make __stl_prime_list in comdat
[official-gcc.git] / gcc / cp / search.c
blob5f60eeedf4e1f31fa24cb28cac690d93395186b9
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6 Contributed by Michael Tiemann (tiemann@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* High-level class interface. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "intl.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "toplev.h"
36 #include "target.h"
38 static int is_subobject_of_p (tree, tree);
39 static tree dfs_lookup_base (tree, void *);
40 static tree dfs_dcast_hint_pre (tree, void *);
41 static tree dfs_dcast_hint_post (tree, void *);
42 static tree dfs_debug_mark (tree, void *);
43 static tree dfs_walk_once_r (tree, tree (*pre_fn) (tree, void *),
44 tree (*post_fn) (tree, void *), void *data);
45 static void dfs_unmark_r (tree);
46 static int check_hidden_convs (tree, int, int, tree, tree, tree);
47 static tree split_conversions (tree, tree, tree, tree);
48 static int lookup_conversions_r (tree, int, int,
49 tree, tree, tree, tree, tree *, tree *);
50 static int look_for_overrides_r (tree, tree);
51 static tree lookup_field_r (tree, void *);
52 static tree dfs_accessible_post (tree, void *);
53 static tree dfs_walk_once_accessible_r (tree, bool, bool,
54 tree (*pre_fn) (tree, void *),
55 tree (*post_fn) (tree, void *),
56 void *data);
57 static tree dfs_walk_once_accessible (tree, bool,
58 tree (*pre_fn) (tree, void *),
59 tree (*post_fn) (tree, void *),
60 void *data);
61 static tree dfs_access_in_type (tree, void *);
62 static access_kind access_in_type (tree, tree);
63 static int protected_accessible_p (tree, tree, tree);
64 static int friend_accessible_p (tree, tree, tree);
65 static tree dfs_get_pure_virtuals (tree, void *);
68 /* Variables for gathering statistics. */
69 #ifdef GATHER_STATISTICS
70 static int n_fields_searched;
71 static int n_calls_lookup_field, n_calls_lookup_field_1;
72 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
73 static int n_calls_get_base_type;
74 static int n_outer_fields_searched;
75 static int n_contexts_saved;
76 #endif /* GATHER_STATISTICS */
79 /* Data for lookup_base and its workers. */
81 struct lookup_base_data_s
83 tree t; /* type being searched. */
84 tree base; /* The base type we're looking for. */
85 tree binfo; /* Found binfo. */
86 bool via_virtual; /* Found via a virtual path. */
87 bool ambiguous; /* Found multiply ambiguous */
88 bool repeated_base; /* Whether there are repeated bases in the
89 hierarchy. */
90 bool want_any; /* Whether we want any matching binfo. */
93 /* Worker function for lookup_base. See if we've found the desired
94 base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */
96 static tree
97 dfs_lookup_base (tree binfo, void *data_)
99 struct lookup_base_data_s *data = (struct lookup_base_data_s *) data_;
101 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base))
103 if (!data->binfo)
105 data->binfo = binfo;
106 data->via_virtual
107 = binfo_via_virtual (data->binfo, data->t) != NULL_TREE;
109 if (!data->repeated_base)
110 /* If there are no repeated bases, we can stop now. */
111 return binfo;
113 if (data->want_any && !data->via_virtual)
114 /* If this is a non-virtual base, then we can't do
115 better. */
116 return binfo;
118 return dfs_skip_bases;
120 else
122 gcc_assert (binfo != data->binfo);
124 /* We've found more than one matching binfo. */
125 if (!data->want_any)
127 /* This is immediately ambiguous. */
128 data->binfo = NULL_TREE;
129 data->ambiguous = true;
130 return error_mark_node;
133 /* Prefer one via a non-virtual path. */
134 if (!binfo_via_virtual (binfo, data->t))
136 data->binfo = binfo;
137 data->via_virtual = false;
138 return binfo;
141 /* There must be repeated bases, otherwise we'd have stopped
142 on the first base we found. */
143 return dfs_skip_bases;
147 return NULL_TREE;
150 /* Returns true if type BASE is accessible in T. (BASE is known to be
151 a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is
152 true, consider any special access of the current scope, or access
153 bestowed by friendship. */
155 bool
156 accessible_base_p (tree t, tree base, bool consider_local_p)
158 tree decl;
160 /* [class.access.base]
162 A base class is said to be accessible if an invented public
163 member of the base class is accessible.
165 If BASE is a non-proper base, this condition is trivially
166 true. */
167 if (same_type_p (t, base))
168 return true;
169 /* Rather than inventing a public member, we use the implicit
170 public typedef created in the scope of every class. */
171 decl = TYPE_FIELDS (base);
172 while (!DECL_SELF_REFERENCE_P (decl))
173 decl = DECL_CHAIN (decl);
174 while (ANON_AGGR_TYPE_P (t))
175 t = TYPE_CONTEXT (t);
176 return accessible_p (t, decl, consider_local_p);
179 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
180 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
181 non-NULL, fill with information about what kind of base we
182 discovered.
184 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
185 not set in ACCESS, then an error is issued and error_mark_node is
186 returned. If the ba_quiet bit is set, then no error is issued and
187 NULL_TREE is returned. */
189 tree
190 lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
192 tree binfo;
193 tree t_binfo;
194 base_kind bk;
196 if (t == error_mark_node || base == error_mark_node)
198 if (kind_ptr)
199 *kind_ptr = bk_not_base;
200 return error_mark_node;
202 gcc_assert (TYPE_P (base));
204 if (!TYPE_P (t))
206 t_binfo = t;
207 t = BINFO_TYPE (t);
209 else
211 t = complete_type (TYPE_MAIN_VARIANT (t));
212 t_binfo = TYPE_BINFO (t);
215 base = TYPE_MAIN_VARIANT (base);
217 /* If BASE is incomplete, it can't be a base of T--and instantiating it
218 might cause an error. */
219 if (t_binfo && CLASS_TYPE_P (base) && COMPLETE_OR_OPEN_TYPE_P (base))
221 struct lookup_base_data_s data;
223 data.t = t;
224 data.base = base;
225 data.binfo = NULL_TREE;
226 data.ambiguous = data.via_virtual = false;
227 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (t);
228 data.want_any = access == ba_any;
230 dfs_walk_once (t_binfo, dfs_lookup_base, NULL, &data);
231 binfo = data.binfo;
233 if (!binfo)
234 bk = data.ambiguous ? bk_ambig : bk_not_base;
235 else if (binfo == t_binfo)
236 bk = bk_same_type;
237 else if (data.via_virtual)
238 bk = bk_via_virtual;
239 else
240 bk = bk_proper_base;
242 else
244 binfo = NULL_TREE;
245 bk = bk_not_base;
248 /* Check that the base is unambiguous and accessible. */
249 if (access != ba_any)
250 switch (bk)
252 case bk_not_base:
253 break;
255 case bk_ambig:
256 if (!(access & ba_quiet))
258 error ("%qT is an ambiguous base of %qT", base, t);
259 binfo = error_mark_node;
261 break;
263 default:
264 if ((access & ba_check_bit)
265 /* If BASE is incomplete, then BASE and TYPE are probably
266 the same, in which case BASE is accessible. If they
267 are not the same, then TYPE is invalid. In that case,
268 there's no need to issue another error here, and
269 there's no implicit typedef to use in the code that
270 follows, so we skip the check. */
271 && COMPLETE_TYPE_P (base)
272 && !accessible_base_p (t, base, !(access & ba_ignore_scope)))
274 if (!(access & ba_quiet))
276 error ("%qT is an inaccessible base of %qT", base, t);
277 binfo = error_mark_node;
279 else
280 binfo = NULL_TREE;
281 bk = bk_inaccessible;
283 break;
286 if (kind_ptr)
287 *kind_ptr = bk;
289 return binfo;
292 /* Data for dcast_base_hint walker. */
294 struct dcast_data_s
296 tree subtype; /* The base type we're looking for. */
297 int virt_depth; /* Number of virtual bases encountered from most
298 derived. */
299 tree offset; /* Best hint offset discovered so far. */
300 bool repeated_base; /* Whether there are repeated bases in the
301 hierarchy. */
304 /* Worker for dcast_base_hint. Search for the base type being cast
305 from. */
307 static tree
308 dfs_dcast_hint_pre (tree binfo, void *data_)
310 struct dcast_data_s *data = (struct dcast_data_s *) data_;
312 if (BINFO_VIRTUAL_P (binfo))
313 data->virt_depth++;
315 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->subtype))
317 if (data->virt_depth)
319 data->offset = ssize_int (-1);
320 return data->offset;
322 if (data->offset)
323 data->offset = ssize_int (-3);
324 else
325 data->offset = BINFO_OFFSET (binfo);
327 return data->repeated_base ? dfs_skip_bases : data->offset;
330 return NULL_TREE;
333 /* Worker for dcast_base_hint. Track the virtual depth. */
335 static tree
336 dfs_dcast_hint_post (tree binfo, void *data_)
338 struct dcast_data_s *data = (struct dcast_data_s *) data_;
340 if (BINFO_VIRTUAL_P (binfo))
341 data->virt_depth--;
343 return NULL_TREE;
346 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
347 started from is related to the required TARGET type, in order to optimize
348 the inheritance graph search. This information is independent of the
349 current context, and ignores private paths, hence get_base_distance is
350 inappropriate. Return a TREE specifying the base offset, BOFF.
351 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
352 and there are no public virtual SUBTYPE bases.
353 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
354 BOFF == -2, SUBTYPE is not a public base.
355 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
357 tree
358 dcast_base_hint (tree subtype, tree target)
360 struct dcast_data_s data;
362 data.subtype = subtype;
363 data.virt_depth = 0;
364 data.offset = NULL_TREE;
365 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (target);
367 dfs_walk_once_accessible (TYPE_BINFO (target), /*friends=*/false,
368 dfs_dcast_hint_pre, dfs_dcast_hint_post, &data);
369 return data.offset ? data.offset : ssize_int (-2);
372 /* Search for a member with name NAME in a multiple inheritance
373 lattice specified by TYPE. If it does not exist, return NULL_TREE.
374 If the member is ambiguously referenced, return `error_mark_node'.
375 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
376 true, type declarations are preferred. */
378 /* Do a 1-level search for NAME as a member of TYPE. The caller must
379 figure out whether it can access this field. (Since it is only one
380 level, this is reasonable.) */
382 tree
383 lookup_field_1 (tree type, tree name, bool want_type)
385 tree field;
387 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
388 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
389 || TREE_CODE (type) == TYPENAME_TYPE)
390 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
391 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
392 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
393 the code often worked even when we treated the index as a list
394 of fields!)
395 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
396 return NULL_TREE;
398 if (CLASSTYPE_SORTED_FIELDS (type))
400 tree *fields = &CLASSTYPE_SORTED_FIELDS (type)->elts[0];
401 int lo = 0, hi = CLASSTYPE_SORTED_FIELDS (type)->len;
402 int i;
404 while (lo < hi)
406 i = (lo + hi) / 2;
408 #ifdef GATHER_STATISTICS
409 n_fields_searched++;
410 #endif /* GATHER_STATISTICS */
412 if (DECL_NAME (fields[i]) > name)
413 hi = i;
414 else if (DECL_NAME (fields[i]) < name)
415 lo = i + 1;
416 else
418 field = NULL_TREE;
420 /* We might have a nested class and a field with the
421 same name; we sorted them appropriately via
422 field_decl_cmp, so just look for the first or last
423 field with this name. */
424 if (want_type)
427 field = fields[i--];
428 while (i >= lo && DECL_NAME (fields[i]) == name);
429 if (TREE_CODE (field) != TYPE_DECL
430 && !DECL_CLASS_TEMPLATE_P (field))
431 field = NULL_TREE;
433 else
436 field = fields[i++];
437 while (i < hi && DECL_NAME (fields[i]) == name);
439 return field;
442 return NULL_TREE;
445 field = TYPE_FIELDS (type);
447 #ifdef GATHER_STATISTICS
448 n_calls_lookup_field_1++;
449 #endif /* GATHER_STATISTICS */
450 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
452 #ifdef GATHER_STATISTICS
453 n_fields_searched++;
454 #endif /* GATHER_STATISTICS */
455 gcc_assert (DECL_P (field));
456 if (DECL_NAME (field) == NULL_TREE
457 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
459 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
460 if (temp)
461 return temp;
463 if (TREE_CODE (field) == USING_DECL)
465 /* We generally treat class-scope using-declarations as
466 ARM-style access specifications, because support for the
467 ISO semantics has not been implemented. So, in general,
468 there's no reason to return a USING_DECL, and the rest of
469 the compiler cannot handle that. Once the class is
470 defined, USING_DECLs are purged from TYPE_FIELDS; see
471 handle_using_decl. However, we make special efforts to
472 make using-declarations in class templates and class
473 template partial specializations work correctly. */
474 if (!DECL_DEPENDENT_P (field))
475 continue;
478 if (DECL_NAME (field) == name
479 && (!want_type
480 || TREE_CODE (field) == TYPE_DECL
481 || DECL_CLASS_TEMPLATE_P (field)))
482 return field;
484 /* Not found. */
485 if (name == vptr_identifier)
487 /* Give the user what s/he thinks s/he wants. */
488 if (TYPE_POLYMORPHIC_P (type))
489 return TYPE_VFIELD (type);
491 return NULL_TREE;
494 /* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
495 NAMESPACE_DECL corresponding to the innermost non-block scope. */
497 tree
498 current_scope (void)
500 /* There are a number of cases we need to be aware of here:
501 current_class_type current_function_decl
502 global NULL NULL
503 fn-local NULL SET
504 class-local SET NULL
505 class->fn SET SET
506 fn->class SET SET
508 Those last two make life interesting. If we're in a function which is
509 itself inside a class, we need decls to go into the fn's decls (our
510 second case below). But if we're in a class and the class itself is
511 inside a function, we need decls to go into the decls for the class. To
512 achieve this last goal, we must see if, when both current_class_ptr and
513 current_function_decl are set, the class was declared inside that
514 function. If so, we know to put the decls into the class's scope. */
515 if (current_function_decl && current_class_type
516 && ((DECL_FUNCTION_MEMBER_P (current_function_decl)
517 && same_type_p (DECL_CONTEXT (current_function_decl),
518 current_class_type))
519 || (DECL_FRIEND_CONTEXT (current_function_decl)
520 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
521 current_class_type))))
522 return current_function_decl;
523 if (current_class_type)
524 return current_class_type;
525 if (current_function_decl)
526 return current_function_decl;
527 return current_namespace;
530 /* Returns nonzero if we are currently in a function scope. Note
531 that this function returns zero if we are within a local class, but
532 not within a member function body of the local class. */
535 at_function_scope_p (void)
537 tree cs = current_scope ();
538 return cs && TREE_CODE (cs) == FUNCTION_DECL;
541 /* Returns true if the innermost active scope is a class scope. */
543 bool
544 at_class_scope_p (void)
546 tree cs = current_scope ();
547 return cs && TYPE_P (cs);
550 /* Returns true if the innermost active scope is a namespace scope. */
552 bool
553 at_namespace_scope_p (void)
555 tree cs = current_scope ();
556 return cs && TREE_CODE (cs) == NAMESPACE_DECL;
559 /* Return the scope of DECL, as appropriate when doing name-lookup. */
561 tree
562 context_for_name_lookup (tree decl)
564 /* [class.union]
566 For the purposes of name lookup, after the anonymous union
567 definition, the members of the anonymous union are considered to
568 have been defined in the scope in which the anonymous union is
569 declared. */
570 tree context = DECL_CONTEXT (decl);
572 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
573 context = TYPE_CONTEXT (context);
574 if (!context)
575 context = global_namespace;
577 return context;
580 /* The accessibility routines use BINFO_ACCESS for scratch space
581 during the computation of the accessibility of some declaration. */
583 #define BINFO_ACCESS(NODE) \
584 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
586 /* Set the access associated with NODE to ACCESS. */
588 #define SET_BINFO_ACCESS(NODE, ACCESS) \
589 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
590 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
592 /* Called from access_in_type via dfs_walk. Calculate the access to
593 DATA (which is really a DECL) in BINFO. */
595 static tree
596 dfs_access_in_type (tree binfo, void *data)
598 tree decl = (tree) data;
599 tree type = BINFO_TYPE (binfo);
600 access_kind access = ak_none;
602 if (context_for_name_lookup (decl) == type)
604 /* If we have descended to the scope of DECL, just note the
605 appropriate access. */
606 if (TREE_PRIVATE (decl))
607 access = ak_private;
608 else if (TREE_PROTECTED (decl))
609 access = ak_protected;
610 else
611 access = ak_public;
613 else
615 /* First, check for an access-declaration that gives us more
616 access to the DECL. The CONST_DECL for an enumeration
617 constant will not have DECL_LANG_SPECIFIC, and thus no
618 DECL_ACCESS. */
619 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
621 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
623 if (decl_access)
625 decl_access = TREE_VALUE (decl_access);
627 if (decl_access == access_public_node)
628 access = ak_public;
629 else if (decl_access == access_protected_node)
630 access = ak_protected;
631 else if (decl_access == access_private_node)
632 access = ak_private;
633 else
634 gcc_unreachable ();
638 if (!access)
640 int i;
641 tree base_binfo;
642 VEC(tree,gc) *accesses;
644 /* Otherwise, scan our baseclasses, and pick the most favorable
645 access. */
646 accesses = BINFO_BASE_ACCESSES (binfo);
647 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
649 tree base_access = VEC_index (tree, accesses, i);
650 access_kind base_access_now = BINFO_ACCESS (base_binfo);
652 if (base_access_now == ak_none || base_access_now == ak_private)
653 /* If it was not accessible in the base, or only
654 accessible as a private member, we can't access it
655 all. */
656 base_access_now = ak_none;
657 else if (base_access == access_protected_node)
658 /* Public and protected members in the base become
659 protected here. */
660 base_access_now = ak_protected;
661 else if (base_access == access_private_node)
662 /* Public and protected members in the base become
663 private here. */
664 base_access_now = ak_private;
666 /* See if the new access, via this base, gives more
667 access than our previous best access. */
668 if (base_access_now != ak_none
669 && (access == ak_none || base_access_now < access))
671 access = base_access_now;
673 /* If the new access is public, we can't do better. */
674 if (access == ak_public)
675 break;
681 /* Note the access to DECL in TYPE. */
682 SET_BINFO_ACCESS (binfo, access);
684 return NULL_TREE;
687 /* Return the access to DECL in TYPE. */
689 static access_kind
690 access_in_type (tree type, tree decl)
692 tree binfo = TYPE_BINFO (type);
694 /* We must take into account
696 [class.paths]
698 If a name can be reached by several paths through a multiple
699 inheritance graph, the access is that of the path that gives
700 most access.
702 The algorithm we use is to make a post-order depth-first traversal
703 of the base-class hierarchy. As we come up the tree, we annotate
704 each node with the most lenient access. */
705 dfs_walk_once (binfo, NULL, dfs_access_in_type, decl);
707 return BINFO_ACCESS (binfo);
710 /* Returns nonzero if it is OK to access DECL through an object
711 indicated by BINFO in the context of DERIVED. */
713 static int
714 protected_accessible_p (tree decl, tree derived, tree binfo)
716 access_kind access;
718 /* We're checking this clause from [class.access.base]
720 m as a member of N is protected, and the reference occurs in a
721 member or friend of class N, or in a member or friend of a
722 class P derived from N, where m as a member of P is public, private
723 or protected.
725 Here DERIVED is a possible P, DECL is m and BINFO_TYPE (binfo) is N. */
727 /* If DERIVED isn't derived from N, then it can't be a P. */
728 if (!DERIVED_FROM_P (BINFO_TYPE (binfo), derived))
729 return 0;
731 access = access_in_type (derived, decl);
733 /* If m is inaccessible in DERIVED, then it's not a P. */
734 if (access == ak_none)
735 return 0;
737 /* [class.protected]
739 When a friend or a member function of a derived class references
740 a protected nonstatic member of a base class, an access check
741 applies in addition to those described earlier in clause
742 _class.access_) Except when forming a pointer to member
743 (_expr.unary.op_), the access must be through a pointer to,
744 reference to, or object of the derived class itself (or any class
745 derived from that class) (_expr.ref_). If the access is to form
746 a pointer to member, the nested-name-specifier shall name the
747 derived class (or any class derived from that class). */
748 if (DECL_NONSTATIC_MEMBER_P (decl))
750 /* We can tell through what the reference is occurring by
751 chasing BINFO up to the root. */
752 tree t = binfo;
753 while (BINFO_INHERITANCE_CHAIN (t))
754 t = BINFO_INHERITANCE_CHAIN (t);
756 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
757 return 0;
760 return 1;
763 /* Returns nonzero if SCOPE is a friend of a type which would be able
764 to access DECL through the object indicated by BINFO. */
766 static int
767 friend_accessible_p (tree scope, tree decl, tree binfo)
769 tree befriending_classes;
770 tree t;
772 if (!scope)
773 return 0;
775 if (TREE_CODE (scope) == FUNCTION_DECL
776 || DECL_FUNCTION_TEMPLATE_P (scope))
777 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
778 else if (TYPE_P (scope))
779 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
780 else
781 return 0;
783 for (t = befriending_classes; t; t = TREE_CHAIN (t))
784 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
785 return 1;
787 /* Nested classes have the same access as their enclosing types, as
788 per DR 45 (this is a change from the standard). */
789 if (TYPE_P (scope))
790 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
791 if (protected_accessible_p (decl, t, binfo))
792 return 1;
794 if (TREE_CODE (scope) == FUNCTION_DECL
795 || DECL_FUNCTION_TEMPLATE_P (scope))
797 /* Perhaps this SCOPE is a member of a class which is a
798 friend. */
799 if (DECL_CLASS_SCOPE_P (scope)
800 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
801 return 1;
803 /* Or an instantiation of something which is a friend. */
804 if (DECL_TEMPLATE_INFO (scope))
806 int ret;
807 /* Increment processing_template_decl to make sure that
808 dependent_type_p works correctly. */
809 ++processing_template_decl;
810 ret = friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
811 --processing_template_decl;
812 return ret;
816 return 0;
819 /* Called via dfs_walk_once_accessible from accessible_p */
821 static tree
822 dfs_accessible_post (tree binfo, void *data ATTRIBUTE_UNUSED)
824 if (BINFO_ACCESS (binfo) != ak_none)
826 tree scope = current_scope ();
827 if (scope && TREE_CODE (scope) != NAMESPACE_DECL
828 && is_friend (BINFO_TYPE (binfo), scope))
829 return binfo;
832 return NULL_TREE;
835 /* DECL is a declaration from a base class of TYPE, which was the
836 class used to name DECL. Return nonzero if, in the current
837 context, DECL is accessible. If TYPE is actually a BINFO node,
838 then we can tell in what context the access is occurring by looking
839 at the most derived class along the path indicated by BINFO. If
840 CONSIDER_LOCAL is true, do consider special access the current
841 scope or friendship thereof we might have. */
844 accessible_p (tree type, tree decl, bool consider_local_p)
846 tree binfo;
847 tree scope;
848 access_kind access;
850 /* Nonzero if it's OK to access DECL if it has protected
851 accessibility in TYPE. */
852 int protected_ok = 0;
854 /* If this declaration is in a block or namespace scope, there's no
855 access control. */
856 if (!TYPE_P (context_for_name_lookup (decl)))
857 return 1;
859 /* There is no need to perform access checks inside a thunk. */
860 scope = current_scope ();
861 if (scope && DECL_THUNK_P (scope))
862 return 1;
864 /* In a template declaration, we cannot be sure whether the
865 particular specialization that is instantiated will be a friend
866 or not. Therefore, all access checks are deferred until
867 instantiation. However, PROCESSING_TEMPLATE_DECL is set in the
868 parameter list for a template (because we may see dependent types
869 in default arguments for template parameters), and access
870 checking should be performed in the outermost parameter list. */
871 if (processing_template_decl
872 && (!processing_template_parmlist || processing_template_decl > 1))
873 return 1;
875 if (!TYPE_P (type))
877 binfo = type;
878 type = BINFO_TYPE (type);
880 else
881 binfo = TYPE_BINFO (type);
883 /* [class.access.base]
885 A member m is accessible when named in class N if
887 --m as a member of N is public, or
889 --m as a member of N is private, and the reference occurs in a
890 member or friend of class N, or
892 --m as a member of N is protected, and the reference occurs in a
893 member or friend of class N, or in a member or friend of a
894 class P derived from N, where m as a member of P is private or
895 protected, or
897 --there exists a base class B of N that is accessible at the point
898 of reference, and m is accessible when named in class B.
900 We walk the base class hierarchy, checking these conditions. */
902 if (consider_local_p)
904 /* Figure out where the reference is occurring. Check to see if
905 DECL is private or protected in this scope, since that will
906 determine whether protected access is allowed. */
907 if (current_class_type)
908 protected_ok = protected_accessible_p (decl,
909 current_class_type, binfo);
911 /* Now, loop through the classes of which we are a friend. */
912 if (!protected_ok)
913 protected_ok = friend_accessible_p (scope, decl, binfo);
916 /* Standardize the binfo that access_in_type will use. We don't
917 need to know what path was chosen from this point onwards. */
918 binfo = TYPE_BINFO (type);
920 /* Compute the accessibility of DECL in the class hierarchy
921 dominated by type. */
922 access = access_in_type (type, decl);
923 if (access == ak_public
924 || (access == ak_protected && protected_ok))
925 return 1;
927 if (!consider_local_p)
928 return 0;
930 /* Walk the hierarchy again, looking for a base class that allows
931 access. */
932 return dfs_walk_once_accessible (binfo, /*friends=*/true,
933 NULL, dfs_accessible_post, NULL)
934 != NULL_TREE;
937 struct lookup_field_info {
938 /* The type in which we're looking. */
939 tree type;
940 /* The name of the field for which we're looking. */
941 tree name;
942 /* If non-NULL, the current result of the lookup. */
943 tree rval;
944 /* The path to RVAL. */
945 tree rval_binfo;
946 /* If non-NULL, the lookup was ambiguous, and this is a list of the
947 candidates. */
948 tree ambiguous;
949 /* If nonzero, we are looking for types, not data members. */
950 int want_type;
951 /* If something went wrong, a message indicating what. */
952 const char *errstr;
955 /* Nonzero for a class member means that it is shared between all objects
956 of that class.
958 [class.member.lookup]:If the resulting set of declarations are not all
959 from sub-objects of the same type, or the set has a nonstatic member
960 and includes members from distinct sub-objects, there is an ambiguity
961 and the program is ill-formed.
963 This function checks that T contains no nonstatic members. */
966 shared_member_p (tree t)
968 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
969 || TREE_CODE (t) == CONST_DECL)
970 return 1;
971 if (is_overloaded_fn (t))
973 t = get_fns (t);
974 for (; t; t = OVL_NEXT (t))
976 tree fn = OVL_CURRENT (t);
977 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
978 return 0;
980 return 1;
982 return 0;
985 /* Routine to see if the sub-object denoted by the binfo PARENT can be
986 found as a base class and sub-object of the object denoted by
987 BINFO. */
989 static int
990 is_subobject_of_p (tree parent, tree binfo)
992 tree probe;
994 for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
996 if (probe == binfo)
997 return 1;
998 if (BINFO_VIRTUAL_P (probe))
999 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
1000 != NULL_TREE);
1002 return 0;
1005 /* DATA is really a struct lookup_field_info. Look for a field with
1006 the name indicated there in BINFO. If this function returns a
1007 non-NULL value it is the result of the lookup. Called from
1008 lookup_field via breadth_first_search. */
1010 static tree
1011 lookup_field_r (tree binfo, void *data)
1013 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1014 tree type = BINFO_TYPE (binfo);
1015 tree nval = NULL_TREE;
1017 /* If this is a dependent base, don't look in it. */
1018 if (BINFO_DEPENDENT_BASE_P (binfo))
1019 return NULL_TREE;
1021 /* If this base class is hidden by the best-known value so far, we
1022 don't need to look. */
1023 if (lfi->rval_binfo && BINFO_INHERITANCE_CHAIN (binfo) == lfi->rval_binfo
1024 && !BINFO_VIRTUAL_P (binfo))
1025 return dfs_skip_bases;
1027 /* First, look for a function. There can't be a function and a data
1028 member with the same name, and if there's a function and a type
1029 with the same name, the type is hidden by the function. */
1030 if (!lfi->want_type)
1032 int idx = lookup_fnfields_1 (type, lfi->name);
1033 if (idx >= 0)
1034 nval = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), idx);
1037 if (!nval)
1038 /* Look for a data member or type. */
1039 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1041 /* If there is no declaration with the indicated name in this type,
1042 then there's nothing to do. */
1043 if (!nval)
1044 goto done;
1046 /* If we're looking up a type (as with an elaborated type specifier)
1047 we ignore all non-types we find. */
1048 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1049 && !DECL_CLASS_TEMPLATE_P (nval))
1051 if (lfi->name == TYPE_IDENTIFIER (type))
1053 /* If the aggregate has no user defined constructors, we allow
1054 it to have fields with the same name as the enclosing type.
1055 If we are looking for that name, find the corresponding
1056 TYPE_DECL. */
1057 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1058 if (DECL_NAME (nval) == lfi->name
1059 && TREE_CODE (nval) == TYPE_DECL)
1060 break;
1062 else
1063 nval = NULL_TREE;
1064 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1066 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1067 lfi->name);
1068 if (e != NULL)
1069 nval = TYPE_MAIN_DECL (e->type);
1070 else
1071 goto done;
1075 /* If the lookup already found a match, and the new value doesn't
1076 hide the old one, we might have an ambiguity. */
1077 if (lfi->rval_binfo
1078 && !is_subobject_of_p (lfi->rval_binfo, binfo))
1081 if (nval == lfi->rval && shared_member_p (nval))
1082 /* The two things are really the same. */
1084 else if (is_subobject_of_p (binfo, lfi->rval_binfo))
1085 /* The previous value hides the new one. */
1087 else
1089 /* We have a real ambiguity. We keep a chain of all the
1090 candidates. */
1091 if (!lfi->ambiguous && lfi->rval)
1093 /* This is the first time we noticed an ambiguity. Add
1094 what we previously thought was a reasonable candidate
1095 to the list. */
1096 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1097 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1100 /* Add the new value. */
1101 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1102 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1103 lfi->errstr = G_("request for member %qD is ambiguous");
1106 else
1108 lfi->rval = nval;
1109 lfi->rval_binfo = binfo;
1112 done:
1113 /* Don't look for constructors or destructors in base classes. */
1114 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
1115 return dfs_skip_bases;
1116 return NULL_TREE;
1119 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1120 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1121 FUNCTIONS, and OPTYPE respectively. */
1123 tree
1124 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1126 tree baselink;
1128 gcc_assert (TREE_CODE (functions) == FUNCTION_DECL
1129 || TREE_CODE (functions) == TEMPLATE_DECL
1130 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1131 || TREE_CODE (functions) == OVERLOAD);
1132 gcc_assert (!optype || TYPE_P (optype));
1133 gcc_assert (TREE_TYPE (functions));
1135 baselink = make_node (BASELINK);
1136 TREE_TYPE (baselink) = TREE_TYPE (functions);
1137 BASELINK_BINFO (baselink) = binfo;
1138 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1139 BASELINK_FUNCTIONS (baselink) = functions;
1140 BASELINK_OPTYPE (baselink) = optype;
1142 return baselink;
1145 /* Look for a member named NAME in an inheritance lattice dominated by
1146 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1147 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1148 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1149 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1150 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1151 TREE_VALUEs are the list of ambiguous candidates.
1153 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1155 If nothing can be found return NULL_TREE and do not issue an error. */
1157 tree
1158 lookup_member (tree xbasetype, tree name, int protect, bool want_type)
1160 tree rval, rval_binfo = NULL_TREE;
1161 tree type = NULL_TREE, basetype_path = NULL_TREE;
1162 struct lookup_field_info lfi;
1164 /* rval_binfo is the binfo associated with the found member, note,
1165 this can be set with useful information, even when rval is not
1166 set, because it must deal with ALL members, not just non-function
1167 members. It is used for ambiguity checking and the hidden
1168 checks. Whereas rval is only set if a proper (not hidden)
1169 non-function member is found. */
1171 const char *errstr = 0;
1173 if (name == error_mark_node)
1174 return NULL_TREE;
1176 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
1178 if (TREE_CODE (xbasetype) == TREE_BINFO)
1180 type = BINFO_TYPE (xbasetype);
1181 basetype_path = xbasetype;
1183 else
1185 if (!RECORD_OR_UNION_CODE_P (TREE_CODE (xbasetype)))
1186 return NULL_TREE;
1187 type = xbasetype;
1188 xbasetype = NULL_TREE;
1191 type = complete_type (type);
1192 if (!basetype_path)
1193 basetype_path = TYPE_BINFO (type);
1195 if (!basetype_path)
1196 return NULL_TREE;
1198 #ifdef GATHER_STATISTICS
1199 n_calls_lookup_field++;
1200 #endif /* GATHER_STATISTICS */
1202 memset (&lfi, 0, sizeof (lfi));
1203 lfi.type = type;
1204 lfi.name = name;
1205 lfi.want_type = want_type;
1206 dfs_walk_all (basetype_path, &lookup_field_r, NULL, &lfi);
1207 rval = lfi.rval;
1208 rval_binfo = lfi.rval_binfo;
1209 if (rval_binfo)
1210 type = BINFO_TYPE (rval_binfo);
1211 errstr = lfi.errstr;
1213 /* If we are not interested in ambiguities, don't report them;
1214 just return NULL_TREE. */
1215 if (!protect && lfi.ambiguous)
1216 return NULL_TREE;
1218 if (protect == 2)
1220 if (lfi.ambiguous)
1221 return lfi.ambiguous;
1222 else
1223 protect = 0;
1226 /* [class.access]
1228 In the case of overloaded function names, access control is
1229 applied to the function selected by overloaded resolution.
1231 We cannot check here, even if RVAL is only a single non-static
1232 member function, since we do not know what the "this" pointer
1233 will be. For:
1235 class A { protected: void f(); };
1236 class B : public A {
1237 void g(A *p) {
1238 f(); // OK
1239 p->f(); // Not OK.
1243 only the first call to "f" is valid. However, if the function is
1244 static, we can check. */
1245 if (rval && protect
1246 && !really_overloaded_fn (rval)
1247 && !(TREE_CODE (rval) == FUNCTION_DECL
1248 && DECL_NONSTATIC_MEMBER_FUNCTION_P (rval)))
1249 perform_or_defer_access_check (basetype_path, rval, rval);
1251 if (errstr && protect)
1253 error (errstr, name, type);
1254 if (lfi.ambiguous)
1255 print_candidates (lfi.ambiguous);
1256 rval = error_mark_node;
1259 if (rval && is_overloaded_fn (rval))
1260 rval = build_baselink (rval_binfo, basetype_path, rval,
1261 (IDENTIFIER_TYPENAME_P (name)
1262 ? TREE_TYPE (name): NULL_TREE));
1263 return rval;
1266 /* Like lookup_member, except that if we find a function member we
1267 return NULL_TREE. */
1269 tree
1270 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1272 tree rval = lookup_member (xbasetype, name, protect, want_type);
1274 /* Ignore functions, but propagate the ambiguity list. */
1275 if (!error_operand_p (rval)
1276 && (rval && BASELINK_P (rval)))
1277 return NULL_TREE;
1279 return rval;
1282 /* Like lookup_member, except that if we find a non-function member we
1283 return NULL_TREE. */
1285 tree
1286 lookup_fnfields (tree xbasetype, tree name, int protect)
1288 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
1290 /* Ignore non-functions, but propagate the ambiguity list. */
1291 if (!error_operand_p (rval)
1292 && (rval && !BASELINK_P (rval)))
1293 return NULL_TREE;
1295 return rval;
1298 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1299 corresponding to "operator TYPE ()", or -1 if there is no such
1300 operator. Only CLASS_TYPE itself is searched; this routine does
1301 not scan the base classes of CLASS_TYPE. */
1303 static int
1304 lookup_conversion_operator (tree class_type, tree type)
1306 int tpl_slot = -1;
1308 if (TYPE_HAS_CONVERSION (class_type))
1310 int i;
1311 tree fn;
1312 VEC(tree,gc) *methods = CLASSTYPE_METHOD_VEC (class_type);
1314 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1315 VEC_iterate (tree, methods, i, fn); ++i)
1317 /* All the conversion operators come near the beginning of
1318 the class. Therefore, if FN is not a conversion
1319 operator, there is no matching conversion operator in
1320 CLASS_TYPE. */
1321 fn = OVL_CURRENT (fn);
1322 if (!DECL_CONV_FN_P (fn))
1323 break;
1325 if (TREE_CODE (fn) == TEMPLATE_DECL)
1326 /* All the templated conversion functions are on the same
1327 slot, so remember it. */
1328 tpl_slot = i;
1329 else if (same_type_p (DECL_CONV_FN_TYPE (fn), type))
1330 return i;
1334 return tpl_slot;
1337 /* TYPE is a class type. Return the index of the fields within
1338 the method vector with name NAME, or -1 if no such field exists.
1339 Does not lazily declare implicitly-declared member functions. */
1341 static int
1342 lookup_fnfields_idx_nolazy (tree type, tree name)
1344 VEC(tree,gc) *method_vec;
1345 tree fn;
1346 tree tmp;
1347 size_t i;
1349 if (!CLASS_TYPE_P (type))
1350 return -1;
1352 method_vec = CLASSTYPE_METHOD_VEC (type);
1353 if (!method_vec)
1354 return -1;
1356 #ifdef GATHER_STATISTICS
1357 n_calls_lookup_fnfields_1++;
1358 #endif /* GATHER_STATISTICS */
1360 /* Constructors are first... */
1361 if (name == ctor_identifier)
1363 fn = CLASSTYPE_CONSTRUCTORS (type);
1364 return fn ? CLASSTYPE_CONSTRUCTOR_SLOT : -1;
1366 /* and destructors are second. */
1367 if (name == dtor_identifier)
1369 fn = CLASSTYPE_DESTRUCTORS (type);
1370 return fn ? CLASSTYPE_DESTRUCTOR_SLOT : -1;
1372 if (IDENTIFIER_TYPENAME_P (name))
1373 return lookup_conversion_operator (type, TREE_TYPE (name));
1375 /* Skip the conversion operators. */
1376 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1377 VEC_iterate (tree, method_vec, i, fn);
1378 ++i)
1379 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1380 break;
1382 /* If the type is complete, use binary search. */
1383 if (COMPLETE_TYPE_P (type))
1385 int lo;
1386 int hi;
1388 lo = i;
1389 hi = VEC_length (tree, method_vec);
1390 while (lo < hi)
1392 i = (lo + hi) / 2;
1394 #ifdef GATHER_STATISTICS
1395 n_outer_fields_searched++;
1396 #endif /* GATHER_STATISTICS */
1398 tmp = VEC_index (tree, method_vec, i);
1399 tmp = DECL_NAME (OVL_CURRENT (tmp));
1400 if (tmp > name)
1401 hi = i;
1402 else if (tmp < name)
1403 lo = i + 1;
1404 else
1405 return i;
1408 else
1409 for (; VEC_iterate (tree, method_vec, i, fn); ++i)
1411 #ifdef GATHER_STATISTICS
1412 n_outer_fields_searched++;
1413 #endif /* GATHER_STATISTICS */
1414 if (DECL_NAME (OVL_CURRENT (fn)) == name)
1415 return i;
1418 return -1;
1421 /* TYPE is a class type. Return the index of the fields within
1422 the method vector with name NAME, or -1 if no such field exists. */
1425 lookup_fnfields_1 (tree type, tree name)
1427 if (!CLASS_TYPE_P (type))
1428 return -1;
1430 if (COMPLETE_TYPE_P (type))
1432 if ((name == ctor_identifier
1433 || name == base_ctor_identifier
1434 || name == complete_ctor_identifier))
1436 if (CLASSTYPE_LAZY_DEFAULT_CTOR (type))
1437 lazily_declare_fn (sfk_constructor, type);
1438 if (CLASSTYPE_LAZY_COPY_CTOR (type))
1439 lazily_declare_fn (sfk_copy_constructor, type);
1440 if (CLASSTYPE_LAZY_MOVE_CTOR (type))
1441 lazily_declare_fn (sfk_move_constructor, type);
1443 else if (name == ansi_assopname (NOP_EXPR))
1445 if (CLASSTYPE_LAZY_COPY_ASSIGN (type))
1446 lazily_declare_fn (sfk_copy_assignment, type);
1447 if (CLASSTYPE_LAZY_MOVE_ASSIGN (type))
1448 lazily_declare_fn (sfk_move_assignment, type);
1450 else if ((name == dtor_identifier
1451 || name == base_dtor_identifier
1452 || name == complete_dtor_identifier
1453 || name == deleting_dtor_identifier)
1454 && CLASSTYPE_LAZY_DESTRUCTOR (type))
1455 lazily_declare_fn (sfk_destructor, type);
1458 return lookup_fnfields_idx_nolazy (type, name);
1461 /* TYPE is a class type. Return the field within the method vector with
1462 name NAME, or NULL_TREE if no such field exists. */
1464 tree
1465 lookup_fnfields_slot (tree type, tree name)
1467 int ix = lookup_fnfields_1 (complete_type (type), name);
1468 if (ix < 0)
1469 return NULL_TREE;
1470 return VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
1473 /* As above, but avoid lazily declaring functions. */
1475 tree
1476 lookup_fnfields_slot_nolazy (tree type, tree name)
1478 int ix = lookup_fnfields_idx_nolazy (complete_type (type), name);
1479 if (ix < 0)
1480 return NULL_TREE;
1481 return VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
1484 /* Like lookup_fnfields_1, except that the name is extracted from
1485 FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */
1488 class_method_index_for_fn (tree class_type, tree function)
1490 gcc_assert (TREE_CODE (function) == FUNCTION_DECL
1491 || DECL_FUNCTION_TEMPLATE_P (function));
1493 return lookup_fnfields_1 (class_type,
1494 DECL_CONSTRUCTOR_P (function) ? ctor_identifier :
1495 DECL_DESTRUCTOR_P (function) ? dtor_identifier :
1496 DECL_NAME (function));
1500 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1501 the class or namespace used to qualify the name. CONTEXT_CLASS is
1502 the class corresponding to the object in which DECL will be used.
1503 Return a possibly modified version of DECL that takes into account
1504 the CONTEXT_CLASS.
1506 In particular, consider an expression like `B::m' in the context of
1507 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1508 then the most derived class indicated by the BASELINK_BINFO will be
1509 `B', not `D'. This function makes that adjustment. */
1511 tree
1512 adjust_result_of_qualified_name_lookup (tree decl,
1513 tree qualifying_scope,
1514 tree context_class)
1516 if (context_class && context_class != error_mark_node
1517 && CLASS_TYPE_P (context_class)
1518 && CLASS_TYPE_P (qualifying_scope)
1519 && DERIVED_FROM_P (qualifying_scope, context_class)
1520 && BASELINK_P (decl))
1522 tree base;
1524 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1525 Because we do not yet know which function will be chosen by
1526 overload resolution, we cannot yet check either accessibility
1527 or ambiguity -- in either case, the choice of a static member
1528 function might make the usage valid. */
1529 base = lookup_base (context_class, qualifying_scope,
1530 ba_unique | ba_quiet, NULL);
1531 if (base)
1533 BASELINK_ACCESS_BINFO (decl) = base;
1534 BASELINK_BINFO (decl)
1535 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1536 ba_unique | ba_quiet,
1537 NULL);
1541 return decl;
1545 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1546 PRE_FN is called in preorder, while POST_FN is called in postorder.
1547 If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
1548 walked. If PRE_FN or POST_FN returns a different non-NULL value,
1549 that value is immediately returned and the walk is terminated. One
1550 of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and
1551 POST_FN are passed the binfo to examine and the caller's DATA
1552 value. All paths are walked, thus virtual and morally virtual
1553 binfos can be multiply walked. */
1555 tree
1556 dfs_walk_all (tree binfo, tree (*pre_fn) (tree, void *),
1557 tree (*post_fn) (tree, void *), void *data)
1559 tree rval;
1560 unsigned ix;
1561 tree base_binfo;
1563 /* Call the pre-order walking function. */
1564 if (pre_fn)
1566 rval = pre_fn (binfo, data);
1567 if (rval)
1569 if (rval == dfs_skip_bases)
1570 goto skip_bases;
1571 return rval;
1575 /* Find the next child binfo to walk. */
1576 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1578 rval = dfs_walk_all (base_binfo, pre_fn, post_fn, data);
1579 if (rval)
1580 return rval;
1583 skip_bases:
1584 /* Call the post-order walking function. */
1585 if (post_fn)
1587 rval = post_fn (binfo, data);
1588 gcc_assert (rval != dfs_skip_bases);
1589 return rval;
1592 return NULL_TREE;
1595 /* Worker for dfs_walk_once. This behaves as dfs_walk_all, except
1596 that binfos are walked at most once. */
1598 static tree
1599 dfs_walk_once_r (tree binfo, tree (*pre_fn) (tree, void *),
1600 tree (*post_fn) (tree, void *), void *data)
1602 tree rval;
1603 unsigned ix;
1604 tree base_binfo;
1606 /* Call the pre-order walking function. */
1607 if (pre_fn)
1609 rval = pre_fn (binfo, data);
1610 if (rval)
1612 if (rval == dfs_skip_bases)
1613 goto skip_bases;
1615 return rval;
1619 /* Find the next child binfo to walk. */
1620 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1622 if (BINFO_VIRTUAL_P (base_binfo))
1624 if (BINFO_MARKED (base_binfo))
1625 continue;
1626 BINFO_MARKED (base_binfo) = 1;
1629 rval = dfs_walk_once_r (base_binfo, pre_fn, post_fn, data);
1630 if (rval)
1631 return rval;
1634 skip_bases:
1635 /* Call the post-order walking function. */
1636 if (post_fn)
1638 rval = post_fn (binfo, data);
1639 gcc_assert (rval != dfs_skip_bases);
1640 return rval;
1643 return NULL_TREE;
1646 /* Worker for dfs_walk_once. Recursively unmark the virtual base binfos of
1647 BINFO. */
1649 static void
1650 dfs_unmark_r (tree binfo)
1652 unsigned ix;
1653 tree base_binfo;
1655 /* Process the basetypes. */
1656 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1658 if (BINFO_VIRTUAL_P (base_binfo))
1660 if (!BINFO_MARKED (base_binfo))
1661 continue;
1662 BINFO_MARKED (base_binfo) = 0;
1664 /* Only walk, if it can contain more virtual bases. */
1665 if (CLASSTYPE_VBASECLASSES (BINFO_TYPE (base_binfo)))
1666 dfs_unmark_r (base_binfo);
1670 /* Like dfs_walk_all, except that binfos are not multiply walked. For
1671 non-diamond shaped hierarchies this is the same as dfs_walk_all.
1672 For diamond shaped hierarchies we must mark the virtual bases, to
1673 avoid multiple walks. */
1675 tree
1676 dfs_walk_once (tree binfo, tree (*pre_fn) (tree, void *),
1677 tree (*post_fn) (tree, void *), void *data)
1679 static int active = 0; /* We must not be called recursively. */
1680 tree rval;
1682 gcc_assert (pre_fn || post_fn);
1683 gcc_assert (!active);
1684 active++;
1686 if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
1687 /* We are not diamond shaped, and therefore cannot encounter the
1688 same binfo twice. */
1689 rval = dfs_walk_all (binfo, pre_fn, post_fn, data);
1690 else
1692 rval = dfs_walk_once_r (binfo, pre_fn, post_fn, data);
1693 if (!BINFO_INHERITANCE_CHAIN (binfo))
1695 /* We are at the top of the hierarchy, and can use the
1696 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1697 bases. */
1698 VEC(tree,gc) *vbases;
1699 unsigned ix;
1700 tree base_binfo;
1702 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1703 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1704 BINFO_MARKED (base_binfo) = 0;
1706 else
1707 dfs_unmark_r (binfo);
1710 active--;
1712 return rval;
1715 /* Worker function for dfs_walk_once_accessible. Behaves like
1716 dfs_walk_once_r, except (a) FRIENDS_P is true if special
1717 access given by the current context should be considered, (b) ONCE
1718 indicates whether bases should be marked during traversal. */
1720 static tree
1721 dfs_walk_once_accessible_r (tree binfo, bool friends_p, bool once,
1722 tree (*pre_fn) (tree, void *),
1723 tree (*post_fn) (tree, void *), void *data)
1725 tree rval = NULL_TREE;
1726 unsigned ix;
1727 tree base_binfo;
1729 /* Call the pre-order walking function. */
1730 if (pre_fn)
1732 rval = pre_fn (binfo, data);
1733 if (rval)
1735 if (rval == dfs_skip_bases)
1736 goto skip_bases;
1738 return rval;
1742 /* Find the next child binfo to walk. */
1743 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1745 bool mark = once && BINFO_VIRTUAL_P (base_binfo);
1747 if (mark && BINFO_MARKED (base_binfo))
1748 continue;
1750 /* If the base is inherited via private or protected
1751 inheritance, then we can't see it, unless we are a friend of
1752 the current binfo. */
1753 if (BINFO_BASE_ACCESS (binfo, ix) != access_public_node)
1755 tree scope;
1756 if (!friends_p)
1757 continue;
1758 scope = current_scope ();
1759 if (!scope
1760 || TREE_CODE (scope) == NAMESPACE_DECL
1761 || !is_friend (BINFO_TYPE (binfo), scope))
1762 continue;
1765 if (mark)
1766 BINFO_MARKED (base_binfo) = 1;
1768 rval = dfs_walk_once_accessible_r (base_binfo, friends_p, once,
1769 pre_fn, post_fn, data);
1770 if (rval)
1771 return rval;
1774 skip_bases:
1775 /* Call the post-order walking function. */
1776 if (post_fn)
1778 rval = post_fn (binfo, data);
1779 gcc_assert (rval != dfs_skip_bases);
1780 return rval;
1783 return NULL_TREE;
1786 /* Like dfs_walk_once except that only accessible bases are walked.
1787 FRIENDS_P indicates whether friendship of the local context
1788 should be considered when determining accessibility. */
1790 static tree
1791 dfs_walk_once_accessible (tree binfo, bool friends_p,
1792 tree (*pre_fn) (tree, void *),
1793 tree (*post_fn) (tree, void *), void *data)
1795 bool diamond_shaped = CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo));
1796 tree rval = dfs_walk_once_accessible_r (binfo, friends_p, diamond_shaped,
1797 pre_fn, post_fn, data);
1799 if (diamond_shaped)
1801 if (!BINFO_INHERITANCE_CHAIN (binfo))
1803 /* We are at the top of the hierarchy, and can use the
1804 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1805 bases. */
1806 VEC(tree,gc) *vbases;
1807 unsigned ix;
1808 tree base_binfo;
1810 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1811 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1812 BINFO_MARKED (base_binfo) = 0;
1814 else
1815 dfs_unmark_r (binfo);
1817 return rval;
1820 /* Check that virtual overrider OVERRIDER is acceptable for base function
1821 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1823 static int
1824 check_final_overrider (tree overrider, tree basefn)
1826 tree over_type = TREE_TYPE (overrider);
1827 tree base_type = TREE_TYPE (basefn);
1828 tree over_return = TREE_TYPE (over_type);
1829 tree base_return = TREE_TYPE (base_type);
1830 tree over_throw, base_throw;
1832 int fail = 0;
1834 if (DECL_INVALID_OVERRIDER_P (overrider))
1835 return 0;
1837 if (same_type_p (base_return, over_return))
1838 /* OK */;
1839 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1840 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1841 && POINTER_TYPE_P (base_return)))
1843 /* Potentially covariant. */
1844 unsigned base_quals, over_quals;
1846 fail = !POINTER_TYPE_P (base_return);
1847 if (!fail)
1849 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1851 base_return = TREE_TYPE (base_return);
1852 over_return = TREE_TYPE (over_return);
1854 base_quals = cp_type_quals (base_return);
1855 over_quals = cp_type_quals (over_return);
1857 if ((base_quals & over_quals) != over_quals)
1858 fail = 1;
1860 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1862 /* Strictly speaking, the standard requires the return type to be
1863 complete even if it only differs in cv-quals, but that seems
1864 like a bug in the wording. */
1865 if (!same_type_ignoring_top_level_qualifiers_p (base_return, over_return))
1867 tree binfo = lookup_base (over_return, base_return,
1868 ba_check | ba_quiet, NULL);
1870 if (!binfo)
1871 fail = 1;
1874 else if (!pedantic
1875 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1876 /* GNU extension, allow trivial pointer conversions such as
1877 converting to void *, or qualification conversion. */
1879 /* can_convert will permit user defined conversion from a
1880 (reference to) class type. We must reject them. */
1881 over_return = non_reference (TREE_TYPE (over_type));
1882 if (CLASS_TYPE_P (over_return))
1883 fail = 2;
1884 else
1886 warning (0, "deprecated covariant return type for %q+#D",
1887 overrider);
1888 warning (0, " overriding %q+#D", basefn);
1891 else
1892 fail = 2;
1894 else
1895 fail = 2;
1896 if (!fail)
1897 /* OK */;
1898 else
1900 if (fail == 1)
1902 error ("invalid covariant return type for %q+#D", overrider);
1903 error (" overriding %q+#D", basefn);
1905 else
1907 error ("conflicting return type specified for %q+#D", overrider);
1908 error (" overriding %q+#D", basefn);
1910 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1911 return 0;
1914 /* Check throw specifier is at least as strict. */
1915 maybe_instantiate_noexcept (basefn);
1916 maybe_instantiate_noexcept (overrider);
1917 base_throw = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (basefn));
1918 over_throw = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (overrider));
1920 if (!comp_except_specs (base_throw, over_throw, ce_derived))
1922 error ("looser throw specifier for %q+#F", overrider);
1923 error (" overriding %q+#F", basefn);
1924 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1925 return 0;
1928 /* Check for conflicting type attributes. */
1929 if (!comp_type_attributes (over_type, base_type))
1931 error ("conflicting type attributes specified for %q+#D", overrider);
1932 error (" overriding %q+#D", basefn);
1933 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1934 return 0;
1937 if (DECL_DELETED_FN (basefn) != DECL_DELETED_FN (overrider))
1939 if (DECL_DELETED_FN (overrider))
1941 error ("deleted function %q+D", overrider);
1942 error ("overriding non-deleted function %q+D", basefn);
1943 maybe_explain_implicit_delete (overrider);
1945 else
1947 error ("non-deleted function %q+D", overrider);
1948 error ("overriding deleted function %q+D", basefn);
1950 return 0;
1952 if (DECL_FINAL_P (basefn))
1954 error ("virtual function %q+D", overrider);
1955 error ("overriding final function %q+D", basefn);
1956 return 0;
1958 return 1;
1961 /* Given a class TYPE, and a function decl FNDECL, look for
1962 virtual functions in TYPE's hierarchy which FNDECL overrides.
1963 We do not look in TYPE itself, only its bases.
1965 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1966 find that it overrides anything.
1968 We check that every function which is overridden, is correctly
1969 overridden. */
1972 look_for_overrides (tree type, tree fndecl)
1974 tree binfo = TYPE_BINFO (type);
1975 tree base_binfo;
1976 int ix;
1977 int found = 0;
1979 /* A constructor for a class T does not override a function T
1980 in a base class. */
1981 if (DECL_CONSTRUCTOR_P (fndecl))
1982 return 0;
1984 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1986 tree basetype = BINFO_TYPE (base_binfo);
1988 if (TYPE_POLYMORPHIC_P (basetype))
1989 found += look_for_overrides_r (basetype, fndecl);
1991 return found;
1994 /* Look in TYPE for virtual functions with the same signature as
1995 FNDECL. */
1997 tree
1998 look_for_overrides_here (tree type, tree fndecl)
2000 int ix;
2002 /* If there are no methods in TYPE (meaning that only implicitly
2003 declared methods will ever be provided for TYPE), then there are
2004 no virtual functions. */
2005 if (!CLASSTYPE_METHOD_VEC (type))
2006 return NULL_TREE;
2008 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
2009 ix = CLASSTYPE_DESTRUCTOR_SLOT;
2010 else
2011 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
2012 if (ix >= 0)
2014 tree fns = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
2016 for (; fns; fns = OVL_NEXT (fns))
2018 tree fn = OVL_CURRENT (fns);
2020 if (!DECL_VIRTUAL_P (fn))
2021 /* Not a virtual. */;
2022 else if (DECL_CONTEXT (fn) != type)
2023 /* Introduced with a using declaration. */;
2024 else if (DECL_STATIC_FUNCTION_P (fndecl))
2026 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
2027 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2028 if (compparms (TREE_CHAIN (btypes), dtypes))
2029 return fn;
2031 else if (same_signature_p (fndecl, fn))
2032 return fn;
2035 return NULL_TREE;
2038 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
2039 TYPE itself and its bases. */
2041 static int
2042 look_for_overrides_r (tree type, tree fndecl)
2044 tree fn = look_for_overrides_here (type, fndecl);
2045 if (fn)
2047 if (DECL_STATIC_FUNCTION_P (fndecl))
2049 /* A static member function cannot match an inherited
2050 virtual member function. */
2051 error ("%q+#D cannot be declared", fndecl);
2052 error (" since %q+#D declared in base class", fn);
2054 else
2056 /* It's definitely virtual, even if not explicitly set. */
2057 DECL_VIRTUAL_P (fndecl) = 1;
2058 check_final_overrider (fndecl, fn);
2060 return 1;
2063 /* We failed to find one declared in this class. Look in its bases. */
2064 return look_for_overrides (type, fndecl);
2067 /* Called via dfs_walk from dfs_get_pure_virtuals. */
2069 static tree
2070 dfs_get_pure_virtuals (tree binfo, void *data)
2072 tree type = (tree) data;
2074 /* We're not interested in primary base classes; the derived class
2075 of which they are a primary base will contain the information we
2076 need. */
2077 if (!BINFO_PRIMARY_P (binfo))
2079 tree virtuals;
2081 for (virtuals = BINFO_VIRTUALS (binfo);
2082 virtuals;
2083 virtuals = TREE_CHAIN (virtuals))
2084 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
2085 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (type),
2086 BV_FN (virtuals));
2089 return NULL_TREE;
2092 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
2094 void
2095 get_pure_virtuals (tree type)
2097 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
2098 is going to be overridden. */
2099 CLASSTYPE_PURE_VIRTUALS (type) = NULL;
2100 /* Now, run through all the bases which are not primary bases, and
2101 collect the pure virtual functions. We look at the vtable in
2102 each class to determine what pure virtual functions are present.
2103 (A primary base is not interesting because the derived class of
2104 which it is a primary base will contain vtable entries for the
2105 pure virtuals in the base class. */
2106 dfs_walk_once (TYPE_BINFO (type), NULL, dfs_get_pure_virtuals, type);
2109 /* Debug info for C++ classes can get very large; try to avoid
2110 emitting it everywhere.
2112 Note that this optimization wins even when the target supports
2113 BINCL (if only slightly), and reduces the amount of work for the
2114 linker. */
2116 void
2117 maybe_suppress_debug_info (tree t)
2119 if (write_symbols == NO_DEBUG)
2120 return;
2122 /* We might have set this earlier in cp_finish_decl. */
2123 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2125 /* Always emit the information for each class every time. */
2126 if (flag_emit_class_debug_always)
2127 return;
2129 /* If we already know how we're handling this class, handle debug info
2130 the same way. */
2131 if (CLASSTYPE_INTERFACE_KNOWN (t))
2133 if (CLASSTYPE_INTERFACE_ONLY (t))
2134 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2135 /* else don't set it. */
2137 /* If the class has a vtable, write out the debug info along with
2138 the vtable. */
2139 else if (TYPE_CONTAINS_VPTR_P (t))
2140 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2142 /* Otherwise, just emit the debug info normally. */
2145 /* Note that we want debugging information for a base class of a class
2146 whose vtable is being emitted. Normally, this would happen because
2147 calling the constructor for a derived class implies calling the
2148 constructors for all bases, which involve initializing the
2149 appropriate vptr with the vtable for the base class; but in the
2150 presence of optimization, this initialization may be optimized
2151 away, so we tell finish_vtable_vardecl that we want the debugging
2152 information anyway. */
2154 static tree
2155 dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
2157 tree t = BINFO_TYPE (binfo);
2159 if (CLASSTYPE_DEBUG_REQUESTED (t))
2160 return dfs_skip_bases;
2162 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2164 return NULL_TREE;
2167 /* Write out the debugging information for TYPE, whose vtable is being
2168 emitted. Also walk through our bases and note that we want to
2169 write out information for them. This avoids the problem of not
2170 writing any debug info for intermediate basetypes whose
2171 constructors, and thus the references to their vtables, and thus
2172 the vtables themselves, were optimized away. */
2174 void
2175 note_debug_info_needed (tree type)
2177 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2179 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2180 rest_of_type_compilation (type, toplevel_bindings_p ());
2183 dfs_walk_all (TYPE_BINFO (type), dfs_debug_mark, NULL, 0);
2186 void
2187 print_search_statistics (void)
2189 #ifdef GATHER_STATISTICS
2190 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2191 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2192 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2193 n_outer_fields_searched, n_calls_lookup_fnfields);
2194 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2195 #else /* GATHER_STATISTICS */
2196 fprintf (stderr, "no search statistics\n");
2197 #endif /* GATHER_STATISTICS */
2200 void
2201 reinit_search_statistics (void)
2203 #ifdef GATHER_STATISTICS
2204 n_fields_searched = 0;
2205 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2206 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2207 n_calls_get_base_type = 0;
2208 n_outer_fields_searched = 0;
2209 n_contexts_saved = 0;
2210 #endif /* GATHER_STATISTICS */
2213 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
2214 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
2215 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
2216 bases have been encountered already in the tree walk. PARENT_CONVS
2217 is the list of lists of conversion functions that could hide CONV
2218 and OTHER_CONVS is the list of lists of conversion functions that
2219 could hide or be hidden by CONV, should virtualness be involved in
2220 the hierarchy. Merely checking the conversion op's name is not
2221 enough because two conversion operators to the same type can have
2222 different names. Return nonzero if we are visible. */
2224 static int
2225 check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
2226 tree to_type, tree parent_convs, tree other_convs)
2228 tree level, probe;
2230 /* See if we are hidden by a parent conversion. */
2231 for (level = parent_convs; level; level = TREE_CHAIN (level))
2232 for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
2233 if (same_type_p (to_type, TREE_TYPE (probe)))
2234 return 0;
2236 if (virtual_depth || virtualness)
2238 /* In a virtual hierarchy, we could be hidden, or could hide a
2239 conversion function on the other_convs list. */
2240 for (level = other_convs; level; level = TREE_CHAIN (level))
2242 int we_hide_them;
2243 int they_hide_us;
2244 tree *prev, other;
2246 if (!(virtual_depth || TREE_STATIC (level)))
2247 /* Neither is morally virtual, so cannot hide each other. */
2248 continue;
2250 if (!TREE_VALUE (level))
2251 /* They evaporated away already. */
2252 continue;
2254 they_hide_us = (virtual_depth
2255 && original_binfo (binfo, TREE_PURPOSE (level)));
2256 we_hide_them = (!they_hide_us && TREE_STATIC (level)
2257 && original_binfo (TREE_PURPOSE (level), binfo));
2259 if (!(we_hide_them || they_hide_us))
2260 /* Neither is within the other, so no hiding can occur. */
2261 continue;
2263 for (prev = &TREE_VALUE (level), other = *prev; other;)
2265 if (same_type_p (to_type, TREE_TYPE (other)))
2267 if (they_hide_us)
2268 /* We are hidden. */
2269 return 0;
2271 if (we_hide_them)
2273 /* We hide the other one. */
2274 other = TREE_CHAIN (other);
2275 *prev = other;
2276 continue;
2279 prev = &TREE_CHAIN (other);
2280 other = *prev;
2284 return 1;
2287 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2288 of conversion functions, the first slot will be for the current
2289 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2290 of conversion functions from children of the current binfo,
2291 concatenated with conversions from elsewhere in the hierarchy --
2292 that list begins with OTHER_CONVS. Return a single list of lists
2293 containing only conversions from the current binfo and its
2294 children. */
2296 static tree
2297 split_conversions (tree my_convs, tree parent_convs,
2298 tree child_convs, tree other_convs)
2300 tree t;
2301 tree prev;
2303 /* Remove the original other_convs portion from child_convs. */
2304 for (prev = NULL, t = child_convs;
2305 t != other_convs; prev = t, t = TREE_CHAIN (t))
2306 continue;
2308 if (prev)
2309 TREE_CHAIN (prev) = NULL_TREE;
2310 else
2311 child_convs = NULL_TREE;
2313 /* Attach the child convs to any we had at this level. */
2314 if (my_convs)
2316 my_convs = parent_convs;
2317 TREE_CHAIN (my_convs) = child_convs;
2319 else
2320 my_convs = child_convs;
2322 return my_convs;
2325 /* Worker for lookup_conversions. Lookup conversion functions in
2326 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
2327 a morally virtual base, and VIRTUALNESS is nonzero, if we've
2328 encountered virtual bases already in the tree walk. PARENT_CONVS &
2329 PARENT_TPL_CONVS are lists of list of conversions within parent
2330 binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2331 elsewhere in the tree. Return the conversions found within this
2332 portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
2333 encountered virtualness. We keep template and non-template
2334 conversions separate, to avoid unnecessary type comparisons.
2336 The located conversion functions are held in lists of lists. The
2337 TREE_VALUE of the outer list is the list of conversion functions
2338 found in a particular binfo. The TREE_PURPOSE of both the outer
2339 and inner lists is the binfo at which those conversions were
2340 found. TREE_STATIC is set for those lists within of morally
2341 virtual binfos. The TREE_VALUE of the inner list is the conversion
2342 function or overload itself. The TREE_TYPE of each inner list node
2343 is the converted-to type. */
2345 static int
2346 lookup_conversions_r (tree binfo,
2347 int virtual_depth, int virtualness,
2348 tree parent_convs, tree parent_tpl_convs,
2349 tree other_convs, tree other_tpl_convs,
2350 tree *convs, tree *tpl_convs)
2352 int my_virtualness = 0;
2353 tree my_convs = NULL_TREE;
2354 tree my_tpl_convs = NULL_TREE;
2355 tree child_convs = NULL_TREE;
2356 tree child_tpl_convs = NULL_TREE;
2357 unsigned i;
2358 tree base_binfo;
2359 VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2360 tree conv;
2362 /* If we have no conversion operators, then don't look. */
2363 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
2365 *convs = *tpl_convs = NULL_TREE;
2367 return 0;
2370 if (BINFO_VIRTUAL_P (binfo))
2371 virtual_depth++;
2373 /* First, locate the unhidden ones at this level. */
2374 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2375 VEC_iterate (tree, method_vec, i, conv);
2376 ++i)
2378 tree cur = OVL_CURRENT (conv);
2380 if (!DECL_CONV_FN_P (cur))
2381 break;
2383 if (TREE_CODE (cur) == TEMPLATE_DECL)
2385 /* Only template conversions can be overloaded, and we must
2386 flatten them out and check each one individually. */
2387 tree tpls;
2389 for (tpls = conv; tpls; tpls = OVL_NEXT (tpls))
2391 tree tpl = OVL_CURRENT (tpls);
2392 tree type = DECL_CONV_FN_TYPE (tpl);
2394 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2395 type, parent_tpl_convs, other_tpl_convs))
2397 my_tpl_convs = tree_cons (binfo, tpl, my_tpl_convs);
2398 TREE_TYPE (my_tpl_convs) = type;
2399 if (virtual_depth)
2401 TREE_STATIC (my_tpl_convs) = 1;
2402 my_virtualness = 1;
2407 else
2409 tree name = DECL_NAME (cur);
2411 if (!IDENTIFIER_MARKED (name))
2413 tree type = DECL_CONV_FN_TYPE (cur);
2415 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2416 type, parent_convs, other_convs))
2418 my_convs = tree_cons (binfo, conv, my_convs);
2419 TREE_TYPE (my_convs) = type;
2420 if (virtual_depth)
2422 TREE_STATIC (my_convs) = 1;
2423 my_virtualness = 1;
2425 IDENTIFIER_MARKED (name) = 1;
2431 if (my_convs)
2433 parent_convs = tree_cons (binfo, my_convs, parent_convs);
2434 if (virtual_depth)
2435 TREE_STATIC (parent_convs) = 1;
2438 if (my_tpl_convs)
2440 parent_tpl_convs = tree_cons (binfo, my_tpl_convs, parent_tpl_convs);
2441 if (virtual_depth)
2442 TREE_STATIC (parent_tpl_convs) = 1;
2445 child_convs = other_convs;
2446 child_tpl_convs = other_tpl_convs;
2448 /* Now iterate over each base, looking for more conversions. */
2449 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2451 tree base_convs, base_tpl_convs;
2452 unsigned base_virtualness;
2454 base_virtualness = lookup_conversions_r (base_binfo,
2455 virtual_depth, virtualness,
2456 parent_convs, parent_tpl_convs,
2457 child_convs, child_tpl_convs,
2458 &base_convs, &base_tpl_convs);
2459 if (base_virtualness)
2460 my_virtualness = virtualness = 1;
2461 child_convs = chainon (base_convs, child_convs);
2462 child_tpl_convs = chainon (base_tpl_convs, child_tpl_convs);
2465 /* Unmark the conversions found at this level */
2466 for (conv = my_convs; conv; conv = TREE_CHAIN (conv))
2467 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv)))) = 0;
2469 *convs = split_conversions (my_convs, parent_convs,
2470 child_convs, other_convs);
2471 *tpl_convs = split_conversions (my_tpl_convs, parent_tpl_convs,
2472 child_tpl_convs, other_tpl_convs);
2474 return my_virtualness;
2477 /* Return a TREE_LIST containing all the non-hidden user-defined
2478 conversion functions for TYPE (and its base-classes). The
2479 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2480 function. The TREE_PURPOSE is the BINFO from which the conversion
2481 functions in this node were selected. This function is effectively
2482 performing a set of member lookups as lookup_fnfield does, but
2483 using the type being converted to as the unique key, rather than the
2484 field name. */
2486 tree
2487 lookup_conversions (tree type)
2489 tree convs, tpl_convs;
2490 tree list = NULL_TREE;
2492 complete_type (type);
2493 if (!TYPE_BINFO (type))
2494 return NULL_TREE;
2496 lookup_conversions_r (TYPE_BINFO (type), 0, 0,
2497 NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE,
2498 &convs, &tpl_convs);
2500 /* Flatten the list-of-lists */
2501 for (; convs; convs = TREE_CHAIN (convs))
2503 tree probe, next;
2505 for (probe = TREE_VALUE (convs); probe; probe = next)
2507 next = TREE_CHAIN (probe);
2509 TREE_CHAIN (probe) = list;
2510 list = probe;
2514 for (; tpl_convs; tpl_convs = TREE_CHAIN (tpl_convs))
2516 tree probe, next;
2518 for (probe = TREE_VALUE (tpl_convs); probe; probe = next)
2520 next = TREE_CHAIN (probe);
2522 TREE_CHAIN (probe) = list;
2523 list = probe;
2527 return list;
2530 /* Returns the binfo of the first direct or indirect virtual base derived
2531 from BINFO, or NULL if binfo is not via virtual. */
2533 tree
2534 binfo_from_vbase (tree binfo)
2536 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2538 if (BINFO_VIRTUAL_P (binfo))
2539 return binfo;
2541 return NULL_TREE;
2544 /* Returns the binfo of the first direct or indirect virtual base derived
2545 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2546 via virtual. */
2548 tree
2549 binfo_via_virtual (tree binfo, tree limit)
2551 if (limit && !CLASSTYPE_VBASECLASSES (limit))
2552 /* LIMIT has no virtual bases, so BINFO cannot be via one. */
2553 return NULL_TREE;
2555 for (; binfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), limit);
2556 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2558 if (BINFO_VIRTUAL_P (binfo))
2559 return binfo;
2561 return NULL_TREE;
2564 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2565 Find the equivalent binfo within whatever graph HERE is located.
2566 This is the inverse of original_binfo. */
2568 tree
2569 copied_binfo (tree binfo, tree here)
2571 tree result = NULL_TREE;
2573 if (BINFO_VIRTUAL_P (binfo))
2575 tree t;
2577 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2578 t = BINFO_INHERITANCE_CHAIN (t))
2579 continue;
2581 result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
2583 else if (BINFO_INHERITANCE_CHAIN (binfo))
2585 tree cbinfo;
2586 tree base_binfo;
2587 int ix;
2589 cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2590 for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
2591 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), BINFO_TYPE (binfo)))
2593 result = base_binfo;
2594 break;
2597 else
2599 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here), BINFO_TYPE (binfo)));
2600 result = here;
2603 gcc_assert (result);
2604 return result;
2607 tree
2608 binfo_for_vbase (tree base, tree t)
2610 unsigned ix;
2611 tree binfo;
2612 VEC(tree,gc) *vbases;
2614 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
2615 VEC_iterate (tree, vbases, ix, binfo); ix++)
2616 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), base))
2617 return binfo;
2618 return NULL;
2621 /* BINFO is some base binfo of HERE, within some other
2622 hierarchy. Return the equivalent binfo, but in the hierarchy
2623 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2624 is not a base binfo of HERE, returns NULL_TREE. */
2626 tree
2627 original_binfo (tree binfo, tree here)
2629 tree result = NULL;
2631 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (here)))
2632 result = here;
2633 else if (BINFO_VIRTUAL_P (binfo))
2634 result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
2635 ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
2636 : NULL_TREE);
2637 else if (BINFO_INHERITANCE_CHAIN (binfo))
2639 tree base_binfos;
2641 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2642 if (base_binfos)
2644 int ix;
2645 tree base_binfo;
2647 for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
2648 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
2649 BINFO_TYPE (binfo)))
2651 result = base_binfo;
2652 break;
2657 return result;