6097 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
6100 /* Subroutine of fold() that checks comparisons of built-in math
6101 functions against real constants.
6103 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
6104 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
6105 is the type of the result and ARG0 and ARG1 are the operands of the
6106 comparison. ARG1 must be a TREE_REAL_CST.
6108 The function returns the constant folded tree if a simplification
6109 can be made, and NULL_TREE otherwise. */
6111 static tree
6112 fold_mathfn_compare (location_t loc,
6113 enum built_in_function fcode, enum tree_code code,
6114 tree type, tree arg0, tree arg1)
6116 REAL_VALUE_TYPE c;
6118 if (BUILTIN_SQRT_P (fcode))
6120 tree arg = CALL_EXPR_ARG (arg0, 0);
6121 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
6123 c = TREE_REAL_CST (arg1);
6124 if (REAL_VALUE_NEGATIVE (c))
6126 /* sqrt(x) < y is always false, if y is negative. */
6127 if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
6128 return omit_one_operand_loc (loc, type, integer_zero_node, arg);
6130 /* sqrt(x) > y is always true, if y is negative and we
6131 don't care about NaNs, i.e. negative values of x. */
6132 if (code == NE_EXPR || !HONOR_NANS (mode))
6133 return omit_one_operand_loc (loc, type, integer_one_node, arg);
6135 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
6136 return fold_build2_loc (loc, GE_EXPR, type, arg,
6137 build_real (TREE_TYPE (arg), dconst0));
6139 else if (code == GT_EXPR || code == GE_EXPR)
6141 REAL_VALUE_TYPE c2;
6143 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6144 real_convert (&c2, mode, &c2);
6146 if (REAL_VALUE_ISINF (c2))
6148 /* sqrt(x) > y is x == +Inf, when y is very large. */
6149 if (HONOR_INFINITIES (mode))
6150 return fold_build2_loc (loc, EQ_EXPR, type, arg,
6151 build_real (TREE_TYPE (arg), c2));
6153 /* sqrt(x) > y is always false, when y is very large
6154 and we don't care about infinities. */
6155 return omit_one_operand_loc (loc, type, integer_zero_node, arg);
6158 /* sqrt(x) > c is the same as x > c*c. */
6159 return fold_build2_loc (loc, code, type, arg,
6160 build_real (TREE_TYPE (arg), c2));
6162 else if (code == LT_EXPR || code == LE_EXPR)
6164 REAL_VALUE_TYPE c2;
6166 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6167 real_convert (&c2, mode, &c2);
6169 if (REAL_VALUE_ISINF (c2))
6171 /* sqrt(x) < y is always true, when y is a very large
6172 value and we don't care about NaNs or Infinities. */
6173 if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
6174 return omit_one_operand_loc (loc, type, integer_one_node, arg);
6176 /* sqrt(x) < y is x != +Inf when y is very large and we
6177 don't care about NaNs. */
6178 if (! HONOR_NANS (mode))
6179 return fold_build2_loc (loc, NE_EXPR, type, arg,
6180 build_real (TREE_TYPE (arg), c2));
6182 /* sqrt(x) < y is x >= 0 when y is very large and we
6183 don't care about Infinities. */
6184 if (! HONOR_INFINITIES (mode))
6185 return fold_build2_loc (loc, GE_EXPR, type, arg,
6186 build_real (TREE_TYPE (arg), dconst0));
6188 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
6189 arg = save_expr (arg);
6190 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
6191 fold_build2_loc (loc, GE_EXPR, type, arg,
6192 build_real (TREE_TYPE (arg),
6193 dconst0)),
6194 fold_build2_loc (loc, NE_EXPR, type, arg,
6195 build_real (TREE_TYPE (arg),
6196 c2)));
6199 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
6200 if (! HONOR_NANS (mode))
6201 return fold_build2_loc (loc, code, type, arg,
6202 build_real (TREE_TYPE (arg), c2));
6204 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
6205 arg = save_expr (arg);
6206 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
6207 fold_build2_loc (loc, GE_EXPR, type, arg,
6208 build_real (TREE_TYPE (arg),
6209 dconst0)),
6210 fold_build2_loc (loc, code, type, arg,
6211 build_real (TREE_TYPE (arg),
6212 c2)));
6216 return NULL_TREE;
6219 /* Subroutine of fold() that optimizes comparisons against Infinities,
6220 either +Inf or -Inf.
6222 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6223 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6224 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6226 The function returns the constant folded tree if a simplification
6227 can be made, and NULL_TREE otherwise. */
6229 static tree
6230 fold_inf_compare (location_t loc, enum tree_code code, tree type,
6231 tree arg0, tree arg1)
6233 enum machine_mode mode;
6234 REAL_VALUE_TYPE max;
6235 tree temp;
6236 bool neg;
6238 mode = TYPE_MODE (TREE_TYPE (arg0));
6240 /* For negative infinity swap the sense of the comparison. */
6241 neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1));
6242 if (neg)
6243 code = swap_tree_comparison (code);
6245 switch (code)
6247 case GT_EXPR:
6248 /* x > +Inf is always false, if with ignore sNANs. */
6249 if (HONOR_SNANS (mode))
6250 return NULL_TREE;
6251 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
6253 case LE_EXPR:
6254 /* x <= +Inf is always true, if we don't case about NaNs. */
6255 if (! HONOR_NANS (mode))
6256 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
6258 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
6259 arg0 = save_expr (arg0);
6260 return fold_build2_loc (loc, EQ_EXPR, type, arg0, arg0);
6262 case EQ_EXPR:
6263 case GE_EXPR:
6264 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
6265 real_maxval (&max, neg, mode);
6266 return fold_build2_loc (loc, neg ? LT_EXPR : GT_EXPR, type,
6267 arg0, build_real (TREE_TYPE (arg0), max));
6269 case LT_EXPR:
6270 /* x < +Inf is always equal to x <= DBL_MAX. */
6271 real_maxval (&max, neg, mode);
6272 return fold_build2_loc (loc, neg ? GE_EXPR : LE_EXPR, type,
6273 arg0, build_real (TREE_TYPE (arg0), max));
6275 case NE_EXPR:
6276 /* x != +Inf is always equal to !(x > DBL_MAX). */
6277 real_maxval (&max, neg, mode);
6278 if (! HONOR_NANS (mode))
6279 return fold_build2_loc (loc, neg ? GE_EXPR : LE_EXPR, type,
6280 arg0, build_real (TREE_TYPE (arg0), max));
6282 temp = fold_build2_loc (loc, neg ? LT_EXPR : GT_EXPR, type,
6283 arg0, build_real (TREE_TYPE (arg0), max));
6284 return fold_build1_loc (loc, TRUTH_NOT_EXPR, type, temp);
6286 default:
6287 break;
6290 return NULL_TREE;
6293 /* Subroutine of fold() that optimizes comparisons of a division by
6294 a nonzero integer constant against an integer constant, i.e.
6295 X/C1 op C2.
6297 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6298 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6299 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6301 The function returns the constant folded tree if a simplification
6302 can be made, and NULL_TREE otherwise. */
6304 static tree
6305 fold_div_compare (location_t loc,
6306 enum tree_code code, tree type, tree arg0, tree arg1)
6308 tree prod, tmp, hi, lo;
6309 tree arg00 = TREE_OPERAND (arg0, 0);
6310 tree arg01 = TREE_OPERAND (arg0, 1);
6311 double_int val;
6312 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (arg0));
6313 bool neg_overflow;
6314 int overflow;
6316 /* We have to do this the hard way to detect unsigned overflow.
6317 prod = int_const_binop (MULT_EXPR, arg01, arg1); */
6318 overflow = mul_double_with_sign (TREE_INT_CST_LOW (arg01),
6319 TREE_INT_CST_HIGH (arg01),
6320 TREE_INT_CST_LOW (arg1),
6321 TREE_INT_CST_HIGH (arg1),
6322 &val.low, &val.high, unsigned_p);
6323 prod = force_fit_type_double (TREE_TYPE (arg00), val, -1, overflow);
6324 neg_overflow = false;
6326 if (unsigned_p)
6328 tmp = int_const_binop (MINUS_EXPR, arg01,
6329 build_int_cst (TREE_TYPE (arg01), 1));
6330 lo = prod;
6332 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6333 overflow = add_double_with_sign (TREE_INT_CST_LOW (prod),
6334 TREE_INT_CST_HIGH (prod),
6335 TREE_INT_CST_LOW (tmp),
6336 TREE_INT_CST_HIGH (tmp),
6337 &val.low, &val.high, unsigned_p);
6338 hi = force_fit_type_double (TREE_TYPE (arg00), val,
6339 -1, overflow | TREE_OVERFLOW (prod));
6341 else if (tree_int_cst_sgn (arg01) >= 0)
6343 tmp = int_const_binop (MINUS_EXPR, arg01,
6344 build_int_cst (TREE_TYPE (arg01), 1));
6345 switch (tree_int_cst_sgn (arg1))
6347 case -1:
6348 neg_overflow = true;
6349 lo = int_const_binop (MINUS_EXPR, prod, tmp);
6350 hi = prod;
6351 break;
6353 case 0:
6354 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6355 hi = tmp;
6356 break;
6358 case 1:
6359 hi = int_const_binop (PLUS_EXPR, prod, tmp);
6360 lo = prod;
6361 break;
6363 default:
6364 gcc_unreachable ();
6367 else
6369 /* A negative divisor reverses the relational operators. */
6370 code = swap_tree_comparison (code);
6372 tmp = int_const_binop (PLUS_EXPR, arg01,
6373 build_int_cst (TREE_TYPE (arg01), 1));
6374 switch (tree_int_cst_sgn (arg1))
6376 case -1:
6377 hi = int_const_binop (MINUS_EXPR, prod, tmp);
6378 lo = prod;
6379 break;
6381 case 0:
6382 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6383 lo = tmp;
6384 break;
6386 case 1:
6387 neg_overflow = true;
6388 lo = int_const_binop (PLUS_EXPR, prod, tmp);
6389 hi = prod;
6390 break;
6392 default:
6393 gcc_unreachable ();
6397 switch (code)
6399 case EQ_EXPR:
6400 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6401 return omit_one_operand_loc (loc, type, integer_zero_node, arg00);
6402 if (TREE_OVERFLOW (hi))
6403 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6404 if (TREE_OVERFLOW (lo))
6405 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6406 return build_range_check (loc, type, arg00, 1, lo, hi);
6408 case NE_EXPR:
6409 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6410 return omit_one_operand_loc (loc, type, integer_one_node, arg00);
6411 if (TREE_OVERFLOW (hi))
6412 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6413 if (TREE_OVERFLOW (lo))
6414 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6415 return build_range_check (loc, type, arg00, 0, lo, hi);
6417 case LT_EXPR:
6418 if (TREE_OVERFLOW (lo))
6420 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6421 return omit_one_operand_loc (loc, type, tmp, arg00);
6423 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6425 case LE_EXPR:
6426 if (TREE_OVERFLOW (hi))
6428 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6429 return omit_one_operand_loc (loc, type, tmp, arg00);
6431 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6433 case GT_EXPR:
6434 if (TREE_OVERFLOW (hi))
6436 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6437 return omit_one_operand_loc (loc, type, tmp, arg00);
6439 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6441 case GE_EXPR:
6442 if (TREE_OVERFLOW (lo))
6444 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6445 return omit_one_operand_loc (loc, type, tmp, arg00);
6447 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6449 default:
6450 break;
6453 return NULL_TREE;
6457 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6458 equality/inequality test, then return a simplified form of the test
6459 using a sign testing. Otherwise return NULL. TYPE is the desired
6460 result type. */
6462 static tree
6463 fold_single_bit_test_into_sign_test (location_t loc,
6464 enum tree_code code, tree arg0, tree arg1,
6465 tree result_type)
6467 /* If this is testing a single bit, we can optimize the test. */
6468 if ((code == NE_EXPR || code == EQ_EXPR)
6469 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6470 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6472 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6473 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6474 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6476 if (arg00 != NULL_TREE
6477 /* This is only a win if casting to a signed type is cheap,
6478 i.e. when arg00's type is not a partial mode. */
6479 && TYPE_PRECISION (TREE_TYPE (arg00))
6480 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg00))))
6482 tree stype = signed_type_for (TREE_TYPE (arg00));
6483 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6484 result_type,
6485 fold_convert_loc (loc, stype, arg00),
6486 build_int_cst (stype, 0));
6490 return NULL_TREE;
6493 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6494 equality/inequality test, then return a simplified form of
6495 the test using shifts and logical operations. Otherwise return
6496 NULL. TYPE is the desired result type. */
6498 tree
6499 fold_single_bit_test (location_t loc, enum tree_code code,
6500 tree arg0, tree arg1, tree result_type)
6502 /* If this is testing a single bit, we can optimize the test. */
6503 if ((code == NE_EXPR || code == EQ_EXPR)
6504 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6505 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6507 tree inner = TREE_OPERAND (arg0, 0);
6508 tree type = TREE_TYPE (arg0);
6509 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6510 enum machine_mode operand_mode = TYPE_MODE (type);
6511 int ops_unsigned;
6512 tree signed_type, unsigned_type, intermediate_type;
6513 tree tem, one;
6515 /* First, see if we can fold the single bit test into a sign-bit
6516 test. */
6517 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6518 result_type);
6519 if (tem)
6520 return tem;
6522 /* Otherwise we have (A & C) != 0 where C is a single bit,
6523 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6524 Similarly for (A & C) == 0. */
6526 /* If INNER is a right shift of a constant and it plus BITNUM does
6527 not overflow, adjust BITNUM and INNER. */
6528 if (TREE_CODE (inner) == RSHIFT_EXPR
6529 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6530 && TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
6531 && bitnum < TYPE_PRECISION (type)
6532 && 0 > compare_tree_int (TREE_OPERAND (inner, 1),
6533 bitnum - TYPE_PRECISION (type)))
6535 bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
6536 inner = TREE_OPERAND (inner, 0);
6539 /* If we are going to be able to omit the AND below, we must do our
6540 operations as unsigned. If we must use the AND, we have a choice.
6541 Normally unsigned is faster, but for some machines signed is. */
6542 #ifdef LOAD_EXTEND_OP
6543 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6544 && !flag_syntax_only) ? 0 : 1;
6545 #else
6546 ops_unsigned = 1;
6547 #endif
6549 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6550 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6551 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6552 inner = fold_convert_loc (loc, intermediate_type, inner);
6554 if (bitnum != 0)
6555 inner = build2 (RSHIFT_EXPR, intermediate_type,
6556 inner, size_int (bitnum));
6558 one = build_int_cst (intermediate_type, 1);
6560 if (code == EQ_EXPR)
6561 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6563 /* Put the AND last so it can combine with more things. */
6564 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6566 /* Make sure to return the proper type. */
6567 inner = fold_convert_loc (loc, result_type, inner);
6569 return inner;
6571 return NULL_TREE;
6574 /* Check whether we are allowed to reorder operands arg0 and arg1,
6575 such that the evaluation of arg1 occurs before arg0. */
6577 static bool
6578 reorder_operands_p (const_tree arg0, const_tree arg1)
6580 if (! flag_evaluation_order)
6581 return true;
6582 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6583 return true;
6584 return ! TREE_SIDE_EFFECTS (arg0)
6585 && ! TREE_SIDE_EFFECTS (arg1);
6588 /* Test whether it is preferable two swap two operands, ARG0 and
6589 ARG1, for example because ARG0 is an integer constant and ARG1
6590 isn't. If REORDER is true, only recommend swapping if we can
6591 evaluate the operands in reverse order. */
6593 bool
6594 tree_swap_operands_p (const_tree arg0, const_tree arg1, bool reorder)
6596 STRIP_SIGN_NOPS (arg0);
6597 STRIP_SIGN_NOPS (arg1);
6599 if (TREE_CODE (arg1) == INTEGER_CST)
6600 return 0;
6601 if (TREE_CODE (arg0) == INTEGER_CST)
6602 return 1;
6604 if (TREE_CODE (arg1) == REAL_CST)
6605 return 0;
6606 if (TREE_CODE (arg0) == REAL_CST)
6607 return 1;
6609 if (TREE_CODE (arg1) == FIXED_CST)
6610 return 0;
6611 if (TREE_CODE (arg0) == FIXED_CST)
6612 return 1;
6614 if (TREE_CODE (arg1) == COMPLEX_CST)
6615 return 0;
6616 if (TREE_CODE (arg0) == COMPLEX_CST)
6617 return 1;
6619 if (TREE_CONSTANT (arg1))
6620 return 0;
6621 if (TREE_CONSTANT (arg0))
6622 return 1;
6624 if (optimize_function_for_size_p (cfun))
6625 return 0;
6627 if (reorder && flag_evaluation_order
6628 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
6629 return 0;
6631 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6632 for commutative and comparison operators. Ensuring a canonical
6633 form allows the optimizers to find additional redundancies without
6634 having to explicitly check for both orderings. */
6635 if (TREE_CODE (arg0) == SSA_NAME
6636 && TREE_CODE (arg1) == SSA_NAME
6637 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6638 return 1;
6640 /* Put SSA_NAMEs last. */
6641 if (TREE_CODE (arg1) == SSA_NAME)
6642 return 0;
6643 if (TREE_CODE (arg0) == SSA_NAME)
6644 return 1;
6646 /* Put variables last. */
6647 if (DECL_P (arg1))
6648 return 0;
6649 if (DECL_P (arg0))
6650 return 1;
6652 return 0;
6655 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
6656 ARG0 is extended to a wider type. */
6658 static tree
6659 fold_widened_comparison (location_t loc, enum tree_code code,
6660 tree type, tree arg0, tree arg1)
6662 tree arg0_unw = get_unwidened (arg0, NULL_TREE);
6663 tree arg1_unw;
6664 tree shorter_type, outer_type;
6665 tree min, max;
6666 bool above, below;
6668 if (arg0_unw == arg0)
6669 return NULL_TREE;
6670 shorter_type = TREE_TYPE (arg0_unw);
6672 #ifdef HAVE_canonicalize_funcptr_for_compare
6673 /* Disable this optimization if we're casting a function pointer
6674 type on targets that require function pointer canonicalization. */
6675 if (HAVE_canonicalize_funcptr_for_compare
6676 && TREE_CODE (shorter_type) == POINTER_TYPE
6677 && TREE_CODE (TREE_TYPE (shorter_type)) == FUNCTION_TYPE)
6678 return NULL_TREE;
6679 #endif
6681 if (TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (shorter_type))
6682 return NULL_TREE;
6684 arg1_unw = get_unwidened (arg1, NULL_TREE);
6686 /* If possible, express the comparison in the shorter mode. */
6687 if ((code == EQ_EXPR || code == NE_EXPR
6688 || TYPE_UNSIGNED (TREE_TYPE (arg0)) == TYPE_UNSIGNED (shorter_type))
6689 && (TREE_TYPE (arg1_unw) == shorter_type
6690 || ((TYPE_PRECISION (shorter_type)
6691 >= TYPE_PRECISION (TREE_TYPE (arg1_unw)))
6692 && (TYPE_UNSIGNED (shorter_type)
6693 == TYPE_UNSIGNED (TREE_TYPE (arg1_unw))))
6694 || (TREE_CODE (arg1_unw) == INTEGER_CST
6695 && (TREE_CODE (shorter_type) == INTEGER_TYPE
6696 || TREE_CODE (shorter_type) == BOOLEAN_TYPE)
6697 && int_fits_type_p (arg1_unw, shorter_type))))
6698 return fold_build2_loc (loc, code, type, arg0_unw,
6699 fold_convert_loc (loc, shorter_type, arg1_unw));
6701 if (TREE_CODE (arg1_unw) != INTEGER_CST
6702 || TREE_CODE (shorter_type) != INTEGER_TYPE
6703 || !int_fits_type_p (arg1_unw, shorter_type))
6704 return NULL_TREE;
6706 /* If we are comparing with the integer that does not fit into the range
6707 of the shorter type, the result is known. */
6708 outer_type = TREE_TYPE (arg1_unw);
6709 min = lower_bound_in_type (outer_type, shorter_type);
6710 max = upper_bound_in_type (outer_type, shorter_type);
6712 above = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6713 max, arg1_unw));
6714 below = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6715 arg1_unw, min));
6717 switch (code)
6719 case EQ_EXPR:
6720 if (above || below)
6721 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
6722 break;
6724 case NE_EXPR:
6725 if (above || below)
6726 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
6727 break;
6729 case LT_EXPR:
6730 case LE_EXPR:
6731 if (above)
6732 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
6733 else if (below)
6734 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
6736 case GT_EXPR:
6737 case GE_EXPR:
6738 if (above)
6739 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
6740 else if (below)
6741 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
6743 default:
6744 break;
6747 return NULL_TREE;
6750 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
6751 ARG0 just the signedness is changed. */
6753 static tree
6754 fold_sign_changed_comparison (location_t loc, enum tree_code code, tree type,
6755 tree arg0, tree arg1)
6757 tree arg0_inner;
6758 tree inner_type, outer_type;
6760 if (!CONVERT_EXPR_P (arg0))
6761 return NULL_TREE;
6763 outer_type = TREE_TYPE (arg0);
6764 arg0_inner = TREE_OPERAND (arg0, 0);
6765 inner_type = TREE_TYPE (arg0_inner);
6767 #ifdef HAVE_canonicalize_funcptr_for_compare
6768 /* Disable this optimization if we're casting a function pointer
6769 type on targets that require function pointer canonicalization. */
6770 if (HAVE_canonicalize_funcptr_for_compare
6771 && TREE_CODE (inner_type) == POINTER_TYPE
6772 && TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE)
6773 return NULL_TREE;
6774 #endif
6776 if (TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
6777 return NULL_TREE;
6779 if (TREE_CODE (arg1) != INTEGER_CST
6780 && !(CONVERT_EXPR_P (arg1)
6781 && TREE_TYPE (TREE_OPERAND (arg1, 0)) == inner_type))
6782 return NULL_TREE;
6784 if ((TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
6785 || POINTER_TYPE_P (inner_type) != POINTER_TYPE_P (outer_type))
6786 && code != NE_EXPR
6787 && code != EQ_EXPR)
6788 return NULL_TREE;
6790 if (TREE_CODE (arg1) == INTEGER_CST)
6791 arg1 = force_fit_type_double (inner_type, tree_to_double_int (arg1),
6792 0, TREE_OVERFLOW (arg1));
6793 else
6794 arg1 = fold_convert_loc (loc, inner_type, arg1);
6796 return fold_build2_loc (loc, code, type, arg0_inner, arg1);
6799 /* Tries to replace &a[idx] p+ s * delta with &a[idx + delta], if s is
6800 step of the array. Reconstructs s and delta in the case of s *
6801 delta being an integer constant (and thus already folded). ADDR is
6802 the address. MULT is the multiplicative expression. If the
6803 function succeeds, the new address expression is returned.
6804 Otherwise NULL_TREE is returned. LOC is the location of the
6805 resulting expression. */
6807 static tree
6808 try_move_mult_to_index (location_t loc, tree addr, tree op1)
6810 tree s, delta, step;
6811 tree ref = TREE_OPERAND (addr, 0), pref;
6812 tree ret, pos;
6813 tree itype;
6814 bool mdim = false;
6816 /* Strip the nops that might be added when converting op1 to sizetype. */
6817 STRIP_NOPS (op1);
6819 /* Canonicalize op1 into a possibly non-constant delta
6820 and an INTEGER_CST s. */
6821 if (TREE_CODE (op1) == MULT_EXPR)
6823 tree arg0 = TREE_OPERAND (op1, 0), arg1 = TREE_OPERAND (op1, 1);
6825 STRIP_NOPS (arg0);
6826 STRIP_NOPS (arg1);
6828 if (TREE_CODE (arg0) == INTEGER_CST)
6830 s = arg0;
6831 delta = arg1;
6833 else if (TREE_CODE (arg1) == INTEGER_CST)
6835 s = arg1;
6836 delta = arg0;
6838 else
6839 return NULL_TREE;
6841 else if (TREE_CODE (op1) == INTEGER_CST)
6843 delta = op1;
6844 s = NULL_TREE;
6846 else
6848 /* Simulate we are delta * 1. */
6849 delta = op1;
6850 s = integer_one_node;
6853 for (;; ref = TREE_OPERAND (ref, 0))
6855 if (TREE_CODE (ref) == ARRAY_REF)
6857 tree domain;
6859 /* Remember if this was a multi-dimensional array. */
6860 if (TREE_CODE (TREE_OPERAND (ref, 0)) == ARRAY_REF)
6861 mdim = true;
6863 domain = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref, 0)));
6864 if (! domain)
6865 continue;
6866 itype = TREE_TYPE (domain);
6868 step = array_ref_element_size (ref);
6869 if (TREE_CODE (step) != INTEGER_CST)
6870 continue;
6872 if (s)
6874 if (! tree_int_cst_equal (step, s))
6875 continue;
6877 else
6879 /* Try if delta is a multiple of step. */
6880 tree tmp = div_if_zero_remainder (EXACT_DIV_EXPR, op1, step);
6881 if (! tmp)
6882 continue;
6883 delta = tmp;
6886 /* Only fold here if we can verify we do not overflow one
6887 dimension of a multi-dimensional array. */
6888 if (mdim)
6890 tree tmp;
6892 if (TREE_CODE (TREE_OPERAND (ref, 1)) != INTEGER_CST
6893 || !TYPE_MAX_VALUE (domain)
6894 || TREE_CODE (TYPE_MAX_VALUE (domain)) != INTEGER_CST)
6895 continue;
6897 tmp = fold_binary_loc (loc, PLUS_EXPR, itype,
6898 fold_convert_loc (loc, itype,
6899 TREE_OPERAND (ref, 1)),
6900 fold_convert_loc (loc, itype, delta));
6901 if (!tmp
6902 || TREE_CODE (tmp) != INTEGER_CST
6903 || tree_int_cst_lt (TYPE_MAX_VALUE (domain), tmp))
6904 continue;
6907 break;
6909 else if (TREE_CODE (ref) == COMPONENT_REF
6910 && TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE)
6912 tree domain;
6914 /* Remember if this was a multi-dimensional array. */
6915 if (TREE_CODE (TREE_OPERAND (ref, 0)) == ARRAY_REF)
6916 mdim = true;
6918 domain = TYPE_DOMAIN (TREE_TYPE (ref));
6919 if (! domain)
6920 continue;
6921 itype = TREE_TYPE (domain);
6923 step = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ref)));
6924 if (TREE_CODE (step) != INTEGER_CST)
6925 continue;
6927 if (s)
6929 if (! tree_int_cst_equal (step, s))
6930 continue;
6932 else
6934 /* Try if delta is a multiple of step. */
6935 tree tmp = div_if_zero_remainder (EXACT_DIV_EXPR, op1, step);
6936 if (! tmp)
6937 continue;
6938 delta = tmp;
6941 /* Only fold here if we can verify we do not overflow one
6942 dimension of a multi-dimensional array. */
6943 if (mdim)
6945 tree tmp;
6947 if (!TYPE_MIN_VALUE (domain)
6948 || !TYPE_MAX_VALUE (domain)
6949 || TREE_CODE (TYPE_MAX_VALUE (domain)) != INTEGER_CST)
6950 continue;
6952 tmp = fold_binary_loc (loc, PLUS_EXPR, itype,
6953 fold_convert_loc (loc, itype,
6954 TYPE_MIN_VALUE (domain)),
6955 fold_convert_loc (loc, itype, delta));
6956 if (TREE_CODE (tmp) != INTEGER_CST
6957 || tree_int_cst_lt (TYPE_MAX_VALUE (domain), tmp))
6958 continue;
6961 break;
6963 else
6964 mdim = false;
6966 if (!handled_component_p (ref))
6967 return NULL_TREE;
6970 /* We found the suitable array reference. So copy everything up to it,
6971 and replace the index. */
6973 pref = TREE_OPERAND (addr, 0);
6974 ret = copy_node (pref);
6975 SET_EXPR_LOCATION (ret, loc);
6976 pos = ret;
6978 while (pref != ref)
6980 pref = TREE_OPERAND (pref, 0);
6981 TREE_OPERAND (pos, 0) = copy_node (pref);
6982 pos = TREE_OPERAND (pos, 0);
6985 if (TREE_CODE (ref) == ARRAY_REF)
6987 TREE_OPERAND (pos, 1)
6988 = fold_build2_loc (loc, PLUS_EXPR, itype,
6989 fold_convert_loc (loc, itype, TREE_OPERAND (pos, 1)),
6990 fold_convert_loc (loc, itype, delta));
6991 return fold_build1_loc (loc, ADDR_EXPR, TREE_TYPE (addr), ret);
6993 else if (TREE_CODE (ref) == COMPONENT_REF)
6995 gcc_assert (ret == pos);
6996 ret = build4_loc (loc, ARRAY_REF, TREE_TYPE (TREE_TYPE (ref)), ret,
6997 fold_build2_loc
6998 (loc, PLUS_EXPR, itype,
6999 fold_convert_loc (loc, itype,
7000 TYPE_MIN_VALUE
7001 (TYPE_DOMAIN (TREE_TYPE (ref)))),
7002 fold_convert_loc (loc, itype, delta)),
7003 NULL_TREE, NULL_TREE);
7004 return build_fold_addr_expr_loc (loc, ret);
7006 else
7007 gcc_unreachable ();
7011 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
7012 means A >= Y && A != MAX, but in this case we know that
7013 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
7015 static tree
7016 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
7018 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
7020 if (TREE_CODE (bound) == LT_EXPR)
7021 a = TREE_OPERAND (bound, 0);
7022 else if (TREE_CODE (bound) == GT_EXPR)
7023 a = TREE_OPERAND (bound, 1);
7024 else
7025 return NULL_TREE;
7027 typea = TREE_TYPE (a);
7028 if (!INTEGRAL_TYPE_P (typea)
7029 && !POINTER_TYPE_P (typea))
7030 return NULL_TREE;
7032 if (TREE_CODE (ineq) == LT_EXPR)
7034 a1 = TREE_OPERAND (ineq, 1);
7035 y = TREE_OPERAND (ineq, 0);
7037 else if (TREE_CODE (ineq) == GT_EXPR)
7039 a1 = TREE_OPERAND (ineq, 0);
7040 y = TREE_OPERAND (ineq, 1);
7042 else
7043 return NULL_TREE;
7045 if (TREE_TYPE (a1) != typea)
7046 return NULL_TREE;
7048 if (POINTER_TYPE_P (typea))
7050 /* Convert the pointer types into integer before taking the difference. */
7051 tree ta = fold_convert_loc (loc, ssizetype, a);
7052 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
7053 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
7055 else
7056 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
7058 if (!diff || !integer_onep (diff))
7059 return NULL_TREE;
7061 return fold_build2_loc (loc, GE_EXPR, type, a, y);
7064 /* Fold a sum or difference of at least one multiplication.
7065 Returns the folded tree or NULL if no simplification could be made. */
7067 static tree
7068 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
7069 tree arg0, tree arg1)
7071 tree arg00, arg01, arg10, arg11;
7072 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
7074 /* (A * C) +- (B * C) -> (A+-B) * C.
7075 (A * C) +- A -> A * (C+-1).
7076 We are most concerned about the case where C is a constant,
7077 but other combinations show up during loop reduction. Since
7078 it is not difficult, try all four possibilities. */
7080 if (TREE_CODE (arg0) == MULT_EXPR)
7082 arg00 = TREE_OPERAND (arg0, 0);
7083 arg01 = TREE_OPERAND (arg0, 1);
7085 else if (TREE_CODE (arg0) == INTEGER_CST)
7087 arg00 = build_one_cst (type);
7088 arg01 = arg0;
7090 else
7092 /* We cannot generate constant 1 for fract. */
7093 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7094 return NULL_TREE;
7095 arg00 = arg0;
7096 arg01 = build_one_cst (type);
7098 if (TREE_CODE (arg1) == MULT_EXPR)
7100 arg10 = TREE_OPERAND (arg1, 0);
7101 arg11 = TREE_OPERAND (arg1, 1);
7103 else if (TREE_CODE (arg1) == INTEGER_CST)
7105 arg10 = build_one_cst (type);
7106 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
7107 the purpose of this canonicalization. */
7108 if (TREE_INT_CST_HIGH (arg1) == -1
7109 && negate_expr_p (arg1)
7110 && code == PLUS_EXPR)
7112 arg11 = negate_expr (arg1);
7113 code = MINUS_EXPR;
7115 else
7116 arg11 = arg1;
7118 else
7120 /* We cannot generate constant 1 for fract. */
7121 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7122 return NULL_TREE;
7123 arg10 = arg1;
7124 arg11 = build_one_cst (type);
7126 same = NULL_TREE;
7128 if (operand_equal_p (arg01, arg11, 0))
7129 same = arg01, alt0 = arg00, alt1 = arg10;
7130 else if (operand_equal_p (arg00, arg10, 0))
7131 same = arg00, alt0 = arg01, alt1 = arg11;
7132 else if (operand_equal_p (arg00, arg11, 0))
7133 same = arg00, alt0 = arg01, alt1 = arg10;
7134 else if (operand_equal_p (arg01, arg10, 0))
7135 same = arg01, alt0 = arg00, alt1 = arg11;
7137 /* No identical multiplicands; see if we can find a common
7138 power-of-two factor in non-power-of-two multiplies. This
7139 can help in multi-dimensional array access. */
7140 else if (host_integerp (arg01, 0)
7141 && host_integerp (arg11, 0))
7143 HOST_WIDE_INT int01, int11, tmp;
7144 bool swap = false;
7145 tree maybe_same;
7146 int01 = TREE_INT_CST_LOW (arg01);
7147 int11 = TREE_INT_CST_LOW (arg11);
7149 /* Move min of absolute values to int11. */
7150 if (absu_hwi (int01) < absu_hwi (int11))
7152 tmp = int01, int01 = int11, int11 = tmp;
7153 alt0 = arg00, arg00 = arg10, arg10 = alt0;
7154 maybe_same = arg01;
7155 swap = true;
7157 else
7158 maybe_same = arg11;
7160 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0
7161 /* The remainder should not be a constant, otherwise we
7162 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7163 increased the number of multiplications necessary. */
7164 && TREE_CODE (arg10) != INTEGER_CST)
7166 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
7167 build_int_cst (TREE_TYPE (arg00),
7168 int01 / int11));
7169 alt1 = arg10;
7170 same = maybe_same;
7171 if (swap)
7172 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
7176 if (same)
7177 return fold_build2_loc (loc, MULT_EXPR, type,
7178 fold_build2_loc (loc, code, type,
7179 fold_convert_loc (loc, type, alt0),
7180 fold_convert_loc (loc, type, alt1)),
7181 fold_convert_loc (loc, type, same));
7183 return NULL_TREE;
7186 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7187 specified by EXPR into the buffer PTR of length LEN bytes.
7188 Return the number of bytes placed in the buffer, or zero
7189 upon failure. */
7191 static int
7192 native_encode_int (const_tree expr, unsigned char *ptr, int len)
7194 tree type = TREE_TYPE (expr);
7195 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7196 int byte, offset, word, words;
7197 unsigned char value;
7199 if (total_bytes > len)
7200 return 0;
7201 words = total_bytes / UNITS_PER_WORD;
7203 for (byte = 0; byte < total_bytes; byte++)
7205 int bitpos = byte * BITS_PER_UNIT;
7206 if (bitpos < HOST_BITS_PER_WIDE_INT)
7207 value = (unsigned char) (TREE_INT_CST_LOW (expr) >> bitpos);
7208 else
7209 value = (unsigned char) (TREE_INT_CST_HIGH (expr)
7210 >> (bitpos - HOST_BITS_PER_WIDE_INT));
7212 if (total_bytes > UNITS_PER_WORD)
7214 word = byte / UNITS_PER_WORD;
7215 if (WORDS_BIG_ENDIAN)
7216 word = (words - 1) - word;
7217 offset = word * UNITS_PER_WORD;
7218 if (BYTES_BIG_ENDIAN)
7219 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7220 else
7221 offset += byte % UNITS_PER_WORD;
7223 else
7224 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7225 ptr[offset] = value;
7227 return total_bytes;
7231 /* Subroutine of native_encode_expr. Encode the REAL_CST
7232 specified by EXPR into the buffer PTR of length LEN bytes.
7233 Return the number of bytes placed in the buffer, or zero
7234 upon failure. */
7236 static int
7237 native_encode_real (const_tree expr, unsigned char *ptr, int len)
7239 tree type = TREE_TYPE (expr);
7240 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7241 int byte, offset, word, words, bitpos;
7242 unsigned char value;
7244 /* There are always 32 bits in each long, no matter the size of
7245 the hosts long. We handle floating point representations with
7246 up to 192 bits. */
7247 long tmp[6];
7249 if (total_bytes > len)
7250 return 0;
7251 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7253 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7255 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7256 bitpos += BITS_PER_UNIT)
7258 byte = (bitpos / BITS_PER_UNIT) & 3;
7259 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7261 if (UNITS_PER_WORD < 4)
7263 word = byte / UNITS_PER_WORD;
7264 if (WORDS_BIG_ENDIAN)
7265 word = (words - 1) - word;
7266 offset = word * UNITS_PER_WORD;
7267 if (BYTES_BIG_ENDIAN)
7268 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7269 else
7270 offset += byte % UNITS_PER_WORD;
7272 else
7273 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7274 ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)] = value;
7276 return total_bytes;
7279 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7280 specified by EXPR into the buffer PTR of length LEN bytes.
7281 Return the number of bytes placed in the buffer, or zero
7282 upon failure. */
7284 static int
7285 native_encode_complex (const_tree expr, unsigned char *ptr, int len)
7287 int rsize, isize;
7288 tree part;
7290 part = TREE_REALPART (expr);
7291 rsize = native_encode_expr (part, ptr, len);
7292 if (rsize == 0)
7293 return 0;
7294 part = TREE_IMAGPART (expr);
7295 isize = native_encode_expr (part, ptr+rsize, len-rsize);
7296 if (isize != rsize)
7297 return 0;
7298 return rsize + isize;
7302 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7303 specified by EXPR into the buffer PTR of length LEN bytes.
7304 Return the number of bytes placed in the buffer, or zero
7305 upon failure. */
7307 static int
7308 native_encode_vector (const_tree expr, unsigned char *ptr, int len)
7310 int i, size, offset, count;
7311 tree itype, elem, elements;
7313 offset = 0;
7314 elements = TREE_VECTOR_CST_ELTS (expr);
7315 count = TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr));
7316 itype = TREE_TYPE (TREE_TYPE (expr));
7317 size = GET_MODE_SIZE (TYPE_MODE (itype));
7318 for (i = 0; i < count; i++)
7320 if (elements)
7322 elem = TREE_VALUE (elements);
7323 elements = TREE_CHAIN (elements);
7325 else
7326 elem = NULL_TREE;
7328 if (elem)
7330 if (native_encode_expr (elem, ptr+offset, len-offset) != size)
7331 return 0;
7333 else
7335 if (offset + size > len)
7336 return 0;
7337 memset (ptr+offset, 0, size);
7339 offset += size;
7341 return offset;
7345 /* Subroutine of native_encode_expr. Encode the STRING_CST
7346 specified by EXPR into the buffer PTR of length LEN bytes.
7347 Return the number of bytes placed in the buffer, or zero
7348 upon failure. */
7350 static int
7351 native_encode_string (const_tree expr, unsigned char *ptr, int len)
7353 tree type = TREE_TYPE (expr);
7354 HOST_WIDE_INT total_bytes;
7356 if (TREE_CODE (type) != ARRAY_TYPE
7357 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7358 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) != BITS_PER_UNIT
7359 || !host_integerp (TYPE_SIZE_UNIT (type), 0))
7360 return 0;
7361 total_bytes = tree_low_cst (TYPE_SIZE_UNIT (type), 0);
7362 if (total_bytes > len)
7363 return 0;
7364 if (TREE_STRING_LENGTH (expr) < total_bytes)
7366 memcpy (ptr, TREE_STRING_POINTER (expr), TREE_STRING_LENGTH (expr));
7367 memset (ptr + TREE_STRING_LENGTH (expr), 0,
7368 total_bytes - TREE_STRING_LENGTH (expr));
7370 else
7371 memcpy (ptr, TREE_STRING_POINTER (expr), total_bytes);
7372 return total_bytes;
7376 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7377 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7378 buffer PTR of length LEN bytes. Return the number of bytes
7379 placed in the buffer, or zero upon failure. */
7382 native_encode_expr (const_tree expr, unsigned char *ptr, int len)
7384 switch (TREE_CODE (expr))
7386 case INTEGER_CST:
7387 return native_encode_int (expr, ptr, len);
7389 case REAL_CST:
7390 return native_encode_real (expr, ptr, len);
7392 case COMPLEX_CST:
7393 return native_encode_complex (expr, ptr, len);
7395 case VECTOR_CST:
7396 return native_encode_vector (expr, ptr, len);
7398 case STRING_CST:
7399 return native_encode_string (expr, ptr, len);
7401 default:
7402 return 0;
7407 /* Subroutine of native_interpret_expr. Interpret the contents of
7408 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7409 If the buffer cannot be interpreted, return NULL_TREE. */
7411 static tree
7412 native_interpret_int (tree type, const unsigned char *ptr, int len)
7414 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7415 int byte, offset, word, words;
7416 unsigned char value;
7417 double_int result;
7419 if (total_bytes > len)
7420 return NULL_TREE;
7421 if (total_bytes * BITS_PER_UNIT > 2 * HOST_BITS_PER_WIDE_INT)
7422 return NULL_TREE;
7424 result = double_int_zero;
7425 words = total_bytes / UNITS_PER_WORD;
7427 for (byte = 0; byte < total_bytes; byte++)
7429 int bitpos = byte * BITS_PER_UNIT;
7430 if (total_bytes > UNITS_PER_WORD)
7432 word = byte / UNITS_PER_WORD;
7433 if (WORDS_BIG_ENDIAN)
7434 word = (words - 1) - word;
7435 offset = word * UNITS_PER_WORD;
7436 if (BYTES_BIG_ENDIAN)
7437 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7438 else
7439 offset += byte % UNITS_PER_WORD;
7441 else
7442 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7443 value = ptr[offset];
7445 if (bitpos < HOST_BITS_PER_WIDE_INT)
7446 result.low |= (unsigned HOST_WIDE_INT) value << bitpos;
7447 else
7448 result.high |= (unsigned HOST_WIDE_INT) value
7449 << (bitpos - HOST_BITS_PER_WIDE_INT);
7452 return double_int_to_tree (type, result);
7456 /* Subroutine of native_interpret_expr. Interpret the contents of
7457 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7458 If the buffer cannot be interpreted, return NULL_TREE. */
7460 static tree
7461 native_interpret_real (tree type, const unsigned char *ptr, int len)
7463 enum machine_mode mode = TYPE_MODE (type);
7464 int total_bytes = GET_MODE_SIZE (mode);
7465 int byte, offset, word, words, bitpos;
7466 unsigned char value;
7467 /* There are always 32 bits in each long, no matter the size of
7468 the hosts long. We handle floating point representations with
7469 up to 192 bits. */
7470 REAL_VALUE_TYPE r;
7471 long tmp[6];
7473 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7474 if (total_bytes > len || total_bytes > 24)
7475 return NULL_TREE;
7476 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7478 memset (tmp, 0, sizeof (tmp));
7479 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7480 bitpos += BITS_PER_UNIT)
7482 byte = (bitpos / BITS_PER_UNIT) & 3;
7483 if (UNITS_PER_WORD < 4)
7485 word = byte / UNITS_PER_WORD;
7486 if (WORDS_BIG_ENDIAN)
7487 word = (words - 1) - word;
7488 offset = word * UNITS_PER_WORD;
7489 if (BYTES_BIG_ENDIAN)
7490 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7491 else
7492 offset += byte % UNITS_PER_WORD;
7494 else
7495 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7496 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7498 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7501 real_from_target (&r, tmp, mode);
7502 return build_real (type, r);
7506 /* Subroutine of native_interpret_expr. Interpret the contents of
7507 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7508 If the buffer cannot be interpreted, return NULL_TREE. */
7510 static tree
7511 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7513 tree etype, rpart, ipart;
7514 int size;
7516 etype = TREE_TYPE (type);
7517 size = GET_MODE_SIZE (TYPE_MODE (etype));
7518 if (size * 2 > len)
7519 return NULL_TREE;
7520 rpart = native_interpret_expr (etype, ptr, size);
7521 if (!rpart)
7522 return NULL_TREE;
7523 ipart = native_interpret_expr (etype, ptr+size, size);
7524 if (!ipart)
7525 return NULL_TREE;
7526 return build_complex (type, rpart, ipart);
7530 /* Subroutine of native_interpret_expr. Interpret the contents of
7531 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7532 If the buffer cannot be interpreted, return NULL_TREE. */
7534 static tree
7535 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7537 tree etype, elem, elements;
7538 int i, size, count;
7540 etype = TREE_TYPE (type);
7541 size = GET_MODE_SIZE (TYPE_MODE (etype));
7542 count = TYPE_VECTOR_SUBPARTS (type);
7543 if (size * count > len)
7544 return NULL_TREE;
7546 elements = NULL_TREE;
7547 for (i = count - 1; i >= 0; i--)
7549 elem = native_interpret_expr (etype, ptr+(i*size), size);
7550 if (!elem)
7551 return NULL_TREE;
7552 elements = tree_cons (NULL_TREE, elem, elements);
7554 return build_vector (type, elements);
7558 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7559 the buffer PTR of length LEN as a constant of type TYPE. For
7560 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7561 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7562 return NULL_TREE. */
7564 tree
7565 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7567 switch (TREE_CODE (type))
7569 case INTEGER_TYPE:
7570 case ENUMERAL_TYPE:
7571 case BOOLEAN_TYPE:
7572 return native_interpret_int (type, ptr, len);
7574 case REAL_TYPE:
7575 return native_interpret_real (type, ptr, len);
7577 case COMPLEX_TYPE:
7578 return native_interpret_complex (type, ptr, len);
7580 case VECTOR_TYPE:
7581 return native_interpret_vector (type, ptr, len);
7583 default:
7584 return NULL_TREE;
7589 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7590 TYPE at compile-time. If we're unable to perform the conversion
7591 return NULL_TREE. */
7593 static tree
7594 fold_view_convert_expr (tree type, tree expr)
7596 /* We support up to 512-bit values (for V8DFmode). */
7597 unsigned char buffer[64];
7598 int len;
7600 /* Check that the host and target are sane. */
7601 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7602 return NULL_TREE;
7604 len = native_encode_expr (expr, buffer, sizeof (buffer));
7605 if (len == 0)
7606 return NULL_TREE;
7608 return native_interpret_expr (type, buffer, len);
7611 /* Build an expression for the address of T. Folds away INDIRECT_REF
7612 to avoid confusing the gimplify process. */
7614 tree
7615 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7617 /* The size of the object is not relevant when talking about its address. */
7618 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7619 t = TREE_OPERAND (t, 0);
7621 if (TREE_CODE (t) == INDIRECT_REF)
7623 t = TREE_OPERAND (t, 0);
7625 if (TREE_TYPE (t) != ptrtype)
7626 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7628 else if (TREE_CODE (t) == MEM_REF
7629 && integer_zerop (TREE_OPERAND (t, 1)))
7630 return TREE_OPERAND (t, 0);
7631 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7633 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7635 if (TREE_TYPE (t) != ptrtype)
7636 t = fold_convert_loc (loc, ptrtype, t);
7638 else
7639 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7641 return t;
7644 /* Build an expression for the address of T. */
7646 tree
7647 build_fold_addr_expr_loc (location_t loc, tree t)
7649 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7651 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7654 /* Fold a unary expression of code CODE and type TYPE with operand
7655 OP0. Return the folded expression if folding is successful.
7656 Otherwise, return NULL_TREE. */
7658 tree
7659 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7661 tree tem;
7662 tree arg0;
7663 enum tree_code_class kind = TREE_CODE_CLASS (code);
7665 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7666 && TREE_CODE_LENGTH (code) == 1);
7668 arg0 = op0;
7669 if (arg0)
7671 if (CONVERT_EXPR_CODE_P (code)
7672 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7674 /* Don't use STRIP_NOPS, because signedness of argument type
7675 matters. */
7676 STRIP_SIGN_NOPS (arg0);
7678 else
7680 /* Strip any conversions that don't change the mode. This
7681 is safe for every expression, except for a comparison
7682 expression because its signedness is derived from its
7683 operands.
7685 Note that this is done as an internal manipulation within
7686 the constant folder, in order to find the simplest
7687 representation of the arguments so that their form can be
7688 studied. In any cases, the appropriate type conversions
7689 should be put back in the tree that will get out of the
7690 constant folder. */
7691 STRIP_NOPS (arg0);
7695 if (TREE_CODE_CLASS (code) == tcc_unary)
7697 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7698 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7699 fold_build1_loc (loc, code, type,
7700 fold_convert_loc (loc, TREE_TYPE (op0),
7701 TREE_OPERAND (arg0, 1))));
7702 else if (TREE_CODE (arg0) == COND_EXPR)
7704 tree arg01 = TREE_OPERAND (arg0, 1);
7705 tree arg02 = TREE_OPERAND (arg0, 2);
7706 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7707 arg01 = fold_build1_loc (loc, code, type,
7708 fold_convert_loc (loc,
7709 TREE_TYPE (op0), arg01));
7710 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7711 arg02 = fold_build1_loc (loc, code, type,
7712 fold_convert_loc (loc,
7713 TREE_TYPE (op0), arg02));
7714 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7715 arg01, arg02);
7717 /* If this was a conversion, and all we did was to move into
7718 inside the COND_EXPR, bring it back out. But leave it if
7719 it is a conversion from integer to integer and the
7720 result precision is no wider than a word since such a
7721 conversion is cheap and may be optimized away by combine,
7722 while it couldn't if it were outside the COND_EXPR. Then return
7723 so we don't get into an infinite recursion loop taking the
7724 conversion out and then back in. */
7726 if ((CONVERT_EXPR_CODE_P (code)
7727 || code == NON_LVALUE_EXPR)
7728 && TREE_CODE (tem) == COND_EXPR
7729 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7730 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7731 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7732 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7733 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7734 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7735 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7736 && (INTEGRAL_TYPE_P
7737 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7738 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7739 || flag_syntax_only))
7740 tem = build1_loc (loc, code, type,
7741 build3 (COND_EXPR,
7742 TREE_TYPE (TREE_OPERAND
7743 (TREE_OPERAND (tem, 1), 0)),
7744 TREE_OPERAND (tem, 0),
7745 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7746 TREE_OPERAND (TREE_OPERAND (tem, 2),
7747 0)));
7748 return tem;
7752 switch (code)
7754 case PAREN_EXPR:
7755 /* Re-association barriers around constants and other re-association
7756 barriers can be removed. */
7757 if (CONSTANT_CLASS_P (op0)
7758 || TREE_CODE (op0) == PAREN_EXPR)
7759 return fold_convert_loc (loc, type, op0);
7760 return NULL_TREE;
7762 CASE_CONVERT:
7763 case FLOAT_EXPR:
7764 case FIX_TRUNC_EXPR:
7765 if (TREE_TYPE (op0) == type)
7766 return op0;
7768 if (COMPARISON_CLASS_P (op0))
7770 /* If we have (type) (a CMP b) and type is an integral type, return
7771 new expression involving the new type. Canonicalize
7772 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7773 non-integral type.
7774 Do not fold the result as that would not simplify further, also
7775 folding again results in recursions. */
7776 if (TREE_CODE (type) == BOOLEAN_TYPE)
7777 return build2_loc (loc, TREE_CODE (op0), type,
7778 TREE_OPERAND (op0, 0),
7779 TREE_OPERAND (op0, 1));
7780 else if (!INTEGRAL_TYPE_P (type))
7781 return build3_loc (loc, COND_EXPR, type, op0,
7782 constant_boolean_node (true, type),
7783 constant_boolean_node (false, type));
7786 /* Handle cases of two conversions in a row. */
7787 if (CONVERT_EXPR_P (op0))
7789 tree inside_type = TREE_TYPE (TREE_OPERAND (op0, 0));
7790 tree inter_type = TREE_TYPE (op0);
7791 int inside_int = INTEGRAL_TYPE_P (inside_type);
7792 int inside_ptr = POINTER_TYPE_P (inside_type);
7793 int inside_float = FLOAT_TYPE_P (inside_type);
7794 int inside_vec = TREE_CODE (inside_type) == VECTOR_TYPE;
7795 unsigned int inside_prec = TYPE_PRECISION (inside_type);
7796 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
7797 int inter_int = INTEGRAL_TYPE_P (inter_type);
7798 int inter_ptr = POINTER_TYPE_P (inter_type);
7799 int inter_float = FLOAT_TYPE_P (inter_type);
7800 int inter_vec = TREE_CODE (inter_type) == VECTOR_TYPE;
7801 unsigned int inter_prec = TYPE_PRECISION (inter_type);
7802 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
7803 int final_int = INTEGRAL_TYPE_P (type);
7804 int final_ptr = POINTER_TYPE_P (type);
7805 int final_float = FLOAT_TYPE_P (type);
7806 int final_vec = TREE_CODE (type) == VECTOR_TYPE;
7807 unsigned int final_prec = TYPE_PRECISION (type);
7808 int final_unsignedp = TYPE_UNSIGNED (type);
7810 /* In addition to the cases of two conversions in a row
7811 handled below, if we are converting something to its own
7812 type via an object of identical or wider precision, neither
7813 conversion is needed. */
7814 if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (type)
7815 && (((inter_int || inter_ptr) && final_int)
7816 || (inter_float && final_float))
7817 && inter_prec >= final_prec)
7818 return fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 0));
7820 /* Likewise, if the intermediate and initial types are either both
7821 float or both integer, we don't need the middle conversion if the
7822 former is wider than the latter and doesn't change the signedness
7823 (for integers). Avoid this if the final type is a pointer since
7824 then we sometimes need the middle conversion. Likewise if the
7825 final type has a precision not equal to the size of its mode. */
7826 if (((inter_int && inside_int)
7827 || (inter_float && inside_float)
7828 || (inter_vec && inside_vec))
7829 && inter_prec >= inside_prec
7830 && (inter_float || inter_vec
7831 || inter_unsignedp == inside_unsignedp)
7832 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
7833 && TYPE_MODE (type) == TYPE_MODE (inter_type))
7834 && ! final_ptr
7835 && (! final_vec || inter_prec == inside_prec))
7836 return fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 0));
7838 /* If we have a sign-extension of a zero-extended value, we can
7839 replace that by a single zero-extension. */
7840 if (inside_int && inter_int && final_int
7841 && inside_prec < inter_prec && inter_prec < final_prec
7842 && inside_unsignedp && !inter_unsignedp)
7843 return fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 0));
7845 /* Two conversions in a row are not needed unless:
7846 - some conversion is floating-point (overstrict for now), or
7847 - some conversion is a vector (overstrict for now), or
7848 - the intermediate type is narrower than both initial and
7849 final, or
7850 - the intermediate type and innermost type differ in signedness,
7851 and the outermost type is wider than the intermediate, or
7852 - the initial type is a pointer type and the precisions of the
7853 intermediate and final types differ, or
7854 - the final type is a pointer type and the precisions of the
7855 initial and intermediate types differ. */
7856 if (! inside_float && ! inter_float && ! final_float
7857 && ! inside_vec && ! inter_vec && ! final_vec
7858 && (inter_prec >= inside_prec || inter_prec >= final_prec)
7859 && ! (inside_int && inter_int
7860 && inter_unsignedp != inside_unsignedp
7861 && inter_prec < final_prec)
7862 && ((inter_unsignedp && inter_prec > inside_prec)
7863 == (final_unsignedp && final_prec > inter_prec))
7864 && ! (inside_ptr && inter_prec != final_prec)
7865 && ! (final_ptr && inside_prec != inter_prec)
7866 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
7867 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
7868 return fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 0));
7871 /* Handle (T *)&A.B.C for A being of type T and B and C
7872 living at offset zero. This occurs frequently in
7873 C++ upcasting and then accessing the base. */
7874 if (TREE_CODE (op0) == ADDR_EXPR
7875 && POINTER_TYPE_P (type)
7876 && handled_component_p (TREE_OPERAND (op0, 0)))
7878 HOST_WIDE_INT bitsize, bitpos;
7879 tree offset;
7880 enum machine_mode mode;
7881 int unsignedp, volatilep;
7882 tree base = TREE_OPERAND (op0, 0);
7883 base = get_inner_reference (base, &bitsize, &bitpos, &offset,
7884 &mode, &unsignedp, &volatilep, false);
7885 /* If the reference was to a (constant) zero offset, we can use
7886 the address of the base if it has the same base type
7887 as the result type and the pointer type is unqualified. */
7888 if (! offset && bitpos == 0
7889 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7890 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7891 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7892 return fold_convert_loc (loc, type,
7893 build_fold_addr_expr_loc (loc, base));
7896 if (TREE_CODE (op0) == MODIFY_EXPR
7897 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7898 /* Detect assigning a bitfield. */
7899 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7900 && DECL_BIT_FIELD
7901 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7903 /* Don't leave an assignment inside a conversion
7904 unless assigning a bitfield. */
7905 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7906 /* First do the assignment, then return converted constant. */
7907 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7908 TREE_NO_WARNING (tem) = 1;
7909 TREE_USED (tem) = 1;
7910 return tem;
7913 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7914 constants (if x has signed type, the sign bit cannot be set
7915 in c). This folds extension into the BIT_AND_EXPR.
7916 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7917 very likely don't have maximal range for their precision and this
7918 transformation effectively doesn't preserve non-maximal ranges. */
7919 if (TREE_CODE (type) == INTEGER_TYPE
7920 && TREE_CODE (op0) == BIT_AND_EXPR
7921 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7923 tree and_expr = op0;
7924 tree and0 = TREE_OPERAND (and_expr, 0);
7925 tree and1 = TREE_OPERAND (and_expr, 1);
7926 int change = 0;
7928 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
7929 || (TYPE_PRECISION (type)
7930 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
7931 change = 1;
7932 else if (TYPE_PRECISION (TREE_TYPE (and1))
7933 <= HOST_BITS_PER_WIDE_INT
7934 && host_integerp (and1, 1))
7936 unsigned HOST_WIDE_INT cst;
7938 cst = tree_low_cst (and1, 1);
7939 cst &= (HOST_WIDE_INT) -1
7940 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7941 change = (cst == 0);
7942 #ifdef LOAD_EXTEND_OP
7943 if (change
7944 && !flag_syntax_only
7945 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
7946 == ZERO_EXTEND))
7948 tree uns = unsigned_type_for (TREE_TYPE (and0));
7949 and0 = fold_convert_loc (loc, uns, and0);
7950 and1 = fold_convert_loc (loc, uns, and1);
7952 #endif
7954 if (change)
7956 tem = force_fit_type_double (type, tree_to_double_int (and1),
7957 0, TREE_OVERFLOW (and1));
7958 return fold_build2_loc (loc, BIT_AND_EXPR, type,
7959 fold_convert_loc (loc, type, and0), tem);
7963 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type,
7964 when one of the new casts will fold away. Conservatively we assume
7965 that this happens when X or Y is NOP_EXPR or Y is INTEGER_CST. */
7966 if (POINTER_TYPE_P (type)
7967 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
7968 && (!TYPE_RESTRICT (type) || TYPE_RESTRICT (TREE_TYPE (arg0)))
7969 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7970 || TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
7971 || TREE_CODE (TREE_OPERAND (arg0, 1)) == NOP_EXPR))
7973 tree arg00 = TREE_OPERAND (arg0, 0);
7974 tree arg01 = TREE_OPERAND (arg0, 1);
7976 return fold_build_pointer_plus_loc
7977 (loc, fold_convert_loc (loc, type, arg00), arg01);
7980 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7981 of the same precision, and X is an integer type not narrower than
7982 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7983 if (INTEGRAL_TYPE_P (type)
7984 && TREE_CODE (op0) == BIT_NOT_EXPR
7985 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7986 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
7987 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7989 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
7990 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7991 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
7992 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
7993 fold_convert_loc (loc, type, tem));
7996 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7997 type of X and Y (integer types only). */
7998 if (INTEGRAL_TYPE_P (type)
7999 && TREE_CODE (op0) == MULT_EXPR
8000 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8001 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
8003 /* Be careful not to introduce new overflows. */
8004 tree mult_type;
8005 if (TYPE_OVERFLOW_WRAPS (type))
8006 mult_type = type;
8007 else
8008 mult_type = unsigned_type_for (type);
8010 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
8012 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
8013 fold_convert_loc (loc, mult_type,
8014 TREE_OPERAND (op0, 0)),
8015 fold_convert_loc (loc, mult_type,
8016 TREE_OPERAND (op0, 1)));
8017 return fold_convert_loc (loc, type, tem);
8021 tem = fold_convert_const (code, type, op0);
8022 return tem ? tem : NULL_TREE;
8024 case ADDR_SPACE_CONVERT_EXPR:
8025 if (integer_zerop (arg0))
8026 return fold_convert_const (code, type, arg0);
8027 return NULL_TREE;
8029 case FIXED_CONVERT_EXPR:
8030 tem = fold_convert_const (code, type, arg0);
8031 return tem ? tem : NULL_TREE;
8033 case VIEW_CONVERT_EXPR:
8034 if (TREE_TYPE (op0) == type)
8035 return op0;
8036 if (TREE_CODE (op0) == VIEW_CONVERT_EXPR)
8037 return fold_build1_loc (loc, VIEW_CONVERT_EXPR,
8038 type, TREE_OPERAND (op0, 0));
8039 if (TREE_CODE (op0) == MEM_REF)
8040 return fold_build2_loc (loc, MEM_REF, type,
8041 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
8043 /* For integral conversions with the same precision or pointer
8044 conversions use a NOP_EXPR instead. */
8045 if ((INTEGRAL_TYPE_P (type)
8046 || POINTER_TYPE_P (type))
8047 && (INTEGRAL_TYPE_P (TREE_TYPE (op0))
8048 || POINTER_TYPE_P (TREE_TYPE (op0)))
8049 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
8050 return fold_convert_loc (loc, type, op0);
8052 /* Strip inner integral conversions that do not change the precision. */
8053 if (CONVERT_EXPR_P (op0)
8054 && (INTEGRAL_TYPE_P (TREE_TYPE (op0))
8055 || POINTER_TYPE_P (TREE_TYPE (op0)))
8056 && (INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (op0, 0)))
8057 || POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (op0, 0))))
8058 && (TYPE_PRECISION (TREE_TYPE (op0))
8059 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
8060 return fold_build1_loc (loc, VIEW_CONVERT_EXPR,
8061 type, TREE_OPERAND (op0, 0));
8063 return fold_view_convert_expr (type, op0);
8065 case NEGATE_EXPR:
8066 tem = fold_negate_expr (loc, arg0);
8067 if (tem)
8068 return fold_convert_loc (loc, type, tem);
8069 return NULL_TREE;
8071 case ABS_EXPR:
8072 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
8073 return fold_abs_const (arg0, type);
8074 else if (TREE_CODE (arg0) == NEGATE_EXPR)
8075 return fold_build1_loc (loc, ABS_EXPR, type, TREE_OPERAND (arg0, 0));
8076 /* Convert fabs((double)float) into (double)fabsf(float). */
8077 else if (TREE_CODE (arg0) == NOP_EXPR
8078 && TREE_CODE (type) == REAL_TYPE)
8080 tree targ0 = strip_float_extensions (arg0);
8081 if (targ0 != arg0)
8082 return fold_convert_loc (loc, type,
8083 fold_build1_loc (loc, ABS_EXPR,
8084 TREE_TYPE (targ0),
8085 targ0));
8087 /* ABS_EXPR<ABS_EXPR<x>> = ABS_EXPR<x> even if flag_wrapv is on. */
8088 else if (TREE_CODE (arg0) == ABS_EXPR)
8089 return arg0;
8090 else if (tree_expr_nonnegative_p (arg0))
8091 return arg0;
8093 /* Strip sign ops from argument. */
8094 if (TREE_CODE (type) == REAL_TYPE)
8096 tem = fold_strip_sign_ops (arg0);
8097 if (tem)
8098 return fold_build1_loc (loc, ABS_EXPR, type,
8099 fold_convert_loc (loc, type, tem));
8101 return NULL_TREE;
8103 case CONJ_EXPR:
8104 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8105 return fold_convert_loc (loc, type, arg0);
8106 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8108 tree itype = TREE_TYPE (type);
8109 tree rpart = fold_convert_loc (loc, itype, TREE_OPERAND (arg0, 0));
8110 tree ipart = fold_convert_loc (loc, itype, TREE_OPERAND (arg0, 1));
8111 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart,
8112 negate_expr (ipart));
8114 if (TREE_CODE (arg0) == COMPLEX_CST)
8116 tree itype = TREE_TYPE (type);
8117 tree rpart = fold_convert_loc (loc, itype, TREE_REALPART (arg0));
8118 tree ipart = fold_convert_loc (loc, itype, TREE_IMAGPART (arg0));
8119 return build_complex (type, rpart, negate_expr (ipart));
8121 if (TREE_CODE (arg0) == CONJ_EXPR)
8122 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
8123 return NULL_TREE;
8125 case BIT_NOT_EXPR:
8126 if (TREE_CODE (arg0) == INTEGER_CST)
8127 return fold_not_const (arg0, type);
8128 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
8129 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
8130 /* Convert ~ (-A) to A - 1. */
8131 else if (INTEGRAL_TYPE_P (type) && TREE_CODE (arg0) == NEGATE_EXPR)
8132 return fold_build2_loc (loc, MINUS_EXPR, type,
8133 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)),
8134 build_int_cst (type, 1));
8135 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
8136 else if (INTEGRAL_TYPE_P (type)
8137 && ((TREE_CODE (arg0) == MINUS_EXPR
8138 && integer_onep (TREE_OPERAND (arg0, 1)))
8139 || (TREE_CODE (arg0) == PLUS_EXPR
8140 && integer_all_onesp (TREE_OPERAND (arg0, 1)))))
8141 return fold_build1_loc (loc, NEGATE_EXPR, type,
8142 fold_convert_loc (loc, type,
8143 TREE_OPERAND (arg0, 0)));
8144 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8145 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8146 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8147 fold_convert_loc (loc, type,
8148 TREE_OPERAND (arg0, 0)))))
8149 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
8150 fold_convert_loc (loc, type,
8151 TREE_OPERAND (arg0, 1)));
8152 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8153 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8154 fold_convert_loc (loc, type,
8155 TREE_OPERAND (arg0, 1)))))
8156 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
8157 fold_convert_loc (loc, type,
8158 TREE_OPERAND (arg0, 0)), tem);
8159 /* Perform BIT_NOT_EXPR on each element individually. */
8160 else if (TREE_CODE (arg0) == VECTOR_CST)
8162 tree elements = TREE_VECTOR_CST_ELTS (arg0), elem, list = NULL_TREE;
8163 int count = TYPE_VECTOR_SUBPARTS (type), i;
8165 for (i = 0; i < count; i++)
8167 if (elements)
8169 elem = TREE_VALUE (elements);
8170 elem = fold_unary_loc (loc, BIT_NOT_EXPR, TREE_TYPE (type), elem);
8171 if (elem == NULL_TREE)
8172 break;
8173 elements = TREE_CHAIN (elements);
8175 else
8176 elem = build_int_cst (TREE_TYPE (type), -1);
8177 list = tree_cons (NULL_TREE, elem, list);
8179 if (i == count)
8180 return build_vector (type, nreverse (list));
8183 return NULL_TREE;
8185 case TRUTH_NOT_EXPR:
8186 /* The argument to invert_truthvalue must have Boolean type. */
8187 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
8188 arg0 = fold_convert_loc (loc, boolean_type_node, arg0);
8190 /* Note that the operand of this must be an int
8191 and its values must be 0 or 1.
8192 ("true" is a fixed value perhaps depending on the language,
8193 but we don't handle values other than 1 correctly yet.) */
8194 tem = fold_truth_not_expr (loc, arg0);
8195 if (!tem)
8196 return NULL_TREE;
8197 return fold_convert_loc (loc, type, tem);
8199 case REALPART_EXPR:
8200 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8201 return fold_convert_loc (loc, type, arg0);
8202 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8203 return omit_one_operand_loc (loc, type, TREE_OPERAND (arg0, 0),
8204 TREE_OPERAND (arg0, 1));
8205 if (TREE_CODE (arg0) == COMPLEX_CST)
8206 return fold_convert_loc (loc, type, TREE_REALPART (arg0));
8207 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8209 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8210 tem = fold_build2_loc (loc, TREE_CODE (arg0), itype,
8211 fold_build1_loc (loc, REALPART_EXPR, itype,
8212 TREE_OPERAND (arg0, 0)),
8213 fold_build1_loc (loc, REALPART_EXPR, itype,
8214 TREE_OPERAND (arg0, 1)));
8215 return fold_convert_loc (loc, type, tem);
8217 if (TREE_CODE (arg0) == CONJ_EXPR)
8219 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8220 tem = fold_build1_loc (loc, REALPART_EXPR, itype,
8221 TREE_OPERAND (arg0, 0));
8222 return fold_convert_loc (loc, type, tem);
8224 if (TREE_CODE (arg0) == CALL_EXPR)
8226 tree fn = get_callee_fndecl (arg0);
8227 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
8228 switch (DECL_FUNCTION_CODE (fn))
8230 CASE_FLT_FN (BUILT_IN_CEXPI):
8231 fn = mathfn_built_in (type, BUILT_IN_COS);
8232 if (fn)
8233 return build_call_expr_loc (loc, fn, 1, CALL_EXPR_ARG (arg0, 0));
8234 break;
8236 default:
8237 break;
8240 return NULL_TREE;
8242 case IMAGPART_EXPR:
8243 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8244 return build_zero_cst (type);
8245 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8246 return omit_one_operand_loc (loc, type, TREE_OPERAND (arg0, 1),
8247 TREE_OPERAND (arg0, 0));
8248 if (TREE_CODE (arg0) == COMPLEX_CST)
8249 return fold_convert_loc (loc, type, TREE_IMAGPART (arg0));
8250 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8252 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8253 tem = fold_build2_loc (loc, TREE_CODE (arg0), itype,
8254 fold_build1_loc (loc, IMAGPART_EXPR, itype,
8255 TREE_OPERAND (arg0, 0)),
8256 fold_build1_loc (loc, IMAGPART_EXPR, itype,
8257 TREE_OPERAND (arg0, 1)));
8258 return fold_convert_loc (loc, type, tem);
8260 if (TREE_CODE (arg0) == CONJ_EXPR)
8262 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8263 tem = fold_build1_loc (loc, IMAGPART_EXPR, itype, TREE_OPERAND (arg0, 0));
8264 return fold_convert_loc (loc, type, negate_expr (tem));
8266 if (TREE_CODE (arg0) == CALL_EXPR)
8268 tree fn = get_callee_fndecl (arg0);
8269 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
8270 switch (DECL_FUNCTION_CODE (fn))
8272 CASE_FLT_FN (BUILT_IN_CEXPI):
8273 fn = mathfn_built_in (type, BUILT_IN_SIN);
8274 if (fn)
8275 return build_call_expr_loc (loc, fn, 1, CALL_EXPR_ARG (arg0, 0));
8276 break;
8278 default:
8279 break;
8282 return NULL_TREE;
8284 case INDIRECT_REF:
8285 /* Fold *&X to X if X is an lvalue. */
8286 if (TREE_CODE (op0) == ADDR_EXPR)
8288 tree op00 = TREE_OPERAND (op0, 0);
8289 if ((TREE_CODE (op00) == VAR_DECL
8290 || TREE_CODE (op00) == PARM_DECL
8291 || TREE_CODE (op00) == RESULT_DECL)
8292 && !TREE_READONLY (op00))
8293 return op00;
8295 return NULL_TREE;
8297 default:
8298 return NULL_TREE;
8299 } /* switch (code) */
8303 /* If the operation was a conversion do _not_ mark a resulting constant
8304 with TREE_OVERFLOW if the original constant was not. These conversions
8305 have implementation defined behavior and retaining the TREE_OVERFLOW
8306 flag here would confuse later passes such as VRP. */
8307 tree
8308 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
8309 tree type, tree op0)
8311 tree res = fold_unary_loc (loc, code, type, op0);
8312 if (res
8313 && TREE_CODE (res) == INTEGER_CST
8314 && TREE_CODE (op0) == INTEGER_CST
8315 && CONVERT_EXPR_CODE_P (code))
8316 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
8318 return res;
8321 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
8322 operands OP0 and OP1. LOC is the location of the resulting expression.
8323 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
8324 Return the folded expression if folding is successful. Otherwise,
8325 return NULL_TREE. */
8326 static tree
8327 fold_truth_andor (location_t loc, enum tree_code code, tree type,
8328 tree arg0, tree arg1, tree op0, tree op1)
8330 tree tem;
8332 /* We only do these simplifications if we are optimizing. */
8333 if (!optimize)
8334 return NULL_TREE;
8336 /* Check for things like (A || B) && (A || C). We can convert this
8337 to A || (B && C). Note that either operator can be any of the four
8338 truth and/or operations and the transformation will still be
8339 valid. Also note that we only care about order for the
8340 ANDIF and ORIF operators. If B contains side effects, this
8341 might change the truth-value of A. */
8342 if (TREE_CODE (arg0) == TREE_CODE (arg1)
8343 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
8344 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
8345 || TREE_CODE (arg0) == TRUTH_AND_EXPR
8346 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
8347 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
8349 tree a00 = TREE_OPERAND (arg0, 0);
8350 tree a01 = TREE_OPERAND (arg0, 1);
8351 tree a10 = TREE_OPERAND (arg1, 0);
8352 tree a11 = TREE_OPERAND (arg1, 1);
8353 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
8354 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
8355 && (code == TRUTH_AND_EXPR
8356 || code == TRUTH_OR_EXPR));
8358 if (operand_equal_p (a00, a10, 0))
8359 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8360 fold_build2_loc (loc, code, type, a01, a11));
8361 else if (commutative && operand_equal_p (a00, a11, 0))
8362 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8363 fold_build2_loc (loc, code, type, a01, a10));
8364 else if (commutative && operand_equal_p (a01, a10, 0))
8365 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
8366 fold_build2_loc (loc, code, type, a00, a11));
8368 /* This case if tricky because we must either have commutative
8369 operators or else A10 must not have side-effects. */
8371 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
8372 && operand_equal_p (a01, a11, 0))
8373 return fold_build2_loc (loc, TREE_CODE (arg0), type,
8374 fold_build2_loc (loc, code, type, a00, a10),
8375 a01);
8378 /* See if we can build a range comparison. */
8379 if (0 != (tem = fold_range_test (loc, code, type, op0, op1)))
8380 return tem;
8382 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
8383 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
8385 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
8386 if (tem)
8387 return fold_build2_loc (loc, code, type, tem, arg1);
8390 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
8391 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
8393 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
8394 if (tem)
8395 return fold_build2_loc (loc, code, type, arg0, tem);
8398 /* Check for the possibility of merging component references. If our
8399 lhs is another similar operation, try to merge its rhs with our
8400 rhs. Then try to merge our lhs and rhs. */
8401 if (TREE_CODE (arg0) == code
8402 && 0 != (tem = fold_truth_andor_1 (loc, code, type,
8403 TREE_OPERAND (arg0, 1), arg1)))
8404 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
8406 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
8407 return tem;
8409 if ((BRANCH_COST (optimize_function_for_speed_p (cfun),
8410 false) >= 2)
8411 && LOGICAL_OP_NON_SHORT_CIRCUIT
8412 && (code == TRUTH_AND_EXPR
8413 || code == TRUTH_ANDIF_EXPR
8414 || code == TRUTH_OR_EXPR
8415 || code == TRUTH_ORIF_EXPR))
8417 enum tree_code ncode, icode;
8419 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
8420 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
8421 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
8423 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8424 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8425 We don't want to pack more than two leafs to a non-IF AND/OR
8426 expression.
8427 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8428 equal to IF-CODE, then we don't want to add right-hand operand.
8429 If the inner right-hand side of left-hand operand has
8430 side-effects, or isn't simple, then we can't add to it,
8431 as otherwise we might destroy if-sequence. */
8432 if (TREE_CODE (arg0) == icode
8433 && simple_operand_p_2 (arg1)
8434 /* Needed for sequence points to handle trappings, and
8435 side-effects. */
8436 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
8438 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
8439 arg1);
8440 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
8441 tem);
8443 /* Same as abouve but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8444 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8445 else if (TREE_CODE (arg1) == icode
8446 && simple_operand_p_2 (arg0)
8447 /* Needed for sequence points to handle trappings, and
8448 side-effects. */
8449 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
8451 tem = fold_build2_loc (loc, ncode, type,
8452 arg0, TREE_OPERAND (arg1, 0));
8453 return fold_build2_loc (loc, icode, type, tem,
8454 TREE_OPERAND (arg1, 1));
8456 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8457 into (A OR B).
8458 For sequence point consistancy, we need to check for trapping,
8459 and side-effects. */
8460 else if (code == icode && simple_operand_p_2 (arg0)
8461 && simple_operand_p_2 (arg1))
8462 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8465 return NULL_TREE;
8468 /* Fold a binary expression of code CODE and type TYPE with operands
8469 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
8470 Return the folded expression if folding is successful. Otherwise,
8471 return NULL_TREE. */
8473 static tree
8474 fold_minmax (location_t loc, enum tree_code code, tree type, tree op0, tree op1)
8476 enum tree_code compl_code;
8478 if (code == MIN_EXPR)
8479 compl_code = MAX_EXPR;
8480 else if (code == MAX_EXPR)
8481 compl_code = MIN_EXPR;
8482 else
8483 gcc_unreachable ();
8485 /* MIN (MAX (a, b), b) == b. */
8486 if (TREE_CODE (op0) == compl_code
8487 && operand_equal_p (TREE_OPERAND (op0, 1), op1, 0))
8488 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 0));
8490 /* MIN (MAX (b, a), b) == b. */
8491 if (TREE_CODE (op0) == compl_code
8492 && operand_equal_p (TREE_OPERAND (op0, 0), op1, 0)
8493 && reorder_operands_p (TREE_OPERAND (op0, 1), op1))
8494 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 1));
8496 /* MIN (a, MAX (a, b)) == a. */
8497 if (TREE_CODE (op1) == compl_code
8498 && operand_equal_p (op0, TREE_OPERAND (op1, 0), 0)
8499 && reorder_operands_p (op0, TREE_OPERAND (op1, 1)))
8500 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 1));
8502 /* MIN (a, MAX (b, a)) == a. */
8503 if (TREE_CODE (op1) == compl_code
8504 && operand_equal_p (op0, TREE_OPERAND (op1, 1), 0)
8505 && reorder_operands_p (op0, TREE_OPERAND (op1, 0)))
8506 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 0));
8508 return NULL_TREE;
8511 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8512 by changing CODE to reduce the magnitude of constants involved in
8513 ARG0 of the comparison.
8514 Returns a canonicalized comparison tree if a simplification was
8515 possible, otherwise returns NULL_TREE.
8516 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8517 valid if signed overflow is undefined. */
8519 static tree
8520 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8521 tree arg0, tree arg1,
8522 bool *strict_overflow_p)
8524 enum tree_code code0 = TREE_CODE (arg0);
8525 tree t, cst0 = NULL_TREE;
8526 int sgn0;
8527 bool swap = false;
8529 /* Match A +- CST code arg1 and CST code arg1. We can change the
8530 first form only if overflow is undefined. */
8531 if (!((TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8532 /* In principle pointers also have undefined overflow behavior,
8533 but that causes problems elsewhere. */
8534 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8535 && (code0 == MINUS_EXPR
8536 || code0 == PLUS_EXPR)
8537 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8538 || code0 == INTEGER_CST))
8539 return NULL_TREE;
8541 /* Identify the constant in arg0 and its sign. */
8542 if (code0 == INTEGER_CST)
8543 cst0 = arg0;
8544 else
8545 cst0 = TREE_OPERAND (arg0, 1);
8546 sgn0 = tree_int_cst_sgn (cst0);
8548 /* Overflowed constants and zero will cause problems. */
8549 if (integer_zerop (cst0)
8550 || TREE_OVERFLOW (cst0))
8551 return NULL_TREE;
8553 /* See if we can reduce the magnitude of the constant in
8554 arg0 by changing the comparison code. */
8555 if (code0 == INTEGER_CST)
8557 /* CST <= arg1 -> CST-1 < arg1. */
8558 if (code == LE_EXPR && sgn0 == 1)
8559 code = LT_EXPR;
8560 /* -CST < arg1 -> -CST-1 <= arg1. */
8561 else if (code == LT_EXPR && sgn0 == -1)
8562 code = LE_EXPR;
8563 /* CST > arg1 -> CST-1 >= arg1. */
8564 else if (code == GT_EXPR && sgn0 == 1)
8565 code = GE_EXPR;
8566 /* -CST >= arg1 -> -CST-1 > arg1. */
8567 else if (code == GE_EXPR && sgn0 == -1)
8568 code = GT_EXPR;
8569 else
8570 return NULL_TREE;
8571 /* arg1 code' CST' might be more canonical. */
8572 swap = true;
8574 else
8576 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8577 if (code == LT_EXPR
8578 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8579 code = LE_EXPR;
8580 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8581 else if (code == GT_EXPR
8582 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8583 code = GE_EXPR;
8584 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8585 else if (code == LE_EXPR
8586 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8587 code = LT_EXPR;
8588 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8589 else if (code == GE_EXPR
8590 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8591 code = GT_EXPR;
8592 else
8593 return NULL_TREE;
8594 *strict_overflow_p = true;
8597 /* Now build the constant reduced in magnitude. But not if that
8598 would produce one outside of its types range. */
8599 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8600 && ((sgn0 == 1
8601 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8602 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8603 || (sgn0 == -1
8604 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8605 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8606 /* We cannot swap the comparison here as that would cause us to
8607 endlessly recurse. */
8608 return NULL_TREE;
8610 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8611 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8612 if (code0 != INTEGER_CST)
8613 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8614 t = fold_convert (TREE_TYPE (arg1), t);
8616 /* If swapping might yield to a more canonical form, do so. */
8617 if (swap)
8618 return fold_build2_loc (loc, swap_tree_comparison (code), type, arg1, t);
8619 else
8620 return fold_build2_loc (loc, code, type, t, arg1);
8623 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8624 overflow further. Try to decrease the magnitude of constants involved
8625 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8626 and put sole constants at the second argument position.
8627 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8629 static tree
8630 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8631 tree arg0, tree arg1)
8633 tree t;
8634 bool strict_overflow_p;
8635 const char * const warnmsg = G_("assuming signed overflow does not occur "
8636 "when reducing constant in comparison");
8638 /* Try canonicalization by simplifying arg0. */
8639 strict_overflow_p = false;
8640 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8641 &strict_overflow_p);
8642 if (t)
8644 if (strict_overflow_p)
8645 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8646 return t;
8649 /* Try canonicalization by simplifying arg1 using the swapped
8650 comparison. */
8651 code = swap_tree_comparison (code);
8652 strict_overflow_p = false;
8653 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8654 &strict_overflow_p);
8655 if (t && strict_overflow_p)
8656 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8657 return t;
8660 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8661 space. This is used to avoid issuing overflow warnings for
8662 expressions like &p->x which can not wrap. */
8664 static bool
8665 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8667 unsigned HOST_WIDE_INT offset_low, total_low;
8668 HOST_WIDE_INT size, offset_high, total_high;
8670 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8671 return true;
8673 if (bitpos < 0)
8674 return true;
8676 if (offset == NULL_TREE)
8678 offset_low = 0;
8679 offset_high = 0;
8681 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8682 return true;
8683 else
8685 offset_low = TREE_INT_CST_LOW (offset);
8686 offset_high = TREE_INT_CST_HIGH (offset);
8689 if (add_double_with_sign (offset_low, offset_high,
8690 bitpos / BITS_PER_UNIT, 0,
8691 &total_low, &total_high,
8692 true))
8693 return true;
8695 if (total_high != 0)
8696 return true;
8698 size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8699 if (size <= 0)
8700 return true;
8702 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8703 array. */
8704 if (TREE_CODE (base) == ADDR_EXPR)
8706 HOST_WIDE_INT base_size;
8708 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8709 if (base_size > 0 && size < base_size)
8710 size = base_size;
8713 return total_low > (unsigned HOST_WIDE_INT) size;
8716 /* Subroutine of fold_binary. This routine performs all of the
8717 transformations that are common to the equality/inequality
8718 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8719 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8720 fold_binary should call fold_binary. Fold a comparison with
8721 tree code CODE and type TYPE with operands OP0 and OP1. Return
8722 the folded comparison or NULL_TREE. */
8724 static tree
8725 fold_comparison (location_t loc, enum tree_code code, tree type,
8726 tree op0, tree op1)
8728 tree arg0, arg1, tem;
8730 arg0 = op0;
8731 arg1 = op1;
8733 STRIP_SIGN_NOPS (arg0);
8734 STRIP_SIGN_NOPS (arg1);
8736 tem = fold_relational_const (code, type, arg0, arg1);
8737 if (tem != NULL_TREE)
8738 return tem;
8740 /* If one arg is a real or integer constant, put it last. */
8741 if (tree_swap_operands_p (arg0, arg1, true))
8742 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
8744 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 +- C1. */
8745 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8746 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8747 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8748 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
8749 && (TREE_CODE (arg1) == INTEGER_CST
8750 && !TREE_OVERFLOW (arg1)))
8752 tree const1 = TREE_OPERAND (arg0, 1);
8753 tree const2 = arg1;
8754 tree variable = TREE_OPERAND (arg0, 0);
8755 tree lhs;
8756 int lhs_add;
8757 lhs_add = TREE_CODE (arg0) != PLUS_EXPR;
8759 lhs = fold_build2_loc (loc, lhs_add ? PLUS_EXPR : MINUS_EXPR,
8760 TREE_TYPE (arg1), const2, const1);
8762 /* If the constant operation overflowed this can be
8763 simplified as a comparison against INT_MAX/INT_MIN. */
8764 if (TREE_CODE (lhs) == INTEGER_CST
8765 && TREE_OVERFLOW (lhs))
8767 int const1_sgn = tree_int_cst_sgn (const1);
8768 enum tree_code code2 = code;
8770 /* Get the sign of the constant on the lhs if the
8771 operation were VARIABLE + CONST1. */
8772 if (TREE_CODE (arg0) == MINUS_EXPR)
8773 const1_sgn = -const1_sgn;
8775 /* The sign of the constant determines if we overflowed
8776 INT_MAX (const1_sgn == -1) or INT_MIN (const1_sgn == 1).
8777 Canonicalize to the INT_MIN overflow by swapping the comparison
8778 if necessary. */
8779 if (const1_sgn == -1)
8780 code2 = swap_tree_comparison (code);
8782 /* We now can look at the canonicalized case
8783 VARIABLE + 1 CODE2 INT_MIN
8784 and decide on the result. */
8785 if (code2 == LT_EXPR
8786 || code2 == LE_EXPR
8787 || code2 == EQ_EXPR)
8788 return omit_one_operand_loc (loc, type, boolean_false_node, variable);
8789 else if (code2 == NE_EXPR
8790 || code2 == GE_EXPR
8791 || code2 == GT_EXPR)
8792 return omit_one_operand_loc (loc, type, boolean_true_node, variable);
8795 if (TREE_CODE (lhs) == TREE_CODE (arg1)
8796 && (TREE_CODE (lhs) != INTEGER_CST
8797 || !TREE_OVERFLOW (lhs)))
8799 if (code != EQ_EXPR && code != NE_EXPR)
8800 fold_overflow_warning ("assuming signed overflow does not occur "
8801 "when changing X +- C1 cmp C2 to "
8802 "X cmp C1 +- C2",
8803 WARN_STRICT_OVERFLOW_COMPARISON);
8804 return fold_build2_loc (loc, code, type, variable, lhs);
8808 /* For comparisons of pointers we can decompose it to a compile time
8809 comparison of the base objects and the offsets into the object.
8810 This requires at least one operand being an ADDR_EXPR or a
8811 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8812 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8813 && (TREE_CODE (arg0) == ADDR_EXPR
8814 || TREE_CODE (arg1) == ADDR_EXPR
8815 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8816 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8818 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8819 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8820 enum machine_mode mode;
8821 int volatilep, unsignedp;
8822 bool indirect_base0 = false, indirect_base1 = false;
8824 /* Get base and offset for the access. Strip ADDR_EXPR for
8825 get_inner_reference, but put it back by stripping INDIRECT_REF
8826 off the base object if possible. indirect_baseN will be true
8827 if baseN is not an address but refers to the object itself. */
8828 base0 = arg0;
8829 if (TREE_CODE (arg0) == ADDR_EXPR)
8831 base0 = get_inner_reference (TREE_OPERAND (arg0, 0),
8832 &bitsize, &bitpos0, &offset0, &mode,
8833 &unsignedp, &volatilep, false);
8834 if (TREE_CODE (base0) == INDIRECT_REF)
8835 base0 = TREE_OPERAND (base0, 0);
8836 else
8837 indirect_base0 = true;
8839 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8841 base0 = TREE_OPERAND (arg0, 0);
8842 STRIP_SIGN_NOPS (base0);
8843 if (TREE_CODE (base0) == ADDR_EXPR)
8845 base0 = TREE_OPERAND (base0, 0);
8846 indirect_base0 = true;
8848 offset0 = TREE_OPERAND (arg0, 1);
8851 base1 = arg1;
8852 if (TREE_CODE (arg1) == ADDR_EXPR)
8854 base1 = get_inner_reference (TREE_OPERAND (arg1, 0),
8855 &bitsize, &bitpos1, &offset1, &mode,
8856 &unsignedp, &volatilep, false);
8857 if (TREE_CODE (base1) == INDIRECT_REF)
8858 base1 = TREE_OPERAND (base1, 0);
8859 else
8860 indirect_base1 = true;
8862 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8864 base1 = TREE_OPERAND (arg1, 0);
8865 STRIP_SIGN_NOPS (base1);
8866 if (TREE_CODE (base1) == ADDR_EXPR)
8868 base1 = TREE_OPERAND (base1, 0);
8869 indirect_base1 = true;
8871 offset1 = TREE_OPERAND (arg1, 1);
8874 /* A local variable can never be pointed to by
8875 the default SSA name of an incoming parameter. */
8876 if ((TREE_CODE (arg0) == ADDR_EXPR
8877 && indirect_base0
8878 && TREE_CODE (base0) == VAR_DECL
8879 && auto_var_in_fn_p (base0, current_function_decl)
8880 && !indirect_base1
8881 && TREE_CODE (base1) == SSA_NAME
8882 && TREE_CODE (SSA_NAME_VAR (base1)) == PARM_DECL
8883 && SSA_NAME_IS_DEFAULT_DEF (base1))
8884 || (TREE_CODE (arg1) == ADDR_EXPR
8885 && indirect_base1
8886 && TREE_CODE (base1) == VAR_DECL
8887 && auto_var_in_fn_p (base1, current_function_decl)
8888 && !indirect_base0
8889 && TREE_CODE (base0) == SSA_NAME
8890 && TREE_CODE (SSA_NAME_VAR (base0)) == PARM_DECL
8891 && SSA_NAME_IS_DEFAULT_DEF (base0)))
8893 if (code == NE_EXPR)
8894 return constant_boolean_node (1, type);
8895 else if (code == EQ_EXPR)
8896 return constant_boolean_node (0, type);
8898 /* If we have equivalent bases we might be able to simplify. */
8899 else if (indirect_base0 == indirect_base1
8900 && operand_equal_p (base0, base1, 0))
8902 /* We can fold this expression to a constant if the non-constant
8903 offset parts are equal. */
8904 if ((offset0 == offset1
8905 || (offset0 && offset1
8906 && operand_equal_p (offset0, offset1, 0)))
8907 && (code == EQ_EXPR
8908 || code == NE_EXPR
8909 || (indirect_base0 && DECL_P (base0))
8910 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8913 if (code != EQ_EXPR
8914 && code != NE_EXPR
8915 && bitpos0 != bitpos1
8916 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8917 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8918 fold_overflow_warning (("assuming pointer wraparound does not "
8919 "occur when comparing P +- C1 with "
8920 "P +- C2"),
8921 WARN_STRICT_OVERFLOW_CONDITIONAL);
8923 switch (code)
8925 case EQ_EXPR:
8926 return constant_boolean_node (bitpos0 == bitpos1, type);
8927 case NE_EXPR:
8928 return constant_boolean_node (bitpos0 != bitpos1, type);
8929 case LT_EXPR:
8930 return constant_boolean_node (bitpos0 < bitpos1, type);
8931 case LE_EXPR:
8932 return constant_boolean_node (bitpos0 <= bitpos1, type);
8933 case GE_EXPR:
8934 return constant_boolean_node (bitpos0 >= bitpos1, type);
8935 case GT_EXPR:
8936 return constant_boolean_node (bitpos0 > bitpos1, type);
8937 default:;
8940 /* We can simplify the comparison to a comparison of the variable
8941 offset parts if the constant offset parts are equal.
8942 Be careful to use signed size type here because otherwise we
8943 mess with array offsets in the wrong way. This is possible
8944 because pointer arithmetic is restricted to retain within an
8945 object and overflow on pointer differences is undefined as of
8946 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8947 else if (bitpos0 == bitpos1
8948 && ((code == EQ_EXPR || code == NE_EXPR)
8949 || (indirect_base0 && DECL_P (base0))
8950 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8952 /* By converting to signed size type we cover middle-end pointer
8953 arithmetic which operates on unsigned pointer types of size
8954 type size and ARRAY_REF offsets which are properly sign or
8955 zero extended from their type in case it is narrower than
8956 size type. */
8957 if (offset0 == NULL_TREE)
8958 offset0 = build_int_cst (ssizetype, 0);
8959 else
8960 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8961 if (offset1 == NULL_TREE)
8962 offset1 = build_int_cst (ssizetype, 0);
8963 else
8964 offset1 = fold_convert_loc (loc, ssizetype, offset1);
8966 if (code != EQ_EXPR
8967 && code != NE_EXPR
8968 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8969 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8970 fold_overflow_warning (("assuming pointer wraparound does not "
8971 "occur when comparing P +- C1 with "
8972 "P +- C2"),
8973 WARN_STRICT_OVERFLOW_COMPARISON);
8975 return fold_build2_loc (loc, code, type, offset0, offset1);
8978 /* For non-equal bases we can simplify if they are addresses
8979 of local binding decls or constants. */
8980 else if (indirect_base0 && indirect_base1
8981 /* We know that !operand_equal_p (base0, base1, 0)
8982 because the if condition was false. But make
8983 sure two decls are not the same. */
8984 && base0 != base1
8985 && TREE_CODE (arg0) == ADDR_EXPR
8986 && TREE_CODE (arg1) == ADDR_EXPR
8987 && (((TREE_CODE (base0) == VAR_DECL
8988 || TREE_CODE (base0) == PARM_DECL)
8989 && (targetm.binds_local_p (base0)
8990 || CONSTANT_CLASS_P (base1)))
8991 || CONSTANT_CLASS_P (base0))
8992 && (((TREE_CODE (base1) == VAR_DECL
8993 || TREE_CODE (base1) == PARM_DECL)
8994 && (targetm.binds_local_p (base1)
8995 || CONSTANT_CLASS_P (base0)))
8996 || CONSTANT_CLASS_P (base1)))
8998 if (code == EQ_EXPR)
8999 return omit_two_operands_loc (loc, type, boolean_false_node,
9000 arg0, arg1);
9001 else if (code == NE_EXPR)
9002 return omit_two_operands_loc (loc, type, boolean_true_node,
9003 arg0, arg1);
9005 /* For equal offsets we can simplify to a comparison of the
9006 base addresses. */
9007 else if (bitpos0 == bitpos1
9008 && (indirect_base0
9009 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
9010 && (indirect_base1
9011 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
9012 && ((offset0 == offset1)
9013 || (offset0 && offset1
9014 && operand_equal_p (offset0, offset1, 0))))
9016 if (indirect_base0)
9017 base0 = build_fold_addr_expr_loc (loc, base0);
9018 if (indirect_base1)
9019 base1 = build_fold_addr_expr_loc (loc, base1);
9020 return fold_build2_loc (loc, code, type, base0, base1);
9024 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
9025 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
9026 the resulting offset is smaller in absolute value than the
9027 original one. */
9028 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
9029 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
9030 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9031 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
9032 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
9033 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
9034 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
9036 tree const1 = TREE_OPERAND (arg0, 1);
9037 tree const2 = TREE_OPERAND (arg1, 1);
9038 tree variable1 = TREE_OPERAND (arg0, 0);
9039 tree variable2 = TREE_OPERAND (arg1, 0);
9040 tree cst;
9041 const char * const warnmsg = G_("assuming signed overflow does not "
9042 "occur when combining constants around "
9043 "a comparison");
9045 /* Put the constant on the side where it doesn't overflow and is
9046 of lower absolute value than before. */
9047 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
9048 ? MINUS_EXPR : PLUS_EXPR,
9049 const2, const1);
9050 if (!TREE_OVERFLOW (cst)
9051 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2))
9053 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
9054 return fold_build2_loc (loc, code, type,
9055 variable1,
9056 fold_build2_loc (loc,
9057 TREE_CODE (arg1), TREE_TYPE (arg1),
9058 variable2, cst));
9061 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
9062 ? MINUS_EXPR : PLUS_EXPR,
9063 const1, const2);
9064 if (!TREE_OVERFLOW (cst)
9065 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1))
9067 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
9068 return fold_build2_loc (loc, code, type,
9069 fold_build2_loc (loc, TREE_CODE (arg0), TREE_TYPE (arg0),
9070 variable1, cst),
9071 variable2);
9075 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
9076 signed arithmetic case. That form is created by the compiler
9077 often enough for folding it to be of value. One example is in
9078 computing loop trip counts after Operator Strength Reduction. */
9079 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
9080 && TREE_CODE (arg0) == MULT_EXPR
9081 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9082 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
9083 && integer_zerop (arg1))
9085 tree const1 = TREE_OPERAND (arg0, 1);
9086 tree const2 = arg1; /* zero */
9087 tree variable1 = TREE_OPERAND (arg0, 0);
9088 enum tree_code cmp_code = code;
9090 /* Handle unfolded multiplication by zero. */
9091 if (integer_zerop (const1))
9092 return fold_build2_loc (loc, cmp_code, type, const1, const2);
9094 fold_overflow_warning (("assuming signed overflow does not occur when "
9095 "eliminating multiplication in comparison "
9096 "with zero"),
9097 WARN_STRICT_OVERFLOW_COMPARISON);
9099 /* If const1 is negative we swap the sense of the comparison. */
9100 if (tree_int_cst_sgn (const1) < 0)
9101 cmp_code = swap_tree_comparison (cmp_code);
9103 return fold_build2_loc (loc, cmp_code, type, variable1, const2);
9106 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
9107 if (tem)
9108 return tem;
9110 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
9112 tree targ0 = strip_float_extensions (arg0);
9113 tree targ1 = strip_float_extensions (arg1);
9114 tree newtype = TREE_TYPE (targ0);
9116 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
9117 newtype = TREE_TYPE (targ1);
9119 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
9120 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
9121 return fold_build2_loc (loc, code, type,
9122 fold_convert_loc (loc, newtype, targ0),
9123 fold_convert_loc (loc, newtype, targ1));
9125 /* (-a) CMP (-b) -> b CMP a */
9126 if (TREE_CODE (arg0) == NEGATE_EXPR
9127 && TREE_CODE (arg1) == NEGATE_EXPR)
9128 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg1, 0),
9129 TREE_OPERAND (arg0, 0));
9131 if (TREE_CODE (arg1) == REAL_CST)
9133 REAL_VALUE_TYPE cst;
9134 cst = TREE_REAL_CST (arg1);
9136 /* (-a) CMP CST -> a swap(CMP) (-CST) */
9137 if (TREE_CODE (arg0) == NEGATE_EXPR)
9138 return fold_build2_loc (loc, swap_tree_comparison (code), type,
9139 TREE_OPERAND (arg0, 0),
9140 build_real (TREE_TYPE (arg1),
9141 real_value_negate (&cst)));
9143 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
9144 /* a CMP (-0) -> a CMP 0 */
9145 if (REAL_VALUE_MINUS_ZERO (cst))
9146 return fold_build2_loc (loc, code, type, arg0,
9147 build_real (TREE_TYPE (arg1), dconst0));
9149 /* x != NaN is always true, other ops are always false. */
9150 if (REAL_VALUE_ISNAN (cst)
9151 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
9153 tem = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
9154 return omit_one_operand_loc (loc, type, tem, arg0);
9157 /* Fold comparisons against infinity. */
9158 if (REAL_VALUE_ISINF (cst)
9159 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1))))
9161 tem = fold_inf_compare (loc, code, type, arg0, arg1);
9162 if (tem != NULL_TREE)
9163 return tem;
9167 /* If this is a comparison of a real constant with a PLUS_EXPR
9168 or a MINUS_EXPR of a real constant, we can convert it into a
9169 comparison with a revised real constant as long as no overflow
9170 occurs when unsafe_math_optimizations are enabled. */
9171 if (flag_unsafe_math_optimizations
9172 && TREE_CODE (arg1) == REAL_CST
9173 && (TREE_CODE (arg0) == PLUS_EXPR
9174 || TREE_CODE (arg0) == MINUS_EXPR)
9175 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
9176 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
9177 ? MINUS_EXPR : PLUS_EXPR,
9178 arg1, TREE_OPERAND (arg0, 1)))
9179 && !TREE_OVERFLOW (tem))
9180 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
9182 /* Likewise, we can simplify a comparison of a real constant with
9183 a MINUS_EXPR whose first operand is also a real constant, i.e.
9184 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
9185 floating-point types only if -fassociative-math is set. */
9186 if (flag_associative_math
9187 && TREE_CODE (arg1) == REAL_CST
9188 && TREE_CODE (arg0) == MINUS_EXPR
9189 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
9190 && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
9191 arg1))
9192 && !TREE_OVERFLOW (tem))
9193 return fold_build2_loc (loc, swap_tree_comparison (code), type,
9194 TREE_OPERAND (arg0, 1), tem);
9196 /* Fold comparisons against built-in math functions. */
9197 if (TREE_CODE (arg1) == REAL_CST
9198 && flag_unsafe_math_optimizations
9199 && ! flag_errno_math)
9201 enum built_in_function fcode = builtin_mathfn_code (arg0);
9203 if (fcode != END_BUILTINS)
9205 tem = fold_mathfn_compare (loc, fcode, code, type, arg0, arg1);
9206 if (tem != NULL_TREE)
9207 return tem;
9212 if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
9213 && CONVERT_EXPR_P (arg0))
9215 /* If we are widening one operand of an integer comparison,
9216 see if the other operand is similarly being widened. Perhaps we
9217 can do the comparison in the narrower type. */
9218 tem = fold_widened_comparison (loc, code, type, arg0, arg1);
9219 if (tem)
9220 return tem;
9222 /* Or if we are changing signedness. */
9223 tem = fold_sign_changed_comparison (loc, code, type, arg0, arg1);
9224 if (tem)
9225 return tem;
9228 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
9229 constant, we can simplify it. */
9230 if (TREE_CODE (arg1) == INTEGER_CST
9231 && (TREE_CODE (arg0) == MIN_EXPR
9232 || TREE_CODE (arg0) == MAX_EXPR)
9233 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9235 tem = optimize_minmax_comparison (loc, code, type, op0, op1);
9236 if (tem)
9237 return tem;
9240 /* Simplify comparison of something with itself. (For IEEE
9241 floating-point, we can only do some of these simplifications.) */
9242 if (operand_equal_p (arg0, arg1, 0))
9244 switch (code)
9246 case EQ_EXPR:
9247 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
9248 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9249 return constant_boolean_node (1, type);
9250 break;
9252 case GE_EXPR:
9253 case LE_EXPR:
9254 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
9255 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9256 return constant_boolean_node (1, type);
9257 return fold_build2_loc (loc, EQ_EXPR, type, arg0, arg1);
9259 case NE_EXPR:
9260 /* For NE, we can only do this simplification if integer
9261 or we don't honor IEEE floating point NaNs. */
9262 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
9263 && HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9264 break;
9265 /* ... fall through ... */
9266 case GT_EXPR:
9267 case LT_EXPR:
9268 return constant_boolean_node (0, type);
9269 default:
9270 gcc_unreachable ();
9274 /* If we are comparing an expression that just has comparisons
9275 of two integer values, arithmetic expressions of those comparisons,
9276 and constants, we can simplify it. There are only three cases
9277 to check: the two values can either be equal, the first can be
9278 greater, or the second can be greater. Fold the expression for
9279 those three values. Since each value must be 0 or 1, we have
9280 eight possibilities, each of which corresponds to the constant 0
9281 or 1 or one of the six possible comparisons.
9283 This handles common cases like (a > b) == 0 but also handles
9284 expressions like ((x > y) - (y > x)) > 0, which supposedly
9285 occur in macroized code. */
9287 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
9289 tree cval1 = 0, cval2 = 0;
9290 int save_p = 0;
9292 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
9293 /* Don't handle degenerate cases here; they should already
9294 have been handled anyway. */
9295 && cval1 != 0 && cval2 != 0
9296 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
9297 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
9298 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
9299 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
9300 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
9301 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
9302 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
9304 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
9305 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
9307 /* We can't just pass T to eval_subst in case cval1 or cval2
9308 was the same as ARG1. */
9310 tree high_result
9311 = fold_build2_loc (loc, code, type,
9312 eval_subst (loc, arg0, cval1, maxval,
9313 cval2, minval),
9314 arg1);
9315 tree equal_result
9316 = fold_build2_loc (loc, code, type,
9317 eval_subst (loc, arg0, cval1, maxval,
9318 cval2, maxval),
9319 arg1);
9320 tree low_result
9321 = fold_build2_loc (loc, code, type,
9322 eval_subst (loc, arg0, cval1, minval,
9323 cval2, maxval),
9324 arg1);
9326 /* All three of these results should be 0 or 1. Confirm they are.
9327 Then use those values to select the proper code to use. */
9329 if (TREE_CODE (high_result) == INTEGER_CST
9330 && TREE_CODE (equal_result) == INTEGER_CST
9331 && TREE_CODE (low_result) == INTEGER_CST)
9333 /* Make a 3-bit mask with the high-order bit being the
9334 value for `>', the next for '=', and the low for '<'. */
9335 switch ((integer_onep (high_result) * 4)
9336 + (integer_onep (equal_result) * 2)
9337 + integer_onep (low_result))
9339 case 0:
9340 /* Always false. */
9341 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
9342 case 1:
9343 code = LT_EXPR;
9344 break;
9345 case 2:
9346 code = EQ_EXPR;
9347 break;
9348 case 3:
9349 code = LE_EXPR;
9350 break;
9351 case 4:
9352 code = GT_EXPR;
9353 break;
9354 case 5:
9355 code = NE_EXPR;
9356 break;
9357 case 6:
9358 code = GE_EXPR;
9359 break;
9360 case 7:
9361 /* Always true. */
9362 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
9365 if (save_p)
9367 tem = save_expr (build2 (code, type, cval1, cval2));
9368 SET_EXPR_LOCATION (tem, loc);
9369 return tem;
9371 return fold_build2_loc (loc, code, type, cval1, cval2);
9376 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
9377 into a single range test. */
9378 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
9379 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
9380 && TREE_CODE (arg1) == INTEGER_CST
9381 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9382 && !integer_zerop (TREE_OPERAND (arg0, 1))
9383 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
9384 && !TREE_OVERFLOW (arg1))
9386 tem = fold_div_compare (loc, code, type, arg0, arg1);
9387 if (tem != NULL_TREE)
9388 return tem;
9391 /* Fold ~X op ~Y as Y op X. */
9392 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9393 && TREE_CODE (arg1) == BIT_NOT_EXPR)
9395 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
9396 return fold_build2_loc (loc, code, type,
9397 fold_convert_loc (loc, cmp_type,
9398 TREE_OPERAND (arg1, 0)),
9399 TREE_OPERAND (arg0, 0));
9402 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
9403 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9404 && TREE_CODE (arg1) == INTEGER_CST)
9406 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
9407 return fold_build2_loc (loc, swap_tree_comparison (code), type,
9408 TREE_OPERAND (arg0, 0),
9409 fold_build1_loc (loc, BIT_NOT_EXPR, cmp_type,
9410 fold_convert_loc (loc, cmp_type, arg1)));
9413 return NULL_TREE;
9417 /* Subroutine of fold_binary. Optimize complex multiplications of the
9418 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
9419 argument EXPR represents the expression "z" of type TYPE. */
9421 static tree
9422 fold_mult_zconjz (location_t loc, tree type, tree expr)
9424 tree itype = TREE_TYPE (type);
9425 tree rpart, ipart, tem;
9427 if (TREE_CODE (expr) == COMPLEX_EXPR)
9429 rpart = TREE_OPERAND (expr, 0);
9430 ipart = TREE_OPERAND (expr, 1);
9432 else if (TREE_CODE (expr) == COMPLEX_CST)
9434 rpart = TREE_REALPART (expr);
9435 ipart = TREE_IMAGPART (expr);
9437 else
9439 expr = save_expr (expr);
9440 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
9441 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
9444 rpart = save_expr (rpart);
9445 ipart = save_expr (ipart);
9446 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
9447 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
9448 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
9449 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
9450 build_zero_cst (itype));
9454 /* Subroutine of fold_binary. If P is the value of EXPR, computes
9455 power-of-two M and (arbitrary) N such that M divides (P-N). This condition
9456 guarantees that P and N have the same least significant log2(M) bits.
9457 N is not otherwise constrained. In particular, N is not normalized to
9458 0 <= N < M as is common. In general, the precise value of P is unknown.
9459 M is chosen as large as possible such that constant N can be determined.
9461 Returns M and sets *RESIDUE to N.
9463 If ALLOW_FUNC_ALIGN is true, do take functions' DECL_ALIGN_UNIT into
9464 account. This is not always possible due to PR 35705.
9467 static unsigned HOST_WIDE_INT
9468 get_pointer_modulus_and_residue (tree expr, unsigned HOST_WIDE_INT *residue,
9469 bool allow_func_align)
9471 enum tree_code code;
9473 *residue = 0;
9475 code = TREE_CODE (expr);
9476 if (code == ADDR_EXPR)
9478 unsigned int bitalign;
9479 bitalign = get_object_alignment_1 (TREE_OPERAND (expr, 0), residue);
9480 *residue /= BITS_PER_UNIT;
9481 return bitalign / BITS_PER_UNIT;
9483 else if (code == POINTER_PLUS_EXPR)
9485 tree op0, op1;
9486 unsigned HOST_WIDE_INT modulus;
9487 enum tree_code inner_code;
9489 op0 = TREE_OPERAND (expr, 0);
9490 STRIP_NOPS (op0);
9491 modulus = get_pointer_modulus_and_residue (op0, residue,
9492 allow_func_align);
9494 op1 = TREE_OPERAND (expr, 1);
9495 STRIP_NOPS (op1);
9496 inner_code = TREE_CODE (op1);
9497 if (inner_code == INTEGER_CST)
9499 *residue += TREE_INT_CST_LOW (op1);
9500 return modulus;
9502 else if (inner_code == MULT_EXPR)
9504 op1 = TREE_OPERAND (op1, 1);
9505 if (TREE_CODE (op1) == INTEGER_CST)
9507 unsigned HOST_WIDE_INT align;
9509 /* Compute the greatest power-of-2 divisor of op1. */
9510 align = TREE_INT_CST_LOW (op1);
9511 align &= -align;
9513 /* If align is non-zero and less than *modulus, replace
9514 *modulus with align., If align is 0, then either op1 is 0
9515 or the greatest power-of-2 divisor of op1 doesn't fit in an
9516 unsigned HOST_WIDE_INT. In either case, no additional
9517 constraint is imposed. */
9518 if (align)
9519 modulus = MIN (modulus, align);
9521 return modulus;
9526 /* If we get here, we were unable to determine anything useful about the
9527 expression. */
9528 return 1;
9532 /* Fold a binary expression of code CODE and type TYPE with operands
9533 OP0 and OP1. LOC is the location of the resulting expression.
9534 Return the folded expression if folding is successful. Otherwise,
9535 return NULL_TREE. */
9537 tree
9538 fold_binary_loc (location_t loc,
9539 enum tree_code code, tree type, tree op0, tree op1)
9541 enum tree_code_class kind = TREE_CODE_CLASS (code);
9542 tree arg0, arg1, tem;
9543 tree t1 = NULL_TREE;
9544 bool strict_overflow_p;
9546 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9547 && TREE_CODE_LENGTH (code) == 2
9548 && op0 != NULL_TREE
9549 && op1 != NULL_TREE);
9551 arg0 = op0;
9552 arg1 = op1;
9554 /* Strip any conversions that don't change the mode. This is
9555 safe for every expression, except for a comparison expression
9556 because its signedness is derived from its operands. So, in
9557 the latter case, only strip conversions that don't change the
9558 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9559 preserved.
9561 Note that this is done as an internal manipulation within the
9562 constant folder, in order to find the simplest representation
9563 of the arguments so that their form can be studied. In any
9564 cases, the appropriate type conversions should be put back in
9565 the tree that will get out of the constant folder. */
9567 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9569 STRIP_SIGN_NOPS (arg0);
9570 STRIP_SIGN_NOPS (arg1);
9572 else
9574 STRIP_NOPS (arg0);
9575 STRIP_NOPS (arg1);
9578 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9579 constant but we can't do arithmetic on them. */
9580 if ((TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
9581 || (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
9582 || (TREE_CODE (arg0) == FIXED_CST && TREE_CODE (arg1) == FIXED_CST)
9583 || (TREE_CODE (arg0) == FIXED_CST && TREE_CODE (arg1) == INTEGER_CST)
9584 || (TREE_CODE (arg0) == COMPLEX_CST && TREE_CODE (arg1) == COMPLEX_CST)
9585 || (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST))
9587 if (kind == tcc_binary)
9589 /* Make sure type and arg0 have the same saturating flag. */
9590 gcc_assert (TYPE_SATURATING (type)
9591 == TYPE_SATURATING (TREE_TYPE (arg0)));
9592 tem = const_binop (code, arg0, arg1);
9594 else if (kind == tcc_comparison)
9595 tem = fold_relational_const (code, type, arg0, arg1);
9596 else
9597 tem = NULL_TREE;
9599 if (tem != NULL_TREE)
9601 if (TREE_TYPE (tem) != type)
9602 tem = fold_convert_loc (loc, type, tem);
9603 return tem;
9607 /* If this is a commutative operation, and ARG0 is a constant, move it
9608 to ARG1 to reduce the number of tests below. */
9609 if (commutative_tree_code (code)
9610 && tree_swap_operands_p (arg0, arg1, true))
9611 return fold_build2_loc (loc, code, type, op1, op0);
9613 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9615 First check for cases where an arithmetic operation is applied to a
9616 compound, conditional, or comparison operation. Push the arithmetic
9617 operation inside the compound or conditional to see if any folding
9618 can then be done. Convert comparison to conditional for this purpose.
9619 The also optimizes non-constant cases that used to be done in
9620 expand_expr.
9622 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9623 one of the operands is a comparison and the other is a comparison, a
9624 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9625 code below would make the expression more complex. Change it to a
9626 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9627 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9629 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9630 || code == EQ_EXPR || code == NE_EXPR)
9631 && ((truth_value_p (TREE_CODE (arg0))
9632 && (truth_value_p (TREE_CODE (arg1))
9633 || (TREE_CODE (arg1) == BIT_AND_EXPR
9634 && integer_onep (TREE_OPERAND (arg1, 1)))))
9635 || (truth_value_p (TREE_CODE (arg1))
9636 && (truth_value_p (TREE_CODE (arg0))
9637 || (TREE_CODE (arg0) == BIT_AND_EXPR
9638 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9640 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9641 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9642 : TRUTH_XOR_EXPR,
9643 boolean_type_node,
9644 fold_convert_loc (loc, boolean_type_node, arg0),
9645 fold_convert_loc (loc, boolean_type_node, arg1));
9647 if (code == EQ_EXPR)
9648 tem = invert_truthvalue_loc (loc, tem);
9650 return fold_convert_loc (loc, type, tem);
9653 if (TREE_CODE_CLASS (code) == tcc_binary
9654 || TREE_CODE_CLASS (code) == tcc_comparison)
9656 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9658 tem = fold_build2_loc (loc, code, type,
9659 fold_convert_loc (loc, TREE_TYPE (op0),
9660 TREE_OPERAND (arg0, 1)), op1);
9661 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9662 tem);
9664 if (TREE_CODE (arg1) == COMPOUND_EXPR
9665 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9667 tem = fold_build2_loc (loc, code, type, op0,
9668 fold_convert_loc (loc, TREE_TYPE (op1),
9669 TREE_OPERAND (arg1, 1)));
9670 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9671 tem);
9674 if (TREE_CODE (arg0) == COND_EXPR || COMPARISON_CLASS_P (arg0))
9676 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9677 arg0, arg1,
9678 /*cond_first_p=*/1);
9679 if (tem != NULL_TREE)
9680 return tem;
9683 if (TREE_CODE (arg1) == COND_EXPR || COMPARISON_CLASS_P (arg1))
9685 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9686 arg1, arg0,
9687 /*cond_first_p=*/0);
9688 if (tem != NULL_TREE)
9689 return tem;
9693 switch (code)
9695 case MEM_REF:
9696 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9697 if (TREE_CODE (arg0) == ADDR_EXPR
9698 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9700 tree iref = TREE_OPERAND (arg0, 0);
9701 return fold_build2 (MEM_REF, type,
9702 TREE_OPERAND (iref, 0),
9703 int_const_binop (PLUS_EXPR, arg1,
9704 TREE_OPERAND (iref, 1)));
9707 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9708 if (TREE_CODE (arg0) == ADDR_EXPR
9709 && handled_component_p (TREE_OPERAND (arg0, 0)))
9711 tree base;
9712 HOST_WIDE_INT coffset;
9713 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
9714 &coffset);
9715 if (!base)
9716 return NULL_TREE;
9717 return fold_build2 (MEM_REF, type,
9718 build_fold_addr_expr (base),
9719 int_const_binop (PLUS_EXPR, arg1,
9720 size_int (coffset)));
9723 return NULL_TREE;
9725 case POINTER_PLUS_EXPR:
9726 /* 0 +p index -> (type)index */
9727 if (integer_zerop (arg0))
9728 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
9730 /* PTR +p 0 -> PTR */
9731 if (integer_zerop (arg1))
9732 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
9734 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9735 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9736 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9737 return fold_convert_loc (loc, type,
9738 fold_build2_loc (loc, PLUS_EXPR, sizetype,
9739 fold_convert_loc (loc, sizetype,
9740 arg1),
9741 fold_convert_loc (loc, sizetype,
9742 arg0)));
9744 /* (PTR +p B) +p A -> PTR +p (B + A) */
9745 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
9747 tree inner;
9748 tree arg01 = fold_convert_loc (loc, sizetype, TREE_OPERAND (arg0, 1));
9749 tree arg00 = TREE_OPERAND (arg0, 0);
9750 inner = fold_build2_loc (loc, PLUS_EXPR, sizetype,
9751 arg01, fold_convert_loc (loc, sizetype, arg1));
9752 return fold_convert_loc (loc, type,
9753 fold_build_pointer_plus_loc (loc,
9754 arg00, inner));
9757 /* PTR_CST +p CST -> CST1 */
9758 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
9759 return fold_build2_loc (loc, PLUS_EXPR, type, arg0,
9760 fold_convert_loc (loc, type, arg1));
9762 /* Try replacing &a[i1] +p c * i2 with &a[i1 + i2], if c is step
9763 of the array. Loop optimizer sometimes produce this type of
9764 expressions. */
9765 if (TREE_CODE (arg0) == ADDR_EXPR)
9767 tem = try_move_mult_to_index (loc, arg0,
9768 fold_convert_loc (loc, sizetype, arg1));
9769 if (tem)
9770 return fold_convert_loc (loc, type, tem);
9773 return NULL_TREE;
9775 case PLUS_EXPR:
9776 /* A + (-B) -> A - B */
9777 if (TREE_CODE (arg1) == NEGATE_EXPR)
9778 return fold_build2_loc (loc, MINUS_EXPR, type,
9779 fold_convert_loc (loc, type, arg0),
9780 fold_convert_loc (loc, type,
9781 TREE_OPERAND (arg1, 0)));
9782 /* (-A) + B -> B - A */
9783 if (TREE_CODE (arg0) == NEGATE_EXPR
9784 && reorder_operands_p (TREE_OPERAND (arg0, 0), arg1))
9785 return fold_build2_loc (loc, MINUS_EXPR, type,
9786 fold_convert_loc (loc, type, arg1),
9787 fold_convert_loc (loc, type,
9788 TREE_OPERAND (arg0, 0)));
9790 if (INTEGRAL_TYPE_P (type))
9792 /* Convert ~A + 1 to -A. */
9793 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9794 && integer_onep (arg1))
9795 return fold_build1_loc (loc, NEGATE_EXPR, type,
9796 fold_convert_loc (loc, type,
9797 TREE_OPERAND (arg0, 0)));
9799 /* ~X + X is -1. */
9800 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9801 && !TYPE_OVERFLOW_TRAPS (type))
9803 tree tem = TREE_OPERAND (arg0, 0);
9805 STRIP_NOPS (tem);
9806 if (operand_equal_p (tem, arg1, 0))
9808 t1 = build_int_cst_type (type, -1);
9809 return omit_one_operand_loc (loc, type, t1, arg1);
9813 /* X + ~X is -1. */
9814 if (TREE_CODE (arg1) == BIT_NOT_EXPR
9815 && !TYPE_OVERFLOW_TRAPS (type))
9817 tree tem = TREE_OPERAND (arg1, 0);
9819 STRIP_NOPS (tem);
9820 if (operand_equal_p (arg0, tem, 0))
9822 t1 = build_int_cst_type (type, -1);
9823 return omit_one_operand_loc (loc, type, t1, arg0);
9827 /* X + (X / CST) * -CST is X % CST. */
9828 if (TREE_CODE (arg1) == MULT_EXPR
9829 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9830 && operand_equal_p (arg0,
9831 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9833 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9834 tree cst1 = TREE_OPERAND (arg1, 1);
9835 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
9836 cst1, cst0);
9837 if (sum && integer_zerop (sum))
9838 return fold_convert_loc (loc, type,
9839 fold_build2_loc (loc, TRUNC_MOD_EXPR,
9840 TREE_TYPE (arg0), arg0,
9841 cst0));
9845 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the
9846 same or one. Make sure type is not saturating.
9847 fold_plusminus_mult_expr will re-associate. */
9848 if ((TREE_CODE (arg0) == MULT_EXPR
9849 || TREE_CODE (arg1) == MULT_EXPR)
9850 && !TYPE_SATURATING (type)
9851 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9853 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9854 if (tem)
9855 return tem;
9858 if (! FLOAT_TYPE_P (type))
9860 if (integer_zerop (arg1))
9861 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
9863 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
9864 with a constant, and the two constants have no bits in common,
9865 we should treat this as a BIT_IOR_EXPR since this may produce more
9866 simplifications. */
9867 if (TREE_CODE (arg0) == BIT_AND_EXPR
9868 && TREE_CODE (arg1) == BIT_AND_EXPR
9869 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9870 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
9871 && integer_zerop (const_binop (BIT_AND_EXPR,
9872 TREE_OPERAND (arg0, 1),
9873 TREE_OPERAND (arg1, 1))))
9875 code = BIT_IOR_EXPR;
9876 goto bit_ior;
9879 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9880 (plus (plus (mult) (mult)) (foo)) so that we can
9881 take advantage of the factoring cases below. */
9882 if (TYPE_OVERFLOW_WRAPS (type)
9883 && (((TREE_CODE (arg0) == PLUS_EXPR
9884 || TREE_CODE (arg0) == MINUS_EXPR)
9885 && TREE_CODE (arg1) == MULT_EXPR)
9886 || ((TREE_CODE (arg1) == PLUS_EXPR
9887 || TREE_CODE (arg1) == MINUS_EXPR)
9888 && TREE_CODE (arg0) == MULT_EXPR)))
9890 tree parg0, parg1, parg, marg;
9891 enum tree_code pcode;
9893 if (TREE_CODE (arg1) == MULT_EXPR)
9894 parg = arg0, marg = arg1;
9895 else
9896 parg = arg1, marg = arg0;
9897 pcode = TREE_CODE (parg);
9898 parg0 = TREE_OPERAND (parg, 0);
9899 parg1 = TREE_OPERAND (parg, 1);
9900 STRIP_NOPS (parg0);
9901 STRIP_NOPS (parg1);
9903 if (TREE_CODE (parg0) == MULT_EXPR
9904 && TREE_CODE (parg1) != MULT_EXPR)
9905 return fold_build2_loc (loc, pcode, type,
9906 fold_build2_loc (loc, PLUS_EXPR, type,
9907 fold_convert_loc (loc, type,
9908 parg0),
9909 fold_convert_loc (loc, type,
9910 marg)),
9911 fold_convert_loc (loc, type, parg1));
9912 if (TREE_CODE (parg0) != MULT_EXPR
9913 && TREE_CODE (parg1) == MULT_EXPR)
9914 return
9915 fold_build2_loc (loc, PLUS_EXPR, type,
9916 fold_convert_loc (loc, type, parg0),
9917 fold_build2_loc (loc, pcode, type,
9918 fold_convert_loc (loc, type, marg),
9919 fold_convert_loc (loc, type,
9920 parg1)));
9923 else
9925 /* See if ARG1 is zero and X + ARG1 reduces to X. */
9926 if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
9927 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
9929 /* Likewise if the operands are reversed. */
9930 if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
9931 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
9933 /* Convert X + -C into X - C. */
9934 if (TREE_CODE (arg1) == REAL_CST
9935 && REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1)))
9937 tem = fold_negate_const (arg1, type);
9938 if (!TREE_OVERFLOW (arg1) || !flag_trapping_math)
9939 return fold_build2_loc (loc, MINUS_EXPR, type,
9940 fold_convert_loc (loc, type, arg0),
9941 fold_convert_loc (loc, type, tem));
9944 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9945 to __complex__ ( x, y ). This is not the same for SNaNs or
9946 if signed zeros are involved. */
9947 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
9948 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
9949 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9951 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9952 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9953 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9954 bool arg0rz = false, arg0iz = false;
9955 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9956 || (arg0i && (arg0iz = real_zerop (arg0i))))
9958 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9959 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9960 if (arg0rz && arg1i && real_zerop (arg1i))
9962 tree rp = arg1r ? arg1r
9963 : build1 (REALPART_EXPR, rtype, arg1);
9964 tree ip = arg0i ? arg0i
9965 : build1 (IMAGPART_EXPR, rtype, arg0);
9966 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9968 else if (arg0iz && arg1r && real_zerop (arg1r))
9970 tree rp = arg0r ? arg0r
9971 : build1 (REALPART_EXPR, rtype, arg0);
9972 tree ip = arg1i ? arg1i
9973 : build1 (IMAGPART_EXPR, rtype, arg1);
9974 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9979 if (flag_unsafe_math_optimizations
9980 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9981 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9982 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9983 return tem;
9985 /* Convert x+x into x*2.0. */
9986 if (operand_equal_p (arg0, arg1, 0)
9987 && SCALAR_FLOAT_TYPE_P (type))
9988 return fold_build2_loc (loc, MULT_EXPR, type, arg0,
9989 build_real (type, dconst2));
9991 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9992 We associate floats only if the user has specified
9993 -fassociative-math. */
9994 if (flag_associative_math
9995 && TREE_CODE (arg1) == PLUS_EXPR
9996 && TREE_CODE (arg0) != MULT_EXPR)
9998 tree tree10 = TREE_OPERAND (arg1, 0);
9999 tree tree11 = TREE_OPERAND (arg1, 1);
10000 if (TREE_CODE (tree11) == MULT_EXPR
10001 && TREE_CODE (tree10) == MULT_EXPR)
10003 tree tree0;
10004 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
10005 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
10008 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
10009 We associate floats only if the user has specified
10010 -fassociative-math. */
10011 if (flag_associative_math
10012 && TREE_CODE (arg0) == PLUS_EXPR
10013 && TREE_CODE (arg1) != MULT_EXPR)
10015 tree tree00 = TREE_OPERAND (arg0, 0);
10016 tree tree01 = TREE_OPERAND (arg0, 1);
10017 if (TREE_CODE (tree01) == MULT_EXPR
10018 && TREE_CODE (tree00) == MULT_EXPR)
10020 tree tree0;
10021 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
10022 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
10027 bit_rotate:
10028 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
10029 is a rotate of A by C1 bits. */
10030 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
10031 is a rotate of A by B bits. */
10033 enum tree_code code0, code1;
10034 tree rtype;
10035 code0 = TREE_CODE (arg0);
10036 code1 = TREE_CODE (arg1);
10037 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
10038 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
10039 && operand_equal_p (TREE_OPERAND (arg0, 0),
10040 TREE_OPERAND (arg1, 0), 0)
10041 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
10042 TYPE_UNSIGNED (rtype))
10043 /* Only create rotates in complete modes. Other cases are not
10044 expanded properly. */
10045 && TYPE_PRECISION (rtype) == GET_MODE_PRECISION (TYPE_MODE (rtype)))
10047 tree tree01, tree11;
10048 enum tree_code code01, code11;
10050 tree01 = TREE_OPERAND (arg0, 1);
10051 tree11 = TREE_OPERAND (arg1, 1);
10052 STRIP_NOPS (tree01);
10053 STRIP_NOPS (tree11);
10054 code01 = TREE_CODE (tree01);
10055 code11 = TREE_CODE (tree11);
10056 if (code01 == INTEGER_CST
10057 && code11 == INTEGER_CST
10058 && TREE_INT_CST_HIGH (tree01) == 0
10059 && TREE_INT_CST_HIGH (tree11) == 0
10060 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
10061 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
10063 tem = build2_loc (loc, LROTATE_EXPR,
10064 TREE_TYPE (TREE_OPERAND (arg0, 0)),
10065 TREE_OPERAND (arg0, 0),
10066 code0 == LSHIFT_EXPR ? tree01 : tree11);
10067 return fold_convert_loc (loc, type, tem);
10069 else if (code11 == MINUS_EXPR)
10071 tree tree110, tree111;
10072 tree110 = TREE_OPERAND (tree11, 0);
10073 tree111 = TREE_OPERAND (tree11, 1);
10074 STRIP_NOPS (tree110);
10075 STRIP_NOPS (tree111);
10076 if (TREE_CODE (tree110) == INTEGER_CST
10077 && 0 == compare_tree_int (tree110,
10078 TYPE_PRECISION
10079 (TREE_TYPE (TREE_OPERAND
10080 (arg0, 0))))
10081 && operand_equal_p (tree01, tree111, 0))
10082 return
10083 fold_convert_loc (loc, type,
10084 build2 ((code0 == LSHIFT_EXPR
10085 ? LROTATE_EXPR
10086 : RROTATE_EXPR),
10087 TREE_TYPE (TREE_OPERAND (arg0, 0)),
10088 TREE_OPERAND (arg0, 0), tree01));
10090 else if (code01 == MINUS_EXPR)
10092 tree tree010, tree011;
10093 tree010 = TREE_OPERAND (tree01, 0);
10094 tree011 = TREE_OPERAND (tree01, 1);
10095 STRIP_NOPS (tree010);
10096 STRIP_NOPS (tree011);
10097 if (TREE_CODE (tree010) == INTEGER_CST
10098 && 0 == compare_tree_int (tree010,
10099 TYPE_PRECISION
10100 (TREE_TYPE (TREE_OPERAND
10101 (arg0, 0))))
10102 && operand_equal_p (tree11, tree011, 0))
10103 return fold_convert_loc
10104 (loc, type,
10105 build2 ((code0 != LSHIFT_EXPR
10106 ? LROTATE_EXPR
10107 : RROTATE_EXPR),
10108 TREE_TYPE (TREE_OPERAND (arg0, 0)),
10109 TREE_OPERAND (arg0, 0), tree11));
10114 associate:
10115 /* In most languages, can't associate operations on floats through
10116 parentheses. Rather than remember where the parentheses were, we
10117 don't associate floats at all, unless the user has specified
10118 -fassociative-math.
10119 And, we need to make sure type is not saturating. */
10121 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
10122 && !TYPE_SATURATING (type))
10124 tree var0, con0, lit0, minus_lit0;
10125 tree var1, con1, lit1, minus_lit1;
10126 bool ok = true;
10128 /* Split both trees into variables, constants, and literals. Then
10129 associate each group together, the constants with literals,
10130 then the result with variables. This increases the chances of
10131 literals being recombined later and of generating relocatable
10132 expressions for the sum of a constant and literal. */
10133 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
10134 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
10135 code == MINUS_EXPR);
10137 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
10138 if (code == MINUS_EXPR)
10139 code = PLUS_EXPR;
10141 /* With undefined overflow we can only associate constants with one
10142 variable, and constants whose association doesn't overflow. */
10143 if ((POINTER_TYPE_P (type) && POINTER_TYPE_OVERFLOW_UNDEFINED)
10144 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
10146 if (var0 && var1)
10148 tree tmp0 = var0;
10149 tree tmp1 = var1;
10151 if (TREE_CODE (tmp0) == NEGATE_EXPR)
10152 tmp0 = TREE_OPERAND (tmp0, 0);
10153 if (TREE_CODE (tmp1) == NEGATE_EXPR)
10154 tmp1 = TREE_OPERAND (tmp1, 0);
10155 /* The only case we can still associate with two variables
10156 is if they are the same, modulo negation. */
10157 if (!operand_equal_p (tmp0, tmp1, 0))
10158 ok = false;
10161 if (ok && lit0 && lit1)
10163 tree tmp0 = fold_convert (type, lit0);
10164 tree tmp1 = fold_convert (type, lit1);
10166 if (!TREE_OVERFLOW (tmp0) && !TREE_OVERFLOW (tmp1)
10167 && TREE_OVERFLOW (fold_build2 (code, type, tmp0, tmp1)))
10168 ok = false;
10172 /* Only do something if we found more than two objects. Otherwise,
10173 nothing has changed and we risk infinite recursion. */
10174 if (ok
10175 && (2 < ((var0 != 0) + (var1 != 0)
10176 + (con0 != 0) + (con1 != 0)
10177 + (lit0 != 0) + (lit1 != 0)
10178 + (minus_lit0 != 0) + (minus_lit1 != 0))))
10180 var0 = associate_trees (loc, var0, var1, code, type);
10181 con0 = associate_trees (loc, con0, con1, code, type);
10182 lit0 = associate_trees (loc, lit0, lit1, code, type);
10183 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1, code, type);
10185 /* Preserve the MINUS_EXPR if the negative part of the literal is
10186 greater than the positive part. Otherwise, the multiplicative
10187 folding code (i.e extract_muldiv) may be fooled in case
10188 unsigned constants are subtracted, like in the following
10189 example: ((X*2 + 4) - 8U)/2. */
10190 if (minus_lit0 && lit0)
10192 if (TREE_CODE (lit0) == INTEGER_CST
10193 && TREE_CODE (minus_lit0) == INTEGER_CST
10194 && tree_int_cst_lt (lit0, minus_lit0))
10196 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
10197 MINUS_EXPR, type);
10198 lit0 = 0;
10200 else
10202 lit0 = associate_trees (loc, lit0, minus_lit0,
10203 MINUS_EXPR, type);
10204 minus_lit0 = 0;
10207 if (minus_lit0)
10209 if (con0 == 0)
10210 return
10211 fold_convert_loc (loc, type,
10212 associate_trees (loc, var0, minus_lit0,
10213 MINUS_EXPR, type));
10214 else
10216 con0 = associate_trees (loc, con0, minus_lit0,
10217 MINUS_EXPR, type);
10218 return
10219 fold_convert_loc (loc, type,
10220 associate_trees (loc, var0, con0,
10221 PLUS_EXPR, type));
10225 con0 = associate_trees (loc, con0, lit0, code, type);
10226 return
10227 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
10228 code, type));
10232 return NULL_TREE;
10234 case MINUS_EXPR:
10235 /* Pointer simplifications for subtraction, simple reassociations. */
10236 if (POINTER_TYPE_P (TREE_TYPE (arg1)) && POINTER_TYPE_P (TREE_TYPE (arg0)))
10238 /* (PTR0 p+ A) - (PTR1 p+ B) -> (PTR0 - PTR1) + (A - B) */
10239 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR
10240 && TREE_CODE (arg1) == POINTER_PLUS_EXPR)
10242 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10243 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10244 tree arg10 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10245 tree arg11 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10246 return fold_build2_loc (loc, PLUS_EXPR, type,
10247 fold_build2_loc (loc, MINUS_EXPR, type,
10248 arg00, arg10),
10249 fold_build2_loc (loc, MINUS_EXPR, type,
10250 arg01, arg11));
10252 /* (PTR0 p+ A) - PTR1 -> (PTR0 - PTR1) + A, assuming PTR0 - PTR1 simplifies. */
10253 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
10255 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10256 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10257 tree tmp = fold_binary_loc (loc, MINUS_EXPR, type, arg00,
10258 fold_convert_loc (loc, type, arg1));
10259 if (tmp)
10260 return fold_build2_loc (loc, PLUS_EXPR, type, tmp, arg01);
10263 /* A - (-B) -> A + B */
10264 if (TREE_CODE (arg1) == NEGATE_EXPR)
10265 return fold_build2_loc (loc, PLUS_EXPR, type, op0,
10266 fold_convert_loc (loc, type,
10267 TREE_OPERAND (arg1, 0)));
10268 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
10269 if (TREE_CODE (arg0) == NEGATE_EXPR
10270 && (FLOAT_TYPE_P (type)
10271 || INTEGRAL_TYPE_P (type))
10272 && negate_expr_p (arg1)
10273 && reorder_operands_p (arg0, arg1))
10274 return fold_build2_loc (loc, MINUS_EXPR, type,
10275 fold_convert_loc (loc, type,
10276 negate_expr (arg1)),
10277 fold_convert_loc (loc, type,
10278 TREE_OPERAND (arg0, 0)));
10279 /* Convert -A - 1 to ~A. */
10280 if (INTEGRAL_TYPE_P (type)
10281 && TREE_CODE (arg0) == NEGATE_EXPR
10282 && integer_onep (arg1)
10283 && !TYPE_OVERFLOW_TRAPS (type))
10284 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
10285 fold_convert_loc (loc, type,
10286 TREE_OPERAND (arg0, 0)));
10288 /* Convert -1 - A to ~A. */
10289 if (INTEGRAL_TYPE_P (type)
10290 && integer_all_onesp (arg0))
10291 return fold_build1_loc (loc, BIT_NOT_EXPR, type, op1);
10294 /* X - (X / CST) * CST is X % CST. */
10295 if (INTEGRAL_TYPE_P (type)
10296 && TREE_CODE (arg1) == MULT_EXPR
10297 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
10298 && operand_equal_p (arg0,
10299 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0)
10300 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg1, 0), 1),
10301 TREE_OPERAND (arg1, 1), 0))
10302 return
10303 fold_convert_loc (loc, type,
10304 fold_build2_loc (loc, TRUNC_MOD_EXPR, TREE_TYPE (arg0),
10305 arg0, TREE_OPERAND (arg1, 1)));
10307 if (! FLOAT_TYPE_P (type))
10309 if (integer_zerop (arg0))
10310 return negate_expr (fold_convert_loc (loc, type, arg1));
10311 if (integer_zerop (arg1))
10312 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10314 /* Fold A - (A & B) into ~B & A. */
10315 if (!TREE_SIDE_EFFECTS (arg0)
10316 && TREE_CODE (arg1) == BIT_AND_EXPR)
10318 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
10320 tree arg10 = fold_convert_loc (loc, type,
10321 TREE_OPERAND (arg1, 0));
10322 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10323 fold_build1_loc (loc, BIT_NOT_EXPR,
10324 type, arg10),
10325 fold_convert_loc (loc, type, arg0));
10327 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10329 tree arg11 = fold_convert_loc (loc,
10330 type, TREE_OPERAND (arg1, 1));
10331 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10332 fold_build1_loc (loc, BIT_NOT_EXPR,
10333 type, arg11),
10334 fold_convert_loc (loc, type, arg0));
10338 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
10339 any power of 2 minus 1. */
10340 if (TREE_CODE (arg0) == BIT_AND_EXPR
10341 && TREE_CODE (arg1) == BIT_AND_EXPR
10342 && operand_equal_p (TREE_OPERAND (arg0, 0),
10343 TREE_OPERAND (arg1, 0), 0))
10345 tree mask0 = TREE_OPERAND (arg0, 1);
10346 tree mask1 = TREE_OPERAND (arg1, 1);
10347 tree tem = fold_build1_loc (loc, BIT_NOT_EXPR, type, mask0);
10349 if (operand_equal_p (tem, mask1, 0))
10351 tem = fold_build2_loc (loc, BIT_XOR_EXPR, type,
10352 TREE_OPERAND (arg0, 0), mask1);
10353 return fold_build2_loc (loc, MINUS_EXPR, type, tem, mask1);
10358 /* See if ARG1 is zero and X - ARG1 reduces to X. */
10359 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
10360 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10362 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
10363 ARG0 is zero and X + ARG0 reduces to X, since that would mean
10364 (-ARG1 + ARG0) reduces to -ARG1. */
10365 else if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
10366 return negate_expr (fold_convert_loc (loc, type, arg1));
10368 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
10369 __complex__ ( x, -y ). This is not the same for SNaNs or if
10370 signed zeros are involved. */
10371 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10372 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10373 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10375 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10376 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
10377 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
10378 bool arg0rz = false, arg0iz = false;
10379 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10380 || (arg0i && (arg0iz = real_zerop (arg0i))))
10382 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
10383 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
10384 if (arg0rz && arg1i && real_zerop (arg1i))
10386 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10387 arg1r ? arg1r
10388 : build1 (REALPART_EXPR, rtype, arg1));
10389 tree ip = arg0i ? arg0i
10390 : build1 (IMAGPART_EXPR, rtype, arg0);
10391 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10393 else if (arg0iz && arg1r && real_zerop (arg1r))
10395 tree rp = arg0r ? arg0r
10396 : build1 (REALPART_EXPR, rtype, arg0);
10397 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10398 arg1i ? arg1i
10399 : build1 (IMAGPART_EXPR, rtype, arg1));
10400 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10405 /* Fold &x - &x. This can happen from &x.foo - &x.
10406 This is unsafe for certain floats even in non-IEEE formats.
10407 In IEEE, it is unsafe because it does wrong for NaNs.
10408 Also note that operand_equal_p is always false if an operand
10409 is volatile. */
10411 if ((!FLOAT_TYPE_P (type) || !HONOR_NANS (TYPE_MODE (type)))
10412 && operand_equal_p (arg0, arg1, 0))
10413 return build_zero_cst (type);
10415 /* A - B -> A + (-B) if B is easily negatable. */
10416 if (negate_expr_p (arg1)
10417 && ((FLOAT_TYPE_P (type)
10418 /* Avoid this transformation if B is a positive REAL_CST. */
10419 && (TREE_CODE (arg1) != REAL_CST
10420 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
10421 || INTEGRAL_TYPE_P (type)))
10422 return fold_build2_loc (loc, PLUS_EXPR, type,
10423 fold_convert_loc (loc, type, arg0),
10424 fold_convert_loc (loc, type,
10425 negate_expr (arg1)));
10427 /* Try folding difference of addresses. */
10429 HOST_WIDE_INT diff;
10431 if ((TREE_CODE (arg0) == ADDR_EXPR
10432 || TREE_CODE (arg1) == ADDR_EXPR)
10433 && ptr_difference_const (arg0, arg1, &diff))
10434 return build_int_cst_type (type, diff);
10437 /* Fold &a[i] - &a[j] to i-j. */
10438 if (TREE_CODE (arg0) == ADDR_EXPR
10439 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
10440 && TREE_CODE (arg1) == ADDR_EXPR
10441 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
10443 tree aref0 = TREE_OPERAND (arg0, 0);
10444 tree aref1 = TREE_OPERAND (arg1, 0);
10445 if (operand_equal_p (TREE_OPERAND (aref0, 0),
10446 TREE_OPERAND (aref1, 0), 0))
10448 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
10449 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
10450 tree esz = array_ref_element_size (aref0);
10451 tree diff = build2 (MINUS_EXPR, type, op0, op1);
10452 return fold_build2_loc (loc, MULT_EXPR, type, diff,
10453 fold_convert_loc (loc, type, esz));
10458 if (FLOAT_TYPE_P (type)
10459 && flag_unsafe_math_optimizations
10460 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
10461 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
10462 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
10463 return tem;
10465 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the
10466 same or one. Make sure type is not saturating.
10467 fold_plusminus_mult_expr will re-associate. */
10468 if ((TREE_CODE (arg0) == MULT_EXPR
10469 || TREE_CODE (arg1) == MULT_EXPR)
10470 && !TYPE_SATURATING (type)
10471 && (!FLOAT_TYPE_P (type) || flag_associative_math))
10473 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
10474 if (tem)
10475 return tem;
10478 goto associate;
10480 case MULT_EXPR:
10481 /* (-A) * (-B) -> A * B */
10482 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10483 return fold_build2_loc (loc, MULT_EXPR, type,
10484 fold_convert_loc (loc, type,
10485 TREE_OPERAND (arg0, 0)),
10486 fold_convert_loc (loc, type,
10487 negate_expr (arg1)));
10488 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10489 return fold_build2_loc (loc, MULT_EXPR, type,
10490 fold_convert_loc (loc, type,
10491 negate_expr (arg0)),
10492 fold_convert_loc (loc, type,
10493 TREE_OPERAND (arg1, 0)));
10495 if (! FLOAT_TYPE_P (type))
10497 if (integer_zerop (arg1))
10498 return omit_one_operand_loc (loc, type, arg1, arg0);
10499 if (integer_onep (arg1))
10500 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10501 /* Transform x * -1 into -x. Make sure to do the negation
10502 on the original operand with conversions not stripped
10503 because we can only strip non-sign-changing conversions. */
10504 if (integer_all_onesp (arg1))
10505 return fold_convert_loc (loc, type, negate_expr (op0));
10506 /* Transform x * -C into -x * C if x is easily negatable. */
10507 if (TREE_CODE (arg1) == INTEGER_CST
10508 && tree_int_cst_sgn (arg1) == -1
10509 && negate_expr_p (arg0)
10510 && (tem = negate_expr (arg1)) != arg1
10511 && !TREE_OVERFLOW (tem))
10512 return fold_build2_loc (loc, MULT_EXPR, type,
10513 fold_convert_loc (loc, type,
10514 negate_expr (arg0)),
10515 tem);
10517 /* (a * (1 << b)) is (a << b) */
10518 if (TREE_CODE (arg1) == LSHIFT_EXPR
10519 && integer_onep (TREE_OPERAND (arg1, 0)))
10520 return fold_build2_loc (loc, LSHIFT_EXPR, type, op0,
10521 TREE_OPERAND (arg1, 1));
10522 if (TREE_CODE (arg0) == LSHIFT_EXPR
10523 && integer_onep (TREE_OPERAND (arg0, 0)))
10524 return fold_build2_loc (loc, LSHIFT_EXPR, type, op1,
10525 TREE_OPERAND (arg0, 1));
10527 /* (A + A) * C -> A * 2 * C */
10528 if (TREE_CODE (arg0) == PLUS_EXPR
10529 && TREE_CODE (arg1) == INTEGER_CST
10530 && operand_equal_p (TREE_OPERAND (arg0, 0),
10531 TREE_OPERAND (arg0, 1), 0))
10532 return fold_build2_loc (loc, MULT_EXPR, type,
10533 omit_one_operand_loc (loc, type,
10534 TREE_OPERAND (arg0, 0),
10535 TREE_OPERAND (arg0, 1)),
10536 fold_build2_loc (loc, MULT_EXPR, type,
10537 build_int_cst (type, 2) , arg1));
10539 strict_overflow_p = false;
10540 if (TREE_CODE (arg1) == INTEGER_CST
10541 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10542 &strict_overflow_p)))
10544 if (strict_overflow_p)
10545 fold_overflow_warning (("assuming signed overflow does not "
10546 "occur when simplifying "
10547 "multiplication"),
10548 WARN_STRICT_OVERFLOW_MISC);
10549 return fold_convert_loc (loc, type, tem);
10552 /* Optimize z * conj(z) for integer complex numbers. */
10553 if (TREE_CODE (arg0) == CONJ_EXPR
10554 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10555 return fold_mult_zconjz (loc, type, arg1);
10556 if (TREE_CODE (arg1) == CONJ_EXPR
10557 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10558 return fold_mult_zconjz (loc, type, arg0);
10560 else
10562 /* Maybe fold x * 0 to 0. The expressions aren't the same
10563 when x is NaN, since x * 0 is also NaN. Nor are they the
10564 same in modes with signed zeros, since multiplying a
10565 negative value by 0 gives -0, not +0. */
10566 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
10567 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10568 && real_zerop (arg1))
10569 return omit_one_operand_loc (loc, type, arg1, arg0);
10570 /* In IEEE floating point, x*1 is not equivalent to x for snans.
10571 Likewise for complex arithmetic with signed zeros. */
10572 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10573 && (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10574 || !COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10575 && real_onep (arg1))
10576 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10578 /* Transform x * -1.0 into -x. */
10579 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10580 && (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10581 || !COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10582 && real_minus_onep (arg1))
10583 return fold_convert_loc (loc, type, negate_expr (arg0));
10585 /* Convert (C1/X)*C2 into (C1*C2)/X. This transformation may change
10586 the result for floating point types due to rounding so it is applied
10587 only if -fassociative-math was specify. */
10588 if (flag_associative_math
10589 && TREE_CODE (arg0) == RDIV_EXPR
10590 && TREE_CODE (arg1) == REAL_CST
10591 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
10593 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
10594 arg1);
10595 if (tem)
10596 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
10597 TREE_OPERAND (arg0, 1));
10600 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
10601 if (operand_equal_p (arg0, arg1, 0))
10603 tree tem = fold_strip_sign_ops (arg0);
10604 if (tem != NULL_TREE)
10606 tem = fold_convert_loc (loc, type, tem);
10607 return fold_build2_loc (loc, MULT_EXPR, type, tem, tem);
10611 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10612 This is not the same for NaNs or if signed zeros are
10613 involved. */
10614 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
10615 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10616 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
10617 && TREE_CODE (arg1) == COMPLEX_CST
10618 && real_zerop (TREE_REALPART (arg1)))
10620 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10621 if (real_onep (TREE_IMAGPART (arg1)))
10622 return
10623 fold_build2_loc (loc, COMPLEX_EXPR, type,
10624 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
10625 rtype, arg0)),
10626 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
10627 else if (real_minus_onep (TREE_IMAGPART (arg1)))
10628 return
10629 fold_build2_loc (loc, COMPLEX_EXPR, type,
10630 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
10631 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
10632 rtype, arg0)));
10635 /* Optimize z * conj(z) for floating point complex numbers.
10636 Guarded by flag_unsafe_math_optimizations as non-finite
10637 imaginary components don't produce scalar results. */
10638 if (flag_unsafe_math_optimizations
10639 && TREE_CODE (arg0) == CONJ_EXPR
10640 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10641 return fold_mult_zconjz (loc, type, arg1);
10642 if (flag_unsafe_math_optimizations
10643 && TREE_CODE (arg1) == CONJ_EXPR
10644 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10645 return fold_mult_zconjz (loc, type, arg0);
10647 if (flag_unsafe_math_optimizations)
10649 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
10650 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
10652 /* Optimizations of root(...)*root(...). */
10653 if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
10655 tree rootfn, arg;
10656 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10657 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10659 /* Optimize sqrt(x)*sqrt(x) as x. */
10660 if (BUILTIN_SQRT_P (fcode0)
10661 && operand_equal_p (arg00, arg10, 0)
10662 && ! HONOR_SNANS (TYPE_MODE (type)))
10663 return arg00;
10665 /* Optimize root(x)*root(y) as root(x*y). */
10666 rootfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10667 arg = fold_build2_loc (loc, MULT_EXPR, type, arg00, arg10);
10668 return build_call_expr_loc (loc, rootfn, 1, arg);
10671 /* Optimize expN(x)*expN(y) as expN(x+y). */
10672 if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
10674 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10675 tree arg = fold_build2_loc (loc, PLUS_EXPR, type,
10676 CALL_EXPR_ARG (arg0, 0),
10677 CALL_EXPR_ARG (arg1, 0));
10678 return build_call_expr_loc (loc, expfn, 1, arg);
10681 /* Optimizations of pow(...)*pow(...). */
10682 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
10683 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
10684 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
10686 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10687 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10688 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10689 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10691 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
10692 if (operand_equal_p (arg01, arg11, 0))
10694 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10695 tree arg = fold_build2_loc (loc, MULT_EXPR, type,
10696 arg00, arg10);
10697 return build_call_expr_loc (loc, powfn, 2, arg, arg01);
10700 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
10701 if (operand_equal_p (arg00, arg10, 0))
10703 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10704 tree arg = fold_build2_loc (loc, PLUS_EXPR, type,
10705 arg01, arg11);
10706 return build_call_expr_loc (loc, powfn, 2, arg00, arg);
10710 /* Optimize tan(x)*cos(x) as sin(x). */
10711 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
10712 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
10713 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
10714 || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
10715 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
10716 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
10717 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
10718 CALL_EXPR_ARG (arg1, 0), 0))
10720 tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
10722 if (sinfn != NULL_TREE)
10723 return build_call_expr_loc (loc, sinfn, 1,
10724 CALL_EXPR_ARG (arg0, 0));
10727 /* Optimize x*pow(x,c) as pow(x,c+1). */
10728 if (fcode1 == BUILT_IN_POW
10729 || fcode1 == BUILT_IN_POWF
10730 || fcode1 == BUILT_IN_POWL)
10732 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10733 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10734 if (TREE_CODE (arg11) == REAL_CST
10735 && !TREE_OVERFLOW (arg11)
10736 && operand_equal_p (arg0, arg10, 0))
10738 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10739 REAL_VALUE_TYPE c;
10740 tree arg;
10742 c = TREE_REAL_CST (arg11);
10743 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10744 arg = build_real (type, c);
10745 return build_call_expr_loc (loc, powfn, 2, arg0, arg);
10749 /* Optimize pow(x,c)*x as pow(x,c+1). */
10750 if (fcode0 == BUILT_IN_POW
10751 || fcode0 == BUILT_IN_POWF
10752 || fcode0 == BUILT_IN_POWL)
10754 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10755 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10756 if (TREE_CODE (arg01) == REAL_CST
10757 && !TREE_OVERFLOW (arg01)
10758 && operand_equal_p (arg1, arg00, 0))
10760 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10761 REAL_VALUE_TYPE c;
10762 tree arg;
10764 c = TREE_REAL_CST (arg01);
10765 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10766 arg = build_real (type, c);
10767 return build_call_expr_loc (loc, powfn, 2, arg1, arg);
10771 /* Canonicalize x*x as pow(x,2.0), which is expanded as x*x. */
10772 if (!in_gimple_form
10773 && optimize
10774 && operand_equal_p (arg0, arg1, 0))
10776 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
10778 if (powfn)
10780 tree arg = build_real (type, dconst2);
10781 return build_call_expr_loc (loc, powfn, 2, arg0, arg);
10786 goto associate;
10788 case BIT_IOR_EXPR:
10789 bit_ior:
10790 if (integer_all_onesp (arg1))
10791 return omit_one_operand_loc (loc, type, arg1, arg0);
10792 if (integer_zerop (arg1))
10793 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10794 if (operand_equal_p (arg0, arg1, 0))
10795 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10797 /* ~X | X is -1. */
10798 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10799 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10801 t1 = build_zero_cst (type);
10802 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
10803 return omit_one_operand_loc (loc, type, t1, arg1);
10806 /* X | ~X is -1. */
10807 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10808 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10810 t1 = build_zero_cst (type);
10811 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
10812 return omit_one_operand_loc (loc, type, t1, arg0);
10815 /* Canonicalize (X & C1) | C2. */
10816 if (TREE_CODE (arg0) == BIT_AND_EXPR
10817 && TREE_CODE (arg1) == INTEGER_CST
10818 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10820 unsigned HOST_WIDE_INT hi1, lo1, hi2, lo2, hi3, lo3, mlo, mhi;
10821 int width = TYPE_PRECISION (type), w;
10822 hi1 = TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1));
10823 lo1 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
10824 hi2 = TREE_INT_CST_HIGH (arg1);
10825 lo2 = TREE_INT_CST_LOW (arg1);
10827 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10828 if ((hi1 & hi2) == hi1 && (lo1 & lo2) == lo1)
10829 return omit_one_operand_loc (loc, type, arg1,
10830 TREE_OPERAND (arg0, 0));
10832 if (width > HOST_BITS_PER_WIDE_INT)
10834 mhi = (unsigned HOST_WIDE_INT) -1
10835 >> (2 * HOST_BITS_PER_WIDE_INT - width);
10836 mlo = -1;
10838 else
10840 mhi = 0;
10841 mlo = (unsigned HOST_WIDE_INT) -1
10842 >> (HOST_BITS_PER_WIDE_INT - width);
10845 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10846 if ((~(hi1 | hi2) & mhi) == 0 && (~(lo1 | lo2) & mlo) == 0)
10847 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
10848 TREE_OPERAND (arg0, 0), arg1);
10850 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10851 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10852 mode which allows further optimizations. */
10853 hi1 &= mhi;
10854 lo1 &= mlo;
10855 hi2 &= mhi;
10856 lo2 &= mlo;
10857 hi3 = hi1 & ~hi2;
10858 lo3 = lo1 & ~lo2;
10859 for (w = BITS_PER_UNIT;
10860 w <= width && w <= HOST_BITS_PER_WIDE_INT;
10861 w <<= 1)
10863 unsigned HOST_WIDE_INT mask
10864 = (unsigned HOST_WIDE_INT) -1 >> (HOST_BITS_PER_WIDE_INT - w);
10865 if (((lo1 | lo2) & mask) == mask
10866 && (lo1 & ~mask) == 0 && hi1 == 0)
10868 hi3 = 0;
10869 lo3 = mask;
10870 break;
10873 if (hi3 != hi1 || lo3 != lo1)
10874 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
10875 fold_build2_loc (loc, BIT_AND_EXPR, type,
10876 TREE_OPERAND (arg0, 0),
10877 build_int_cst_wide (type,
10878 lo3, hi3)),
10879 arg1);
10882 /* (X & Y) | Y is (X, Y). */
10883 if (TREE_CODE (arg0) == BIT_AND_EXPR
10884 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10885 return omit_one_operand_loc (loc, type, arg1, TREE_OPERAND (arg0, 0));
10886 /* (X & Y) | X is (Y, X). */
10887 if (TREE_CODE (arg0) == BIT_AND_EXPR
10888 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10889 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10890 return omit_one_operand_loc (loc, type, arg1, TREE_OPERAND (arg0, 1));
10891 /* X | (X & Y) is (Y, X). */
10892 if (TREE_CODE (arg1) == BIT_AND_EXPR
10893 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
10894 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
10895 return omit_one_operand_loc (loc, type, arg0, TREE_OPERAND (arg1, 1));
10896 /* X | (Y & X) is (Y, X). */
10897 if (TREE_CODE (arg1) == BIT_AND_EXPR
10898 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10899 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10900 return omit_one_operand_loc (loc, type, arg0, TREE_OPERAND (arg1, 0));
10902 /* (X & ~Y) | (~X & Y) is X ^ Y */
10903 if (TREE_CODE (arg0) == BIT_AND_EXPR
10904 && TREE_CODE (arg1) == BIT_AND_EXPR)
10906 tree a0, a1, l0, l1, n0, n1;
10908 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10909 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10911 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10912 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10914 n0 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l0);
10915 n1 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l1);
10917 if ((operand_equal_p (n0, a0, 0)
10918 && operand_equal_p (n1, a1, 0))
10919 || (operand_equal_p (n0, a1, 0)
10920 && operand_equal_p (n1, a0, 0)))
10921 return fold_build2_loc (loc, BIT_XOR_EXPR, type, l0, n1);
10924 t1 = distribute_bit_expr (loc, code, type, arg0, arg1);
10925 if (t1 != NULL_TREE)
10926 return t1;
10928 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
10930 This results in more efficient code for machines without a NAND
10931 instruction. Combine will canonicalize to the first form
10932 which will allow use of NAND instructions provided by the
10933 backend if they exist. */
10934 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10935 && TREE_CODE (arg1) == BIT_NOT_EXPR)
10937 return
10938 fold_build1_loc (loc, BIT_NOT_EXPR, type,
10939 build2 (BIT_AND_EXPR, type,
10940 fold_convert_loc (loc, type,
10941 TREE_OPERAND (arg0, 0)),
10942 fold_convert_loc (loc, type,
10943 TREE_OPERAND (arg1, 0))));
10946 /* See if this can be simplified into a rotate first. If that
10947 is unsuccessful continue in the association code. */
10948 goto bit_rotate;
10950 case BIT_XOR_EXPR:
10951 if (integer_zerop (arg1))
10952 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10953 if (integer_all_onesp (arg1))
10954 return fold_build1_loc (loc, BIT_NOT_EXPR, type, op0);
10955 if (operand_equal_p (arg0, arg1, 0))
10956 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10958 /* ~X ^ X is -1. */
10959 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10960 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10962 t1 = build_zero_cst (type);
10963 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
10964 return omit_one_operand_loc (loc, type, t1, arg1);
10967 /* X ^ ~X is -1. */
10968 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10969 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10971 t1 = build_zero_cst (type);
10972 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
10973 return omit_one_operand_loc (loc, type, t1, arg0);
10976 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
10977 with a constant, and the two constants have no bits in common,
10978 we should treat this as a BIT_IOR_EXPR since this may produce more
10979 simplifications. */
10980 if (TREE_CODE (arg0) == BIT_AND_EXPR
10981 && TREE_CODE (arg1) == BIT_AND_EXPR
10982 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10983 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
10984 && integer_zerop (const_binop (BIT_AND_EXPR,
10985 TREE_OPERAND (arg0, 1),
10986 TREE_OPERAND (arg1, 1))))
10988 code = BIT_IOR_EXPR;
10989 goto bit_ior;
10992 /* (X | Y) ^ X -> Y & ~ X*/
10993 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10994 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10996 tree t2 = TREE_OPERAND (arg0, 1);
10997 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg1),
10998 arg1);
10999 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
11000 fold_convert_loc (loc, type, t2),
11001 fold_convert_loc (loc, type, t1));
11002 return t1;
11005 /* (Y | X) ^ X -> Y & ~ X*/
11006 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11007 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11009 tree t2 = TREE_OPERAND (arg0, 0);
11010 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg1),
11011 arg1);
11012 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
11013 fold_convert_loc (loc, type, t2),
11014 fold_convert_loc (loc, type, t1));
11015 return t1;
11018 /* X ^ (X | Y) -> Y & ~ X*/
11019 if (TREE_CODE (arg1) == BIT_IOR_EXPR
11020 && operand_equal_p (TREE_OPERAND (arg1, 0), arg0, 0))
11022 tree t2 = TREE_OPERAND (arg1, 1);
11023 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg0),
11024 arg0);
11025 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
11026 fold_convert_loc (loc, type, t2),
11027 fold_convert_loc (loc, type, t1));
11028 return t1;
11031 /* X ^ (Y | X) -> Y & ~ X*/
11032 if (TREE_CODE (arg1) == BIT_IOR_EXPR
11033 && operand_equal_p (TREE_OPERAND (arg1, 1), arg0, 0))
11035 tree t2 = TREE_OPERAND (arg1, 0);
11036 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg0),
11037 arg0);
11038 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
11039 fold_convert_loc (loc, type, t2),
11040 fold_convert_loc (loc, type, t1));
11041 return t1;
11044 /* Convert ~X ^ ~Y to X ^ Y. */
11045 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11046 && TREE_CODE (arg1) == BIT_NOT_EXPR)
11047 return fold_build2_loc (loc, code, type,
11048 fold_convert_loc (loc, type,
11049 TREE_OPERAND (arg0, 0)),
11050 fold_convert_loc (loc, type,
11051 TREE_OPERAND (arg1, 0)));
11053 /* Convert ~X ^ C to X ^ ~C. */
11054 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11055 && TREE_CODE (arg1) == INTEGER_CST)
11056 return fold_build2_loc (loc, code, type,
11057 fold_convert_loc (loc, type,
11058 TREE_OPERAND (arg0, 0)),
11059 fold_build1_loc (loc, BIT_NOT_EXPR, type, arg1));
11061 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
11062 if (TREE_CODE (arg0) == BIT_AND_EXPR
11063 && integer_onep (TREE_OPERAND (arg0, 1))
11064 && integer_onep (arg1))
11065 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
11066 build_int_cst (TREE_TYPE (arg0), 0));
11068 /* Fold (X & Y) ^ Y as ~X & Y. */
11069 if (TREE_CODE (arg0) == BIT_AND_EXPR
11070 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11072 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11073 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11074 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11075 fold_convert_loc (loc, type, arg1));
11077 /* Fold (X & Y) ^ X as ~Y & X. */
11078 if (TREE_CODE (arg0) == BIT_AND_EXPR
11079 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11080 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
11082 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
11083 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11084 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11085 fold_convert_loc (loc, type, arg1));
11087 /* Fold X ^ (X & Y) as X & ~Y. */
11088 if (TREE_CODE (arg1) == BIT_AND_EXPR
11089 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11091 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
11092 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11093 fold_convert_loc (loc, type, arg0),
11094 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem));
11096 /* Fold X ^ (Y & X) as ~Y & X. */
11097 if (TREE_CODE (arg1) == BIT_AND_EXPR
11098 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
11099 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
11101 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
11102 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11103 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11104 fold_convert_loc (loc, type, arg0));
11107 /* See if this can be simplified into a rotate first. If that
11108 is unsuccessful continue in the association code. */
11109 goto bit_rotate;
11111 case BIT_AND_EXPR:
11112 if (integer_all_onesp (arg1))
11113 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11114 if (integer_zerop (arg1))
11115 return omit_one_operand_loc (loc, type, arg1, arg0);
11116 if (operand_equal_p (arg0, arg1, 0))
11117 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11119 /* ~X & X, (X == 0) & X, and !X & X are always zero. */
11120 if ((TREE_CODE (arg0) == BIT_NOT_EXPR
11121 || TREE_CODE (arg0) == TRUTH_NOT_EXPR
11122 || (TREE_CODE (arg0) == EQ_EXPR
11123 && integer_zerop (TREE_OPERAND (arg0, 1))))
11124 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11125 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
11127 /* X & ~X , X & (X == 0), and X & !X are always zero. */
11128 if ((TREE_CODE (arg1) == BIT_NOT_EXPR
11129 || TREE_CODE (arg1) == TRUTH_NOT_EXPR
11130 || (TREE_CODE (arg1) == EQ_EXPR
11131 && integer_zerop (TREE_OPERAND (arg1, 1))))
11132 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11133 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11135 /* Canonicalize (X | C1) & C2 as (X & C2) | (C1 & C2). */
11136 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11137 && TREE_CODE (arg1) == INTEGER_CST
11138 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11140 tree tmp1 = fold_convert_loc (loc, type, arg1);
11141 tree tmp2 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11142 tree tmp3 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
11143 tmp2 = fold_build2_loc (loc, BIT_AND_EXPR, type, tmp2, tmp1);
11144 tmp3 = fold_build2_loc (loc, BIT_AND_EXPR, type, tmp3, tmp1);
11145 return
11146 fold_convert_loc (loc, type,
11147 fold_build2_loc (loc, BIT_IOR_EXPR,
11148 type, tmp2, tmp3));
11151 /* (X | Y) & Y is (X, Y). */
11152 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11153 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11154 return omit_one_operand_loc (loc, type, arg1, TREE_OPERAND (arg0, 0));
11155 /* (X | Y) & X is (Y, X). */
11156 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11157 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11158 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
11159 return omit_one_operand_loc (loc, type, arg1, TREE_OPERAND (arg0, 1));
11160 /* X & (X | Y) is (Y, X). */
11161 if (TREE_CODE (arg1) == BIT_IOR_EXPR
11162 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
11163 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
11164 return omit_one_operand_loc (loc, type, arg0, TREE_OPERAND (arg1, 1));
11165 /* X & (Y | X) is (Y, X). */
11166 if (TREE_CODE (arg1) == BIT_IOR_EXPR
11167 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
11168 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
11169 return omit_one_operand_loc (loc, type, arg0, TREE_OPERAND (arg1, 0));
11171 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
11172 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11173 && integer_onep (TREE_OPERAND (arg0, 1))
11174 && integer_onep (arg1))
11176 tem = TREE_OPERAND (arg0, 0);
11177 return fold_build2_loc (loc, EQ_EXPR, type,
11178 fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem), tem,
11179 build_int_cst (TREE_TYPE (tem), 1)),
11180 build_int_cst (TREE_TYPE (tem), 0));
11182 /* Fold ~X & 1 as (X & 1) == 0. */
11183 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11184 && integer_onep (arg1))
11186 tem = TREE_OPERAND (arg0, 0);
11187 return fold_build2_loc (loc, EQ_EXPR, type,
11188 fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem), tem,
11189 build_int_cst (TREE_TYPE (tem), 1)),
11190 build_int_cst (TREE_TYPE (tem), 0));
11192 /* Fold !X & 1 as X == 0. */
11193 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11194 && integer_onep (arg1))
11196 tem = TREE_OPERAND (arg0, 0);
11197 return fold_build2_loc (loc, EQ_EXPR, type, tem,
11198 build_int_cst (TREE_TYPE (tem), 0));
11201 /* Fold (X ^ Y) & Y as ~X & Y. */
11202 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11203 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11205 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11206 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11207 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11208 fold_convert_loc (loc, type, arg1));
11210 /* Fold (X ^ Y) & X as ~Y & X. */
11211 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11212 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11213 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
11215 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
11216 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11217 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11218 fold_convert_loc (loc, type, arg1));
11220 /* Fold X & (X ^ Y) as X & ~Y. */
11221 if (TREE_CODE (arg1) == BIT_XOR_EXPR
11222 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11224 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
11225 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11226 fold_convert_loc (loc, type, arg0),
11227 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem));
11229 /* Fold X & (Y ^ X) as ~Y & X. */
11230 if (TREE_CODE (arg1) == BIT_XOR_EXPR
11231 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
11232 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
11234 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
11235 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11236 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11237 fold_convert_loc (loc, type, arg0));
11240 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
11241 ((A & N) + B) & M -> (A + B) & M
11242 Similarly if (N & M) == 0,
11243 ((A | N) + B) & M -> (A + B) & M
11244 and for - instead of + (or unary - instead of +)
11245 and/or ^ instead of |.
11246 If B is constant and (B & M) == 0, fold into A & M. */
11247 if (host_integerp (arg1, 1))
11249 unsigned HOST_WIDE_INT cst1 = tree_low_cst (arg1, 1);
11250 if (~cst1 && (cst1 & (cst1 + 1)) == 0
11251 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
11252 && (TREE_CODE (arg0) == PLUS_EXPR
11253 || TREE_CODE (arg0) == MINUS_EXPR
11254 || TREE_CODE (arg0) == NEGATE_EXPR)
11255 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
11256 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE))
11258 tree pmop[2];
11259 int which = 0;
11260 unsigned HOST_WIDE_INT cst0;
11262 /* Now we know that arg0 is (C + D) or (C - D) or
11263 -C and arg1 (M) is == (1LL << cst) - 1.
11264 Store C into PMOP[0] and D into PMOP[1]. */
11265 pmop[0] = TREE_OPERAND (arg0, 0);
11266 pmop[1] = NULL;
11267 if (TREE_CODE (arg0) != NEGATE_EXPR)
11269 pmop[1] = TREE_OPERAND (arg0, 1);
11270 which = 1;
11273 if (!host_integerp (TYPE_MAX_VALUE (TREE_TYPE (arg0)), 1)
11274 || (tree_low_cst (TYPE_MAX_VALUE (TREE_TYPE (arg0)), 1)
11275 & cst1) != cst1)
11276 which = -1;
11278 for (; which >= 0; which--)
11279 switch (TREE_CODE (pmop[which]))
11281 case BIT_AND_EXPR:
11282 case BIT_IOR_EXPR:
11283 case BIT_XOR_EXPR:
11284 if (TREE_CODE (TREE_OPERAND (pmop[which], 1))
11285 != INTEGER_CST)
11286 break;
11287 /* tree_low_cst not used, because we don't care about
11288 the upper bits. */
11289 cst0 = TREE_INT_CST_LOW (TREE_OPERAND (pmop[which], 1));
11290 cst0 &= cst1;
11291 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR)
11293 if (cst0 != cst1)
11294 break;
11296 else if (cst0 != 0)
11297 break;
11298 /* If C or D is of the form (A & N) where
11299 (N & M) == M, or of the form (A | N) or
11300 (A ^ N) where (N & M) == 0, replace it with A. */
11301 pmop[which] = TREE_OPERAND (pmop[which], 0);
11302 break;
11303 case INTEGER_CST:
11304 /* If C or D is a N where (N & M) == 0, it can be
11305 omitted (assumed 0). */
11306 if ((TREE_CODE (arg0) == PLUS_EXPR
11307 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0))
11308 && (TREE_INT_CST_LOW (pmop[which]) & cst1) == 0)
11309 pmop[which] = NULL;
11310 break;
11311 default:
11312 break;
11315 /* Only build anything new if we optimized one or both arguments
11316 above. */
11317 if (pmop[0] != TREE_OPERAND (arg0, 0)
11318 || (TREE_CODE (arg0) != NEGATE_EXPR
11319 && pmop[1] != TREE_OPERAND (arg0, 1)))
11321 tree utype = TREE_TYPE (arg0);
11322 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
11324 /* Perform the operations in a type that has defined
11325 overflow behavior. */
11326 utype = unsigned_type_for (TREE_TYPE (arg0));
11327 if (pmop[0] != NULL)
11328 pmop[0] = fold_convert_loc (loc, utype, pmop[0]);
11329 if (pmop[1] != NULL)
11330 pmop[1] = fold_convert_loc (loc, utype, pmop[1]);
11333 if (TREE_CODE (arg0) == NEGATE_EXPR)
11334 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]);
11335 else if (TREE_CODE (arg0) == PLUS_EXPR)
11337 if (pmop[0] != NULL && pmop[1] != NULL)
11338 tem = fold_build2_loc (loc, PLUS_EXPR, utype,
11339 pmop[0], pmop[1]);
11340 else if (pmop[0] != NULL)
11341 tem = pmop[0];
11342 else if (pmop[1] != NULL)
11343 tem = pmop[1];
11344 else
11345 return build_int_cst (type, 0);
11347 else if (pmop[0] == NULL)
11348 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]);
11349 else
11350 tem = fold_build2_loc (loc, MINUS_EXPR, utype,
11351 pmop[0], pmop[1]);
11352 /* TEM is now the new binary +, - or unary - replacement. */
11353 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem,
11354 fold_convert_loc (loc, utype, arg1));
11355 return fold_convert_loc (loc, type, tem);
11360 t1 = distribute_bit_expr (loc, code, type, arg0, arg1);
11361 if (t1 != NULL_TREE)
11362 return t1;
11363 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
11364 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
11365 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
11367 unsigned int prec
11368 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
11370 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
11371 && (~TREE_INT_CST_LOW (arg1)
11372 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
11373 return
11374 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11377 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
11379 This results in more efficient code for machines without a NOR
11380 instruction. Combine will canonicalize to the first form
11381 which will allow use of NOR instructions provided by the
11382 backend if they exist. */
11383 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11384 && TREE_CODE (arg1) == BIT_NOT_EXPR)
11386 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
11387 build2 (BIT_IOR_EXPR, type,
11388 fold_convert_loc (loc, type,
11389 TREE_OPERAND (arg0, 0)),
11390 fold_convert_loc (loc, type,
11391 TREE_OPERAND (arg1, 0))));
11394 /* If arg0 is derived from the address of an object or function, we may
11395 be able to fold this expression using the object or function's
11396 alignment. */
11397 if (POINTER_TYPE_P (TREE_TYPE (arg0)) && host_integerp (arg1, 1))
11399 unsigned HOST_WIDE_INT modulus, residue;
11400 unsigned HOST_WIDE_INT low = TREE_INT_CST_LOW (arg1);
11402 modulus = get_pointer_modulus_and_residue (arg0, &residue,
11403 integer_onep (arg1));
11405 /* This works because modulus is a power of 2. If this weren't the
11406 case, we'd have to replace it by its greatest power-of-2
11407 divisor: modulus & -modulus. */
11408 if (low < modulus)
11409 return build_int_cst (type, residue & low);
11412 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
11413 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
11414 if the new mask might be further optimized. */
11415 if ((TREE_CODE (arg0) == LSHIFT_EXPR
11416 || TREE_CODE (arg0) == RSHIFT_EXPR)
11417 && host_integerp (TREE_OPERAND (arg0, 1), 1)
11418 && host_integerp (arg1, TYPE_UNSIGNED (TREE_TYPE (arg1)))
11419 && tree_low_cst (TREE_OPERAND (arg0, 1), 1)
11420 < TYPE_PRECISION (TREE_TYPE (arg0))
11421 && TYPE_PRECISION (TREE_TYPE (arg0)) <= HOST_BITS_PER_WIDE_INT
11422 && tree_low_cst (TREE_OPERAND (arg0, 1), 1) > 0)
11424 unsigned int shiftc = tree_low_cst (TREE_OPERAND (arg0, 1), 1);
11425 unsigned HOST_WIDE_INT mask
11426 = tree_low_cst (arg1, TYPE_UNSIGNED (TREE_TYPE (arg1)));
11427 unsigned HOST_WIDE_INT newmask, zerobits = 0;
11428 tree shift_type = TREE_TYPE (arg0);
11430 if (TREE_CODE (arg0) == LSHIFT_EXPR)
11431 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
11432 else if (TREE_CODE (arg0) == RSHIFT_EXPR
11433 && TYPE_PRECISION (TREE_TYPE (arg0))
11434 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg0))))
11436 unsigned int prec = TYPE_PRECISION (TREE_TYPE (arg0));
11437 tree arg00 = TREE_OPERAND (arg0, 0);
11438 /* See if more bits can be proven as zero because of
11439 zero extension. */
11440 if (TREE_CODE (arg00) == NOP_EXPR
11441 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg00, 0))))
11443 tree inner_type = TREE_TYPE (TREE_OPERAND (arg00, 0));
11444 if (TYPE_PRECISION (inner_type)
11445 == GET_MODE_BITSIZE (TYPE_MODE (inner_type))
11446 && TYPE_PRECISION (inner_type) < prec)
11448 prec = TYPE_PRECISION (inner_type);
11449 /* See if we can shorten the right shift. */
11450 if (shiftc < prec)
11451 shift_type = inner_type;
11454 zerobits = ~(unsigned HOST_WIDE_INT) 0;
11455 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
11456 zerobits <<= prec - shiftc;
11457 /* For arithmetic shift if sign bit could be set, zerobits
11458 can contain actually sign bits, so no transformation is
11459 possible, unless MASK masks them all away. In that
11460 case the shift needs to be converted into logical shift. */
11461 if (!TYPE_UNSIGNED (TREE_TYPE (arg0))
11462 && prec == TYPE_PRECISION (TREE_TYPE (arg0)))
11464 if ((mask & zerobits) == 0)
11465 shift_type = unsigned_type_for (TREE_TYPE (arg0));
11466 else
11467 zerobits = 0;
11471 /* ((X << 16) & 0xff00) is (X, 0). */
11472 if ((mask & zerobits) == mask)
11473 return omit_one_operand_loc (loc, type,
11474 build_int_cst (type, 0), arg0);
11476 newmask = mask | zerobits;
11477 if (newmask != mask && (newmask & (newmask + 1)) == 0)
11479 unsigned int prec;
11481 /* Only do the transformation if NEWMASK is some integer
11482 mode's mask. */
11483 for (prec = BITS_PER_UNIT;
11484 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
11485 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
11486 break;
11487 if (prec < HOST_BITS_PER_WIDE_INT
11488 || newmask == ~(unsigned HOST_WIDE_INT) 0)
11490 tree newmaskt;
11492 if (shift_type != TREE_TYPE (arg0))
11494 tem = fold_build2_loc (loc, TREE_CODE (arg0), shift_type,
11495 fold_convert_loc (loc, shift_type,
11496 TREE_OPERAND (arg0, 0)),
11497 TREE_OPERAND (arg0, 1));
11498 tem = fold_convert_loc (loc, type, tem);
11500 else
11501 tem = op0;
11502 newmaskt = build_int_cst_type (TREE_TYPE (op1), newmask);
11503 if (!tree_int_cst_equal (newmaskt, arg1))
11504 return fold_build2_loc (loc, BIT_AND_EXPR, type, tem, newmaskt);
11509 goto associate;
11511 case RDIV_EXPR:
11512 /* Don't touch a floating-point divide by zero unless the mode
11513 of the constant can represent infinity. */
11514 if (TREE_CODE (arg1) == REAL_CST
11515 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
11516 && real_zerop (arg1))
11517 return NULL_TREE;
11519 /* Optimize A / A to 1.0 if we don't care about
11520 NaNs or Infinities. Skip the transformation
11521 for non-real operands. */
11522 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg0))
11523 && ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
11524 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg0)))
11525 && operand_equal_p (arg0, arg1, 0))
11527 tree r = build_real (TREE_TYPE (arg0), dconst1);
11529 return omit_two_operands_loc (loc, type, r, arg0, arg1);
11532 /* The complex version of the above A / A optimization. */
11533 if (COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
11534 && operand_equal_p (arg0, arg1, 0))
11536 tree elem_type = TREE_TYPE (TREE_TYPE (arg0));
11537 if (! HONOR_NANS (TYPE_MODE (elem_type))
11538 && ! HONOR_INFINITIES (TYPE_MODE (elem_type)))
11540 tree r = build_real (elem_type, dconst1);
11541 /* omit_two_operands will call fold_convert for us. */
11542 return omit_two_operands_loc (loc, type, r, arg0, arg1);
11546 /* (-A) / (-B) -> A / B */
11547 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
11548 return fold_build2_loc (loc, RDIV_EXPR, type,
11549 TREE_OPERAND (arg0, 0),
11550 negate_expr (arg1));
11551 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
11552 return fold_build2_loc (loc, RDIV_EXPR, type,
11553 negate_expr (arg0),
11554 TREE_OPERAND (arg1, 0));
11556 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
11557 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
11558 && real_onep (arg1))
11559 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11561 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
11562 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
11563 && real_minus_onep (arg1))
11564 return non_lvalue_loc (loc, fold_convert_loc (loc, type,
11565 negate_expr (arg0)));
11567 /* If ARG1 is a constant, we can convert this to a multiply by the
11568 reciprocal. This does not have the same rounding properties,
11569 so only do this if -freciprocal-math. We can actually
11570 always safely do it if ARG1 is a power of two, but it's hard to
11571 tell if it is or not in a portable manner. */
11572 if (TREE_CODE (arg1) == REAL_CST)
11574 if (flag_reciprocal_math
11575 && 0 != (tem = const_binop (code, build_real (type, dconst1),
11576 arg1)))
11577 return fold_build2_loc (loc, MULT_EXPR, type, arg0, tem);
11578 /* Find the reciprocal if optimizing and the result is exact. */
11579 if (optimize)
11581 REAL_VALUE_TYPE r;
11582 r = TREE_REAL_CST (arg1);
11583 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
11585 tem = build_real (type, r);
11586 return fold_build2_loc (loc, MULT_EXPR, type,
11587 fold_convert_loc (loc, type, arg0), tem);
11591 /* Convert A/B/C to A/(B*C). */
11592 if (flag_reciprocal_math
11593 && TREE_CODE (arg0) == RDIV_EXPR)
11594 return fold_build2_loc (loc, RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
11595 fold_build2_loc (loc, MULT_EXPR, type,
11596 TREE_OPERAND (arg0, 1), arg1));
11598 /* Convert A/(B/C) to (A/B)*C. */
11599 if (flag_reciprocal_math
11600 && TREE_CODE (arg1) == RDIV_EXPR)
11601 return fold_build2_loc (loc, MULT_EXPR, type,
11602 fold_build2_loc (loc, RDIV_EXPR, type, arg0,
11603 TREE_OPERAND (arg1, 0)),
11604 TREE_OPERAND (arg1, 1));
11606 /* Convert C1/(X*C2) into (C1/C2)/X. */
11607 if (flag_reciprocal_math
11608 && TREE_CODE (arg1) == MULT_EXPR
11609 && TREE_CODE (arg0) == REAL_CST
11610 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
11612 tree tem = const_binop (RDIV_EXPR, arg0,
11613 TREE_OPERAND (arg1, 1));
11614 if (tem)
11615 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
11616 TREE_OPERAND (arg1, 0));
11619 if (flag_unsafe_math_optimizations)
11621 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
11622 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
11624 /* Optimize sin(x)/cos(x) as tan(x). */
11625 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
11626 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
11627 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
11628 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
11629 CALL_EXPR_ARG (arg1, 0), 0))
11631 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
11633 if (tanfn != NULL_TREE)
11634 return build_call_expr_loc (loc, tanfn, 1, CALL_EXPR_ARG (arg0, 0));
11637 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
11638 if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
11639 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
11640 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
11641 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
11642 CALL_EXPR_ARG (arg1, 0), 0))
11644 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
11646 if (tanfn != NULL_TREE)
11648 tree tmp = build_call_expr_loc (loc, tanfn, 1,
11649 CALL_EXPR_ARG (arg0, 0));
11650 return fold_build2_loc (loc, RDIV_EXPR, type,
11651 build_real (type, dconst1), tmp);
11655 /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
11656 NaNs or Infinities. */
11657 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_TAN)
11658 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_TANF)
11659 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_TANL)))
11661 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11662 tree arg01 = CALL_EXPR_ARG (arg1, 0);
11664 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
11665 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
11666 && operand_equal_p (arg00, arg01, 0))
11668 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
11670 if (cosfn != NULL_TREE)
11671 return build_call_expr_loc (loc, cosfn, 1, arg00);
11675 /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
11676 NaNs or Infinities. */
11677 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_SIN)
11678 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_SINF)
11679 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_SINL)))
11681 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11682 tree arg01 = CALL_EXPR_ARG (arg1, 0);
11684 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
11685 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
11686 && operand_equal_p (arg00, arg01, 0))
11688 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
11690 if (cosfn != NULL_TREE)
11692 tree tmp = build_call_expr_loc (loc, cosfn, 1, arg00);
11693 return fold_build2_loc (loc, RDIV_EXPR, type,
11694 build_real (type, dconst1),
11695 tmp);
11700 /* Optimize pow(x,c)/x as pow(x,c-1). */
11701 if (fcode0 == BUILT_IN_POW
11702 || fcode0 == BUILT_IN_POWF
11703 || fcode0 == BUILT_IN_POWL)
11705 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11706 tree arg01 = CALL_EXPR_ARG (arg0, 1);
11707 if (TREE_CODE (arg01) == REAL_CST
11708 && !TREE_OVERFLOW (arg01)
11709 && operand_equal_p (arg1, arg00, 0))
11711 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
11712 REAL_VALUE_TYPE c;
11713 tree arg;
11715 c = TREE_REAL_CST (arg01);
11716 real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
11717 arg = build_real (type, c);
11718 return build_call_expr_loc (loc, powfn, 2, arg1, arg);
11722 /* Optimize a/root(b/c) into a*root(c/b). */
11723 if (BUILTIN_ROOT_P (fcode1))
11725 tree rootarg = CALL_EXPR_ARG (arg1, 0);
11727 if (TREE_CODE (rootarg) == RDIV_EXPR)
11729 tree rootfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11730 tree b = TREE_OPERAND (rootarg, 0);
11731 tree c = TREE_OPERAND (rootarg, 1);
11733 tree tmp = fold_build2_loc (loc, RDIV_EXPR, type, c, b);
11735 tmp = build_call_expr_loc (loc, rootfn, 1, tmp);
11736 return fold_build2_loc (loc, MULT_EXPR, type, arg0, tmp);
11740 /* Optimize x/expN(y) into x*expN(-y). */
11741 if (BUILTIN_EXPONENT_P (fcode1))
11743 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11744 tree arg = negate_expr (CALL_EXPR_ARG (arg1, 0));
11745 arg1 = build_call_expr_loc (loc,
11746 expfn, 1,
11747 fold_convert_loc (loc, type, arg));
11748 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11751 /* Optimize x/pow(y,z) into x*pow(y,-z). */
11752 if (fcode1 == BUILT_IN_POW
11753 || fcode1 == BUILT_IN_POWF
11754 || fcode1 == BUILT_IN_POWL)
11756 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11757 tree arg10 = CALL_EXPR_ARG (arg1, 0);
11758 tree arg11 = CALL_EXPR_ARG (arg1, 1);
11759 tree neg11 = fold_convert_loc (loc, type,
11760 negate_expr (arg11));
11761 arg1 = build_call_expr_loc (loc, powfn, 2, arg10, neg11);
11762 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11765 return NULL_TREE;
11767 case TRUNC_DIV_EXPR:
11768 /* Optimize (X & (-A)) / A where A is a power of 2,
11769 to X >> log2(A) */
11770 if (TREE_CODE (arg0) == BIT_AND_EXPR
11771 && !TYPE_UNSIGNED (type) && TREE_CODE (arg1) == INTEGER_CST
11772 && integer_pow2p (arg1) && tree_int_cst_sgn (arg1) > 0)
11774 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (arg1),
11775 arg1, TREE_OPERAND (arg0, 1));
11776 if (sum && integer_zerop (sum)) {
11777 unsigned long pow2;
11779 if (TREE_INT_CST_LOW (arg1))
11780 pow2 = exact_log2 (TREE_INT_CST_LOW (arg1));
11781 else
11782 pow2 = exact_log2 (TREE_INT_CST_HIGH (arg1))
11783 + HOST_BITS_PER_WIDE_INT;
11785 return fold_build2_loc (loc, RSHIFT_EXPR, type,
11786 TREE_OPERAND (arg0, 0),
11787 build_int_cst (integer_type_node, pow2));
11791 /* Fall thru */
11793 case FLOOR_DIV_EXPR:
11794 /* Simplify A / (B << N) where A and B are positive and B is
11795 a power of 2, to A >> (N + log2(B)). */
11796 strict_overflow_p = false;
11797 if (TREE_CODE (arg1) == LSHIFT_EXPR
11798 && (TYPE_UNSIGNED (type)
11799 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
11801 tree sval = TREE_OPERAND (arg1, 0);
11802 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
11804 tree sh_cnt = TREE_OPERAND (arg1, 1);
11805 unsigned long pow2;
11807 if (TREE_INT_CST_LOW (sval))
11808 pow2 = exact_log2 (TREE_INT_CST_LOW (sval));
11809 else
11810 pow2 = exact_log2 (TREE_INT_CST_HIGH (sval))
11811 + HOST_BITS_PER_WIDE_INT;
11813 if (strict_overflow_p)
11814 fold_overflow_warning (("assuming signed overflow does not "
11815 "occur when simplifying A / (B << N)"),
11816 WARN_STRICT_OVERFLOW_MISC);
11818 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
11819 sh_cnt,
11820 build_int_cst (TREE_TYPE (sh_cnt),
11821 pow2));
11822 return fold_build2_loc (loc, RSHIFT_EXPR, type,
11823 fold_convert_loc (loc, type, arg0), sh_cnt);
11827 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
11828 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
11829 if (INTEGRAL_TYPE_P (type)
11830 && TYPE_UNSIGNED (type)
11831 && code == FLOOR_DIV_EXPR)
11832 return fold_build2_loc (loc, TRUNC_DIV_EXPR, type, op0, op1);
11834 /* Fall thru */
11836 case ROUND_DIV_EXPR:
11837 case CEIL_DIV_EXPR:
11838 case EXACT_DIV_EXPR:
11839 if (integer_onep (arg1))
11840 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11841 if (integer_zerop (arg1))
11842 return NULL_TREE;
11843 /* X / -1 is -X. */
11844 if (!TYPE_UNSIGNED (type)
11845 && TREE_CODE (arg1) == INTEGER_CST
11846 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
11847 && TREE_INT_CST_HIGH (arg1) == -1)
11848 return fold_convert_loc (loc, type, negate_expr (arg0));
11850 /* Convert -A / -B to A / B when the type is signed and overflow is
11851 undefined. */
11852 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11853 && TREE_CODE (arg0) == NEGATE_EXPR
11854 && negate_expr_p (arg1))
11856 if (INTEGRAL_TYPE_P (type))
11857 fold_overflow_warning (("assuming signed overflow does not occur "
11858 "when distributing negation across "
11859 "division"),
11860 WARN_STRICT_OVERFLOW_MISC);
11861 return fold_build2_loc (loc, code, type,
11862 fold_convert_loc (loc, type,
11863 TREE_OPERAND (arg0, 0)),
11864 fold_convert_loc (loc, type,
11865 negate_expr (arg1)));
11867 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11868 && TREE_CODE (arg1) == NEGATE_EXPR
11869 && negate_expr_p (arg0))
11871 if (INTEGRAL_TYPE_P (type))
11872 fold_overflow_warning (("assuming signed overflow does not occur "
11873 "when distributing negation across "
11874 "division"),
11875 WARN_STRICT_OVERFLOW_MISC);
11876 return fold_build2_loc (loc, code, type,
11877 fold_convert_loc (loc, type,
11878 negate_expr (arg0)),
11879 fold_convert_loc (loc, type,
11880 TREE_OPERAND (arg1, 0)));
11883 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
11884 operation, EXACT_DIV_EXPR.
11886 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
11887 At one time others generated faster code, it's not clear if they do
11888 after the last round to changes to the DIV code in expmed.c. */
11889 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
11890 && multiple_of_p (type, arg0, arg1))
11891 return fold_build2_loc (loc, EXACT_DIV_EXPR, type, arg0, arg1);
11893 strict_overflow_p = false;
11894 if (TREE_CODE (arg1) == INTEGER_CST
11895 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11896 &strict_overflow_p)))
11898 if (strict_overflow_p)
11899 fold_overflow_warning (("assuming signed overflow does not occur "
11900 "when simplifying division"),
11901 WARN_STRICT_OVERFLOW_MISC);
11902 return fold_convert_loc (loc, type, tem);
11905 return NULL_TREE;
11907 case CEIL_MOD_EXPR:
11908 case FLOOR_MOD_EXPR:
11909 case ROUND_MOD_EXPR:
11910 case TRUNC_MOD_EXPR:
11911 /* X % 1 is always zero, but be sure to preserve any side
11912 effects in X. */
11913 if (integer_onep (arg1))
11914 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11916 /* X % 0, return X % 0 unchanged so that we can get the
11917 proper warnings and errors. */
11918 if (integer_zerop (arg1))
11919 return NULL_TREE;
11921 /* 0 % X is always zero, but be sure to preserve any side
11922 effects in X. Place this after checking for X == 0. */
11923 if (integer_zerop (arg0))
11924 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
11926 /* X % -1 is zero. */
11927 if (!TYPE_UNSIGNED (type)
11928 && TREE_CODE (arg1) == INTEGER_CST
11929 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
11930 && TREE_INT_CST_HIGH (arg1) == -1)
11931 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11933 /* X % -C is the same as X % C. */
11934 if (code == TRUNC_MOD_EXPR
11935 && !TYPE_UNSIGNED (type)
11936 && TREE_CODE (arg1) == INTEGER_CST
11937 && !TREE_OVERFLOW (arg1)
11938 && TREE_INT_CST_HIGH (arg1) < 0
11939 && !TYPE_OVERFLOW_TRAPS (type)
11940 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
11941 && !sign_bit_p (arg1, arg1))
11942 return fold_build2_loc (loc, code, type,
11943 fold_convert_loc (loc, type, arg0),
11944 fold_convert_loc (loc, type,
11945 negate_expr (arg1)));
11947 /* X % -Y is the same as X % Y. */
11948 if (code == TRUNC_MOD_EXPR
11949 && !TYPE_UNSIGNED (type)
11950 && TREE_CODE (arg1) == NEGATE_EXPR
11951 && !TYPE_OVERFLOW_TRAPS (type))
11952 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, arg0),
11953 fold_convert_loc (loc, type,
11954 TREE_OPERAND (arg1, 0)));
11956 strict_overflow_p = false;
11957 if (TREE_CODE (arg1) == INTEGER_CST
11958 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11959 &strict_overflow_p)))
11961 if (strict_overflow_p)
11962 fold_overflow_warning (("assuming signed overflow does not occur "
11963 "when simplifying modulus"),
11964 WARN_STRICT_OVERFLOW_MISC);
11965 return fold_convert_loc (loc, type, tem);
11968 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
11969 i.e. "X % C" into "X & (C - 1)", if X and C are positive. */
11970 if ((code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR)
11971 && (TYPE_UNSIGNED (type)
11972 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
11974 tree c = arg1;
11975 /* Also optimize A % (C << N) where C is a power of 2,
11976 to A & ((C << N) - 1). */
11977 if (TREE_CODE (arg1) == LSHIFT_EXPR)
11978 c = TREE_OPERAND (arg1, 0);
11980 if (integer_pow2p (c) && tree_int_cst_sgn (c) > 0)
11982 tree mask
11983 = fold_build2_loc (loc, MINUS_EXPR, TREE_TYPE (arg1), arg1,
11984 build_int_cst (TREE_TYPE (arg1), 1));
11985 if (strict_overflow_p)
11986 fold_overflow_warning (("assuming signed overflow does not "
11987 "occur when simplifying "
11988 "X % (power of two)"),
11989 WARN_STRICT_OVERFLOW_MISC);
11990 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11991 fold_convert_loc (loc, type, arg0),
11992 fold_convert_loc (loc, type, mask));
11996 return NULL_TREE;
11998 case LROTATE_EXPR:
11999 case RROTATE_EXPR:
12000 if (integer_all_onesp (arg0))
12001 return omit_one_operand_loc (loc, type, arg0, arg1);
12002 goto shift;
12004 case RSHIFT_EXPR:
12005 /* Optimize -1 >> x for arithmetic right shifts. */
12006 if (integer_all_onesp (arg0) && !TYPE_UNSIGNED (type)
12007 && tree_expr_nonnegative_p (arg1))
12008 return omit_one_operand_loc (loc, type, arg0, arg1);
12009 /* ... fall through ... */
12011 case LSHIFT_EXPR:
12012 shift:
12013 if (integer_zerop (arg1))
12014 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12015 if (integer_zerop (arg0))
12016 return omit_one_operand_loc (loc, type, arg0, arg1);
12018 /* Since negative shift count is not well-defined,
12019 don't try to compute it in the compiler. */
12020 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
12021 return NULL_TREE;
12023 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
12024 if (TREE_CODE (op0) == code && host_integerp (arg1, false)
12025 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
12026 && host_integerp (TREE_OPERAND (arg0, 1), false)
12027 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
12029 HOST_WIDE_INT low = (TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1))
12030 + TREE_INT_CST_LOW (arg1));
12032 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
12033 being well defined. */
12034 if (low >= TYPE_PRECISION (type))
12036 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
12037 low = low % TYPE_PRECISION (type);
12038 else if (TYPE_UNSIGNED (type) || code == LSHIFT_EXPR)
12039 return omit_one_operand_loc (loc, type, build_int_cst (type, 0),
12040 TREE_OPERAND (arg0, 0));
12041 else
12042 low = TYPE_PRECISION (type) - 1;
12045 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
12046 build_int_cst (type, low));
12049 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
12050 into x & ((unsigned)-1 >> c) for unsigned types. */
12051 if (((code == LSHIFT_EXPR && TREE_CODE (arg0) == RSHIFT_EXPR)
12052 || (TYPE_UNSIGNED (type)
12053 && code == RSHIFT_EXPR && TREE_CODE (arg0) == LSHIFT_EXPR))
12054 && host_integerp (arg1, false)
12055 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
12056 && host_integerp (TREE_OPERAND (arg0, 1), false)
12057 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
12059 HOST_WIDE_INT low0 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
12060 HOST_WIDE_INT low1 = TREE_INT_CST_LOW (arg1);
12061 tree lshift;
12062 tree arg00;
12064 if (low0 == low1)
12066 arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
12068 lshift = build_int_cst (type, -1);
12069 lshift = int_const_binop (code, lshift, arg1);
12071 return fold_build2_loc (loc, BIT_AND_EXPR, type, arg00, lshift);
12075 /* Rewrite an LROTATE_EXPR by a constant into an
12076 RROTATE_EXPR by a new constant. */
12077 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
12079 tree tem = build_int_cst (TREE_TYPE (arg1),
12080 TYPE_PRECISION (type));
12081 tem = const_binop (MINUS_EXPR, tem, arg1);
12082 return fold_build2_loc (loc, RROTATE_EXPR, type, op0, tem);
12085 /* If we have a rotate of a bit operation with the rotate count and
12086 the second operand of the bit operation both constant,
12087 permute the two operations. */
12088 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
12089 && (TREE_CODE (arg0) == BIT_AND_EXPR
12090 || TREE_CODE (arg0) == BIT_IOR_EXPR
12091 || TREE_CODE (arg0) == BIT_XOR_EXPR)
12092 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12093 return fold_build2_loc (loc, TREE_CODE (arg0), type,
12094 fold_build2_loc (loc, code, type,
12095 TREE_OPERAND (arg0, 0), arg1),
12096 fold_build2_loc (loc, code, type,
12097 TREE_OPERAND (arg0, 1), arg1));
12099 /* Two consecutive rotates adding up to the precision of the
12100 type can be ignored. */
12101 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
12102 && TREE_CODE (arg0) == RROTATE_EXPR
12103 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
12104 && TREE_INT_CST_HIGH (arg1) == 0
12105 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
12106 && ((TREE_INT_CST_LOW (arg1)
12107 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
12108 == (unsigned int) TYPE_PRECISION (type)))
12109 return TREE_OPERAND (arg0, 0);
12111 /* Fold (X & C2) << C1 into (X << C1) & (C2 << C1)
12112 (X & C2) >> C1 into (X >> C1) & (C2 >> C1)
12113 if the latter can be further optimized. */
12114 if ((code == LSHIFT_EXPR || code == RSHIFT_EXPR)
12115 && TREE_CODE (arg0) == BIT_AND_EXPR
12116 && TREE_CODE (arg1) == INTEGER_CST
12117 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12119 tree mask = fold_build2_loc (loc, code, type,
12120 fold_convert_loc (loc, type,
12121 TREE_OPERAND (arg0, 1)),
12122 arg1);
12123 tree shift = fold_build2_loc (loc, code, type,
12124 fold_convert_loc (loc, type,
12125 TREE_OPERAND (arg0, 0)),
12126 arg1);
12127 tem = fold_binary_loc (loc, BIT_AND_EXPR, type, shift, mask);
12128 if (tem)
12129 return tem;
12132 return NULL_TREE;
12134 case MIN_EXPR:
12135 if (operand_equal_p (arg0, arg1, 0))
12136 return omit_one_operand_loc (loc, type, arg0, arg1);
12137 if (INTEGRAL_TYPE_P (type)
12138 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
12139 return omit_one_operand_loc (loc, type, arg1, arg0);
12140 tem = fold_minmax (loc, MIN_EXPR, type, arg0, arg1);
12141 if (tem)
12142 return tem;
12143 goto associate;
12145 case MAX_EXPR:
12146 if (operand_equal_p (arg0, arg1, 0))
12147 return omit_one_operand_loc (loc, type, arg0, arg1);
12148 if (INTEGRAL_TYPE_P (type)
12149 && TYPE_MAX_VALUE (type)
12150 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
12151 return omit_one_operand_loc (loc, type, arg1, arg0);
12152 tem = fold_minmax (loc, MAX_EXPR, type, arg0, arg1);
12153 if (tem)
12154 return tem;
12155 goto associate;
12157 case TRUTH_ANDIF_EXPR:
12158 /* Note that the operands of this must be ints
12159 and their values must be 0 or 1.
12160 ("true" is a fixed value perhaps depending on the language.) */
12161 /* If first arg is constant zero, return it. */
12162 if (integer_zerop (arg0))
12163 return fold_convert_loc (loc, type, arg0);
12164 case TRUTH_AND_EXPR:
12165 /* If either arg is constant true, drop it. */
12166 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12167 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
12168 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
12169 /* Preserve sequence points. */
12170 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
12171 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12172 /* If second arg is constant zero, result is zero, but first arg
12173 must be evaluated. */
12174 if (integer_zerop (arg1))
12175 return omit_one_operand_loc (loc, type, arg1, arg0);
12176 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
12177 case will be handled here. */
12178 if (integer_zerop (arg0))
12179 return omit_one_operand_loc (loc, type, arg0, arg1);
12181 /* !X && X is always false. */
12182 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12183 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12184 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
12185 /* X && !X is always false. */
12186 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12187 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12188 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
12190 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
12191 means A >= Y && A != MAX, but in this case we know that
12192 A < X <= MAX. */
12194 if (!TREE_SIDE_EFFECTS (arg0)
12195 && !TREE_SIDE_EFFECTS (arg1))
12197 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
12198 if (tem && !operand_equal_p (tem, arg0, 0))
12199 return fold_build2_loc (loc, code, type, tem, arg1);
12201 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
12202 if (tem && !operand_equal_p (tem, arg1, 0))
12203 return fold_build2_loc (loc, code, type, arg0, tem);
12206 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
12207 != NULL_TREE)
12208 return tem;
12210 return NULL_TREE;
12212 case TRUTH_ORIF_EXPR:
12213 /* Note that the operands of this must be ints
12214 and their values must be 0 or true.
12215 ("true" is a fixed value perhaps depending on the language.) */
12216 /* If first arg is constant true, return it. */
12217 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12218 return fold_convert_loc (loc, type, arg0);
12219 case TRUTH_OR_EXPR:
12220 /* If either arg is constant zero, drop it. */
12221 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
12222 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
12223 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
12224 /* Preserve sequence points. */
12225 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
12226 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12227 /* If second arg is constant true, result is true, but we must
12228 evaluate first arg. */
12229 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
12230 return omit_one_operand_loc (loc, type, arg1, arg0);
12231 /* Likewise for first arg, but note this only occurs here for
12232 TRUTH_OR_EXPR. */
12233 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12234 return omit_one_operand_loc (loc, type, arg0, arg1);
12236 /* !X || X is always true. */
12237 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12238 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12239 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
12240 /* X || !X is always true. */
12241 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12242 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12243 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12245 /* (X && !Y) || (!X && Y) is X ^ Y */
12246 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
12247 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
12249 tree a0, a1, l0, l1, n0, n1;
12251 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
12252 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
12254 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
12255 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
12257 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
12258 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
12260 if ((operand_equal_p (n0, a0, 0)
12261 && operand_equal_p (n1, a1, 0))
12262 || (operand_equal_p (n0, a1, 0)
12263 && operand_equal_p (n1, a0, 0)))
12264 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
12267 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
12268 != NULL_TREE)
12269 return tem;
12271 return NULL_TREE;
12273 case TRUTH_XOR_EXPR:
12274 /* If the second arg is constant zero, drop it. */
12275 if (integer_zerop (arg1))
12276 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12277 /* If the second arg is constant true, this is a logical inversion. */
12278 if (integer_onep (arg1))
12280 /* Only call invert_truthvalue if operand is a truth value. */
12281 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
12282 tem = fold_build1_loc (loc, TRUTH_NOT_EXPR, TREE_TYPE (arg0), arg0);
12283 else
12284 tem = invert_truthvalue_loc (loc, arg0);
12285 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
12287 /* Identical arguments cancel to zero. */
12288 if (operand_equal_p (arg0, arg1, 0))
12289 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
12291 /* !X ^ X is always true. */
12292 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12293 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12294 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
12296 /* X ^ !X is always true. */
12297 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12298 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12299 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12301 return NULL_TREE;
12303 case EQ_EXPR:
12304 case NE_EXPR:
12305 STRIP_NOPS (arg0);
12306 STRIP_NOPS (arg1);
12308 tem = fold_comparison (loc, code, type, op0, op1);
12309 if (tem != NULL_TREE)
12310 return tem;
12312 /* bool_var != 0 becomes bool_var. */
12313 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
12314 && code == NE_EXPR)
12315 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12317 /* bool_var == 1 becomes bool_var. */
12318 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
12319 && code == EQ_EXPR)
12320 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12322 /* bool_var != 1 becomes !bool_var. */
12323 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
12324 && code == NE_EXPR)
12325 return fold_convert_loc (loc, type,
12326 fold_build1_loc (loc, TRUTH_NOT_EXPR,
12327 TREE_TYPE (arg0), arg0));
12329 /* bool_var == 0 becomes !bool_var. */
12330 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
12331 && code == EQ_EXPR)
12332 return fold_convert_loc (loc, type,
12333 fold_build1_loc (loc, TRUTH_NOT_EXPR,
12334 TREE_TYPE (arg0), arg0));
12336 /* !exp != 0 becomes !exp */
12337 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
12338 && code == NE_EXPR)
12339 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12341 /* If this is an equality comparison of the address of two non-weak,
12342 unaliased symbols neither of which are extern (since we do not
12343 have access to attributes for externs), then we know the result. */
12344 if (TREE_CODE (arg0) == ADDR_EXPR
12345 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0, 0))
12346 && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
12347 && ! lookup_attribute ("alias",
12348 DECL_ATTRIBUTES (TREE_OPERAND (arg0, 0)))
12349 && ! DECL_EXTERNAL (TREE_OPERAND (arg0, 0))
12350 && TREE_CODE (arg1) == ADDR_EXPR
12351 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg1, 0))
12352 && ! DECL_WEAK (TREE_OPERAND (arg1, 0))
12353 && ! lookup_attribute ("alias",
12354 DECL_ATTRIBUTES (TREE_OPERAND (arg1, 0)))
12355 && ! DECL_EXTERNAL (TREE_OPERAND (arg1, 0)))
12357 /* We know that we're looking at the address of two
12358 non-weak, unaliased, static _DECL nodes.
12360 It is both wasteful and incorrect to call operand_equal_p
12361 to compare the two ADDR_EXPR nodes. It is wasteful in that
12362 all we need to do is test pointer equality for the arguments
12363 to the two ADDR_EXPR nodes. It is incorrect to use
12364 operand_equal_p as that function is NOT equivalent to a
12365 C equality test. It can in fact return false for two
12366 objects which would test as equal using the C equality
12367 operator. */
12368 bool equal = TREE_OPERAND (arg0, 0) == TREE_OPERAND (arg1, 0);
12369 return constant_boolean_node (equal
12370 ? code == EQ_EXPR : code != EQ_EXPR,
12371 type);
12374 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
12375 a MINUS_EXPR of a constant, we can convert it into a comparison with
12376 a revised constant as long as no overflow occurs. */
12377 if (TREE_CODE (arg1) == INTEGER_CST
12378 && (TREE_CODE (arg0) == PLUS_EXPR
12379 || TREE_CODE (arg0) == MINUS_EXPR)
12380 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
12381 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
12382 ? MINUS_EXPR : PLUS_EXPR,
12383 fold_convert_loc (loc, TREE_TYPE (arg0),
12384 arg1),
12385 TREE_OPERAND (arg0, 1)))
12386 && !TREE_OVERFLOW (tem))
12387 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
12389 /* Similarly for a NEGATE_EXPR. */
12390 if (TREE_CODE (arg0) == NEGATE_EXPR
12391 && TREE_CODE (arg1) == INTEGER_CST
12392 && 0 != (tem = negate_expr (fold_convert_loc (loc, TREE_TYPE (arg0),
12393 arg1)))
12394 && TREE_CODE (tem) == INTEGER_CST
12395 && !TREE_OVERFLOW (tem))
12396 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
12398 /* Similarly for a BIT_XOR_EXPR; X ^ C1 == C2 is X == (C1 ^ C2). */
12399 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12400 && TREE_CODE (arg1) == INTEGER_CST
12401 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12402 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
12403 fold_build2_loc (loc, BIT_XOR_EXPR, TREE_TYPE (arg0),
12404 fold_convert_loc (loc,
12405 TREE_TYPE (arg0),
12406 arg1),
12407 TREE_OPERAND (arg0, 1)));
12409 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
12410 if ((TREE_CODE (arg0) == PLUS_EXPR
12411 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
12412 || TREE_CODE (arg0) == MINUS_EXPR)
12413 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
12414 0)),
12415 arg1, 0)
12416 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
12417 || POINTER_TYPE_P (TREE_TYPE (arg0))))
12419 tree val = TREE_OPERAND (arg0, 1);
12420 return omit_two_operands_loc (loc, type,
12421 fold_build2_loc (loc, code, type,
12422 val,
12423 build_int_cst (TREE_TYPE (val),
12424 0)),
12425 TREE_OPERAND (arg0, 0), arg1);
12428 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
12429 if (TREE_CODE (arg0) == MINUS_EXPR
12430 && TREE_CODE (TREE_OPERAND (arg0, 0)) == INTEGER_CST
12431 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
12432 1)),
12433 arg1, 0)
12434 && (TREE_INT_CST_LOW (TREE_OPERAND (arg0, 0)) & 1) == 1)
12436 return omit_two_operands_loc (loc, type,
12437 code == NE_EXPR
12438 ? boolean_true_node : boolean_false_node,
12439 TREE_OPERAND (arg0, 1), arg1);
12442 /* If we have X - Y == 0, we can convert that to X == Y and similarly
12443 for !=. Don't do this for ordered comparisons due to overflow. */
12444 if (TREE_CODE (arg0) == MINUS_EXPR
12445 && integer_zerop (arg1))
12446 return fold_build2_loc (loc, code, type,
12447 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
12449 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
12450 if (TREE_CODE (arg0) == ABS_EXPR
12451 && (integer_zerop (arg1) || real_zerop (arg1)))
12452 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), arg1);
12454 /* If this is an EQ or NE comparison with zero and ARG0 is
12455 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
12456 two operations, but the latter can be done in one less insn
12457 on machines that have only two-operand insns or on which a
12458 constant cannot be the first operand. */
12459 if (TREE_CODE (arg0) == BIT_AND_EXPR
12460 && integer_zerop (arg1))
12462 tree arg00 = TREE_OPERAND (arg0, 0);
12463 tree arg01 = TREE_OPERAND (arg0, 1);
12464 if (TREE_CODE (arg00) == LSHIFT_EXPR
12465 && integer_onep (TREE_OPERAND (arg00, 0)))
12467 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
12468 arg01, TREE_OPERAND (arg00, 1));
12469 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
12470 build_int_cst (TREE_TYPE (arg0), 1));
12471 return fold_build2_loc (loc, code, type,
12472 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
12473 arg1);
12475 else if (TREE_CODE (arg01) == LSHIFT_EXPR
12476 && integer_onep (TREE_OPERAND (arg01, 0)))
12478 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
12479 arg00, TREE_OPERAND (arg01, 1));
12480 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
12481 build_int_cst (TREE_TYPE (arg0), 1));
12482 return fold_build2_loc (loc, code, type,
12483 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
12484 arg1);
12488 /* If this is an NE or EQ comparison of zero against the result of a
12489 signed MOD operation whose second operand is a power of 2, make
12490 the MOD operation unsigned since it is simpler and equivalent. */
12491 if (integer_zerop (arg1)
12492 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
12493 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
12494 || TREE_CODE (arg0) == CEIL_MOD_EXPR
12495 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
12496 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
12497 && integer_pow2p (TREE_OPERAND (arg0, 1)))
12499 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
12500 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
12501 fold_convert_loc (loc, newtype,
12502 TREE_OPERAND (arg0, 0)),
12503 fold_convert_loc (loc, newtype,
12504 TREE_OPERAND (arg0, 1)));
12506 return fold_build2_loc (loc, code, type, newmod,
12507 fold_convert_loc (loc, newtype, arg1));
12510 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
12511 C1 is a valid shift constant, and C2 is a power of two, i.e.
12512 a single bit. */
12513 if (TREE_CODE (arg0) == BIT_AND_EXPR
12514 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
12515 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
12516 == INTEGER_CST
12517 && integer_pow2p (TREE_OPERAND (arg0, 1))
12518 && integer_zerop (arg1))
12520 tree itype = TREE_TYPE (arg0);
12521 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (itype);
12522 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
12524 /* Check for a valid shift count. */
12525 if (TREE_INT_CST_HIGH (arg001) == 0
12526 && TREE_INT_CST_LOW (arg001) < prec)
12528 tree arg01 = TREE_OPERAND (arg0, 1);
12529 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
12530 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
12531 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
12532 can be rewritten as (X & (C2 << C1)) != 0. */
12533 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
12535 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
12536 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
12537 return fold_build2_loc (loc, code, type, tem,
12538 fold_convert_loc (loc, itype, arg1));
12540 /* Otherwise, for signed (arithmetic) shifts,
12541 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
12542 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
12543 else if (!TYPE_UNSIGNED (itype))
12544 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
12545 arg000, build_int_cst (itype, 0));
12546 /* Otherwise, of unsigned (logical) shifts,
12547 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
12548 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
12549 else
12550 return omit_one_operand_loc (loc, type,
12551 code == EQ_EXPR ? integer_one_node
12552 : integer_zero_node,
12553 arg000);
12557 /* If we have (A & C) == C where C is a power of 2, convert this into
12558 (A & C) != 0. Similarly for NE_EXPR. */
12559 if (TREE_CODE (arg0) == BIT_AND_EXPR
12560 && integer_pow2p (TREE_OPERAND (arg0, 1))
12561 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
12562 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12563 arg0, fold_convert_loc (loc, TREE_TYPE (arg0),
12564 integer_zero_node));
12566 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
12567 bit, then fold the expression into A < 0 or A >= 0. */
12568 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1, type);
12569 if (tem)
12570 return tem;
12572 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
12573 Similarly for NE_EXPR. */
12574 if (TREE_CODE (arg0) == BIT_AND_EXPR
12575 && TREE_CODE (arg1) == INTEGER_CST
12576 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12578 tree notc = fold_build1_loc (loc, BIT_NOT_EXPR,
12579 TREE_TYPE (TREE_OPERAND (arg0, 1)),
12580 TREE_OPERAND (arg0, 1));
12581 tree dandnotc
12582 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
12583 fold_convert_loc (loc, TREE_TYPE (arg0), arg1),
12584 notc);
12585 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
12586 if (integer_nonzerop (dandnotc))
12587 return omit_one_operand_loc (loc, type, rslt, arg0);
12590 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
12591 Similarly for NE_EXPR. */
12592 if (TREE_CODE (arg0) == BIT_IOR_EXPR
12593 && TREE_CODE (arg1) == INTEGER_CST
12594 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12596 tree notd = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg1), arg1);
12597 tree candnotd
12598 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
12599 TREE_OPERAND (arg0, 1),
12600 fold_convert_loc (loc, TREE_TYPE (arg0), notd));
12601 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
12602 if (integer_nonzerop (candnotd))
12603 return omit_one_operand_loc (loc, type, rslt, arg0);
12606 /* If this is a comparison of a field, we may be able to simplify it. */
12607 if ((TREE_CODE (arg0) == COMPONENT_REF
12608 || TREE_CODE (arg0) == BIT_FIELD_REF)
12609 /* Handle the constant case even without -O
12610 to make sure the warnings are given. */
12611 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
12613 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
12614 if (t1)
12615 return t1;
12618 /* Optimize comparisons of strlen vs zero to a compare of the
12619 first character of the string vs zero. To wit,
12620 strlen(ptr) == 0 => *ptr == 0
12621 strlen(ptr) != 0 => *ptr != 0
12622 Other cases should reduce to one of these two (or a constant)
12623 due to the return value of strlen being unsigned. */
12624 if (TREE_CODE (arg0) == CALL_EXPR
12625 && integer_zerop (arg1))
12627 tree fndecl = get_callee_fndecl (arg0);
12629 if (fndecl
12630 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
12631 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
12632 && call_expr_nargs (arg0) == 1
12633 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
12635 tree iref = build_fold_indirect_ref_loc (loc,
12636 CALL_EXPR_ARG (arg0, 0));
12637 return fold_build2_loc (loc, code, type, iref,
12638 build_int_cst (TREE_TYPE (iref), 0));
12642 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
12643 of X. Similarly fold (X >> C) == 0 into X >= 0. */
12644 if (TREE_CODE (arg0) == RSHIFT_EXPR
12645 && integer_zerop (arg1)
12646 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12648 tree arg00 = TREE_OPERAND (arg0, 0);
12649 tree arg01 = TREE_OPERAND (arg0, 1);
12650 tree itype = TREE_TYPE (arg00);
12651 if (TREE_INT_CST_HIGH (arg01) == 0
12652 && TREE_INT_CST_LOW (arg01)
12653 == (unsigned HOST_WIDE_INT) (TYPE_PRECISION (itype) - 1))
12655 if (TYPE_UNSIGNED (itype))
12657 itype = signed_type_for (itype);
12658 arg00 = fold_convert_loc (loc, itype, arg00);
12660 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
12661 type, arg00, build_int_cst (itype, 0));
12665 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
12666 if (integer_zerop (arg1)
12667 && TREE_CODE (arg0) == BIT_XOR_EXPR)
12668 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
12669 TREE_OPERAND (arg0, 1));
12671 /* (X ^ Y) == Y becomes X == 0. We know that Y has no side-effects. */
12672 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12673 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
12674 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
12675 build_int_cst (TREE_TYPE (arg0), 0));
12676 /* Likewise (X ^ Y) == X becomes Y == 0. X has no side-effects. */
12677 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12678 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
12679 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
12680 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 1),
12681 build_int_cst (TREE_TYPE (arg0), 0));
12683 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
12684 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12685 && TREE_CODE (arg1) == INTEGER_CST
12686 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12687 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
12688 fold_build2_loc (loc, BIT_XOR_EXPR, TREE_TYPE (arg1),
12689 TREE_OPERAND (arg0, 1), arg1));
12691 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
12692 (X & C) == 0 when C is a single bit. */
12693 if (TREE_CODE (arg0) == BIT_AND_EXPR
12694 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
12695 && integer_zerop (arg1)
12696 && integer_pow2p (TREE_OPERAND (arg0, 1)))
12698 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
12699 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
12700 TREE_OPERAND (arg0, 1));
12701 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
12702 type, tem,
12703 fold_convert_loc (loc, TREE_TYPE (arg0),
12704 arg1));
12707 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
12708 constant C is a power of two, i.e. a single bit. */
12709 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12710 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
12711 && integer_zerop (arg1)
12712 && integer_pow2p (TREE_OPERAND (arg0, 1))
12713 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12714 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
12716 tree arg00 = TREE_OPERAND (arg0, 0);
12717 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12718 arg00, build_int_cst (TREE_TYPE (arg00), 0));
12721 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
12722 when is C is a power of two, i.e. a single bit. */
12723 if (TREE_CODE (arg0) == BIT_AND_EXPR
12724 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
12725 && integer_zerop (arg1)
12726 && integer_pow2p (TREE_OPERAND (arg0, 1))
12727 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12728 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
12730 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
12731 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
12732 arg000, TREE_OPERAND (arg0, 1));
12733 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12734 tem, build_int_cst (TREE_TYPE (tem), 0));
12737 if (integer_zerop (arg1)
12738 && tree_expr_nonzero_p (arg0))
12740 tree res = constant_boolean_node (code==NE_EXPR, type);
12741 return omit_one_operand_loc (loc, type, res, arg0);
12744 /* Fold -X op -Y as X op Y, where op is eq/ne. */
12745 if (TREE_CODE (arg0) == NEGATE_EXPR
12746 && TREE_CODE (arg1) == NEGATE_EXPR)
12747 return fold_build2_loc (loc, code, type,
12748 TREE_OPERAND (arg0, 0),
12749 fold_convert_loc (loc, TREE_TYPE (arg0),
12750 TREE_OPERAND (arg1, 0)));
12752 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
12753 if (TREE_CODE (arg0) == BIT_AND_EXPR
12754 && TREE_CODE (arg1) == BIT_AND_EXPR)
12756 tree arg00 = TREE_OPERAND (arg0, 0);
12757 tree arg01 = TREE_OPERAND (arg0, 1);
12758 tree arg10 = TREE_OPERAND (arg1, 0);
12759 tree arg11 = TREE_OPERAND (arg1, 1);
12760 tree itype = TREE_TYPE (arg0);
12762 if (operand_equal_p (arg01, arg11, 0))
12763 return fold_build2_loc (loc, code, type,
12764 fold_build2_loc (loc, BIT_AND_EXPR, itype,
12765 fold_build2_loc (loc,
12766 BIT_XOR_EXPR, itype,
12767 arg00, arg10),
12768 arg01),
12769 build_int_cst (itype, 0));
12771 if (operand_equal_p (arg01, arg10, 0))
12772 return fold_build2_loc (loc, code, type,
12773 fold_build2_loc (loc, BIT_AND_EXPR, itype,
12774 fold_build2_loc (loc,
12775 BIT_XOR_EXPR, itype,
12776 arg00, arg11),
12777 arg01),
12778 build_int_cst (itype, 0));
12780 if (operand_equal_p (arg00, arg11, 0))
12781 return fold_build2_loc (loc, code, type,
12782 fold_build2_loc (loc, BIT_AND_EXPR, itype,
12783 fold_build2_loc (loc,
12784 BIT_XOR_EXPR, itype,
12785 arg01, arg10),
12786 arg00),
12787 build_int_cst (itype, 0));
12789 if (operand_equal_p (arg00, arg10, 0))
12790 return fold_build2_loc (loc, code, type,
12791 fold_build2_loc (loc, BIT_AND_EXPR, itype,
12792 fold_build2_loc (loc,
12793 BIT_XOR_EXPR, itype,
12794 arg01, arg11),
12795 arg00),
12796 build_int_cst (itype, 0));
12799 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12800 && TREE_CODE (arg1) == BIT_XOR_EXPR)
12802 tree arg00 = TREE_OPERAND (arg0, 0);
12803 tree arg01 = TREE_OPERAND (arg0, 1);
12804 tree arg10 = TREE_OPERAND (arg1, 0);
12805 tree arg11 = TREE_OPERAND (arg1, 1);
12806 tree itype = TREE_TYPE (arg0);
12808 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
12809 operand_equal_p guarantees no side-effects so we don't need
12810 to use omit_one_operand on Z. */
12811 if (operand_equal_p (arg01, arg11, 0))
12812 return fold_build2_loc (loc, code, type, arg00,
12813 fold_convert_loc (loc, TREE_TYPE (arg00),
12814 arg10));
12815 if (operand_equal_p (arg01, arg10, 0))
12816 return fold_build2_loc (loc, code, type, arg00,
12817 fold_convert_loc (loc, TREE_TYPE (arg00),
12818 arg11));
12819 if (operand_equal_p (arg00, arg11, 0))
12820 return fold_build2_loc (loc, code, type, arg01,
12821 fold_convert_loc (loc, TREE_TYPE (arg01),
12822 arg10));
12823 if (operand_equal_p (arg00, arg10, 0))
12824 return fold_build2_loc (loc, code, type, arg01,
12825 fold_convert_loc (loc, TREE_TYPE (arg01),
12826 arg11));
12828 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
12829 if (TREE_CODE (arg01) == INTEGER_CST
12830 && TREE_CODE (arg11) == INTEGER_CST)
12832 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
12833 fold_convert_loc (loc, itype, arg11));
12834 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
12835 return fold_build2_loc (loc, code, type, tem,
12836 fold_convert_loc (loc, itype, arg10));
12840 /* Attempt to simplify equality/inequality comparisons of complex
12841 values. Only lower the comparison if the result is known or
12842 can be simplified to a single scalar comparison. */
12843 if ((TREE_CODE (arg0) == COMPLEX_EXPR
12844 || TREE_CODE (arg0) == COMPLEX_CST)
12845 && (TREE_CODE (arg1) == COMPLEX_EXPR
12846 || TREE_CODE (arg1) == COMPLEX_CST))
12848 tree real0, imag0, real1, imag1;
12849 tree rcond, icond;
12851 if (TREE_CODE (arg0) == COMPLEX_EXPR)
12853 real0 = TREE_OPERAND (arg0, 0);
12854 imag0 = TREE_OPERAND (arg0, 1);
12856 else
12858 real0 = TREE_REALPART (arg0);
12859 imag0 = TREE_IMAGPART (arg0);
12862 if (TREE_CODE (arg1) == COMPLEX_EXPR)
12864 real1 = TREE_OPERAND (arg1, 0);
12865 imag1 = TREE_OPERAND (arg1, 1);
12867 else
12869 real1 = TREE_REALPART (arg1);
12870 imag1 = TREE_IMAGPART (arg1);
12873 rcond = fold_binary_loc (loc, code, type, real0, real1);
12874 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
12876 if (integer_zerop (rcond))
12878 if (code == EQ_EXPR)
12879 return omit_two_operands_loc (loc, type, boolean_false_node,
12880 imag0, imag1);
12881 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
12883 else
12885 if (code == NE_EXPR)
12886 return omit_two_operands_loc (loc, type, boolean_true_node,
12887 imag0, imag1);
12888 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
12892 icond = fold_binary_loc (loc, code, type, imag0, imag1);
12893 if (icond && TREE_CODE (icond) == INTEGER_CST)
12895 if (integer_zerop (icond))
12897 if (code == EQ_EXPR)
12898 return omit_two_operands_loc (loc, type, boolean_false_node,
12899 real0, real1);
12900 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
12902 else
12904 if (code == NE_EXPR)
12905 return omit_two_operands_loc (loc, type, boolean_true_node,
12906 real0, real1);
12907 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
12912 return NULL_TREE;
12914 case LT_EXPR:
12915 case GT_EXPR:
12916 case LE_EXPR:
12917 case GE_EXPR:
12918 tem = fold_comparison (loc, code, type, op0, op1);
12919 if (tem != NULL_TREE)
12920 return tem;
12922 /* Transform comparisons of the form X +- C CMP X. */
12923 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
12924 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
12925 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
12926 && !HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0))))
12927 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
12928 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
12930 tree arg01 = TREE_OPERAND (arg0, 1);
12931 enum tree_code code0 = TREE_CODE (arg0);
12932 int is_positive;
12934 if (TREE_CODE (arg01) == REAL_CST)
12935 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
12936 else
12937 is_positive = tree_int_cst_sgn (arg01);
12939 /* (X - c) > X becomes false. */
12940 if (code == GT_EXPR
12941 && ((code0 == MINUS_EXPR && is_positive >= 0)
12942 || (code0 == PLUS_EXPR && is_positive <= 0)))
12944 if (TREE_CODE (arg01) == INTEGER_CST
12945 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12946 fold_overflow_warning (("assuming signed overflow does not "
12947 "occur when assuming that (X - c) > X "
12948 "is always false"),
12949 WARN_STRICT_OVERFLOW_ALL);
12950 return constant_boolean_node (0, type);
12953 /* Likewise (X + c) < X becomes false. */
12954 if (code == LT_EXPR
12955 && ((code0 == PLUS_EXPR && is_positive >= 0)
12956 || (code0 == MINUS_EXPR && is_positive <= 0)))
12958 if (TREE_CODE (arg01) == INTEGER_CST
12959 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12960 fold_overflow_warning (("assuming signed overflow does not "
12961 "occur when assuming that "
12962 "(X + c) < X is always false"),
12963 WARN_STRICT_OVERFLOW_ALL);
12964 return constant_boolean_node (0, type);
12967 /* Convert (X - c) <= X to true. */
12968 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
12969 && code == LE_EXPR
12970 && ((code0 == MINUS_EXPR && is_positive >= 0)
12971 || (code0 == PLUS_EXPR && is_positive <= 0)))
12973 if (TREE_CODE (arg01) == INTEGER_CST
12974 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12975 fold_overflow_warning (("assuming signed overflow does not "
12976 "occur when assuming that "
12977 "(X - c) <= X is always true"),
12978 WARN_STRICT_OVERFLOW_ALL);
12979 return constant_boolean_node (1, type);
12982 /* Convert (X + c) >= X to true. */
12983 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
12984 && code == GE_EXPR
12985 && ((code0 == PLUS_EXPR && is_positive >= 0)
12986 || (code0 == MINUS_EXPR && is_positive <= 0)))
12988 if (TREE_CODE (arg01) == INTEGER_CST
12989 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12990 fold_overflow_warning (("assuming signed overflow does not "
12991 "occur when assuming that "
12992 "(X + c) >= X is always true"),
12993 WARN_STRICT_OVERFLOW_ALL);
12994 return constant_boolean_node (1, type);
12997 if (TREE_CODE (arg01) == INTEGER_CST)
12999 /* Convert X + c > X and X - c < X to true for integers. */
13000 if (code == GT_EXPR
13001 && ((code0 == PLUS_EXPR && is_positive > 0)
13002 || (code0 == MINUS_EXPR && is_positive < 0)))
13004 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
13005 fold_overflow_warning (("assuming signed overflow does "
13006 "not occur when assuming that "
13007 "(X + c) > X is always true"),
13008 WARN_STRICT_OVERFLOW_ALL);
13009 return constant_boolean_node (1, type);
13012 if (code == LT_EXPR
13013 && ((code0 == MINUS_EXPR && is_positive > 0)
13014 || (code0 == PLUS_EXPR && is_positive < 0)))
13016 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
13017 fold_overflow_warning (("assuming signed overflow does "
13018 "not occur when assuming that "
13019 "(X - c) < X is always true"),
13020 WARN_STRICT_OVERFLOW_ALL);
13021 return constant_boolean_node (1, type);
13024 /* Convert X + c <= X and X - c >= X to false for integers. */
13025 if (code == LE_EXPR
13026 && ((code0 == PLUS_EXPR && is_positive > 0)
13027 || (code0 == MINUS_EXPR && is_positive < 0)))
13029 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
13030 fold_overflow_warning (("assuming signed overflow does "
13031 "not occur when assuming that "
13032 "(X + c) <= X is always false"),
13033 WARN_STRICT_OVERFLOW_ALL);
13034 return constant_boolean_node (0, type);
13037 if (code == GE_EXPR
13038 && ((code0 == MINUS_EXPR && is_positive > 0)
13039 || (code0 == PLUS_EXPR && is_positive < 0)))
13041 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
13042 fold_overflow_warning (("assuming signed overflow does "
13043 "not occur when assuming that "
13044 "(X - c) >= X is always false"),
13045 WARN_STRICT_OVERFLOW_ALL);
13046 return constant_boolean_node (0, type);
13051 /* Comparisons with the highest or lowest possible integer of
13052 the specified precision will have known values. */
13054 tree arg1_type = TREE_TYPE (arg1);
13055 unsigned int width = TYPE_PRECISION (arg1_type);
13057 if (TREE_CODE (arg1) == INTEGER_CST
13058 && width <= 2 * HOST_BITS_PER_WIDE_INT
13059 && (INTEGRAL_TYPE_P (arg1_type) || POINTER_TYPE_P (arg1_type)))
13061 HOST_WIDE_INT signed_max_hi;
13062 unsigned HOST_WIDE_INT signed_max_lo;
13063 unsigned HOST_WIDE_INT max_hi, max_lo, min_hi, min_lo;
13065 if (width <= HOST_BITS_PER_WIDE_INT)
13067 signed_max_lo = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
13068 - 1;
13069 signed_max_hi = 0;
13070 max_hi = 0;
13072 if (TYPE_UNSIGNED (arg1_type))
13074 max_lo = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
13075 min_lo = 0;
13076 min_hi = 0;
13078 else
13080 max_lo = signed_max_lo;
13081 min_lo = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
13082 min_hi = -1;
13085 else
13087 width -= HOST_BITS_PER_WIDE_INT;
13088 signed_max_lo = -1;
13089 signed_max_hi = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
13090 - 1;
13091 max_lo = -1;
13092 min_lo = 0;
13094 if (TYPE_UNSIGNED (arg1_type))
13096 max_hi = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
13097 min_hi = 0;
13099 else
13101 max_hi = signed_max_hi;
13102 min_hi = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
13106 if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1) == max_hi
13107 && TREE_INT_CST_LOW (arg1) == max_lo)
13108 switch (code)
13110 case GT_EXPR:
13111 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
13113 case GE_EXPR:
13114 return fold_build2_loc (loc, EQ_EXPR, type, op0, op1);
13116 case LE_EXPR:
13117 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
13119 case LT_EXPR:
13120 return fold_build2_loc (loc, NE_EXPR, type, op0, op1);
13122 /* The GE_EXPR and LT_EXPR cases above are not normally
13123 reached because of previous transformations. */
13125 default:
13126 break;
13128 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
13129 == max_hi
13130 && TREE_INT_CST_LOW (arg1) == max_lo - 1)
13131 switch (code)
13133 case GT_EXPR:
13134 arg1 = const_binop (PLUS_EXPR, arg1,
13135 build_int_cst (TREE_TYPE (arg1), 1));
13136 return fold_build2_loc (loc, EQ_EXPR, type,
13137 fold_convert_loc (loc,
13138 TREE_TYPE (arg1), arg0),
13139 arg1);
13140 case LE_EXPR:
13141 arg1 = const_binop (PLUS_EXPR, arg1,
13142 build_int_cst (TREE_TYPE (arg1), 1));
13143 return fold_build2_loc (loc, NE_EXPR, type,
13144 fold_convert_loc (loc, TREE_TYPE (arg1),
13145 arg0),
13146 arg1);
13147 default:
13148 break;
13150 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
13151 == min_hi
13152 && TREE_INT_CST_LOW (arg1) == min_lo)
13153 switch (code)
13155 case LT_EXPR:
13156 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
13158 case LE_EXPR:
13159 return fold_build2_loc (loc, EQ_EXPR, type, op0, op1);
13161 case GE_EXPR:
13162 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
13164 case GT_EXPR:
13165 return fold_build2_loc (loc, NE_EXPR, type, op0, op1);
13167 default:
13168 break;
13170 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
13171 == min_hi
13172 && TREE_INT_CST_LOW (arg1) == min_lo + 1)
13173 switch (code)
13175 case GE_EXPR:
13176 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node);
13177 return fold_build2_loc (loc, NE_EXPR, type,
13178 fold_convert_loc (loc,
13179 TREE_TYPE (arg1), arg0),
13180 arg1);
13181 case LT_EXPR:
13182 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node);
13183 return fold_build2_loc (loc, EQ_EXPR, type,
13184 fold_convert_loc (loc, TREE_TYPE (arg1),
13185 arg0),
13186 arg1);
13187 default:
13188 break;
13191 else if (TREE_INT_CST_HIGH (arg1) == signed_max_hi
13192 && TREE_INT_CST_LOW (arg1) == signed_max_lo
13193 && TYPE_UNSIGNED (arg1_type)
13194 /* We will flip the signedness of the comparison operator
13195 associated with the mode of arg1, so the sign bit is
13196 specified by this mode. Check that arg1 is the signed
13197 max associated with this sign bit. */
13198 && width == GET_MODE_BITSIZE (TYPE_MODE (arg1_type))
13199 /* signed_type does not work on pointer types. */
13200 && INTEGRAL_TYPE_P (arg1_type))
13202 /* The following case also applies to X < signed_max+1
13203 and X >= signed_max+1 because previous transformations. */
13204 if (code == LE_EXPR || code == GT_EXPR)
13206 tree st;
13207 st = signed_type_for (TREE_TYPE (arg1));
13208 return fold_build2_loc (loc,
13209 code == LE_EXPR ? GE_EXPR : LT_EXPR,
13210 type, fold_convert_loc (loc, st, arg0),
13211 build_int_cst (st, 0));
13217 /* If we are comparing an ABS_EXPR with a constant, we can
13218 convert all the cases into explicit comparisons, but they may
13219 well not be faster than doing the ABS and one comparison.
13220 But ABS (X) <= C is a range comparison, which becomes a subtraction
13221 and a comparison, and is probably faster. */
13222 if (code == LE_EXPR
13223 && TREE_CODE (arg1) == INTEGER_CST
13224 && TREE_CODE (arg0) == ABS_EXPR
13225 && ! TREE_SIDE_EFFECTS (arg0)
13226 && (0 != (tem = negate_expr (arg1)))
13227 && TREE_CODE (tem) == INTEGER_CST
13228 && !TREE_OVERFLOW (tem))
13229 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
13230 build2 (GE_EXPR, type,
13231 TREE_OPERAND (arg0, 0), tem),
13232 build2 (LE_EXPR, type,
13233 TREE_OPERAND (arg0, 0), arg1));
13235 /* Convert ABS_EXPR<x> >= 0 to true. */
13236 strict_overflow_p = false;
13237 if (code == GE_EXPR
13238 && (integer_zerop (arg1)
13239 || (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
13240 && real_zerop (arg1)))
13241 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
13243 if (strict_overflow_p)
13244 fold_overflow_warning (("assuming signed overflow does not occur "
13245 "when simplifying comparison of "
13246 "absolute value and zero"),
13247 WARN_STRICT_OVERFLOW_CONDITIONAL);
13248 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
13251 /* Convert ABS_EXPR<x> < 0 to false. */
13252 strict_overflow_p = false;
13253 if (code == LT_EXPR
13254 && (integer_zerop (arg1) || real_zerop (arg1))
13255 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
13257 if (strict_overflow_p)
13258 fold_overflow_warning (("assuming signed overflow does not occur "
13259 "when simplifying comparison of "
13260 "absolute value and zero"),
13261 WARN_STRICT_OVERFLOW_CONDITIONAL);
13262 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
13265 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
13266 and similarly for >= into !=. */
13267 if ((code == LT_EXPR || code == GE_EXPR)
13268 && TYPE_UNSIGNED (TREE_TYPE (arg0))
13269 && TREE_CODE (arg1) == LSHIFT_EXPR
13270 && integer_onep (TREE_OPERAND (arg1, 0)))
13271 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
13272 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
13273 TREE_OPERAND (arg1, 1)),
13274 build_int_cst (TREE_TYPE (arg0), 0));
13276 if ((code == LT_EXPR || code == GE_EXPR)
13277 && TYPE_UNSIGNED (TREE_TYPE (arg0))
13278 && CONVERT_EXPR_P (arg1)
13279 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
13280 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
13282 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
13283 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
13284 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
13285 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
13286 build_int_cst (TREE_TYPE (arg0), 0));
13289 return NULL_TREE;
13291 case UNORDERED_EXPR:
13292 case ORDERED_EXPR:
13293 case UNLT_EXPR:
13294 case UNLE_EXPR:
13295 case UNGT_EXPR:
13296 case UNGE_EXPR:
13297 case UNEQ_EXPR:
13298 case LTGT_EXPR:
13299 if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
13301 t1 = fold_relational_const (code, type, arg0, arg1);
13302 if (t1 != NULL_TREE)
13303 return t1;
13306 /* If the first operand is NaN, the result is constant. */
13307 if (TREE_CODE (arg0) == REAL_CST
13308 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
13309 && (code != LTGT_EXPR || ! flag_trapping_math))
13311 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
13312 ? integer_zero_node
13313 : integer_one_node;
13314 return omit_one_operand_loc (loc, type, t1, arg1);
13317 /* If the second operand is NaN, the result is constant. */
13318 if (TREE_CODE (arg1) == REAL_CST
13319 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
13320 && (code != LTGT_EXPR || ! flag_trapping_math))
13322 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
13323 ? integer_zero_node
13324 : integer_one_node;
13325 return omit_one_operand_loc (loc, type, t1, arg0);
13328 /* Simplify unordered comparison of something with itself. */
13329 if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
13330 && operand_equal_p (arg0, arg1, 0))
13331 return constant_boolean_node (1, type);
13333 if (code == LTGT_EXPR
13334 && !flag_trapping_math
13335 && operand_equal_p (arg0, arg1, 0))
13336 return constant_boolean_node (0, type);
13338 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
13340 tree targ0 = strip_float_extensions (arg0);
13341 tree targ1 = strip_float_extensions (arg1);
13342 tree newtype = TREE_TYPE (targ0);
13344 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
13345 newtype = TREE_TYPE (targ1);
13347 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
13348 return fold_build2_loc (loc, code, type,
13349 fold_convert_loc (loc, newtype, targ0),
13350 fold_convert_loc (loc, newtype, targ1));
13353 return NULL_TREE;
13355 case COMPOUND_EXPR:
13356 /* When pedantic, a compound expression can be neither an lvalue
13357 nor an integer constant expression. */
13358 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
13359 return NULL_TREE;
13360 /* Don't let (0, 0) be null pointer constant. */
13361 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
13362 : fold_convert_loc (loc, type, arg1);
13363 return pedantic_non_lvalue_loc (loc, tem);
13365 case COMPLEX_EXPR:
13366 if ((TREE_CODE (arg0) == REAL_CST
13367 && TREE_CODE (arg1) == REAL_CST)
13368 || (TREE_CODE (arg0) == INTEGER_CST
13369 && TREE_CODE (arg1) == INTEGER_CST))
13370 return build_complex (type, arg0, arg1);
13371 if (TREE_CODE (arg0) == REALPART_EXPR
13372 && TREE_CODE (arg1) == IMAGPART_EXPR
13373 && TREE_TYPE (TREE_OPERAND (arg0, 0)) == type
13374 && operand_equal_p (TREE_OPERAND (arg0, 0),
13375 TREE_OPERAND (arg1, 0), 0))
13376 return omit_one_operand_loc (loc, type, TREE_OPERAND (arg0, 0),
13377 TREE_OPERAND (arg1, 0));
13378 return NULL_TREE;
13380 case ASSERT_EXPR:
13381 /* An ASSERT_EXPR should never be passed to fold_binary. */
13382 gcc_unreachable ();
13384 default:
13385 return NULL_TREE;
13386 } /* switch (code) */
13389 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
13390 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
13391 of GOTO_EXPR. */
13393 static tree
13394 contains_label_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
13396 switch (TREE_CODE (*tp))
13398 case LABEL_EXPR:
13399 return *tp;
13401 case GOTO_EXPR:
13402 *walk_subtrees = 0;
13404 /* ... fall through ... */
13406 default:
13407 return NULL_TREE;
13411 /* Return whether the sub-tree ST contains a label which is accessible from
13412 outside the sub-tree. */
13414 static bool
13415 contains_label_p (tree st)
13417 return
13418 (walk_tree_without_duplicates (&st, contains_label_1 , NULL) != NULL_TREE);
13421 /* Fold a ternary expression of code CODE and type TYPE with operands
13422 OP0, OP1, and OP2. Return the folded expression if folding is
13423 successful. Otherwise, return NULL_TREE. */
13425 tree
13426 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
13427 tree op0, tree op1, tree op2)
13429 tree tem;
13430 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
13431 enum tree_code_class kind = TREE_CODE_CLASS (code);
13433 gcc_assert (IS_EXPR_CODE_CLASS (kind)
13434 && TREE_CODE_LENGTH (code) == 3);
13436 /* Strip any conversions that don't change the mode. This is safe
13437 for every expression, except for a comparison expression because
13438 its signedness is derived from its operands. So, in the latter
13439 case, only strip conversions that don't change the signedness.
13441 Note that this is done as an internal manipulation within the
13442 constant folder, in order to find the simplest representation of
13443 the arguments so that their form can be studied. In any cases,
13444 the appropriate type conversions should be put back in the tree
13445 that will get out of the constant folder. */
13446 if (op0)
13448 arg0 = op0;
13449 STRIP_NOPS (arg0);
13452 if (op1)
13454 arg1 = op1;
13455 STRIP_NOPS (arg1);
13458 if (op2)
13460 arg2 = op2;
13461 STRIP_NOPS (arg2);
13464 switch (code)
13466 case COMPONENT_REF:
13467 if (TREE_CODE (arg0) == CONSTRUCTOR
13468 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
13470 unsigned HOST_WIDE_INT idx;
13471 tree field, value;
13472 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
13473 if (field == arg1)
13474 return value;
13476 return NULL_TREE;
13478 case COND_EXPR:
13479 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
13480 so all simple results must be passed through pedantic_non_lvalue. */
13481 if (TREE_CODE (arg0) == INTEGER_CST)
13483 tree unused_op = integer_zerop (arg0) ? op1 : op2;
13484 tem = integer_zerop (arg0) ? op2 : op1;
13485 /* Only optimize constant conditions when the selected branch
13486 has the same type as the COND_EXPR. This avoids optimizing
13487 away "c ? x : throw", where the throw has a void type.
13488 Avoid throwing away that operand which contains label. */
13489 if ((!TREE_SIDE_EFFECTS (unused_op)
13490 || !contains_label_p (unused_op))
13491 && (! VOID_TYPE_P (TREE_TYPE (tem))
13492 || VOID_TYPE_P (type)))
13493 return pedantic_non_lvalue_loc (loc, tem);
13494 return NULL_TREE;
13496 if (operand_equal_p (arg1, op2, 0))
13497 return pedantic_omit_one_operand_loc (loc, type, arg1, arg0);
13499 /* If we have A op B ? A : C, we may be able to convert this to a
13500 simpler expression, depending on the operation and the values
13501 of B and C. Signed zeros prevent all of these transformations,
13502 for reasons given above each one.
13504 Also try swapping the arguments and inverting the conditional. */
13505 if (COMPARISON_CLASS_P (arg0)
13506 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
13507 arg1, TREE_OPERAND (arg0, 1))
13508 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
13510 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
13511 if (tem)
13512 return tem;
13515 if (COMPARISON_CLASS_P (arg0)
13516 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
13517 op2,
13518 TREE_OPERAND (arg0, 1))
13519 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op2))))
13521 location_t loc0 = expr_location_or (arg0, loc);
13522 tem = fold_truth_not_expr (loc0, arg0);
13523 if (tem && COMPARISON_CLASS_P (tem))
13525 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
13526 if (tem)
13527 return tem;
13531 /* If the second operand is simpler than the third, swap them
13532 since that produces better jump optimization results. */
13533 if (truth_value_p (TREE_CODE (arg0))
13534 && tree_swap_operands_p (op1, op2, false))
13536 location_t loc0 = expr_location_or (arg0, loc);
13537 /* See if this can be inverted. If it can't, possibly because
13538 it was a floating-point inequality comparison, don't do
13539 anything. */
13540 tem = fold_truth_not_expr (loc0, arg0);
13541 if (tem)
13542 return fold_build3_loc (loc, code, type, tem, op2, op1);
13545 /* Convert A ? 1 : 0 to simply A. */
13546 if (integer_onep (op1)
13547 && integer_zerop (op2)
13548 /* If we try to convert OP0 to our type, the
13549 call to fold will try to move the conversion inside
13550 a COND, which will recurse. In that case, the COND_EXPR
13551 is probably the best choice, so leave it alone. */
13552 && type == TREE_TYPE (arg0))
13553 return pedantic_non_lvalue_loc (loc, arg0);
13555 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
13556 over COND_EXPR in cases such as floating point comparisons. */
13557 if (integer_zerop (op1)
13558 && integer_onep (op2)
13559 && truth_value_p (TREE_CODE (arg0)))
13560 return pedantic_non_lvalue_loc (loc,
13561 fold_convert_loc (loc, type,
13562 invert_truthvalue_loc (loc,
13563 arg0)));
13565 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
13566 if (TREE_CODE (arg0) == LT_EXPR
13567 && integer_zerop (TREE_OPERAND (arg0, 1))
13568 && integer_zerop (op2)
13569 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
13571 /* sign_bit_p only checks ARG1 bits within A's precision.
13572 If <sign bit of A> has wider type than A, bits outside
13573 of A's precision in <sign bit of A> need to be checked.
13574 If they are all 0, this optimization needs to be done
13575 in unsigned A's type, if they are all 1 in signed A's type,
13576 otherwise this can't be done. */
13577 if (TYPE_PRECISION (TREE_TYPE (tem))
13578 < TYPE_PRECISION (TREE_TYPE (arg1))
13579 && TYPE_PRECISION (TREE_TYPE (tem))
13580 < TYPE_PRECISION (type))
13582 unsigned HOST_WIDE_INT mask_lo;
13583 HOST_WIDE_INT mask_hi;
13584 int inner_width, outer_width;
13585 tree tem_type;
13587 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
13588 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
13589 if (outer_width > TYPE_PRECISION (type))
13590 outer_width = TYPE_PRECISION (type);
13592 if (outer_width > HOST_BITS_PER_WIDE_INT)
13594 mask_hi = ((unsigned HOST_WIDE_INT) -1
13595 >> (2 * HOST_BITS_PER_WIDE_INT - outer_width));
13596 mask_lo = -1;
13598 else
13600 mask_hi = 0;
13601 mask_lo = ((unsigned HOST_WIDE_INT) -1
13602 >> (HOST_BITS_PER_WIDE_INT - outer_width));
13604 if (inner_width > HOST_BITS_PER_WIDE_INT)
13606 mask_hi &= ~((unsigned HOST_WIDE_INT) -1
13607 >> (HOST_BITS_PER_WIDE_INT - inner_width));
13608 mask_lo = 0;
13610 else
13611 mask_lo &= ~((unsigned HOST_WIDE_INT) -1
13612 >> (HOST_BITS_PER_WIDE_INT - inner_width));
13614 if ((TREE_INT_CST_HIGH (arg1) & mask_hi) == mask_hi
13615 && (TREE_INT_CST_LOW (arg1) & mask_lo) == mask_lo)
13617 tem_type = signed_type_for (TREE_TYPE (tem));
13618 tem = fold_convert_loc (loc, tem_type, tem);
13620 else if ((TREE_INT_CST_HIGH (arg1) & mask_hi) == 0
13621 && (TREE_INT_CST_LOW (arg1) & mask_lo) == 0)
13623 tem_type = unsigned_type_for (TREE_TYPE (tem));
13624 tem = fold_convert_loc (loc, tem_type, tem);
13626 else
13627 tem = NULL;
13630 if (tem)
13631 return
13632 fold_convert_loc (loc, type,
13633 fold_build2_loc (loc, BIT_AND_EXPR,
13634 TREE_TYPE (tem), tem,
13635 fold_convert_loc (loc,
13636 TREE_TYPE (tem),
13637 arg1)));
13640 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
13641 already handled above. */
13642 if (TREE_CODE (arg0) == BIT_AND_EXPR
13643 && integer_onep (TREE_OPERAND (arg0, 1))
13644 && integer_zerop (op2)
13645 && integer_pow2p (arg1))
13647 tree tem = TREE_OPERAND (arg0, 0);
13648 STRIP_NOPS (tem);
13649 if (TREE_CODE (tem) == RSHIFT_EXPR
13650 && TREE_CODE (TREE_OPERAND (tem, 1)) == INTEGER_CST
13651 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
13652 TREE_INT_CST_LOW (TREE_OPERAND (tem, 1)))
13653 return fold_build2_loc (loc, BIT_AND_EXPR, type,
13654 TREE_OPERAND (tem, 0), arg1);
13657 /* A & N ? N : 0 is simply A & N if N is a power of two. This
13658 is probably obsolete because the first operand should be a
13659 truth value (that's why we have the two cases above), but let's
13660 leave it in until we can confirm this for all front-ends. */
13661 if (integer_zerop (op2)
13662 && TREE_CODE (arg0) == NE_EXPR
13663 && integer_zerop (TREE_OPERAND (arg0, 1))
13664 && integer_pow2p (arg1)
13665 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
13666 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
13667 arg1, OEP_ONLY_CONST))
13668 return pedantic_non_lvalue_loc (loc,
13669 fold_convert_loc (loc, type,
13670 TREE_OPERAND (arg0, 0)));
13672 /* Convert A ? B : 0 into A && B if A and B are truth values. */
13673 if (integer_zerop (op2)
13674 && truth_value_p (TREE_CODE (arg0))
13675 && truth_value_p (TREE_CODE (arg1)))
13676 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
13677 fold_convert_loc (loc, type, arg0),
13678 arg1);
13680 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
13681 if (integer_onep (op2)
13682 && truth_value_p (TREE_CODE (arg0))
13683 && truth_value_p (TREE_CODE (arg1)))
13685 location_t loc0 = expr_location_or (arg0, loc);
13686 /* Only perform transformation if ARG0 is easily inverted. */
13687 tem = fold_truth_not_expr (loc0, arg0);
13688 if (tem)
13689 return fold_build2_loc (loc, TRUTH_ORIF_EXPR, type,
13690 fold_convert_loc (loc, type, tem),
13691 arg1);
13694 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
13695 if (integer_zerop (arg1)
13696 && truth_value_p (TREE_CODE (arg0))
13697 && truth_value_p (TREE_CODE (op2)))
13699 location_t loc0 = expr_location_or (arg0, loc);
13700 /* Only perform transformation if ARG0 is easily inverted. */
13701 tem = fold_truth_not_expr (loc0, arg0);
13702 if (tem)
13703 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
13704 fold_convert_loc (loc, type, tem),
13705 op2);
13708 /* Convert A ? 1 : B into A || B if A and B are truth values. */
13709 if (integer_onep (arg1)
13710 && truth_value_p (TREE_CODE (arg0))
13711 && truth_value_p (TREE_CODE (op2)))
13712 return fold_build2_loc (loc, TRUTH_ORIF_EXPR, type,
13713 fold_convert_loc (loc, type, arg0),
13714 op2);
13716 return NULL_TREE;
13718 case CALL_EXPR:
13719 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
13720 of fold_ternary on them. */
13721 gcc_unreachable ();
13723 case BIT_FIELD_REF:
13724 if ((TREE_CODE (arg0) == VECTOR_CST
13725 || TREE_CODE (arg0) == CONSTRUCTOR)
13726 && type == TREE_TYPE (TREE_TYPE (arg0)))
13728 unsigned HOST_WIDE_INT width = tree_low_cst (arg1, 1);
13729 unsigned HOST_WIDE_INT idx = tree_low_cst (op2, 1);
13731 if (width != 0
13732 && simple_cst_equal (arg1, TYPE_SIZE (type)) == 1
13733 && (idx % width) == 0
13734 && (idx = idx / width)
13735 < TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
13737 if (TREE_CODE (arg0) == VECTOR_CST)
13739 tree elements = TREE_VECTOR_CST_ELTS (arg0);
13740 while (idx-- > 0 && elements)
13741 elements = TREE_CHAIN (elements);
13742 if (elements)
13743 return TREE_VALUE (elements);
13745 else if (idx < CONSTRUCTOR_NELTS (arg0))
13746 return CONSTRUCTOR_ELT (arg0, idx)->value;
13747 return build_zero_cst (type);
13751 /* A bit-field-ref that referenced the full argument can be stripped. */
13752 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
13753 && TYPE_PRECISION (TREE_TYPE (arg0)) == tree_low_cst (arg1, 1)
13754 && integer_zerop (op2))
13755 return fold_convert_loc (loc, type, arg0);
13757 return NULL_TREE;
13759 case FMA_EXPR:
13760 /* For integers we can decompose the FMA if possible. */
13761 if (TREE_CODE (arg0) == INTEGER_CST
13762 && TREE_CODE (arg1) == INTEGER_CST)
13763 return fold_build2_loc (loc, PLUS_EXPR, type,
13764 const_binop (MULT_EXPR, arg0, arg1), arg2);
13765 if (integer_zerop (arg2))
13766 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
13768 return fold_fma (loc, type, arg0, arg1, arg2);
13770 default:
13771 return NULL_TREE;
13772 } /* switch (code) */
13775 /* Perform constant folding and related simplification of EXPR.
13776 The related simplifications include x*1 => x, x*0 => 0, etc.,
13777 and application of the associative law.
13778 NOP_EXPR conversions may be removed freely (as long as we
13779 are careful not to change the type of the overall expression).
13780 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
13781 but we can constant-fold them if they have constant operands. */
13783 #ifdef ENABLE_FOLD_CHECKING
13784 # define fold(x) fold_1 (x)
13785 static tree fold_1 (tree);
13786 static
13787 #endif
13788 tree
13789 fold (tree expr)
13791 const tree t = expr;
13792 enum tree_code code = TREE_CODE (t);
13793 enum tree_code_class kind = TREE_CODE_CLASS (code);
13794 tree tem;
13795 location_t loc = EXPR_LOCATION (expr);
13797 /* Return right away if a constant. */
13798 if (kind == tcc_constant)
13799 return t;
13801 /* CALL_EXPR-like objects with variable numbers of operands are
13802 treated specially. */
13803 if (kind == tcc_vl_exp)
13805 if (code == CALL_EXPR)
13807 tem = fold_call_expr (loc, expr, false);
13808 return tem ? tem : expr;
13810 return expr;
13813 if (IS_EXPR_CODE_CLASS (kind))
13815 tree type = TREE_TYPE (t);
13816 tree op0, op1, op2;
13818 switch (TREE_CODE_LENGTH (code))
13820 case 1:
13821 op0 = TREE_OPERAND (t, 0);
13822 tem = fold_unary_loc (loc, code, type, op0);
13823 return tem ? tem : expr;
13824 case 2:
13825 op0 = TREE_OPERAND (t, 0);
13826 op1 = TREE_OPERAND (t, 1);
13827 tem = fold_binary_loc (loc, code, type, op0, op1);
13828 return tem ? tem : expr;
13829 case 3:
13830 op0 = TREE_OPERAND (t, 0);
13831 op1 = TREE_OPERAND (t, 1);
13832 op2 = TREE_OPERAND (t, 2);
13833 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
13834 return tem ? tem : expr;
13835 default:
13836 break;
13840 switch (code)
13842 case ARRAY_REF:
13844 tree op0 = TREE_OPERAND (t, 0);
13845 tree op1 = TREE_OPERAND (t, 1);
13847 if (TREE_CODE (op1) == INTEGER_CST
13848 && TREE_CODE (op0) == CONSTRUCTOR
13849 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
13851 VEC(constructor_elt,gc) *elts = CONSTRUCTOR_ELTS (op0);
13852 unsigned HOST_WIDE_INT end = VEC_length (constructor_elt, elts);
13853 unsigned HOST_WIDE_INT begin = 0;
13855 /* Find a matching index by means of a binary search. */
13856 while (begin != end)
13858 unsigned HOST_WIDE_INT middle = (begin + end) / 2;
13859 tree index = VEC_index (constructor_elt, elts, middle)->index;
13861 if (TREE_CODE (index) == INTEGER_CST
13862 && tree_int_cst_lt (index, op1))
13863 begin = middle + 1;
13864 else if (TREE_CODE (index) == INTEGER_CST
13865 && tree_int_cst_lt (op1, index))
13866 end = middle;
13867 else if (TREE_CODE (index) == RANGE_EXPR
13868 && tree_int_cst_lt (TREE_OPERAND (index, 1), op1))
13869 begin = middle + 1;
13870 else if (TREE_CODE (index) == RANGE_EXPR
13871 && tree_int_cst_lt (op1, TREE_OPERAND (index, 0)))
13872 end = middle;
13873 else
13874 return VEC_index (constructor_elt, elts, middle)->value;
13878 return t;
13881 case CONST_DECL:
13882 return fold (DECL_INITIAL (t));
13884 default:
13885 return t;
13886 } /* switch (code) */
13889 #ifdef ENABLE_FOLD_CHECKING
13890 #undef fold
13892 static void fold_checksum_tree (const_tree, struct md5_ctx *, htab_t);
13893 static void fold_check_failed (const_tree, const_tree);
13894 void print_fold_checksum (const_tree);
13896 /* When --enable-checking=fold, compute a digest of expr before
13897 and after actual fold call to see if fold did not accidentally
13898 change original expr. */
13900 tree
13901 fold (tree expr)
13903 tree ret;
13904 struct md5_ctx ctx;
13905 unsigned char checksum_before[16], checksum_after[16];
13906 htab_t ht;
13908 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13909 md5_init_ctx (&ctx);
13910 fold_checksum_tree (expr, &ctx, ht);
13911 md5_finish_ctx (&ctx, checksum_before);
13912 htab_empty (ht);
13914 ret = fold_1 (expr);
13916 md5_init_ctx (&ctx);
13917 fold_checksum_tree (expr, &ctx, ht);
13918 md5_finish_ctx (&ctx, checksum_after);
13919 htab_delete (ht);
13921 if (memcmp (checksum_before, checksum_after, 16))
13922 fold_check_failed (expr, ret);
13924 return ret;
13927 void
13928 print_fold_checksum (const_tree expr)
13930 struct md5_ctx ctx;
13931 unsigned char checksum[16], cnt;
13932 htab_t ht;
13934 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13935 md5_init_ctx (&ctx);
13936 fold_checksum_tree (expr, &ctx, ht);
13937 md5_finish_ctx (&ctx, checksum);
13938 htab_delete (ht);
13939 for (cnt = 0; cnt < 16; ++cnt)
13940 fprintf (stderr, "%02x", checksum[cnt]);
13941 putc ('\n', stderr);
13944 static void
13945 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
13947 internal_error ("fold check: original tree changed by fold");
13950 static void
13951 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx, htab_t ht)
13953 void **slot;
13954 enum tree_code code;
13955 union tree_node buf;
13956 int i, len;
13958 recursive_label:
13959 if (expr == NULL)
13960 return;
13961 slot = (void **) htab_find_slot (ht, expr, INSERT);
13962 if (*slot != NULL)
13963 return;
13964 *slot = CONST_CAST_TREE (expr);
13965 code = TREE_CODE (expr);
13966 if (TREE_CODE_CLASS (code) == tcc_declaration
13967 && DECL_ASSEMBLER_NAME_SET_P (expr))
13969 /* Allow DECL_ASSEMBLER_NAME to be modified. */
13970 memcpy ((char *) &buf, expr, tree_size (expr));
13971 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
13972 expr = (tree) &buf;
13974 else if (TREE_CODE_CLASS (code) == tcc_type
13975 && (TYPE_POINTER_TO (expr)
13976 || TYPE_REFERENCE_TO (expr)
13977 || TYPE_CACHED_VALUES_P (expr)
13978 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
13979 || TYPE_NEXT_VARIANT (expr)))
13981 /* Allow these fields to be modified. */
13982 tree tmp;
13983 memcpy ((char *) &buf, expr, tree_size (expr));
13984 expr = tmp = (tree) &buf;
13985 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
13986 TYPE_POINTER_TO (tmp) = NULL;
13987 TYPE_REFERENCE_TO (tmp) = NULL;
13988 TYPE_NEXT_VARIANT (tmp) = NULL;
13989 if (TYPE_CACHED_VALUES_P (tmp))
13991 TYPE_CACHED_VALUES_P (tmp) = 0;
13992 TYPE_CACHED_VALUES (tmp) = NULL;
13995 md5_process_bytes (expr, tree_size (expr), ctx);
13996 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
13997 if (TREE_CODE_CLASS (code) != tcc_type
13998 && TREE_CODE_CLASS (code) != tcc_declaration
13999 && code != TREE_LIST
14000 && code != SSA_NAME
14001 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
14002 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
14003 switch (TREE_CODE_CLASS (code))
14005 case tcc_constant:
14006 switch (code)
14008 case STRING_CST:
14009 md5_process_bytes (TREE_STRING_POINTER (expr),
14010 TREE_STRING_LENGTH (expr), ctx);
14011 break;
14012 case COMPLEX_CST:
14013 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
14014 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
14015 break;
14016 case VECTOR_CST:
14017 fold_checksum_tree (TREE_VECTOR_CST_ELTS (expr), ctx, ht);
14018 break;
14019 default:
14020 break;
14022 break;
14023 case tcc_exceptional:
14024 switch (code)
14026 case TREE_LIST:
14027 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
14028 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
14029 expr = TREE_CHAIN (expr);
14030 goto recursive_label;
14031 break;
14032 case TREE_VEC:
14033 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
14034 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
14035 break;
14036 default:
14037 break;
14039 break;
14040 case tcc_expression:
14041 case tcc_reference:
14042 case tcc_comparison:
14043 case tcc_unary:
14044 case tcc_binary:
14045 case tcc_statement:
14046 case tcc_vl_exp:
14047 len = TREE_OPERAND_LENGTH (expr);
14048 for (i = 0; i < len; ++i)
14049 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
14050 break;
14051 case tcc_declaration:
14052 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
14053 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
14054 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
14056 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
14057 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
14058 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
14059 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
14060 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
14062 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_WITH_VIS))
14063 fold_checksum_tree (DECL_SECTION_NAME (expr), ctx, ht);
14065 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
14067 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
14068 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
14069 fold_checksum_tree (DECL_ARGUMENT_FLD (expr), ctx, ht);
14071 break;
14072 case tcc_type:
14073 if (TREE_CODE (expr) == ENUMERAL_TYPE)
14074 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
14075 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
14076 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
14077 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
14078 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
14079 if (INTEGRAL_TYPE_P (expr)
14080 || SCALAR_FLOAT_TYPE_P (expr))
14082 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
14083 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
14085 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
14086 if (TREE_CODE (expr) == RECORD_TYPE
14087 || TREE_CODE (expr) == UNION_TYPE
14088 || TREE_CODE (expr) == QUAL_UNION_TYPE)
14089 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
14090 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
14091 break;
14092 default:
14093 break;
14097 /* Helper function for outputting the checksum of a tree T. When
14098 debugging with gdb, you can "define mynext" to be "next" followed
14099 by "call debug_fold_checksum (op0)", then just trace down till the
14100 outputs differ. */
14102 DEBUG_FUNCTION void
14103 debug_fold_checksum (const_tree t)
14105 int i;
14106 unsigned char checksum[16];
14107 struct md5_ctx ctx;
14108 htab_t ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
14110 md5_init_ctx (&ctx);
14111 fold_checksum_tree (t, &ctx, ht);
14112 md5_finish_ctx (&ctx, checksum);
14113 htab_empty (ht);
14115 for (i = 0; i < 16; i++)
14116 fprintf (stderr, "%d ", checksum[i]);
14118 fprintf (stderr, "\n");
14121 #endif
14123 /* Fold a unary tree expression with code CODE of type TYPE with an
14124 operand OP0. LOC is the location of the resulting expression.
14125 Return a folded expression if successful. Otherwise, return a tree
14126 expression with code CODE of type TYPE with an operand OP0. */
14128 tree
14129 fold_build1_stat_loc (location_t loc,
14130 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
14132 tree tem;
14133 #ifdef ENABLE_FOLD_CHECKING
14134 unsigned char checksum_before[16], checksum_after[16];
14135 struct md5_ctx ctx;
14136 htab_t ht;
14138 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
14139 md5_init_ctx (&ctx);
14140 fold_checksum_tree (op0, &ctx, ht);
14141 md5_finish_ctx (&ctx, checksum_before);
14142 htab_empty (ht);
14143 #endif
14145 tem = fold_unary_loc (loc, code, type, op0);
14146 if (!tem)
14147 tem = build1_stat_loc (loc, code, type, op0 PASS_MEM_STAT);
14149 #ifdef ENABLE_FOLD_CHECKING
14150 md5_init_ctx (&ctx);
14151 fold_checksum_tree (op0, &ctx, ht);
14152 md5_finish_ctx (&ctx, checksum_after);
14153 htab_delete (ht);
14155 if (memcmp (checksum_before, checksum_after, 16))
14156 fold_check_failed (op0, tem);
14157 #endif
14158 return tem;
14161 /* Fold a binary tree expression with code CODE of type TYPE with
14162 operands OP0 and OP1. LOC is the location of the resulting
14163 expression. Return a folded expression if successful. Otherwise,
14164 return a tree expression with code CODE of type TYPE with operands
14165 OP0 and OP1. */
14167 tree
14168 fold_build2_stat_loc (location_t loc,
14169 enum tree_code code, tree type, tree op0, tree op1
14170 MEM_STAT_DECL)
14172 tree tem;
14173 #ifdef ENABLE_FOLD_CHECKING
14174 unsigned char checksum_before_op0[16],
14175 checksum_before_op1[16],
14176 checksum_after_op0[16],
14177 checksum_after_op1[16];
14178 struct md5_ctx ctx;
14179 htab_t ht;
14181 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
14182 md5_init_ctx (&ctx);
14183 fold_checksum_tree (op0, &ctx, ht);
14184 md5_finish_ctx (&ctx, checksum_before_op0);
14185 htab_empty (ht);
14187 md5_init_ctx (&ctx);
14188 fold_checksum_tree (op1, &ctx, ht);
14189 md5_finish_ctx (&ctx, checksum_before_op1);
14190 htab_empty (ht);
14191 #endif
14193 tem = fold_binary_loc (loc, code, type, op0, op1);
14194 if (!tem)
14195 tem = build2_stat_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
14197 #ifdef ENABLE_FOLD_CHECKING
14198 md5_init_ctx (&ctx);
14199 fold_checksum_tree (op0, &ctx, ht);
14200 md5_finish_ctx (&ctx, checksum_after_op0);
14201 htab_empty (ht);
14203 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
14204 fold_check_failed (op0, tem);
14206 md5_init_ctx (&ctx);
14207 fold_checksum_tree (op1, &ctx, ht);
14208 md5_finish_ctx (&ctx, checksum_after_op1);
14209 htab_delete (ht);
14211 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
14212 fold_check_failed (op1, tem);
14213 #endif
14214 return tem;
14217 /* Fold a ternary tree expression with code CODE of type TYPE with
14218 operands OP0, OP1, and OP2. Return a folded expression if
14219 successful. Otherwise, return a tree expression with code CODE of
14220 type TYPE with operands OP0, OP1, and OP2. */
14222 tree
14223 fold_build3_stat_loc (location_t loc, enum tree_code code, tree type,
14224 tree op0, tree op1, tree op2 MEM_STAT_DECL)
14226 tree tem;
14227 #ifdef ENABLE_FOLD_CHECKING
14228 unsigned char checksum_before_op0[16],
14229 checksum_before_op1[16],
14230 checksum_before_op2[16],
14231 checksum_after_op0[16],
14232 checksum_after_op1[16],
14233 checksum_after_op2[16];
14234 struct md5_ctx ctx;
14235 htab_t ht;
14237 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
14238 md5_init_ctx (&ctx);
14239 fold_checksum_tree (op0, &ctx, ht);
14240 md5_finish_ctx (&ctx, checksum_before_op0);
14241 htab_empty (ht);
14243 md5_init_ctx (&ctx);
14244 fold_checksum_tree (op1, &ctx, ht);
14245 md5_finish_ctx (&ctx, checksum_before_op1);
14246 htab_empty (ht);
14248 md5_init_ctx (&ctx);
14249 fold_checksum_tree (op2, &ctx, ht);
14250 md5_finish_ctx (&ctx, checksum_before_op2);
14251 htab_empty (ht);
14252 #endif
14254 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
14255 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
14256 if (!tem)
14257 tem = build3_stat_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
14259 #ifdef ENABLE_FOLD_CHECKING
14260 md5_init_ctx (&ctx);
14261 fold_checksum_tree (op0, &ctx, ht);
14262 md5_finish_ctx (&ctx, checksum_after_op0);
14263 htab_empty (ht);
14265 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
14266 fold_check_failed (op0, tem);
14268 md5_init_ctx (&ctx);
14269 fold_checksum_tree (op1, &ctx, ht);
14270 md5_finish_ctx (&ctx, checksum_after_op1);
14271 htab_empty (ht);
14273 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
14274 fold_check_failed (op1, tem);
14276 md5_init_ctx (&ctx);
14277 fold_checksum_tree (op2, &ctx, ht);
14278 md5_finish_ctx (&ctx, checksum_after_op2);
14279 htab_delete (ht);
14281 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
14282 fold_check_failed (op2, tem);
14283 #endif
14284 return tem;
14287 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
14288 arguments in ARGARRAY, and a null static chain.
14289 Return a folded expression if successful. Otherwise, return a CALL_EXPR
14290 of type TYPE from the given operands as constructed by build_call_array. */
14292 tree
14293 fold_build_call_array_loc (location_t loc, tree type, tree fn,
14294 int nargs, tree *argarray)
14296 tree tem;
14297 #ifdef ENABLE_FOLD_CHECKING
14298 unsigned char checksum_before_fn[16],
14299 checksum_before_arglist[16],
14300 checksum_after_fn[16],
14301 checksum_after_arglist[16];
14302 struct md5_ctx ctx;
14303 htab_t ht;
14304 int i;
14306 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
14307 md5_init_ctx (&ctx);
14308 fold_checksum_tree (fn, &ctx, ht);
14309 md5_finish_ctx (&ctx, checksum_before_fn);
14310 htab_empty (ht);
14312 md5_init_ctx (&ctx);
14313 for (i = 0; i < nargs; i++)
14314 fold_checksum_tree (argarray[i], &ctx, ht);
14315 md5_finish_ctx (&ctx, checksum_before_arglist);
14316 htab_empty (ht);
14317 #endif
14319 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
14321 #ifdef ENABLE_FOLD_CHECKING
14322 md5_init_ctx (&ctx);
14323 fold_checksum_tree (fn, &ctx, ht);
14324 md5_finish_ctx (&ctx, checksum_after_fn);
14325 htab_empty (ht);
14327 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
14328 fold_check_failed (fn, tem);
14330 md5_init_ctx (&ctx);
14331 for (i = 0; i < nargs; i++)
14332 fold_checksum_tree (argarray[i], &ctx, ht);
14333 md5_finish_ctx (&ctx, checksum_after_arglist);
14334 htab_delete (ht);
14336 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
14337 fold_check_failed (NULL_TREE, tem);
14338 #endif
14339 return tem;
14342 /* Perform constant folding and related simplification of initializer
14343 expression EXPR. These behave identically to "fold_buildN" but ignore
14344 potential run-time traps and exceptions that fold must preserve. */
14346 #define START_FOLD_INIT \
14347 int saved_signaling_nans = flag_signaling_nans;\
14348 int saved_trapping_math = flag_trapping_math;\
14349 int saved_rounding_math = flag_rounding_math;\
14350 int saved_trapv = flag_trapv;\
14351 int saved_folding_initializer = folding_initializer;\
14352 flag_signaling_nans = 0;\
14353 flag_trapping_math = 0;\
14354 flag_rounding_math = 0;\
14355 flag_trapv = 0;\
14356 folding_initializer = 1;
14358 #define END_FOLD_INIT \
14359 flag_signaling_nans = saved_signaling_nans;\
14360 flag_trapping_math = saved_trapping_math;\
14361 flag_rounding_math = saved_rounding_math;\
14362 flag_trapv = saved_trapv;\
14363 folding_initializer = saved_folding_initializer;
14365 tree
14366 fold_build1_initializer_loc (location_t loc, enum tree_code code,
14367 tree type, tree op)
14369 tree result;
14370 START_FOLD_INIT;
14372 result = fold_build1_loc (loc, code, type, op);
14374 END_FOLD_INIT;
14375 return result;
14378 tree
14379 fold_build2_initializer_loc (location_t loc, enum tree_code code,
14380 tree type, tree op0, tree op1)
14382 tree result;
14383 START_FOLD_INIT;
14385 result = fold_build2_loc (loc, code, type, op0, op1);
14387 END_FOLD_INIT;
14388 return result;
14391 tree
14392 fold_build3_initializer_loc (location_t loc, enum tree_code code,
14393 tree type, tree op0, tree op1, tree op2)
14395 tree result;
14396 START_FOLD_INIT;
14398 result = fold_build3_loc (loc, code, type, op0, op1, op2);
14400 END_FOLD_INIT;
14401 return result;
14404 tree
14405 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
14406 int nargs, tree *argarray)
14408 tree result;
14409 START_FOLD_INIT;
14411 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
14413 END_FOLD_INIT;
14414 return result;
14417 #undef START_FOLD_INIT
14418 #undef END_FOLD_INIT
14420 /* Determine if first argument is a multiple of second argument. Return 0 if
14421 it is not, or we cannot easily determined it to be.
14423 An example of the sort of thing we care about (at this point; this routine
14424 could surely be made more general, and expanded to do what the *_DIV_EXPR's
14425 fold cases do now) is discovering that
14427 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
14429 is a multiple of
14431 SAVE_EXPR (J * 8)
14433 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
14435 This code also handles discovering that
14437 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
14439 is a multiple of 8 so we don't have to worry about dealing with a
14440 possible remainder.
14442 Note that we *look* inside a SAVE_EXPR only to determine how it was
14443 calculated; it is not safe for fold to do much of anything else with the
14444 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
14445 at run time. For example, the latter example above *cannot* be implemented
14446 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
14447 evaluation time of the original SAVE_EXPR is not necessarily the same at
14448 the time the new expression is evaluated. The only optimization of this
14449 sort that would be valid is changing
14451 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
14453 divided by 8 to
14455 SAVE_EXPR (I) * SAVE_EXPR (J)
14457 (where the same SAVE_EXPR (J) is used in the original and the
14458 transformed version). */
14461 multiple_of_p (tree type, const_tree top, const_tree bottom)
14463 if (operand_equal_p (top, bottom, 0))
14464 return 1;
14466 if (TREE_CODE (type) != INTEGER_TYPE)
14467 return 0;
14469 switch (TREE_CODE (top))
14471 case BIT_AND_EXPR:
14472 /* Bitwise and provides a power of two multiple. If the mask is
14473 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
14474 if (!integer_pow2p (bottom))
14475 return 0;
14476 /* FALLTHRU */
14478 case MULT_EXPR:
14479 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
14480 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
14482 case PLUS_EXPR:
14483 case MINUS_EXPR:
14484 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
14485 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
14487 case LSHIFT_EXPR:
14488 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
14490 tree op1, t1;
14492 op1 = TREE_OPERAND (top, 1);
14493 /* const_binop may not detect overflow correctly,
14494 so check for it explicitly here. */
14495 if (TYPE_PRECISION (TREE_TYPE (size_one_node))
14496 > TREE_INT_CST_LOW (op1)
14497 && TREE_INT_CST_HIGH (op1) == 0
14498 && 0 != (t1 = fold_convert (type,
14499 const_binop (LSHIFT_EXPR,
14500 size_one_node,
14501 op1)))
14502 && !TREE_OVERFLOW (t1))
14503 return multiple_of_p (type, t1, bottom);
14505 return 0;
14507 case NOP_EXPR:
14508 /* Can't handle conversions from non-integral or wider integral type. */
14509 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
14510 || (TYPE_PRECISION (type)
14511 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
14512 return 0;
14514 /* .. fall through ... */
14516 case SAVE_EXPR:
14517 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
14519 case COND_EXPR:
14520 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
14521 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
14523 case INTEGER_CST:
14524 if (TREE_CODE (bottom) != INTEGER_CST
14525 || integer_zerop (bottom)
14526 || (TYPE_UNSIGNED (type)
14527 && (tree_int_cst_sgn (top) < 0
14528 || tree_int_cst_sgn (bottom) < 0)))
14529 return 0;
14530 return integer_zerop (int_const_binop (TRUNC_MOD_EXPR,
14531 top, bottom));
14533 default:
14534 return 0;
14538 /* Return true if CODE or TYPE is known to be non-negative. */
14540 static bool
14541 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
14543 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
14544 && truth_value_p (code))
14545 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
14546 have a signed:1 type (where the value is -1 and 0). */
14547 return true;
14548 return false;
14551 /* Return true if (CODE OP0) is known to be non-negative. If the return
14552 value is based on the assumption that signed overflow is undefined,
14553 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14554 *STRICT_OVERFLOW_P. */
14556 bool
14557 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
14558 bool *strict_overflow_p)
14560 if (TYPE_UNSIGNED (type))
14561 return true;
14563 switch (code)
14565 case ABS_EXPR:
14566 /* We can't return 1 if flag_wrapv is set because
14567 ABS_EXPR<INT_MIN> = INT_MIN. */
14568 if (!INTEGRAL_TYPE_P (type))
14569 return true;
14570 if (TYPE_OVERFLOW_UNDEFINED (type))
14572 *strict_overflow_p = true;
14573 return true;
14575 break;
14577 case NON_LVALUE_EXPR:
14578 case FLOAT_EXPR:
14579 case FIX_TRUNC_EXPR:
14580 return tree_expr_nonnegative_warnv_p (op0,
14581 strict_overflow_p);
14583 case NOP_EXPR:
14585 tree inner_type = TREE_TYPE (op0);
14586 tree outer_type = type;
14588 if (TREE_CODE (outer_type) == REAL_TYPE)
14590 if (TREE_CODE (inner_type) == REAL_TYPE)
14591 return tree_expr_nonnegative_warnv_p (op0,
14592 strict_overflow_p);
14593 if (TREE_CODE (inner_type) == INTEGER_TYPE)
14595 if (TYPE_UNSIGNED (inner_type))
14596 return true;
14597 return tree_expr_nonnegative_warnv_p (op0,
14598 strict_overflow_p);
14601 else if (TREE_CODE (outer_type) == INTEGER_TYPE)
14603 if (TREE_CODE (inner_type) == REAL_TYPE)
14604 return tree_expr_nonnegative_warnv_p (op0,
14605 strict_overflow_p);
14606 if (TREE_CODE (inner_type) == INTEGER_TYPE)
14607 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
14608 && TYPE_UNSIGNED (inner_type);
14611 break;
14613 default:
14614 return tree_simple_nonnegative_warnv_p (code, type);
14617 /* We don't know sign of `t', so be conservative and return false. */
14618 return false;
14621 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
14622 value is based on the assumption that signed overflow is undefined,
14623 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14624 *STRICT_OVERFLOW_P. */
14626 bool
14627 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
14628 tree op1, bool *strict_overflow_p)
14630 if (TYPE_UNSIGNED (type))
14631 return true;
14633 switch (code)
14635 case POINTER_PLUS_EXPR:
14636 case PLUS_EXPR:
14637 if (FLOAT_TYPE_P (type))
14638 return (tree_expr_nonnegative_warnv_p (op0,
14639 strict_overflow_p)
14640 && tree_expr_nonnegative_warnv_p (op1,
14641 strict_overflow_p));
14643 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
14644 both unsigned and at least 2 bits shorter than the result. */
14645 if (TREE_CODE (type) == INTEGER_TYPE
14646 && TREE_CODE (op0) == NOP_EXPR
14647 && TREE_CODE (op1) == NOP_EXPR)
14649 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
14650 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
14651 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
14652 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
14654 unsigned int prec = MAX (TYPE_PRECISION (inner1),
14655 TYPE_PRECISION (inner2)) + 1;
14656 return prec < TYPE_PRECISION (type);
14659 break;
14661 case MULT_EXPR:
14662 if (FLOAT_TYPE_P (type))
14664 /* x * x for floating point x is always non-negative. */
14665 if (operand_equal_p (op0, op1, 0))
14666 return true;
14667 return (tree_expr_nonnegative_warnv_p (op0,
14668 strict_overflow_p)
14669 && tree_expr_nonnegative_warnv_p (op1,
14670 strict_overflow_p));
14673 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
14674 both unsigned and their total bits is shorter than the result. */
14675 if (TREE_CODE (type) == INTEGER_TYPE
14676 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
14677 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
14679 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
14680 ? TREE_TYPE (TREE_OPERAND (op0, 0))
14681 : TREE_TYPE (op0);
14682 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
14683 ? TREE_TYPE (TREE_OPERAND (op1, 0))
14684 : TREE_TYPE (op1);
14686 bool unsigned0 = TYPE_UNSIGNED (inner0);
14687 bool unsigned1 = TYPE_UNSIGNED (inner1);
14689 if (TREE_CODE (op0) == INTEGER_CST)
14690 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
14692 if (TREE_CODE (op1) == INTEGER_CST)
14693 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
14695 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
14696 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
14698 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
14699 ? tree_int_cst_min_precision (op0, /*unsignedp=*/true)
14700 : TYPE_PRECISION (inner0);
14702 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
14703 ? tree_int_cst_min_precision (op1, /*unsignedp=*/true)
14704 : TYPE_PRECISION (inner1);
14706 return precision0 + precision1 < TYPE_PRECISION (type);
14709 return false;
14711 case BIT_AND_EXPR:
14712 case MAX_EXPR:
14713 return (tree_expr_nonnegative_warnv_p (op0,
14714 strict_overflow_p)
14715 || tree_expr_nonnegative_warnv_p (op1,
14716 strict_overflow_p));
14718 case BIT_IOR_EXPR:
14719 case BIT_XOR_EXPR:
14720 case MIN_EXPR:
14721 case RDIV_EXPR:
14722 case TRUNC_DIV_EXPR:
14723 case CEIL_DIV_EXPR:
14724 case FLOOR_DIV_EXPR:
14725 case ROUND_DIV_EXPR:
14726 return (tree_expr_nonnegative_warnv_p (op0,
14727 strict_overflow_p)
14728 && tree_expr_nonnegative_warnv_p (op1,
14729 strict_overflow_p));
14731 case TRUNC_MOD_EXPR:
14732 case CEIL_MOD_EXPR:
14733 case FLOOR_MOD_EXPR:
14734 case ROUND_MOD_EXPR:
14735 return tree_expr_nonnegative_warnv_p (op0,
14736 strict_overflow_p);
14737 default:
14738 return tree_simple_nonnegative_warnv_p (code, type);
14741 /* We don't know sign of `t', so be conservative and return false. */
14742 return false;
14745 /* Return true if T is known to be non-negative. If the return
14746 value is based on the assumption that signed overflow is undefined,
14747 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14748 *STRICT_OVERFLOW_P. */
14750 bool
14751 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
14753 if (TYPE_UNSIGNED (TREE_TYPE (t)))
14754 return true;
14756 switch (TREE_CODE (t))
14758 case INTEGER_CST:
14759 return tree_int_cst_sgn (t) >= 0;
14761 case REAL_CST:
14762 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
14764 case FIXED_CST:
14765 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
14767 case COND_EXPR:
14768 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14769 strict_overflow_p)
14770 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 2),
14771 strict_overflow_p));
14772 default:
14773 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
14774 TREE_TYPE (t));
14776 /* We don't know sign of `t', so be conservative and return false. */
14777 return false;
14780 /* Return true if T is known to be non-negative. If the return
14781 value is based on the assumption that signed overflow is undefined,
14782 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14783 *STRICT_OVERFLOW_P. */
14785 bool
14786 tree_call_nonnegative_warnv_p (tree type, tree fndecl,
14787 tree arg0, tree arg1, bool *strict_overflow_p)
14789 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
14790 switch (DECL_FUNCTION_CODE (fndecl))
14792 CASE_FLT_FN (BUILT_IN_ACOS):
14793 CASE_FLT_FN (BUILT_IN_ACOSH):
14794 CASE_FLT_FN (BUILT_IN_CABS):
14795 CASE_FLT_FN (BUILT_IN_COSH):
14796 CASE_FLT_FN (BUILT_IN_ERFC):
14797 CASE_FLT_FN (BUILT_IN_EXP):
14798 CASE_FLT_FN (BUILT_IN_EXP10):
14799 CASE_FLT_FN (BUILT_IN_EXP2):
14800 CASE_FLT_FN (BUILT_IN_FABS):
14801 CASE_FLT_FN (BUILT_IN_FDIM):
14802 CASE_FLT_FN (BUILT_IN_HYPOT):
14803 CASE_FLT_FN (BUILT_IN_POW10):
14804 CASE_INT_FN (BUILT_IN_FFS):
14805 CASE_INT_FN (BUILT_IN_PARITY):
14806 CASE_INT_FN (BUILT_IN_POPCOUNT):
14807 case BUILT_IN_BSWAP32:
14808 case BUILT_IN_BSWAP64:
14809 /* Always true. */
14810 return true;
14812 CASE_FLT_FN (BUILT_IN_SQRT):
14813 /* sqrt(-0.0) is -0.0. */
14814 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
14815 return true;
14816 return tree_expr_nonnegative_warnv_p (arg0,
14817 strict_overflow_p);
14819 CASE_FLT_FN (BUILT_IN_ASINH):
14820 CASE_FLT_FN (BUILT_IN_ATAN):
14821 CASE_FLT_FN (BUILT_IN_ATANH):
14822 CASE_FLT_FN (BUILT_IN_CBRT):
14823 CASE_FLT_FN (BUILT_IN_CEIL):
14824 CASE_FLT_FN (BUILT_IN_ERF):
14825 CASE_FLT_FN (BUILT_IN_EXPM1):
14826 CASE_FLT_FN (BUILT_IN_FLOOR):
14827 CASE_FLT_FN (BUILT_IN_FMOD):
14828 CASE_FLT_FN (BUILT_IN_FREXP):
14829 CASE_FLT_FN (BUILT_IN_ICEIL):
14830 CASE_FLT_FN (BUILT_IN_IFLOOR):
14831 CASE_FLT_FN (BUILT_IN_IRINT):
14832 CASE_FLT_FN (BUILT_IN_IROUND):
14833 CASE_FLT_FN (BUILT_IN_LCEIL):
14834 CASE_FLT_FN (BUILT_IN_LDEXP):
14835 CASE_FLT_FN (BUILT_IN_LFLOOR):
14836 CASE_FLT_FN (BUILT_IN_LLCEIL):
14837 CASE_FLT_FN (BUILT_IN_LLFLOOR):
14838 CASE_FLT_FN (BUILT_IN_LLRINT):
14839 CASE_FLT_FN (BUILT_IN_LLROUND):
14840 CASE_FLT_FN (BUILT_IN_LRINT):
14841 CASE_FLT_FN (BUILT_IN_LROUND):
14842 CASE_FLT_FN (BUILT_IN_MODF):
14843 CASE_FLT_FN (BUILT_IN_NEARBYINT):
14844 CASE_FLT_FN (BUILT_IN_RINT):
14845 CASE_FLT_FN (BUILT_IN_ROUND):
14846 CASE_FLT_FN (BUILT_IN_SCALB):
14847 CASE_FLT_FN (BUILT_IN_SCALBLN):
14848 CASE_FLT_FN (BUILT_IN_SCALBN):
14849 CASE_FLT_FN (BUILT_IN_SIGNBIT):
14850 CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
14851 CASE_FLT_FN (BUILT_IN_SINH):
14852 CASE_FLT_FN (BUILT_IN_TANH):
14853 CASE_FLT_FN (BUILT_IN_TRUNC):
14854 /* True if the 1st argument is nonnegative. */
14855 return tree_expr_nonnegative_warnv_p (arg0,
14856 strict_overflow_p);
14858 CASE_FLT_FN (BUILT_IN_FMAX):
14859 /* True if the 1st OR 2nd arguments are nonnegative. */
14860 return (tree_expr_nonnegative_warnv_p (arg0,
14861 strict_overflow_p)
14862 || (tree_expr_nonnegative_warnv_p (arg1,
14863 strict_overflow_p)));
14865 CASE_FLT_FN (BUILT_IN_FMIN):
14866 /* True if the 1st AND 2nd arguments are nonnegative. */
14867 return (tree_expr_nonnegative_warnv_p (arg0,
14868 strict_overflow_p)
14869 && (tree_expr_nonnegative_warnv_p (arg1,
14870 strict_overflow_p)));
14872 CASE_FLT_FN (BUILT_IN_COPYSIGN):
14873 /* True if the 2nd argument is nonnegative. */
14874 return tree_expr_nonnegative_warnv_p (arg1,
14875 strict_overflow_p);
14877 CASE_FLT_FN (BUILT_IN_POWI):
14878 /* True if the 1st argument is nonnegative or the second
14879 argument is an even integer. */
14880 if (TREE_CODE (arg1) == INTEGER_CST
14881 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
14882 return true;
14883 return tree_expr_nonnegative_warnv_p (arg0,
14884 strict_overflow_p);
14886 CASE_FLT_FN (BUILT_IN_POW):
14887 /* True if the 1st argument is nonnegative or the second
14888 argument is an even integer valued real. */
14889 if (TREE_CODE (arg1) == REAL_CST)
14891 REAL_VALUE_TYPE c;
14892 HOST_WIDE_INT n;
14894 c = TREE_REAL_CST (arg1);
14895 n = real_to_integer (&c);
14896 if ((n & 1) == 0)
14898 REAL_VALUE_TYPE cint;
14899 real_from_integer (&cint, VOIDmode, n,
14900 n < 0 ? -1 : 0, 0);
14901 if (real_identical (&c, &cint))
14902 return true;
14905 return tree_expr_nonnegative_warnv_p (arg0,
14906 strict_overflow_p);
14908 default:
14909 break;
14911 return tree_simple_nonnegative_warnv_p (CALL_EXPR,
14912 type);
14915 /* Return true if T is known to be non-negative. If the return
14916 value is based on the assumption that signed overflow is undefined,
14917 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14918 *STRICT_OVERFLOW_P. */
14920 bool
14921 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
14923 enum tree_code code = TREE_CODE (t);
14924 if (TYPE_UNSIGNED (TREE_TYPE (t)))
14925 return true;
14927 switch (code)
14929 case TARGET_EXPR:
14931 tree temp = TARGET_EXPR_SLOT (t);
14932 t = TARGET_EXPR_INITIAL (t);
14934 /* If the initializer is non-void, then it's a normal expression
14935 that will be assigned to the slot. */
14936 if (!VOID_TYPE_P (t))
14937 return tree_expr_nonnegative_warnv_p (t, strict_overflow_p);
14939 /* Otherwise, the initializer sets the slot in some way. One common
14940 way is an assignment statement at the end of the initializer. */
14941 while (1)
14943 if (TREE_CODE (t) == BIND_EXPR)
14944 t = expr_last (BIND_EXPR_BODY (t));
14945 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
14946 || TREE_CODE (t) == TRY_CATCH_EXPR)
14947 t = expr_last (TREE_OPERAND (t, 0));
14948 else if (TREE_CODE (t) == STATEMENT_LIST)
14949 t = expr_last (t);
14950 else
14951 break;
14953 if (TREE_CODE (t) == MODIFY_EXPR
14954 && TREE_OPERAND (t, 0) == temp)
14955 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14956 strict_overflow_p);
14958 return false;
14961 case CALL_EXPR:
14963 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
14964 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
14966 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
14967 get_callee_fndecl (t),
14968 arg0,
14969 arg1,
14970 strict_overflow_p);
14972 case COMPOUND_EXPR:
14973 case MODIFY_EXPR:
14974 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14975 strict_overflow_p);
14976 case BIND_EXPR:
14977 return tree_expr_nonnegative_warnv_p (expr_last (TREE_OPERAND (t, 1)),
14978 strict_overflow_p);
14979 case SAVE_EXPR:
14980 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
14981 strict_overflow_p);
14983 default:
14984 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
14985 TREE_TYPE (t));
14988 /* We don't know sign of `t', so be conservative and return false. */
14989 return false;
14992 /* Return true if T is known to be non-negative. If the return
14993 value is based on the assumption that signed overflow is undefined,
14994 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14995 *STRICT_OVERFLOW_P. */
14997 bool
14998 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
15000 enum tree_code code;
15001 if (t == error_mark_node)
15002 return false;
15004 code = TREE_CODE (t);
15005 switch (TREE_CODE_CLASS (code))
15007 case tcc_binary:
15008 case tcc_comparison:
15009 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
15010 TREE_TYPE (t),
15011 TREE_OPERAND (t, 0),
15012 TREE_OPERAND (t, 1),
15013 strict_overflow_p);
15015 case tcc_unary:
15016 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
15017 TREE_TYPE (t),
15018 TREE_OPERAND (t, 0),
15019 strict_overflow_p);
15021 case tcc_constant:
15022 case tcc_declaration:
15023 case tcc_reference:
15024 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
15026 default:
15027 break;
15030 switch (code)
15032 case TRUTH_AND_EXPR:
15033 case TRUTH_OR_EXPR:
15034 case TRUTH_XOR_EXPR:
15035 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
15036 TREE_TYPE (t),
15037 TREE_OPERAND (t, 0),
15038 TREE_OPERAND (t, 1),
15039 strict_overflow_p);
15040 case TRUTH_NOT_EXPR:
15041 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
15042 TREE_TYPE (t),
15043 TREE_OPERAND (t, 0),
15044 strict_overflow_p);
15046 case COND_EXPR:
15047 case CONSTRUCTOR:
15048 case OBJ_TYPE_REF:
15049 case ASSERT_EXPR:
15050 case ADDR_EXPR:
15051 case WITH_SIZE_EXPR:
15052 case SSA_NAME:
15053 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
15055 default:
15056 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p);
15060 /* Return true if `t' is known to be non-negative. Handle warnings
15061 about undefined signed overflow. */
15063 bool
15064 tree_expr_nonnegative_p (tree t)
15066 bool ret, strict_overflow_p;
15068 strict_overflow_p = false;
15069 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
15070 if (strict_overflow_p)
15071 fold_overflow_warning (("assuming signed overflow does not occur when "
15072 "determining that expression is always "
15073 "non-negative"),
15074 WARN_STRICT_OVERFLOW_MISC);
15075 return ret;
15079 /* Return true when (CODE OP0) is an address and is known to be nonzero.
15080 For floating point we further ensure that T is not denormal.
15081 Similar logic is present in nonzero_address in rtlanal.h.
15083 If the return value is based on the assumption that signed overflow
15084 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15085 change *STRICT_OVERFLOW_P. */
15087 bool
15088 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
15089 bool *strict_overflow_p)
15091 switch (code)
15093 case ABS_EXPR:
15094 return tree_expr_nonzero_warnv_p (op0,
15095 strict_overflow_p);
15097 case NOP_EXPR:
15099 tree inner_type = TREE_TYPE (op0);
15100 tree outer_type = type;
15102 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
15103 && tree_expr_nonzero_warnv_p (op0,
15104 strict_overflow_p));
15106 break;
15108 case NON_LVALUE_EXPR:
15109 return tree_expr_nonzero_warnv_p (op0,
15110 strict_overflow_p);
15112 default:
15113 break;
15116 return false;
15119 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
15120 For floating point we further ensure that T is not denormal.
15121 Similar logic is present in nonzero_address in rtlanal.h.
15123 If the return value is based on the assumption that signed overflow
15124 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15125 change *STRICT_OVERFLOW_P. */
15127 bool
15128 tree_binary_nonzero_warnv_p (enum tree_code code,
15129 tree type,
15130 tree op0,
15131 tree op1, bool *strict_overflow_p)
15133 bool sub_strict_overflow_p;
15134 switch (code)
15136 case POINTER_PLUS_EXPR:
15137 case PLUS_EXPR:
15138 if (TYPE_OVERFLOW_UNDEFINED (type))
15140 /* With the presence of negative values it is hard
15141 to say something. */
15142 sub_strict_overflow_p = false;
15143 if (!tree_expr_nonnegative_warnv_p (op0,
15144 &sub_strict_overflow_p)
15145 || !tree_expr_nonnegative_warnv_p (op1,
15146 &sub_strict_overflow_p))
15147 return false;
15148 /* One of operands must be positive and the other non-negative. */
15149 /* We don't set *STRICT_OVERFLOW_P here: even if this value
15150 overflows, on a twos-complement machine the sum of two
15151 nonnegative numbers can never be zero. */
15152 return (tree_expr_nonzero_warnv_p (op0,
15153 strict_overflow_p)
15154 || tree_expr_nonzero_warnv_p (op1,
15155 strict_overflow_p));
15157 break;
15159 case MULT_EXPR:
15160 if (TYPE_OVERFLOW_UNDEFINED (type))
15162 if (tree_expr_nonzero_warnv_p (op0,
15163 strict_overflow_p)
15164 && tree_expr_nonzero_warnv_p (op1,
15165 strict_overflow_p))
15167 *strict_overflow_p = true;
15168 return true;
15171 break;
15173 case MIN_EXPR:
15174 sub_strict_overflow_p = false;
15175 if (tree_expr_nonzero_warnv_p (op0,
15176 &sub_strict_overflow_p)
15177 && tree_expr_nonzero_warnv_p (op1,
15178 &sub_strict_overflow_p))
15180 if (sub_strict_overflow_p)
15181 *strict_overflow_p = true;
15183 break;
15185 case MAX_EXPR:
15186 sub_strict_overflow_p = false;
15187 if (tree_expr_nonzero_warnv_p (op0,
15188 &sub_strict_overflow_p))
15190 if (sub_strict_overflow_p)
15191 *strict_overflow_p = true;
15193 /* When both operands are nonzero, then MAX must be too. */
15194 if (tree_expr_nonzero_warnv_p (op1,
15195 strict_overflow_p))
15196 return true;
15198 /* MAX where operand 0 is positive is positive. */
15199 return tree_expr_nonnegative_warnv_p (op0,
15200 strict_overflow_p);
15202 /* MAX where operand 1 is positive is positive. */
15203 else if (tree_expr_nonzero_warnv_p (op1,
15204 &sub_strict_overflow_p)
15205 && tree_expr_nonnegative_warnv_p (op1,
15206 &sub_strict_overflow_p))
15208 if (sub_strict_overflow_p)
15209 *strict_overflow_p = true;
15210 return true;
15212 break;
15214 case BIT_IOR_EXPR:
15215 return (tree_expr_nonzero_warnv_p (op1,
15216 strict_overflow_p)
15217 || tree_expr_nonzero_warnv_p (op0,
15218 strict_overflow_p));
15220 default:
15221 break;
15224 return false;
15227 /* Return true when T is an address and is known to be nonzero.
15228 For floating point we further ensure that T is not denormal.
15229 Similar logic is present in nonzero_address in rtlanal.h.
15231 If the return value is based on the assumption that signed overflow
15232 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15233 change *STRICT_OVERFLOW_P. */
15235 bool
15236 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
15238 bool sub_strict_overflow_p;
15239 switch (TREE_CODE (t))
15241 case INTEGER_CST:
15242 return !integer_zerop (t);
15244 case ADDR_EXPR:
15246 tree base = TREE_OPERAND (t, 0);
15247 if (!DECL_P (base))
15248 base = get_base_address (base);
15250 if (!base)
15251 return false;
15253 /* Weak declarations may link to NULL. Other things may also be NULL
15254 so protect with -fdelete-null-pointer-checks; but not variables
15255 allocated on the stack. */
15256 if (DECL_P (base)
15257 && (flag_delete_null_pointer_checks
15258 || (DECL_CONTEXT (base)
15259 && TREE_CODE (DECL_CONTEXT (base)) == FUNCTION_DECL
15260 && auto_var_in_fn_p (base, DECL_CONTEXT (base)))))
15261 return !VAR_OR_FUNCTION_DECL_P (base) || !DECL_WEAK (base);
15263 /* Constants are never weak. */
15264 if (CONSTANT_CLASS_P (base))
15265 return true;
15267 return false;
15270 case COND_EXPR:
15271 sub_strict_overflow_p = false;
15272 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
15273 &sub_strict_overflow_p)
15274 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
15275 &sub_strict_overflow_p))
15277 if (sub_strict_overflow_p)
15278 *strict_overflow_p = true;
15279 return true;
15281 break;
15283 default:
15284 break;
15286 return false;
15289 /* Return true when T is an address and is known to be nonzero.
15290 For floating point we further ensure that T is not denormal.
15291 Similar logic is present in nonzero_address in rtlanal.h.
15293 If the return value is based on the assumption that signed overflow
15294 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15295 change *STRICT_OVERFLOW_P. */
15297 bool
15298 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
15300 tree type = TREE_TYPE (t);
15301 enum tree_code code;
15303 /* Doing something useful for floating point would need more work. */
15304 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
15305 return false;
15307 code = TREE_CODE (t);
15308 switch (TREE_CODE_CLASS (code))
15310 case tcc_unary:
15311 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
15312 strict_overflow_p);
15313 case tcc_binary:
15314 case tcc_comparison:
15315 return tree_binary_nonzero_warnv_p (code, type,
15316 TREE_OPERAND (t, 0),
15317 TREE_OPERAND (t, 1),
15318 strict_overflow_p);
15319 case tcc_constant:
15320 case tcc_declaration:
15321 case tcc_reference:
15322 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
15324 default:
15325 break;
15328 switch (code)
15330 case TRUTH_NOT_EXPR:
15331 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
15332 strict_overflow_p);
15334 case TRUTH_AND_EXPR:
15335 case TRUTH_OR_EXPR:
15336 case TRUTH_XOR_EXPR:
15337 return tree_binary_nonzero_warnv_p (code, type,
15338 TREE_OPERAND (t, 0),
15339 TREE_OPERAND (t, 1),
15340 strict_overflow_p);
15342 case COND_EXPR:
15343 case CONSTRUCTOR:
15344 case OBJ_TYPE_REF:
15345 case ASSERT_EXPR:
15346 case ADDR_EXPR:
15347 case WITH_SIZE_EXPR:
15348 case SSA_NAME:
15349 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
15351 case COMPOUND_EXPR:
15352 case MODIFY_EXPR:
15353 case BIND_EXPR:
15354 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
15355 strict_overflow_p);
15357 case SAVE_EXPR:
15358 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
15359 strict_overflow_p);
15361 case CALL_EXPR:
15362 return alloca_call_p (t);
15364 default:
15365 break;
15367 return false;
15370 /* Return true when T is an address and is known to be nonzero.
15371 Handle warnings about undefined signed overflow. */
15373 bool
15374 tree_expr_nonzero_p (tree t)
15376 bool ret, strict_overflow_p;
15378 strict_overflow_p = false;
15379 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
15380 if (strict_overflow_p)
15381 fold_overflow_warning (("assuming signed overflow does not occur when "
15382 "determining that expression is always "
15383 "non-zero"),
15384 WARN_STRICT_OVERFLOW_MISC);
15385 return ret;
15388 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
15389 attempt to fold the expression to a constant without modifying TYPE,
15390 OP0 or OP1.
15392 If the expression could be simplified to a constant, then return
15393 the constant. If the expression would not be simplified to a
15394 constant, then return NULL_TREE. */
15396 tree
15397 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
15399 tree tem = fold_binary (code, type, op0, op1);
15400 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
15403 /* Given the components of a unary expression CODE, TYPE and OP0,
15404 attempt to fold the expression to a constant without modifying
15405 TYPE or OP0.
15407 If the expression could be simplified to a constant, then return
15408 the constant. If the expression would not be simplified to a
15409 constant, then return NULL_TREE. */
15411 tree
15412 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
15414 tree tem = fold_unary (code, type, op0);
15415 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
15418 /* If EXP represents referencing an element in a constant string
15419 (either via pointer arithmetic or array indexing), return the
15420 tree representing the value accessed, otherwise return NULL. */
15422 tree
15423 fold_read_from_constant_string (tree exp)
15425 if ((TREE_CODE (exp) == INDIRECT_REF
15426 || TREE_CODE (exp) == ARRAY_REF)
15427 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
15429 tree exp1 = TREE_OPERAND (exp, 0);
15430 tree index;
15431 tree string;
15432 location_t loc = EXPR_LOCATION (exp);
15434 if (TREE_CODE (exp) == INDIRECT_REF)
15435 string = string_constant (exp1, &index);
15436 else
15438 tree low_bound = array_ref_low_bound (exp);
15439 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
15441 /* Optimize the special-case of a zero lower bound.
15443 We convert the low_bound to sizetype to avoid some problems
15444 with constant folding. (E.g. suppose the lower bound is 1,
15445 and its mode is QI. Without the conversion,l (ARRAY
15446 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
15447 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
15448 if (! integer_zerop (low_bound))
15449 index = size_diffop_loc (loc, index,
15450 fold_convert_loc (loc, sizetype, low_bound));
15452 string = exp1;
15455 if (string
15456 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
15457 && TREE_CODE (string) == STRING_CST
15458 && TREE_CODE (index) == INTEGER_CST
15459 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
15460 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
15461 == MODE_INT)
15462 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
15463 return build_int_cst_type (TREE_TYPE (exp),
15464 (TREE_STRING_POINTER (string)
15465 [TREE_INT_CST_LOW (index)]));
15467 return NULL;
15470 /* Return the tree for neg (ARG0) when ARG0 is known to be either
15471 an integer constant, real, or fixed-point constant.
15473 TYPE is the type of the result. */
15475 static tree
15476 fold_negate_const (tree arg0, tree type)
15478 tree t = NULL_TREE;
15480 switch (TREE_CODE (arg0))
15482 case INTEGER_CST:
15484 double_int val = tree_to_double_int (arg0);
15485 int overflow = neg_double (val.low, val.high, &val.low, &val.high);
15487 t = force_fit_type_double (type, val, 1,
15488 (overflow | TREE_OVERFLOW (arg0))
15489 && !TYPE_UNSIGNED (type));
15490 break;
15493 case REAL_CST:
15494 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
15495 break;
15497 case FIXED_CST:
15499 FIXED_VALUE_TYPE f;
15500 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
15501 &(TREE_FIXED_CST (arg0)), NULL,
15502 TYPE_SATURATING (type));
15503 t = build_fixed (type, f);
15504 /* Propagate overflow flags. */
15505 if (overflow_p | TREE_OVERFLOW (arg0))
15506 TREE_OVERFLOW (t) = 1;
15507 break;
15510 default:
15511 gcc_unreachable ();
15514 return t;
15517 /* Return the tree for abs (ARG0) when ARG0 is known to be either
15518 an integer constant or real constant.
15520 TYPE is the type of the result. */
15522 tree
15523 fold_abs_const (tree arg0, tree type)
15525 tree t = NULL_TREE;
15527 switch (TREE_CODE (arg0))
15529 case INTEGER_CST:
15531 double_int val = tree_to_double_int (arg0);
15533 /* If the value is unsigned or non-negative, then the absolute value
15534 is the same as the ordinary value. */
15535 if (TYPE_UNSIGNED (type)
15536 || !double_int_negative_p (val))
15537 t = arg0;
15539 /* If the value is negative, then the absolute value is
15540 its negation. */
15541 else
15543 int overflow;
15545 overflow = neg_double (val.low, val.high, &val.low, &val.high);
15546 t = force_fit_type_double (type, val, -1,
15547 overflow | TREE_OVERFLOW (arg0));
15550 break;
15552 case REAL_CST:
15553 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
15554 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
15555 else
15556 t = arg0;
15557 break;
15559 default:
15560 gcc_unreachable ();
15563 return t;
15566 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
15567 constant. TYPE is the type of the result. */
15569 static tree
15570 fold_not_const (const_tree arg0, tree type)
15572 double_int val;
15574 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
15576 val = double_int_not (tree_to_double_int (arg0));
15577 return force_fit_type_double (type, val, 0, TREE_OVERFLOW (arg0));
15580 /* Given CODE, a relational operator, the target type, TYPE and two
15581 constant operands OP0 and OP1, return the result of the
15582 relational operation. If the result is not a compile time
15583 constant, then return NULL_TREE. */
15585 static tree
15586 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
15588 int result, invert;
15590 /* From here on, the only cases we handle are when the result is
15591 known to be a constant. */
15593 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
15595 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
15596 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
15598 /* Handle the cases where either operand is a NaN. */
15599 if (real_isnan (c0) || real_isnan (c1))
15601 switch (code)
15603 case EQ_EXPR:
15604 case ORDERED_EXPR:
15605 result = 0;
15606 break;
15608 case NE_EXPR:
15609 case UNORDERED_EXPR:
15610 case UNLT_EXPR:
15611 case UNLE_EXPR:
15612 case UNGT_EXPR:
15613 case UNGE_EXPR:
15614 case UNEQ_EXPR:
15615 result = 1;
15616 break;
15618 case LT_EXPR:
15619 case LE_EXPR:
15620 case GT_EXPR:
15621 case GE_EXPR:
15622 case LTGT_EXPR:
15623 if (flag_trapping_math)
15624 return NULL_TREE;
15625 result = 0;
15626 break;
15628 default:
15629 gcc_unreachable ();
15632 return constant_boolean_node (result, type);
15635 return constant_boolean_node (real_compare (code, c0, c1), type);
15638 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
15640 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
15641 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
15642 return constant_boolean_node (fixed_compare (code, c0, c1), type);
15645 /* Handle equality/inequality of complex constants. */
15646 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
15648 tree rcond = fold_relational_const (code, type,
15649 TREE_REALPART (op0),
15650 TREE_REALPART (op1));
15651 tree icond = fold_relational_const (code, type,
15652 TREE_IMAGPART (op0),
15653 TREE_IMAGPART (op1));
15654 if (code == EQ_EXPR)
15655 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
15656 else if (code == NE_EXPR)
15657 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
15658 else
15659 return NULL_TREE;
15662 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
15664 To compute GT, swap the arguments and do LT.
15665 To compute GE, do LT and invert the result.
15666 To compute LE, swap the arguments, do LT and invert the result.
15667 To compute NE, do EQ and invert the result.
15669 Therefore, the code below must handle only EQ and LT. */
15671 if (code == LE_EXPR || code == GT_EXPR)
15673 tree tem = op0;
15674 op0 = op1;
15675 op1 = tem;
15676 code = swap_tree_comparison (code);
15679 /* Note that it is safe to invert for real values here because we
15680 have already handled the one case that it matters. */
15682 invert = 0;
15683 if (code == NE_EXPR || code == GE_EXPR)
15685 invert = 1;
15686 code = invert_tree_comparison (code, false);
15689 /* Compute a result for LT or EQ if args permit;
15690 Otherwise return T. */
15691 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
15693 if (code == EQ_EXPR)
15694 result = tree_int_cst_equal (op0, op1);
15695 else if (TYPE_UNSIGNED (TREE_TYPE (op0)))
15696 result = INT_CST_LT_UNSIGNED (op0, op1);
15697 else
15698 result = INT_CST_LT (op0, op1);
15700 else
15701 return NULL_TREE;
15703 if (invert)
15704 result ^= 1;
15705 return constant_boolean_node (result, type);
15708 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
15709 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
15710 itself. */
15712 tree
15713 fold_build_cleanup_point_expr (tree type, tree expr)
15715 /* If the expression does not have side effects then we don't have to wrap
15716 it with a cleanup point expression. */
15717 if (!TREE_SIDE_EFFECTS (expr))
15718 return expr;
15720 /* If the expression is a return, check to see if the expression inside the
15721 return has no side effects or the right hand side of the modify expression
15722 inside the return. If either don't have side effects set we don't need to
15723 wrap the expression in a cleanup point expression. Note we don't check the
15724 left hand side of the modify because it should always be a return decl. */
15725 if (TREE_CODE (expr) == RETURN_EXPR)
15727 tree op = TREE_OPERAND (expr, 0);
15728 if (!op || !TREE_SIDE_EFFECTS (op))
15729 return expr;
15730 op = TREE_OPERAND (op, 1);
15731 if (!TREE_SIDE_EFFECTS (op))
15732 return expr;
15735 return build1 (CLEANUP_POINT_EXPR, type, expr);
15738 /* Given a pointer value OP0 and a type TYPE, return a simplified version
15739 of an indirection through OP0, or NULL_TREE if no simplification is
15740 possible. */
15742 tree
15743 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
15745 tree sub = op0;
15746 tree subtype;
15748 STRIP_NOPS (sub);
15749 subtype = TREE_TYPE (sub);
15750 if (!POINTER_TYPE_P (subtype))
15751 return NULL_TREE;
15753 if (TREE_CODE (sub) == ADDR_EXPR)
15755 tree op = TREE_OPERAND (sub, 0);
15756 tree optype = TREE_TYPE (op);
15757 /* *&CONST_DECL -> to the value of the const decl. */
15758 if (TREE_CODE (op) == CONST_DECL)
15759 return DECL_INITIAL (op);
15760 /* *&p => p; make sure to handle *&"str"[cst] here. */
15761 if (type == optype)
15763 tree fop = fold_read_from_constant_string (op);
15764 if (fop)
15765 return fop;
15766 else
15767 return op;
15769 /* *(foo *)&fooarray => fooarray[0] */
15770 else if (TREE_CODE (optype) == ARRAY_TYPE
15771 && type == TREE_TYPE (optype)
15772 && (!in_gimple_form
15773 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
15775 tree type_domain = TYPE_DOMAIN (optype);
15776 tree min_val = size_zero_node;
15777 if (type_domain && TYPE_MIN_VALUE (type_domain))
15778 min_val = TYPE_MIN_VALUE (type_domain);
15779 if (in_gimple_form
15780 && TREE_CODE (min_val) != INTEGER_CST)
15781 return NULL_TREE;
15782 return build4_loc (loc, ARRAY_REF, type, op, min_val,
15783 NULL_TREE, NULL_TREE);
15785 /* *(foo *)&complexfoo => __real__ complexfoo */
15786 else if (TREE_CODE (optype) == COMPLEX_TYPE
15787 && type == TREE_TYPE (optype))
15788 return fold_build1_loc (loc, REALPART_EXPR, type, op);
15789 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
15790 else if (TREE_CODE (optype) == VECTOR_TYPE
15791 && type == TREE_TYPE (optype))
15793 tree part_width = TYPE_SIZE (type);
15794 tree index = bitsize_int (0);
15795 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, index);
15799 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
15800 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
15802 tree op00 = TREE_OPERAND (sub, 0);
15803 tree op01 = TREE_OPERAND (sub, 1);
15805 STRIP_NOPS (op00);
15806 if (TREE_CODE (op00) == ADDR_EXPR)
15808 tree op00type;
15809 op00 = TREE_OPERAND (op00, 0);
15810 op00type = TREE_TYPE (op00);
15812 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
15813 if (TREE_CODE (op00type) == VECTOR_TYPE
15814 && type == TREE_TYPE (op00type))
15816 HOST_WIDE_INT offset = tree_low_cst (op01, 0);
15817 tree part_width = TYPE_SIZE (type);
15818 unsigned HOST_WIDE_INT part_widthi = tree_low_cst (part_width, 0)/BITS_PER_UNIT;
15819 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
15820 tree index = bitsize_int (indexi);
15822 if (offset/part_widthi <= TYPE_VECTOR_SUBPARTS (op00type))
15823 return fold_build3_loc (loc,
15824 BIT_FIELD_REF, type, op00,
15825 part_width, index);
15828 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
15829 else if (TREE_CODE (op00type) == COMPLEX_TYPE
15830 && type == TREE_TYPE (op00type))
15832 tree size = TYPE_SIZE_UNIT (type);
15833 if (tree_int_cst_equal (size, op01))
15834 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
15836 /* ((foo *)&fooarray)[1] => fooarray[1] */
15837 else if (TREE_CODE (op00type) == ARRAY_TYPE
15838 && type == TREE_TYPE (op00type))
15840 tree type_domain = TYPE_DOMAIN (op00type);
15841 tree min_val = size_zero_node;
15842 if (type_domain && TYPE_MIN_VALUE (type_domain))
15843 min_val = TYPE_MIN_VALUE (type_domain);
15844 op01 = size_binop_loc (loc, EXACT_DIV_EXPR, op01,
15845 TYPE_SIZE_UNIT (type));
15846 op01 = size_binop_loc (loc, PLUS_EXPR, op01, min_val);
15847 return build4_loc (loc, ARRAY_REF, type, op00, op01,
15848 NULL_TREE, NULL_TREE);
15853 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
15854 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
15855 && type == TREE_TYPE (TREE_TYPE (subtype))
15856 && (!in_gimple_form
15857 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
15859 tree type_domain;
15860 tree min_val = size_zero_node;
15861 sub = build_fold_indirect_ref_loc (loc, sub);
15862 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
15863 if (type_domain && TYPE_MIN_VALUE (type_domain))
15864 min_val = TYPE_MIN_VALUE (type_domain);
15865 if (in_gimple_form
15866 && TREE_CODE (min_val) != INTEGER_CST)
15867 return NULL_TREE;
15868 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
15869 NULL_TREE);
15872 return NULL_TREE;
15875 /* Builds an expression for an indirection through T, simplifying some
15876 cases. */
15878 tree
15879 build_fold_indirect_ref_loc (location_t loc, tree t)
15881 tree type = TREE_TYPE (TREE_TYPE (t));
15882 tree sub = fold_indirect_ref_1 (loc, type, t);
15884 if (sub)
15885 return sub;
15887 return build1_loc (loc, INDIRECT_REF, type, t);
15890 /* Given an INDIRECT_REF T, return either T or a simplified version. */
15892 tree
15893 fold_indirect_ref_loc (location_t loc, tree t)
15895 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
15897 if (sub)
15898 return sub;
15899 else
15900 return t;
15903 /* Strip non-trapping, non-side-effecting tree nodes from an expression
15904 whose result is ignored. The type of the returned tree need not be
15905 the same as the original expression. */
15907 tree
15908 fold_ignored_result (tree t)
15910 if (!TREE_SIDE_EFFECTS (t))
15911 return integer_zero_node;
15913 for (;;)
15914 switch (TREE_CODE_CLASS (TREE_CODE (t)))
15916 case tcc_unary:
15917 t = TREE_OPERAND (t, 0);
15918 break;
15920 case tcc_binary:
15921 case tcc_comparison:
15922 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
15923 t = TREE_OPERAND (t, 0);
15924 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
15925 t = TREE_OPERAND (t, 1);
15926 else
15927 return t;
15928 break;
15930 case tcc_expression:
15931 switch (TREE_CODE (t))
15933 case COMPOUND_EXPR:
15934 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
15935 return t;
15936 t = TREE_OPERAND (t, 0);
15937 break;
15939 case COND_EXPR:
15940 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
15941 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
15942 return t;
15943 t = TREE_OPERAND (t, 0);
15944 break;
15946 default:
15947 return t;
15949 break;
15951 default:
15952 return t;
15956 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
15957 This can only be applied to objects of a sizetype. */
15959 tree
15960 round_up_loc (location_t loc, tree value, int divisor)
15962 tree div = NULL_TREE;
15964 gcc_assert (divisor > 0);
15965 if (divisor == 1)
15966 return value;
15968 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
15969 have to do anything. Only do this when we are not given a const,
15970 because in that case, this check is more expensive than just
15971 doing it. */
15972 if (TREE_CODE (value) != INTEGER_CST)
15974 div = build_int_cst (TREE_TYPE (value), divisor);
15976 if (multiple_of_p (TREE_TYPE (value), value, div))
15977 return value;
15980 /* If divisor is a power of two, simplify this to bit manipulation. */
15981 if (divisor == (divisor & -divisor))
15983 if (TREE_CODE (value) == INTEGER_CST)
15985 double_int val = tree_to_double_int (value);
15986 bool overflow_p;
15988 if ((val.low & (divisor - 1)) == 0)
15989 return value;
15991 overflow_p = TREE_OVERFLOW (value);
15992 val.low &= ~(divisor - 1);
15993 val.low += divisor;
15994 if (val.low == 0)
15996 val.high++;
15997 if (val.high == 0)
15998 overflow_p = true;
16001 return force_fit_type_double (TREE_TYPE (value), val,
16002 -1, overflow_p);
16004 else
16006 tree t;
16008 t = build_int_cst (TREE_TYPE (value), divisor - 1);
16009 value = size_binop_loc (loc, PLUS_EXPR, value, t);
16010 t = build_int_cst (TREE_TYPE (value), -divisor);
16011 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
16014 else
16016 if (!div)
16017 div = build_int_cst (TREE_TYPE (value), divisor);
16018 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
16019 value = size_binop_loc (loc, MULT_EXPR, value, div);
16022 return value;
16025 /* Likewise, but round down. */
16027 tree
16028 round_down_loc (location_t loc, tree value, int divisor)
16030 tree div = NULL_TREE;
16032 gcc_assert (divisor > 0);
16033 if (divisor == 1)
16034 return value;
16036 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
16037 have to do anything. Only do this when we are not given a const,
16038 because in that case, this check is more expensive than just
16039 doing it. */
16040 if (TREE_CODE (value) != INTEGER_CST)
16042 div = build_int_cst (TREE_TYPE (value), divisor);
16044 if (multiple_of_p (TREE_TYPE (value), value, div))
16045 return value;
16048 /* If divisor is a power of two, simplify this to bit manipulation. */
16049 if (divisor == (divisor & -divisor))
16051 tree t;
16053 t = build_int_cst (TREE_TYPE (value), -divisor);
16054 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
16056 else
16058 if (!div)
16059 div = build_int_cst (TREE_TYPE (value), divisor);
16060 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
16061 value = size_binop_loc (loc, MULT_EXPR, value, div);
16064 return value;
16067 /* Returns the pointer to the base of the object addressed by EXP and
16068 extracts the information about the offset of the access, storing it
16069 to PBITPOS and POFFSET. */
16071 static tree
16072 split_address_to_core_and_offset (tree exp,
16073 HOST_WIDE_INT *pbitpos, tree *poffset)
16075 tree core;
16076 enum machine_mode mode;
16077 int unsignedp, volatilep;
16078 HOST_WIDE_INT bitsize;
16079 location_t loc = EXPR_LOCATION (exp);
16081 if (TREE_CODE (exp) == ADDR_EXPR)
16083 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
16084 poffset, &mode, &unsignedp, &volatilep,
16085 false);
16086 core = build_fold_addr_expr_loc (loc, core);
16088 else
16090 core = exp;
16091 *pbitpos = 0;
16092 *poffset = NULL_TREE;
16095 return core;
16098 /* Returns true if addresses of E1 and E2 differ by a constant, false
16099 otherwise. If they do, E1 - E2 is stored in *DIFF. */
16101 bool
16102 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
16104 tree core1, core2;
16105 HOST_WIDE_INT bitpos1, bitpos2;
16106 tree toffset1, toffset2, tdiff, type;
16108 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
16109 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
16111 if (bitpos1 % BITS_PER_UNIT != 0
16112 || bitpos2 % BITS_PER_UNIT != 0
16113 || !operand_equal_p (core1, core2, 0))
16114 return false;
16116 if (toffset1 && toffset2)
16118 type = TREE_TYPE (toffset1);
16119 if (type != TREE_TYPE (toffset2))
16120 toffset2 = fold_convert (type, toffset2);
16122 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
16123 if (!cst_and_fits_in_hwi (tdiff))
16124 return false;
16126 *diff = int_cst_value (tdiff);
16128 else if (toffset1 || toffset2)
16130 /* If only one of the offsets is non-constant, the difference cannot
16131 be a constant. */
16132 return false;
16134 else
16135 *diff = 0;
16137 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
16138 return true;
16141 /* Simplify the floating point expression EXP when the sign of the
16142 result is not significant. Return NULL_TREE if no simplification
16143 is possible. */
16145 tree
16146 fold_strip_sign_ops (tree exp)
16148 tree arg0, arg1;
16149 location_t loc = EXPR_LOCATION (exp);
16151 switch (TREE_CODE (exp))
16153 case ABS_EXPR:
16154 case NEGATE_EXPR:
16155 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
16156 return arg0 ? arg0 : TREE_OPERAND (exp, 0);
16158 case MULT_EXPR:
16159 case RDIV_EXPR:
16160 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (exp))))
16161 return NULL_TREE;
16162 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
16163 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
16164 if (arg0 != NULL_TREE || arg1 != NULL_TREE)
16165 return fold_build2_loc (loc, TREE_CODE (exp), TREE_TYPE (exp),
16166 arg0 ? arg0 : TREE_OPERAND (exp, 0),
16167 arg1 ? arg1 : TREE_OPERAND (exp, 1));
16168 break;
16170 case COMPOUND_EXPR:
16171 arg0 = TREE_OPERAND (exp, 0);
16172 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
16173 if (arg1)
16174 return fold_build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (exp), arg0, arg1);
16175 break;
16177 case COND_EXPR:
16178 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
16179 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 2));
16180 if (arg0 || arg1)
16181 return fold_build3_loc (loc,
16182 COND_EXPR, TREE_TYPE (exp), TREE_OPERAND (exp, 0),
16183 arg0 ? arg0 : TREE_OPERAND (exp, 1),
16184 arg1 ? arg1 : TREE_OPERAND (exp, 2));
16185 break;
16187 case CALL_EXPR:
16189 const enum built_in_function fcode = builtin_mathfn_code (exp);
16190 switch (fcode)
16192 CASE_FLT_FN (BUILT_IN_COPYSIGN):
16193 /* Strip copysign function call, return the 1st argument. */
16194 arg0 = CALL_EXPR_ARG (exp, 0);
16195 arg1 = CALL_EXPR_ARG (exp, 1);
16196 return omit_one_operand_loc (loc, TREE_TYPE (exp), arg0, arg1);
16198 default:
16199 /* Strip sign ops from the argument of "odd" math functions. */
16200 if (negate_mathfn_p (fcode))
16202 arg0 = fold_strip_sign_ops (CALL_EXPR_ARG (exp, 0));
16203 if (arg0)
16204 return build_call_expr_loc (loc, get_callee_fndecl (exp), 1, arg0);
16206 break;
16209 break;
16211 default:
16212 break;
16214 return NULL_TREE;