* config.if: If gcc_version is already set, just use it. Don't set
[official-gcc.git] / gcc / flow.c
blob5e51818de0bd0a2916928a53953651e55633323e
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "ssa.h"
140 #include "timevar.h"
142 #include "obstack.h"
143 #include "splay-tree.h"
145 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
146 the stack pointer does not matter. The value is tested only in
147 functions that have frame pointers.
148 No definition is equivalent to always zero. */
149 #ifndef EXIT_IGNORE_STACK
150 #define EXIT_IGNORE_STACK 0
151 #endif
153 #ifndef HAVE_epilogue
154 #define HAVE_epilogue 0
155 #endif
156 #ifndef HAVE_prologue
157 #define HAVE_prologue 0
158 #endif
159 #ifndef HAVE_sibcall_epilogue
160 #define HAVE_sibcall_epilogue 0
161 #endif
163 #ifndef LOCAL_REGNO
164 #define LOCAL_REGNO(REGNO) 0
165 #endif
166 #ifndef EPILOGUE_USES
167 #define EPILOGUE_USES(REGNO) 0
168 #endif
169 #ifndef EH_USES
170 #define EH_USES(REGNO) 0
171 #endif
173 #ifdef HAVE_conditional_execution
174 #ifndef REVERSE_CONDEXEC_PREDICATES_P
175 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
176 #endif
177 #endif
179 /* Nonzero if the second flow pass has completed. */
180 int flow2_completed;
182 /* Maximum register number used in this function, plus one. */
184 int max_regno;
186 /* Indexed by n, giving various register information */
188 varray_type reg_n_info;
190 /* Size of a regset for the current function,
191 in (1) bytes and (2) elements. */
193 int regset_bytes;
194 int regset_size;
196 /* Regset of regs live when calls to `setjmp'-like functions happen. */
197 /* ??? Does this exist only for the setjmp-clobbered warning message? */
199 regset regs_live_at_setjmp;
201 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
202 that have to go in the same hard reg.
203 The first two regs in the list are a pair, and the next two
204 are another pair, etc. */
205 rtx regs_may_share;
207 /* Callback that determines if it's ok for a function to have no
208 noreturn attribute. */
209 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
211 /* Set of registers that may be eliminable. These are handled specially
212 in updating regs_ever_live. */
214 static HARD_REG_SET elim_reg_set;
216 /* Holds information for tracking conditional register life information. */
217 struct reg_cond_life_info
219 /* A boolean expression of conditions under which a register is dead. */
220 rtx condition;
221 /* Conditions under which a register is dead at the basic block end. */
222 rtx orig_condition;
224 /* A boolean expression of conditions under which a register has been
225 stored into. */
226 rtx stores;
228 /* ??? Could store mask of bytes that are dead, so that we could finally
229 track lifetimes of multi-word registers accessed via subregs. */
232 /* For use in communicating between propagate_block and its subroutines.
233 Holds all information needed to compute life and def-use information. */
235 struct propagate_block_info
237 /* The basic block we're considering. */
238 basic_block bb;
240 /* Bit N is set if register N is conditionally or unconditionally live. */
241 regset reg_live;
243 /* Bit N is set if register N is set this insn. */
244 regset new_set;
246 /* Element N is the next insn that uses (hard or pseudo) register N
247 within the current basic block; or zero, if there is no such insn. */
248 rtx *reg_next_use;
250 /* Contains a list of all the MEMs we are tracking for dead store
251 elimination. */
252 rtx mem_set_list;
254 /* If non-null, record the set of registers set unconditionally in the
255 basic block. */
256 regset local_set;
258 /* If non-null, record the set of registers set conditionally in the
259 basic block. */
260 regset cond_local_set;
262 #ifdef HAVE_conditional_execution
263 /* Indexed by register number, holds a reg_cond_life_info for each
264 register that is not unconditionally live or dead. */
265 splay_tree reg_cond_dead;
267 /* Bit N is set if register N is in an expression in reg_cond_dead. */
268 regset reg_cond_reg;
269 #endif
271 /* The length of mem_set_list. */
272 int mem_set_list_len;
274 /* Nonzero if the value of CC0 is live. */
275 int cc0_live;
277 /* Flags controlling the set of information propagate_block collects. */
278 int flags;
281 /* Number of dead insns removed. */
282 static int ndead;
284 /* Maximum length of pbi->mem_set_list before we start dropping
285 new elements on the floor. */
286 #define MAX_MEM_SET_LIST_LEN 100
288 /* Forward declarations */
289 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
290 static void verify_wide_reg PARAMS ((int, basic_block));
291 static void verify_local_live_at_start PARAMS ((regset, basic_block));
292 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
293 static void notice_stack_pointer_modification PARAMS ((rtx));
294 static void mark_reg PARAMS ((rtx, void *));
295 static void mark_regs_live_at_end PARAMS ((regset));
296 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
297 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
298 static void propagate_block_delete_insn PARAMS ((rtx));
299 static rtx propagate_block_delete_libcall PARAMS ((rtx, rtx));
300 static int insn_dead_p PARAMS ((struct propagate_block_info *,
301 rtx, int, rtx));
302 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
303 rtx, rtx));
304 static void mark_set_regs PARAMS ((struct propagate_block_info *,
305 rtx, rtx));
306 static void mark_set_1 PARAMS ((struct propagate_block_info *,
307 enum rtx_code, rtx, rtx,
308 rtx, int));
309 static int find_regno_partial PARAMS ((rtx *, void *));
311 #ifdef HAVE_conditional_execution
312 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
313 int, rtx));
314 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
315 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
316 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
317 int));
318 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
319 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
320 static rtx not_reg_cond PARAMS ((rtx));
321 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
322 #endif
323 #ifdef AUTO_INC_DEC
324 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
325 rtx, rtx, rtx, rtx, rtx));
326 static void find_auto_inc PARAMS ((struct propagate_block_info *,
327 rtx, rtx));
328 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
329 rtx));
330 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
331 #endif
332 static void mark_used_reg PARAMS ((struct propagate_block_info *,
333 rtx, rtx, rtx));
334 static void mark_used_regs PARAMS ((struct propagate_block_info *,
335 rtx, rtx, rtx));
336 void dump_flow_info PARAMS ((FILE *));
337 void debug_flow_info PARAMS ((void));
338 static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
339 rtx));
340 static int invalidate_mems_from_autoinc PARAMS ((rtx *, void *));
341 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
342 rtx));
343 static void clear_log_links PARAMS ((sbitmap));
346 void
347 check_function_return_warnings ()
349 if (warn_missing_noreturn
350 && !TREE_THIS_VOLATILE (cfun->decl)
351 && EXIT_BLOCK_PTR->pred == NULL
352 && (lang_missing_noreturn_ok_p
353 && !lang_missing_noreturn_ok_p (cfun->decl)))
354 warning ("function might be possible candidate for attribute `noreturn'");
356 /* If we have a path to EXIT, then we do return. */
357 if (TREE_THIS_VOLATILE (cfun->decl)
358 && EXIT_BLOCK_PTR->pred != NULL)
359 warning ("`noreturn' function does return");
361 /* If the clobber_return_insn appears in some basic block, then we
362 do reach the end without returning a value. */
363 else if (warn_return_type
364 && cfun->x_clobber_return_insn != NULL
365 && EXIT_BLOCK_PTR->pred != NULL)
367 int max_uid = get_max_uid ();
369 /* If clobber_return_insn was excised by jump1, then renumber_insns
370 can make max_uid smaller than the number still recorded in our rtx.
371 That's fine, since this is a quick way of verifying that the insn
372 is no longer in the chain. */
373 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
375 rtx insn;
377 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
378 if (insn == cfun->x_clobber_return_insn)
380 warning ("control reaches end of non-void function");
381 break;
387 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
388 note associated with the BLOCK. */
391 first_insn_after_basic_block_note (block)
392 basic_block block;
394 rtx insn;
396 /* Get the first instruction in the block. */
397 insn = block->head;
399 if (insn == NULL_RTX)
400 return NULL_RTX;
401 if (GET_CODE (insn) == CODE_LABEL)
402 insn = NEXT_INSN (insn);
403 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
404 abort ();
406 return NEXT_INSN (insn);
409 /* Perform data flow analysis.
410 F is the first insn of the function; FLAGS is a set of PROP_* flags
411 to be used in accumulating flow info. */
413 void
414 life_analysis (f, file, flags)
415 rtx f;
416 FILE *file;
417 int flags;
419 #ifdef ELIMINABLE_REGS
420 int i;
421 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
422 #endif
424 /* Record which registers will be eliminated. We use this in
425 mark_used_regs. */
427 CLEAR_HARD_REG_SET (elim_reg_set);
429 #ifdef ELIMINABLE_REGS
430 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
431 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
432 #else
433 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
434 #endif
437 #ifdef CANNOT_CHANGE_MODE_CLASS
438 if (flags & PROP_REG_INFO)
440 int j;
441 for (j=0; j < NUM_MACHINE_MODES; ++j)
442 INIT_REG_SET (&subregs_of_mode[j]);
444 #endif
446 if (! optimize)
447 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
449 /* The post-reload life analysis have (on a global basis) the same
450 registers live as was computed by reload itself. elimination
451 Otherwise offsets and such may be incorrect.
453 Reload will make some registers as live even though they do not
454 appear in the rtl.
456 We don't want to create new auto-incs after reload, since they
457 are unlikely to be useful and can cause problems with shared
458 stack slots. */
459 if (reload_completed)
460 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
462 /* We want alias analysis information for local dead store elimination. */
463 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
464 init_alias_analysis ();
466 /* Always remove no-op moves. Do this before other processing so
467 that we don't have to keep re-scanning them. */
468 delete_noop_moves (f);
470 /* Some targets can emit simpler epilogues if they know that sp was
471 not ever modified during the function. After reload, of course,
472 we've already emitted the epilogue so there's no sense searching. */
473 if (! reload_completed)
474 notice_stack_pointer_modification (f);
476 /* Allocate and zero out data structures that will record the
477 data from lifetime analysis. */
478 allocate_reg_life_data ();
479 allocate_bb_life_data ();
481 /* Find the set of registers live on function exit. */
482 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
484 /* "Update" life info from zero. It'd be nice to begin the
485 relaxation with just the exit and noreturn blocks, but that set
486 is not immediately handy. */
488 if (flags & PROP_REG_INFO)
489 memset (regs_ever_live, 0, sizeof (regs_ever_live));
490 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
492 /* Clean up. */
493 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
494 end_alias_analysis ();
496 if (file)
497 dump_flow_info (file);
499 free_basic_block_vars (1);
501 /* Removing dead insns should've made jumptables really dead. */
502 delete_dead_jumptables ();
505 /* A subroutine of verify_wide_reg, called through for_each_rtx.
506 Search for REGNO. If found, return 2 if it is not wider than
507 word_mode. */
509 static int
510 verify_wide_reg_1 (px, pregno)
511 rtx *px;
512 void *pregno;
514 rtx x = *px;
515 unsigned int regno = *(int *) pregno;
517 if (GET_CODE (x) == REG && REGNO (x) == regno)
519 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
520 return 2;
521 return 1;
523 return 0;
526 /* A subroutine of verify_local_live_at_start. Search through insns
527 of BB looking for register REGNO. */
529 static void
530 verify_wide_reg (regno, bb)
531 int regno;
532 basic_block bb;
534 rtx head = bb->head, end = bb->end;
536 while (1)
538 if (INSN_P (head))
540 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
541 if (r == 1)
542 return;
543 if (r == 2)
544 break;
546 if (head == end)
547 break;
548 head = NEXT_INSN (head);
551 if (rtl_dump_file)
553 fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
554 dump_bb (bb, rtl_dump_file);
556 abort ();
559 /* A subroutine of update_life_info. Verify that there are no untoward
560 changes in live_at_start during a local update. */
562 static void
563 verify_local_live_at_start (new_live_at_start, bb)
564 regset new_live_at_start;
565 basic_block bb;
567 if (reload_completed)
569 /* After reload, there are no pseudos, nor subregs of multi-word
570 registers. The regsets should exactly match. */
571 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
573 if (rtl_dump_file)
575 fprintf (rtl_dump_file,
576 "live_at_start mismatch in bb %d, aborting\nNew:\n",
577 bb->index);
578 debug_bitmap_file (rtl_dump_file, new_live_at_start);
579 fputs ("Old:\n", rtl_dump_file);
580 dump_bb (bb, rtl_dump_file);
582 abort ();
585 else
587 int i;
589 /* Find the set of changed registers. */
590 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
592 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
594 /* No registers should die. */
595 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
597 if (rtl_dump_file)
599 fprintf (rtl_dump_file,
600 "Register %d died unexpectedly.\n", i);
601 dump_bb (bb, rtl_dump_file);
603 abort ();
606 /* Verify that the now-live register is wider than word_mode. */
607 verify_wide_reg (i, bb);
612 /* Updates life information starting with the basic blocks set in BLOCKS.
613 If BLOCKS is null, consider it to be the universal set.
615 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
616 we are only expecting local modifications to basic blocks. If we find
617 extra registers live at the beginning of a block, then we either killed
618 useful data, or we have a broken split that wants data not provided.
619 If we find registers removed from live_at_start, that means we have
620 a broken peephole that is killing a register it shouldn't.
622 ??? This is not true in one situation -- when a pre-reload splitter
623 generates subregs of a multi-word pseudo, current life analysis will
624 lose the kill. So we _can_ have a pseudo go live. How irritating.
626 Including PROP_REG_INFO does not properly refresh regs_ever_live
627 unless the caller resets it to zero. */
630 update_life_info (blocks, extent, prop_flags)
631 sbitmap blocks;
632 enum update_life_extent extent;
633 int prop_flags;
635 regset tmp;
636 regset_head tmp_head;
637 int i;
638 int stabilized_prop_flags = prop_flags;
639 basic_block bb;
641 tmp = INITIALIZE_REG_SET (tmp_head);
642 ndead = 0;
644 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
645 ? TV_LIFE_UPDATE : TV_LIFE);
647 /* Changes to the CFG are only allowed when
648 doing a global update for the entire CFG. */
649 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
650 && (extent == UPDATE_LIFE_LOCAL || blocks))
651 abort ();
653 /* For a global update, we go through the relaxation process again. */
654 if (extent != UPDATE_LIFE_LOCAL)
656 for ( ; ; )
658 int changed = 0;
660 calculate_global_regs_live (blocks, blocks,
661 prop_flags & (PROP_SCAN_DEAD_CODE
662 | PROP_SCAN_DEAD_STORES
663 | PROP_ALLOW_CFG_CHANGES));
665 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
666 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
667 break;
669 /* Removing dead code may allow the CFG to be simplified which
670 in turn may allow for further dead code detection / removal. */
671 FOR_EACH_BB_REVERSE (bb)
673 COPY_REG_SET (tmp, bb->global_live_at_end);
674 changed |= propagate_block (bb, tmp, NULL, NULL,
675 prop_flags & (PROP_SCAN_DEAD_CODE
676 | PROP_SCAN_DEAD_STORES
677 | PROP_KILL_DEAD_CODE));
680 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
681 subsequent propagate_block calls, since removing or acting as
682 removing dead code can affect global register liveness, which
683 is supposed to be finalized for this call after this loop. */
684 stabilized_prop_flags
685 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
686 | PROP_KILL_DEAD_CODE);
688 if (! changed)
689 break;
691 /* We repeat regardless of what cleanup_cfg says. If there were
692 instructions deleted above, that might have been only a
693 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
694 Further improvement may be possible. */
695 cleanup_cfg (CLEANUP_EXPENSIVE);
698 /* If asked, remove notes from the blocks we'll update. */
699 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
700 count_or_remove_death_notes (blocks, 1);
703 /* Clear log links in case we are asked to (re)compute them. */
704 if (prop_flags & PROP_LOG_LINKS)
705 clear_log_links (blocks);
707 if (blocks)
709 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
711 bb = BASIC_BLOCK (i);
713 COPY_REG_SET (tmp, bb->global_live_at_end);
714 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
716 if (extent == UPDATE_LIFE_LOCAL)
717 verify_local_live_at_start (tmp, bb);
720 else
722 FOR_EACH_BB_REVERSE (bb)
724 COPY_REG_SET (tmp, bb->global_live_at_end);
726 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
728 if (extent == UPDATE_LIFE_LOCAL)
729 verify_local_live_at_start (tmp, bb);
733 FREE_REG_SET (tmp);
735 if (prop_flags & PROP_REG_INFO)
737 /* The only pseudos that are live at the beginning of the function
738 are those that were not set anywhere in the function. local-alloc
739 doesn't know how to handle these correctly, so mark them as not
740 local to any one basic block. */
741 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
742 FIRST_PSEUDO_REGISTER, i,
743 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
745 /* We have a problem with any pseudoreg that lives across the setjmp.
746 ANSI says that if a user variable does not change in value between
747 the setjmp and the longjmp, then the longjmp preserves it. This
748 includes longjmp from a place where the pseudo appears dead.
749 (In principle, the value still exists if it is in scope.)
750 If the pseudo goes in a hard reg, some other value may occupy
751 that hard reg where this pseudo is dead, thus clobbering the pseudo.
752 Conclusion: such a pseudo must not go in a hard reg. */
753 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
754 FIRST_PSEUDO_REGISTER, i,
756 if (regno_reg_rtx[i] != 0)
758 REG_LIVE_LENGTH (i) = -1;
759 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
763 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
764 ? TV_LIFE_UPDATE : TV_LIFE);
765 if (ndead && rtl_dump_file)
766 fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
767 return ndead;
770 /* Update life information in all blocks where BB_DIRTY is set. */
773 update_life_info_in_dirty_blocks (extent, prop_flags)
774 enum update_life_extent extent;
775 int prop_flags;
777 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
778 int n = 0;
779 basic_block bb;
780 int retval = 0;
782 sbitmap_zero (update_life_blocks);
783 FOR_EACH_BB (bb)
785 if (extent == UPDATE_LIFE_LOCAL)
787 if (bb->flags & BB_DIRTY)
789 SET_BIT (update_life_blocks, bb->index);
790 n++;
793 else
795 /* ??? Bootstrap with -march=pentium4 fails to terminate
796 with only a partial life update. */
797 SET_BIT (update_life_blocks, bb->index);
798 if (bb->flags & BB_DIRTY)
799 n++;
803 if (n)
804 retval = update_life_info (update_life_blocks, extent, prop_flags);
806 sbitmap_free (update_life_blocks);
807 return retval;
810 /* Free the variables allocated by find_basic_blocks.
812 KEEP_HEAD_END_P is nonzero if basic_block_info is not to be freed. */
814 void
815 free_basic_block_vars (keep_head_end_p)
816 int keep_head_end_p;
818 if (! keep_head_end_p)
820 if (basic_block_info)
822 clear_edges ();
823 VARRAY_FREE (basic_block_info);
825 n_basic_blocks = 0;
826 last_basic_block = 0;
828 ENTRY_BLOCK_PTR->aux = NULL;
829 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
830 EXIT_BLOCK_PTR->aux = NULL;
831 EXIT_BLOCK_PTR->global_live_at_start = NULL;
835 /* Delete any insns that copy a register to itself. */
838 delete_noop_moves (f)
839 rtx f ATTRIBUTE_UNUSED;
841 rtx insn, next;
842 basic_block bb;
843 int nnoops = 0;
845 FOR_EACH_BB (bb)
847 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
849 next = NEXT_INSN (insn);
850 if (INSN_P (insn) && noop_move_p (insn))
852 rtx note;
854 /* If we're about to remove the first insn of a libcall
855 then move the libcall note to the next real insn and
856 update the retval note. */
857 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
858 && XEXP (note, 0) != insn)
860 rtx new_libcall_insn = next_real_insn (insn);
861 rtx retval_note = find_reg_note (XEXP (note, 0),
862 REG_RETVAL, NULL_RTX);
863 REG_NOTES (new_libcall_insn)
864 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
865 REG_NOTES (new_libcall_insn));
866 XEXP (retval_note, 0) = new_libcall_insn;
869 delete_insn_and_edges (insn);
870 nnoops++;
874 if (nnoops && rtl_dump_file)
875 fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
876 return nnoops;
879 /* Delete any jump tables never referenced. We can't delete them at the
880 time of removing tablejump insn as they are referenced by the preceding
881 insns computing the destination, so we delay deleting and garbagecollect
882 them once life information is computed. */
883 void
884 delete_dead_jumptables ()
886 rtx insn, next;
887 for (insn = get_insns (); insn; insn = next)
889 next = NEXT_INSN (insn);
890 if (GET_CODE (insn) == CODE_LABEL
891 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
892 && GET_CODE (next) == JUMP_INSN
893 && (GET_CODE (PATTERN (next)) == ADDR_VEC
894 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
896 if (rtl_dump_file)
897 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
898 delete_insn (NEXT_INSN (insn));
899 delete_insn (insn);
900 next = NEXT_INSN (next);
905 /* Determine if the stack pointer is constant over the life of the function.
906 Only useful before prologues have been emitted. */
908 static void
909 notice_stack_pointer_modification_1 (x, pat, data)
910 rtx x;
911 rtx pat ATTRIBUTE_UNUSED;
912 void *data ATTRIBUTE_UNUSED;
914 if (x == stack_pointer_rtx
915 /* The stack pointer is only modified indirectly as the result
916 of a push until later in flow. See the comments in rtl.texi
917 regarding Embedded Side-Effects on Addresses. */
918 || (GET_CODE (x) == MEM
919 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
920 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
921 current_function_sp_is_unchanging = 0;
924 static void
925 notice_stack_pointer_modification (f)
926 rtx f;
928 rtx insn;
930 /* Assume that the stack pointer is unchanging if alloca hasn't
931 been used. */
932 current_function_sp_is_unchanging = !current_function_calls_alloca;
933 if (! current_function_sp_is_unchanging)
934 return;
936 for (insn = f; insn; insn = NEXT_INSN (insn))
938 if (INSN_P (insn))
940 /* Check if insn modifies the stack pointer. */
941 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
942 NULL);
943 if (! current_function_sp_is_unchanging)
944 return;
949 /* Mark a register in SET. Hard registers in large modes get all
950 of their component registers set as well. */
952 static void
953 mark_reg (reg, xset)
954 rtx reg;
955 void *xset;
957 regset set = (regset) xset;
958 int regno = REGNO (reg);
960 if (GET_MODE (reg) == BLKmode)
961 abort ();
963 SET_REGNO_REG_SET (set, regno);
964 if (regno < FIRST_PSEUDO_REGISTER)
966 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
967 while (--n > 0)
968 SET_REGNO_REG_SET (set, regno + n);
972 /* Mark those regs which are needed at the end of the function as live
973 at the end of the last basic block. */
975 static void
976 mark_regs_live_at_end (set)
977 regset set;
979 unsigned int i;
981 /* If exiting needs the right stack value, consider the stack pointer
982 live at the end of the function. */
983 if ((HAVE_epilogue && reload_completed)
984 || ! EXIT_IGNORE_STACK
985 || (! FRAME_POINTER_REQUIRED
986 && ! current_function_calls_alloca
987 && flag_omit_frame_pointer)
988 || current_function_sp_is_unchanging)
990 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
993 /* Mark the frame pointer if needed at the end of the function. If
994 we end up eliminating it, it will be removed from the live list
995 of each basic block by reload. */
997 if (! reload_completed || frame_pointer_needed)
999 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
1000 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1001 /* If they are different, also mark the hard frame pointer as live. */
1002 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
1003 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
1004 #endif
1007 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1008 /* Many architectures have a GP register even without flag_pic.
1009 Assume the pic register is not in use, or will be handled by
1010 other means, if it is not fixed. */
1011 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1012 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1013 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
1014 #endif
1016 /* Mark all global registers, and all registers used by the epilogue
1017 as being live at the end of the function since they may be
1018 referenced by our caller. */
1019 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1020 if (global_regs[i] || EPILOGUE_USES (i))
1021 SET_REGNO_REG_SET (set, i);
1023 if (HAVE_epilogue && reload_completed)
1025 /* Mark all call-saved registers that we actually used. */
1026 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1027 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
1028 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1029 SET_REGNO_REG_SET (set, i);
1032 #ifdef EH_RETURN_DATA_REGNO
1033 /* Mark the registers that will contain data for the handler. */
1034 if (reload_completed && current_function_calls_eh_return)
1035 for (i = 0; ; ++i)
1037 unsigned regno = EH_RETURN_DATA_REGNO(i);
1038 if (regno == INVALID_REGNUM)
1039 break;
1040 SET_REGNO_REG_SET (set, regno);
1042 #endif
1043 #ifdef EH_RETURN_STACKADJ_RTX
1044 if ((! HAVE_epilogue || ! reload_completed)
1045 && current_function_calls_eh_return)
1047 rtx tmp = EH_RETURN_STACKADJ_RTX;
1048 if (tmp && REG_P (tmp))
1049 mark_reg (tmp, set);
1051 #endif
1052 #ifdef EH_RETURN_HANDLER_RTX
1053 if ((! HAVE_epilogue || ! reload_completed)
1054 && current_function_calls_eh_return)
1056 rtx tmp = EH_RETURN_HANDLER_RTX;
1057 if (tmp && REG_P (tmp))
1058 mark_reg (tmp, set);
1060 #endif
1062 /* Mark function return value. */
1063 diddle_return_value (mark_reg, set);
1066 /* Callback function for for_each_successor_phi. DATA is a regset.
1067 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1068 INSN, in the regset. */
1070 static int
1071 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
1072 rtx insn ATTRIBUTE_UNUSED;
1073 int dest_regno ATTRIBUTE_UNUSED;
1074 int src_regno;
1075 void *data;
1077 regset live = (regset) data;
1078 SET_REGNO_REG_SET (live, src_regno);
1079 return 0;
1082 /* Propagate global life info around the graph of basic blocks. Begin
1083 considering blocks with their corresponding bit set in BLOCKS_IN.
1084 If BLOCKS_IN is null, consider it the universal set.
1086 BLOCKS_OUT is set for every block that was changed. */
1088 static void
1089 calculate_global_regs_live (blocks_in, blocks_out, flags)
1090 sbitmap blocks_in, blocks_out;
1091 int flags;
1093 basic_block *queue, *qhead, *qtail, *qend, bb;
1094 regset tmp, new_live_at_end, invalidated_by_call;
1095 regset_head tmp_head, invalidated_by_call_head;
1096 regset_head new_live_at_end_head;
1097 int i;
1099 /* Some passes used to forget clear aux field of basic block causing
1100 sick behavior here. */
1101 #ifdef ENABLE_CHECKING
1102 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1103 if (bb->aux)
1104 abort ();
1105 #endif
1107 tmp = INITIALIZE_REG_SET (tmp_head);
1108 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1109 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1111 /* Inconveniently, this is only readily available in hard reg set form. */
1112 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1113 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1114 SET_REGNO_REG_SET (invalidated_by_call, i);
1116 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1117 because the `head == tail' style test for an empty queue doesn't
1118 work with a full queue. */
1119 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1120 qtail = queue;
1121 qhead = qend = queue + n_basic_blocks + 2;
1123 /* Queue the blocks set in the initial mask. Do this in reverse block
1124 number order so that we are more likely for the first round to do
1125 useful work. We use AUX non-null to flag that the block is queued. */
1126 if (blocks_in)
1128 FOR_EACH_BB (bb)
1129 if (TEST_BIT (blocks_in, bb->index))
1131 *--qhead = bb;
1132 bb->aux = bb;
1135 else
1137 FOR_EACH_BB (bb)
1139 *--qhead = bb;
1140 bb->aux = bb;
1144 /* We clean aux when we remove the initially-enqueued bbs, but we
1145 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1146 unconditionally. */
1147 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1149 if (blocks_out)
1150 sbitmap_zero (blocks_out);
1152 /* We work through the queue until there are no more blocks. What
1153 is live at the end of this block is precisely the union of what
1154 is live at the beginning of all its successors. So, we set its
1155 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1156 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1157 this block by walking through the instructions in this block in
1158 reverse order and updating as we go. If that changed
1159 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1160 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1162 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1163 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1164 must either be live at the end of the block, or used within the
1165 block. In the latter case, it will certainly never disappear
1166 from GLOBAL_LIVE_AT_START. In the former case, the register
1167 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1168 for one of the successor blocks. By induction, that cannot
1169 occur. */
1170 while (qhead != qtail)
1172 int rescan, changed;
1173 basic_block bb;
1174 edge e;
1176 bb = *qhead++;
1177 if (qhead == qend)
1178 qhead = queue;
1179 bb->aux = NULL;
1181 /* Begin by propagating live_at_start from the successor blocks. */
1182 CLEAR_REG_SET (new_live_at_end);
1184 if (bb->succ)
1185 for (e = bb->succ; e; e = e->succ_next)
1187 basic_block sb = e->dest;
1189 /* Call-clobbered registers die across exception and
1190 call edges. */
1191 /* ??? Abnormal call edges ignored for the moment, as this gets
1192 confused by sibling call edges, which crashes reg-stack. */
1193 if (e->flags & EDGE_EH)
1195 bitmap_operation (tmp, sb->global_live_at_start,
1196 invalidated_by_call, BITMAP_AND_COMPL);
1197 IOR_REG_SET (new_live_at_end, tmp);
1199 else
1200 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1202 /* If a target saves one register in another (instead of on
1203 the stack) the save register will need to be live for EH. */
1204 if (e->flags & EDGE_EH)
1205 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1206 if (EH_USES (i))
1207 SET_REGNO_REG_SET (new_live_at_end, i);
1209 else
1211 /* This might be a noreturn function that throws. And
1212 even if it isn't, getting the unwind info right helps
1213 debugging. */
1214 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1215 if (EH_USES (i))
1216 SET_REGNO_REG_SET (new_live_at_end, i);
1219 /* The all-important stack pointer must always be live. */
1220 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1222 /* Before reload, there are a few registers that must be forced
1223 live everywhere -- which might not already be the case for
1224 blocks within infinite loops. */
1225 if (! reload_completed)
1227 /* Any reference to any pseudo before reload is a potential
1228 reference of the frame pointer. */
1229 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1231 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1232 /* Pseudos with argument area equivalences may require
1233 reloading via the argument pointer. */
1234 if (fixed_regs[ARG_POINTER_REGNUM])
1235 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1236 #endif
1238 /* Any constant, or pseudo with constant equivalences, may
1239 require reloading from memory using the pic register. */
1240 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1241 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1242 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1245 /* Regs used in phi nodes are not included in
1246 global_live_at_start, since they are live only along a
1247 particular edge. Set those regs that are live because of a
1248 phi node alternative corresponding to this particular block. */
1249 if (in_ssa_form)
1250 for_each_successor_phi (bb, &set_phi_alternative_reg,
1251 new_live_at_end);
1253 if (bb == ENTRY_BLOCK_PTR)
1255 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1256 continue;
1259 /* On our first pass through this block, we'll go ahead and continue.
1260 Recognize first pass by local_set NULL. On subsequent passes, we
1261 get to skip out early if live_at_end wouldn't have changed. */
1263 if (bb->local_set == NULL)
1265 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1266 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1267 rescan = 1;
1269 else
1271 /* If any bits were removed from live_at_end, we'll have to
1272 rescan the block. This wouldn't be necessary if we had
1273 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1274 local_live is really dependent on live_at_end. */
1275 CLEAR_REG_SET (tmp);
1276 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1277 new_live_at_end, BITMAP_AND_COMPL);
1279 if (! rescan)
1281 /* If any of the registers in the new live_at_end set are
1282 conditionally set in this basic block, we must rescan.
1283 This is because conditional lifetimes at the end of the
1284 block do not just take the live_at_end set into account,
1285 but also the liveness at the start of each successor
1286 block. We can miss changes in those sets if we only
1287 compare the new live_at_end against the previous one. */
1288 CLEAR_REG_SET (tmp);
1289 rescan = bitmap_operation (tmp, new_live_at_end,
1290 bb->cond_local_set, BITMAP_AND);
1293 if (! rescan)
1295 /* Find the set of changed bits. Take this opportunity
1296 to notice that this set is empty and early out. */
1297 CLEAR_REG_SET (tmp);
1298 changed = bitmap_operation (tmp, bb->global_live_at_end,
1299 new_live_at_end, BITMAP_XOR);
1300 if (! changed)
1301 continue;
1303 /* If any of the changed bits overlap with local_set,
1304 we'll have to rescan the block. Detect overlap by
1305 the AND with ~local_set turning off bits. */
1306 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1307 BITMAP_AND_COMPL);
1311 /* Let our caller know that BB changed enough to require its
1312 death notes updated. */
1313 if (blocks_out)
1314 SET_BIT (blocks_out, bb->index);
1316 if (! rescan)
1318 /* Add to live_at_start the set of all registers in
1319 new_live_at_end that aren't in the old live_at_end. */
1321 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1322 BITMAP_AND_COMPL);
1323 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1325 changed = bitmap_operation (bb->global_live_at_start,
1326 bb->global_live_at_start,
1327 tmp, BITMAP_IOR);
1328 if (! changed)
1329 continue;
1331 else
1333 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1335 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1336 into live_at_start. */
1337 propagate_block (bb, new_live_at_end, bb->local_set,
1338 bb->cond_local_set, flags);
1340 /* If live_at start didn't change, no need to go farther. */
1341 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1342 continue;
1344 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1347 /* Queue all predecessors of BB so that we may re-examine
1348 their live_at_end. */
1349 for (e = bb->pred; e; e = e->pred_next)
1351 basic_block pb = e->src;
1352 if (pb->aux == NULL)
1354 *qtail++ = pb;
1355 if (qtail == qend)
1356 qtail = queue;
1357 pb->aux = pb;
1362 FREE_REG_SET (tmp);
1363 FREE_REG_SET (new_live_at_end);
1364 FREE_REG_SET (invalidated_by_call);
1366 if (blocks_out)
1368 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1370 basic_block bb = BASIC_BLOCK (i);
1371 FREE_REG_SET (bb->local_set);
1372 FREE_REG_SET (bb->cond_local_set);
1375 else
1377 FOR_EACH_BB (bb)
1379 FREE_REG_SET (bb->local_set);
1380 FREE_REG_SET (bb->cond_local_set);
1384 free (queue);
1388 /* This structure is used to pass parameters to and from the
1389 the function find_regno_partial(). It is used to pass in the
1390 register number we are looking, as well as to return any rtx
1391 we find. */
1393 typedef struct {
1394 unsigned regno_to_find;
1395 rtx retval;
1396 } find_regno_partial_param;
1399 /* Find the rtx for the reg numbers specified in 'data' if it is
1400 part of an expression which only uses part of the register. Return
1401 it in the structure passed in. */
1402 static int
1403 find_regno_partial (ptr, data)
1404 rtx *ptr;
1405 void *data;
1407 find_regno_partial_param *param = (find_regno_partial_param *)data;
1408 unsigned reg = param->regno_to_find;
1409 param->retval = NULL_RTX;
1411 if (*ptr == NULL_RTX)
1412 return 0;
1414 switch (GET_CODE (*ptr))
1416 case ZERO_EXTRACT:
1417 case SIGN_EXTRACT:
1418 case STRICT_LOW_PART:
1419 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1421 param->retval = XEXP (*ptr, 0);
1422 return 1;
1424 break;
1426 case SUBREG:
1427 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1428 && REGNO (SUBREG_REG (*ptr)) == reg)
1430 param->retval = SUBREG_REG (*ptr);
1431 return 1;
1433 break;
1435 default:
1436 break;
1439 return 0;
1442 /* Process all immediate successors of the entry block looking for pseudo
1443 registers which are live on entry. Find all of those whose first
1444 instance is a partial register reference of some kind, and initialize
1445 them to 0 after the entry block. This will prevent bit sets within
1446 registers whose value is unknown, and may contain some kind of sticky
1447 bits we don't want. */
1450 initialize_uninitialized_subregs ()
1452 rtx insn;
1453 edge e;
1454 int reg, did_something = 0;
1455 find_regno_partial_param param;
1457 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1459 basic_block bb = e->dest;
1460 regset map = bb->global_live_at_start;
1461 EXECUTE_IF_SET_IN_REG_SET (map,
1462 FIRST_PSEUDO_REGISTER, reg,
1464 int uid = REGNO_FIRST_UID (reg);
1465 rtx i;
1467 /* Find an insn which mentions the register we are looking for.
1468 Its preferable to have an instance of the register's rtl since
1469 there may be various flags set which we need to duplicate.
1470 If we can't find it, its probably an automatic whose initial
1471 value doesn't matter, or hopefully something we don't care about. */
1472 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1474 if (i != NULL_RTX)
1476 /* Found the insn, now get the REG rtx, if we can. */
1477 param.regno_to_find = reg;
1478 for_each_rtx (&i, find_regno_partial, &param);
1479 if (param.retval != NULL_RTX)
1481 insn = gen_move_insn (param.retval,
1482 CONST0_RTX (GET_MODE (param.retval)));
1483 insert_insn_on_edge (insn, e);
1484 did_something = 1;
1490 if (did_something)
1491 commit_edge_insertions ();
1492 return did_something;
1496 /* Subroutines of life analysis. */
1498 /* Allocate the permanent data structures that represent the results
1499 of life analysis. Not static since used also for stupid life analysis. */
1501 void
1502 allocate_bb_life_data ()
1504 basic_block bb;
1506 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1508 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1509 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1512 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1515 void
1516 allocate_reg_life_data ()
1518 int i;
1520 max_regno = max_reg_num ();
1522 /* Recalculate the register space, in case it has grown. Old style
1523 vector oriented regsets would set regset_{size,bytes} here also. */
1524 allocate_reg_info (max_regno, FALSE, FALSE);
1526 /* Reset all the data we'll collect in propagate_block and its
1527 subroutines. */
1528 for (i = 0; i < max_regno; i++)
1530 REG_N_SETS (i) = 0;
1531 REG_N_REFS (i) = 0;
1532 REG_N_DEATHS (i) = 0;
1533 REG_N_CALLS_CROSSED (i) = 0;
1534 REG_LIVE_LENGTH (i) = 0;
1535 REG_FREQ (i) = 0;
1536 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1540 /* Delete dead instructions for propagate_block. */
1542 static void
1543 propagate_block_delete_insn (insn)
1544 rtx insn;
1546 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1548 /* If the insn referred to a label, and that label was attached to
1549 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1550 pretty much mandatory to delete it, because the ADDR_VEC may be
1551 referencing labels that no longer exist.
1553 INSN may reference a deleted label, particularly when a jump
1554 table has been optimized into a direct jump. There's no
1555 real good way to fix up the reference to the deleted label
1556 when the label is deleted, so we just allow it here. */
1558 if (inote && GET_CODE (inote) == CODE_LABEL)
1560 rtx label = XEXP (inote, 0);
1561 rtx next;
1563 /* The label may be forced if it has been put in the constant
1564 pool. If that is the only use we must discard the table
1565 jump following it, but not the label itself. */
1566 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1567 && (next = next_nonnote_insn (label)) != NULL
1568 && GET_CODE (next) == JUMP_INSN
1569 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1570 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1572 rtx pat = PATTERN (next);
1573 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1574 int len = XVECLEN (pat, diff_vec_p);
1575 int i;
1577 for (i = 0; i < len; i++)
1578 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1580 delete_insn_and_edges (next);
1581 ndead++;
1585 delete_insn_and_edges (insn);
1586 ndead++;
1589 /* Delete dead libcalls for propagate_block. Return the insn
1590 before the libcall. */
1592 static rtx
1593 propagate_block_delete_libcall ( insn, note)
1594 rtx insn, note;
1596 rtx first = XEXP (note, 0);
1597 rtx before = PREV_INSN (first);
1599 delete_insn_chain_and_edges (first, insn);
1600 ndead++;
1601 return before;
1604 /* Update the life-status of regs for one insn. Return the previous insn. */
1607 propagate_one_insn (pbi, insn)
1608 struct propagate_block_info *pbi;
1609 rtx insn;
1611 rtx prev = PREV_INSN (insn);
1612 int flags = pbi->flags;
1613 int insn_is_dead = 0;
1614 int libcall_is_dead = 0;
1615 rtx note;
1616 int i;
1618 if (! INSN_P (insn))
1619 return prev;
1621 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1622 if (flags & PROP_SCAN_DEAD_CODE)
1624 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1625 libcall_is_dead = (insn_is_dead && note != 0
1626 && libcall_dead_p (pbi, note, insn));
1629 /* If an instruction consists of just dead store(s) on final pass,
1630 delete it. */
1631 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1633 /* If we're trying to delete a prologue or epilogue instruction
1634 that isn't flagged as possibly being dead, something is wrong.
1635 But if we are keeping the stack pointer depressed, we might well
1636 be deleting insns that are used to compute the amount to update
1637 it by, so they are fine. */
1638 if (reload_completed
1639 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1640 && (TYPE_RETURNS_STACK_DEPRESSED
1641 (TREE_TYPE (current_function_decl))))
1642 && (((HAVE_epilogue || HAVE_prologue)
1643 && prologue_epilogue_contains (insn))
1644 || (HAVE_sibcall_epilogue
1645 && sibcall_epilogue_contains (insn)))
1646 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1647 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1649 /* Record sets. Do this even for dead instructions, since they
1650 would have killed the values if they hadn't been deleted. */
1651 mark_set_regs (pbi, PATTERN (insn), insn);
1653 /* CC0 is now known to be dead. Either this insn used it,
1654 in which case it doesn't anymore, or clobbered it,
1655 so the next insn can't use it. */
1656 pbi->cc0_live = 0;
1658 if (libcall_is_dead)
1659 prev = propagate_block_delete_libcall ( insn, note);
1660 else
1663 /* If INSN contains a RETVAL note and is dead, but the libcall
1664 as a whole is not dead, then we want to remove INSN, but
1665 not the whole libcall sequence.
1667 However, we need to also remove the dangling REG_LIBCALL
1668 note so that we do not have mis-matched LIBCALL/RETVAL
1669 notes. In theory we could find a new location for the
1670 REG_RETVAL note, but it hardly seems worth the effort.
1672 NOTE at this point will be the RETVAL note if it exists. */
1673 if (note)
1675 rtx libcall_note;
1677 libcall_note
1678 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1679 remove_note (XEXP (note, 0), libcall_note);
1682 /* Similarly if INSN contains a LIBCALL note, remove the
1683 dangling REG_RETVAL note. */
1684 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1685 if (note)
1687 rtx retval_note;
1689 retval_note
1690 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1691 remove_note (XEXP (note, 0), retval_note);
1694 /* Now delete INSN. */
1695 propagate_block_delete_insn (insn);
1698 return prev;
1701 /* See if this is an increment or decrement that can be merged into
1702 a following memory address. */
1703 #ifdef AUTO_INC_DEC
1705 rtx x = single_set (insn);
1707 /* Does this instruction increment or decrement a register? */
1708 if ((flags & PROP_AUTOINC)
1709 && x != 0
1710 && GET_CODE (SET_DEST (x)) == REG
1711 && (GET_CODE (SET_SRC (x)) == PLUS
1712 || GET_CODE (SET_SRC (x)) == MINUS)
1713 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1714 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1715 /* Ok, look for a following memory ref we can combine with.
1716 If one is found, change the memory ref to a PRE_INC
1717 or PRE_DEC, cancel this insn, and return 1.
1718 Return 0 if nothing has been done. */
1719 && try_pre_increment_1 (pbi, insn))
1720 return prev;
1722 #endif /* AUTO_INC_DEC */
1724 CLEAR_REG_SET (pbi->new_set);
1726 /* If this is not the final pass, and this insn is copying the value of
1727 a library call and it's dead, don't scan the insns that perform the
1728 library call, so that the call's arguments are not marked live. */
1729 if (libcall_is_dead)
1731 /* Record the death of the dest reg. */
1732 mark_set_regs (pbi, PATTERN (insn), insn);
1734 insn = XEXP (note, 0);
1735 return PREV_INSN (insn);
1737 else if (GET_CODE (PATTERN (insn)) == SET
1738 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1739 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1740 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1741 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1742 /* We have an insn to pop a constant amount off the stack.
1743 (Such insns use PLUS regardless of the direction of the stack,
1744 and any insn to adjust the stack by a constant is always a pop.)
1745 These insns, if not dead stores, have no effect on life, though
1746 they do have an effect on the memory stores we are tracking. */
1747 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1748 else
1750 rtx note;
1751 /* Any regs live at the time of a call instruction must not go
1752 in a register clobbered by calls. Find all regs now live and
1753 record this for them. */
1755 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1756 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1757 { REG_N_CALLS_CROSSED (i)++; });
1759 /* Record sets. Do this even for dead instructions, since they
1760 would have killed the values if they hadn't been deleted. */
1761 mark_set_regs (pbi, PATTERN (insn), insn);
1763 if (GET_CODE (insn) == CALL_INSN)
1765 int i;
1766 rtx note, cond;
1768 cond = NULL_RTX;
1769 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1770 cond = COND_EXEC_TEST (PATTERN (insn));
1772 /* Non-constant calls clobber memory, constant calls do not
1773 clobber memory, though they may clobber outgoing arguments
1774 on the stack. */
1775 if (! CONST_OR_PURE_CALL_P (insn))
1777 free_EXPR_LIST_list (&pbi->mem_set_list);
1778 pbi->mem_set_list_len = 0;
1780 else
1781 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1783 /* There may be extra registers to be clobbered. */
1784 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1785 note;
1786 note = XEXP (note, 1))
1787 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1788 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1789 cond, insn, pbi->flags);
1791 /* Calls change all call-used and global registers. */
1792 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1793 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1795 /* We do not want REG_UNUSED notes for these registers. */
1796 mark_set_1 (pbi, CLOBBER, regno_reg_rtx[i], cond, insn,
1797 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1801 /* If an insn doesn't use CC0, it becomes dead since we assume
1802 that every insn clobbers it. So show it dead here;
1803 mark_used_regs will set it live if it is referenced. */
1804 pbi->cc0_live = 0;
1806 /* Record uses. */
1807 if (! insn_is_dead)
1808 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1809 if ((flags & PROP_EQUAL_NOTES)
1810 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1811 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1812 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1814 /* Sometimes we may have inserted something before INSN (such as a move)
1815 when we make an auto-inc. So ensure we will scan those insns. */
1816 #ifdef AUTO_INC_DEC
1817 prev = PREV_INSN (insn);
1818 #endif
1820 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1822 int i;
1823 rtx note, cond;
1825 cond = NULL_RTX;
1826 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1827 cond = COND_EXEC_TEST (PATTERN (insn));
1829 /* Calls use their arguments. */
1830 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1831 note;
1832 note = XEXP (note, 1))
1833 if (GET_CODE (XEXP (note, 0)) == USE)
1834 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
1835 cond, insn);
1837 /* The stack ptr is used (honorarily) by a CALL insn. */
1838 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1840 /* Calls may also reference any of the global registers,
1841 so they are made live. */
1842 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1843 if (global_regs[i])
1844 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1848 /* On final pass, update counts of how many insns in which each reg
1849 is live. */
1850 if (flags & PROP_REG_INFO)
1851 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1852 { REG_LIVE_LENGTH (i)++; });
1854 return prev;
1857 /* Initialize a propagate_block_info struct for public consumption.
1858 Note that the structure itself is opaque to this file, but that
1859 the user can use the regsets provided here. */
1861 struct propagate_block_info *
1862 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
1863 basic_block bb;
1864 regset live, local_set, cond_local_set;
1865 int flags;
1867 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1869 pbi->bb = bb;
1870 pbi->reg_live = live;
1871 pbi->mem_set_list = NULL_RTX;
1872 pbi->mem_set_list_len = 0;
1873 pbi->local_set = local_set;
1874 pbi->cond_local_set = cond_local_set;
1875 pbi->cc0_live = 0;
1876 pbi->flags = flags;
1878 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1879 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
1880 else
1881 pbi->reg_next_use = NULL;
1883 pbi->new_set = BITMAP_XMALLOC ();
1885 #ifdef HAVE_conditional_execution
1886 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1887 free_reg_cond_life_info);
1888 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1890 /* If this block ends in a conditional branch, for each register live
1891 from one side of the branch and not the other, record the register
1892 as conditionally dead. */
1893 if (GET_CODE (bb->end) == JUMP_INSN
1894 && any_condjump_p (bb->end))
1896 regset_head diff_head;
1897 regset diff = INITIALIZE_REG_SET (diff_head);
1898 basic_block bb_true, bb_false;
1899 rtx cond_true, cond_false, set_src;
1900 int i;
1902 /* Identify the successor blocks. */
1903 bb_true = bb->succ->dest;
1904 if (bb->succ->succ_next != NULL)
1906 bb_false = bb->succ->succ_next->dest;
1908 if (bb->succ->flags & EDGE_FALLTHRU)
1910 basic_block t = bb_false;
1911 bb_false = bb_true;
1912 bb_true = t;
1914 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1915 abort ();
1917 else
1919 /* This can happen with a conditional jump to the next insn. */
1920 if (JUMP_LABEL (bb->end) != bb_true->head)
1921 abort ();
1923 /* Simplest way to do nothing. */
1924 bb_false = bb_true;
1927 /* Extract the condition from the branch. */
1928 set_src = SET_SRC (pc_set (bb->end));
1929 cond_true = XEXP (set_src, 0);
1930 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1931 GET_MODE (cond_true), XEXP (cond_true, 0),
1932 XEXP (cond_true, 1));
1933 if (GET_CODE (XEXP (set_src, 1)) == PC)
1935 rtx t = cond_false;
1936 cond_false = cond_true;
1937 cond_true = t;
1940 /* Compute which register lead different lives in the successors. */
1941 if (bitmap_operation (diff, bb_true->global_live_at_start,
1942 bb_false->global_live_at_start, BITMAP_XOR))
1944 rtx reg = XEXP (cond_true, 0);
1946 if (GET_CODE (reg) == SUBREG)
1947 reg = SUBREG_REG (reg);
1949 if (GET_CODE (reg) != REG)
1950 abort ();
1952 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1954 /* For each such register, mark it conditionally dead. */
1955 EXECUTE_IF_SET_IN_REG_SET
1956 (diff, 0, i,
1958 struct reg_cond_life_info *rcli;
1959 rtx cond;
1961 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
1963 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1964 cond = cond_false;
1965 else
1966 cond = cond_true;
1967 rcli->condition = cond;
1968 rcli->stores = const0_rtx;
1969 rcli->orig_condition = cond;
1971 splay_tree_insert (pbi->reg_cond_dead, i,
1972 (splay_tree_value) rcli);
1976 FREE_REG_SET (diff);
1978 #endif
1980 /* If this block has no successors, any stores to the frame that aren't
1981 used later in the block are dead. So make a pass over the block
1982 recording any such that are made and show them dead at the end. We do
1983 a very conservative and simple job here. */
1984 if (optimize
1985 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1986 && (TYPE_RETURNS_STACK_DEPRESSED
1987 (TREE_TYPE (current_function_decl))))
1988 && (flags & PROP_SCAN_DEAD_STORES)
1989 && (bb->succ == NULL
1990 || (bb->succ->succ_next == NULL
1991 && bb->succ->dest == EXIT_BLOCK_PTR
1992 && ! current_function_calls_eh_return)))
1994 rtx insn, set;
1995 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
1996 if (GET_CODE (insn) == INSN
1997 && (set = single_set (insn))
1998 && GET_CODE (SET_DEST (set)) == MEM)
2000 rtx mem = SET_DEST (set);
2001 rtx canon_mem = canon_rtx (mem);
2003 /* This optimization is performed by faking a store to the
2004 memory at the end of the block. This doesn't work for
2005 unchanging memories because multiple stores to unchanging
2006 memory is illegal and alias analysis doesn't consider it. */
2007 if (RTX_UNCHANGING_P (canon_mem))
2008 continue;
2010 if (XEXP (canon_mem, 0) == frame_pointer_rtx
2011 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
2012 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
2013 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
2014 add_to_mem_set_list (pbi, canon_mem);
2018 return pbi;
2021 /* Release a propagate_block_info struct. */
2023 void
2024 free_propagate_block_info (pbi)
2025 struct propagate_block_info *pbi;
2027 free_EXPR_LIST_list (&pbi->mem_set_list);
2029 BITMAP_XFREE (pbi->new_set);
2031 #ifdef HAVE_conditional_execution
2032 splay_tree_delete (pbi->reg_cond_dead);
2033 BITMAP_XFREE (pbi->reg_cond_reg);
2034 #endif
2036 if (pbi->reg_next_use)
2037 free (pbi->reg_next_use);
2039 free (pbi);
2042 /* Compute the registers live at the beginning of a basic block BB from
2043 those live at the end.
2045 When called, REG_LIVE contains those live at the end. On return, it
2046 contains those live at the beginning.
2048 LOCAL_SET, if non-null, will be set with all registers killed
2049 unconditionally by this basic block.
2050 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2051 killed conditionally by this basic block. If there is any unconditional
2052 set of a register, then the corresponding bit will be set in LOCAL_SET
2053 and cleared in COND_LOCAL_SET.
2054 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2055 case, the resulting set will be equal to the union of the two sets that
2056 would otherwise be computed.
2058 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2061 propagate_block (bb, live, local_set, cond_local_set, flags)
2062 basic_block bb;
2063 regset live;
2064 regset local_set;
2065 regset cond_local_set;
2066 int flags;
2068 struct propagate_block_info *pbi;
2069 rtx insn, prev;
2070 int changed;
2072 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2074 if (flags & PROP_REG_INFO)
2076 int i;
2078 /* Process the regs live at the end of the block.
2079 Mark them as not local to any one basic block. */
2080 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2081 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2084 /* Scan the block an insn at a time from end to beginning. */
2086 changed = 0;
2087 for (insn = bb->end;; insn = prev)
2089 /* If this is a call to `setjmp' et al, warn if any
2090 non-volatile datum is live. */
2091 if ((flags & PROP_REG_INFO)
2092 && GET_CODE (insn) == CALL_INSN
2093 && find_reg_note (insn, REG_SETJMP, NULL))
2094 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2096 prev = propagate_one_insn (pbi, insn);
2097 changed |= NEXT_INSN (prev) != insn;
2099 if (insn == bb->head)
2100 break;
2103 free_propagate_block_info (pbi);
2105 return changed;
2108 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2109 (SET expressions whose destinations are registers dead after the insn).
2110 NEEDED is the regset that says which regs are alive after the insn.
2112 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2114 If X is the entire body of an insn, NOTES contains the reg notes
2115 pertaining to the insn. */
2117 static int
2118 insn_dead_p (pbi, x, call_ok, notes)
2119 struct propagate_block_info *pbi;
2120 rtx x;
2121 int call_ok;
2122 rtx notes ATTRIBUTE_UNUSED;
2124 enum rtx_code code = GET_CODE (x);
2126 /* Don't eliminate insns that may trap. */
2127 if (flag_non_call_exceptions && may_trap_p (x))
2128 return 0;
2130 #ifdef AUTO_INC_DEC
2131 /* As flow is invoked after combine, we must take existing AUTO_INC
2132 expressions into account. */
2133 for (; notes; notes = XEXP (notes, 1))
2135 if (REG_NOTE_KIND (notes) == REG_INC)
2137 int regno = REGNO (XEXP (notes, 0));
2139 /* Don't delete insns to set global regs. */
2140 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2141 || REGNO_REG_SET_P (pbi->reg_live, regno))
2142 return 0;
2145 #endif
2147 /* If setting something that's a reg or part of one,
2148 see if that register's altered value will be live. */
2150 if (code == SET)
2152 rtx r = SET_DEST (x);
2154 #ifdef HAVE_cc0
2155 if (GET_CODE (r) == CC0)
2156 return ! pbi->cc0_live;
2157 #endif
2159 /* A SET that is a subroutine call cannot be dead. */
2160 if (GET_CODE (SET_SRC (x)) == CALL)
2162 if (! call_ok)
2163 return 0;
2166 /* Don't eliminate loads from volatile memory or volatile asms. */
2167 else if (volatile_refs_p (SET_SRC (x)))
2168 return 0;
2170 if (GET_CODE (r) == MEM)
2172 rtx temp, canon_r;
2174 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2175 return 0;
2177 canon_r = canon_rtx (r);
2179 /* Walk the set of memory locations we are currently tracking
2180 and see if one is an identical match to this memory location.
2181 If so, this memory write is dead (remember, we're walking
2182 backwards from the end of the block to the start). Since
2183 rtx_equal_p does not check the alias set or flags, we also
2184 must have the potential for them to conflict (anti_dependence). */
2185 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2186 if (anti_dependence (r, XEXP (temp, 0)))
2188 rtx mem = XEXP (temp, 0);
2190 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2191 && (GET_MODE_SIZE (GET_MODE (canon_r))
2192 <= GET_MODE_SIZE (GET_MODE (mem))))
2193 return 1;
2195 #ifdef AUTO_INC_DEC
2196 /* Check if memory reference matches an auto increment. Only
2197 post increment/decrement or modify are valid. */
2198 if (GET_MODE (mem) == GET_MODE (r)
2199 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2200 || GET_CODE (XEXP (mem, 0)) == POST_INC
2201 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2202 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2203 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2204 return 1;
2205 #endif
2208 else
2210 while (GET_CODE (r) == SUBREG
2211 || GET_CODE (r) == STRICT_LOW_PART
2212 || GET_CODE (r) == ZERO_EXTRACT)
2213 r = XEXP (r, 0);
2215 if (GET_CODE (r) == REG)
2217 int regno = REGNO (r);
2219 /* Obvious. */
2220 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2221 return 0;
2223 /* If this is a hard register, verify that subsequent
2224 words are not needed. */
2225 if (regno < FIRST_PSEUDO_REGISTER)
2227 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2229 while (--n > 0)
2230 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2231 return 0;
2234 /* Don't delete insns to set global regs. */
2235 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2236 return 0;
2238 /* Make sure insns to set the stack pointer aren't deleted. */
2239 if (regno == STACK_POINTER_REGNUM)
2240 return 0;
2242 /* ??? These bits might be redundant with the force live bits
2243 in calculate_global_regs_live. We would delete from
2244 sequential sets; whether this actually affects real code
2245 for anything but the stack pointer I don't know. */
2246 /* Make sure insns to set the frame pointer aren't deleted. */
2247 if (regno == FRAME_POINTER_REGNUM
2248 && (! reload_completed || frame_pointer_needed))
2249 return 0;
2250 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2251 if (regno == HARD_FRAME_POINTER_REGNUM
2252 && (! reload_completed || frame_pointer_needed))
2253 return 0;
2254 #endif
2256 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2257 /* Make sure insns to set arg pointer are never deleted
2258 (if the arg pointer isn't fixed, there will be a USE
2259 for it, so we can treat it normally). */
2260 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2261 return 0;
2262 #endif
2264 /* Otherwise, the set is dead. */
2265 return 1;
2270 /* If performing several activities, insn is dead if each activity
2271 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2272 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2273 worth keeping. */
2274 else if (code == PARALLEL)
2276 int i = XVECLEN (x, 0);
2278 for (i--; i >= 0; i--)
2279 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2280 && GET_CODE (XVECEXP (x, 0, i)) != USE
2281 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2282 return 0;
2284 return 1;
2287 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2288 is not necessarily true for hard registers. */
2289 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2290 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2291 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2292 return 1;
2294 /* We do not check other CLOBBER or USE here. An insn consisting of just
2295 a CLOBBER or just a USE should not be deleted. */
2296 return 0;
2299 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2300 return 1 if the entire library call is dead.
2301 This is true if INSN copies a register (hard or pseudo)
2302 and if the hard return reg of the call insn is dead.
2303 (The caller should have tested the destination of the SET inside
2304 INSN already for death.)
2306 If this insn doesn't just copy a register, then we don't
2307 have an ordinary libcall. In that case, cse could not have
2308 managed to substitute the source for the dest later on,
2309 so we can assume the libcall is dead.
2311 PBI is the block info giving pseudoregs live before this insn.
2312 NOTE is the REG_RETVAL note of the insn. */
2314 static int
2315 libcall_dead_p (pbi, note, insn)
2316 struct propagate_block_info *pbi;
2317 rtx note;
2318 rtx insn;
2320 rtx x = single_set (insn);
2322 if (x)
2324 rtx r = SET_SRC (x);
2326 if (GET_CODE (r) == REG)
2328 rtx call = XEXP (note, 0);
2329 rtx call_pat;
2330 int i;
2332 /* Find the call insn. */
2333 while (call != insn && GET_CODE (call) != CALL_INSN)
2334 call = NEXT_INSN (call);
2336 /* If there is none, do nothing special,
2337 since ordinary death handling can understand these insns. */
2338 if (call == insn)
2339 return 0;
2341 /* See if the hard reg holding the value is dead.
2342 If this is a PARALLEL, find the call within it. */
2343 call_pat = PATTERN (call);
2344 if (GET_CODE (call_pat) == PARALLEL)
2346 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2347 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2348 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2349 break;
2351 /* This may be a library call that is returning a value
2352 via invisible pointer. Do nothing special, since
2353 ordinary death handling can understand these insns. */
2354 if (i < 0)
2355 return 0;
2357 call_pat = XVECEXP (call_pat, 0, i);
2360 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2363 return 1;
2366 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2367 live at function entry. Don't count global register variables, variables
2368 in registers that can be used for function arg passing, or variables in
2369 fixed hard registers. */
2372 regno_uninitialized (regno)
2373 unsigned int regno;
2375 if (n_basic_blocks == 0
2376 || (regno < FIRST_PSEUDO_REGISTER
2377 && (global_regs[regno]
2378 || fixed_regs[regno]
2379 || FUNCTION_ARG_REGNO_P (regno))))
2380 return 0;
2382 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno);
2385 /* 1 if register REGNO was alive at a place where `setjmp' was called
2386 and was set more than once or is an argument.
2387 Such regs may be clobbered by `longjmp'. */
2390 regno_clobbered_at_setjmp (regno)
2391 int regno;
2393 if (n_basic_blocks == 0)
2394 return 0;
2396 return ((REG_N_SETS (regno) > 1
2397 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno))
2398 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2401 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2402 maximal list size; look for overlaps in mode and select the largest. */
2403 static void
2404 add_to_mem_set_list (pbi, mem)
2405 struct propagate_block_info *pbi;
2406 rtx mem;
2408 rtx i;
2410 /* We don't know how large a BLKmode store is, so we must not
2411 take them into consideration. */
2412 if (GET_MODE (mem) == BLKmode)
2413 return;
2415 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2417 rtx e = XEXP (i, 0);
2418 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2420 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2422 #ifdef AUTO_INC_DEC
2423 /* If we must store a copy of the mem, we can just modify
2424 the mode of the stored copy. */
2425 if (pbi->flags & PROP_AUTOINC)
2426 PUT_MODE (e, GET_MODE (mem));
2427 else
2428 #endif
2429 XEXP (i, 0) = mem;
2431 return;
2435 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2437 #ifdef AUTO_INC_DEC
2438 /* Store a copy of mem, otherwise the address may be
2439 scrogged by find_auto_inc. */
2440 if (pbi->flags & PROP_AUTOINC)
2441 mem = shallow_copy_rtx (mem);
2442 #endif
2443 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2444 pbi->mem_set_list_len++;
2448 /* INSN references memory, possibly using autoincrement addressing modes.
2449 Find any entries on the mem_set_list that need to be invalidated due
2450 to an address change. */
2452 static int
2453 invalidate_mems_from_autoinc (px, data)
2454 rtx *px;
2455 void *data;
2457 rtx x = *px;
2458 struct propagate_block_info *pbi = data;
2460 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
2462 invalidate_mems_from_set (pbi, XEXP (x, 0));
2463 return -1;
2466 return 0;
2469 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2471 static void
2472 invalidate_mems_from_set (pbi, exp)
2473 struct propagate_block_info *pbi;
2474 rtx exp;
2476 rtx temp = pbi->mem_set_list;
2477 rtx prev = NULL_RTX;
2478 rtx next;
2480 while (temp)
2482 next = XEXP (temp, 1);
2483 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2485 /* Splice this entry out of the list. */
2486 if (prev)
2487 XEXP (prev, 1) = next;
2488 else
2489 pbi->mem_set_list = next;
2490 free_EXPR_LIST_node (temp);
2491 pbi->mem_set_list_len--;
2493 else
2494 prev = temp;
2495 temp = next;
2499 /* Process the registers that are set within X. Their bits are set to
2500 1 in the regset DEAD, because they are dead prior to this insn.
2502 If INSN is nonzero, it is the insn being processed.
2504 FLAGS is the set of operations to perform. */
2506 static void
2507 mark_set_regs (pbi, x, insn)
2508 struct propagate_block_info *pbi;
2509 rtx x, insn;
2511 rtx cond = NULL_RTX;
2512 rtx link;
2513 enum rtx_code code;
2515 if (insn)
2516 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2518 if (REG_NOTE_KIND (link) == REG_INC)
2519 mark_set_1 (pbi, SET, XEXP (link, 0),
2520 (GET_CODE (x) == COND_EXEC
2521 ? COND_EXEC_TEST (x) : NULL_RTX),
2522 insn, pbi->flags);
2524 retry:
2525 switch (code = GET_CODE (x))
2527 case SET:
2528 case CLOBBER:
2529 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2530 return;
2532 case COND_EXEC:
2533 cond = COND_EXEC_TEST (x);
2534 x = COND_EXEC_CODE (x);
2535 goto retry;
2537 case PARALLEL:
2539 int i;
2541 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2543 rtx sub = XVECEXP (x, 0, i);
2544 switch (code = GET_CODE (sub))
2546 case COND_EXEC:
2547 if (cond != NULL_RTX)
2548 abort ();
2550 cond = COND_EXEC_TEST (sub);
2551 sub = COND_EXEC_CODE (sub);
2552 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2553 break;
2554 /* Fall through. */
2556 case SET:
2557 case CLOBBER:
2558 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2559 break;
2561 default:
2562 break;
2565 break;
2568 default:
2569 break;
2573 /* Process a single set, which appears in INSN. REG (which may not
2574 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2575 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2576 If the set is conditional (because it appear in a COND_EXEC), COND
2577 will be the condition. */
2579 static void
2580 mark_set_1 (pbi, code, reg, cond, insn, flags)
2581 struct propagate_block_info *pbi;
2582 enum rtx_code code;
2583 rtx reg, cond, insn;
2584 int flags;
2586 int regno_first = -1, regno_last = -1;
2587 unsigned long not_dead = 0;
2588 int i;
2590 /* Modifying just one hardware register of a multi-reg value or just a
2591 byte field of a register does not mean the value from before this insn
2592 is now dead. Of course, if it was dead after it's unused now. */
2594 switch (GET_CODE (reg))
2596 case PARALLEL:
2597 /* Some targets place small structures in registers for return values of
2598 functions. We have to detect this case specially here to get correct
2599 flow information. */
2600 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2601 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2602 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2603 flags);
2604 return;
2606 case ZERO_EXTRACT:
2607 case SIGN_EXTRACT:
2608 case STRICT_LOW_PART:
2609 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2611 reg = XEXP (reg, 0);
2612 while (GET_CODE (reg) == SUBREG
2613 || GET_CODE (reg) == ZERO_EXTRACT
2614 || GET_CODE (reg) == SIGN_EXTRACT
2615 || GET_CODE (reg) == STRICT_LOW_PART);
2616 if (GET_CODE (reg) == MEM)
2617 break;
2618 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2619 /* Fall through. */
2621 case REG:
2622 regno_last = regno_first = REGNO (reg);
2623 if (regno_first < FIRST_PSEUDO_REGISTER)
2624 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2625 break;
2627 case SUBREG:
2628 if (GET_CODE (SUBREG_REG (reg)) == REG)
2630 enum machine_mode outer_mode = GET_MODE (reg);
2631 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2633 /* Identify the range of registers affected. This is moderately
2634 tricky for hard registers. See alter_subreg. */
2636 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2637 if (regno_first < FIRST_PSEUDO_REGISTER)
2639 regno_first += subreg_regno_offset (regno_first, inner_mode,
2640 SUBREG_BYTE (reg),
2641 outer_mode);
2642 regno_last = (regno_first
2643 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2645 /* Since we've just adjusted the register number ranges, make
2646 sure REG matches. Otherwise some_was_live will be clear
2647 when it shouldn't have been, and we'll create incorrect
2648 REG_UNUSED notes. */
2649 reg = gen_rtx_REG (outer_mode, regno_first);
2651 else
2653 /* If the number of words in the subreg is less than the number
2654 of words in the full register, we have a well-defined partial
2655 set. Otherwise the high bits are undefined.
2657 This is only really applicable to pseudos, since we just took
2658 care of multi-word hard registers. */
2659 if (((GET_MODE_SIZE (outer_mode)
2660 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2661 < ((GET_MODE_SIZE (inner_mode)
2662 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2663 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2664 regno_first);
2666 reg = SUBREG_REG (reg);
2669 else
2670 reg = SUBREG_REG (reg);
2671 break;
2673 default:
2674 break;
2677 /* If this set is a MEM, then it kills any aliased writes.
2678 If this set is a REG, then it kills any MEMs which use the reg. */
2679 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2681 if (GET_CODE (reg) == REG)
2682 invalidate_mems_from_set (pbi, reg);
2684 /* If the memory reference had embedded side effects (autoincrement
2685 address modes. Then we may need to kill some entries on the
2686 memory set list. */
2687 if (insn && GET_CODE (reg) == MEM)
2688 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2690 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2691 /* ??? With more effort we could track conditional memory life. */
2692 && ! cond)
2693 add_to_mem_set_list (pbi, canon_rtx (reg));
2696 if (GET_CODE (reg) == REG
2697 && ! (regno_first == FRAME_POINTER_REGNUM
2698 && (! reload_completed || frame_pointer_needed))
2699 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2700 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2701 && (! reload_completed || frame_pointer_needed))
2702 #endif
2703 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2704 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2705 #endif
2708 int some_was_live = 0, some_was_dead = 0;
2710 for (i = regno_first; i <= regno_last; ++i)
2712 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2713 if (pbi->local_set)
2715 /* Order of the set operation matters here since both
2716 sets may be the same. */
2717 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2718 if (cond != NULL_RTX
2719 && ! REGNO_REG_SET_P (pbi->local_set, i))
2720 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2721 else
2722 SET_REGNO_REG_SET (pbi->local_set, i);
2724 if (code != CLOBBER)
2725 SET_REGNO_REG_SET (pbi->new_set, i);
2727 some_was_live |= needed_regno;
2728 some_was_dead |= ! needed_regno;
2731 #ifdef HAVE_conditional_execution
2732 /* Consider conditional death in deciding that the register needs
2733 a death note. */
2734 if (some_was_live && ! not_dead
2735 /* The stack pointer is never dead. Well, not strictly true,
2736 but it's very difficult to tell from here. Hopefully
2737 combine_stack_adjustments will fix up the most egregious
2738 errors. */
2739 && regno_first != STACK_POINTER_REGNUM)
2741 for (i = regno_first; i <= regno_last; ++i)
2742 if (! mark_regno_cond_dead (pbi, i, cond))
2743 not_dead |= ((unsigned long) 1) << (i - regno_first);
2745 #endif
2747 /* Additional data to record if this is the final pass. */
2748 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2749 | PROP_DEATH_NOTES | PROP_AUTOINC))
2751 rtx y;
2752 int blocknum = pbi->bb->index;
2754 y = NULL_RTX;
2755 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2757 y = pbi->reg_next_use[regno_first];
2759 /* The next use is no longer next, since a store intervenes. */
2760 for (i = regno_first; i <= regno_last; ++i)
2761 pbi->reg_next_use[i] = 0;
2764 if (flags & PROP_REG_INFO)
2766 for (i = regno_first; i <= regno_last; ++i)
2768 /* Count (weighted) references, stores, etc. This counts a
2769 register twice if it is modified, but that is correct. */
2770 REG_N_SETS (i) += 1;
2771 REG_N_REFS (i) += 1;
2772 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2774 /* The insns where a reg is live are normally counted
2775 elsewhere, but we want the count to include the insn
2776 where the reg is set, and the normal counting mechanism
2777 would not count it. */
2778 REG_LIVE_LENGTH (i) += 1;
2781 /* If this is a hard reg, record this function uses the reg. */
2782 if (regno_first < FIRST_PSEUDO_REGISTER)
2784 for (i = regno_first; i <= regno_last; i++)
2785 regs_ever_live[i] = 1;
2787 else
2789 /* Keep track of which basic blocks each reg appears in. */
2790 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2791 REG_BASIC_BLOCK (regno_first) = blocknum;
2792 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2793 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2797 if (! some_was_dead)
2799 if (flags & PROP_LOG_LINKS)
2801 /* Make a logical link from the next following insn
2802 that uses this register, back to this insn.
2803 The following insns have already been processed.
2805 We don't build a LOG_LINK for hard registers containing
2806 in ASM_OPERANDs. If these registers get replaced,
2807 we might wind up changing the semantics of the insn,
2808 even if reload can make what appear to be valid
2809 assignments later. */
2810 if (y && (BLOCK_NUM (y) == blocknum)
2811 && (regno_first >= FIRST_PSEUDO_REGISTER
2812 || asm_noperands (PATTERN (y)) < 0))
2813 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2816 else if (not_dead)
2818 else if (! some_was_live)
2820 if (flags & PROP_REG_INFO)
2821 REG_N_DEATHS (regno_first) += 1;
2823 if (flags & PROP_DEATH_NOTES)
2825 /* Note that dead stores have already been deleted
2826 when possible. If we get here, we have found a
2827 dead store that cannot be eliminated (because the
2828 same insn does something useful). Indicate this
2829 by marking the reg being set as dying here. */
2830 REG_NOTES (insn)
2831 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2834 else
2836 if (flags & PROP_DEATH_NOTES)
2838 /* This is a case where we have a multi-word hard register
2839 and some, but not all, of the words of the register are
2840 needed in subsequent insns. Write REG_UNUSED notes
2841 for those parts that were not needed. This case should
2842 be rare. */
2844 for (i = regno_first; i <= regno_last; ++i)
2845 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2846 REG_NOTES (insn)
2847 = alloc_EXPR_LIST (REG_UNUSED,
2848 regno_reg_rtx[i],
2849 REG_NOTES (insn));
2854 /* Mark the register as being dead. */
2855 if (some_was_live
2856 /* The stack pointer is never dead. Well, not strictly true,
2857 but it's very difficult to tell from here. Hopefully
2858 combine_stack_adjustments will fix up the most egregious
2859 errors. */
2860 && regno_first != STACK_POINTER_REGNUM)
2862 for (i = regno_first; i <= regno_last; ++i)
2863 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2864 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2867 else if (GET_CODE (reg) == REG)
2869 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2870 pbi->reg_next_use[regno_first] = 0;
2873 /* If this is the last pass and this is a SCRATCH, show it will be dying
2874 here and count it. */
2875 else if (GET_CODE (reg) == SCRATCH)
2877 if (flags & PROP_DEATH_NOTES)
2878 REG_NOTES (insn)
2879 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2883 #ifdef HAVE_conditional_execution
2884 /* Mark REGNO conditionally dead.
2885 Return true if the register is now unconditionally dead. */
2887 static int
2888 mark_regno_cond_dead (pbi, regno, cond)
2889 struct propagate_block_info *pbi;
2890 int regno;
2891 rtx cond;
2893 /* If this is a store to a predicate register, the value of the
2894 predicate is changing, we don't know that the predicate as seen
2895 before is the same as that seen after. Flush all dependent
2896 conditions from reg_cond_dead. This will make all such
2897 conditionally live registers unconditionally live. */
2898 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2899 flush_reg_cond_reg (pbi, regno);
2901 /* If this is an unconditional store, remove any conditional
2902 life that may have existed. */
2903 if (cond == NULL_RTX)
2904 splay_tree_remove (pbi->reg_cond_dead, regno);
2905 else
2907 splay_tree_node node;
2908 struct reg_cond_life_info *rcli;
2909 rtx ncond;
2911 /* Otherwise this is a conditional set. Record that fact.
2912 It may have been conditionally used, or there may be a
2913 subsequent set with a complimentary condition. */
2915 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2916 if (node == NULL)
2918 /* The register was unconditionally live previously.
2919 Record the current condition as the condition under
2920 which it is dead. */
2921 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
2922 rcli->condition = cond;
2923 rcli->stores = cond;
2924 rcli->orig_condition = const0_rtx;
2925 splay_tree_insert (pbi->reg_cond_dead, regno,
2926 (splay_tree_value) rcli);
2928 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2930 /* Not unconditionally dead. */
2931 return 0;
2933 else
2935 /* The register was conditionally live previously.
2936 Add the new condition to the old. */
2937 rcli = (struct reg_cond_life_info *) node->value;
2938 ncond = rcli->condition;
2939 ncond = ior_reg_cond (ncond, cond, 1);
2940 if (rcli->stores == const0_rtx)
2941 rcli->stores = cond;
2942 else if (rcli->stores != const1_rtx)
2943 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2945 /* If the register is now unconditionally dead, remove the entry
2946 in the splay_tree. A register is unconditionally dead if the
2947 dead condition ncond is true. A register is also unconditionally
2948 dead if the sum of all conditional stores is an unconditional
2949 store (stores is true), and the dead condition is identically the
2950 same as the original dead condition initialized at the end of
2951 the block. This is a pointer compare, not an rtx_equal_p
2952 compare. */
2953 if (ncond == const1_rtx
2954 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2955 splay_tree_remove (pbi->reg_cond_dead, regno);
2956 else
2958 rcli->condition = ncond;
2960 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2962 /* Not unconditionally dead. */
2963 return 0;
2968 return 1;
2971 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2973 static void
2974 free_reg_cond_life_info (value)
2975 splay_tree_value value;
2977 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2978 free (rcli);
2981 /* Helper function for flush_reg_cond_reg. */
2983 static int
2984 flush_reg_cond_reg_1 (node, data)
2985 splay_tree_node node;
2986 void *data;
2988 struct reg_cond_life_info *rcli;
2989 int *xdata = (int *) data;
2990 unsigned int regno = xdata[0];
2992 /* Don't need to search if last flushed value was farther on in
2993 the in-order traversal. */
2994 if (xdata[1] >= (int) node->key)
2995 return 0;
2997 /* Splice out portions of the expression that refer to regno. */
2998 rcli = (struct reg_cond_life_info *) node->value;
2999 rcli->condition = elim_reg_cond (rcli->condition, regno);
3000 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
3001 rcli->stores = elim_reg_cond (rcli->stores, regno);
3003 /* If the entire condition is now false, signal the node to be removed. */
3004 if (rcli->condition == const0_rtx)
3006 xdata[1] = node->key;
3007 return -1;
3009 else if (rcli->condition == const1_rtx)
3010 abort ();
3012 return 0;
3015 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3017 static void
3018 flush_reg_cond_reg (pbi, regno)
3019 struct propagate_block_info *pbi;
3020 int regno;
3022 int pair[2];
3024 pair[0] = regno;
3025 pair[1] = -1;
3026 while (splay_tree_foreach (pbi->reg_cond_dead,
3027 flush_reg_cond_reg_1, pair) == -1)
3028 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3030 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3033 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3034 For ior/and, the ADD flag determines whether we want to add the new
3035 condition X to the old one unconditionally. If it is zero, we will
3036 only return a new expression if X allows us to simplify part of
3037 OLD, otherwise we return NULL to the caller.
3038 If ADD is nonzero, we will return a new condition in all cases. The
3039 toplevel caller of one of these functions should always pass 1 for
3040 ADD. */
3042 static rtx
3043 ior_reg_cond (old, x, add)
3044 rtx old, x;
3045 int add;
3047 rtx op0, op1;
3049 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3051 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3052 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
3053 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3054 return const1_rtx;
3055 if (GET_CODE (x) == GET_CODE (old)
3056 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3057 return old;
3058 if (! add)
3059 return NULL;
3060 return gen_rtx_IOR (0, old, x);
3063 switch (GET_CODE (old))
3065 case IOR:
3066 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3067 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3068 if (op0 != NULL || op1 != NULL)
3070 if (op0 == const0_rtx)
3071 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3072 if (op1 == const0_rtx)
3073 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3074 if (op0 == const1_rtx || op1 == const1_rtx)
3075 return const1_rtx;
3076 if (op0 == NULL)
3077 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3078 else if (rtx_equal_p (x, op0))
3079 /* (x | A) | x ~ (x | A). */
3080 return old;
3081 if (op1 == NULL)
3082 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3083 else if (rtx_equal_p (x, op1))
3084 /* (A | x) | x ~ (A | x). */
3085 return old;
3086 return gen_rtx_IOR (0, op0, op1);
3088 if (! add)
3089 return NULL;
3090 return gen_rtx_IOR (0, old, x);
3092 case AND:
3093 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3094 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3095 if (op0 != NULL || op1 != NULL)
3097 if (op0 == const1_rtx)
3098 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3099 if (op1 == const1_rtx)
3100 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3101 if (op0 == const0_rtx || op1 == const0_rtx)
3102 return const0_rtx;
3103 if (op0 == NULL)
3104 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3105 else if (rtx_equal_p (x, op0))
3106 /* (x & A) | x ~ x. */
3107 return op0;
3108 if (op1 == NULL)
3109 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3110 else if (rtx_equal_p (x, op1))
3111 /* (A & x) | x ~ x. */
3112 return op1;
3113 return gen_rtx_AND (0, op0, op1);
3115 if (! add)
3116 return NULL;
3117 return gen_rtx_IOR (0, old, x);
3119 case NOT:
3120 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3121 if (op0 != NULL)
3122 return not_reg_cond (op0);
3123 if (! add)
3124 return NULL;
3125 return gen_rtx_IOR (0, old, x);
3127 default:
3128 abort ();
3132 static rtx
3133 not_reg_cond (x)
3134 rtx x;
3136 enum rtx_code x_code;
3138 if (x == const0_rtx)
3139 return const1_rtx;
3140 else if (x == const1_rtx)
3141 return const0_rtx;
3142 x_code = GET_CODE (x);
3143 if (x_code == NOT)
3144 return XEXP (x, 0);
3145 if (GET_RTX_CLASS (x_code) == '<'
3146 && GET_CODE (XEXP (x, 0)) == REG)
3148 if (XEXP (x, 1) != const0_rtx)
3149 abort ();
3151 return gen_rtx_fmt_ee (reverse_condition (x_code),
3152 VOIDmode, XEXP (x, 0), const0_rtx);
3154 return gen_rtx_NOT (0, x);
3157 static rtx
3158 and_reg_cond (old, x, add)
3159 rtx old, x;
3160 int add;
3162 rtx op0, op1;
3164 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3166 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3167 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3168 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3169 return const0_rtx;
3170 if (GET_CODE (x) == GET_CODE (old)
3171 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3172 return old;
3173 if (! add)
3174 return NULL;
3175 return gen_rtx_AND (0, old, x);
3178 switch (GET_CODE (old))
3180 case IOR:
3181 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3182 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3183 if (op0 != NULL || op1 != NULL)
3185 if (op0 == const0_rtx)
3186 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3187 if (op1 == const0_rtx)
3188 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3189 if (op0 == const1_rtx || op1 == const1_rtx)
3190 return const1_rtx;
3191 if (op0 == NULL)
3192 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3193 else if (rtx_equal_p (x, op0))
3194 /* (x | A) & x ~ x. */
3195 return op0;
3196 if (op1 == NULL)
3197 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3198 else if (rtx_equal_p (x, op1))
3199 /* (A | x) & x ~ x. */
3200 return op1;
3201 return gen_rtx_IOR (0, op0, op1);
3203 if (! add)
3204 return NULL;
3205 return gen_rtx_AND (0, old, x);
3207 case AND:
3208 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3209 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3210 if (op0 != NULL || op1 != NULL)
3212 if (op0 == const1_rtx)
3213 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3214 if (op1 == const1_rtx)
3215 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3216 if (op0 == const0_rtx || op1 == const0_rtx)
3217 return const0_rtx;
3218 if (op0 == NULL)
3219 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3220 else if (rtx_equal_p (x, op0))
3221 /* (x & A) & x ~ (x & A). */
3222 return old;
3223 if (op1 == NULL)
3224 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3225 else if (rtx_equal_p (x, op1))
3226 /* (A & x) & x ~ (A & x). */
3227 return old;
3228 return gen_rtx_AND (0, op0, op1);
3230 if (! add)
3231 return NULL;
3232 return gen_rtx_AND (0, old, x);
3234 case NOT:
3235 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3236 if (op0 != NULL)
3237 return not_reg_cond (op0);
3238 if (! add)
3239 return NULL;
3240 return gen_rtx_AND (0, old, x);
3242 default:
3243 abort ();
3247 /* Given a condition X, remove references to reg REGNO and return the
3248 new condition. The removal will be done so that all conditions
3249 involving REGNO are considered to evaluate to false. This function
3250 is used when the value of REGNO changes. */
3252 static rtx
3253 elim_reg_cond (x, regno)
3254 rtx x;
3255 unsigned int regno;
3257 rtx op0, op1;
3259 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3261 if (REGNO (XEXP (x, 0)) == regno)
3262 return const0_rtx;
3263 return x;
3266 switch (GET_CODE (x))
3268 case AND:
3269 op0 = elim_reg_cond (XEXP (x, 0), regno);
3270 op1 = elim_reg_cond (XEXP (x, 1), regno);
3271 if (op0 == const0_rtx || op1 == const0_rtx)
3272 return const0_rtx;
3273 if (op0 == const1_rtx)
3274 return op1;
3275 if (op1 == const1_rtx)
3276 return op0;
3277 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3278 return x;
3279 return gen_rtx_AND (0, op0, op1);
3281 case IOR:
3282 op0 = elim_reg_cond (XEXP (x, 0), regno);
3283 op1 = elim_reg_cond (XEXP (x, 1), regno);
3284 if (op0 == const1_rtx || op1 == const1_rtx)
3285 return const1_rtx;
3286 if (op0 == const0_rtx)
3287 return op1;
3288 if (op1 == const0_rtx)
3289 return op0;
3290 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3291 return x;
3292 return gen_rtx_IOR (0, op0, op1);
3294 case NOT:
3295 op0 = elim_reg_cond (XEXP (x, 0), regno);
3296 if (op0 == const0_rtx)
3297 return const1_rtx;
3298 if (op0 == const1_rtx)
3299 return const0_rtx;
3300 if (op0 != XEXP (x, 0))
3301 return not_reg_cond (op0);
3302 return x;
3304 default:
3305 abort ();
3308 #endif /* HAVE_conditional_execution */
3310 #ifdef AUTO_INC_DEC
3312 /* Try to substitute the auto-inc expression INC as the address inside
3313 MEM which occurs in INSN. Currently, the address of MEM is an expression
3314 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3315 that has a single set whose source is a PLUS of INCR_REG and something
3316 else. */
3318 static void
3319 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
3320 struct propagate_block_info *pbi;
3321 rtx inc, insn, mem, incr, incr_reg;
3323 int regno = REGNO (incr_reg);
3324 rtx set = single_set (incr);
3325 rtx q = SET_DEST (set);
3326 rtx y = SET_SRC (set);
3327 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3329 /* Make sure this reg appears only once in this insn. */
3330 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3331 return;
3333 if (dead_or_set_p (incr, incr_reg)
3334 /* Mustn't autoinc an eliminable register. */
3335 && (regno >= FIRST_PSEUDO_REGISTER
3336 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3338 /* This is the simple case. Try to make the auto-inc. If
3339 we can't, we are done. Otherwise, we will do any
3340 needed updates below. */
3341 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3342 return;
3344 else if (GET_CODE (q) == REG
3345 /* PREV_INSN used here to check the semi-open interval
3346 [insn,incr). */
3347 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3348 /* We must also check for sets of q as q may be
3349 a call clobbered hard register and there may
3350 be a call between PREV_INSN (insn) and incr. */
3351 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3353 /* We have *p followed sometime later by q = p+size.
3354 Both p and q must be live afterward,
3355 and q is not used between INSN and its assignment.
3356 Change it to q = p, ...*q..., q = q+size.
3357 Then fall into the usual case. */
3358 rtx insns, temp;
3360 start_sequence ();
3361 emit_move_insn (q, incr_reg);
3362 insns = get_insns ();
3363 end_sequence ();
3365 /* If we can't make the auto-inc, or can't make the
3366 replacement into Y, exit. There's no point in making
3367 the change below if we can't do the auto-inc and doing
3368 so is not correct in the pre-inc case. */
3370 XEXP (inc, 0) = q;
3371 validate_change (insn, &XEXP (mem, 0), inc, 1);
3372 validate_change (incr, &XEXP (y, opnum), q, 1);
3373 if (! apply_change_group ())
3374 return;
3376 /* We now know we'll be doing this change, so emit the
3377 new insn(s) and do the updates. */
3378 emit_insn_before (insns, insn);
3380 if (pbi->bb->head == insn)
3381 pbi->bb->head = insns;
3383 /* INCR will become a NOTE and INSN won't contain a
3384 use of INCR_REG. If a use of INCR_REG was just placed in
3385 the insn before INSN, make that the next use.
3386 Otherwise, invalidate it. */
3387 if (GET_CODE (PREV_INSN (insn)) == INSN
3388 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3389 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3390 pbi->reg_next_use[regno] = PREV_INSN (insn);
3391 else
3392 pbi->reg_next_use[regno] = 0;
3394 incr_reg = q;
3395 regno = REGNO (q);
3397 /* REGNO is now used in INCR which is below INSN, but
3398 it previously wasn't live here. If we don't mark
3399 it as live, we'll put a REG_DEAD note for it
3400 on this insn, which is incorrect. */
3401 SET_REGNO_REG_SET (pbi->reg_live, regno);
3403 /* If there are any calls between INSN and INCR, show
3404 that REGNO now crosses them. */
3405 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3406 if (GET_CODE (temp) == CALL_INSN)
3407 REG_N_CALLS_CROSSED (regno)++;
3409 /* Invalidate alias info for Q since we just changed its value. */
3410 clear_reg_alias_info (q);
3412 else
3413 return;
3415 /* If we haven't returned, it means we were able to make the
3416 auto-inc, so update the status. First, record that this insn
3417 has an implicit side effect. */
3419 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3421 /* Modify the old increment-insn to simply copy
3422 the already-incremented value of our register. */
3423 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3424 abort ();
3426 /* If that makes it a no-op (copying the register into itself) delete
3427 it so it won't appear to be a "use" and a "set" of this
3428 register. */
3429 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3431 /* If the original source was dead, it's dead now. */
3432 rtx note;
3434 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3436 remove_note (incr, note);
3437 if (XEXP (note, 0) != incr_reg)
3438 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3441 PUT_CODE (incr, NOTE);
3442 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3443 NOTE_SOURCE_FILE (incr) = 0;
3446 if (regno >= FIRST_PSEUDO_REGISTER)
3448 /* Count an extra reference to the reg. When a reg is
3449 incremented, spilling it is worse, so we want to make
3450 that less likely. */
3451 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3453 /* Count the increment as a setting of the register,
3454 even though it isn't a SET in rtl. */
3455 REG_N_SETS (regno)++;
3459 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3460 reference. */
3462 static void
3463 find_auto_inc (pbi, x, insn)
3464 struct propagate_block_info *pbi;
3465 rtx x;
3466 rtx insn;
3468 rtx addr = XEXP (x, 0);
3469 HOST_WIDE_INT offset = 0;
3470 rtx set, y, incr, inc_val;
3471 int regno;
3472 int size = GET_MODE_SIZE (GET_MODE (x));
3474 if (GET_CODE (insn) == JUMP_INSN)
3475 return;
3477 /* Here we detect use of an index register which might be good for
3478 postincrement, postdecrement, preincrement, or predecrement. */
3480 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3481 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3483 if (GET_CODE (addr) != REG)
3484 return;
3486 regno = REGNO (addr);
3488 /* Is the next use an increment that might make auto-increment? */
3489 incr = pbi->reg_next_use[regno];
3490 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3491 return;
3492 set = single_set (incr);
3493 if (set == 0 || GET_CODE (set) != SET)
3494 return;
3495 y = SET_SRC (set);
3497 if (GET_CODE (y) != PLUS)
3498 return;
3500 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3501 inc_val = XEXP (y, 1);
3502 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3503 inc_val = XEXP (y, 0);
3504 else
3505 return;
3507 if (GET_CODE (inc_val) == CONST_INT)
3509 if (HAVE_POST_INCREMENT
3510 && (INTVAL (inc_val) == size && offset == 0))
3511 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3512 incr, addr);
3513 else if (HAVE_POST_DECREMENT
3514 && (INTVAL (inc_val) == -size && offset == 0))
3515 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3516 incr, addr);
3517 else if (HAVE_PRE_INCREMENT
3518 && (INTVAL (inc_val) == size && offset == size))
3519 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3520 incr, addr);
3521 else if (HAVE_PRE_DECREMENT
3522 && (INTVAL (inc_val) == -size && offset == -size))
3523 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3524 incr, addr);
3525 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3526 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3527 gen_rtx_PLUS (Pmode,
3528 addr,
3529 inc_val)),
3530 insn, x, incr, addr);
3531 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3532 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3533 gen_rtx_PLUS (Pmode,
3534 addr,
3535 inc_val)),
3536 insn, x, incr, addr);
3538 else if (GET_CODE (inc_val) == REG
3539 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3540 NEXT_INSN (incr)))
3543 if (HAVE_POST_MODIFY_REG && offset == 0)
3544 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3545 gen_rtx_PLUS (Pmode,
3546 addr,
3547 inc_val)),
3548 insn, x, incr, addr);
3552 #endif /* AUTO_INC_DEC */
3554 static void
3555 mark_used_reg (pbi, reg, cond, insn)
3556 struct propagate_block_info *pbi;
3557 rtx reg;
3558 rtx cond ATTRIBUTE_UNUSED;
3559 rtx insn;
3561 unsigned int regno_first, regno_last, i;
3562 int some_was_live, some_was_dead, some_not_set;
3564 regno_last = regno_first = REGNO (reg);
3565 if (regno_first < FIRST_PSEUDO_REGISTER)
3566 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3568 /* Find out if any of this register is live after this instruction. */
3569 some_was_live = some_was_dead = 0;
3570 for (i = regno_first; i <= regno_last; ++i)
3572 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3573 some_was_live |= needed_regno;
3574 some_was_dead |= ! needed_regno;
3577 /* Find out if any of the register was set this insn. */
3578 some_not_set = 0;
3579 for (i = regno_first; i <= regno_last; ++i)
3580 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3582 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3584 /* Record where each reg is used, so when the reg is set we know
3585 the next insn that uses it. */
3586 pbi->reg_next_use[regno_first] = insn;
3589 if (pbi->flags & PROP_REG_INFO)
3591 if (regno_first < FIRST_PSEUDO_REGISTER)
3593 /* If this is a register we are going to try to eliminate,
3594 don't mark it live here. If we are successful in
3595 eliminating it, it need not be live unless it is used for
3596 pseudos, in which case it will have been set live when it
3597 was allocated to the pseudos. If the register will not
3598 be eliminated, reload will set it live at that point.
3600 Otherwise, record that this function uses this register. */
3601 /* ??? The PPC backend tries to "eliminate" on the pic
3602 register to itself. This should be fixed. In the mean
3603 time, hack around it. */
3605 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3606 && (regno_first == FRAME_POINTER_REGNUM
3607 || regno_first == ARG_POINTER_REGNUM)))
3608 for (i = regno_first; i <= regno_last; ++i)
3609 regs_ever_live[i] = 1;
3611 else
3613 /* Keep track of which basic block each reg appears in. */
3615 int blocknum = pbi->bb->index;
3616 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3617 REG_BASIC_BLOCK (regno_first) = blocknum;
3618 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3619 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3621 /* Count (weighted) number of uses of each reg. */
3622 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3623 REG_N_REFS (regno_first)++;
3627 /* Record and count the insns in which a reg dies. If it is used in
3628 this insn and was dead below the insn then it dies in this insn.
3629 If it was set in this insn, we do not make a REG_DEAD note;
3630 likewise if we already made such a note. */
3631 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3632 && some_was_dead
3633 && some_not_set)
3635 /* Check for the case where the register dying partially
3636 overlaps the register set by this insn. */
3637 if (regno_first != regno_last)
3638 for (i = regno_first; i <= regno_last; ++i)
3639 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3641 /* If none of the words in X is needed, make a REG_DEAD note.
3642 Otherwise, we must make partial REG_DEAD notes. */
3643 if (! some_was_live)
3645 if ((pbi->flags & PROP_DEATH_NOTES)
3646 && ! find_regno_note (insn, REG_DEAD, regno_first))
3647 REG_NOTES (insn)
3648 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3650 if (pbi->flags & PROP_REG_INFO)
3651 REG_N_DEATHS (regno_first)++;
3653 else
3655 /* Don't make a REG_DEAD note for a part of a register
3656 that is set in the insn. */
3657 for (i = regno_first; i <= regno_last; ++i)
3658 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3659 && ! dead_or_set_regno_p (insn, i))
3660 REG_NOTES (insn)
3661 = alloc_EXPR_LIST (REG_DEAD,
3662 regno_reg_rtx[i],
3663 REG_NOTES (insn));
3667 /* Mark the register as being live. */
3668 for (i = regno_first; i <= regno_last; ++i)
3670 #ifdef HAVE_conditional_execution
3671 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3672 #endif
3674 SET_REGNO_REG_SET (pbi->reg_live, i);
3676 #ifdef HAVE_conditional_execution
3677 /* If this is a conditional use, record that fact. If it is later
3678 conditionally set, we'll know to kill the register. */
3679 if (cond != NULL_RTX)
3681 splay_tree_node node;
3682 struct reg_cond_life_info *rcli;
3683 rtx ncond;
3685 if (this_was_live)
3687 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3688 if (node == NULL)
3690 /* The register was unconditionally live previously.
3691 No need to do anything. */
3693 else
3695 /* The register was conditionally live previously.
3696 Subtract the new life cond from the old death cond. */
3697 rcli = (struct reg_cond_life_info *) node->value;
3698 ncond = rcli->condition;
3699 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3701 /* If the register is now unconditionally live,
3702 remove the entry in the splay_tree. */
3703 if (ncond == const0_rtx)
3704 splay_tree_remove (pbi->reg_cond_dead, i);
3705 else
3707 rcli->condition = ncond;
3708 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3709 REGNO (XEXP (cond, 0)));
3713 else
3715 /* The register was not previously live at all. Record
3716 the condition under which it is still dead. */
3717 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3718 rcli->condition = not_reg_cond (cond);
3719 rcli->stores = const0_rtx;
3720 rcli->orig_condition = const0_rtx;
3721 splay_tree_insert (pbi->reg_cond_dead, i,
3722 (splay_tree_value) rcli);
3724 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3727 else if (this_was_live)
3729 /* The register may have been conditionally live previously, but
3730 is now unconditionally live. Remove it from the conditionally
3731 dead list, so that a conditional set won't cause us to think
3732 it dead. */
3733 splay_tree_remove (pbi->reg_cond_dead, i);
3735 #endif
3739 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3740 This is done assuming the registers needed from X are those that
3741 have 1-bits in PBI->REG_LIVE.
3743 INSN is the containing instruction. If INSN is dead, this function
3744 is not called. */
3746 static void
3747 mark_used_regs (pbi, x, cond, insn)
3748 struct propagate_block_info *pbi;
3749 rtx x, cond, insn;
3751 RTX_CODE code;
3752 int regno;
3753 int flags = pbi->flags;
3755 retry:
3756 if (!x)
3757 return;
3758 code = GET_CODE (x);
3759 switch (code)
3761 case LABEL_REF:
3762 case SYMBOL_REF:
3763 case CONST_INT:
3764 case CONST:
3765 case CONST_DOUBLE:
3766 case CONST_VECTOR:
3767 case PC:
3768 case ADDR_VEC:
3769 case ADDR_DIFF_VEC:
3770 return;
3772 #ifdef HAVE_cc0
3773 case CC0:
3774 pbi->cc0_live = 1;
3775 return;
3776 #endif
3778 case CLOBBER:
3779 /* If we are clobbering a MEM, mark any registers inside the address
3780 as being used. */
3781 if (GET_CODE (XEXP (x, 0)) == MEM)
3782 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3783 return;
3785 case MEM:
3786 /* Don't bother watching stores to mems if this is not the
3787 final pass. We'll not be deleting dead stores this round. */
3788 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3790 /* Invalidate the data for the last MEM stored, but only if MEM is
3791 something that can be stored into. */
3792 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3793 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3794 /* Needn't clear the memory set list. */
3796 else
3798 rtx temp = pbi->mem_set_list;
3799 rtx prev = NULL_RTX;
3800 rtx next;
3802 while (temp)
3804 next = XEXP (temp, 1);
3805 if (anti_dependence (XEXP (temp, 0), x))
3807 /* Splice temp out of the list. */
3808 if (prev)
3809 XEXP (prev, 1) = next;
3810 else
3811 pbi->mem_set_list = next;
3812 free_EXPR_LIST_node (temp);
3813 pbi->mem_set_list_len--;
3815 else
3816 prev = temp;
3817 temp = next;
3821 /* If the memory reference had embedded side effects (autoincrement
3822 address modes. Then we may need to kill some entries on the
3823 memory set list. */
3824 if (insn)
3825 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3828 #ifdef AUTO_INC_DEC
3829 if (flags & PROP_AUTOINC)
3830 find_auto_inc (pbi, x, insn);
3831 #endif
3832 break;
3834 case SUBREG:
3835 #ifdef CANNOT_CHANGE_MODE_CLASS
3836 if (GET_CODE (SUBREG_REG (x)) == REG
3837 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
3838 SET_REGNO_REG_SET (&subregs_of_mode[GET_MODE (x)],
3839 REGNO (SUBREG_REG (x)));
3840 #endif
3842 /* While we're here, optimize this case. */
3843 x = SUBREG_REG (x);
3844 if (GET_CODE (x) != REG)
3845 goto retry;
3846 /* Fall through. */
3848 case REG:
3849 /* See a register other than being set => mark it as needed. */
3850 mark_used_reg (pbi, x, cond, insn);
3851 return;
3853 case SET:
3855 rtx testreg = SET_DEST (x);
3856 int mark_dest = 0;
3858 /* If storing into MEM, don't show it as being used. But do
3859 show the address as being used. */
3860 if (GET_CODE (testreg) == MEM)
3862 #ifdef AUTO_INC_DEC
3863 if (flags & PROP_AUTOINC)
3864 find_auto_inc (pbi, testreg, insn);
3865 #endif
3866 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3867 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3868 return;
3871 /* Storing in STRICT_LOW_PART is like storing in a reg
3872 in that this SET might be dead, so ignore it in TESTREG.
3873 but in some other ways it is like using the reg.
3875 Storing in a SUBREG or a bit field is like storing the entire
3876 register in that if the register's value is not used
3877 then this SET is not needed. */
3878 while (GET_CODE (testreg) == STRICT_LOW_PART
3879 || GET_CODE (testreg) == ZERO_EXTRACT
3880 || GET_CODE (testreg) == SIGN_EXTRACT
3881 || GET_CODE (testreg) == SUBREG)
3883 #ifdef CANNOT_CHANGE_MODE_CLASS
3884 if (GET_CODE (testreg) == SUBREG
3885 && GET_CODE (SUBREG_REG (testreg)) == REG
3886 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER)
3887 SET_REGNO_REG_SET (&subregs_of_mode[GET_MODE (testreg)],
3888 REGNO (SUBREG_REG (testreg)));
3889 #endif
3891 /* Modifying a single register in an alternate mode
3892 does not use any of the old value. But these other
3893 ways of storing in a register do use the old value. */
3894 if (GET_CODE (testreg) == SUBREG
3895 && !((REG_BYTES (SUBREG_REG (testreg))
3896 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3897 > (REG_BYTES (testreg)
3898 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3900 else
3901 mark_dest = 1;
3903 testreg = XEXP (testreg, 0);
3906 /* If this is a store into a register or group of registers,
3907 recursively scan the value being stored. */
3909 if ((GET_CODE (testreg) == PARALLEL
3910 && GET_MODE (testreg) == BLKmode)
3911 || (GET_CODE (testreg) == REG
3912 && (regno = REGNO (testreg),
3913 ! (regno == FRAME_POINTER_REGNUM
3914 && (! reload_completed || frame_pointer_needed)))
3915 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3916 && ! (regno == HARD_FRAME_POINTER_REGNUM
3917 && (! reload_completed || frame_pointer_needed))
3918 #endif
3919 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3920 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3921 #endif
3924 if (mark_dest)
3925 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3926 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3927 return;
3930 break;
3932 case ASM_OPERANDS:
3933 case UNSPEC_VOLATILE:
3934 case TRAP_IF:
3935 case ASM_INPUT:
3937 /* Traditional and volatile asm instructions must be considered to use
3938 and clobber all hard registers, all pseudo-registers and all of
3939 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3941 Consider for instance a volatile asm that changes the fpu rounding
3942 mode. An insn should not be moved across this even if it only uses
3943 pseudo-regs because it might give an incorrectly rounded result.
3945 ?!? Unfortunately, marking all hard registers as live causes massive
3946 problems for the register allocator and marking all pseudos as live
3947 creates mountains of uninitialized variable warnings.
3949 So for now, just clear the memory set list and mark any regs
3950 we can find in ASM_OPERANDS as used. */
3951 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3953 free_EXPR_LIST_list (&pbi->mem_set_list);
3954 pbi->mem_set_list_len = 0;
3957 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3958 We can not just fall through here since then we would be confused
3959 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3960 traditional asms unlike their normal usage. */
3961 if (code == ASM_OPERANDS)
3963 int j;
3965 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3966 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3968 break;
3971 case COND_EXEC:
3972 if (cond != NULL_RTX)
3973 abort ();
3975 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3977 cond = COND_EXEC_TEST (x);
3978 x = COND_EXEC_CODE (x);
3979 goto retry;
3981 case PHI:
3982 /* We _do_not_ want to scan operands of phi nodes. Operands of
3983 a phi function are evaluated only when control reaches this
3984 block along a particular edge. Therefore, regs that appear
3985 as arguments to phi should not be added to the global live at
3986 start. */
3987 return;
3989 default:
3990 break;
3993 /* Recursively scan the operands of this expression. */
3996 const char * const fmt = GET_RTX_FORMAT (code);
3997 int i;
3999 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4001 if (fmt[i] == 'e')
4003 /* Tail recursive case: save a function call level. */
4004 if (i == 0)
4006 x = XEXP (x, 0);
4007 goto retry;
4009 mark_used_regs (pbi, XEXP (x, i), cond, insn);
4011 else if (fmt[i] == 'E')
4013 int j;
4014 for (j = 0; j < XVECLEN (x, i); j++)
4015 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
4021 #ifdef AUTO_INC_DEC
4023 static int
4024 try_pre_increment_1 (pbi, insn)
4025 struct propagate_block_info *pbi;
4026 rtx insn;
4028 /* Find the next use of this reg. If in same basic block,
4029 make it do pre-increment or pre-decrement if appropriate. */
4030 rtx x = single_set (insn);
4031 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4032 * INTVAL (XEXP (SET_SRC (x), 1)));
4033 int regno = REGNO (SET_DEST (x));
4034 rtx y = pbi->reg_next_use[regno];
4035 if (y != 0
4036 && SET_DEST (x) != stack_pointer_rtx
4037 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4038 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4039 mode would be better. */
4040 && ! dead_or_set_p (y, SET_DEST (x))
4041 && try_pre_increment (y, SET_DEST (x), amount))
4043 /* We have found a suitable auto-increment and already changed
4044 insn Y to do it. So flush this increment instruction. */
4045 propagate_block_delete_insn (insn);
4047 /* Count a reference to this reg for the increment insn we are
4048 deleting. When a reg is incremented, spilling it is worse,
4049 so we want to make that less likely. */
4050 if (regno >= FIRST_PSEUDO_REGISTER)
4052 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4053 REG_N_SETS (regno)++;
4056 /* Flush any remembered memories depending on the value of
4057 the incremented register. */
4058 invalidate_mems_from_set (pbi, SET_DEST (x));
4060 return 1;
4062 return 0;
4065 /* Try to change INSN so that it does pre-increment or pre-decrement
4066 addressing on register REG in order to add AMOUNT to REG.
4067 AMOUNT is negative for pre-decrement.
4068 Returns 1 if the change could be made.
4069 This checks all about the validity of the result of modifying INSN. */
4071 static int
4072 try_pre_increment (insn, reg, amount)
4073 rtx insn, reg;
4074 HOST_WIDE_INT amount;
4076 rtx use;
4078 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4079 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4080 int pre_ok = 0;
4081 /* Nonzero if we can try to make a post-increment or post-decrement.
4082 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4083 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4084 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4085 int post_ok = 0;
4087 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4088 int do_post = 0;
4090 /* From the sign of increment, see which possibilities are conceivable
4091 on this target machine. */
4092 if (HAVE_PRE_INCREMENT && amount > 0)
4093 pre_ok = 1;
4094 if (HAVE_POST_INCREMENT && amount > 0)
4095 post_ok = 1;
4097 if (HAVE_PRE_DECREMENT && amount < 0)
4098 pre_ok = 1;
4099 if (HAVE_POST_DECREMENT && amount < 0)
4100 post_ok = 1;
4102 if (! (pre_ok || post_ok))
4103 return 0;
4105 /* It is not safe to add a side effect to a jump insn
4106 because if the incremented register is spilled and must be reloaded
4107 there would be no way to store the incremented value back in memory. */
4109 if (GET_CODE (insn) == JUMP_INSN)
4110 return 0;
4112 use = 0;
4113 if (pre_ok)
4114 use = find_use_as_address (PATTERN (insn), reg, 0);
4115 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4117 use = find_use_as_address (PATTERN (insn), reg, -amount);
4118 do_post = 1;
4121 if (use == 0 || use == (rtx) (size_t) 1)
4122 return 0;
4124 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4125 return 0;
4127 /* See if this combination of instruction and addressing mode exists. */
4128 if (! validate_change (insn, &XEXP (use, 0),
4129 gen_rtx_fmt_e (amount > 0
4130 ? (do_post ? POST_INC : PRE_INC)
4131 : (do_post ? POST_DEC : PRE_DEC),
4132 Pmode, reg), 0))
4133 return 0;
4135 /* Record that this insn now has an implicit side effect on X. */
4136 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4137 return 1;
4140 #endif /* AUTO_INC_DEC */
4142 /* Find the place in the rtx X where REG is used as a memory address.
4143 Return the MEM rtx that so uses it.
4144 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4145 (plus REG (const_int PLUSCONST)).
4147 If such an address does not appear, return 0.
4148 If REG appears more than once, or is used other than in such an address,
4149 return (rtx) 1. */
4152 find_use_as_address (x, reg, plusconst)
4153 rtx x;
4154 rtx reg;
4155 HOST_WIDE_INT plusconst;
4157 enum rtx_code code = GET_CODE (x);
4158 const char * const fmt = GET_RTX_FORMAT (code);
4159 int i;
4160 rtx value = 0;
4161 rtx tem;
4163 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4164 return x;
4166 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4167 && XEXP (XEXP (x, 0), 0) == reg
4168 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4169 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4170 return x;
4172 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4174 /* If REG occurs inside a MEM used in a bit-field reference,
4175 that is unacceptable. */
4176 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4177 return (rtx) (size_t) 1;
4180 if (x == reg)
4181 return (rtx) (size_t) 1;
4183 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4185 if (fmt[i] == 'e')
4187 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4188 if (value == 0)
4189 value = tem;
4190 else if (tem != 0)
4191 return (rtx) (size_t) 1;
4193 else if (fmt[i] == 'E')
4195 int j;
4196 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4198 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4199 if (value == 0)
4200 value = tem;
4201 else if (tem != 0)
4202 return (rtx) (size_t) 1;
4207 return value;
4210 /* Write information about registers and basic blocks into FILE.
4211 This is part of making a debugging dump. */
4213 void
4214 dump_regset (r, outf)
4215 regset r;
4216 FILE *outf;
4218 int i;
4219 if (r == NULL)
4221 fputs (" (nil)", outf);
4222 return;
4225 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4227 fprintf (outf, " %d", i);
4228 if (i < FIRST_PSEUDO_REGISTER)
4229 fprintf (outf, " [%s]",
4230 reg_names[i]);
4234 /* Print a human-readable representation of R on the standard error
4235 stream. This function is designed to be used from within the
4236 debugger. */
4238 void
4239 debug_regset (r)
4240 regset r;
4242 dump_regset (r, stderr);
4243 putc ('\n', stderr);
4246 /* Recompute register set/reference counts immediately prior to register
4247 allocation.
4249 This avoids problems with set/reference counts changing to/from values
4250 which have special meanings to the register allocators.
4252 Additionally, the reference counts are the primary component used by the
4253 register allocators to prioritize pseudos for allocation to hard regs.
4254 More accurate reference counts generally lead to better register allocation.
4256 F is the first insn to be scanned.
4258 LOOP_STEP denotes how much loop_depth should be incremented per
4259 loop nesting level in order to increase the ref count more for
4260 references in a loop.
4262 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4263 possibly other information which is used by the register allocators. */
4265 void
4266 recompute_reg_usage (f, loop_step)
4267 rtx f ATTRIBUTE_UNUSED;
4268 int loop_step ATTRIBUTE_UNUSED;
4270 allocate_reg_life_data ();
4271 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4274 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4275 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4276 of the number of registers that died. */
4279 count_or_remove_death_notes (blocks, kill)
4280 sbitmap blocks;
4281 int kill;
4283 int count = 0;
4284 basic_block bb;
4286 FOR_EACH_BB_REVERSE (bb)
4288 rtx insn;
4290 if (blocks && ! TEST_BIT (blocks, bb->index))
4291 continue;
4293 for (insn = bb->head;; insn = NEXT_INSN (insn))
4295 if (INSN_P (insn))
4297 rtx *pprev = &REG_NOTES (insn);
4298 rtx link = *pprev;
4300 while (link)
4302 switch (REG_NOTE_KIND (link))
4304 case REG_DEAD:
4305 if (GET_CODE (XEXP (link, 0)) == REG)
4307 rtx reg = XEXP (link, 0);
4308 int n;
4310 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4311 n = 1;
4312 else
4313 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4314 count += n;
4316 /* Fall through. */
4318 case REG_UNUSED:
4319 if (kill)
4321 rtx next = XEXP (link, 1);
4322 free_EXPR_LIST_node (link);
4323 *pprev = link = next;
4324 break;
4326 /* Fall through. */
4328 default:
4329 pprev = &XEXP (link, 1);
4330 link = *pprev;
4331 break;
4336 if (insn == bb->end)
4337 break;
4341 return count;
4343 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4344 if blocks is NULL. */
4346 static void
4347 clear_log_links (blocks)
4348 sbitmap blocks;
4350 rtx insn;
4351 int i;
4353 if (!blocks)
4355 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4356 if (INSN_P (insn))
4357 free_INSN_LIST_list (&LOG_LINKS (insn));
4359 else
4360 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4362 basic_block bb = BASIC_BLOCK (i);
4364 for (insn = bb->head; insn != NEXT_INSN (bb->end);
4365 insn = NEXT_INSN (insn))
4366 if (INSN_P (insn))
4367 free_INSN_LIST_list (&LOG_LINKS (insn));
4371 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4372 correspond to the hard registers, if any, set in that map. This
4373 could be done far more efficiently by having all sorts of special-cases
4374 with moving single words, but probably isn't worth the trouble. */
4376 void
4377 reg_set_to_hard_reg_set (to, from)
4378 HARD_REG_SET *to;
4379 bitmap from;
4381 int i;
4383 EXECUTE_IF_SET_IN_BITMAP
4384 (from, 0, i,
4386 if (i >= FIRST_PSEUDO_REGISTER)
4387 return;
4388 SET_HARD_REG_BIT (*to, i);