* include/bits/allocator.h (operator==, operator!=): Add exception
[official-gcc.git] / gcc / ira.c
blob4d91d2196a631e41468daaef5fbb8ed977e1802f
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calulates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloringh we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allono assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is impelemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initilized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "tm.h"
370 #include "regs.h"
371 #include "tree.h"
372 #include "rtl.h"
373 #include "tm_p.h"
374 #include "target.h"
375 #include "flags.h"
376 #include "obstack.h"
377 #include "bitmap.h"
378 #include "hard-reg-set.h"
379 #include "basic-block.h"
380 #include "df.h"
381 #include "expr.h"
382 #include "recog.h"
383 #include "params.h"
384 #include "tree-pass.h"
385 #include "output.h"
386 #include "except.h"
387 #include "reload.h"
388 #include "diagnostic-core.h"
389 #include "function.h"
390 #include "ggc.h"
391 #include "ira-int.h"
392 #include "lra.h"
393 #include "dce.h"
394 #include "dbgcnt.h"
396 struct target_ira default_target_ira;
397 struct target_ira_int default_target_ira_int;
398 #if SWITCHABLE_TARGET
399 struct target_ira *this_target_ira = &default_target_ira;
400 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
401 #endif
403 /* A modified value of flag `-fira-verbose' used internally. */
404 int internal_flag_ira_verbose;
406 /* Dump file of the allocator if it is not NULL. */
407 FILE *ira_dump_file;
409 /* The number of elements in the following array. */
410 int ira_spilled_reg_stack_slots_num;
412 /* The following array contains info about spilled pseudo-registers
413 stack slots used in current function so far. */
414 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
416 /* Correspondingly overall cost of the allocation, overall cost before
417 reload, cost of the allocnos assigned to hard-registers, cost of
418 the allocnos assigned to memory, cost of loads, stores and register
419 move insns generated for pseudo-register live range splitting (see
420 ira-emit.c). */
421 int ira_overall_cost, overall_cost_before;
422 int ira_reg_cost, ira_mem_cost;
423 int ira_load_cost, ira_store_cost, ira_shuffle_cost;
424 int ira_move_loops_num, ira_additional_jumps_num;
426 /* All registers that can be eliminated. */
428 HARD_REG_SET eliminable_regset;
430 /* Value of max_reg_num () before IRA work start. This value helps
431 us to recognize a situation when new pseudos were created during
432 IRA work. */
433 static int max_regno_before_ira;
435 /* Temporary hard reg set used for a different calculation. */
436 static HARD_REG_SET temp_hard_regset;
438 #define last_mode_for_init_move_cost \
439 (this_target_ira_int->x_last_mode_for_init_move_cost)
442 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
443 static void
444 setup_reg_mode_hard_regset (void)
446 int i, m, hard_regno;
448 for (m = 0; m < NUM_MACHINE_MODES; m++)
449 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
451 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
452 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
453 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
454 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
455 hard_regno + i);
460 #define no_unit_alloc_regs \
461 (this_target_ira_int->x_no_unit_alloc_regs)
463 /* The function sets up the three arrays declared above. */
464 static void
465 setup_class_hard_regs (void)
467 int cl, i, hard_regno, n;
468 HARD_REG_SET processed_hard_reg_set;
470 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
471 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
473 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
474 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
475 CLEAR_HARD_REG_SET (processed_hard_reg_set);
476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
478 ira_non_ordered_class_hard_regs[cl][i] = -1;
479 ira_class_hard_reg_index[cl][i] = -1;
481 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
483 #ifdef REG_ALLOC_ORDER
484 hard_regno = reg_alloc_order[i];
485 #else
486 hard_regno = i;
487 #endif
488 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
489 continue;
490 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
491 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
492 ira_class_hard_reg_index[cl][hard_regno] = -1;
493 else
495 ira_class_hard_reg_index[cl][hard_regno] = n;
496 ira_class_hard_regs[cl][n++] = hard_regno;
499 ira_class_hard_regs_num[cl] = n;
500 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
501 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
502 ira_non_ordered_class_hard_regs[cl][n++] = i;
503 ira_assert (ira_class_hard_regs_num[cl] == n);
507 /* Set up global variables defining info about hard registers for the
508 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
509 that we can use the hard frame pointer for the allocation. */
510 static void
511 setup_alloc_regs (bool use_hard_frame_p)
513 #ifdef ADJUST_REG_ALLOC_ORDER
514 ADJUST_REG_ALLOC_ORDER;
515 #endif
516 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
517 if (! use_hard_frame_p)
518 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
519 setup_class_hard_regs ();
524 #define alloc_reg_class_subclasses \
525 (this_target_ira_int->x_alloc_reg_class_subclasses)
527 /* Initialize the table of subclasses of each reg class. */
528 static void
529 setup_reg_subclasses (void)
531 int i, j;
532 HARD_REG_SET temp_hard_regset2;
534 for (i = 0; i < N_REG_CLASSES; i++)
535 for (j = 0; j < N_REG_CLASSES; j++)
536 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
538 for (i = 0; i < N_REG_CLASSES; i++)
540 if (i == (int) NO_REGS)
541 continue;
543 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
544 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
545 if (hard_reg_set_empty_p (temp_hard_regset))
546 continue;
547 for (j = 0; j < N_REG_CLASSES; j++)
548 if (i != j)
550 enum reg_class *p;
552 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
553 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
554 if (! hard_reg_set_subset_p (temp_hard_regset,
555 temp_hard_regset2))
556 continue;
557 p = &alloc_reg_class_subclasses[j][0];
558 while (*p != LIM_REG_CLASSES) p++;
559 *p = (enum reg_class) i;
566 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
567 static void
568 setup_class_subset_and_memory_move_costs (void)
570 int cl, cl2, mode, cost;
571 HARD_REG_SET temp_hard_regset2;
573 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
574 ira_memory_move_cost[mode][NO_REGS][0]
575 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
576 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
578 if (cl != (int) NO_REGS)
579 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
581 ira_max_memory_move_cost[mode][cl][0]
582 = ira_memory_move_cost[mode][cl][0]
583 = memory_move_cost ((enum machine_mode) mode,
584 (reg_class_t) cl, false);
585 ira_max_memory_move_cost[mode][cl][1]
586 = ira_memory_move_cost[mode][cl][1]
587 = memory_move_cost ((enum machine_mode) mode,
588 (reg_class_t) cl, true);
589 /* Costs for NO_REGS are used in cost calculation on the
590 1st pass when the preferred register classes are not
591 known yet. In this case we take the best scenario. */
592 if (ira_memory_move_cost[mode][NO_REGS][0]
593 > ira_memory_move_cost[mode][cl][0])
594 ira_max_memory_move_cost[mode][NO_REGS][0]
595 = ira_memory_move_cost[mode][NO_REGS][0]
596 = ira_memory_move_cost[mode][cl][0];
597 if (ira_memory_move_cost[mode][NO_REGS][1]
598 > ira_memory_move_cost[mode][cl][1])
599 ira_max_memory_move_cost[mode][NO_REGS][1]
600 = ira_memory_move_cost[mode][NO_REGS][1]
601 = ira_memory_move_cost[mode][cl][1];
604 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
605 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
607 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
608 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
609 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
610 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
611 ira_class_subset_p[cl][cl2]
612 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
613 if (! hard_reg_set_empty_p (temp_hard_regset2)
614 && hard_reg_set_subset_p (reg_class_contents[cl2],
615 reg_class_contents[cl]))
616 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
618 cost = ira_memory_move_cost[mode][cl2][0];
619 if (cost > ira_max_memory_move_cost[mode][cl][0])
620 ira_max_memory_move_cost[mode][cl][0] = cost;
621 cost = ira_memory_move_cost[mode][cl2][1];
622 if (cost > ira_max_memory_move_cost[mode][cl][1])
623 ira_max_memory_move_cost[mode][cl][1] = cost;
626 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
627 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
629 ira_memory_move_cost[mode][cl][0]
630 = ira_max_memory_move_cost[mode][cl][0];
631 ira_memory_move_cost[mode][cl][1]
632 = ira_max_memory_move_cost[mode][cl][1];
634 setup_reg_subclasses ();
639 /* Define the following macro if allocation through malloc if
640 preferable. */
641 #define IRA_NO_OBSTACK
643 #ifndef IRA_NO_OBSTACK
644 /* Obstack used for storing all dynamic data (except bitmaps) of the
645 IRA. */
646 static struct obstack ira_obstack;
647 #endif
649 /* Obstack used for storing all bitmaps of the IRA. */
650 static struct bitmap_obstack ira_bitmap_obstack;
652 /* Allocate memory of size LEN for IRA data. */
653 void *
654 ira_allocate (size_t len)
656 void *res;
658 #ifndef IRA_NO_OBSTACK
659 res = obstack_alloc (&ira_obstack, len);
660 #else
661 res = xmalloc (len);
662 #endif
663 return res;
666 /* Free memory ADDR allocated for IRA data. */
667 void
668 ira_free (void *addr ATTRIBUTE_UNUSED)
670 #ifndef IRA_NO_OBSTACK
671 /* do nothing */
672 #else
673 free (addr);
674 #endif
678 /* Allocate and returns bitmap for IRA. */
679 bitmap
680 ira_allocate_bitmap (void)
682 return BITMAP_ALLOC (&ira_bitmap_obstack);
685 /* Free bitmap B allocated for IRA. */
686 void
687 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
689 /* do nothing */
694 /* Output information about allocation of all allocnos (except for
695 caps) into file F. */
696 void
697 ira_print_disposition (FILE *f)
699 int i, n, max_regno;
700 ira_allocno_t a;
701 basic_block bb;
703 fprintf (f, "Disposition:");
704 max_regno = max_reg_num ();
705 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
706 for (a = ira_regno_allocno_map[i];
707 a != NULL;
708 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
710 if (n % 4 == 0)
711 fprintf (f, "\n");
712 n++;
713 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
714 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
715 fprintf (f, "b%-3d", bb->index);
716 else
717 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
718 if (ALLOCNO_HARD_REGNO (a) >= 0)
719 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
720 else
721 fprintf (f, " mem");
723 fprintf (f, "\n");
726 /* Outputs information about allocation of all allocnos into
727 stderr. */
728 void
729 ira_debug_disposition (void)
731 ira_print_disposition (stderr);
736 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
737 register class containing stack registers or NO_REGS if there are
738 no stack registers. To find this class, we iterate through all
739 register pressure classes and choose the first register pressure
740 class containing all the stack registers and having the biggest
741 size. */
742 static void
743 setup_stack_reg_pressure_class (void)
745 ira_stack_reg_pressure_class = NO_REGS;
746 #ifdef STACK_REGS
748 int i, best, size;
749 enum reg_class cl;
750 HARD_REG_SET temp_hard_regset2;
752 CLEAR_HARD_REG_SET (temp_hard_regset);
753 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
754 SET_HARD_REG_BIT (temp_hard_regset, i);
755 best = 0;
756 for (i = 0; i < ira_pressure_classes_num; i++)
758 cl = ira_pressure_classes[i];
759 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
760 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
761 size = hard_reg_set_size (temp_hard_regset2);
762 if (best < size)
764 best = size;
765 ira_stack_reg_pressure_class = cl;
769 #endif
772 /* Find pressure classes which are register classes for which we
773 calculate register pressure in IRA, register pressure sensitive
774 insn scheduling, and register pressure sensitive loop invariant
775 motion.
777 To make register pressure calculation easy, we always use
778 non-intersected register pressure classes. A move of hard
779 registers from one register pressure class is not more expensive
780 than load and store of the hard registers. Most likely an allocno
781 class will be a subset of a register pressure class and in many
782 cases a register pressure class. That makes usage of register
783 pressure classes a good approximation to find a high register
784 pressure. */
785 static void
786 setup_pressure_classes (void)
788 int cost, i, n, curr;
789 int cl, cl2;
790 enum reg_class pressure_classes[N_REG_CLASSES];
791 int m;
792 HARD_REG_SET temp_hard_regset2;
793 bool insert_p;
795 n = 0;
796 for (cl = 0; cl < N_REG_CLASSES; cl++)
798 if (ira_class_hard_regs_num[cl] == 0)
799 continue;
800 if (ira_class_hard_regs_num[cl] != 1
801 /* A register class without subclasses may contain a few
802 hard registers and movement between them is costly
803 (e.g. SPARC FPCC registers). We still should consider it
804 as a candidate for a pressure class. */
805 && alloc_reg_class_subclasses[cl][0] < cl)
807 /* Check that the moves between any hard registers of the
808 current class are not more expensive for a legal mode
809 than load/store of the hard registers of the current
810 class. Such class is a potential candidate to be a
811 register pressure class. */
812 for (m = 0; m < NUM_MACHINE_MODES; m++)
814 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
815 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
816 AND_COMPL_HARD_REG_SET (temp_hard_regset,
817 ira_prohibited_class_mode_regs[cl][m]);
818 if (hard_reg_set_empty_p (temp_hard_regset))
819 continue;
820 ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
821 cost = ira_register_move_cost[m][cl][cl];
822 if (cost <= ira_max_memory_move_cost[m][cl][1]
823 || cost <= ira_max_memory_move_cost[m][cl][0])
824 break;
826 if (m >= NUM_MACHINE_MODES)
827 continue;
829 curr = 0;
830 insert_p = true;
831 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
832 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
833 /* Remove so far added pressure classes which are subset of the
834 current candidate class. Prefer GENERAL_REGS as a pressure
835 register class to another class containing the same
836 allocatable hard registers. We do this because machine
837 dependent cost hooks might give wrong costs for the latter
838 class but always give the right cost for the former class
839 (GENERAL_REGS). */
840 for (i = 0; i < n; i++)
842 cl2 = pressure_classes[i];
843 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
844 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
845 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
846 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
847 || cl2 == (int) GENERAL_REGS))
849 pressure_classes[curr++] = (enum reg_class) cl2;
850 insert_p = false;
851 continue;
853 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
854 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
855 || cl == (int) GENERAL_REGS))
856 continue;
857 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
858 insert_p = false;
859 pressure_classes[curr++] = (enum reg_class) cl2;
861 /* If the current candidate is a subset of a so far added
862 pressure class, don't add it to the list of the pressure
863 classes. */
864 if (insert_p)
865 pressure_classes[curr++] = (enum reg_class) cl;
866 n = curr;
868 #ifdef ENABLE_IRA_CHECKING
870 HARD_REG_SET ignore_hard_regs;
872 /* Check pressure classes correctness: here we check that hard
873 registers from all register pressure classes contains all hard
874 registers available for the allocation. */
875 CLEAR_HARD_REG_SET (temp_hard_regset);
876 CLEAR_HARD_REG_SET (temp_hard_regset2);
877 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
878 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
880 /* For some targets (like MIPS with MD_REGS), there are some
881 classes with hard registers available for allocation but
882 not able to hold value of any mode. */
883 for (m = 0; m < NUM_MACHINE_MODES; m++)
884 if (contains_reg_of_mode[cl][m])
885 break;
886 if (m >= NUM_MACHINE_MODES)
888 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
889 continue;
891 for (i = 0; i < n; i++)
892 if ((int) pressure_classes[i] == cl)
893 break;
894 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
895 if (i < n)
896 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
898 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
899 /* Some targets (like SPARC with ICC reg) have alocatable regs
900 for which no reg class is defined. */
901 if (REGNO_REG_CLASS (i) == NO_REGS)
902 SET_HARD_REG_BIT (ignore_hard_regs, i);
903 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
904 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
905 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
907 #endif
908 ira_pressure_classes_num = 0;
909 for (i = 0; i < n; i++)
911 cl = (int) pressure_classes[i];
912 ira_reg_pressure_class_p[cl] = true;
913 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
915 setup_stack_reg_pressure_class ();
918 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
919 whose register move cost between any registers of the class is the
920 same as for all its subclasses. We use the data to speed up the
921 2nd pass of calculations of allocno costs. */
922 static void
923 setup_uniform_class_p (void)
925 int i, cl, cl2, m;
927 for (cl = 0; cl < N_REG_CLASSES; cl++)
929 ira_uniform_class_p[cl] = false;
930 if (ira_class_hard_regs_num[cl] == 0)
931 continue;
932 /* We can not use alloc_reg_class_subclasses here because move
933 cost hooks does not take into account that some registers are
934 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
935 is element of alloc_reg_class_subclasses for GENERAL_REGS
936 because SSE regs are unavailable. */
937 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
939 if (ira_class_hard_regs_num[cl2] == 0)
940 continue;
941 for (m = 0; m < NUM_MACHINE_MODES; m++)
942 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
944 ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
945 if (ira_register_move_cost[m][cl][cl]
946 != ira_register_move_cost[m][cl2][cl2])
947 break;
949 if (m < NUM_MACHINE_MODES)
950 break;
952 if (cl2 == LIM_REG_CLASSES)
953 ira_uniform_class_p[cl] = true;
957 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
958 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
960 Target may have many subtargets and not all target hard regiters can
961 be used for allocation, e.g. x86 port in 32-bit mode can not use
962 hard registers introduced in x86-64 like r8-r15). Some classes
963 might have the same allocatable hard registers, e.g. INDEX_REGS
964 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
965 calculations efforts we introduce allocno classes which contain
966 unique non-empty sets of allocatable hard-registers.
968 Pseudo class cost calculation in ira-costs.c is very expensive.
969 Therefore we are trying to decrease number of classes involved in
970 such calculation. Register classes used in the cost calculation
971 are called important classes. They are allocno classes and other
972 non-empty classes whose allocatable hard register sets are inside
973 of an allocno class hard register set. From the first sight, it
974 looks like that they are just allocno classes. It is not true. In
975 example of x86-port in 32-bit mode, allocno classes will contain
976 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
977 registers are the same for the both classes). The important
978 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
979 because a machine description insn constraint may refers for
980 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
981 of the insn constraints. */
982 static void
983 setup_allocno_and_important_classes (void)
985 int i, j, n, cl;
986 bool set_p;
987 HARD_REG_SET temp_hard_regset2;
988 static enum reg_class classes[LIM_REG_CLASSES + 1];
990 n = 0;
991 /* Collect classes which contain unique sets of allocatable hard
992 registers. Prefer GENERAL_REGS to other classes containing the
993 same set of hard registers. */
994 for (i = 0; i < LIM_REG_CLASSES; i++)
996 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
997 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
998 for (j = 0; j < n; j++)
1000 cl = classes[j];
1001 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1002 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1003 no_unit_alloc_regs);
1004 if (hard_reg_set_equal_p (temp_hard_regset,
1005 temp_hard_regset2))
1006 break;
1008 if (j >= n)
1009 classes[n++] = (enum reg_class) i;
1010 else if (i == GENERAL_REGS)
1011 /* Prefer general regs. For i386 example, it means that
1012 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1013 (all of them consists of the same available hard
1014 registers). */
1015 classes[j] = (enum reg_class) i;
1017 classes[n] = LIM_REG_CLASSES;
1019 /* Set up classes which can be used for allocnos as classes
1020 conatining non-empty unique sets of allocatable hard
1021 registers. */
1022 ira_allocno_classes_num = 0;
1023 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1024 if (ira_class_hard_regs_num[cl] > 0)
1025 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1026 ira_important_classes_num = 0;
1027 /* Add non-allocno classes containing to non-empty set of
1028 allocatable hard regs. */
1029 for (cl = 0; cl < N_REG_CLASSES; cl++)
1030 if (ira_class_hard_regs_num[cl] > 0)
1032 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1033 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1034 set_p = false;
1035 for (j = 0; j < ira_allocno_classes_num; j++)
1037 COPY_HARD_REG_SET (temp_hard_regset2,
1038 reg_class_contents[ira_allocno_classes[j]]);
1039 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1040 if ((enum reg_class) cl == ira_allocno_classes[j])
1041 break;
1042 else if (hard_reg_set_subset_p (temp_hard_regset,
1043 temp_hard_regset2))
1044 set_p = true;
1046 if (set_p && j >= ira_allocno_classes_num)
1047 ira_important_classes[ira_important_classes_num++]
1048 = (enum reg_class) cl;
1050 /* Now add allocno classes to the important classes. */
1051 for (j = 0; j < ira_allocno_classes_num; j++)
1052 ira_important_classes[ira_important_classes_num++]
1053 = ira_allocno_classes[j];
1054 for (cl = 0; cl < N_REG_CLASSES; cl++)
1056 ira_reg_allocno_class_p[cl] = false;
1057 ira_reg_pressure_class_p[cl] = false;
1059 for (j = 0; j < ira_allocno_classes_num; j++)
1060 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1061 setup_pressure_classes ();
1062 setup_uniform_class_p ();
1065 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1066 given by array CLASSES of length CLASSES_NUM. The function is used
1067 make translation any reg class to an allocno class or to an
1068 pressure class. This translation is necessary for some
1069 calculations when we can use only allocno or pressure classes and
1070 such translation represents an approximate representation of all
1071 classes.
1073 The translation in case when allocatable hard register set of a
1074 given class is subset of allocatable hard register set of a class
1075 in CLASSES is pretty simple. We use smallest classes from CLASSES
1076 containing a given class. If allocatable hard register set of a
1077 given class is not a subset of any corresponding set of a class
1078 from CLASSES, we use the cheapest (with load/store point of view)
1079 class from CLASSES whose set intersects with given class set */
1080 static void
1081 setup_class_translate_array (enum reg_class *class_translate,
1082 int classes_num, enum reg_class *classes)
1084 int cl, mode;
1085 enum reg_class aclass, best_class, *cl_ptr;
1086 int i, cost, min_cost, best_cost;
1088 for (cl = 0; cl < N_REG_CLASSES; cl++)
1089 class_translate[cl] = NO_REGS;
1091 for (i = 0; i < classes_num; i++)
1093 aclass = classes[i];
1094 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1095 (cl = *cl_ptr) != LIM_REG_CLASSES;
1096 cl_ptr++)
1097 if (class_translate[cl] == NO_REGS)
1098 class_translate[cl] = aclass;
1099 class_translate[aclass] = aclass;
1101 /* For classes which are not fully covered by one of given classes
1102 (in other words covered by more one given class), use the
1103 cheapest class. */
1104 for (cl = 0; cl < N_REG_CLASSES; cl++)
1106 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1107 continue;
1108 best_class = NO_REGS;
1109 best_cost = INT_MAX;
1110 for (i = 0; i < classes_num; i++)
1112 aclass = classes[i];
1113 COPY_HARD_REG_SET (temp_hard_regset,
1114 reg_class_contents[aclass]);
1115 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1116 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1117 if (! hard_reg_set_empty_p (temp_hard_regset))
1119 min_cost = INT_MAX;
1120 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1122 cost = (ira_memory_move_cost[mode][aclass][0]
1123 + ira_memory_move_cost[mode][aclass][1]);
1124 if (min_cost > cost)
1125 min_cost = cost;
1127 if (best_class == NO_REGS || best_cost > min_cost)
1129 best_class = aclass;
1130 best_cost = min_cost;
1134 class_translate[cl] = best_class;
1138 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1139 IRA_PRESSURE_CLASS_TRANSLATE. */
1140 static void
1141 setup_class_translate (void)
1143 setup_class_translate_array (ira_allocno_class_translate,
1144 ira_allocno_classes_num, ira_allocno_classes);
1145 setup_class_translate_array (ira_pressure_class_translate,
1146 ira_pressure_classes_num, ira_pressure_classes);
1149 /* Order numbers of allocno classes in original target allocno class
1150 array, -1 for non-allocno classes. */
1151 static int allocno_class_order[N_REG_CLASSES];
1153 /* The function used to sort the important classes. */
1154 static int
1155 comp_reg_classes_func (const void *v1p, const void *v2p)
1157 enum reg_class cl1 = *(const enum reg_class *) v1p;
1158 enum reg_class cl2 = *(const enum reg_class *) v2p;
1159 enum reg_class tcl1, tcl2;
1160 int diff;
1162 tcl1 = ira_allocno_class_translate[cl1];
1163 tcl2 = ira_allocno_class_translate[cl2];
1164 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1165 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1166 return diff;
1167 return (int) cl1 - (int) cl2;
1170 /* For correct work of function setup_reg_class_relation we need to
1171 reorder important classes according to the order of their allocno
1172 classes. It places important classes containing the same
1173 allocatable hard register set adjacent to each other and allocno
1174 class with the allocatable hard register set right after the other
1175 important classes with the same set.
1177 In example from comments of function
1178 setup_allocno_and_important_classes, it places LEGACY_REGS and
1179 GENERAL_REGS close to each other and GENERAL_REGS is after
1180 LEGACY_REGS. */
1181 static void
1182 reorder_important_classes (void)
1184 int i;
1186 for (i = 0; i < N_REG_CLASSES; i++)
1187 allocno_class_order[i] = -1;
1188 for (i = 0; i < ira_allocno_classes_num; i++)
1189 allocno_class_order[ira_allocno_classes[i]] = i;
1190 qsort (ira_important_classes, ira_important_classes_num,
1191 sizeof (enum reg_class), comp_reg_classes_func);
1192 for (i = 0; i < ira_important_classes_num; i++)
1193 ira_important_class_nums[ira_important_classes[i]] = i;
1196 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1197 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1198 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1199 please see corresponding comments in ira-int.h. */
1200 static void
1201 setup_reg_class_relations (void)
1203 int i, cl1, cl2, cl3;
1204 HARD_REG_SET intersection_set, union_set, temp_set2;
1205 bool important_class_p[N_REG_CLASSES];
1207 memset (important_class_p, 0, sizeof (important_class_p));
1208 for (i = 0; i < ira_important_classes_num; i++)
1209 important_class_p[ira_important_classes[i]] = true;
1210 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1212 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1213 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1215 ira_reg_classes_intersect_p[cl1][cl2] = false;
1216 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1217 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1218 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1219 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1220 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1221 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1222 if (hard_reg_set_empty_p (temp_hard_regset)
1223 && hard_reg_set_empty_p (temp_set2))
1225 /* The both classes have no allocatable hard registers
1226 -- take all class hard registers into account and use
1227 reg_class_subunion and reg_class_superunion. */
1228 for (i = 0;; i++)
1230 cl3 = reg_class_subclasses[cl1][i];
1231 if (cl3 == LIM_REG_CLASSES)
1232 break;
1233 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1234 (enum reg_class) cl3))
1235 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1237 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1238 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1239 continue;
1241 ira_reg_classes_intersect_p[cl1][cl2]
1242 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1243 if (important_class_p[cl1] && important_class_p[cl2]
1244 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1246 /* CL1 and CL2 are important classes and CL1 allocatable
1247 hard register set is inside of CL2 allocatable hard
1248 registers -- make CL1 a superset of CL2. */
1249 enum reg_class *p;
1251 p = &ira_reg_class_super_classes[cl1][0];
1252 while (*p != LIM_REG_CLASSES)
1253 p++;
1254 *p++ = (enum reg_class) cl2;
1255 *p = LIM_REG_CLASSES;
1257 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1258 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1259 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1260 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1261 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1262 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1263 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1264 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1265 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1267 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1268 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1269 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1271 /* CL3 allocatable hard register set is inside of
1272 intersection of allocatable hard register sets
1273 of CL1 and CL2. */
1274 if (important_class_p[cl3])
1276 COPY_HARD_REG_SET
1277 (temp_set2,
1278 reg_class_contents
1279 [(int) ira_reg_class_intersect[cl1][cl2]]);
1280 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1281 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1282 /* If the allocatable hard register sets are
1283 the same, prefer GENERAL_REGS or the
1284 smallest class for debugging
1285 purposes. */
1286 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1287 && (cl3 == GENERAL_REGS
1288 || ((ira_reg_class_intersect[cl1][cl2]
1289 != GENERAL_REGS)
1290 && hard_reg_set_subset_p
1291 (reg_class_contents[cl3],
1292 reg_class_contents
1293 [(int)
1294 ira_reg_class_intersect[cl1][cl2]])))))
1295 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1297 COPY_HARD_REG_SET
1298 (temp_set2,
1299 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1300 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1301 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1302 /* Ignore unavailable hard registers and prefer
1303 smallest class for debugging purposes. */
1304 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1305 && hard_reg_set_subset_p
1306 (reg_class_contents[cl3],
1307 reg_class_contents
1308 [(int) ira_reg_class_subset[cl1][cl2]])))
1309 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1311 if (important_class_p[cl3]
1312 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1314 /* CL3 allocatbale hard register set is inside of
1315 union of allocatable hard register sets of CL1
1316 and CL2. */
1317 COPY_HARD_REG_SET
1318 (temp_set2,
1319 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1320 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1321 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1322 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1324 && (! hard_reg_set_equal_p (temp_set2,
1325 temp_hard_regset)
1326 || cl3 == GENERAL_REGS
1327 /* If the allocatable hard register sets are the
1328 same, prefer GENERAL_REGS or the smallest
1329 class for debugging purposes. */
1330 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1331 && hard_reg_set_subset_p
1332 (reg_class_contents[cl3],
1333 reg_class_contents
1334 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1335 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1337 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1339 /* CL3 allocatable hard register set contains union
1340 of allocatable hard register sets of CL1 and
1341 CL2. */
1342 COPY_HARD_REG_SET
1343 (temp_set2,
1344 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1345 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1346 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1347 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1349 && (! hard_reg_set_equal_p (temp_set2,
1350 temp_hard_regset)
1351 || cl3 == GENERAL_REGS
1352 /* If the allocatable hard register sets are the
1353 same, prefer GENERAL_REGS or the smallest
1354 class for debugging purposes. */
1355 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1356 && hard_reg_set_subset_p
1357 (reg_class_contents[cl3],
1358 reg_class_contents
1359 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1360 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1367 /* Output all unifrom and important classes into file F. */
1368 static void
1369 print_unform_and_important_classes (FILE *f)
1371 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1372 int i, cl;
1374 fprintf (f, "Uniform classes:\n");
1375 for (cl = 0; cl < N_REG_CLASSES; cl++)
1376 if (ira_uniform_class_p[cl])
1377 fprintf (f, " %s", reg_class_names[cl]);
1378 fprintf (f, "\nImportant classes:\n");
1379 for (i = 0; i < ira_important_classes_num; i++)
1380 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1381 fprintf (f, "\n");
1384 /* Output all possible allocno or pressure classes and their
1385 translation map into file F. */
1386 static void
1387 print_translated_classes (FILE *f, bool pressure_p)
1389 int classes_num = (pressure_p
1390 ? ira_pressure_classes_num : ira_allocno_classes_num);
1391 enum reg_class *classes = (pressure_p
1392 ? ira_pressure_classes : ira_allocno_classes);
1393 enum reg_class *class_translate = (pressure_p
1394 ? ira_pressure_class_translate
1395 : ira_allocno_class_translate);
1396 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1397 int i;
1399 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1400 for (i = 0; i < classes_num; i++)
1401 fprintf (f, " %s", reg_class_names[classes[i]]);
1402 fprintf (f, "\nClass translation:\n");
1403 for (i = 0; i < N_REG_CLASSES; i++)
1404 fprintf (f, " %s -> %s\n", reg_class_names[i],
1405 reg_class_names[class_translate[i]]);
1408 /* Output all possible allocno and translation classes and the
1409 translation maps into stderr. */
1410 void
1411 ira_debug_allocno_classes (void)
1413 print_unform_and_important_classes (stderr);
1414 print_translated_classes (stderr, false);
1415 print_translated_classes (stderr, true);
1418 /* Set up different arrays concerning class subsets, allocno and
1419 important classes. */
1420 static void
1421 find_reg_classes (void)
1423 setup_allocno_and_important_classes ();
1424 setup_class_translate ();
1425 reorder_important_classes ();
1426 setup_reg_class_relations ();
1431 /* Set up the array above. */
1432 static void
1433 setup_hard_regno_aclass (void)
1435 int i;
1437 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1439 #if 1
1440 ira_hard_regno_allocno_class[i]
1441 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1442 ? NO_REGS
1443 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1444 #else
1445 int j;
1446 enum reg_class cl;
1447 ira_hard_regno_allocno_class[i] = NO_REGS;
1448 for (j = 0; j < ira_allocno_classes_num; j++)
1450 cl = ira_allocno_classes[j];
1451 if (ira_class_hard_reg_index[cl][i] >= 0)
1453 ira_hard_regno_allocno_class[i] = cl;
1454 break;
1457 #endif
1463 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1464 static void
1465 setup_reg_class_nregs (void)
1467 int i, cl, cl2, m;
1469 for (m = 0; m < MAX_MACHINE_MODE; m++)
1471 for (cl = 0; cl < N_REG_CLASSES; cl++)
1472 ira_reg_class_max_nregs[cl][m]
1473 = ira_reg_class_min_nregs[cl][m]
1474 = targetm.class_max_nregs ((reg_class_t) cl, (enum machine_mode) m);
1475 for (cl = 0; cl < N_REG_CLASSES; cl++)
1476 for (i = 0;
1477 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1478 i++)
1479 if (ira_reg_class_min_nregs[cl2][m]
1480 < ira_reg_class_min_nregs[cl][m])
1481 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1487 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1488 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1489 static void
1490 setup_prohibited_class_mode_regs (void)
1492 int j, k, hard_regno, cl, last_hard_regno, count;
1494 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1496 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1497 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1498 for (j = 0; j < NUM_MACHINE_MODES; j++)
1500 count = 0;
1501 last_hard_regno = -1;
1502 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1503 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1505 hard_regno = ira_class_hard_regs[cl][k];
1506 if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
1507 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1508 hard_regno);
1509 else if (in_hard_reg_set_p (temp_hard_regset,
1510 (enum machine_mode) j, hard_regno))
1512 last_hard_regno = hard_regno;
1513 count++;
1516 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1521 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1522 spanning from one register pressure class to another one. It is
1523 called after defining the pressure classes. */
1524 static void
1525 clarify_prohibited_class_mode_regs (void)
1527 int j, k, hard_regno, cl, pclass, nregs;
1529 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1530 for (j = 0; j < NUM_MACHINE_MODES; j++)
1532 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1533 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1535 hard_regno = ira_class_hard_regs[cl][k];
1536 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1537 continue;
1538 nregs = hard_regno_nregs[hard_regno][j];
1539 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1541 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1542 hard_regno);
1543 continue;
1545 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1546 for (nregs-- ;nregs >= 0; nregs--)
1547 if (((enum reg_class) pclass
1548 != ira_pressure_class_translate[REGNO_REG_CLASS
1549 (hard_regno + nregs)]))
1551 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1552 hard_regno);
1553 break;
1555 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1556 hard_regno))
1557 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1558 (enum machine_mode) j, hard_regno);
1563 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1564 and IRA_MAY_MOVE_OUT_COST for MODE. */
1565 void
1566 ira_init_register_move_cost (enum machine_mode mode)
1568 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1569 bool all_match = true;
1570 unsigned int cl1, cl2;
1572 ira_assert (ira_register_move_cost[mode] == NULL
1573 && ira_may_move_in_cost[mode] == NULL
1574 && ira_may_move_out_cost[mode] == NULL);
1575 ira_assert (have_regs_of_mode[mode]);
1576 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1577 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1579 int cost;
1580 if (!contains_reg_of_mode[cl1][mode]
1581 || !contains_reg_of_mode[cl2][mode])
1583 if ((ira_reg_class_max_nregs[cl1][mode]
1584 > ira_class_hard_regs_num[cl1])
1585 || (ira_reg_class_max_nregs[cl2][mode]
1586 > ira_class_hard_regs_num[cl2]))
1587 cost = 65535;
1588 else
1589 cost = (ira_memory_move_cost[mode][cl1][0]
1590 + ira_memory_move_cost[mode][cl2][1]) * 2;
1592 else
1594 cost = register_move_cost (mode, (enum reg_class) cl1,
1595 (enum reg_class) cl2);
1596 ira_assert (cost < 65535);
1598 all_match &= (last_move_cost[cl1][cl2] == cost);
1599 last_move_cost[cl1][cl2] = cost;
1601 if (all_match && last_mode_for_init_move_cost != -1)
1603 ira_register_move_cost[mode]
1604 = ira_register_move_cost[last_mode_for_init_move_cost];
1605 ira_may_move_in_cost[mode]
1606 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1607 ira_may_move_out_cost[mode]
1608 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1609 return;
1611 last_mode_for_init_move_cost = mode;
1612 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1613 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1614 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1615 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1616 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1618 int cost;
1619 enum reg_class *p1, *p2;
1621 if (last_move_cost[cl1][cl2] == 65535)
1623 ira_register_move_cost[mode][cl1][cl2] = 65535;
1624 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1625 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1627 else
1629 cost = last_move_cost[cl1][cl2];
1631 for (p2 = &reg_class_subclasses[cl2][0];
1632 *p2 != LIM_REG_CLASSES; p2++)
1633 if (ira_class_hard_regs_num[*p2] > 0
1634 && (ira_reg_class_max_nregs[*p2][mode]
1635 <= ira_class_hard_regs_num[*p2]))
1636 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1638 for (p1 = &reg_class_subclasses[cl1][0];
1639 *p1 != LIM_REG_CLASSES; p1++)
1640 if (ira_class_hard_regs_num[*p1] > 0
1641 && (ira_reg_class_max_nregs[*p1][mode]
1642 <= ira_class_hard_regs_num[*p1]))
1643 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1645 ira_assert (cost <= 65535);
1646 ira_register_move_cost[mode][cl1][cl2] = cost;
1648 if (ira_class_subset_p[cl1][cl2])
1649 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1650 else
1651 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1653 if (ira_class_subset_p[cl2][cl1])
1654 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1655 else
1656 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1663 /* This is called once during compiler work. It sets up
1664 different arrays whose values don't depend on the compiled
1665 function. */
1666 void
1667 ira_init_once (void)
1669 ira_init_costs_once ();
1670 lra_init_once ();
1673 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1674 ira_may_move_out_cost for each mode. */
1675 static void
1676 free_register_move_costs (void)
1678 int mode, i;
1680 /* Reset move_cost and friends, making sure we only free shared
1681 table entries once. */
1682 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1683 if (ira_register_move_cost[mode])
1685 for (i = 0;
1686 i < mode && (ira_register_move_cost[i]
1687 != ira_register_move_cost[mode]);
1688 i++)
1690 if (i == mode)
1692 free (ira_register_move_cost[mode]);
1693 free (ira_may_move_in_cost[mode]);
1694 free (ira_may_move_out_cost[mode]);
1697 memset (ira_register_move_cost, 0, sizeof ira_register_move_cost);
1698 memset (ira_may_move_in_cost, 0, sizeof ira_may_move_in_cost);
1699 memset (ira_may_move_out_cost, 0, sizeof ira_may_move_out_cost);
1700 last_mode_for_init_move_cost = -1;
1703 /* This is called every time when register related information is
1704 changed. */
1705 void
1706 ira_init (void)
1708 free_register_move_costs ();
1709 setup_reg_mode_hard_regset ();
1710 setup_alloc_regs (flag_omit_frame_pointer != 0);
1711 setup_class_subset_and_memory_move_costs ();
1712 setup_reg_class_nregs ();
1713 setup_prohibited_class_mode_regs ();
1714 find_reg_classes ();
1715 clarify_prohibited_class_mode_regs ();
1716 setup_hard_regno_aclass ();
1717 ira_init_costs ();
1718 lra_init ();
1721 /* Function called once at the end of compiler work. */
1722 void
1723 ira_finish_once (void)
1725 ira_finish_costs_once ();
1726 free_register_move_costs ();
1727 lra_finish_once ();
1731 #define ira_prohibited_mode_move_regs_initialized_p \
1732 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1734 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1735 static void
1736 setup_prohibited_mode_move_regs (void)
1738 int i, j;
1739 rtx test_reg1, test_reg2, move_pat, move_insn;
1741 if (ira_prohibited_mode_move_regs_initialized_p)
1742 return;
1743 ira_prohibited_mode_move_regs_initialized_p = true;
1744 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1745 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1746 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1747 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, move_pat, 0, -1, 0);
1748 for (i = 0; i < NUM_MACHINE_MODES; i++)
1750 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1751 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1753 if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
1754 continue;
1755 SET_REGNO_RAW (test_reg1, j);
1756 PUT_MODE (test_reg1, (enum machine_mode) i);
1757 SET_REGNO_RAW (test_reg2, j);
1758 PUT_MODE (test_reg2, (enum machine_mode) i);
1759 INSN_CODE (move_insn) = -1;
1760 recog_memoized (move_insn);
1761 if (INSN_CODE (move_insn) < 0)
1762 continue;
1763 extract_insn (move_insn);
1764 if (! constrain_operands (1))
1765 continue;
1766 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1773 /* Return TRUE if the operand constraint STR is commutative. */
1774 static bool
1775 commutative_constraint_p (const char *str)
1777 int curr_alt, c;
1778 bool ignore_p;
1780 for (ignore_p = false, curr_alt = 0;;)
1782 c = *str;
1783 if (c == '\0')
1784 break;
1785 str += CONSTRAINT_LEN (c, str);
1786 if (c == '#' || !recog_data.alternative_enabled_p[curr_alt])
1787 ignore_p = true;
1788 else if (c == ',')
1790 curr_alt++;
1791 ignore_p = false;
1793 else if (! ignore_p)
1795 /* Usually `%' is the first constraint character but the
1796 documentation does not require this. */
1797 if (c == '%')
1798 return true;
1801 return false;
1804 /* Setup possible alternatives in ALTS for INSN. */
1805 void
1806 ira_setup_alts (rtx insn, HARD_REG_SET &alts)
1808 /* MAP nalt * nop -> start of constraints for given operand and
1809 alternative */
1810 static vec<const char *> insn_constraints;
1811 int nop, nalt;
1812 bool curr_swapped;
1813 const char *p;
1814 rtx op;
1815 int commutative = -1;
1817 extract_insn (insn);
1818 CLEAR_HARD_REG_SET (alts);
1819 insn_constraints.release ();
1820 insn_constraints.safe_grow_cleared (recog_data.n_operands
1821 * recog_data.n_alternatives + 1);
1822 /* Check that the hard reg set is enough for holding all
1823 alternatives. It is hard to imagine the situation when the
1824 assertion is wrong. */
1825 ira_assert (recog_data.n_alternatives
1826 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1827 FIRST_PSEUDO_REGISTER));
1828 for (curr_swapped = false;; curr_swapped = true)
1830 /* Calculate some data common for all alternatives to speed up the
1831 function. */
1832 for (nop = 0; nop < recog_data.n_operands; nop++)
1834 for (nalt = 0, p = recog_data.constraints[nop];
1835 nalt < recog_data.n_alternatives;
1836 nalt++)
1838 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1839 while (*p && *p != ',')
1840 p++;
1841 if (*p)
1842 p++;
1845 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1847 if (! recog_data.alternative_enabled_p[nalt] || TEST_HARD_REG_BIT (alts, nalt))
1848 continue;
1850 for (nop = 0; nop < recog_data.n_operands; nop++)
1852 int c, len;
1854 op = recog_data.operand[nop];
1855 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1856 if (*p == 0 || *p == ',')
1857 continue;
1860 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1862 case '#':
1863 case ',':
1864 c = '\0';
1865 case '\0':
1866 len = 0;
1867 break;
1869 case '?': case '!': case '*': case '=': case '+':
1870 break;
1872 case '%':
1873 /* We only support one commutative marker, the
1874 first one. We already set commutative
1875 above. */
1876 if (commutative < 0)
1877 commutative = nop;
1878 break;
1880 case '&':
1881 break;
1883 case '0': case '1': case '2': case '3': case '4':
1884 case '5': case '6': case '7': case '8': case '9':
1885 goto op_success;
1886 break;
1888 case 'p':
1889 case 'g':
1890 case 'X':
1891 case TARGET_MEM_CONSTRAINT:
1892 goto op_success;
1893 break;
1895 case '<':
1896 if (MEM_P (op)
1897 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1898 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1899 goto op_success;
1900 break;
1902 case '>':
1903 if (MEM_P (op)
1904 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1905 || GET_CODE (XEXP (op, 0)) == POST_INC))
1906 goto op_success;
1907 break;
1909 case 'E':
1910 case 'F':
1911 if (CONST_DOUBLE_AS_FLOAT_P (op)
1912 || (GET_CODE (op) == CONST_VECTOR
1913 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1914 goto op_success;
1915 break;
1917 case 'G':
1918 case 'H':
1919 if (CONST_DOUBLE_AS_FLOAT_P (op)
1920 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1921 goto op_success;
1922 break;
1924 case 's':
1925 if (CONST_SCALAR_INT_P (op))
1926 break;
1927 case 'i':
1928 if (CONSTANT_P (op))
1929 goto op_success;
1930 break;
1932 case 'n':
1933 if (CONST_SCALAR_INT_P (op))
1934 goto op_success;
1935 break;
1937 case 'I':
1938 case 'J':
1939 case 'K':
1940 case 'L':
1941 case 'M':
1942 case 'N':
1943 case 'O':
1944 case 'P':
1945 if (CONST_INT_P (op)
1946 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1947 goto op_success;
1948 break;
1950 case 'V':
1951 if (MEM_P (op) && ! offsettable_memref_p (op))
1952 goto op_success;
1953 break;
1955 case 'o':
1956 goto op_success;
1957 break;
1959 default:
1961 enum reg_class cl;
1963 cl = (c == 'r' ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
1964 if (cl != NO_REGS)
1965 goto op_success;
1966 #ifdef EXTRA_CONSTRAINT_STR
1967 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1968 goto op_success;
1969 else if (EXTRA_MEMORY_CONSTRAINT (c, p))
1970 goto op_success;
1971 else if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1972 goto op_success;
1973 #endif
1974 break;
1977 while (p += len, c);
1978 break;
1979 op_success:
1982 if (nop >= recog_data.n_operands)
1983 SET_HARD_REG_BIT (alts, nalt);
1985 if (commutative < 0)
1986 break;
1987 if (curr_swapped)
1988 break;
1989 op = recog_data.operand[commutative];
1990 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
1991 recog_data.operand[commutative + 1] = op;
1996 /* Return the number of the output non-early clobber operand which
1997 should be the same in any case as operand with number OP_NUM (or
1998 negative value if there is no such operand). The function takes
1999 only really possible alternatives into consideration. */
2001 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
2003 int curr_alt, c, original, dup;
2004 bool ignore_p, use_commut_op_p;
2005 const char *str;
2006 #ifdef EXTRA_CONSTRAINT_STR
2007 rtx op;
2008 #endif
2010 if (op_num < 0 || recog_data.n_alternatives == 0)
2011 return -1;
2012 use_commut_op_p = false;
2013 str = recog_data.constraints[op_num];
2014 for (;;)
2016 #ifdef EXTRA_CONSTRAINT_STR
2017 op = recog_data.operand[op_num];
2018 #endif
2020 for (ignore_p = false, original = -1, curr_alt = 0;;)
2022 c = *str;
2023 if (c == '\0')
2024 break;
2025 if (c == '#' || !TEST_HARD_REG_BIT (alts, curr_alt))
2026 ignore_p = true;
2027 else if (c == ',')
2029 curr_alt++;
2030 ignore_p = false;
2032 else if (! ignore_p)
2033 switch (c)
2035 /* We should find duplications only for input operands. */
2036 case '=':
2037 case '+':
2038 goto fail;
2039 case 'X':
2040 case 'p':
2041 case 'g':
2042 goto fail;
2043 case 'r':
2044 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
2045 case 'h': case 'j': case 'k': case 'l':
2046 case 'q': case 't': case 'u':
2047 case 'v': case 'w': case 'x': case 'y': case 'z':
2048 case 'A': case 'B': case 'C': case 'D':
2049 case 'Q': case 'R': case 'S': case 'T': case 'U':
2050 case 'W': case 'Y': case 'Z':
2052 enum reg_class cl;
2054 cl = (c == 'r'
2055 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, str));
2056 if (cl != NO_REGS)
2058 if (! targetm.class_likely_spilled_p (cl))
2059 goto fail;
2061 #ifdef EXTRA_CONSTRAINT_STR
2062 else if (EXTRA_CONSTRAINT_STR (op, c, str))
2063 goto fail;
2064 #endif
2065 break;
2068 case '0': case '1': case '2': case '3': case '4':
2069 case '5': case '6': case '7': case '8': case '9':
2070 if (original != -1 && original != c)
2071 goto fail;
2072 original = c;
2073 break;
2075 str += CONSTRAINT_LEN (c, str);
2077 if (original == -1)
2078 goto fail;
2079 dup = -1;
2080 for (ignore_p = false, str = recog_data.constraints[original - '0'];
2081 *str != 0;
2082 str++)
2083 if (ignore_p)
2085 if (*str == ',')
2086 ignore_p = false;
2088 else if (*str == '#')
2089 ignore_p = true;
2090 else if (! ignore_p)
2092 if (*str == '=')
2093 dup = original - '0';
2094 /* It is better ignore an alternative with early clobber. */
2095 else if (*str == '&')
2096 goto fail;
2098 if (dup >= 0)
2099 return dup;
2100 fail:
2101 if (use_commut_op_p)
2102 break;
2103 use_commut_op_p = true;
2104 if (commutative_constraint_p (recog_data.constraints[op_num]))
2105 str = recog_data.constraints[op_num + 1];
2106 else if (op_num > 0 && commutative_constraint_p (recog_data.constraints
2107 [op_num - 1]))
2108 str = recog_data.constraints[op_num - 1];
2109 else
2110 break;
2112 return -1;
2117 /* Search forward to see if the source register of a copy insn dies
2118 before either it or the destination register is modified, but don't
2119 scan past the end of the basic block. If so, we can replace the
2120 source with the destination and let the source die in the copy
2121 insn.
2123 This will reduce the number of registers live in that range and may
2124 enable the destination and the source coalescing, thus often saving
2125 one register in addition to a register-register copy. */
2127 static void
2128 decrease_live_ranges_number (void)
2130 basic_block bb;
2131 rtx insn, set, src, dest, dest_death, p, q, note;
2132 int sregno, dregno;
2134 if (! flag_expensive_optimizations)
2135 return;
2137 if (ira_dump_file)
2138 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2140 FOR_EACH_BB_FN (bb, cfun)
2141 FOR_BB_INSNS (bb, insn)
2143 set = single_set (insn);
2144 if (! set)
2145 continue;
2146 src = SET_SRC (set);
2147 dest = SET_DEST (set);
2148 if (! REG_P (src) || ! REG_P (dest)
2149 || find_reg_note (insn, REG_DEAD, src))
2150 continue;
2151 sregno = REGNO (src);
2152 dregno = REGNO (dest);
2154 /* We don't want to mess with hard regs if register classes
2155 are small. */
2156 if (sregno == dregno
2157 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2158 && (sregno < FIRST_PSEUDO_REGISTER
2159 || dregno < FIRST_PSEUDO_REGISTER))
2160 /* We don't see all updates to SP if they are in an
2161 auto-inc memory reference, so we must disallow this
2162 optimization on them. */
2163 || sregno == STACK_POINTER_REGNUM
2164 || dregno == STACK_POINTER_REGNUM)
2165 continue;
2167 dest_death = NULL_RTX;
2169 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2171 if (! INSN_P (p))
2172 continue;
2173 if (BLOCK_FOR_INSN (p) != bb)
2174 break;
2176 if (reg_set_p (src, p) || reg_set_p (dest, p)
2177 /* If SRC is an asm-declared register, it must not be
2178 replaced in any asm. Unfortunately, the REG_EXPR
2179 tree for the asm variable may be absent in the SRC
2180 rtx, so we can't check the actual register
2181 declaration easily (the asm operand will have it,
2182 though). To avoid complicating the test for a rare
2183 case, we just don't perform register replacement
2184 for a hard reg mentioned in an asm. */
2185 || (sregno < FIRST_PSEUDO_REGISTER
2186 && asm_noperands (PATTERN (p)) >= 0
2187 && reg_overlap_mentioned_p (src, PATTERN (p)))
2188 /* Don't change hard registers used by a call. */
2189 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2190 && find_reg_fusage (p, USE, src))
2191 /* Don't change a USE of a register. */
2192 || (GET_CODE (PATTERN (p)) == USE
2193 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2194 break;
2196 /* See if all of SRC dies in P. This test is slightly
2197 more conservative than it needs to be. */
2198 if ((note = find_regno_note (p, REG_DEAD, sregno))
2199 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2201 int failed = 0;
2203 /* We can do the optimization. Scan forward from INSN
2204 again, replacing regs as we go. Set FAILED if a
2205 replacement can't be done. In that case, we can't
2206 move the death note for SRC. This should be
2207 rare. */
2209 /* Set to stop at next insn. */
2210 for (q = next_real_insn (insn);
2211 q != next_real_insn (p);
2212 q = next_real_insn (q))
2214 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2216 /* If SRC is a hard register, we might miss
2217 some overlapping registers with
2218 validate_replace_rtx, so we would have to
2219 undo it. We can't if DEST is present in
2220 the insn, so fail in that combination of
2221 cases. */
2222 if (sregno < FIRST_PSEUDO_REGISTER
2223 && reg_mentioned_p (dest, PATTERN (q)))
2224 failed = 1;
2226 /* Attempt to replace all uses. */
2227 else if (!validate_replace_rtx (src, dest, q))
2228 failed = 1;
2230 /* If this succeeded, but some part of the
2231 register is still present, undo the
2232 replacement. */
2233 else if (sregno < FIRST_PSEUDO_REGISTER
2234 && reg_overlap_mentioned_p (src, PATTERN (q)))
2236 validate_replace_rtx (dest, src, q);
2237 failed = 1;
2241 /* If DEST dies here, remove the death note and
2242 save it for later. Make sure ALL of DEST dies
2243 here; again, this is overly conservative. */
2244 if (! dest_death
2245 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2247 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2248 remove_note (q, dest_death);
2249 else
2251 failed = 1;
2252 dest_death = 0;
2257 if (! failed)
2259 /* Move death note of SRC from P to INSN. */
2260 remove_note (p, note);
2261 XEXP (note, 1) = REG_NOTES (insn);
2262 REG_NOTES (insn) = note;
2265 /* DEST is also dead if INSN has a REG_UNUSED note for
2266 DEST. */
2267 if (! dest_death
2268 && (dest_death
2269 = find_regno_note (insn, REG_UNUSED, dregno)))
2271 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2272 remove_note (insn, dest_death);
2275 /* Put death note of DEST on P if we saw it die. */
2276 if (dest_death)
2278 XEXP (dest_death, 1) = REG_NOTES (p);
2279 REG_NOTES (p) = dest_death;
2281 break;
2284 /* If SRC is a hard register which is set or killed in
2285 some other way, we can't do this optimization. */
2286 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2287 break;
2294 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2295 static bool
2296 ira_bad_reload_regno_1 (int regno, rtx x)
2298 int x_regno, n, i;
2299 ira_allocno_t a;
2300 enum reg_class pref;
2302 /* We only deal with pseudo regs. */
2303 if (! x || GET_CODE (x) != REG)
2304 return false;
2306 x_regno = REGNO (x);
2307 if (x_regno < FIRST_PSEUDO_REGISTER)
2308 return false;
2310 /* If the pseudo prefers REGNO explicitly, then do not consider
2311 REGNO a bad spill choice. */
2312 pref = reg_preferred_class (x_regno);
2313 if (reg_class_size[pref] == 1)
2314 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2316 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2317 poor choice for a reload regno. */
2318 a = ira_regno_allocno_map[x_regno];
2319 n = ALLOCNO_NUM_OBJECTS (a);
2320 for (i = 0; i < n; i++)
2322 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2323 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2324 return true;
2326 return false;
2329 /* Return nonzero if REGNO is a particularly bad choice for reloading
2330 IN or OUT. */
2331 bool
2332 ira_bad_reload_regno (int regno, rtx in, rtx out)
2334 return (ira_bad_reload_regno_1 (regno, in)
2335 || ira_bad_reload_regno_1 (regno, out));
2338 /* Return TRUE if *LOC contains an asm. */
2339 static int
2340 insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2342 if ( !*loc)
2343 return FALSE;
2344 if (GET_CODE (*loc) == ASM_OPERANDS)
2345 return TRUE;
2346 return FALSE;
2350 /* Return TRUE if INSN contains an ASM. */
2351 static bool
2352 insn_contains_asm (rtx insn)
2354 return for_each_rtx (&insn, insn_contains_asm_1, NULL);
2357 /* Add register clobbers from asm statements. */
2358 static void
2359 compute_regs_asm_clobbered (void)
2361 basic_block bb;
2363 FOR_EACH_BB_FN (bb, cfun)
2365 rtx insn;
2366 FOR_BB_INSNS_REVERSE (bb, insn)
2368 df_ref *def_rec;
2370 if (insn_contains_asm (insn))
2371 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
2373 df_ref def = *def_rec;
2374 unsigned int dregno = DF_REF_REGNO (def);
2375 if (HARD_REGISTER_NUM_P (dregno))
2376 add_to_hard_reg_set (&crtl->asm_clobbers,
2377 GET_MODE (DF_REF_REAL_REG (def)),
2378 dregno);
2385 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2386 REGS_EVER_LIVE. */
2387 void
2388 ira_setup_eliminable_regset (void)
2390 #ifdef ELIMINABLE_REGS
2391 int i;
2392 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2393 #endif
2394 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2395 sp for alloca. So we can't eliminate the frame pointer in that
2396 case. At some point, we should improve this by emitting the
2397 sp-adjusting insns for this case. */
2398 frame_pointer_needed
2399 = (! flag_omit_frame_pointer
2400 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2401 /* We need the frame pointer to catch stack overflow exceptions
2402 if the stack pointer is moving. */
2403 || (flag_stack_check && STACK_CHECK_MOVING_SP)
2404 || crtl->accesses_prior_frames
2405 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2406 /* We need a frame pointer for all Cilk Plus functions that use
2407 Cilk keywords. */
2408 || (flag_cilkplus && cfun->is_cilk_function)
2409 || targetm.frame_pointer_required ());
2411 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2412 RTL is very small. So if we use frame pointer for RA and RTL
2413 actually prevents this, we will spill pseudos assigned to the
2414 frame pointer in LRA. */
2416 if (frame_pointer_needed)
2417 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2419 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2420 CLEAR_HARD_REG_SET (eliminable_regset);
2422 compute_regs_asm_clobbered ();
2424 /* Build the regset of all eliminable registers and show we can't
2425 use those that we already know won't be eliminated. */
2426 #ifdef ELIMINABLE_REGS
2427 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2429 bool cannot_elim
2430 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2431 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2433 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2435 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2437 if (cannot_elim)
2438 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2440 else if (cannot_elim)
2441 error ("%s cannot be used in asm here",
2442 reg_names[eliminables[i].from]);
2443 else
2444 df_set_regs_ever_live (eliminables[i].from, true);
2446 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2447 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2449 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2450 if (frame_pointer_needed)
2451 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2453 else if (frame_pointer_needed)
2454 error ("%s cannot be used in asm here",
2455 reg_names[HARD_FRAME_POINTER_REGNUM]);
2456 else
2457 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2458 #endif
2460 #else
2461 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2463 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
2464 if (frame_pointer_needed)
2465 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
2467 else if (frame_pointer_needed)
2468 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
2469 else
2470 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
2471 #endif
2476 /* Vector of substitutions of register numbers,
2477 used to map pseudo regs into hardware regs.
2478 This is set up as a result of register allocation.
2479 Element N is the hard reg assigned to pseudo reg N,
2480 or is -1 if no hard reg was assigned.
2481 If N is a hard reg number, element N is N. */
2482 short *reg_renumber;
2484 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2485 the allocation found by IRA. */
2486 static void
2487 setup_reg_renumber (void)
2489 int regno, hard_regno;
2490 ira_allocno_t a;
2491 ira_allocno_iterator ai;
2493 caller_save_needed = 0;
2494 FOR_EACH_ALLOCNO (a, ai)
2496 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2497 continue;
2498 /* There are no caps at this point. */
2499 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2500 if (! ALLOCNO_ASSIGNED_P (a))
2501 /* It can happen if A is not referenced but partially anticipated
2502 somewhere in a region. */
2503 ALLOCNO_ASSIGNED_P (a) = true;
2504 ira_free_allocno_updated_costs (a);
2505 hard_regno = ALLOCNO_HARD_REGNO (a);
2506 regno = ALLOCNO_REGNO (a);
2507 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2508 if (hard_regno >= 0)
2510 int i, nwords;
2511 enum reg_class pclass;
2512 ira_object_t obj;
2514 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2515 nwords = ALLOCNO_NUM_OBJECTS (a);
2516 for (i = 0; i < nwords; i++)
2518 obj = ALLOCNO_OBJECT (a, i);
2519 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2520 reg_class_contents[pclass]);
2522 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2523 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2524 call_used_reg_set))
2526 ira_assert (!optimize || flag_caller_saves
2527 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2528 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2529 || regno >= ira_reg_equiv_len
2530 || ira_equiv_no_lvalue_p (regno));
2531 caller_save_needed = 1;
2537 /* Set up allocno assignment flags for further allocation
2538 improvements. */
2539 static void
2540 setup_allocno_assignment_flags (void)
2542 int hard_regno;
2543 ira_allocno_t a;
2544 ira_allocno_iterator ai;
2546 FOR_EACH_ALLOCNO (a, ai)
2548 if (! ALLOCNO_ASSIGNED_P (a))
2549 /* It can happen if A is not referenced but partially anticipated
2550 somewhere in a region. */
2551 ira_free_allocno_updated_costs (a);
2552 hard_regno = ALLOCNO_HARD_REGNO (a);
2553 /* Don't assign hard registers to allocnos which are destination
2554 of removed store at the end of loop. It has no sense to keep
2555 the same value in different hard registers. It is also
2556 impossible to assign hard registers correctly to such
2557 allocnos because the cost info and info about intersected
2558 calls are incorrect for them. */
2559 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2560 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2561 || (ALLOCNO_MEMORY_COST (a)
2562 - ALLOCNO_CLASS_COST (a)) < 0);
2563 ira_assert
2564 (hard_regno < 0
2565 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2566 reg_class_contents[ALLOCNO_CLASS (a)]));
2570 /* Evaluate overall allocation cost and the costs for using hard
2571 registers and memory for allocnos. */
2572 static void
2573 calculate_allocation_cost (void)
2575 int hard_regno, cost;
2576 ira_allocno_t a;
2577 ira_allocno_iterator ai;
2579 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2580 FOR_EACH_ALLOCNO (a, ai)
2582 hard_regno = ALLOCNO_HARD_REGNO (a);
2583 ira_assert (hard_regno < 0
2584 || (ira_hard_reg_in_set_p
2585 (hard_regno, ALLOCNO_MODE (a),
2586 reg_class_contents[ALLOCNO_CLASS (a)])));
2587 if (hard_regno < 0)
2589 cost = ALLOCNO_MEMORY_COST (a);
2590 ira_mem_cost += cost;
2592 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2594 cost = (ALLOCNO_HARD_REG_COSTS (a)
2595 [ira_class_hard_reg_index
2596 [ALLOCNO_CLASS (a)][hard_regno]]);
2597 ira_reg_cost += cost;
2599 else
2601 cost = ALLOCNO_CLASS_COST (a);
2602 ira_reg_cost += cost;
2604 ira_overall_cost += cost;
2607 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2609 fprintf (ira_dump_file,
2610 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
2611 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2612 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2613 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
2614 ira_move_loops_num, ira_additional_jumps_num);
2619 #ifdef ENABLE_IRA_CHECKING
2620 /* Check the correctness of the allocation. We do need this because
2621 of complicated code to transform more one region internal
2622 representation into one region representation. */
2623 static void
2624 check_allocation (void)
2626 ira_allocno_t a;
2627 int hard_regno, nregs, conflict_nregs;
2628 ira_allocno_iterator ai;
2630 FOR_EACH_ALLOCNO (a, ai)
2632 int n = ALLOCNO_NUM_OBJECTS (a);
2633 int i;
2635 if (ALLOCNO_CAP_MEMBER (a) != NULL
2636 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2637 continue;
2638 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2639 if (nregs == 1)
2640 /* We allocated a single hard register. */
2641 n = 1;
2642 else if (n > 1)
2643 /* We allocated multiple hard registers, and we will test
2644 conflicts in a granularity of single hard regs. */
2645 nregs = 1;
2647 for (i = 0; i < n; i++)
2649 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2650 ira_object_t conflict_obj;
2651 ira_object_conflict_iterator oci;
2652 int this_regno = hard_regno;
2653 if (n > 1)
2655 if (REG_WORDS_BIG_ENDIAN)
2656 this_regno += n - i - 1;
2657 else
2658 this_regno += i;
2660 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2662 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2663 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2664 if (conflict_hard_regno < 0)
2665 continue;
2667 conflict_nregs
2668 = (hard_regno_nregs
2669 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2671 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2672 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2674 if (REG_WORDS_BIG_ENDIAN)
2675 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2676 - OBJECT_SUBWORD (conflict_obj) - 1);
2677 else
2678 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2679 conflict_nregs = 1;
2682 if ((conflict_hard_regno <= this_regno
2683 && this_regno < conflict_hard_regno + conflict_nregs)
2684 || (this_regno <= conflict_hard_regno
2685 && conflict_hard_regno < this_regno + nregs))
2687 fprintf (stderr, "bad allocation for %d and %d\n",
2688 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2689 gcc_unreachable ();
2695 #endif
2697 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2698 be already calculated. */
2699 static void
2700 setup_reg_equiv_init (void)
2702 int i;
2703 int max_regno = max_reg_num ();
2705 for (i = 0; i < max_regno; i++)
2706 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2709 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2710 are insns which were generated for such movement. It is assumed
2711 that FROM_REGNO and TO_REGNO always have the same value at the
2712 point of any move containing such registers. This function is used
2713 to update equiv info for register shuffles on the region borders
2714 and for caller save/restore insns. */
2715 void
2716 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx insns)
2718 rtx insn, x, note;
2720 if (! ira_reg_equiv[from_regno].defined_p
2721 && (! ira_reg_equiv[to_regno].defined_p
2722 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2723 && ! MEM_READONLY_P (x))))
2724 return;
2725 insn = insns;
2726 if (NEXT_INSN (insn) != NULL_RTX)
2728 if (! ira_reg_equiv[to_regno].defined_p)
2730 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2731 return;
2733 ira_reg_equiv[to_regno].defined_p = false;
2734 ira_reg_equiv[to_regno].memory
2735 = ira_reg_equiv[to_regno].constant
2736 = ira_reg_equiv[to_regno].invariant
2737 = ira_reg_equiv[to_regno].init_insns = NULL_RTX;
2738 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2739 fprintf (ira_dump_file,
2740 " Invalidating equiv info for reg %d\n", to_regno);
2741 return;
2743 /* It is possible that FROM_REGNO still has no equivalence because
2744 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2745 insn was not processed yet. */
2746 if (ira_reg_equiv[from_regno].defined_p)
2748 ira_reg_equiv[to_regno].defined_p = true;
2749 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2751 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2752 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2753 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2754 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2755 ira_reg_equiv[to_regno].memory = x;
2756 if (! MEM_READONLY_P (x))
2757 /* We don't add the insn to insn init list because memory
2758 equivalence is just to say what memory is better to use
2759 when the pseudo is spilled. */
2760 return;
2762 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2764 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2765 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2766 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2767 ira_reg_equiv[to_regno].constant = x;
2769 else
2771 x = ira_reg_equiv[from_regno].invariant;
2772 ira_assert (x != NULL_RTX);
2773 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2774 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2775 ira_reg_equiv[to_regno].invariant = x;
2777 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2779 note = set_unique_reg_note (insn, REG_EQUIV, x);
2780 gcc_assert (note != NULL_RTX);
2781 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2783 fprintf (ira_dump_file,
2784 " Adding equiv note to insn %u for reg %d ",
2785 INSN_UID (insn), to_regno);
2786 dump_value_slim (ira_dump_file, x, 1);
2787 fprintf (ira_dump_file, "\n");
2791 ira_reg_equiv[to_regno].init_insns
2792 = gen_rtx_INSN_LIST (VOIDmode, insn,
2793 ira_reg_equiv[to_regno].init_insns);
2794 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2795 fprintf (ira_dump_file,
2796 " Adding equiv init move insn %u to reg %d\n",
2797 INSN_UID (insn), to_regno);
2800 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2801 by IRA. */
2802 static void
2803 fix_reg_equiv_init (void)
2805 int max_regno = max_reg_num ();
2806 int i, new_regno, max;
2807 rtx x, prev, next, insn, set;
2809 if (max_regno_before_ira < max_regno)
2811 max = vec_safe_length (reg_equivs);
2812 grow_reg_equivs ();
2813 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2814 for (prev = NULL_RTX, x = reg_equiv_init (i);
2815 x != NULL_RTX;
2816 x = next)
2818 next = XEXP (x, 1);
2819 insn = XEXP (x, 0);
2820 set = single_set (insn);
2821 ira_assert (set != NULL_RTX
2822 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2823 if (REG_P (SET_DEST (set))
2824 && ((int) REGNO (SET_DEST (set)) == i
2825 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2826 new_regno = REGNO (SET_DEST (set));
2827 else if (REG_P (SET_SRC (set))
2828 && ((int) REGNO (SET_SRC (set)) == i
2829 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2830 new_regno = REGNO (SET_SRC (set));
2831 else
2832 gcc_unreachable ();
2833 if (new_regno == i)
2834 prev = x;
2835 else
2837 /* Remove the wrong list element. */
2838 if (prev == NULL_RTX)
2839 reg_equiv_init (i) = next;
2840 else
2841 XEXP (prev, 1) = next;
2842 XEXP (x, 1) = reg_equiv_init (new_regno);
2843 reg_equiv_init (new_regno) = x;
2849 #ifdef ENABLE_IRA_CHECKING
2850 /* Print redundant memory-memory copies. */
2851 static void
2852 print_redundant_copies (void)
2854 int hard_regno;
2855 ira_allocno_t a;
2856 ira_copy_t cp, next_cp;
2857 ira_allocno_iterator ai;
2859 FOR_EACH_ALLOCNO (a, ai)
2861 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2862 /* It is a cap. */
2863 continue;
2864 hard_regno = ALLOCNO_HARD_REGNO (a);
2865 if (hard_regno >= 0)
2866 continue;
2867 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2868 if (cp->first == a)
2869 next_cp = cp->next_first_allocno_copy;
2870 else
2872 next_cp = cp->next_second_allocno_copy;
2873 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2874 && cp->insn != NULL_RTX
2875 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2876 fprintf (ira_dump_file,
2877 " Redundant move from %d(freq %d):%d\n",
2878 INSN_UID (cp->insn), cp->freq, hard_regno);
2882 #endif
2884 /* Setup preferred and alternative classes for new pseudo-registers
2885 created by IRA starting with START. */
2886 static void
2887 setup_preferred_alternate_classes_for_new_pseudos (int start)
2889 int i, old_regno;
2890 int max_regno = max_reg_num ();
2892 for (i = start; i < max_regno; i++)
2894 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2895 ira_assert (i != old_regno);
2896 setup_reg_classes (i, reg_preferred_class (old_regno),
2897 reg_alternate_class (old_regno),
2898 reg_allocno_class (old_regno));
2899 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2900 fprintf (ira_dump_file,
2901 " New r%d: setting preferred %s, alternative %s\n",
2902 i, reg_class_names[reg_preferred_class (old_regno)],
2903 reg_class_names[reg_alternate_class (old_regno)]);
2908 /* The number of entries allocated in teg_info. */
2909 static int allocated_reg_info_size;
2911 /* Regional allocation can create new pseudo-registers. This function
2912 expands some arrays for pseudo-registers. */
2913 static void
2914 expand_reg_info (void)
2916 int i;
2917 int size = max_reg_num ();
2919 resize_reg_info ();
2920 for (i = allocated_reg_info_size; i < size; i++)
2921 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2922 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2923 allocated_reg_info_size = size;
2926 /* Return TRUE if there is too high register pressure in the function.
2927 It is used to decide when stack slot sharing is worth to do. */
2928 static bool
2929 too_high_register_pressure_p (void)
2931 int i;
2932 enum reg_class pclass;
2934 for (i = 0; i < ira_pressure_classes_num; i++)
2936 pclass = ira_pressure_classes[i];
2937 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2938 return true;
2940 return false;
2945 /* Indicate that hard register number FROM was eliminated and replaced with
2946 an offset from hard register number TO. The status of hard registers live
2947 at the start of a basic block is updated by replacing a use of FROM with
2948 a use of TO. */
2950 void
2951 mark_elimination (int from, int to)
2953 basic_block bb;
2954 bitmap r;
2956 FOR_EACH_BB_FN (bb, cfun)
2958 r = DF_LR_IN (bb);
2959 if (bitmap_bit_p (r, from))
2961 bitmap_clear_bit (r, from);
2962 bitmap_set_bit (r, to);
2964 if (! df_live)
2965 continue;
2966 r = DF_LIVE_IN (bb);
2967 if (bitmap_bit_p (r, from))
2969 bitmap_clear_bit (r, from);
2970 bitmap_set_bit (r, to);
2977 /* The length of the following array. */
2978 int ira_reg_equiv_len;
2980 /* Info about equiv. info for each register. */
2981 struct ira_reg_equiv_s *ira_reg_equiv;
2983 /* Expand ira_reg_equiv if necessary. */
2984 void
2985 ira_expand_reg_equiv (void)
2987 int old = ira_reg_equiv_len;
2989 if (ira_reg_equiv_len > max_reg_num ())
2990 return;
2991 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2992 ira_reg_equiv
2993 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2994 ira_reg_equiv_len
2995 * sizeof (struct ira_reg_equiv_s));
2996 gcc_assert (old < ira_reg_equiv_len);
2997 memset (ira_reg_equiv + old, 0,
2998 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
3001 static void
3002 init_reg_equiv (void)
3004 ira_reg_equiv_len = 0;
3005 ira_reg_equiv = NULL;
3006 ira_expand_reg_equiv ();
3009 static void
3010 finish_reg_equiv (void)
3012 free (ira_reg_equiv);
3017 struct equivalence
3019 /* Set when a REG_EQUIV note is found or created. Use to
3020 keep track of what memory accesses might be created later,
3021 e.g. by reload. */
3022 rtx replacement;
3023 rtx *src_p;
3024 /* The list of each instruction which initializes this register. */
3025 rtx init_insns;
3026 /* Loop depth is used to recognize equivalences which appear
3027 to be present within the same loop (or in an inner loop). */
3028 int loop_depth;
3029 /* Nonzero if this had a preexisting REG_EQUIV note. */
3030 int is_arg_equivalence;
3031 /* Set when an attempt should be made to replace a register
3032 with the associated src_p entry. */
3033 char replace;
3036 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
3037 structure for that register. */
3038 static struct equivalence *reg_equiv;
3040 /* Used for communication between the following two functions: contains
3041 a MEM that we wish to ensure remains unchanged. */
3042 static rtx equiv_mem;
3044 /* Set nonzero if EQUIV_MEM is modified. */
3045 static int equiv_mem_modified;
3047 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
3048 Called via note_stores. */
3049 static void
3050 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
3051 void *data ATTRIBUTE_UNUSED)
3053 if ((REG_P (dest)
3054 && reg_overlap_mentioned_p (dest, equiv_mem))
3055 || (MEM_P (dest)
3056 && anti_dependence (equiv_mem, dest)))
3057 equiv_mem_modified = 1;
3060 /* Verify that no store between START and the death of REG invalidates
3061 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
3062 by storing into an overlapping memory location, or with a non-const
3063 CALL_INSN.
3065 Return 1 if MEMREF remains valid. */
3066 static int
3067 validate_equiv_mem (rtx start, rtx reg, rtx memref)
3069 rtx insn;
3070 rtx note;
3072 equiv_mem = memref;
3073 equiv_mem_modified = 0;
3075 /* If the memory reference has side effects or is volatile, it isn't a
3076 valid equivalence. */
3077 if (side_effects_p (memref))
3078 return 0;
3080 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
3082 if (! INSN_P (insn))
3083 continue;
3085 if (find_reg_note (insn, REG_DEAD, reg))
3086 return 1;
3088 /* This used to ignore readonly memory and const/pure calls. The problem
3089 is the equivalent form may reference a pseudo which gets assigned a
3090 call clobbered hard reg. When we later replace REG with its
3091 equivalent form, the value in the call-clobbered reg has been
3092 changed and all hell breaks loose. */
3093 if (CALL_P (insn))
3094 return 0;
3096 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
3098 /* If a register mentioned in MEMREF is modified via an
3099 auto-increment, we lose the equivalence. Do the same if one
3100 dies; although we could extend the life, it doesn't seem worth
3101 the trouble. */
3103 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3104 if ((REG_NOTE_KIND (note) == REG_INC
3105 || REG_NOTE_KIND (note) == REG_DEAD)
3106 && REG_P (XEXP (note, 0))
3107 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3108 return 0;
3111 return 0;
3114 /* Returns zero if X is known to be invariant. */
3115 static int
3116 equiv_init_varies_p (rtx x)
3118 RTX_CODE code = GET_CODE (x);
3119 int i;
3120 const char *fmt;
3122 switch (code)
3124 case MEM:
3125 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3127 case CONST:
3128 CASE_CONST_ANY:
3129 case SYMBOL_REF:
3130 case LABEL_REF:
3131 return 0;
3133 case REG:
3134 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3136 case ASM_OPERANDS:
3137 if (MEM_VOLATILE_P (x))
3138 return 1;
3140 /* Fall through. */
3142 default:
3143 break;
3146 fmt = GET_RTX_FORMAT (code);
3147 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3148 if (fmt[i] == 'e')
3150 if (equiv_init_varies_p (XEXP (x, i)))
3151 return 1;
3153 else if (fmt[i] == 'E')
3155 int j;
3156 for (j = 0; j < XVECLEN (x, i); j++)
3157 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3158 return 1;
3161 return 0;
3164 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3165 X is only movable if the registers it uses have equivalent initializations
3166 which appear to be within the same loop (or in an inner loop) and movable
3167 or if they are not candidates for local_alloc and don't vary. */
3168 static int
3169 equiv_init_movable_p (rtx x, int regno)
3171 int i, j;
3172 const char *fmt;
3173 enum rtx_code code = GET_CODE (x);
3175 switch (code)
3177 case SET:
3178 return equiv_init_movable_p (SET_SRC (x), regno);
3180 case CC0:
3181 case CLOBBER:
3182 return 0;
3184 case PRE_INC:
3185 case PRE_DEC:
3186 case POST_INC:
3187 case POST_DEC:
3188 case PRE_MODIFY:
3189 case POST_MODIFY:
3190 return 0;
3192 case REG:
3193 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3194 && reg_equiv[REGNO (x)].replace)
3195 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3196 && ! rtx_varies_p (x, 0)));
3198 case UNSPEC_VOLATILE:
3199 return 0;
3201 case ASM_OPERANDS:
3202 if (MEM_VOLATILE_P (x))
3203 return 0;
3205 /* Fall through. */
3207 default:
3208 break;
3211 fmt = GET_RTX_FORMAT (code);
3212 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3213 switch (fmt[i])
3215 case 'e':
3216 if (! equiv_init_movable_p (XEXP (x, i), regno))
3217 return 0;
3218 break;
3219 case 'E':
3220 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3221 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3222 return 0;
3223 break;
3226 return 1;
3229 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
3230 true. */
3231 static int
3232 contains_replace_regs (rtx x)
3234 int i, j;
3235 const char *fmt;
3236 enum rtx_code code = GET_CODE (x);
3238 switch (code)
3240 case CONST:
3241 case LABEL_REF:
3242 case SYMBOL_REF:
3243 CASE_CONST_ANY:
3244 case PC:
3245 case CC0:
3246 case HIGH:
3247 return 0;
3249 case REG:
3250 return reg_equiv[REGNO (x)].replace;
3252 default:
3253 break;
3256 fmt = GET_RTX_FORMAT (code);
3257 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3258 switch (fmt[i])
3260 case 'e':
3261 if (contains_replace_regs (XEXP (x, i)))
3262 return 1;
3263 break;
3264 case 'E':
3265 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3266 if (contains_replace_regs (XVECEXP (x, i, j)))
3267 return 1;
3268 break;
3271 return 0;
3274 /* TRUE if X references a memory location that would be affected by a store
3275 to MEMREF. */
3276 static int
3277 memref_referenced_p (rtx memref, rtx x)
3279 int i, j;
3280 const char *fmt;
3281 enum rtx_code code = GET_CODE (x);
3283 switch (code)
3285 case CONST:
3286 case LABEL_REF:
3287 case SYMBOL_REF:
3288 CASE_CONST_ANY:
3289 case PC:
3290 case CC0:
3291 case HIGH:
3292 case LO_SUM:
3293 return 0;
3295 case REG:
3296 return (reg_equiv[REGNO (x)].replacement
3297 && memref_referenced_p (memref,
3298 reg_equiv[REGNO (x)].replacement));
3300 case MEM:
3301 if (true_dependence (memref, VOIDmode, x))
3302 return 1;
3303 break;
3305 case SET:
3306 /* If we are setting a MEM, it doesn't count (its address does), but any
3307 other SET_DEST that has a MEM in it is referencing the MEM. */
3308 if (MEM_P (SET_DEST (x)))
3310 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3311 return 1;
3313 else if (memref_referenced_p (memref, SET_DEST (x)))
3314 return 1;
3316 return memref_referenced_p (memref, SET_SRC (x));
3318 default:
3319 break;
3322 fmt = GET_RTX_FORMAT (code);
3323 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3324 switch (fmt[i])
3326 case 'e':
3327 if (memref_referenced_p (memref, XEXP (x, i)))
3328 return 1;
3329 break;
3330 case 'E':
3331 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3332 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3333 return 1;
3334 break;
3337 return 0;
3340 /* TRUE if some insn in the range (START, END] references a memory location
3341 that would be affected by a store to MEMREF. */
3342 static int
3343 memref_used_between_p (rtx memref, rtx start, rtx end)
3345 rtx insn;
3347 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
3348 insn = NEXT_INSN (insn))
3350 if (!NONDEBUG_INSN_P (insn))
3351 continue;
3353 if (memref_referenced_p (memref, PATTERN (insn)))
3354 return 1;
3356 /* Nonconst functions may access memory. */
3357 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3358 return 1;
3361 return 0;
3364 /* Mark REG as having no known equivalence.
3365 Some instructions might have been processed before and furnished
3366 with REG_EQUIV notes for this register; these notes will have to be
3367 removed.
3368 STORE is the piece of RTL that does the non-constant / conflicting
3369 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3370 but needs to be there because this function is called from note_stores. */
3371 static void
3372 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3373 void *data ATTRIBUTE_UNUSED)
3375 int regno;
3376 rtx list;
3378 if (!REG_P (reg))
3379 return;
3380 regno = REGNO (reg);
3381 list = reg_equiv[regno].init_insns;
3382 if (list == const0_rtx)
3383 return;
3384 reg_equiv[regno].init_insns = const0_rtx;
3385 reg_equiv[regno].replacement = NULL_RTX;
3386 /* This doesn't matter for equivalences made for argument registers, we
3387 should keep their initialization insns. */
3388 if (reg_equiv[regno].is_arg_equivalence)
3389 return;
3390 ira_reg_equiv[regno].defined_p = false;
3391 ira_reg_equiv[regno].init_insns = NULL_RTX;
3392 for (; list; list = XEXP (list, 1))
3394 rtx insn = XEXP (list, 0);
3395 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3399 /* Check whether the SUBREG is a paradoxical subreg and set the result
3400 in PDX_SUBREGS. */
3402 static int
3403 set_paradoxical_subreg (rtx *subreg, void *pdx_subregs)
3405 rtx reg;
3407 if ((*subreg) == NULL_RTX)
3408 return 1;
3409 if (GET_CODE (*subreg) != SUBREG)
3410 return 0;
3411 reg = SUBREG_REG (*subreg);
3412 if (!REG_P (reg))
3413 return 0;
3415 if (paradoxical_subreg_p (*subreg))
3416 ((bool *)pdx_subregs)[REGNO (reg)] = true;
3418 return 0;
3421 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3422 equivalent replacement. */
3424 static rtx
3425 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3427 if (REG_P (loc))
3429 bitmap cleared_regs = (bitmap) data;
3430 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3431 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3432 NULL_RTX, adjust_cleared_regs, data);
3434 return NULL_RTX;
3437 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
3438 static int recorded_label_ref;
3440 /* Find registers that are equivalent to a single value throughout the
3441 compilation (either because they can be referenced in memory or are
3442 set once from a single constant). Lower their priority for a
3443 register.
3445 If such a register is only referenced once, try substituting its
3446 value into the using insn. If it succeeds, we can eliminate the
3447 register completely.
3449 Initialize init_insns in ira_reg_equiv array.
3451 Return non-zero if jump label rebuilding should be done. */
3452 static int
3453 update_equiv_regs (void)
3455 rtx insn;
3456 basic_block bb;
3457 int loop_depth;
3458 bitmap cleared_regs;
3459 bool *pdx_subregs;
3461 /* We need to keep track of whether or not we recorded a LABEL_REF so
3462 that we know if the jump optimizer needs to be rerun. */
3463 recorded_label_ref = 0;
3465 /* Use pdx_subregs to show whether a reg is used in a paradoxical
3466 subreg. */
3467 pdx_subregs = XCNEWVEC (bool, max_regno);
3469 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
3470 grow_reg_equivs ();
3472 init_alias_analysis ();
3474 /* Scan insns and set pdx_subregs[regno] if the reg is used in a
3475 paradoxical subreg. Don't set such reg sequivalent to a mem,
3476 because lra will not substitute such equiv memory in order to
3477 prevent access beyond allocated memory for paradoxical memory subreg. */
3478 FOR_EACH_BB_FN (bb, cfun)
3479 FOR_BB_INSNS (bb, insn)
3480 if (NONDEBUG_INSN_P (insn))
3481 for_each_rtx (&insn, set_paradoxical_subreg, (void *) pdx_subregs);
3483 /* Scan the insns and find which registers have equivalences. Do this
3484 in a separate scan of the insns because (due to -fcse-follow-jumps)
3485 a register can be set below its use. */
3486 FOR_EACH_BB_FN (bb, cfun)
3488 loop_depth = bb_loop_depth (bb);
3490 for (insn = BB_HEAD (bb);
3491 insn != NEXT_INSN (BB_END (bb));
3492 insn = NEXT_INSN (insn))
3494 rtx note;
3495 rtx set;
3496 rtx dest, src;
3497 int regno;
3499 if (! INSN_P (insn))
3500 continue;
3502 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3503 if (REG_NOTE_KIND (note) == REG_INC)
3504 no_equiv (XEXP (note, 0), note, NULL);
3506 set = single_set (insn);
3508 /* If this insn contains more (or less) than a single SET,
3509 only mark all destinations as having no known equivalence. */
3510 if (set == 0)
3512 note_stores (PATTERN (insn), no_equiv, NULL);
3513 continue;
3515 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3517 int i;
3519 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3521 rtx part = XVECEXP (PATTERN (insn), 0, i);
3522 if (part != set)
3523 note_stores (part, no_equiv, NULL);
3527 dest = SET_DEST (set);
3528 src = SET_SRC (set);
3530 /* See if this is setting up the equivalence between an argument
3531 register and its stack slot. */
3532 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3533 if (note)
3535 gcc_assert (REG_P (dest));
3536 regno = REGNO (dest);
3538 /* Note that we don't want to clear init_insns in
3539 ira_reg_equiv even if there are multiple sets of this
3540 register. */
3541 reg_equiv[regno].is_arg_equivalence = 1;
3543 /* The insn result can have equivalence memory although
3544 the equivalence is not set up by the insn. We add
3545 this insn to init insns as it is a flag for now that
3546 regno has an equivalence. We will remove the insn
3547 from init insn list later. */
3548 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3549 ira_reg_equiv[regno].init_insns
3550 = gen_rtx_INSN_LIST (VOIDmode, insn,
3551 ira_reg_equiv[regno].init_insns);
3553 /* Continue normally in case this is a candidate for
3554 replacements. */
3557 if (!optimize)
3558 continue;
3560 /* We only handle the case of a pseudo register being set
3561 once, or always to the same value. */
3562 /* ??? The mn10200 port breaks if we add equivalences for
3563 values that need an ADDRESS_REGS register and set them equivalent
3564 to a MEM of a pseudo. The actual problem is in the over-conservative
3565 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3566 calculate_needs, but we traditionally work around this problem
3567 here by rejecting equivalences when the destination is in a register
3568 that's likely spilled. This is fragile, of course, since the
3569 preferred class of a pseudo depends on all instructions that set
3570 or use it. */
3572 if (!REG_P (dest)
3573 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3574 || reg_equiv[regno].init_insns == const0_rtx
3575 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3576 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3578 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3579 also set somewhere else to a constant. */
3580 note_stores (set, no_equiv, NULL);
3581 continue;
3584 /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */
3585 if (MEM_P (src) && pdx_subregs[regno])
3587 note_stores (set, no_equiv, NULL);
3588 continue;
3591 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3593 /* cse sometimes generates function invariants, but doesn't put a
3594 REG_EQUAL note on the insn. Since this note would be redundant,
3595 there's no point creating it earlier than here. */
3596 if (! note && ! rtx_varies_p (src, 0))
3597 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3599 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3600 since it represents a function call */
3601 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3602 note = NULL_RTX;
3604 if (DF_REG_DEF_COUNT (regno) != 1
3605 && (! note
3606 || rtx_varies_p (XEXP (note, 0), 0)
3607 || (reg_equiv[regno].replacement
3608 && ! rtx_equal_p (XEXP (note, 0),
3609 reg_equiv[regno].replacement))))
3611 no_equiv (dest, set, NULL);
3612 continue;
3614 /* Record this insn as initializing this register. */
3615 reg_equiv[regno].init_insns
3616 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3618 /* If this register is known to be equal to a constant, record that
3619 it is always equivalent to the constant. */
3620 if (DF_REG_DEF_COUNT (regno) == 1
3621 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3623 rtx note_value = XEXP (note, 0);
3624 remove_note (insn, note);
3625 set_unique_reg_note (insn, REG_EQUIV, note_value);
3628 /* If this insn introduces a "constant" register, decrease the priority
3629 of that register. Record this insn if the register is only used once
3630 more and the equivalence value is the same as our source.
3632 The latter condition is checked for two reasons: First, it is an
3633 indication that it may be more efficient to actually emit the insn
3634 as written (if no registers are available, reload will substitute
3635 the equivalence). Secondly, it avoids problems with any registers
3636 dying in this insn whose death notes would be missed.
3638 If we don't have a REG_EQUIV note, see if this insn is loading
3639 a register used only in one basic block from a MEM. If so, and the
3640 MEM remains unchanged for the life of the register, add a REG_EQUIV
3641 note. */
3643 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3645 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3646 && MEM_P (SET_SRC (set))
3647 && validate_equiv_mem (insn, dest, SET_SRC (set)))
3648 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
3650 if (note)
3652 int regno = REGNO (dest);
3653 rtx x = XEXP (note, 0);
3655 /* If we haven't done so, record for reload that this is an
3656 equivalencing insn. */
3657 if (!reg_equiv[regno].is_arg_equivalence)
3658 ira_reg_equiv[regno].init_insns
3659 = gen_rtx_INSN_LIST (VOIDmode, insn,
3660 ira_reg_equiv[regno].init_insns);
3662 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3663 We might end up substituting the LABEL_REF for uses of the
3664 pseudo here or later. That kind of transformation may turn an
3665 indirect jump into a direct jump, in which case we must rerun the
3666 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3667 if (GET_CODE (x) == LABEL_REF
3668 || (GET_CODE (x) == CONST
3669 && GET_CODE (XEXP (x, 0)) == PLUS
3670 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
3671 recorded_label_ref = 1;
3673 reg_equiv[regno].replacement = x;
3674 reg_equiv[regno].src_p = &SET_SRC (set);
3675 reg_equiv[regno].loop_depth = loop_depth;
3677 /* Don't mess with things live during setjmp. */
3678 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3680 /* Note that the statement below does not affect the priority
3681 in local-alloc! */
3682 REG_LIVE_LENGTH (regno) *= 2;
3684 /* If the register is referenced exactly twice, meaning it is
3685 set once and used once, indicate that the reference may be
3686 replaced by the equivalence we computed above. Do this
3687 even if the register is only used in one block so that
3688 dependencies can be handled where the last register is
3689 used in a different block (i.e. HIGH / LO_SUM sequences)
3690 and to reduce the number of registers alive across
3691 calls. */
3693 if (REG_N_REFS (regno) == 2
3694 && (rtx_equal_p (x, src)
3695 || ! equiv_init_varies_p (src))
3696 && NONJUMP_INSN_P (insn)
3697 && equiv_init_movable_p (PATTERN (insn), regno))
3698 reg_equiv[regno].replace = 1;
3704 if (!optimize)
3705 goto out;
3707 /* A second pass, to gather additional equivalences with memory. This needs
3708 to be done after we know which registers we are going to replace. */
3710 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3712 rtx set, src, dest;
3713 unsigned regno;
3715 if (! INSN_P (insn))
3716 continue;
3718 set = single_set (insn);
3719 if (! set)
3720 continue;
3722 dest = SET_DEST (set);
3723 src = SET_SRC (set);
3725 /* If this sets a MEM to the contents of a REG that is only used
3726 in a single basic block, see if the register is always equivalent
3727 to that memory location and if moving the store from INSN to the
3728 insn that set REG is safe. If so, put a REG_EQUIV note on the
3729 initializing insn.
3731 Don't add a REG_EQUIV note if the insn already has one. The existing
3732 REG_EQUIV is likely more useful than the one we are adding.
3734 If one of the regs in the address has reg_equiv[REGNO].replace set,
3735 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3736 optimization may move the set of this register immediately before
3737 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3738 the mention in the REG_EQUIV note would be to an uninitialized
3739 pseudo. */
3741 if (MEM_P (dest) && REG_P (src)
3742 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3743 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3744 && DF_REG_DEF_COUNT (regno) == 1
3745 && reg_equiv[regno].init_insns != 0
3746 && reg_equiv[regno].init_insns != const0_rtx
3747 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3748 REG_EQUIV, NULL_RTX)
3749 && ! contains_replace_regs (XEXP (dest, 0))
3750 && ! pdx_subregs[regno])
3752 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
3753 if (validate_equiv_mem (init_insn, src, dest)
3754 && ! memref_used_between_p (dest, init_insn, insn)
3755 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3756 multiple sets. */
3757 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3759 /* This insn makes the equivalence, not the one initializing
3760 the register. */
3761 ira_reg_equiv[regno].init_insns
3762 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3763 df_notes_rescan (init_insn);
3768 cleared_regs = BITMAP_ALLOC (NULL);
3769 /* Now scan all regs killed in an insn to see if any of them are
3770 registers only used that once. If so, see if we can replace the
3771 reference with the equivalent form. If we can, delete the
3772 initializing reference and this register will go away. If we
3773 can't replace the reference, and the initializing reference is
3774 within the same loop (or in an inner loop), then move the register
3775 initialization just before the use, so that they are in the same
3776 basic block. */
3777 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3779 loop_depth = bb_loop_depth (bb);
3780 for (insn = BB_END (bb);
3781 insn != PREV_INSN (BB_HEAD (bb));
3782 insn = PREV_INSN (insn))
3784 rtx link;
3786 if (! INSN_P (insn))
3787 continue;
3789 /* Don't substitute into a non-local goto, this confuses CFG. */
3790 if (JUMP_P (insn)
3791 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3792 continue;
3794 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3796 if (REG_NOTE_KIND (link) == REG_DEAD
3797 /* Make sure this insn still refers to the register. */
3798 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3800 int regno = REGNO (XEXP (link, 0));
3801 rtx equiv_insn;
3803 if (! reg_equiv[regno].replace
3804 || reg_equiv[regno].loop_depth < loop_depth
3805 /* There is no sense to move insns if live range
3806 shrinkage or register pressure-sensitive
3807 scheduling were done because it will not
3808 improve allocation but worsen insn schedule
3809 with a big probability. */
3810 || flag_live_range_shrinkage
3811 || (flag_sched_pressure && flag_schedule_insns))
3812 continue;
3814 /* reg_equiv[REGNO].replace gets set only when
3815 REG_N_REFS[REGNO] is 2, i.e. the register is set
3816 once and used once. (If it were only set, but
3817 not used, flow would have deleted the setting
3818 insns.) Hence there can only be one insn in
3819 reg_equiv[REGNO].init_insns. */
3820 gcc_assert (reg_equiv[regno].init_insns
3821 && !XEXP (reg_equiv[regno].init_insns, 1));
3822 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3824 /* We may not move instructions that can throw, since
3825 that changes basic block boundaries and we are not
3826 prepared to adjust the CFG to match. */
3827 if (can_throw_internal (equiv_insn))
3828 continue;
3830 if (asm_noperands (PATTERN (equiv_insn)) < 0
3831 && validate_replace_rtx (regno_reg_rtx[regno],
3832 *(reg_equiv[regno].src_p), insn))
3834 rtx equiv_link;
3835 rtx last_link;
3836 rtx note;
3838 /* Find the last note. */
3839 for (last_link = link; XEXP (last_link, 1);
3840 last_link = XEXP (last_link, 1))
3843 /* Append the REG_DEAD notes from equiv_insn. */
3844 equiv_link = REG_NOTES (equiv_insn);
3845 while (equiv_link)
3847 note = equiv_link;
3848 equiv_link = XEXP (equiv_link, 1);
3849 if (REG_NOTE_KIND (note) == REG_DEAD)
3851 remove_note (equiv_insn, note);
3852 XEXP (last_link, 1) = note;
3853 XEXP (note, 1) = NULL_RTX;
3854 last_link = note;
3858 remove_death (regno, insn);
3859 SET_REG_N_REFS (regno, 0);
3860 REG_FREQ (regno) = 0;
3861 delete_insn (equiv_insn);
3863 reg_equiv[regno].init_insns
3864 = XEXP (reg_equiv[regno].init_insns, 1);
3866 ira_reg_equiv[regno].init_insns = NULL_RTX;
3867 bitmap_set_bit (cleared_regs, regno);
3869 /* Move the initialization of the register to just before
3870 INSN. Update the flow information. */
3871 else if (prev_nondebug_insn (insn) != equiv_insn)
3873 rtx new_insn;
3875 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3876 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3877 REG_NOTES (equiv_insn) = 0;
3878 /* Rescan it to process the notes. */
3879 df_insn_rescan (new_insn);
3881 /* Make sure this insn is recognized before
3882 reload begins, otherwise
3883 eliminate_regs_in_insn will die. */
3884 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3886 delete_insn (equiv_insn);
3888 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3890 REG_BASIC_BLOCK (regno) = bb->index;
3891 REG_N_CALLS_CROSSED (regno) = 0;
3892 REG_FREQ_CALLS_CROSSED (regno) = 0;
3893 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3894 REG_LIVE_LENGTH (regno) = 2;
3896 if (insn == BB_HEAD (bb))
3897 BB_HEAD (bb) = PREV_INSN (insn);
3899 ira_reg_equiv[regno].init_insns
3900 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3901 bitmap_set_bit (cleared_regs, regno);
3908 if (!bitmap_empty_p (cleared_regs))
3910 FOR_EACH_BB_FN (bb, cfun)
3912 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3913 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3914 if (! df_live)
3915 continue;
3916 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3917 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3920 /* Last pass - adjust debug insns referencing cleared regs. */
3921 if (MAY_HAVE_DEBUG_INSNS)
3922 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3923 if (DEBUG_INSN_P (insn))
3925 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3926 INSN_VAR_LOCATION_LOC (insn)
3927 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3928 adjust_cleared_regs,
3929 (void *) cleared_regs);
3930 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3931 df_insn_rescan (insn);
3935 BITMAP_FREE (cleared_regs);
3937 out:
3938 /* Clean up. */
3940 end_alias_analysis ();
3941 free (reg_equiv);
3942 free (pdx_subregs);
3943 return recorded_label_ref;
3948 /* Set up fields memory, constant, and invariant from init_insns in
3949 the structures of array ira_reg_equiv. */
3950 static void
3951 setup_reg_equiv (void)
3953 int i;
3954 rtx elem, prev_elem, next_elem, insn, set, x;
3956 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3957 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3958 elem;
3959 prev_elem = elem, elem = next_elem)
3961 next_elem = XEXP (elem, 1);
3962 insn = XEXP (elem, 0);
3963 set = single_set (insn);
3965 /* Init insns can set up equivalence when the reg is a destination or
3966 a source (in this case the destination is memory). */
3967 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3969 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3971 x = XEXP (x, 0);
3972 if (REG_P (SET_DEST (set))
3973 && REGNO (SET_DEST (set)) == (unsigned int) i
3974 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3976 /* This insn reporting the equivalence but
3977 actually not setting it. Remove it from the
3978 list. */
3979 if (prev_elem == NULL)
3980 ira_reg_equiv[i].init_insns = next_elem;
3981 else
3982 XEXP (prev_elem, 1) = next_elem;
3983 elem = prev_elem;
3986 else if (REG_P (SET_DEST (set))
3987 && REGNO (SET_DEST (set)) == (unsigned int) i)
3988 x = SET_SRC (set);
3989 else
3991 gcc_assert (REG_P (SET_SRC (set))
3992 && REGNO (SET_SRC (set)) == (unsigned int) i);
3993 x = SET_DEST (set);
3995 if (! function_invariant_p (x)
3996 || ! flag_pic
3997 /* A function invariant is often CONSTANT_P but may
3998 include a register. We promise to only pass
3999 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
4000 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
4002 /* It can happen that a REG_EQUIV note contains a MEM
4003 that is not a legitimate memory operand. As later
4004 stages of reload assume that all addresses found in
4005 the lra_regno_equiv_* arrays were originally
4006 legitimate, we ignore such REG_EQUIV notes. */
4007 if (memory_operand (x, VOIDmode))
4009 ira_reg_equiv[i].defined_p = true;
4010 ira_reg_equiv[i].memory = x;
4011 continue;
4013 else if (function_invariant_p (x))
4015 enum machine_mode mode;
4017 mode = GET_MODE (SET_DEST (set));
4018 if (GET_CODE (x) == PLUS
4019 || x == frame_pointer_rtx || x == arg_pointer_rtx)
4020 /* This is PLUS of frame pointer and a constant,
4021 or fp, or argp. */
4022 ira_reg_equiv[i].invariant = x;
4023 else if (targetm.legitimate_constant_p (mode, x))
4024 ira_reg_equiv[i].constant = x;
4025 else
4027 ira_reg_equiv[i].memory = force_const_mem (mode, x);
4028 if (ira_reg_equiv[i].memory == NULL_RTX)
4030 ira_reg_equiv[i].defined_p = false;
4031 ira_reg_equiv[i].init_insns = NULL_RTX;
4032 break;
4035 ira_reg_equiv[i].defined_p = true;
4036 continue;
4040 ira_reg_equiv[i].defined_p = false;
4041 ira_reg_equiv[i].init_insns = NULL_RTX;
4042 break;
4048 /* Print chain C to FILE. */
4049 static void
4050 print_insn_chain (FILE *file, struct insn_chain *c)
4052 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
4053 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4054 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4058 /* Print all reload_insn_chains to FILE. */
4059 static void
4060 print_insn_chains (FILE *file)
4062 struct insn_chain *c;
4063 for (c = reload_insn_chain; c ; c = c->next)
4064 print_insn_chain (file, c);
4067 /* Return true if pseudo REGNO should be added to set live_throughout
4068 or dead_or_set of the insn chains for reload consideration. */
4069 static bool
4070 pseudo_for_reload_consideration_p (int regno)
4072 /* Consider spilled pseudos too for IRA because they still have a
4073 chance to get hard-registers in the reload when IRA is used. */
4074 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4077 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
4078 REG to the number of nregs, and INIT_VALUE to get the
4079 initialization. ALLOCNUM need not be the regno of REG. */
4080 static void
4081 init_live_subregs (bool init_value, sbitmap *live_subregs,
4082 bitmap live_subregs_used, int allocnum, rtx reg)
4084 unsigned int regno = REGNO (SUBREG_REG (reg));
4085 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
4087 gcc_assert (size > 0);
4089 /* Been there, done that. */
4090 if (bitmap_bit_p (live_subregs_used, allocnum))
4091 return;
4093 /* Create a new one. */
4094 if (live_subregs[allocnum] == NULL)
4095 live_subregs[allocnum] = sbitmap_alloc (size);
4097 /* If the entire reg was live before blasting into subregs, we need
4098 to init all of the subregs to ones else init to 0. */
4099 if (init_value)
4100 bitmap_ones (live_subregs[allocnum]);
4101 else
4102 bitmap_clear (live_subregs[allocnum]);
4104 bitmap_set_bit (live_subregs_used, allocnum);
4107 /* Walk the insns of the current function and build reload_insn_chain,
4108 and record register life information. */
4109 static void
4110 build_insn_chain (void)
4112 unsigned int i;
4113 struct insn_chain **p = &reload_insn_chain;
4114 basic_block bb;
4115 struct insn_chain *c = NULL;
4116 struct insn_chain *next = NULL;
4117 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4118 bitmap elim_regset = BITMAP_ALLOC (NULL);
4119 /* live_subregs is a vector used to keep accurate information about
4120 which hardregs are live in multiword pseudos. live_subregs and
4121 live_subregs_used are indexed by pseudo number. The live_subreg
4122 entry for a particular pseudo is only used if the corresponding
4123 element is non zero in live_subregs_used. The sbitmap size of
4124 live_subreg[allocno] is number of bytes that the pseudo can
4125 occupy. */
4126 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4127 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4129 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4130 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4131 bitmap_set_bit (elim_regset, i);
4132 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4134 bitmap_iterator bi;
4135 rtx insn;
4137 CLEAR_REG_SET (live_relevant_regs);
4138 bitmap_clear (live_subregs_used);
4140 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4142 if (i >= FIRST_PSEUDO_REGISTER)
4143 break;
4144 bitmap_set_bit (live_relevant_regs, i);
4147 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4148 FIRST_PSEUDO_REGISTER, i, bi)
4150 if (pseudo_for_reload_consideration_p (i))
4151 bitmap_set_bit (live_relevant_regs, i);
4154 FOR_BB_INSNS_REVERSE (bb, insn)
4156 if (!NOTE_P (insn) && !BARRIER_P (insn))
4158 unsigned int uid = INSN_UID (insn);
4159 df_ref *def_rec;
4160 df_ref *use_rec;
4162 c = new_insn_chain ();
4163 c->next = next;
4164 next = c;
4165 *p = c;
4166 p = &c->prev;
4168 c->insn = insn;
4169 c->block = bb->index;
4171 if (NONDEBUG_INSN_P (insn))
4172 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
4174 df_ref def = *def_rec;
4175 unsigned int regno = DF_REF_REGNO (def);
4177 /* Ignore may clobbers because these are generated
4178 from calls. However, every other kind of def is
4179 added to dead_or_set. */
4180 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4182 if (regno < FIRST_PSEUDO_REGISTER)
4184 if (!fixed_regs[regno])
4185 bitmap_set_bit (&c->dead_or_set, regno);
4187 else if (pseudo_for_reload_consideration_p (regno))
4188 bitmap_set_bit (&c->dead_or_set, regno);
4191 if ((regno < FIRST_PSEUDO_REGISTER
4192 || reg_renumber[regno] >= 0
4193 || ira_conflicts_p)
4194 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4196 rtx reg = DF_REF_REG (def);
4198 /* We can model subregs, but not if they are
4199 wrapped in ZERO_EXTRACTS. */
4200 if (GET_CODE (reg) == SUBREG
4201 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4203 unsigned int start = SUBREG_BYTE (reg);
4204 unsigned int last = start
4205 + GET_MODE_SIZE (GET_MODE (reg));
4207 init_live_subregs
4208 (bitmap_bit_p (live_relevant_regs, regno),
4209 live_subregs, live_subregs_used, regno, reg);
4211 if (!DF_REF_FLAGS_IS_SET
4212 (def, DF_REF_STRICT_LOW_PART))
4214 /* Expand the range to cover entire words.
4215 Bytes added here are "don't care". */
4216 start
4217 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4218 last = ((last + UNITS_PER_WORD - 1)
4219 / UNITS_PER_WORD * UNITS_PER_WORD);
4222 /* Ignore the paradoxical bits. */
4223 if (last > SBITMAP_SIZE (live_subregs[regno]))
4224 last = SBITMAP_SIZE (live_subregs[regno]);
4226 while (start < last)
4228 bitmap_clear_bit (live_subregs[regno], start);
4229 start++;
4232 if (bitmap_empty_p (live_subregs[regno]))
4234 bitmap_clear_bit (live_subregs_used, regno);
4235 bitmap_clear_bit (live_relevant_regs, regno);
4237 else
4238 /* Set live_relevant_regs here because
4239 that bit has to be true to get us to
4240 look at the live_subregs fields. */
4241 bitmap_set_bit (live_relevant_regs, regno);
4243 else
4245 /* DF_REF_PARTIAL is generated for
4246 subregs, STRICT_LOW_PART, and
4247 ZERO_EXTRACT. We handle the subreg
4248 case above so here we have to keep from
4249 modeling the def as a killing def. */
4250 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4252 bitmap_clear_bit (live_subregs_used, regno);
4253 bitmap_clear_bit (live_relevant_regs, regno);
4259 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4260 bitmap_copy (&c->live_throughout, live_relevant_regs);
4262 if (NONDEBUG_INSN_P (insn))
4263 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
4265 df_ref use = *use_rec;
4266 unsigned int regno = DF_REF_REGNO (use);
4267 rtx reg = DF_REF_REG (use);
4269 /* DF_REF_READ_WRITE on a use means that this use
4270 is fabricated from a def that is a partial set
4271 to a multiword reg. Here, we only model the
4272 subreg case that is not wrapped in ZERO_EXTRACT
4273 precisely so we do not need to look at the
4274 fabricated use. */
4275 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4276 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4277 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4278 continue;
4280 /* Add the last use of each var to dead_or_set. */
4281 if (!bitmap_bit_p (live_relevant_regs, regno))
4283 if (regno < FIRST_PSEUDO_REGISTER)
4285 if (!fixed_regs[regno])
4286 bitmap_set_bit (&c->dead_or_set, regno);
4288 else if (pseudo_for_reload_consideration_p (regno))
4289 bitmap_set_bit (&c->dead_or_set, regno);
4292 if (regno < FIRST_PSEUDO_REGISTER
4293 || pseudo_for_reload_consideration_p (regno))
4295 if (GET_CODE (reg) == SUBREG
4296 && !DF_REF_FLAGS_IS_SET (use,
4297 DF_REF_SIGN_EXTRACT
4298 | DF_REF_ZERO_EXTRACT))
4300 unsigned int start = SUBREG_BYTE (reg);
4301 unsigned int last = start
4302 + GET_MODE_SIZE (GET_MODE (reg));
4304 init_live_subregs
4305 (bitmap_bit_p (live_relevant_regs, regno),
4306 live_subregs, live_subregs_used, regno, reg);
4308 /* Ignore the paradoxical bits. */
4309 if (last > SBITMAP_SIZE (live_subregs[regno]))
4310 last = SBITMAP_SIZE (live_subregs[regno]);
4312 while (start < last)
4314 bitmap_set_bit (live_subregs[regno], start);
4315 start++;
4318 else
4319 /* Resetting the live_subregs_used is
4320 effectively saying do not use the subregs
4321 because we are reading the whole
4322 pseudo. */
4323 bitmap_clear_bit (live_subregs_used, regno);
4324 bitmap_set_bit (live_relevant_regs, regno);
4330 /* FIXME!! The following code is a disaster. Reload needs to see the
4331 labels and jump tables that are just hanging out in between
4332 the basic blocks. See pr33676. */
4333 insn = BB_HEAD (bb);
4335 /* Skip over the barriers and cruft. */
4336 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4337 || BLOCK_FOR_INSN (insn) == bb))
4338 insn = PREV_INSN (insn);
4340 /* While we add anything except barriers and notes, the focus is
4341 to get the labels and jump tables into the
4342 reload_insn_chain. */
4343 while (insn)
4345 if (!NOTE_P (insn) && !BARRIER_P (insn))
4347 if (BLOCK_FOR_INSN (insn))
4348 break;
4350 c = new_insn_chain ();
4351 c->next = next;
4352 next = c;
4353 *p = c;
4354 p = &c->prev;
4356 /* The block makes no sense here, but it is what the old
4357 code did. */
4358 c->block = bb->index;
4359 c->insn = insn;
4360 bitmap_copy (&c->live_throughout, live_relevant_regs);
4362 insn = PREV_INSN (insn);
4366 reload_insn_chain = c;
4367 *p = NULL;
4369 for (i = 0; i < (unsigned int) max_regno; i++)
4370 if (live_subregs[i] != NULL)
4371 sbitmap_free (live_subregs[i]);
4372 free (live_subregs);
4373 BITMAP_FREE (live_subregs_used);
4374 BITMAP_FREE (live_relevant_regs);
4375 BITMAP_FREE (elim_regset);
4377 if (dump_file)
4378 print_insn_chains (dump_file);
4381 /* Examine the rtx found in *LOC, which is read or written to as determined
4382 by TYPE. Return false if we find a reason why an insn containing this
4383 rtx should not be moved (such as accesses to non-constant memory), true
4384 otherwise. */
4385 static bool
4386 rtx_moveable_p (rtx *loc, enum op_type type)
4388 const char *fmt;
4389 rtx x = *loc;
4390 enum rtx_code code = GET_CODE (x);
4391 int i, j;
4393 code = GET_CODE (x);
4394 switch (code)
4396 case CONST:
4397 CASE_CONST_ANY:
4398 case SYMBOL_REF:
4399 case LABEL_REF:
4400 return true;
4402 case PC:
4403 return type == OP_IN;
4405 case CC0:
4406 return false;
4408 case REG:
4409 if (x == frame_pointer_rtx)
4410 return true;
4411 if (HARD_REGISTER_P (x))
4412 return false;
4414 return true;
4416 case MEM:
4417 if (type == OP_IN && MEM_READONLY_P (x))
4418 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4419 return false;
4421 case SET:
4422 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4423 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4425 case STRICT_LOW_PART:
4426 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4428 case ZERO_EXTRACT:
4429 case SIGN_EXTRACT:
4430 return (rtx_moveable_p (&XEXP (x, 0), type)
4431 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4432 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4434 case CLOBBER:
4435 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4437 default:
4438 break;
4441 fmt = GET_RTX_FORMAT (code);
4442 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4444 if (fmt[i] == 'e')
4446 if (!rtx_moveable_p (&XEXP (x, i), type))
4447 return false;
4449 else if (fmt[i] == 'E')
4450 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4452 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4453 return false;
4456 return true;
4459 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4460 to give dominance relationships between two insns I1 and I2. */
4461 static bool
4462 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4464 basic_block bb1 = BLOCK_FOR_INSN (i1);
4465 basic_block bb2 = BLOCK_FOR_INSN (i2);
4467 if (bb1 == bb2)
4468 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4469 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4472 /* Record the range of register numbers added by find_moveable_pseudos. */
4473 int first_moveable_pseudo, last_moveable_pseudo;
4475 /* These two vectors hold data for every register added by
4476 find_movable_pseudos, with index 0 holding data for the
4477 first_moveable_pseudo. */
4478 /* The original home register. */
4479 static vec<rtx> pseudo_replaced_reg;
4481 /* Look for instances where we have an instruction that is known to increase
4482 register pressure, and whose result is not used immediately. If it is
4483 possible to move the instruction downwards to just before its first use,
4484 split its lifetime into two ranges. We create a new pseudo to compute the
4485 value, and emit a move instruction just before the first use. If, after
4486 register allocation, the new pseudo remains unallocated, the function
4487 move_unallocated_pseudos then deletes the move instruction and places
4488 the computation just before the first use.
4490 Such a move is safe and profitable if all the input registers remain live
4491 and unchanged between the original computation and its first use. In such
4492 a situation, the computation is known to increase register pressure, and
4493 moving it is known to at least not worsen it.
4495 We restrict moves to only those cases where a register remains unallocated,
4496 in order to avoid interfering too much with the instruction schedule. As
4497 an exception, we may move insns which only modify their input register
4498 (typically induction variables), as this increases the freedom for our
4499 intended transformation, and does not limit the second instruction
4500 scheduler pass. */
4502 static void
4503 find_moveable_pseudos (void)
4505 unsigned i;
4506 int max_regs = max_reg_num ();
4507 int max_uid = get_max_uid ();
4508 basic_block bb;
4509 int *uid_luid = XNEWVEC (int, max_uid);
4510 rtx *closest_uses = XNEWVEC (rtx, max_regs);
4511 /* A set of registers which are live but not modified throughout a block. */
4512 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4513 last_basic_block_for_fn (cfun));
4514 /* A set of registers which only exist in a given basic block. */
4515 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4516 last_basic_block_for_fn (cfun));
4517 /* A set of registers which are set once, in an instruction that can be
4518 moved freely downwards, but are otherwise transparent to a block. */
4519 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4520 last_basic_block_for_fn (cfun));
4521 bitmap_head live, used, set, interesting, unusable_as_input;
4522 bitmap_iterator bi;
4523 bitmap_initialize (&interesting, 0);
4525 first_moveable_pseudo = max_regs;
4526 pseudo_replaced_reg.release ();
4527 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4529 df_analyze ();
4530 calculate_dominance_info (CDI_DOMINATORS);
4532 i = 0;
4533 bitmap_initialize (&live, 0);
4534 bitmap_initialize (&used, 0);
4535 bitmap_initialize (&set, 0);
4536 bitmap_initialize (&unusable_as_input, 0);
4537 FOR_EACH_BB_FN (bb, cfun)
4539 rtx insn;
4540 bitmap transp = bb_transp_live + bb->index;
4541 bitmap moveable = bb_moveable_reg_sets + bb->index;
4542 bitmap local = bb_local + bb->index;
4544 bitmap_initialize (local, 0);
4545 bitmap_initialize (transp, 0);
4546 bitmap_initialize (moveable, 0);
4547 bitmap_copy (&live, df_get_live_out (bb));
4548 bitmap_and_into (&live, df_get_live_in (bb));
4549 bitmap_copy (transp, &live);
4550 bitmap_clear (moveable);
4551 bitmap_clear (&live);
4552 bitmap_clear (&used);
4553 bitmap_clear (&set);
4554 FOR_BB_INSNS (bb, insn)
4555 if (NONDEBUG_INSN_P (insn))
4557 df_ref *u_rec, *d_rec;
4559 uid_luid[INSN_UID (insn)] = i++;
4561 u_rec = DF_INSN_USES (insn);
4562 d_rec = DF_INSN_DEFS (insn);
4563 if (d_rec[0] != NULL && d_rec[1] == NULL
4564 && u_rec[0] != NULL && u_rec[1] == NULL
4565 && DF_REF_REGNO (*u_rec) == DF_REF_REGNO (*d_rec)
4566 && !bitmap_bit_p (&set, DF_REF_REGNO (*u_rec))
4567 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4569 unsigned regno = DF_REF_REGNO (*u_rec);
4570 bitmap_set_bit (moveable, regno);
4571 bitmap_set_bit (&set, regno);
4572 bitmap_set_bit (&used, regno);
4573 bitmap_clear_bit (transp, regno);
4574 continue;
4576 while (*u_rec)
4578 unsigned regno = DF_REF_REGNO (*u_rec);
4579 bitmap_set_bit (&used, regno);
4580 if (bitmap_clear_bit (moveable, regno))
4581 bitmap_clear_bit (transp, regno);
4582 u_rec++;
4585 while (*d_rec)
4587 unsigned regno = DF_REF_REGNO (*d_rec);
4588 bitmap_set_bit (&set, regno);
4589 bitmap_clear_bit (transp, regno);
4590 bitmap_clear_bit (moveable, regno);
4591 d_rec++;
4596 bitmap_clear (&live);
4597 bitmap_clear (&used);
4598 bitmap_clear (&set);
4600 FOR_EACH_BB_FN (bb, cfun)
4602 bitmap local = bb_local + bb->index;
4603 rtx insn;
4605 FOR_BB_INSNS (bb, insn)
4606 if (NONDEBUG_INSN_P (insn))
4608 rtx def_insn, closest_use, note;
4609 df_ref *def_rec, def, use;
4610 unsigned regno;
4611 bool all_dominated, all_local;
4612 enum machine_mode mode;
4614 def_rec = DF_INSN_DEFS (insn);
4615 /* There must be exactly one def in this insn. */
4616 def = *def_rec;
4617 if (!def || def_rec[1] || !single_set (insn))
4618 continue;
4619 /* This must be the only definition of the reg. We also limit
4620 which modes we deal with so that we can assume we can generate
4621 move instructions. */
4622 regno = DF_REF_REGNO (def);
4623 mode = GET_MODE (DF_REF_REG (def));
4624 if (DF_REG_DEF_COUNT (regno) != 1
4625 || !DF_REF_INSN_INFO (def)
4626 || HARD_REGISTER_NUM_P (regno)
4627 || DF_REG_EQ_USE_COUNT (regno) > 0
4628 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4629 continue;
4630 def_insn = DF_REF_INSN (def);
4632 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4633 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4634 break;
4636 if (note)
4638 if (dump_file)
4639 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4640 regno);
4641 bitmap_set_bit (&unusable_as_input, regno);
4642 continue;
4645 use = DF_REG_USE_CHAIN (regno);
4646 all_dominated = true;
4647 all_local = true;
4648 closest_use = NULL_RTX;
4649 for (; use; use = DF_REF_NEXT_REG (use))
4651 rtx insn;
4652 if (!DF_REF_INSN_INFO (use))
4654 all_dominated = false;
4655 all_local = false;
4656 break;
4658 insn = DF_REF_INSN (use);
4659 if (DEBUG_INSN_P (insn))
4660 continue;
4661 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4662 all_local = false;
4663 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4664 all_dominated = false;
4665 if (closest_use != insn && closest_use != const0_rtx)
4667 if (closest_use == NULL_RTX)
4668 closest_use = insn;
4669 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4670 closest_use = insn;
4671 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4672 closest_use = const0_rtx;
4675 if (!all_dominated)
4677 if (dump_file)
4678 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4679 regno);
4680 continue;
4682 if (all_local)
4683 bitmap_set_bit (local, regno);
4684 if (closest_use == const0_rtx || closest_use == NULL
4685 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4687 if (dump_file)
4688 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4689 closest_use == const0_rtx || closest_use == NULL
4690 ? " (no unique first use)" : "");
4691 continue;
4693 #ifdef HAVE_cc0
4694 if (reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4696 if (dump_file)
4697 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4698 regno);
4699 continue;
4701 #endif
4702 bitmap_set_bit (&interesting, regno);
4703 closest_uses[regno] = closest_use;
4705 if (dump_file && (all_local || all_dominated))
4707 fprintf (dump_file, "Reg %u:", regno);
4708 if (all_local)
4709 fprintf (dump_file, " local to bb %d", bb->index);
4710 if (all_dominated)
4711 fprintf (dump_file, " def dominates all uses");
4712 if (closest_use != const0_rtx)
4713 fprintf (dump_file, " has unique first use");
4714 fputs ("\n", dump_file);
4719 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4721 df_ref def = DF_REG_DEF_CHAIN (i);
4722 rtx def_insn = DF_REF_INSN (def);
4723 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4724 bitmap def_bb_local = bb_local + def_block->index;
4725 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4726 bitmap def_bb_transp = bb_transp_live + def_block->index;
4727 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4728 rtx use_insn = closest_uses[i];
4729 df_ref *def_insn_use_rec = DF_INSN_USES (def_insn);
4730 bool all_ok = true;
4731 bool all_transp = true;
4733 if (!REG_P (DF_REF_REG (def)))
4734 continue;
4736 if (!local_to_bb_p)
4738 if (dump_file)
4739 fprintf (dump_file, "Reg %u not local to one basic block\n",
4741 continue;
4743 if (reg_equiv_init (i) != NULL_RTX)
4745 if (dump_file)
4746 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4748 continue;
4750 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4752 if (dump_file)
4753 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4754 INSN_UID (def_insn), i);
4755 continue;
4757 if (dump_file)
4758 fprintf (dump_file, "Examining insn %d, def for %d\n",
4759 INSN_UID (def_insn), i);
4760 while (*def_insn_use_rec != NULL)
4762 df_ref use = *def_insn_use_rec;
4763 unsigned regno = DF_REF_REGNO (use);
4764 if (bitmap_bit_p (&unusable_as_input, regno))
4766 all_ok = false;
4767 if (dump_file)
4768 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4769 break;
4771 if (!bitmap_bit_p (def_bb_transp, regno))
4773 if (bitmap_bit_p (def_bb_moveable, regno)
4774 && !control_flow_insn_p (use_insn)
4775 #ifdef HAVE_cc0
4776 && !sets_cc0_p (use_insn)
4777 #endif
4780 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4782 rtx x = NEXT_INSN (def_insn);
4783 while (!modified_in_p (DF_REF_REG (use), x))
4785 gcc_assert (x != use_insn);
4786 x = NEXT_INSN (x);
4788 if (dump_file)
4789 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4790 regno, INSN_UID (x));
4791 emit_insn_after (PATTERN (x), use_insn);
4792 set_insn_deleted (x);
4794 else
4796 if (dump_file)
4797 fprintf (dump_file, " input reg %u modified between def and use\n",
4798 regno);
4799 all_transp = false;
4802 else
4803 all_transp = false;
4806 def_insn_use_rec++;
4808 if (!all_ok)
4809 continue;
4810 if (!dbg_cnt (ira_move))
4811 break;
4812 if (dump_file)
4813 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4815 if (all_transp)
4817 rtx def_reg = DF_REF_REG (def);
4818 rtx newreg = ira_create_new_reg (def_reg);
4819 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4821 unsigned nregno = REGNO (newreg);
4822 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4823 nregno -= max_regs;
4824 pseudo_replaced_reg[nregno] = def_reg;
4829 FOR_EACH_BB_FN (bb, cfun)
4831 bitmap_clear (bb_local + bb->index);
4832 bitmap_clear (bb_transp_live + bb->index);
4833 bitmap_clear (bb_moveable_reg_sets + bb->index);
4835 bitmap_clear (&interesting);
4836 bitmap_clear (&unusable_as_input);
4837 free (uid_luid);
4838 free (closest_uses);
4839 free (bb_local);
4840 free (bb_transp_live);
4841 free (bb_moveable_reg_sets);
4843 last_moveable_pseudo = max_reg_num ();
4845 fix_reg_equiv_init ();
4846 expand_reg_info ();
4847 regstat_free_n_sets_and_refs ();
4848 regstat_free_ri ();
4849 regstat_init_n_sets_and_refs ();
4850 regstat_compute_ri ();
4851 free_dominance_info (CDI_DOMINATORS);
4854 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4855 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4856 the destination. Otherwise return NULL. */
4858 static rtx
4859 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4861 rtx src = SET_SRC (set);
4862 rtx dest = SET_DEST (set);
4863 if (!REG_P (src) || !HARD_REGISTER_P (src)
4864 || !REG_P (dest) || HARD_REGISTER_P (dest)
4865 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4866 return NULL;
4867 return dest;
4870 /* If insn is interesting for parameter range-splitting shring-wrapping
4871 preparation, i.e. it is a single set from a hard register to a pseudo, which
4872 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4873 parallel statement with only one such statement, return the destination.
4874 Otherwise return NULL. */
4876 static rtx
4877 interesting_dest_for_shprep (rtx insn, basic_block call_dom)
4879 if (!INSN_P (insn))
4880 return NULL;
4881 rtx pat = PATTERN (insn);
4882 if (GET_CODE (pat) == SET)
4883 return interesting_dest_for_shprep_1 (pat, call_dom);
4885 if (GET_CODE (pat) != PARALLEL)
4886 return NULL;
4887 rtx ret = NULL;
4888 for (int i = 0; i < XVECLEN (pat, 0); i++)
4890 rtx sub = XVECEXP (pat, 0, i);
4891 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4892 continue;
4893 if (GET_CODE (sub) != SET
4894 || side_effects_p (sub))
4895 return NULL;
4896 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4897 if (dest && ret)
4898 return NULL;
4899 if (dest)
4900 ret = dest;
4902 return ret;
4905 /* Split live ranges of pseudos that are loaded from hard registers in the
4906 first BB in a BB that dominates all non-sibling call if such a BB can be
4907 found and is not in a loop. Return true if the function has made any
4908 changes. */
4910 static bool
4911 split_live_ranges_for_shrink_wrap (void)
4913 basic_block bb, call_dom = NULL;
4914 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4915 rtx insn, last_interesting_insn = NULL;
4916 bitmap_head need_new, reachable;
4917 vec<basic_block> queue;
4919 if (!flag_shrink_wrap)
4920 return false;
4922 bitmap_initialize (&need_new, 0);
4923 bitmap_initialize (&reachable, 0);
4924 queue.create (n_basic_blocks_for_fn (cfun));
4926 FOR_EACH_BB_FN (bb, cfun)
4927 FOR_BB_INSNS (bb, insn)
4928 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4930 if (bb == first)
4932 bitmap_clear (&need_new);
4933 bitmap_clear (&reachable);
4934 queue.release ();
4935 return false;
4938 bitmap_set_bit (&need_new, bb->index);
4939 bitmap_set_bit (&reachable, bb->index);
4940 queue.quick_push (bb);
4941 break;
4944 if (queue.is_empty ())
4946 bitmap_clear (&need_new);
4947 bitmap_clear (&reachable);
4948 queue.release ();
4949 return false;
4952 while (!queue.is_empty ())
4954 edge e;
4955 edge_iterator ei;
4957 bb = queue.pop ();
4958 FOR_EACH_EDGE (e, ei, bb->succs)
4959 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4960 && bitmap_set_bit (&reachable, e->dest->index))
4961 queue.quick_push (e->dest);
4963 queue.release ();
4965 FOR_BB_INSNS (first, insn)
4967 rtx dest = interesting_dest_for_shprep (insn, NULL);
4968 if (!dest)
4969 continue;
4971 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4973 bitmap_clear (&need_new);
4974 bitmap_clear (&reachable);
4975 return false;
4978 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4979 use;
4980 use = DF_REF_NEXT_REG (use))
4982 if (NONDEBUG_INSN_P (DF_REF_INSN (use))
4983 && GET_CODE (DF_REF_REG (use)) == SUBREG)
4985 /* This is necessary to avoid hitting an assert at
4986 postreload.c:2294 in libstc++ testcases on x86_64-linux. I'm
4987 not really sure what the probblem actually is there. */
4988 bitmap_clear (&need_new);
4989 bitmap_clear (&reachable);
4990 return false;
4993 int ubbi = DF_REF_BB (use)->index;
4994 if (bitmap_bit_p (&reachable, ubbi))
4995 bitmap_set_bit (&need_new, ubbi);
4997 last_interesting_insn = insn;
5000 bitmap_clear (&reachable);
5001 if (!last_interesting_insn)
5003 bitmap_clear (&need_new);
5004 return false;
5007 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
5008 bitmap_clear (&need_new);
5009 if (call_dom == first)
5010 return false;
5012 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5013 while (bb_loop_depth (call_dom) > 0)
5014 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
5015 loop_optimizer_finalize ();
5017 if (call_dom == first)
5018 return false;
5020 calculate_dominance_info (CDI_POST_DOMINATORS);
5021 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
5023 free_dominance_info (CDI_POST_DOMINATORS);
5024 return false;
5026 free_dominance_info (CDI_POST_DOMINATORS);
5028 if (dump_file)
5029 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
5030 call_dom->index);
5032 bool ret = false;
5033 FOR_BB_INSNS (first, insn)
5035 rtx dest = interesting_dest_for_shprep (insn, call_dom);
5036 if (!dest)
5037 continue;
5039 rtx newreg = NULL_RTX;
5040 df_ref use, next;
5041 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5043 rtx uin = DF_REF_INSN (use);
5044 next = DF_REF_NEXT_REG (use);
5046 basic_block ubb = BLOCK_FOR_INSN (uin);
5047 if (ubb == call_dom
5048 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5050 if (!newreg)
5051 newreg = ira_create_new_reg (dest);
5052 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
5056 if (newreg)
5058 rtx new_move = gen_move_insn (newreg, dest);
5059 emit_insn_after (new_move, bb_note (call_dom));
5060 if (dump_file)
5062 fprintf (dump_file, "Split live-range of register ");
5063 print_rtl_single (dump_file, dest);
5065 ret = true;
5068 if (insn == last_interesting_insn)
5069 break;
5071 apply_change_group ();
5072 return ret;
5075 /* Perform the second half of the transformation started in
5076 find_moveable_pseudos. We look for instances where the newly introduced
5077 pseudo remains unallocated, and remove it by moving the definition to
5078 just before its use, replacing the move instruction generated by
5079 find_moveable_pseudos. */
5080 static void
5081 move_unallocated_pseudos (void)
5083 int i;
5084 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5085 if (reg_renumber[i] < 0)
5087 int idx = i - first_moveable_pseudo;
5088 rtx other_reg = pseudo_replaced_reg[idx];
5089 rtx def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5090 /* The use must follow all definitions of OTHER_REG, so we can
5091 insert the new definition immediately after any of them. */
5092 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5093 rtx move_insn = DF_REF_INSN (other_def);
5094 rtx newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5095 rtx set;
5096 int success;
5098 if (dump_file)
5099 fprintf (dump_file, "moving def of %d (insn %d now) ",
5100 REGNO (other_reg), INSN_UID (def_insn));
5102 delete_insn (move_insn);
5103 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5104 delete_insn (DF_REF_INSN (other_def));
5105 delete_insn (def_insn);
5107 set = single_set (newinsn);
5108 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5109 gcc_assert (success);
5110 if (dump_file)
5111 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5112 INSN_UID (newinsn), i);
5113 SET_REG_N_REFS (i, 0);
5117 /* If the backend knows where to allocate pseudos for hard
5118 register initial values, register these allocations now. */
5119 static void
5120 allocate_initial_values (void)
5122 if (targetm.allocate_initial_value)
5124 rtx hreg, preg, x;
5125 int i, regno;
5127 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5129 if (! initial_value_entry (i, &hreg, &preg))
5130 break;
5132 x = targetm.allocate_initial_value (hreg);
5133 regno = REGNO (preg);
5134 if (x && REG_N_SETS (regno) <= 1)
5136 if (MEM_P (x))
5137 reg_equiv_memory_loc (regno) = x;
5138 else
5140 basic_block bb;
5141 int new_regno;
5143 gcc_assert (REG_P (x));
5144 new_regno = REGNO (x);
5145 reg_renumber[regno] = new_regno;
5146 /* Poke the regno right into regno_reg_rtx so that even
5147 fixed regs are accepted. */
5148 SET_REGNO (preg, new_regno);
5149 /* Update global register liveness information. */
5150 FOR_EACH_BB_FN (bb, cfun)
5152 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5153 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5154 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5155 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5161 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5162 &hreg, &preg));
5167 /* True when we use LRA instead of reload pass for the current
5168 function. */
5169 bool ira_use_lra_p;
5171 /* True if we have allocno conflicts. It is false for non-optimized
5172 mode or when the conflict table is too big. */
5173 bool ira_conflicts_p;
5175 /* Saved between IRA and reload. */
5176 static int saved_flag_ira_share_spill_slots;
5178 /* This is the main entry of IRA. */
5179 static void
5180 ira (FILE *f)
5182 bool loops_p;
5183 int ira_max_point_before_emit;
5184 int rebuild_p;
5185 bool saved_flag_caller_saves = flag_caller_saves;
5186 enum ira_region saved_flag_ira_region = flag_ira_region;
5188 ira_conflicts_p = optimize > 0;
5190 ira_use_lra_p = targetm.lra_p ();
5191 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5192 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5193 use simplified and faster algorithms in LRA. */
5194 lra_simple_p
5195 = (ira_use_lra_p
5196 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5197 if (lra_simple_p)
5199 /* It permits to skip live range splitting in LRA. */
5200 flag_caller_saves = false;
5201 /* There is no sense to do regional allocation when we use
5202 simplified LRA. */
5203 flag_ira_region = IRA_REGION_ONE;
5204 ira_conflicts_p = false;
5207 #ifndef IRA_NO_OBSTACK
5208 gcc_obstack_init (&ira_obstack);
5209 #endif
5210 bitmap_obstack_initialize (&ira_bitmap_obstack);
5212 if (flag_caller_saves)
5213 init_caller_save ();
5215 if (flag_ira_verbose < 10)
5217 internal_flag_ira_verbose = flag_ira_verbose;
5218 ira_dump_file = f;
5220 else
5222 internal_flag_ira_verbose = flag_ira_verbose - 10;
5223 ira_dump_file = stderr;
5226 setup_prohibited_mode_move_regs ();
5227 decrease_live_ranges_number ();
5228 df_note_add_problem ();
5230 /* DF_LIVE can't be used in the register allocator, too many other
5231 parts of the compiler depend on using the "classic" liveness
5232 interpretation of the DF_LR problem. See PR38711.
5233 Remove the problem, so that we don't spend time updating it in
5234 any of the df_analyze() calls during IRA/LRA. */
5235 if (optimize > 1)
5236 df_remove_problem (df_live);
5237 gcc_checking_assert (df_live == NULL);
5239 #ifdef ENABLE_CHECKING
5240 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5241 #endif
5242 df_analyze ();
5244 init_reg_equiv ();
5245 if (ira_conflicts_p)
5247 calculate_dominance_info (CDI_DOMINATORS);
5249 if (split_live_ranges_for_shrink_wrap ())
5250 df_analyze ();
5252 free_dominance_info (CDI_DOMINATORS);
5255 df_clear_flags (DF_NO_INSN_RESCAN);
5257 regstat_init_n_sets_and_refs ();
5258 regstat_compute_ri ();
5260 /* If we are not optimizing, then this is the only place before
5261 register allocation where dataflow is done. And that is needed
5262 to generate these warnings. */
5263 if (warn_clobbered)
5264 generate_setjmp_warnings ();
5266 /* Determine if the current function is a leaf before running IRA
5267 since this can impact optimizations done by the prologue and
5268 epilogue thus changing register elimination offsets. */
5269 crtl->is_leaf = leaf_function_p ();
5271 if (resize_reg_info () && flag_ira_loop_pressure)
5272 ira_set_pseudo_classes (true, ira_dump_file);
5274 rebuild_p = update_equiv_regs ();
5275 setup_reg_equiv ();
5276 setup_reg_equiv_init ();
5278 if (optimize && rebuild_p)
5280 timevar_push (TV_JUMP);
5281 rebuild_jump_labels (get_insns ());
5282 if (purge_all_dead_edges ())
5283 delete_unreachable_blocks ();
5284 timevar_pop (TV_JUMP);
5287 allocated_reg_info_size = max_reg_num ();
5289 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5290 df_analyze ();
5292 /* It is not worth to do such improvement when we use a simple
5293 allocation because of -O0 usage or because the function is too
5294 big. */
5295 if (ira_conflicts_p)
5296 find_moveable_pseudos ();
5298 max_regno_before_ira = max_reg_num ();
5299 ira_setup_eliminable_regset ();
5301 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5302 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5303 ira_move_loops_num = ira_additional_jumps_num = 0;
5305 ira_assert (current_loops == NULL);
5306 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5307 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5309 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5310 fprintf (ira_dump_file, "Building IRA IR\n");
5311 loops_p = ira_build ();
5313 ira_assert (ira_conflicts_p || !loops_p);
5315 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5316 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5317 /* It is just wasting compiler's time to pack spilled pseudos into
5318 stack slots in this case -- prohibit it. We also do this if
5319 there is setjmp call because a variable not modified between
5320 setjmp and longjmp the compiler is required to preserve its
5321 value and sharing slots does not guarantee it. */
5322 flag_ira_share_spill_slots = FALSE;
5324 ira_color ();
5326 ira_max_point_before_emit = ira_max_point;
5328 ira_initiate_emit_data ();
5330 ira_emit (loops_p);
5332 max_regno = max_reg_num ();
5333 if (ira_conflicts_p)
5335 if (! loops_p)
5337 if (! ira_use_lra_p)
5338 ira_initiate_assign ();
5340 else
5342 expand_reg_info ();
5344 if (ira_use_lra_p)
5346 ira_allocno_t a;
5347 ira_allocno_iterator ai;
5349 FOR_EACH_ALLOCNO (a, ai)
5350 ALLOCNO_REGNO (a) = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5352 else
5354 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5355 fprintf (ira_dump_file, "Flattening IR\n");
5356 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5358 /* New insns were generated: add notes and recalculate live
5359 info. */
5360 df_analyze ();
5362 /* ??? Rebuild the loop tree, but why? Does the loop tree
5363 change if new insns were generated? Can that be handled
5364 by updating the loop tree incrementally? */
5365 loop_optimizer_finalize ();
5366 free_dominance_info (CDI_DOMINATORS);
5367 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5368 | LOOPS_HAVE_RECORDED_EXITS);
5370 if (! ira_use_lra_p)
5372 setup_allocno_assignment_flags ();
5373 ira_initiate_assign ();
5374 ira_reassign_conflict_allocnos (max_regno);
5379 ira_finish_emit_data ();
5381 setup_reg_renumber ();
5383 calculate_allocation_cost ();
5385 #ifdef ENABLE_IRA_CHECKING
5386 if (ira_conflicts_p)
5387 check_allocation ();
5388 #endif
5390 if (max_regno != max_regno_before_ira)
5392 regstat_free_n_sets_and_refs ();
5393 regstat_free_ri ();
5394 regstat_init_n_sets_and_refs ();
5395 regstat_compute_ri ();
5398 overall_cost_before = ira_overall_cost;
5399 if (! ira_conflicts_p)
5400 grow_reg_equivs ();
5401 else
5403 fix_reg_equiv_init ();
5405 #ifdef ENABLE_IRA_CHECKING
5406 print_redundant_copies ();
5407 #endif
5409 ira_spilled_reg_stack_slots_num = 0;
5410 ira_spilled_reg_stack_slots
5411 = ((struct ira_spilled_reg_stack_slot *)
5412 ira_allocate (max_regno
5413 * sizeof (struct ira_spilled_reg_stack_slot)));
5414 memset (ira_spilled_reg_stack_slots, 0,
5415 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5417 allocate_initial_values ();
5419 /* See comment for find_moveable_pseudos call. */
5420 if (ira_conflicts_p)
5421 move_unallocated_pseudos ();
5423 /* Restore original values. */
5424 if (lra_simple_p)
5426 flag_caller_saves = saved_flag_caller_saves;
5427 flag_ira_region = saved_flag_ira_region;
5431 static void
5432 do_reload (void)
5434 basic_block bb;
5435 bool need_dce;
5437 if (flag_ira_verbose < 10)
5438 ira_dump_file = dump_file;
5440 timevar_push (TV_RELOAD);
5441 if (ira_use_lra_p)
5443 if (current_loops != NULL)
5445 loop_optimizer_finalize ();
5446 free_dominance_info (CDI_DOMINATORS);
5448 FOR_ALL_BB_FN (bb, cfun)
5449 bb->loop_father = NULL;
5450 current_loops = NULL;
5452 if (ira_conflicts_p)
5453 ira_free (ira_spilled_reg_stack_slots);
5455 ira_destroy ();
5457 lra (ira_dump_file);
5458 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5459 LRA. */
5460 vec_free (reg_equivs);
5461 reg_equivs = NULL;
5462 need_dce = false;
5464 else
5466 df_set_flags (DF_NO_INSN_RESCAN);
5467 build_insn_chain ();
5469 need_dce = reload (get_insns (), ira_conflicts_p);
5473 timevar_pop (TV_RELOAD);
5475 timevar_push (TV_IRA);
5477 if (ira_conflicts_p && ! ira_use_lra_p)
5479 ira_free (ira_spilled_reg_stack_slots);
5480 ira_finish_assign ();
5483 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5484 && overall_cost_before != ira_overall_cost)
5485 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
5487 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5489 if (! ira_use_lra_p)
5491 ira_destroy ();
5492 if (current_loops != NULL)
5494 loop_optimizer_finalize ();
5495 free_dominance_info (CDI_DOMINATORS);
5497 FOR_ALL_BB_FN (bb, cfun)
5498 bb->loop_father = NULL;
5499 current_loops = NULL;
5501 regstat_free_ri ();
5502 regstat_free_n_sets_and_refs ();
5505 if (optimize)
5506 cleanup_cfg (CLEANUP_EXPENSIVE);
5508 finish_reg_equiv ();
5510 bitmap_obstack_release (&ira_bitmap_obstack);
5511 #ifndef IRA_NO_OBSTACK
5512 obstack_free (&ira_obstack, NULL);
5513 #endif
5515 /* The code after the reload has changed so much that at this point
5516 we might as well just rescan everything. Note that
5517 df_rescan_all_insns is not going to help here because it does not
5518 touch the artificial uses and defs. */
5519 df_finish_pass (true);
5520 df_scan_alloc (NULL);
5521 df_scan_blocks ();
5523 if (optimize > 1)
5525 df_live_add_problem ();
5526 df_live_set_all_dirty ();
5529 if (optimize)
5530 df_analyze ();
5532 if (need_dce && optimize)
5533 run_fast_dce ();
5535 /* Diagnose uses of the hard frame pointer when it is used as a global
5536 register. Often we can get away with letting the user appropriate
5537 the frame pointer, but we should let them know when code generation
5538 makes that impossible. */
5539 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5541 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5542 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5543 "frame pointer required, but reserved");
5544 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5547 timevar_pop (TV_IRA);
5550 /* Run the integrated register allocator. */
5551 static unsigned int
5552 rest_of_handle_ira (void)
5554 ira (dump_file);
5555 return 0;
5558 namespace {
5560 const pass_data pass_data_ira =
5562 RTL_PASS, /* type */
5563 "ira", /* name */
5564 OPTGROUP_NONE, /* optinfo_flags */
5565 false, /* has_gate */
5566 true, /* has_execute */
5567 TV_IRA, /* tv_id */
5568 0, /* properties_required */
5569 0, /* properties_provided */
5570 0, /* properties_destroyed */
5571 0, /* todo_flags_start */
5572 TODO_do_not_ggc_collect, /* todo_flags_finish */
5575 class pass_ira : public rtl_opt_pass
5577 public:
5578 pass_ira (gcc::context *ctxt)
5579 : rtl_opt_pass (pass_data_ira, ctxt)
5582 /* opt_pass methods: */
5583 unsigned int execute () { return rest_of_handle_ira (); }
5585 }; // class pass_ira
5587 } // anon namespace
5589 rtl_opt_pass *
5590 make_pass_ira (gcc::context *ctxt)
5592 return new pass_ira (ctxt);
5595 static unsigned int
5596 rest_of_handle_reload (void)
5598 do_reload ();
5599 return 0;
5602 namespace {
5604 const pass_data pass_data_reload =
5606 RTL_PASS, /* type */
5607 "reload", /* name */
5608 OPTGROUP_NONE, /* optinfo_flags */
5609 false, /* has_gate */
5610 true, /* has_execute */
5611 TV_RELOAD, /* tv_id */
5612 0, /* properties_required */
5613 0, /* properties_provided */
5614 0, /* properties_destroyed */
5615 0, /* todo_flags_start */
5616 0, /* todo_flags_finish */
5619 class pass_reload : public rtl_opt_pass
5621 public:
5622 pass_reload (gcc::context *ctxt)
5623 : rtl_opt_pass (pass_data_reload, ctxt)
5626 /* opt_pass methods: */
5627 unsigned int execute () { return rest_of_handle_reload (); }
5629 }; // class pass_reload
5631 } // anon namespace
5633 rtl_opt_pass *
5634 make_pass_reload (gcc::context *ctxt)
5636 return new pass_reload (ctxt);