1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 #include "coretypes.h"
32 #include "hard-reg-set.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
44 #include "typeclass.h"
47 #include "langhooks.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
56 /* Decide whether a function's arguments should be processed
57 from first to last or from last to first.
59 They should if the stack and args grow in opposite directions, but
60 only if we have push insns. */
64 #ifndef PUSH_ARGS_REVERSED
65 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
66 #define PUSH_ARGS_REVERSED /* If it's last to first. */
72 #ifndef STACK_PUSH_CODE
73 #ifdef STACK_GROWS_DOWNWARD
74 #define STACK_PUSH_CODE PRE_DEC
76 #define STACK_PUSH_CODE PRE_INC
81 /* If this is nonzero, we do not bother generating VOLATILE
82 around volatile memory references, and we are willing to
83 output indirect addresses. If cse is to follow, we reject
84 indirect addresses so a useful potential cse is generated;
85 if it is used only once, instruction combination will produce
86 the same indirect address eventually. */
89 /* This structure is used by move_by_pieces to describe the move to
100 int explicit_inc_from
;
101 unsigned HOST_WIDE_INT len
;
102 HOST_WIDE_INT offset
;
106 /* This structure is used by store_by_pieces to describe the clear to
109 struct store_by_pieces
115 unsigned HOST_WIDE_INT len
;
116 HOST_WIDE_INT offset
;
117 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
);
122 static unsigned HOST_WIDE_INT
move_by_pieces_ninsns (unsigned HOST_WIDE_INT
,
125 static void move_by_pieces_1 (rtx (*) (rtx
, ...), enum machine_mode
,
126 struct move_by_pieces
*);
127 static bool block_move_libcall_safe_for_call_parm (void);
128 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned);
129 static rtx
emit_block_move_via_libcall (rtx
, rtx
, rtx
, bool);
130 static tree
emit_block_move_libcall_fn (int);
131 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
132 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, enum machine_mode
);
133 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
134 static void store_by_pieces_1 (struct store_by_pieces
*, unsigned int);
135 static void store_by_pieces_2 (rtx (*) (rtx
, ...), enum machine_mode
,
136 struct store_by_pieces
*);
137 static bool clear_storage_via_clrmem (rtx
, rtx
, unsigned);
138 static rtx
clear_storage_via_libcall (rtx
, rtx
, bool);
139 static tree
clear_storage_libcall_fn (int);
140 static rtx
compress_float_constant (rtx
, rtx
);
141 static rtx
get_subtarget (rtx
);
142 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
143 HOST_WIDE_INT
, enum machine_mode
,
144 tree
, tree
, int, int);
145 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
146 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
, enum machine_mode
,
149 static unsigned HOST_WIDE_INT
highest_pow2_factor (tree
);
150 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (tree
, tree
);
152 static int is_aligning_offset (tree
, tree
);
153 static void expand_operands (tree
, tree
, rtx
, rtx
*, rtx
*,
154 enum expand_modifier
);
155 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
156 static rtx
do_store_flag (tree
, rtx
, enum machine_mode
, int);
158 static void emit_single_push_insn (enum machine_mode
, rtx
, tree
);
160 static void do_tablejump (rtx
, enum machine_mode
, rtx
, rtx
, rtx
);
161 static rtx
const_vector_from_tree (tree
);
162 static void write_complex_part (rtx
, rtx
, bool);
164 /* Record for each mode whether we can move a register directly to or
165 from an object of that mode in memory. If we can't, we won't try
166 to use that mode directly when accessing a field of that mode. */
168 static char direct_load
[NUM_MACHINE_MODES
];
169 static char direct_store
[NUM_MACHINE_MODES
];
171 /* Record for each mode whether we can float-extend from memory. */
173 static bool float_extend_from_mem
[NUM_MACHINE_MODES
][NUM_MACHINE_MODES
];
175 /* This macro is used to determine whether move_by_pieces should be called
176 to perform a structure copy. */
177 #ifndef MOVE_BY_PIECES_P
178 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
179 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
180 < (unsigned int) MOVE_RATIO)
183 /* This macro is used to determine whether clear_by_pieces should be
184 called to clear storage. */
185 #ifndef CLEAR_BY_PIECES_P
186 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
187 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
188 < (unsigned int) CLEAR_RATIO)
191 /* This macro is used to determine whether store_by_pieces should be
192 called to "memset" storage with byte values other than zero, or
193 to "memcpy" storage when the source is a constant string. */
194 #ifndef STORE_BY_PIECES_P
195 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
196 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
197 < (unsigned int) MOVE_RATIO)
200 /* This array records the insn_code of insns to perform block moves. */
201 enum insn_code movmem_optab
[NUM_MACHINE_MODES
];
203 /* This array records the insn_code of insns to perform block clears. */
204 enum insn_code clrmem_optab
[NUM_MACHINE_MODES
];
206 /* These arrays record the insn_code of two different kinds of insns
207 to perform block compares. */
208 enum insn_code cmpstr_optab
[NUM_MACHINE_MODES
];
209 enum insn_code cmpmem_optab
[NUM_MACHINE_MODES
];
211 /* Synchronization primitives. */
212 enum insn_code sync_add_optab
[NUM_MACHINE_MODES
];
213 enum insn_code sync_sub_optab
[NUM_MACHINE_MODES
];
214 enum insn_code sync_ior_optab
[NUM_MACHINE_MODES
];
215 enum insn_code sync_and_optab
[NUM_MACHINE_MODES
];
216 enum insn_code sync_xor_optab
[NUM_MACHINE_MODES
];
217 enum insn_code sync_nand_optab
[NUM_MACHINE_MODES
];
218 enum insn_code sync_old_add_optab
[NUM_MACHINE_MODES
];
219 enum insn_code sync_old_sub_optab
[NUM_MACHINE_MODES
];
220 enum insn_code sync_old_ior_optab
[NUM_MACHINE_MODES
];
221 enum insn_code sync_old_and_optab
[NUM_MACHINE_MODES
];
222 enum insn_code sync_old_xor_optab
[NUM_MACHINE_MODES
];
223 enum insn_code sync_old_nand_optab
[NUM_MACHINE_MODES
];
224 enum insn_code sync_new_add_optab
[NUM_MACHINE_MODES
];
225 enum insn_code sync_new_sub_optab
[NUM_MACHINE_MODES
];
226 enum insn_code sync_new_ior_optab
[NUM_MACHINE_MODES
];
227 enum insn_code sync_new_and_optab
[NUM_MACHINE_MODES
];
228 enum insn_code sync_new_xor_optab
[NUM_MACHINE_MODES
];
229 enum insn_code sync_new_nand_optab
[NUM_MACHINE_MODES
];
230 enum insn_code sync_compare_and_swap
[NUM_MACHINE_MODES
];
231 enum insn_code sync_compare_and_swap_cc
[NUM_MACHINE_MODES
];
232 enum insn_code sync_lock_test_and_set
[NUM_MACHINE_MODES
];
233 enum insn_code sync_lock_release
[NUM_MACHINE_MODES
];
235 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
237 #ifndef SLOW_UNALIGNED_ACCESS
238 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
241 /* This is run once per compilation to set up which modes can be used
242 directly in memory and to initialize the block move optab. */
245 init_expr_once (void)
248 enum machine_mode mode
;
253 /* Try indexing by frame ptr and try by stack ptr.
254 It is known that on the Convex the stack ptr isn't a valid index.
255 With luck, one or the other is valid on any machine. */
256 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
257 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
259 /* A scratch register we can modify in-place below to avoid
260 useless RTL allocations. */
261 reg
= gen_rtx_REG (VOIDmode
, -1);
263 insn
= rtx_alloc (INSN
);
264 pat
= gen_rtx_SET (0, NULL_RTX
, NULL_RTX
);
265 PATTERN (insn
) = pat
;
267 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
268 mode
= (enum machine_mode
) ((int) mode
+ 1))
272 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
273 PUT_MODE (mem
, mode
);
274 PUT_MODE (mem1
, mode
);
275 PUT_MODE (reg
, mode
);
277 /* See if there is some register that can be used in this mode and
278 directly loaded or stored from memory. */
280 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
281 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
282 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
285 if (! HARD_REGNO_MODE_OK (regno
, mode
))
291 SET_DEST (pat
) = reg
;
292 if (recog (pat
, insn
, &num_clobbers
) >= 0)
293 direct_load
[(int) mode
] = 1;
295 SET_SRC (pat
) = mem1
;
296 SET_DEST (pat
) = reg
;
297 if (recog (pat
, insn
, &num_clobbers
) >= 0)
298 direct_load
[(int) mode
] = 1;
301 SET_DEST (pat
) = mem
;
302 if (recog (pat
, insn
, &num_clobbers
) >= 0)
303 direct_store
[(int) mode
] = 1;
306 SET_DEST (pat
) = mem1
;
307 if (recog (pat
, insn
, &num_clobbers
) >= 0)
308 direct_store
[(int) mode
] = 1;
312 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
314 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
315 mode
= GET_MODE_WIDER_MODE (mode
))
317 enum machine_mode srcmode
;
318 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
319 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
323 ic
= can_extend_p (mode
, srcmode
, 0);
324 if (ic
== CODE_FOR_nothing
)
327 PUT_MODE (mem
, srcmode
);
329 if ((*insn_data
[ic
].operand
[1].predicate
) (mem
, srcmode
))
330 float_extend_from_mem
[mode
][srcmode
] = true;
335 /* This is run at the start of compiling a function. */
340 cfun
->expr
= ggc_alloc_cleared (sizeof (struct expr_status
));
343 /* Copy data from FROM to TO, where the machine modes are not the same.
344 Both modes may be integer, or both may be floating.
345 UNSIGNEDP should be nonzero if FROM is an unsigned type.
346 This causes zero-extension instead of sign-extension. */
349 convert_move (rtx to
, rtx from
, int unsignedp
)
351 enum machine_mode to_mode
= GET_MODE (to
);
352 enum machine_mode from_mode
= GET_MODE (from
);
353 int to_real
= GET_MODE_CLASS (to_mode
) == MODE_FLOAT
;
354 int from_real
= GET_MODE_CLASS (from_mode
) == MODE_FLOAT
;
358 /* rtx code for making an equivalent value. */
359 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
360 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
363 gcc_assert (to_real
== from_real
);
365 /* If the source and destination are already the same, then there's
370 /* If FROM is a SUBREG that indicates that we have already done at least
371 the required extension, strip it. We don't handle such SUBREGs as
374 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
375 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from
)))
376 >= GET_MODE_SIZE (to_mode
))
377 && SUBREG_PROMOTED_UNSIGNED_P (from
) == unsignedp
)
378 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
380 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
382 if (to_mode
== from_mode
383 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
385 emit_move_insn (to
, from
);
389 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
391 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
393 if (VECTOR_MODE_P (to_mode
))
394 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
396 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
398 emit_move_insn (to
, from
);
402 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
404 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
405 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
414 gcc_assert (GET_MODE_PRECISION (from_mode
)
415 != GET_MODE_PRECISION (to_mode
));
417 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
422 /* Try converting directly if the insn is supported. */
424 code
= tab
->handlers
[to_mode
][from_mode
].insn_code
;
425 if (code
!= CODE_FOR_nothing
)
427 emit_unop_insn (code
, to
, from
,
428 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
432 /* Otherwise use a libcall. */
433 libcall
= tab
->handlers
[to_mode
][from_mode
].libfunc
;
435 /* Is this conversion implemented yet? */
436 gcc_assert (libcall
);
439 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
441 insns
= get_insns ();
443 emit_libcall_block (insns
, to
, value
,
444 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
446 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
450 /* Handle pointer conversion. */ /* SPEE 900220. */
451 /* Targets are expected to provide conversion insns between PxImode and
452 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
453 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
455 enum machine_mode full_mode
456 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
458 gcc_assert (trunc_optab
->handlers
[to_mode
][full_mode
].insn_code
459 != CODE_FOR_nothing
);
461 if (full_mode
!= from_mode
)
462 from
= convert_to_mode (full_mode
, from
, unsignedp
);
463 emit_unop_insn (trunc_optab
->handlers
[to_mode
][full_mode
].insn_code
,
467 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
469 enum machine_mode full_mode
470 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
472 gcc_assert (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
473 != CODE_FOR_nothing
);
475 emit_unop_insn (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
,
477 if (to_mode
== full_mode
)
480 /* else proceed to integer conversions below. */
481 from_mode
= full_mode
;
484 /* Now both modes are integers. */
486 /* Handle expanding beyond a word. */
487 if (GET_MODE_BITSIZE (from_mode
) < GET_MODE_BITSIZE (to_mode
)
488 && GET_MODE_BITSIZE (to_mode
) > BITS_PER_WORD
)
495 enum machine_mode lowpart_mode
;
496 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
498 /* Try converting directly if the insn is supported. */
499 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
502 /* If FROM is a SUBREG, put it into a register. Do this
503 so that we always generate the same set of insns for
504 better cse'ing; if an intermediate assignment occurred,
505 we won't be doing the operation directly on the SUBREG. */
506 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
507 from
= force_reg (from_mode
, from
);
508 emit_unop_insn (code
, to
, from
, equiv_code
);
511 /* Next, try converting via full word. */
512 else if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
513 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
514 != CODE_FOR_nothing
))
518 if (reg_overlap_mentioned_p (to
, from
))
519 from
= force_reg (from_mode
, from
);
520 emit_insn (gen_rtx_CLOBBER (VOIDmode
, to
));
522 convert_move (gen_lowpart (word_mode
, to
), from
, unsignedp
);
523 emit_unop_insn (code
, to
,
524 gen_lowpart (word_mode
, to
), equiv_code
);
528 /* No special multiword conversion insn; do it by hand. */
531 /* Since we will turn this into a no conflict block, we must ensure
532 that the source does not overlap the target. */
534 if (reg_overlap_mentioned_p (to
, from
))
535 from
= force_reg (from_mode
, from
);
537 /* Get a copy of FROM widened to a word, if necessary. */
538 if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
)
539 lowpart_mode
= word_mode
;
541 lowpart_mode
= from_mode
;
543 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
545 lowpart
= gen_lowpart (lowpart_mode
, to
);
546 emit_move_insn (lowpart
, lowfrom
);
548 /* Compute the value to put in each remaining word. */
550 fill_value
= const0_rtx
;
555 && insn_data
[(int) CODE_FOR_slt
].operand
[0].mode
== word_mode
556 && STORE_FLAG_VALUE
== -1)
558 emit_cmp_insn (lowfrom
, const0_rtx
, NE
, NULL_RTX
,
560 fill_value
= gen_reg_rtx (word_mode
);
561 emit_insn (gen_slt (fill_value
));
567 = expand_shift (RSHIFT_EXPR
, lowpart_mode
, lowfrom
,
568 size_int (GET_MODE_BITSIZE (lowpart_mode
) - 1),
570 fill_value
= convert_to_mode (word_mode
, fill_value
, 1);
574 /* Fill the remaining words. */
575 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
577 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
578 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
580 gcc_assert (subword
);
582 if (fill_value
!= subword
)
583 emit_move_insn (subword
, fill_value
);
586 insns
= get_insns ();
589 emit_no_conflict_block (insns
, to
, from
, NULL_RTX
,
590 gen_rtx_fmt_e (equiv_code
, to_mode
, copy_rtx (from
)));
594 /* Truncating multi-word to a word or less. */
595 if (GET_MODE_BITSIZE (from_mode
) > BITS_PER_WORD
596 && GET_MODE_BITSIZE (to_mode
) <= BITS_PER_WORD
)
599 && ! MEM_VOLATILE_P (from
)
600 && direct_load
[(int) to_mode
]
601 && ! mode_dependent_address_p (XEXP (from
, 0)))
603 || GET_CODE (from
) == SUBREG
))
604 from
= force_reg (from_mode
, from
);
605 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
609 /* Now follow all the conversions between integers
610 no more than a word long. */
612 /* For truncation, usually we can just refer to FROM in a narrower mode. */
613 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
614 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
615 GET_MODE_BITSIZE (from_mode
)))
618 && ! MEM_VOLATILE_P (from
)
619 && direct_load
[(int) to_mode
]
620 && ! mode_dependent_address_p (XEXP (from
, 0)))
622 || GET_CODE (from
) == SUBREG
))
623 from
= force_reg (from_mode
, from
);
624 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
625 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
626 from
= copy_to_reg (from
);
627 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
631 /* Handle extension. */
632 if (GET_MODE_BITSIZE (to_mode
) > GET_MODE_BITSIZE (from_mode
))
634 /* Convert directly if that works. */
635 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
639 from
= force_not_mem (from
);
641 emit_unop_insn (code
, to
, from
, equiv_code
);
646 enum machine_mode intermediate
;
650 /* Search for a mode to convert via. */
651 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
652 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
653 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
655 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
656 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
657 GET_MODE_BITSIZE (intermediate
))))
658 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
659 != CODE_FOR_nothing
))
661 convert_move (to
, convert_to_mode (intermediate
, from
,
662 unsignedp
), unsignedp
);
666 /* No suitable intermediate mode.
667 Generate what we need with shifts. */
668 shift_amount
= build_int_cst (NULL_TREE
,
669 GET_MODE_BITSIZE (to_mode
)
670 - GET_MODE_BITSIZE (from_mode
));
671 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
672 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
674 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
677 emit_move_insn (to
, tmp
);
682 /* Support special truncate insns for certain modes. */
683 if (trunc_optab
->handlers
[to_mode
][from_mode
].insn_code
!= CODE_FOR_nothing
)
685 emit_unop_insn (trunc_optab
->handlers
[to_mode
][from_mode
].insn_code
,
690 /* Handle truncation of volatile memrefs, and so on;
691 the things that couldn't be truncated directly,
692 and for which there was no special instruction.
694 ??? Code above formerly short-circuited this, for most integer
695 mode pairs, with a force_reg in from_mode followed by a recursive
696 call to this routine. Appears always to have been wrong. */
697 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
))
699 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
700 emit_move_insn (to
, temp
);
704 /* Mode combination is not recognized. */
708 /* Return an rtx for a value that would result
709 from converting X to mode MODE.
710 Both X and MODE may be floating, or both integer.
711 UNSIGNEDP is nonzero if X is an unsigned value.
712 This can be done by referring to a part of X in place
713 or by copying to a new temporary with conversion. */
716 convert_to_mode (enum machine_mode mode
, rtx x
, int unsignedp
)
718 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
721 /* Return an rtx for a value that would result
722 from converting X from mode OLDMODE to mode MODE.
723 Both modes may be floating, or both integer.
724 UNSIGNEDP is nonzero if X is an unsigned value.
726 This can be done by referring to a part of X in place
727 or by copying to a new temporary with conversion.
729 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
732 convert_modes (enum machine_mode mode
, enum machine_mode oldmode
, rtx x
, int unsignedp
)
736 /* If FROM is a SUBREG that indicates that we have already done at least
737 the required extension, strip it. */
739 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
740 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
741 && SUBREG_PROMOTED_UNSIGNED_P (x
) == unsignedp
)
742 x
= gen_lowpart (mode
, x
);
744 if (GET_MODE (x
) != VOIDmode
)
745 oldmode
= GET_MODE (x
);
750 /* There is one case that we must handle specially: If we are converting
751 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
752 we are to interpret the constant as unsigned, gen_lowpart will do
753 the wrong if the constant appears negative. What we want to do is
754 make the high-order word of the constant zero, not all ones. */
756 if (unsignedp
&& GET_MODE_CLASS (mode
) == MODE_INT
757 && GET_MODE_BITSIZE (mode
) == 2 * HOST_BITS_PER_WIDE_INT
758 && GET_CODE (x
) == CONST_INT
&& INTVAL (x
) < 0)
760 HOST_WIDE_INT val
= INTVAL (x
);
762 if (oldmode
!= VOIDmode
763 && HOST_BITS_PER_WIDE_INT
> GET_MODE_BITSIZE (oldmode
))
765 int width
= GET_MODE_BITSIZE (oldmode
);
767 /* We need to zero extend VAL. */
768 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
771 return immed_double_const (val
, (HOST_WIDE_INT
) 0, mode
);
774 /* We can do this with a gen_lowpart if both desired and current modes
775 are integer, and this is either a constant integer, a register, or a
776 non-volatile MEM. Except for the constant case where MODE is no
777 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
779 if ((GET_CODE (x
) == CONST_INT
780 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
781 || (GET_MODE_CLASS (mode
) == MODE_INT
782 && GET_MODE_CLASS (oldmode
) == MODE_INT
783 && (GET_CODE (x
) == CONST_DOUBLE
784 || (GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (oldmode
)
785 && ((MEM_P (x
) && ! MEM_VOLATILE_P (x
)
786 && direct_load
[(int) mode
])
788 && (! HARD_REGISTER_P (x
)
789 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
790 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
791 GET_MODE_BITSIZE (GET_MODE (x
)))))))))
793 /* ?? If we don't know OLDMODE, we have to assume here that
794 X does not need sign- or zero-extension. This may not be
795 the case, but it's the best we can do. */
796 if (GET_CODE (x
) == CONST_INT
&& oldmode
!= VOIDmode
797 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (oldmode
))
799 HOST_WIDE_INT val
= INTVAL (x
);
800 int width
= GET_MODE_BITSIZE (oldmode
);
802 /* We must sign or zero-extend in this case. Start by
803 zero-extending, then sign extend if we need to. */
804 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
806 && (val
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
807 val
|= (HOST_WIDE_INT
) (-1) << width
;
809 return gen_int_mode (val
, mode
);
812 return gen_lowpart (mode
, x
);
815 /* Converting from integer constant into mode is always equivalent to an
817 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
819 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
820 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
823 temp
= gen_reg_rtx (mode
);
824 convert_move (temp
, x
, unsignedp
);
828 /* STORE_MAX_PIECES is the number of bytes at a time that we can
829 store efficiently. Due to internal GCC limitations, this is
830 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
831 for an immediate constant. */
833 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
835 /* Determine whether the LEN bytes can be moved by using several move
836 instructions. Return nonzero if a call to move_by_pieces should
840 can_move_by_pieces (unsigned HOST_WIDE_INT len
,
841 unsigned int align ATTRIBUTE_UNUSED
)
843 return MOVE_BY_PIECES_P (len
, align
);
846 /* Generate several move instructions to copy LEN bytes from block FROM to
847 block TO. (These are MEM rtx's with BLKmode).
849 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
850 used to push FROM to the stack.
852 ALIGN is maximum stack alignment we can assume.
854 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
855 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
859 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
860 unsigned int align
, int endp
)
862 struct move_by_pieces data
;
863 rtx to_addr
, from_addr
= XEXP (from
, 0);
864 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
865 enum machine_mode mode
= VOIDmode
, tmode
;
866 enum insn_code icode
;
868 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
871 data
.from_addr
= from_addr
;
874 to_addr
= XEXP (to
, 0);
877 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
878 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
880 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
887 #ifdef STACK_GROWS_DOWNWARD
893 data
.to_addr
= to_addr
;
896 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
897 || GET_CODE (from_addr
) == POST_INC
898 || GET_CODE (from_addr
) == POST_DEC
);
900 data
.explicit_inc_from
= 0;
901 data
.explicit_inc_to
= 0;
902 if (data
.reverse
) data
.offset
= len
;
905 /* If copying requires more than two move insns,
906 copy addresses to registers (to make displacements shorter)
907 and use post-increment if available. */
908 if (!(data
.autinc_from
&& data
.autinc_to
)
909 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
911 /* Find the mode of the largest move... */
912 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
913 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
914 if (GET_MODE_SIZE (tmode
) < max_size
)
917 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
919 data
.from_addr
= copy_addr_to_reg (plus_constant (from_addr
, len
));
920 data
.autinc_from
= 1;
921 data
.explicit_inc_from
= -1;
923 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
925 data
.from_addr
= copy_addr_to_reg (from_addr
);
926 data
.autinc_from
= 1;
927 data
.explicit_inc_from
= 1;
929 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
930 data
.from_addr
= copy_addr_to_reg (from_addr
);
931 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
933 data
.to_addr
= copy_addr_to_reg (plus_constant (to_addr
, len
));
935 data
.explicit_inc_to
= -1;
937 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
939 data
.to_addr
= copy_addr_to_reg (to_addr
);
941 data
.explicit_inc_to
= 1;
943 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
944 data
.to_addr
= copy_addr_to_reg (to_addr
);
947 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
948 if (align
>= GET_MODE_ALIGNMENT (tmode
))
949 align
= GET_MODE_ALIGNMENT (tmode
);
952 enum machine_mode xmode
;
954 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
956 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
957 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
958 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
961 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
964 /* First move what we can in the largest integer mode, then go to
965 successively smaller modes. */
969 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
970 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
971 if (GET_MODE_SIZE (tmode
) < max_size
)
974 if (mode
== VOIDmode
)
977 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
978 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
979 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
981 max_size
= GET_MODE_SIZE (mode
);
984 /* The code above should have handled everything. */
985 gcc_assert (!data
.len
);
991 gcc_assert (!data
.reverse
);
996 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
997 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
999 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
1002 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
1009 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
1017 /* Return number of insns required to move L bytes by pieces.
1018 ALIGN (in bits) is maximum alignment we can assume. */
1020 static unsigned HOST_WIDE_INT
1021 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
1022 unsigned int max_size
)
1024 unsigned HOST_WIDE_INT n_insns
= 0;
1025 enum machine_mode tmode
;
1027 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
1028 if (align
>= GET_MODE_ALIGNMENT (tmode
))
1029 align
= GET_MODE_ALIGNMENT (tmode
);
1032 enum machine_mode tmode
, xmode
;
1034 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
1036 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
1037 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
1038 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
1041 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
1044 while (max_size
> 1)
1046 enum machine_mode mode
= VOIDmode
;
1047 enum insn_code icode
;
1049 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1050 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
1051 if (GET_MODE_SIZE (tmode
) < max_size
)
1054 if (mode
== VOIDmode
)
1057 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
1058 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1059 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1061 max_size
= GET_MODE_SIZE (mode
);
1068 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1069 with move instructions for mode MODE. GENFUN is the gen_... function
1070 to make a move insn for that mode. DATA has all the other info. */
1073 move_by_pieces_1 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
1074 struct move_by_pieces
*data
)
1076 unsigned int size
= GET_MODE_SIZE (mode
);
1077 rtx to1
= NULL_RTX
, from1
;
1079 while (data
->len
>= size
)
1082 data
->offset
-= size
;
1086 if (data
->autinc_to
)
1087 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1090 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1093 if (data
->autinc_from
)
1094 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1097 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1099 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1100 emit_insn (gen_add2_insn (data
->to_addr
,
1101 GEN_INT (-(HOST_WIDE_INT
)size
)));
1102 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1103 emit_insn (gen_add2_insn (data
->from_addr
,
1104 GEN_INT (-(HOST_WIDE_INT
)size
)));
1107 emit_insn ((*genfun
) (to1
, from1
));
1110 #ifdef PUSH_ROUNDING
1111 emit_single_push_insn (mode
, from1
, NULL
);
1117 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1118 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
1119 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1120 emit_insn (gen_add2_insn (data
->from_addr
, GEN_INT (size
)));
1122 if (! data
->reverse
)
1123 data
->offset
+= size
;
1129 /* Emit code to move a block Y to a block X. This may be done with
1130 string-move instructions, with multiple scalar move instructions,
1131 or with a library call.
1133 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1134 SIZE is an rtx that says how long they are.
1135 ALIGN is the maximum alignment we can assume they have.
1136 METHOD describes what kind of copy this is, and what mechanisms may be used.
1138 Return the address of the new block, if memcpy is called and returns it,
1142 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1150 case BLOCK_OP_NORMAL
:
1151 case BLOCK_OP_TAILCALL
:
1152 may_use_call
= true;
1155 case BLOCK_OP_CALL_PARM
:
1156 may_use_call
= block_move_libcall_safe_for_call_parm ();
1158 /* Make inhibit_defer_pop nonzero around the library call
1159 to force it to pop the arguments right away. */
1163 case BLOCK_OP_NO_LIBCALL
:
1164 may_use_call
= false;
1171 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1173 gcc_assert (MEM_P (x
));
1174 gcc_assert (MEM_P (y
));
1177 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1178 block copy is more efficient for other large modes, e.g. DCmode. */
1179 x
= adjust_address (x
, BLKmode
, 0);
1180 y
= adjust_address (y
, BLKmode
, 0);
1182 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1183 can be incorrect is coming from __builtin_memcpy. */
1184 if (GET_CODE (size
) == CONST_INT
)
1186 if (INTVAL (size
) == 0)
1189 x
= shallow_copy_rtx (x
);
1190 y
= shallow_copy_rtx (y
);
1191 set_mem_size (x
, size
);
1192 set_mem_size (y
, size
);
1195 if (GET_CODE (size
) == CONST_INT
&& MOVE_BY_PIECES_P (INTVAL (size
), align
))
1196 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1197 else if (emit_block_move_via_movmem (x
, y
, size
, align
))
1199 else if (may_use_call
)
1200 retval
= emit_block_move_via_libcall (x
, y
, size
,
1201 method
== BLOCK_OP_TAILCALL
);
1203 emit_block_move_via_loop (x
, y
, size
, align
);
1205 if (method
== BLOCK_OP_CALL_PARM
)
1211 /* A subroutine of emit_block_move. Returns true if calling the
1212 block move libcall will not clobber any parameters which may have
1213 already been placed on the stack. */
1216 block_move_libcall_safe_for_call_parm (void)
1218 /* If arguments are pushed on the stack, then they're safe. */
1222 /* If registers go on the stack anyway, any argument is sure to clobber
1223 an outgoing argument. */
1224 #if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
1226 tree fn
= emit_block_move_libcall_fn (false);
1228 if (REG_PARM_STACK_SPACE (fn
) != 0)
1233 /* If any argument goes in memory, then it might clobber an outgoing
1236 CUMULATIVE_ARGS args_so_far
;
1239 fn
= emit_block_move_libcall_fn (false);
1240 INIT_CUMULATIVE_ARGS (args_so_far
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1242 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1243 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1245 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1246 rtx tmp
= FUNCTION_ARG (args_so_far
, mode
, NULL_TREE
, 1);
1247 if (!tmp
|| !REG_P (tmp
))
1249 if (targetm
.calls
.arg_partial_bytes (&args_so_far
, mode
, NULL
, 1))
1251 FUNCTION_ARG_ADVANCE (args_so_far
, mode
, NULL_TREE
, 1);
1257 /* A subroutine of emit_block_move. Expand a movmem pattern;
1258 return true if successful. */
1261 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
)
1263 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
1264 int save_volatile_ok
= volatile_ok
;
1265 enum machine_mode mode
;
1267 /* Since this is a move insn, we don't care about volatility. */
1270 /* Try the most limited insn first, because there's no point
1271 including more than one in the machine description unless
1272 the more limited one has some advantage. */
1274 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1275 mode
= GET_MODE_WIDER_MODE (mode
))
1277 enum insn_code code
= movmem_optab
[(int) mode
];
1278 insn_operand_predicate_fn pred
;
1280 if (code
!= CODE_FOR_nothing
1281 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1282 here because if SIZE is less than the mode mask, as it is
1283 returned by the macro, it will definitely be less than the
1284 actual mode mask. */
1285 && ((GET_CODE (size
) == CONST_INT
1286 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1287 <= (GET_MODE_MASK (mode
) >> 1)))
1288 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
1289 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
1290 || (*pred
) (x
, BLKmode
))
1291 && ((pred
= insn_data
[(int) code
].operand
[1].predicate
) == 0
1292 || (*pred
) (y
, BLKmode
))
1293 && ((pred
= insn_data
[(int) code
].operand
[3].predicate
) == 0
1294 || (*pred
) (opalign
, VOIDmode
)))
1297 rtx last
= get_last_insn ();
1300 op2
= convert_to_mode (mode
, size
, 1);
1301 pred
= insn_data
[(int) code
].operand
[2].predicate
;
1302 if (pred
!= 0 && ! (*pred
) (op2
, mode
))
1303 op2
= copy_to_mode_reg (mode
, op2
);
1305 /* ??? When called via emit_block_move_for_call, it'd be
1306 nice if there were some way to inform the backend, so
1307 that it doesn't fail the expansion because it thinks
1308 emitting the libcall would be more efficient. */
1310 pat
= GEN_FCN ((int) code
) (x
, y
, op2
, opalign
);
1314 volatile_ok
= save_volatile_ok
;
1318 delete_insns_since (last
);
1322 volatile_ok
= save_volatile_ok
;
1326 /* A subroutine of emit_block_move. Expand a call to memcpy.
1327 Return the return value from memcpy, 0 otherwise. */
1330 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
, bool tailcall
)
1332 rtx dst_addr
, src_addr
;
1333 tree call_expr
, arg_list
, fn
, src_tree
, dst_tree
, size_tree
;
1334 enum machine_mode size_mode
;
1337 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1338 pseudos. We can then place those new pseudos into a VAR_DECL and
1341 dst_addr
= copy_to_mode_reg (Pmode
, XEXP (dst
, 0));
1342 src_addr
= copy_to_mode_reg (Pmode
, XEXP (src
, 0));
1344 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1345 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1347 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1348 src_tree
= make_tree (ptr_type_node
, src_addr
);
1350 size_mode
= TYPE_MODE (sizetype
);
1352 size
= convert_to_mode (size_mode
, size
, 1);
1353 size
= copy_to_mode_reg (size_mode
, size
);
1355 /* It is incorrect to use the libcall calling conventions to call
1356 memcpy in this context. This could be a user call to memcpy and
1357 the user may wish to examine the return value from memcpy. For
1358 targets where libcalls and normal calls have different conventions
1359 for returning pointers, we could end up generating incorrect code. */
1361 size_tree
= make_tree (sizetype
, size
);
1363 fn
= emit_block_move_libcall_fn (true);
1364 arg_list
= tree_cons (NULL_TREE
, size_tree
, NULL_TREE
);
1365 arg_list
= tree_cons (NULL_TREE
, src_tree
, arg_list
);
1366 arg_list
= tree_cons (NULL_TREE
, dst_tree
, arg_list
);
1368 /* Now we have to build up the CALL_EXPR itself. */
1369 call_expr
= build1 (ADDR_EXPR
, build_pointer_type (TREE_TYPE (fn
)), fn
);
1370 call_expr
= build3 (CALL_EXPR
, TREE_TYPE (TREE_TYPE (fn
)),
1371 call_expr
, arg_list
, NULL_TREE
);
1372 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1374 retval
= expand_expr (call_expr
, NULL_RTX
, VOIDmode
, 0);
1379 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1380 for the function we use for block copies. The first time FOR_CALL
1381 is true, we call assemble_external. */
1383 static GTY(()) tree block_move_fn
;
1386 init_block_move_fn (const char *asmspec
)
1392 fn
= get_identifier ("memcpy");
1393 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1394 const_ptr_type_node
, sizetype
,
1397 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
1398 DECL_EXTERNAL (fn
) = 1;
1399 TREE_PUBLIC (fn
) = 1;
1400 DECL_ARTIFICIAL (fn
) = 1;
1401 TREE_NOTHROW (fn
) = 1;
1407 set_user_assembler_name (block_move_fn
, asmspec
);
1411 emit_block_move_libcall_fn (int for_call
)
1413 static bool emitted_extern
;
1416 init_block_move_fn (NULL
);
1418 if (for_call
&& !emitted_extern
)
1420 emitted_extern
= true;
1421 make_decl_rtl (block_move_fn
);
1422 assemble_external (block_move_fn
);
1425 return block_move_fn
;
1428 /* A subroutine of emit_block_move. Copy the data via an explicit
1429 loop. This is used only when libcalls are forbidden. */
1430 /* ??? It'd be nice to copy in hunks larger than QImode. */
1433 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1434 unsigned int align ATTRIBUTE_UNUSED
)
1436 rtx cmp_label
, top_label
, iter
, x_addr
, y_addr
, tmp
;
1437 enum machine_mode iter_mode
;
1439 iter_mode
= GET_MODE (size
);
1440 if (iter_mode
== VOIDmode
)
1441 iter_mode
= word_mode
;
1443 top_label
= gen_label_rtx ();
1444 cmp_label
= gen_label_rtx ();
1445 iter
= gen_reg_rtx (iter_mode
);
1447 emit_move_insn (iter
, const0_rtx
);
1449 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1450 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1451 do_pending_stack_adjust ();
1453 emit_jump (cmp_label
);
1454 emit_label (top_label
);
1456 tmp
= convert_modes (Pmode
, iter_mode
, iter
, true);
1457 x_addr
= gen_rtx_PLUS (Pmode
, x_addr
, tmp
);
1458 y_addr
= gen_rtx_PLUS (Pmode
, y_addr
, tmp
);
1459 x
= change_address (x
, QImode
, x_addr
);
1460 y
= change_address (y
, QImode
, y_addr
);
1462 emit_move_insn (x
, y
);
1464 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1465 true, OPTAB_LIB_WIDEN
);
1467 emit_move_insn (iter
, tmp
);
1469 emit_label (cmp_label
);
1471 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1475 /* Copy all or part of a value X into registers starting at REGNO.
1476 The number of registers to be filled is NREGS. */
1479 move_block_to_reg (int regno
, rtx x
, int nregs
, enum machine_mode mode
)
1482 #ifdef HAVE_load_multiple
1490 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
1491 x
= validize_mem (force_const_mem (mode
, x
));
1493 /* See if the machine can do this with a load multiple insn. */
1494 #ifdef HAVE_load_multiple
1495 if (HAVE_load_multiple
)
1497 last
= get_last_insn ();
1498 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1506 delete_insns_since (last
);
1510 for (i
= 0; i
< nregs
; i
++)
1511 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1512 operand_subword_force (x
, i
, mode
));
1515 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1516 The number of registers to be filled is NREGS. */
1519 move_block_from_reg (int regno
, rtx x
, int nregs
)
1526 /* See if the machine can do this with a store multiple insn. */
1527 #ifdef HAVE_store_multiple
1528 if (HAVE_store_multiple
)
1530 rtx last
= get_last_insn ();
1531 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1539 delete_insns_since (last
);
1543 for (i
= 0; i
< nregs
; i
++)
1545 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1549 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1553 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1554 ORIG, where ORIG is a non-consecutive group of registers represented by
1555 a PARALLEL. The clone is identical to the original except in that the
1556 original set of registers is replaced by a new set of pseudo registers.
1557 The new set has the same modes as the original set. */
1560 gen_group_rtx (rtx orig
)
1565 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1567 length
= XVECLEN (orig
, 0);
1568 tmps
= alloca (sizeof (rtx
) * length
);
1570 /* Skip a NULL entry in first slot. */
1571 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1576 for (; i
< length
; i
++)
1578 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1579 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1581 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1584 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1587 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1588 except that values are placed in TMPS[i], and must later be moved
1589 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1592 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1596 enum machine_mode m
= GET_MODE (orig_src
);
1598 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1601 && !SCALAR_INT_MODE_P (m
)
1602 && !MEM_P (orig_src
)
1603 && GET_CODE (orig_src
) != CONCAT
)
1605 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1606 if (imode
== BLKmode
)
1607 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
, 0);
1609 src
= gen_reg_rtx (imode
);
1610 if (imode
!= BLKmode
)
1611 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1612 emit_move_insn (src
, orig_src
);
1613 /* ...and back again. */
1614 if (imode
!= BLKmode
)
1615 src
= gen_lowpart (imode
, src
);
1616 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1620 /* Check for a NULL entry, used to indicate that the parameter goes
1621 both on the stack and in registers. */
1622 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1627 /* Process the pieces. */
1628 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1630 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1631 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1632 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1635 /* Handle trailing fragments that run over the size of the struct. */
1636 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1638 /* Arrange to shift the fragment to where it belongs.
1639 extract_bit_field loads to the lsb of the reg. */
1641 #ifdef BLOCK_REG_PADDING
1642 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1643 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1648 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1649 bytelen
= ssize
- bytepos
;
1650 gcc_assert (bytelen
> 0);
1653 /* If we won't be loading directly from memory, protect the real source
1654 from strange tricks we might play; but make sure that the source can
1655 be loaded directly into the destination. */
1657 if (!MEM_P (orig_src
)
1658 && (!CONSTANT_P (orig_src
)
1659 || (GET_MODE (orig_src
) != mode
1660 && GET_MODE (orig_src
) != VOIDmode
)))
1662 if (GET_MODE (orig_src
) == VOIDmode
)
1663 src
= gen_reg_rtx (mode
);
1665 src
= gen_reg_rtx (GET_MODE (orig_src
));
1667 emit_move_insn (src
, orig_src
);
1670 /* Optimize the access just a bit. */
1672 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1673 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1674 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1675 && bytelen
== GET_MODE_SIZE (mode
))
1677 tmps
[i
] = gen_reg_rtx (mode
);
1678 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1680 else if (COMPLEX_MODE_P (mode
)
1681 && GET_MODE (src
) == mode
1682 && bytelen
== GET_MODE_SIZE (mode
))
1683 /* Let emit_move_complex do the bulk of the work. */
1685 else if (GET_CODE (src
) == CONCAT
)
1687 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1688 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1690 if ((bytepos
== 0 && bytelen
== slen0
)
1691 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1693 /* The following assumes that the concatenated objects all
1694 have the same size. In this case, a simple calculation
1695 can be used to determine the object and the bit field
1697 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1698 if (! CONSTANT_P (tmps
[i
])
1699 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1700 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1701 (bytepos
% slen0
) * BITS_PER_UNIT
,
1702 1, NULL_RTX
, mode
, mode
);
1708 gcc_assert (!bytepos
);
1709 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1710 emit_move_insn (mem
, src
);
1711 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1712 0, 1, NULL_RTX
, mode
, mode
);
1715 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1716 SIMD register, which is currently broken. While we get GCC
1717 to emit proper RTL for these cases, let's dump to memory. */
1718 else if (VECTOR_MODE_P (GET_MODE (dst
))
1721 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1724 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1725 emit_move_insn (mem
, src
);
1726 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1728 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1729 && XVECLEN (dst
, 0) > 1)
1730 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE(dst
), bytepos
);
1731 else if (CONSTANT_P (src
)
1732 || (REG_P (src
) && GET_MODE (src
) == mode
))
1735 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1736 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
1740 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1741 build_int_cst (NULL_TREE
, shift
), tmps
[i
], 0);
1745 /* Emit code to move a block SRC of type TYPE to a block DST,
1746 where DST is non-consecutive registers represented by a PARALLEL.
1747 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1751 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1756 tmps
= alloca (sizeof (rtx
) * XVECLEN (dst
, 0));
1757 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1759 /* Copy the extracted pieces into the proper (probable) hard regs. */
1760 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1762 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1765 emit_move_insn (d
, tmps
[i
]);
1769 /* Similar, but load SRC into new pseudos in a format that looks like
1770 PARALLEL. This can later be fed to emit_group_move to get things
1771 in the right place. */
1774 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1779 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1780 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1782 /* Convert the vector to look just like the original PARALLEL, except
1783 with the computed values. */
1784 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1786 rtx e
= XVECEXP (parallel
, 0, i
);
1787 rtx d
= XEXP (e
, 0);
1791 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1792 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1794 RTVEC_ELT (vec
, i
) = e
;
1797 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1800 /* Emit code to move a block SRC to block DST, where SRC and DST are
1801 non-consecutive groups of registers, each represented by a PARALLEL. */
1804 emit_group_move (rtx dst
, rtx src
)
1808 gcc_assert (GET_CODE (src
) == PARALLEL
1809 && GET_CODE (dst
) == PARALLEL
1810 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1812 /* Skip first entry if NULL. */
1813 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1814 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1815 XEXP (XVECEXP (src
, 0, i
), 0));
1818 /* Move a group of registers represented by a PARALLEL into pseudos. */
1821 emit_group_move_into_temps (rtx src
)
1823 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1826 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1828 rtx e
= XVECEXP (src
, 0, i
);
1829 rtx d
= XEXP (e
, 0);
1832 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1833 RTVEC_ELT (vec
, i
) = e
;
1836 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1839 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1840 where SRC is non-consecutive registers represented by a PARALLEL.
1841 SSIZE represents the total size of block ORIG_DST, or -1 if not
1845 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1849 enum machine_mode m
= GET_MODE (orig_dst
);
1851 gcc_assert (GET_CODE (src
) == PARALLEL
);
1853 if (!SCALAR_INT_MODE_P (m
)
1854 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1856 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1857 if (imode
== BLKmode
)
1858 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
, 0);
1860 dst
= gen_reg_rtx (imode
);
1861 emit_group_store (dst
, src
, type
, ssize
);
1862 if (imode
!= BLKmode
)
1863 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1864 emit_move_insn (orig_dst
, dst
);
1868 /* Check for a NULL entry, used to indicate that the parameter goes
1869 both on the stack and in registers. */
1870 if (XEXP (XVECEXP (src
, 0, 0), 0))
1875 tmps
= alloca (sizeof (rtx
) * XVECLEN (src
, 0));
1877 /* Copy the (probable) hard regs into pseudos. */
1878 for (i
= start
; i
< XVECLEN (src
, 0); i
++)
1880 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1881 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1882 emit_move_insn (tmps
[i
], reg
);
1885 /* If we won't be storing directly into memory, protect the real destination
1886 from strange tricks we might play. */
1888 if (GET_CODE (dst
) == PARALLEL
)
1892 /* We can get a PARALLEL dst if there is a conditional expression in
1893 a return statement. In that case, the dst and src are the same,
1894 so no action is necessary. */
1895 if (rtx_equal_p (dst
, src
))
1898 /* It is unclear if we can ever reach here, but we may as well handle
1899 it. Allocate a temporary, and split this into a store/load to/from
1902 temp
= assign_stack_temp (GET_MODE (dst
), ssize
, 0);
1903 emit_group_store (temp
, src
, type
, ssize
);
1904 emit_group_load (dst
, temp
, type
, ssize
);
1907 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1909 dst
= gen_reg_rtx (GET_MODE (orig_dst
));
1910 /* Make life a bit easier for combine. */
1911 emit_move_insn (dst
, CONST0_RTX (GET_MODE (orig_dst
)));
1914 /* Process the pieces. */
1915 for (i
= start
; i
< XVECLEN (src
, 0); i
++)
1917 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
1918 enum machine_mode mode
= GET_MODE (tmps
[i
]);
1919 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1922 /* Handle trailing fragments that run over the size of the struct. */
1923 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1925 /* store_bit_field always takes its value from the lsb.
1926 Move the fragment to the lsb if it's not already there. */
1928 #ifdef BLOCK_REG_PADDING
1929 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
1930 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1936 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1937 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
1938 build_int_cst (NULL_TREE
, shift
),
1941 bytelen
= ssize
- bytepos
;
1944 if (GET_CODE (dst
) == CONCAT
)
1946 if (bytepos
+ bytelen
<= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
1947 dest
= XEXP (dst
, 0);
1948 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
1950 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
1951 dest
= XEXP (dst
, 1);
1955 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
1956 dest
= assign_stack_temp (GET_MODE (dest
),
1957 GET_MODE_SIZE (GET_MODE (dest
)), 0);
1958 emit_move_insn (adjust_address (dest
, GET_MODE (tmps
[i
]), bytepos
),
1965 /* Optimize the access just a bit. */
1967 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
1968 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
1969 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1970 && bytelen
== GET_MODE_SIZE (mode
))
1971 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
1973 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
1977 /* Copy from the pseudo into the (probable) hard reg. */
1978 if (orig_dst
!= dst
)
1979 emit_move_insn (orig_dst
, dst
);
1982 /* Generate code to copy a BLKmode object of TYPE out of a
1983 set of registers starting with SRCREG into TGTBLK. If TGTBLK
1984 is null, a stack temporary is created. TGTBLK is returned.
1986 The purpose of this routine is to handle functions that return
1987 BLKmode structures in registers. Some machines (the PA for example)
1988 want to return all small structures in registers regardless of the
1989 structure's alignment. */
1992 copy_blkmode_from_reg (rtx tgtblk
, rtx srcreg
, tree type
)
1994 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
1995 rtx src
= NULL
, dst
= NULL
;
1996 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
1997 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2001 tgtblk
= assign_temp (build_qualified_type (type
,
2003 | TYPE_QUAL_CONST
)),
2005 preserve_temp_slots (tgtblk
);
2008 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2009 into a new pseudo which is a full word. */
2011 if (GET_MODE (srcreg
) != BLKmode
2012 && GET_MODE_SIZE (GET_MODE (srcreg
)) < UNITS_PER_WORD
)
2013 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2015 /* If the structure doesn't take up a whole number of words, see whether
2016 SRCREG is padded on the left or on the right. If it's on the left,
2017 set PADDING_CORRECTION to the number of bits to skip.
2019 In most ABIs, the structure will be returned at the least end of
2020 the register, which translates to right padding on little-endian
2021 targets and left padding on big-endian targets. The opposite
2022 holds if the structure is returned at the most significant
2023 end of the register. */
2024 if (bytes
% UNITS_PER_WORD
!= 0
2025 && (targetm
.calls
.return_in_msb (type
)
2027 : BYTES_BIG_ENDIAN
))
2029 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2031 /* Copy the structure BITSIZE bites at a time.
2033 We could probably emit more efficient code for machines which do not use
2034 strict alignment, but it doesn't seem worth the effort at the current
2036 for (bitpos
= 0, xbitpos
= padding_correction
;
2037 bitpos
< bytes
* BITS_PER_UNIT
;
2038 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2040 /* We need a new source operand each time xbitpos is on a
2041 word boundary and when xbitpos == padding_correction
2042 (the first time through). */
2043 if (xbitpos
% BITS_PER_WORD
== 0
2044 || xbitpos
== padding_correction
)
2045 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
,
2048 /* We need a new destination operand each time bitpos is on
2050 if (bitpos
% BITS_PER_WORD
== 0)
2051 dst
= operand_subword (tgtblk
, bitpos
/ BITS_PER_WORD
, 1, BLKmode
);
2053 /* Use xbitpos for the source extraction (right justified) and
2054 xbitpos for the destination store (left justified). */
2055 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, word_mode
,
2056 extract_bit_field (src
, bitsize
,
2057 xbitpos
% BITS_PER_WORD
, 1,
2058 NULL_RTX
, word_mode
, word_mode
));
2064 /* Add a USE expression for REG to the (possibly empty) list pointed
2065 to by CALL_FUSAGE. REG must denote a hard register. */
2068 use_reg (rtx
*call_fusage
, rtx reg
)
2070 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2073 = gen_rtx_EXPR_LIST (VOIDmode
,
2074 gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2077 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2078 starting at REGNO. All of these registers must be hard registers. */
2081 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2085 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2087 for (i
= 0; i
< nregs
; i
++)
2088 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2091 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2092 PARALLEL REGS. This is for calls that pass values in multiple
2093 non-contiguous locations. The Irix 6 ABI has examples of this. */
2096 use_group_regs (rtx
*call_fusage
, rtx regs
)
2100 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2102 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2104 /* A NULL entry means the parameter goes both on the stack and in
2105 registers. This can also be a MEM for targets that pass values
2106 partially on the stack and partially in registers. */
2107 if (reg
!= 0 && REG_P (reg
))
2108 use_reg (call_fusage
, reg
);
2113 /* Determine whether the LEN bytes generated by CONSTFUN can be
2114 stored to memory using several move instructions. CONSTFUNDATA is
2115 a pointer which will be passed as argument in every CONSTFUN call.
2116 ALIGN is maximum alignment we can assume. Return nonzero if a
2117 call to store_by_pieces should succeed. */
2120 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2121 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2122 void *constfundata
, unsigned int align
)
2124 unsigned HOST_WIDE_INT l
;
2125 unsigned int max_size
;
2126 HOST_WIDE_INT offset
= 0;
2127 enum machine_mode mode
, tmode
;
2128 enum insn_code icode
;
2135 if (! STORE_BY_PIECES_P (len
, align
))
2138 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2139 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2140 align
= GET_MODE_ALIGNMENT (tmode
);
2143 enum machine_mode xmode
;
2145 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2147 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2148 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2149 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2152 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2155 /* We would first store what we can in the largest integer mode, then go to
2156 successively smaller modes. */
2159 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2164 max_size
= STORE_MAX_PIECES
+ 1;
2165 while (max_size
> 1)
2167 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2168 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2169 if (GET_MODE_SIZE (tmode
) < max_size
)
2172 if (mode
== VOIDmode
)
2175 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
2176 if (icode
!= CODE_FOR_nothing
2177 && align
>= GET_MODE_ALIGNMENT (mode
))
2179 unsigned int size
= GET_MODE_SIZE (mode
);
2186 cst
= (*constfun
) (constfundata
, offset
, mode
);
2187 if (!LEGITIMATE_CONSTANT_P (cst
))
2197 max_size
= GET_MODE_SIZE (mode
);
2200 /* The code above should have handled everything. */
2207 /* Generate several move instructions to store LEN bytes generated by
2208 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2209 pointer which will be passed as argument in every CONSTFUN call.
2210 ALIGN is maximum alignment we can assume.
2211 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2212 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2216 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2217 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2218 void *constfundata
, unsigned int align
, int endp
)
2220 struct store_by_pieces data
;
2224 gcc_assert (endp
!= 2);
2228 gcc_assert (STORE_BY_PIECES_P (len
, align
));
2229 data
.constfun
= constfun
;
2230 data
.constfundata
= constfundata
;
2233 store_by_pieces_1 (&data
, align
);
2238 gcc_assert (!data
.reverse
);
2243 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2244 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2246 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
2249 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2256 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2264 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2265 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2268 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2270 struct store_by_pieces data
;
2275 data
.constfun
= clear_by_pieces_1
;
2276 data
.constfundata
= NULL
;
2279 store_by_pieces_1 (&data
, align
);
2282 /* Callback routine for clear_by_pieces.
2283 Return const0_rtx unconditionally. */
2286 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2287 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2288 enum machine_mode mode ATTRIBUTE_UNUSED
)
2293 /* Subroutine of clear_by_pieces and store_by_pieces.
2294 Generate several move instructions to store LEN bytes of block TO. (A MEM
2295 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2298 store_by_pieces_1 (struct store_by_pieces
*data ATTRIBUTE_UNUSED
,
2299 unsigned int align ATTRIBUTE_UNUSED
)
2301 rtx to_addr
= XEXP (data
->to
, 0);
2302 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2303 enum machine_mode mode
= VOIDmode
, tmode
;
2304 enum insn_code icode
;
2307 data
->to_addr
= to_addr
;
2309 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2310 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2312 data
->explicit_inc_to
= 0;
2314 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2316 data
->offset
= data
->len
;
2318 /* If storing requires more than two move insns,
2319 copy addresses to registers (to make displacements shorter)
2320 and use post-increment if available. */
2321 if (!data
->autinc_to
2322 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2324 /* Determine the main mode we'll be using. */
2325 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2326 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2327 if (GET_MODE_SIZE (tmode
) < max_size
)
2330 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2332 data
->to_addr
= copy_addr_to_reg (plus_constant (to_addr
, data
->len
));
2333 data
->autinc_to
= 1;
2334 data
->explicit_inc_to
= -1;
2337 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2338 && ! data
->autinc_to
)
2340 data
->to_addr
= copy_addr_to_reg (to_addr
);
2341 data
->autinc_to
= 1;
2342 data
->explicit_inc_to
= 1;
2345 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2346 data
->to_addr
= copy_addr_to_reg (to_addr
);
2349 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2350 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2351 align
= GET_MODE_ALIGNMENT (tmode
);
2354 enum machine_mode xmode
;
2356 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2358 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2359 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2360 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2363 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2366 /* First store what we can in the largest integer mode, then go to
2367 successively smaller modes. */
2369 while (max_size
> 1)
2371 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2372 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2373 if (GET_MODE_SIZE (tmode
) < max_size
)
2376 if (mode
== VOIDmode
)
2379 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
2380 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2381 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2383 max_size
= GET_MODE_SIZE (mode
);
2386 /* The code above should have handled everything. */
2387 gcc_assert (!data
->len
);
2390 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2391 with move instructions for mode MODE. GENFUN is the gen_... function
2392 to make a move insn for that mode. DATA has all the other info. */
2395 store_by_pieces_2 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
2396 struct store_by_pieces
*data
)
2398 unsigned int size
= GET_MODE_SIZE (mode
);
2401 while (data
->len
>= size
)
2404 data
->offset
-= size
;
2406 if (data
->autinc_to
)
2407 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2410 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2412 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2413 emit_insn (gen_add2_insn (data
->to_addr
,
2414 GEN_INT (-(HOST_WIDE_INT
) size
)));
2416 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2417 emit_insn ((*genfun
) (to1
, cst
));
2419 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2420 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
2422 if (! data
->reverse
)
2423 data
->offset
+= size
;
2429 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2430 its length in bytes. */
2433 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
2435 enum machine_mode mode
= GET_MODE (object
);
2438 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2440 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2441 just move a zero. Otherwise, do this a piece at a time. */
2443 && GET_CODE (size
) == CONST_INT
2444 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2446 rtx zero
= CONST0_RTX (mode
);
2449 emit_move_insn (object
, zero
);
2453 if (COMPLEX_MODE_P (mode
))
2455 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2458 write_complex_part (object
, zero
, 0);
2459 write_complex_part (object
, zero
, 1);
2465 if (size
== const0_rtx
)
2468 align
= MEM_ALIGN (object
);
2470 if (GET_CODE (size
) == CONST_INT
2471 && CLEAR_BY_PIECES_P (INTVAL (size
), align
))
2472 clear_by_pieces (object
, INTVAL (size
), align
);
2473 else if (clear_storage_via_clrmem (object
, size
, align
))
2476 return clear_storage_via_libcall (object
, size
,
2477 method
== BLOCK_OP_TAILCALL
);
2482 /* A subroutine of clear_storage. Expand a clrmem pattern;
2483 return true if successful. */
2486 clear_storage_via_clrmem (rtx object
, rtx size
, unsigned int align
)
2488 /* Try the most limited insn first, because there's no point
2489 including more than one in the machine description unless
2490 the more limited one has some advantage. */
2492 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
2493 enum machine_mode mode
;
2495 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2496 mode
= GET_MODE_WIDER_MODE (mode
))
2498 enum insn_code code
= clrmem_optab
[(int) mode
];
2499 insn_operand_predicate_fn pred
;
2501 if (code
!= CODE_FOR_nothing
2502 /* We don't need MODE to be narrower than
2503 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2504 the mode mask, as it is returned by the macro, it will
2505 definitely be less than the actual mode mask. */
2506 && ((GET_CODE (size
) == CONST_INT
2507 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2508 <= (GET_MODE_MASK (mode
) >> 1)))
2509 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
2510 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
2511 || (*pred
) (object
, BLKmode
))
2512 && ((pred
= insn_data
[(int) code
].operand
[2].predicate
) == 0
2513 || (*pred
) (opalign
, VOIDmode
)))
2516 rtx last
= get_last_insn ();
2519 op1
= convert_to_mode (mode
, size
, 1);
2520 pred
= insn_data
[(int) code
].operand
[1].predicate
;
2521 if (pred
!= 0 && ! (*pred
) (op1
, mode
))
2522 op1
= copy_to_mode_reg (mode
, op1
);
2524 pat
= GEN_FCN ((int) code
) (object
, op1
, opalign
);
2531 delete_insns_since (last
);
2538 /* A subroutine of clear_storage. Expand a call to memset.
2539 Return the return value of memset, 0 otherwise. */
2542 clear_storage_via_libcall (rtx object
, rtx size
, bool tailcall
)
2544 tree call_expr
, arg_list
, fn
, object_tree
, size_tree
;
2545 enum machine_mode size_mode
;
2548 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2549 place those into new pseudos into a VAR_DECL and use them later. */
2551 object
= copy_to_mode_reg (Pmode
, XEXP (object
, 0));
2553 size_mode
= TYPE_MODE (sizetype
);
2554 size
= convert_to_mode (size_mode
, size
, 1);
2555 size
= copy_to_mode_reg (size_mode
, size
);
2557 /* It is incorrect to use the libcall calling conventions to call
2558 memset in this context. This could be a user call to memset and
2559 the user may wish to examine the return value from memset. For
2560 targets where libcalls and normal calls have different conventions
2561 for returning pointers, we could end up generating incorrect code. */
2563 object_tree
= make_tree (ptr_type_node
, object
);
2564 size_tree
= make_tree (sizetype
, size
);
2566 fn
= clear_storage_libcall_fn (true);
2567 arg_list
= tree_cons (NULL_TREE
, size_tree
, NULL_TREE
);
2568 arg_list
= tree_cons (NULL_TREE
, integer_zero_node
, arg_list
);
2569 arg_list
= tree_cons (NULL_TREE
, object_tree
, arg_list
);
2571 /* Now we have to build up the CALL_EXPR itself. */
2572 call_expr
= build1 (ADDR_EXPR
, build_pointer_type (TREE_TYPE (fn
)), fn
);
2573 call_expr
= build3 (CALL_EXPR
, TREE_TYPE (TREE_TYPE (fn
)),
2574 call_expr
, arg_list
, NULL_TREE
);
2575 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2577 retval
= expand_expr (call_expr
, NULL_RTX
, VOIDmode
, 0);
2582 /* A subroutine of clear_storage_via_libcall. Create the tree node
2583 for the function we use for block clears. The first time FOR_CALL
2584 is true, we call assemble_external. */
2586 static GTY(()) tree block_clear_fn
;
2589 init_block_clear_fn (const char *asmspec
)
2591 if (!block_clear_fn
)
2595 fn
= get_identifier ("memset");
2596 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2597 integer_type_node
, sizetype
,
2600 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
2601 DECL_EXTERNAL (fn
) = 1;
2602 TREE_PUBLIC (fn
) = 1;
2603 DECL_ARTIFICIAL (fn
) = 1;
2604 TREE_NOTHROW (fn
) = 1;
2606 block_clear_fn
= fn
;
2610 set_user_assembler_name (block_clear_fn
, asmspec
);
2614 clear_storage_libcall_fn (int for_call
)
2616 static bool emitted_extern
;
2618 if (!block_clear_fn
)
2619 init_block_clear_fn (NULL
);
2621 if (for_call
&& !emitted_extern
)
2623 emitted_extern
= true;
2624 make_decl_rtl (block_clear_fn
);
2625 assemble_external (block_clear_fn
);
2628 return block_clear_fn
;
2631 /* Write to one of the components of the complex value CPLX. Write VAL to
2632 the real part if IMAG_P is false, and the imaginary part if its true. */
2635 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
2637 enum machine_mode cmode
;
2638 enum machine_mode imode
;
2641 if (GET_CODE (cplx
) == CONCAT
)
2643 emit_move_insn (XEXP (cplx
, imag_p
), val
);
2647 cmode
= GET_MODE (cplx
);
2648 imode
= GET_MODE_INNER (cmode
);
2649 ibitsize
= GET_MODE_BITSIZE (imode
);
2651 /* If the sub-object is at least word sized, then we know that subregging
2652 will work. This special case is important, since store_bit_field
2653 wants to operate on integer modes, and there's rarely an OImode to
2654 correspond to TCmode. */
2655 if (ibitsize
>= BITS_PER_WORD
2656 /* For hard regs we have exact predicates. Assume we can split
2657 the original object if it spans an even number of hard regs.
2658 This special case is important for SCmode on 64-bit platforms
2659 where the natural size of floating-point regs is 32-bit. */
2661 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2662 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0)
2663 /* For MEMs we always try to make a "subreg", that is to adjust
2664 the MEM, because store_bit_field may generate overly
2665 convoluted RTL for sub-word fields. */
2668 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
2669 imag_p
? GET_MODE_SIZE (imode
) : 0);
2672 emit_move_insn (part
, val
);
2676 /* simplify_gen_subreg may fail for sub-word MEMs. */
2677 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2680 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, imode
, val
);
2683 /* Extract one of the components of the complex value CPLX. Extract the
2684 real part if IMAG_P is false, and the imaginary part if it's true. */
2687 read_complex_part (rtx cplx
, bool imag_p
)
2689 enum machine_mode cmode
, imode
;
2692 if (GET_CODE (cplx
) == CONCAT
)
2693 return XEXP (cplx
, imag_p
);
2695 cmode
= GET_MODE (cplx
);
2696 imode
= GET_MODE_INNER (cmode
);
2697 ibitsize
= GET_MODE_BITSIZE (imode
);
2699 /* Special case reads from complex constants that got spilled to memory. */
2700 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
2702 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
2703 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
2705 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
2706 if (CONSTANT_CLASS_P (part
))
2707 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
2711 /* If the sub-object is at least word sized, then we know that subregging
2712 will work. This special case is important, since extract_bit_field
2713 wants to operate on integer modes, and there's rarely an OImode to
2714 correspond to TCmode. */
2715 if (ibitsize
>= BITS_PER_WORD
2716 /* For hard regs we have exact predicates. Assume we can split
2717 the original object if it spans an even number of hard regs.
2718 This special case is important for SCmode on 64-bit platforms
2719 where the natural size of floating-point regs is 32-bit. */
2721 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2722 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0)
2723 /* For MEMs we always try to make a "subreg", that is to adjust
2724 the MEM, because extract_bit_field may generate overly
2725 convoluted RTL for sub-word fields. */
2728 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
2729 imag_p
? GET_MODE_SIZE (imode
) : 0);
2733 /* simplify_gen_subreg may fail for sub-word MEMs. */
2734 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2737 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
2738 true, NULL_RTX
, imode
, imode
);
2741 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2742 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2743 represented in NEW_MODE. If FORCE is true, this will never happen, as
2744 we'll force-create a SUBREG if needed. */
2747 emit_move_change_mode (enum machine_mode new_mode
,
2748 enum machine_mode old_mode
, rtx x
, bool force
)
2752 if (reload_in_progress
&& MEM_P (x
))
2754 /* We can't use gen_lowpart here because it may call change_address
2755 which is not appropriate if we were called when a reload was in
2756 progress. We don't have to worry about changing the address since
2757 the size in bytes is supposed to be the same. Copy the MEM to
2758 change the mode and move any substitutions from the old MEM to
2761 ret
= adjust_address_nv (x
, new_mode
, 0);
2762 copy_replacements (x
, ret
);
2766 /* Note that we do want simplify_subreg's behavior of validating
2767 that the new mode is ok for a hard register. If we were to use
2768 simplify_gen_subreg, we would create the subreg, but would
2769 probably run into the target not being able to implement it. */
2770 /* Except, of course, when FORCE is true, when this is exactly what
2771 we want. Which is needed for CCmodes on some targets. */
2773 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
2775 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
2781 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2782 an integer mode of the same size as MODE. Returns the instruction
2783 emitted, or NULL if such a move could not be generated. */
2786 emit_move_via_integer (enum machine_mode mode
, rtx x
, rtx y
)
2788 enum machine_mode imode
;
2789 enum insn_code code
;
2791 /* There must exist a mode of the exact size we require. */
2792 imode
= int_mode_for_mode (mode
);
2793 if (imode
== BLKmode
)
2796 /* The target must support moves in this mode. */
2797 code
= mov_optab
->handlers
[imode
].insn_code
;
2798 if (code
== CODE_FOR_nothing
)
2801 x
= emit_move_change_mode (imode
, mode
, x
, false);
2804 y
= emit_move_change_mode (imode
, mode
, y
, false);
2807 return emit_insn (GEN_FCN (code
) (x
, y
));
2810 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2811 Return an equivalent MEM that does not use an auto-increment. */
2814 emit_move_resolve_push (enum machine_mode mode
, rtx x
)
2816 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
2817 HOST_WIDE_INT adjust
;
2820 adjust
= GET_MODE_SIZE (mode
);
2821 #ifdef PUSH_ROUNDING
2822 adjust
= PUSH_ROUNDING (adjust
);
2824 if (code
== PRE_DEC
|| code
== POST_DEC
)
2827 /* Do not use anti_adjust_stack, since we don't want to update
2828 stack_pointer_delta. */
2829 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
2830 GEN_INT (adjust
), stack_pointer_rtx
,
2831 0, OPTAB_LIB_WIDEN
);
2832 if (temp
!= stack_pointer_rtx
)
2833 emit_move_insn (stack_pointer_rtx
, temp
);
2839 temp
= stack_pointer_rtx
;
2842 temp
= plus_constant (stack_pointer_rtx
, -GET_MODE_SIZE (mode
));
2845 temp
= plus_constant (stack_pointer_rtx
, GET_MODE_SIZE (mode
));
2851 return replace_equiv_address (x
, temp
);
2854 /* A subroutine of emit_move_complex. Generate a move from Y into X.
2855 X is known to satisfy push_operand, and MODE is known to be complex.
2856 Returns the last instruction emitted. */
2859 emit_move_complex_push (enum machine_mode mode
, rtx x
, rtx y
)
2861 enum machine_mode submode
= GET_MODE_INNER (mode
);
2864 #ifdef PUSH_ROUNDING
2865 unsigned int submodesize
= GET_MODE_SIZE (submode
);
2867 /* In case we output to the stack, but the size is smaller than the
2868 machine can push exactly, we need to use move instructions. */
2869 if (PUSH_ROUNDING (submodesize
) != submodesize
)
2871 x
= emit_move_resolve_push (mode
, x
);
2872 return emit_move_insn (x
, y
);
2876 /* Note that the real part always precedes the imag part in memory
2877 regardless of machine's endianness. */
2878 switch (GET_CODE (XEXP (x
, 0)))
2892 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
2893 read_complex_part (y
, imag_first
));
2894 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
2895 read_complex_part (y
, !imag_first
));
2898 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2899 MODE is known to be complex. Returns the last instruction emitted. */
2902 emit_move_complex (enum machine_mode mode
, rtx x
, rtx y
)
2906 /* Need to take special care for pushes, to maintain proper ordering
2907 of the data, and possibly extra padding. */
2908 if (push_operand (x
, mode
))
2909 return emit_move_complex_push (mode
, x
, y
);
2911 /* See if we can coerce the target into moving both values at once. */
2913 /* Move floating point as parts. */
2914 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
2915 && mov_optab
->handlers
[GET_MODE_INNER (mode
)].insn_code
!= CODE_FOR_nothing
)
2917 /* Not possible if the values are inherently not adjacent. */
2918 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
2920 /* Is possible if both are registers (or subregs of registers). */
2921 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
2923 /* If one of the operands is a memory, and alignment constraints
2924 are friendly enough, we may be able to do combined memory operations.
2925 We do not attempt this if Y is a constant because that combination is
2926 usually better with the by-parts thing below. */
2927 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
2928 && (!STRICT_ALIGNMENT
2929 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
2938 /* For memory to memory moves, optimal behavior can be had with the
2939 existing block move logic. */
2940 if (MEM_P (x
) && MEM_P (y
))
2942 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
2943 BLOCK_OP_NO_LIBCALL
);
2944 return get_last_insn ();
2947 ret
= emit_move_via_integer (mode
, x
, y
);
2952 /* Show the output dies here. This is necessary for SUBREGs
2953 of pseudos since we cannot track their lifetimes correctly;
2954 hard regs shouldn't appear here except as return values. */
2955 if (!reload_completed
&& !reload_in_progress
2956 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
2957 emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
2959 write_complex_part (x
, read_complex_part (y
, false), false);
2960 write_complex_part (x
, read_complex_part (y
, true), true);
2961 return get_last_insn ();
2964 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2965 MODE is known to be MODE_CC. Returns the last instruction emitted. */
2968 emit_move_ccmode (enum machine_mode mode
, rtx x
, rtx y
)
2972 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
2975 enum insn_code code
= mov_optab
->handlers
[CCmode
].insn_code
;
2976 if (code
!= CODE_FOR_nothing
)
2978 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
2979 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
2980 return emit_insn (GEN_FCN (code
) (x
, y
));
2984 /* Otherwise, find the MODE_INT mode of the same width. */
2985 ret
= emit_move_via_integer (mode
, x
, y
);
2986 gcc_assert (ret
!= NULL
);
2990 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2991 MODE is any multi-word or full-word mode that lacks a move_insn
2992 pattern. Note that you will get better code if you define such
2993 patterns, even if they must turn into multiple assembler instructions. */
2996 emit_move_multi_word (enum machine_mode mode
, rtx x
, rtx y
)
3003 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
3005 /* If X is a push on the stack, do the push now and replace
3006 X with a reference to the stack pointer. */
3007 if (push_operand (x
, mode
))
3008 x
= emit_move_resolve_push (mode
, x
);
3010 /* If we are in reload, see if either operand is a MEM whose address
3011 is scheduled for replacement. */
3012 if (reload_in_progress
&& MEM_P (x
)
3013 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3014 x
= replace_equiv_address_nv (x
, inner
);
3015 if (reload_in_progress
&& MEM_P (y
)
3016 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3017 y
= replace_equiv_address_nv (y
, inner
);
3021 need_clobber
= false;
3023 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3026 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3027 rtx ypart
= operand_subword (y
, i
, 1, mode
);
3029 /* If we can't get a part of Y, put Y into memory if it is a
3030 constant. Otherwise, force it into a register. Then we must
3031 be able to get a part of Y. */
3032 if (ypart
== 0 && CONSTANT_P (y
))
3034 y
= force_const_mem (mode
, y
);
3035 ypart
= operand_subword (y
, i
, 1, mode
);
3037 else if (ypart
== 0)
3038 ypart
= operand_subword_force (y
, i
, mode
);
3040 gcc_assert (xpart
&& ypart
);
3042 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3044 last_insn
= emit_move_insn (xpart
, ypart
);
3050 /* Show the output dies here. This is necessary for SUBREGs
3051 of pseudos since we cannot track their lifetimes correctly;
3052 hard regs shouldn't appear here except as return values.
3053 We never want to emit such a clobber after reload. */
3055 && ! (reload_in_progress
|| reload_completed
)
3056 && need_clobber
!= 0)
3057 emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
3064 /* Low level part of emit_move_insn.
3065 Called just like emit_move_insn, but assumes X and Y
3066 are basically valid. */
3069 emit_move_insn_1 (rtx x
, rtx y
)
3071 enum machine_mode mode
= GET_MODE (x
);
3072 enum insn_code code
;
3074 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3076 code
= mov_optab
->handlers
[mode
].insn_code
;
3077 if (code
!= CODE_FOR_nothing
)
3078 return emit_insn (GEN_FCN (code
) (x
, y
));
3080 /* Expand complex moves by moving real part and imag part. */
3081 if (COMPLEX_MODE_P (mode
))
3082 return emit_move_complex (mode
, x
, y
);
3084 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3085 return emit_move_ccmode (mode
, x
, y
);
3087 /* Try using a move pattern for the corresponding integer mode. This is
3088 only safe when simplify_subreg can convert MODE constants into integer
3089 constants. At present, it can only do this reliably if the value
3090 fits within a HOST_WIDE_INT. */
3091 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3093 rtx ret
= emit_move_via_integer (mode
, x
, y
);
3098 return emit_move_multi_word (mode
, x
, y
);
3101 /* Generate code to copy Y into X.
3102 Both Y and X must have the same mode, except that
3103 Y can be a constant with VOIDmode.
3104 This mode cannot be BLKmode; use emit_block_move for that.
3106 Return the last instruction emitted. */
3109 emit_move_insn (rtx x
, rtx y
)
3111 enum machine_mode mode
= GET_MODE (x
);
3112 rtx y_cst
= NULL_RTX
;
3115 gcc_assert (mode
!= BLKmode
3116 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3121 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3122 && (last_insn
= compress_float_constant (x
, y
)))
3127 if (!LEGITIMATE_CONSTANT_P (y
))
3129 y
= force_const_mem (mode
, y
);
3131 /* If the target's cannot_force_const_mem prevented the spill,
3132 assume that the target's move expanders will also take care
3133 of the non-legitimate constant. */
3139 /* If X or Y are memory references, verify that their addresses are valid
3142 && ((! memory_address_p (GET_MODE (x
), XEXP (x
, 0))
3143 && ! push_operand (x
, GET_MODE (x
)))
3145 && CONSTANT_ADDRESS_P (XEXP (x
, 0)))))
3146 x
= validize_mem (x
);
3149 && (! memory_address_p (GET_MODE (y
), XEXP (y
, 0))
3151 && CONSTANT_ADDRESS_P (XEXP (y
, 0)))))
3152 y
= validize_mem (y
);
3154 gcc_assert (mode
!= BLKmode
);
3156 last_insn
= emit_move_insn_1 (x
, y
);
3158 if (y_cst
&& REG_P (x
)
3159 && (set
= single_set (last_insn
)) != NULL_RTX
3160 && SET_DEST (set
) == x
3161 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3162 set_unique_reg_note (last_insn
, REG_EQUAL
, y_cst
);
3167 /* If Y is representable exactly in a narrower mode, and the target can
3168 perform the extension directly from constant or memory, then emit the
3169 move as an extension. */
3172 compress_float_constant (rtx x
, rtx y
)
3174 enum machine_mode dstmode
= GET_MODE (x
);
3175 enum machine_mode orig_srcmode
= GET_MODE (y
);
3176 enum machine_mode srcmode
;
3179 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3181 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3182 srcmode
!= orig_srcmode
;
3183 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3186 rtx trunc_y
, last_insn
;
3188 /* Skip if the target can't extend this way. */
3189 ic
= can_extend_p (dstmode
, srcmode
, 0);
3190 if (ic
== CODE_FOR_nothing
)
3193 /* Skip if the narrowed value isn't exact. */
3194 if (! exact_real_truncate (srcmode
, &r
))
3197 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3199 if (LEGITIMATE_CONSTANT_P (trunc_y
))
3201 /* Skip if the target needs extra instructions to perform
3203 if (! (*insn_data
[ic
].operand
[1].predicate
) (trunc_y
, srcmode
))
3206 else if (float_extend_from_mem
[dstmode
][srcmode
])
3207 trunc_y
= validize_mem (force_const_mem (srcmode
, trunc_y
));
3211 emit_unop_insn (ic
, x
, trunc_y
, UNKNOWN
);
3212 last_insn
= get_last_insn ();
3215 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3223 /* Pushing data onto the stack. */
3225 /* Push a block of length SIZE (perhaps variable)
3226 and return an rtx to address the beginning of the block.
3227 The value may be virtual_outgoing_args_rtx.
3229 EXTRA is the number of bytes of padding to push in addition to SIZE.
3230 BELOW nonzero means this padding comes at low addresses;
3231 otherwise, the padding comes at high addresses. */
3234 push_block (rtx size
, int extra
, int below
)
3238 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3239 if (CONSTANT_P (size
))
3240 anti_adjust_stack (plus_constant (size
, extra
));
3241 else if (REG_P (size
) && extra
== 0)
3242 anti_adjust_stack (size
);
3245 temp
= copy_to_mode_reg (Pmode
, size
);
3247 temp
= expand_binop (Pmode
, add_optab
, temp
, GEN_INT (extra
),
3248 temp
, 0, OPTAB_LIB_WIDEN
);
3249 anti_adjust_stack (temp
);
3252 #ifndef STACK_GROWS_DOWNWARD
3258 temp
= virtual_outgoing_args_rtx
;
3259 if (extra
!= 0 && below
)
3260 temp
= plus_constant (temp
, extra
);
3264 if (GET_CODE (size
) == CONST_INT
)
3265 temp
= plus_constant (virtual_outgoing_args_rtx
,
3266 -INTVAL (size
) - (below
? 0 : extra
));
3267 else if (extra
!= 0 && !below
)
3268 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3269 negate_rtx (Pmode
, plus_constant (size
, extra
)));
3271 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3272 negate_rtx (Pmode
, size
));
3275 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3278 #ifdef PUSH_ROUNDING
3280 /* Emit single push insn. */
3283 emit_single_push_insn (enum machine_mode mode
, rtx x
, tree type
)
3286 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3288 enum insn_code icode
;
3289 insn_operand_predicate_fn pred
;
3291 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3292 /* If there is push pattern, use it. Otherwise try old way of throwing
3293 MEM representing push operation to move expander. */
3294 icode
= push_optab
->handlers
[(int) mode
].insn_code
;
3295 if (icode
!= CODE_FOR_nothing
)
3297 if (((pred
= insn_data
[(int) icode
].operand
[0].predicate
)
3298 && !((*pred
) (x
, mode
))))
3299 x
= force_reg (mode
, x
);
3300 emit_insn (GEN_FCN (icode
) (x
));
3303 if (GET_MODE_SIZE (mode
) == rounded_size
)
3304 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
3305 /* If we are to pad downward, adjust the stack pointer first and
3306 then store X into the stack location using an offset. This is
3307 because emit_move_insn does not know how to pad; it does not have
3309 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
3311 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
3312 HOST_WIDE_INT offset
;
3314 emit_move_insn (stack_pointer_rtx
,
3315 expand_binop (Pmode
,
3316 #ifdef STACK_GROWS_DOWNWARD
3322 GEN_INT (rounded_size
),
3323 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
3325 offset
= (HOST_WIDE_INT
) padding_size
;
3326 #ifdef STACK_GROWS_DOWNWARD
3327 if (STACK_PUSH_CODE
== POST_DEC
)
3328 /* We have already decremented the stack pointer, so get the
3330 offset
+= (HOST_WIDE_INT
) rounded_size
;
3332 if (STACK_PUSH_CODE
== POST_INC
)
3333 /* We have already incremented the stack pointer, so get the
3335 offset
-= (HOST_WIDE_INT
) rounded_size
;
3337 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
, GEN_INT (offset
));
3341 #ifdef STACK_GROWS_DOWNWARD
3342 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3343 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3344 GEN_INT (-(HOST_WIDE_INT
) rounded_size
));
3346 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3347 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3348 GEN_INT (rounded_size
));
3350 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
3353 dest
= gen_rtx_MEM (mode
, dest_addr
);
3357 set_mem_attributes (dest
, type
, 1);
3359 if (flag_optimize_sibling_calls
)
3360 /* Function incoming arguments may overlap with sibling call
3361 outgoing arguments and we cannot allow reordering of reads
3362 from function arguments with stores to outgoing arguments
3363 of sibling calls. */
3364 set_mem_alias_set (dest
, 0);
3366 emit_move_insn (dest
, x
);
3370 /* Generate code to push X onto the stack, assuming it has mode MODE and
3372 MODE is redundant except when X is a CONST_INT (since they don't
3374 SIZE is an rtx for the size of data to be copied (in bytes),
3375 needed only if X is BLKmode.
3377 ALIGN (in bits) is maximum alignment we can assume.
3379 If PARTIAL and REG are both nonzero, then copy that many of the first
3380 bytes of X into registers starting with REG, and push the rest of X.
3381 The amount of space pushed is decreased by PARTIAL bytes.
3382 REG must be a hard register in this case.
3383 If REG is zero but PARTIAL is not, take any all others actions for an
3384 argument partially in registers, but do not actually load any
3387 EXTRA is the amount in bytes of extra space to leave next to this arg.
3388 This is ignored if an argument block has already been allocated.
3390 On a machine that lacks real push insns, ARGS_ADDR is the address of
3391 the bottom of the argument block for this call. We use indexing off there
3392 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3393 argument block has not been preallocated.
3395 ARGS_SO_FAR is the size of args previously pushed for this call.
3397 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3398 for arguments passed in registers. If nonzero, it will be the number
3399 of bytes required. */
3402 emit_push_insn (rtx x
, enum machine_mode mode
, tree type
, rtx size
,
3403 unsigned int align
, int partial
, rtx reg
, int extra
,
3404 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
3408 enum direction stack_direction
3409 #ifdef STACK_GROWS_DOWNWARD
3415 /* Decide where to pad the argument: `downward' for below,
3416 `upward' for above, or `none' for don't pad it.
3417 Default is below for small data on big-endian machines; else above. */
3418 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
3420 /* Invert direction if stack is post-decrement.
3422 if (STACK_PUSH_CODE
== POST_DEC
)
3423 if (where_pad
!= none
)
3424 where_pad
= (where_pad
== downward
? upward
: downward
);
3428 if (mode
== BLKmode
)
3430 /* Copy a block into the stack, entirely or partially. */
3437 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3438 used
= partial
- offset
;
3442 /* USED is now the # of bytes we need not copy to the stack
3443 because registers will take care of them. */
3446 xinner
= adjust_address (xinner
, BLKmode
, used
);
3448 /* If the partial register-part of the arg counts in its stack size,
3449 skip the part of stack space corresponding to the registers.
3450 Otherwise, start copying to the beginning of the stack space,
3451 by setting SKIP to 0. */
3452 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
3454 #ifdef PUSH_ROUNDING
3455 /* Do it with several push insns if that doesn't take lots of insns
3456 and if there is no difficulty with push insns that skip bytes
3457 on the stack for alignment purposes. */
3460 && GET_CODE (size
) == CONST_INT
3462 && MEM_ALIGN (xinner
) >= align
3463 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size
) - used
, align
))
3464 /* Here we avoid the case of a structure whose weak alignment
3465 forces many pushes of a small amount of data,
3466 and such small pushes do rounding that causes trouble. */
3467 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
3468 || align
>= BIGGEST_ALIGNMENT
3469 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
3470 == (align
/ BITS_PER_UNIT
)))
3471 && PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
3473 /* Push padding now if padding above and stack grows down,
3474 or if padding below and stack grows up.
3475 But if space already allocated, this has already been done. */
3476 if (extra
&& args_addr
== 0
3477 && where_pad
!= none
&& where_pad
!= stack_direction
)
3478 anti_adjust_stack (GEN_INT (extra
));
3480 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
3483 #endif /* PUSH_ROUNDING */
3487 /* Otherwise make space on the stack and copy the data
3488 to the address of that space. */
3490 /* Deduct words put into registers from the size we must copy. */
3493 if (GET_CODE (size
) == CONST_INT
)
3494 size
= GEN_INT (INTVAL (size
) - used
);
3496 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
3497 GEN_INT (used
), NULL_RTX
, 0,
3501 /* Get the address of the stack space.
3502 In this case, we do not deal with EXTRA separately.
3503 A single stack adjust will do. */
3506 temp
= push_block (size
, extra
, where_pad
== downward
);
3509 else if (GET_CODE (args_so_far
) == CONST_INT
)
3510 temp
= memory_address (BLKmode
,
3511 plus_constant (args_addr
,
3512 skip
+ INTVAL (args_so_far
)));
3514 temp
= memory_address (BLKmode
,
3515 plus_constant (gen_rtx_PLUS (Pmode
,
3520 if (!ACCUMULATE_OUTGOING_ARGS
)
3522 /* If the source is referenced relative to the stack pointer,
3523 copy it to another register to stabilize it. We do not need
3524 to do this if we know that we won't be changing sp. */
3526 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
3527 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
3528 temp
= copy_to_reg (temp
);
3531 target
= gen_rtx_MEM (BLKmode
, temp
);
3533 /* We do *not* set_mem_attributes here, because incoming arguments
3534 may overlap with sibling call outgoing arguments and we cannot
3535 allow reordering of reads from function arguments with stores
3536 to outgoing arguments of sibling calls. We do, however, want
3537 to record the alignment of the stack slot. */
3538 /* ALIGN may well be better aligned than TYPE, e.g. due to
3539 PARM_BOUNDARY. Assume the caller isn't lying. */
3540 set_mem_align (target
, align
);
3542 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
3545 else if (partial
> 0)
3547 /* Scalar partly in registers. */
3549 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
3552 /* # bytes of start of argument
3553 that we must make space for but need not store. */
3554 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3555 int args_offset
= INTVAL (args_so_far
);
3558 /* Push padding now if padding above and stack grows down,
3559 or if padding below and stack grows up.
3560 But if space already allocated, this has already been done. */
3561 if (extra
&& args_addr
== 0
3562 && where_pad
!= none
&& where_pad
!= stack_direction
)
3563 anti_adjust_stack (GEN_INT (extra
));
3565 /* If we make space by pushing it, we might as well push
3566 the real data. Otherwise, we can leave OFFSET nonzero
3567 and leave the space uninitialized. */
3571 /* Now NOT_STACK gets the number of words that we don't need to
3572 allocate on the stack. Convert OFFSET to words too. */
3573 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
3574 offset
/= UNITS_PER_WORD
;
3576 /* If the partial register-part of the arg counts in its stack size,
3577 skip the part of stack space corresponding to the registers.
3578 Otherwise, start copying to the beginning of the stack space,
3579 by setting SKIP to 0. */
3580 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
3582 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
3583 x
= validize_mem (force_const_mem (mode
, x
));
3585 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3586 SUBREGs of such registers are not allowed. */
3587 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3588 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
3589 x
= copy_to_reg (x
);
3591 /* Loop over all the words allocated on the stack for this arg. */
3592 /* We can do it by words, because any scalar bigger than a word
3593 has a size a multiple of a word. */
3594 #ifndef PUSH_ARGS_REVERSED
3595 for (i
= not_stack
; i
< size
; i
++)
3597 for (i
= size
- 1; i
>= not_stack
; i
--)
3599 if (i
>= not_stack
+ offset
)
3600 emit_push_insn (operand_subword_force (x
, i
, mode
),
3601 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
3603 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
3605 reg_parm_stack_space
, alignment_pad
);
3612 /* Push padding now if padding above and stack grows down,
3613 or if padding below and stack grows up.
3614 But if space already allocated, this has already been done. */
3615 if (extra
&& args_addr
== 0
3616 && where_pad
!= none
&& where_pad
!= stack_direction
)
3617 anti_adjust_stack (GEN_INT (extra
));
3619 #ifdef PUSH_ROUNDING
3620 if (args_addr
== 0 && PUSH_ARGS
)
3621 emit_single_push_insn (mode
, x
, type
);
3625 if (GET_CODE (args_so_far
) == CONST_INT
)
3627 = memory_address (mode
,
3628 plus_constant (args_addr
,
3629 INTVAL (args_so_far
)));
3631 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
3633 dest
= gen_rtx_MEM (mode
, addr
);
3635 /* We do *not* set_mem_attributes here, because incoming arguments
3636 may overlap with sibling call outgoing arguments and we cannot
3637 allow reordering of reads from function arguments with stores
3638 to outgoing arguments of sibling calls. We do, however, want
3639 to record the alignment of the stack slot. */
3640 /* ALIGN may well be better aligned than TYPE, e.g. due to
3641 PARM_BOUNDARY. Assume the caller isn't lying. */
3642 set_mem_align (dest
, align
);
3644 emit_move_insn (dest
, x
);
3648 /* If part should go in registers, copy that part
3649 into the appropriate registers. Do this now, at the end,
3650 since mem-to-mem copies above may do function calls. */
3651 if (partial
> 0 && reg
!= 0)
3653 /* Handle calls that pass values in multiple non-contiguous locations.
3654 The Irix 6 ABI has examples of this. */
3655 if (GET_CODE (reg
) == PARALLEL
)
3656 emit_group_load (reg
, x
, type
, -1);
3659 gcc_assert (partial
% UNITS_PER_WORD
== 0);
3660 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
3664 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
3665 anti_adjust_stack (GEN_INT (extra
));
3667 if (alignment_pad
&& args_addr
== 0)
3668 anti_adjust_stack (alignment_pad
);
3671 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3675 get_subtarget (rtx x
)
3679 /* Only registers can be subtargets. */
3681 /* Don't use hard regs to avoid extending their life. */
3682 || REGNO (x
) < FIRST_PSEUDO_REGISTER
3686 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3687 FIELD is a bitfield. Returns true if the optimization was successful,
3688 and there's nothing else to do. */
3691 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
3692 unsigned HOST_WIDE_INT bitpos
,
3693 enum machine_mode mode1
, rtx str_rtx
,
3696 enum machine_mode str_mode
= GET_MODE (str_rtx
);
3697 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
3702 if (mode1
!= VOIDmode
3703 || bitsize
>= BITS_PER_WORD
3704 || str_bitsize
> BITS_PER_WORD
3705 || TREE_SIDE_EFFECTS (to
)
3706 || TREE_THIS_VOLATILE (to
))
3710 if (!BINARY_CLASS_P (src
)
3711 || TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
3714 op0
= TREE_OPERAND (src
, 0);
3715 op1
= TREE_OPERAND (src
, 1);
3718 if (!operand_equal_p (to
, op0
, 0))
3721 if (MEM_P (str_rtx
))
3723 unsigned HOST_WIDE_INT offset1
;
3725 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
3726 str_mode
= word_mode
;
3727 str_mode
= get_best_mode (bitsize
, bitpos
,
3728 MEM_ALIGN (str_rtx
), str_mode
, 0);
3729 if (str_mode
== VOIDmode
)
3731 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
3734 bitpos
%= str_bitsize
;
3735 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
3736 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
3738 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
3741 /* If the bit field covers the whole REG/MEM, store_field
3742 will likely generate better code. */
3743 if (bitsize
>= str_bitsize
)
3746 /* We can't handle fields split across multiple entities. */
3747 if (bitpos
+ bitsize
> str_bitsize
)
3750 if (BYTES_BIG_ENDIAN
)
3751 bitpos
= str_bitsize
- bitpos
- bitsize
;
3753 switch (TREE_CODE (src
))
3757 /* For now, just optimize the case of the topmost bitfield
3758 where we don't need to do any masking and also
3759 1 bit bitfields where xor can be used.
3760 We might win by one instruction for the other bitfields
3761 too if insv/extv instructions aren't used, so that
3762 can be added later. */
3763 if (bitpos
+ bitsize
!= str_bitsize
3764 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
3767 value
= expand_expr (op1
, NULL_RTX
, str_mode
, 0);
3768 value
= convert_modes (str_mode
,
3769 TYPE_MODE (TREE_TYPE (op1
)), value
,
3770 TYPE_UNSIGNED (TREE_TYPE (op1
)));
3772 /* We may be accessing data outside the field, which means
3773 we can alias adjacent data. */
3774 if (MEM_P (str_rtx
))
3776 str_rtx
= shallow_copy_rtx (str_rtx
);
3777 set_mem_alias_set (str_rtx
, 0);
3778 set_mem_expr (str_rtx
, 0);
3781 binop
= TREE_CODE (src
) == PLUS_EXPR
? add_optab
: sub_optab
;
3782 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
3784 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
3787 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
,
3788 build_int_cst (NULL_TREE
, bitpos
),
3790 result
= expand_binop (str_mode
, binop
, str_rtx
,
3791 value
, str_rtx
, 1, OPTAB_WIDEN
);
3792 if (result
!= str_rtx
)
3793 emit_move_insn (str_rtx
, result
);
3798 if (TREE_CODE (op1
) != INTEGER_CST
)
3800 value
= expand_expr (op1
, NULL_RTX
, GET_MODE (str_rtx
), 0);
3801 value
= convert_modes (GET_MODE (str_rtx
),
3802 TYPE_MODE (TREE_TYPE (op1
)), value
,
3803 TYPE_UNSIGNED (TREE_TYPE (op1
)));
3805 /* We may be accessing data outside the field, which means
3806 we can alias adjacent data. */
3807 if (MEM_P (str_rtx
))
3809 str_rtx
= shallow_copy_rtx (str_rtx
);
3810 set_mem_alias_set (str_rtx
, 0);
3811 set_mem_expr (str_rtx
, 0);
3814 binop
= TREE_CODE (src
) == BIT_IOR_EXPR
? ior_optab
: xor_optab
;
3815 if (bitpos
+ bitsize
!= GET_MODE_BITSIZE (GET_MODE (str_rtx
)))
3817 rtx mask
= GEN_INT (((unsigned HOST_WIDE_INT
) 1 << bitsize
)
3819 value
= expand_and (GET_MODE (str_rtx
), value
, mask
,
3822 value
= expand_shift (LSHIFT_EXPR
, GET_MODE (str_rtx
), value
,
3823 build_int_cst (NULL_TREE
, bitpos
),
3825 result
= expand_binop (GET_MODE (str_rtx
), binop
, str_rtx
,
3826 value
, str_rtx
, 1, OPTAB_WIDEN
);
3827 if (result
!= str_rtx
)
3828 emit_move_insn (str_rtx
, result
);
3839 /* Expand an assignment that stores the value of FROM into TO. */
3842 expand_assignment (tree to
, tree from
)
3847 /* Don't crash if the lhs of the assignment was erroneous. */
3849 if (TREE_CODE (to
) == ERROR_MARK
)
3851 result
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
3855 /* Assignment of a structure component needs special treatment
3856 if the structure component's rtx is not simply a MEM.
3857 Assignment of an array element at a constant index, and assignment of
3858 an array element in an unaligned packed structure field, has the same
3860 if (handled_component_p (to
)
3861 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
3863 enum machine_mode mode1
;
3864 HOST_WIDE_INT bitsize
, bitpos
;
3871 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
3872 &unsignedp
, &volatilep
, true);
3874 /* If we are going to use store_bit_field and extract_bit_field,
3875 make sure to_rtx will be safe for multiple use. */
3877 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, 0);
3881 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
3883 gcc_assert (MEM_P (to_rtx
));
3885 #ifdef POINTERS_EXTEND_UNSIGNED
3886 if (GET_MODE (offset_rtx
) != Pmode
)
3887 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
3889 if (GET_MODE (offset_rtx
) != ptr_mode
)
3890 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
3893 /* A constant address in TO_RTX can have VOIDmode, we must not try
3894 to call force_reg for that case. Avoid that case. */
3896 && GET_MODE (to_rtx
) == BLKmode
3897 && GET_MODE (XEXP (to_rtx
, 0)) != VOIDmode
3899 && (bitpos
% bitsize
) == 0
3900 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
3901 && MEM_ALIGN (to_rtx
) == GET_MODE_ALIGNMENT (mode1
))
3903 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
3907 to_rtx
= offset_address (to_rtx
, offset_rtx
,
3908 highest_pow2_factor_for_target (to
,
3912 /* Handle expand_expr of a complex value returning a CONCAT. */
3913 if (GET_CODE (to_rtx
) == CONCAT
)
3915 if (TREE_CODE (TREE_TYPE (from
)) == COMPLEX_TYPE
)
3917 gcc_assert (bitpos
== 0);
3918 result
= store_expr (from
, to_rtx
, false);
3922 gcc_assert (bitpos
== 0 || bitpos
== GET_MODE_BITSIZE (mode1
));
3923 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false);
3930 /* If the field is at offset zero, we could have been given the
3931 DECL_RTX of the parent struct. Don't munge it. */
3932 to_rtx
= shallow_copy_rtx (to_rtx
);
3934 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
3936 /* Deal with volatile and readonly fields. The former is only
3937 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
3939 MEM_VOLATILE_P (to_rtx
) = 1;
3940 if (component_uses_parent_alias_set (to
))
3941 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
3944 if (optimize_bitfield_assignment_op (bitsize
, bitpos
, mode1
,
3948 result
= store_field (to_rtx
, bitsize
, bitpos
, mode1
, from
,
3949 TREE_TYPE (tem
), get_alias_set (to
));
3953 preserve_temp_slots (result
);
3959 /* If the rhs is a function call and its value is not an aggregate,
3960 call the function before we start to compute the lhs.
3961 This is needed for correct code for cases such as
3962 val = setjmp (buf) on machines where reference to val
3963 requires loading up part of an address in a separate insn.
3965 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
3966 since it might be a promoted variable where the zero- or sign- extension
3967 needs to be done. Handling this in the normal way is safe because no
3968 computation is done before the call. */
3969 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
3970 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
3971 && ! ((TREE_CODE (to
) == VAR_DECL
|| TREE_CODE (to
) == PARM_DECL
)
3972 && REG_P (DECL_RTL (to
))))
3977 value
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
3979 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
3981 /* Handle calls that return values in multiple non-contiguous locations.
3982 The Irix 6 ABI has examples of this. */
3983 if (GET_CODE (to_rtx
) == PARALLEL
)
3984 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
3985 int_size_in_bytes (TREE_TYPE (from
)));
3986 else if (GET_MODE (to_rtx
) == BLKmode
)
3987 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
3990 if (POINTER_TYPE_P (TREE_TYPE (to
)))
3991 value
= convert_memory_address (GET_MODE (to_rtx
), value
);
3992 emit_move_insn (to_rtx
, value
);
3994 preserve_temp_slots (to_rtx
);
4000 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4001 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4004 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4006 /* Don't move directly into a return register. */
4007 if (TREE_CODE (to
) == RESULT_DECL
4008 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
4013 temp
= expand_expr (from
, 0, GET_MODE (to_rtx
), 0);
4015 if (GET_CODE (to_rtx
) == PARALLEL
)
4016 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
4017 int_size_in_bytes (TREE_TYPE (from
)));
4019 emit_move_insn (to_rtx
, temp
);
4021 preserve_temp_slots (to_rtx
);
4027 /* In case we are returning the contents of an object which overlaps
4028 the place the value is being stored, use a safe function when copying
4029 a value through a pointer into a structure value return block. */
4030 if (TREE_CODE (to
) == RESULT_DECL
&& TREE_CODE (from
) == INDIRECT_REF
4031 && current_function_returns_struct
4032 && !current_function_returns_pcc_struct
)
4037 size
= expr_size (from
);
4038 from_rtx
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
4040 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
4041 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
4042 XEXP (from_rtx
, 0), Pmode
,
4043 convert_to_mode (TYPE_MODE (sizetype
),
4044 size
, TYPE_UNSIGNED (sizetype
)),
4045 TYPE_MODE (sizetype
));
4047 preserve_temp_slots (to_rtx
);
4053 /* Compute FROM and store the value in the rtx we got. */
4056 result
= store_expr (from
, to_rtx
, 0);
4057 preserve_temp_slots (result
);
4063 /* Generate code for computing expression EXP,
4064 and storing the value into TARGET.
4066 If the mode is BLKmode then we may return TARGET itself.
4067 It turns out that in BLKmode it doesn't cause a problem.
4068 because C has no operators that could combine two different
4069 assignments into the same BLKmode object with different values
4070 with no sequence point. Will other languages need this to
4073 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4074 stack, and block moves may need to be treated specially. */
4077 store_expr (tree exp
, rtx target
, int call_param_p
)
4080 rtx alt_rtl
= NULL_RTX
;
4081 int dont_return_target
= 0;
4083 if (VOID_TYPE_P (TREE_TYPE (exp
)))
4085 /* C++ can generate ?: expressions with a throw expression in one
4086 branch and an rvalue in the other. Here, we resolve attempts to
4087 store the throw expression's nonexistent result. */
4088 gcc_assert (!call_param_p
);
4089 expand_expr (exp
, const0_rtx
, VOIDmode
, 0);
4092 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
4094 /* Perform first part of compound expression, then assign from second
4096 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
4097 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4098 return store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
);
4100 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
4102 /* For conditional expression, get safe form of the target. Then
4103 test the condition, doing the appropriate assignment on either
4104 side. This avoids the creation of unnecessary temporaries.
4105 For non-BLKmode, it is more efficient not to do this. */
4107 rtx lab1
= gen_label_rtx (), lab2
= gen_label_rtx ();
4109 do_pending_stack_adjust ();
4111 jumpifnot (TREE_OPERAND (exp
, 0), lab1
);
4112 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
);
4113 emit_jump_insn (gen_jump (lab2
));
4116 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
);
4122 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
4123 /* If this is a scalar in a register that is stored in a wider mode
4124 than the declared mode, compute the result into its declared mode
4125 and then convert to the wider mode. Our value is the computed
4128 rtx inner_target
= 0;
4130 /* We can do the conversion inside EXP, which will often result
4131 in some optimizations. Do the conversion in two steps: first
4132 change the signedness, if needed, then the extend. But don't
4133 do this if the type of EXP is a subtype of something else
4134 since then the conversion might involve more than just
4135 converting modes. */
4136 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
4137 && TREE_TYPE (TREE_TYPE (exp
)) == 0
4138 && (!lang_hooks
.reduce_bit_field_operations
4139 || (GET_MODE_PRECISION (GET_MODE (target
))
4140 == TYPE_PRECISION (TREE_TYPE (exp
)))))
4142 if (TYPE_UNSIGNED (TREE_TYPE (exp
))
4143 != SUBREG_PROMOTED_UNSIGNED_P (target
))
4145 (lang_hooks
.types
.signed_or_unsigned_type
4146 (SUBREG_PROMOTED_UNSIGNED_P (target
), TREE_TYPE (exp
)), exp
);
4148 exp
= convert (lang_hooks
.types
.type_for_mode
4149 (GET_MODE (SUBREG_REG (target
)),
4150 SUBREG_PROMOTED_UNSIGNED_P (target
)),
4153 inner_target
= SUBREG_REG (target
);
4156 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
4157 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4159 /* If TEMP is a VOIDmode constant, use convert_modes to make
4160 sure that we properly convert it. */
4161 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
4163 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4164 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
4165 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
4166 GET_MODE (target
), temp
,
4167 SUBREG_PROMOTED_UNSIGNED_P (target
));
4170 convert_move (SUBREG_REG (target
), temp
,
4171 SUBREG_PROMOTED_UNSIGNED_P (target
));
4177 temp
= expand_expr_real (exp
, target
, GET_MODE (target
),
4179 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
4181 /* Return TARGET if it's a specified hardware register.
4182 If TARGET is a volatile mem ref, either return TARGET
4183 or return a reg copied *from* TARGET; ANSI requires this.
4185 Otherwise, if TEMP is not TARGET, return TEMP
4186 if it is constant (for efficiency),
4187 or if we really want the correct value. */
4188 if (!(target
&& REG_P (target
)
4189 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)
4190 && !(MEM_P (target
) && MEM_VOLATILE_P (target
))
4191 && ! rtx_equal_p (temp
, target
)
4192 && CONSTANT_P (temp
))
4193 dont_return_target
= 1;
4196 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4197 the same as that of TARGET, adjust the constant. This is needed, for
4198 example, in case it is a CONST_DOUBLE and we want only a word-sized
4200 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
4201 && TREE_CODE (exp
) != ERROR_MARK
4202 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
4203 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4204 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
4206 /* If value was not generated in the target, store it there.
4207 Convert the value to TARGET's type first if necessary and emit the
4208 pending incrementations that have been queued when expanding EXP.
4209 Note that we cannot emit the whole queue blindly because this will
4210 effectively disable the POST_INC optimization later.
4212 If TEMP and TARGET compare equal according to rtx_equal_p, but
4213 one or both of them are volatile memory refs, we have to distinguish
4215 - expand_expr has used TARGET. In this case, we must not generate
4216 another copy. This can be detected by TARGET being equal according
4218 - expand_expr has not used TARGET - that means that the source just
4219 happens to have the same RTX form. Since temp will have been created
4220 by expand_expr, it will compare unequal according to == .
4221 We must generate a copy in this case, to reach the correct number
4222 of volatile memory references. */
4224 if ((! rtx_equal_p (temp
, target
)
4225 || (temp
!= target
&& (side_effects_p (temp
)
4226 || side_effects_p (target
))))
4227 && TREE_CODE (exp
) != ERROR_MARK
4228 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4229 but TARGET is not valid memory reference, TEMP will differ
4230 from TARGET although it is really the same location. */
4231 && !(alt_rtl
&& rtx_equal_p (alt_rtl
, target
))
4232 /* If there's nothing to copy, don't bother. Don't call
4233 expr_size unless necessary, because some front-ends (C++)
4234 expr_size-hook must not be given objects that are not
4235 supposed to be bit-copied or bit-initialized. */
4236 && expr_size (exp
) != const0_rtx
)
4238 if (GET_MODE (temp
) != GET_MODE (target
)
4239 && GET_MODE (temp
) != VOIDmode
)
4241 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
4242 if (dont_return_target
)
4244 /* In this case, we will return TEMP,
4245 so make sure it has the proper mode.
4246 But don't forget to store the value into TARGET. */
4247 temp
= convert_to_mode (GET_MODE (target
), temp
, unsignedp
);
4248 emit_move_insn (target
, temp
);
4251 convert_move (target
, temp
, unsignedp
);
4254 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
4256 /* Handle copying a string constant into an array. The string
4257 constant may be shorter than the array. So copy just the string's
4258 actual length, and clear the rest. First get the size of the data
4259 type of the string, which is actually the size of the target. */
4260 rtx size
= expr_size (exp
);
4262 if (GET_CODE (size
) == CONST_INT
4263 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
4264 emit_block_move (target
, temp
, size
,
4266 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4269 /* Compute the size of the data to copy from the string. */
4271 = size_binop (MIN_EXPR
,
4272 make_tree (sizetype
, size
),
4273 size_int (TREE_STRING_LENGTH (exp
)));
4275 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
4277 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
4280 /* Copy that much. */
4281 copy_size_rtx
= convert_to_mode (ptr_mode
, copy_size_rtx
,
4282 TYPE_UNSIGNED (sizetype
));
4283 emit_block_move (target
, temp
, copy_size_rtx
,
4285 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4287 /* Figure out how much is left in TARGET that we have to clear.
4288 Do all calculations in ptr_mode. */
4289 if (GET_CODE (copy_size_rtx
) == CONST_INT
)
4291 size
= plus_constant (size
, -INTVAL (copy_size_rtx
));
4292 target
= adjust_address (target
, BLKmode
,
4293 INTVAL (copy_size_rtx
));
4297 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
4298 copy_size_rtx
, NULL_RTX
, 0,
4301 #ifdef POINTERS_EXTEND_UNSIGNED
4302 if (GET_MODE (copy_size_rtx
) != Pmode
)
4303 copy_size_rtx
= convert_to_mode (Pmode
, copy_size_rtx
,
4304 TYPE_UNSIGNED (sizetype
));
4307 target
= offset_address (target
, copy_size_rtx
,
4308 highest_pow2_factor (copy_size
));
4309 label
= gen_label_rtx ();
4310 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
4311 GET_MODE (size
), 0, label
);
4314 if (size
!= const0_rtx
)
4315 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
4321 /* Handle calls that return values in multiple non-contiguous locations.
4322 The Irix 6 ABI has examples of this. */
4323 else if (GET_CODE (target
) == PARALLEL
)
4324 emit_group_load (target
, temp
, TREE_TYPE (exp
),
4325 int_size_in_bytes (TREE_TYPE (exp
)));
4326 else if (GET_MODE (temp
) == BLKmode
)
4327 emit_block_move (target
, temp
, expr_size (exp
),
4329 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4332 temp
= force_operand (temp
, target
);
4334 emit_move_insn (target
, temp
);
4341 /* Examine CTOR to discover:
4342 * how many scalar fields are set to nonzero values,
4343 and place it in *P_NZ_ELTS;
4344 * how many scalar fields are set to non-constant values,
4345 and place it in *P_NC_ELTS; and
4346 * how many scalar fields in total are in CTOR,
4347 and place it in *P_ELT_COUNT.
4348 * if a type is a union, and the initializer from the constructor
4349 is not the largest element in the union, then set *p_must_clear. */
4352 categorize_ctor_elements_1 (tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4353 HOST_WIDE_INT
*p_nc_elts
,
4354 HOST_WIDE_INT
*p_elt_count
,
4357 HOST_WIDE_INT nz_elts
, nc_elts
, elt_count
;
4364 for (list
= CONSTRUCTOR_ELTS (ctor
); list
; list
= TREE_CHAIN (list
))
4366 tree value
= TREE_VALUE (list
);
4367 tree purpose
= TREE_PURPOSE (list
);
4371 if (TREE_CODE (purpose
) == RANGE_EXPR
)
4373 tree lo_index
= TREE_OPERAND (purpose
, 0);
4374 tree hi_index
= TREE_OPERAND (purpose
, 1);
4376 if (host_integerp (lo_index
, 1) && host_integerp (hi_index
, 1))
4377 mult
= (tree_low_cst (hi_index
, 1)
4378 - tree_low_cst (lo_index
, 1) + 1);
4381 switch (TREE_CODE (value
))
4385 HOST_WIDE_INT nz
= 0, nc
= 0, ic
= 0;
4386 categorize_ctor_elements_1 (value
, &nz
, &nc
, &ic
, p_must_clear
);
4387 nz_elts
+= mult
* nz
;
4388 nc_elts
+= mult
* nc
;
4389 elt_count
+= mult
* ic
;
4395 if (!initializer_zerop (value
))
4401 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
4402 elt_count
+= mult
* TREE_STRING_LENGTH (value
);
4406 if (!initializer_zerop (TREE_REALPART (value
)))
4408 if (!initializer_zerop (TREE_IMAGPART (value
)))
4416 for (v
= TREE_VECTOR_CST_ELTS (value
); v
; v
= TREE_CHAIN (v
))
4418 if (!initializer_zerop (TREE_VALUE (v
)))
4428 if (!initializer_constant_valid_p (value
, TREE_TYPE (value
)))
4435 && (TREE_CODE (TREE_TYPE (ctor
)) == UNION_TYPE
4436 || TREE_CODE (TREE_TYPE (ctor
)) == QUAL_UNION_TYPE
))
4439 bool clear_this
= true;
4441 list
= CONSTRUCTOR_ELTS (ctor
);
4444 /* We don't expect more than one element of the union to be
4445 initialized. Not sure what we should do otherwise... */
4446 gcc_assert (TREE_CHAIN (list
) == NULL
);
4448 init_sub_type
= TREE_TYPE (TREE_VALUE (list
));
4450 /* ??? We could look at each element of the union, and find the
4451 largest element. Which would avoid comparing the size of the
4452 initialized element against any tail padding in the union.
4453 Doesn't seem worth the effort... */
4454 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor
)),
4455 TYPE_SIZE (init_sub_type
)) == 1)
4457 /* And now we have to find out if the element itself is fully
4458 constructed. E.g. for union { struct { int a, b; } s; } u
4459 = { .s = { .a = 1 } }. */
4460 if (elt_count
== count_type_elements (init_sub_type
))
4465 *p_must_clear
= clear_this
;
4468 *p_nz_elts
+= nz_elts
;
4469 *p_nc_elts
+= nc_elts
;
4470 *p_elt_count
+= elt_count
;
4474 categorize_ctor_elements (tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4475 HOST_WIDE_INT
*p_nc_elts
,
4476 HOST_WIDE_INT
*p_elt_count
,
4482 *p_must_clear
= false;
4483 categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_nc_elts
, p_elt_count
,
4487 /* Count the number of scalars in TYPE. Return -1 on overflow or
4491 count_type_elements (tree type
)
4493 const HOST_WIDE_INT max
= ~((HOST_WIDE_INT
)1 << (HOST_BITS_PER_WIDE_INT
-1));
4494 switch (TREE_CODE (type
))
4498 tree telts
= array_type_nelts (type
);
4499 if (telts
&& host_integerp (telts
, 1))
4501 HOST_WIDE_INT n
= tree_low_cst (telts
, 1) + 1;
4502 HOST_WIDE_INT m
= count_type_elements (TREE_TYPE (type
));
4505 else if (max
/ n
> m
)
4513 HOST_WIDE_INT n
= 0, t
;
4516 for (f
= TYPE_FIELDS (type
); f
; f
= TREE_CHAIN (f
))
4517 if (TREE_CODE (f
) == FIELD_DECL
)
4519 t
= count_type_elements (TREE_TYPE (f
));
4529 case QUAL_UNION_TYPE
:
4531 /* Ho hum. How in the world do we guess here? Clearly it isn't
4532 right to count the fields. Guess based on the number of words. */
4533 HOST_WIDE_INT n
= int_size_in_bytes (type
);
4536 return n
/ UNITS_PER_WORD
;
4543 return TYPE_VECTOR_SUBPARTS (type
);
4552 case REFERENCE_TYPE
:
4564 /* Return 1 if EXP contains mostly (3/4) zeros. */
4567 mostly_zeros_p (tree exp
)
4569 if (TREE_CODE (exp
) == CONSTRUCTOR
)
4572 HOST_WIDE_INT nz_elts
, nc_elts
, count
, elts
;
4575 categorize_ctor_elements (exp
, &nz_elts
, &nc_elts
, &count
, &must_clear
);
4579 elts
= count_type_elements (TREE_TYPE (exp
));
4581 return nz_elts
< elts
/ 4;
4584 return initializer_zerop (exp
);
4587 /* Helper function for store_constructor.
4588 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4589 TYPE is the type of the CONSTRUCTOR, not the element type.
4590 CLEARED is as for store_constructor.
4591 ALIAS_SET is the alias set to use for any stores.
4593 This provides a recursive shortcut back to store_constructor when it isn't
4594 necessary to go through store_field. This is so that we can pass through
4595 the cleared field to let store_constructor know that we may not have to
4596 clear a substructure if the outer structure has already been cleared. */
4599 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
4600 HOST_WIDE_INT bitpos
, enum machine_mode mode
,
4601 tree exp
, tree type
, int cleared
, int alias_set
)
4603 if (TREE_CODE (exp
) == CONSTRUCTOR
4604 /* We can only call store_constructor recursively if the size and
4605 bit position are on a byte boundary. */
4606 && bitpos
% BITS_PER_UNIT
== 0
4607 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
4608 /* If we have a nonzero bitpos for a register target, then we just
4609 let store_field do the bitfield handling. This is unlikely to
4610 generate unnecessary clear instructions anyways. */
4611 && (bitpos
== 0 || MEM_P (target
)))
4615 = adjust_address (target
,
4616 GET_MODE (target
) == BLKmode
4618 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
4619 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
4622 /* Update the alias set, if required. */
4623 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
4624 && MEM_ALIAS_SET (target
) != 0)
4626 target
= copy_rtx (target
);
4627 set_mem_alias_set (target
, alias_set
);
4630 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
4633 store_field (target
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
);
4636 /* Store the value of constructor EXP into the rtx TARGET.
4637 TARGET is either a REG or a MEM; we know it cannot conflict, since
4638 safe_from_p has been called.
4639 CLEARED is true if TARGET is known to have been zero'd.
4640 SIZE is the number of bytes of TARGET we are allowed to modify: this
4641 may not be the same as the size of EXP if we are assigning to a field
4642 which has been packed to exclude padding bits. */
4645 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
4647 tree type
= TREE_TYPE (exp
);
4648 #ifdef WORD_REGISTER_OPERATIONS
4649 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
4652 switch (TREE_CODE (type
))
4656 case QUAL_UNION_TYPE
:
4660 /* If size is zero or the target is already cleared, do nothing. */
4661 if (size
== 0 || cleared
)
4663 /* We either clear the aggregate or indicate the value is dead. */
4664 else if ((TREE_CODE (type
) == UNION_TYPE
4665 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
4666 && ! CONSTRUCTOR_ELTS (exp
))
4667 /* If the constructor is empty, clear the union. */
4669 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
4673 /* If we are building a static constructor into a register,
4674 set the initial value as zero so we can fold the value into
4675 a constant. But if more than one register is involved,
4676 this probably loses. */
4677 else if (REG_P (target
) && TREE_STATIC (exp
)
4678 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
4680 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
4684 /* If the constructor has fewer fields than the structure or
4685 if we are initializing the structure to mostly zeros, clear
4686 the whole structure first. Don't do this if TARGET is a
4687 register whose mode size isn't equal to SIZE since
4688 clear_storage can't handle this case. */
4690 && ((list_length (CONSTRUCTOR_ELTS (exp
))
4691 != fields_length (type
))
4692 || mostly_zeros_p (exp
))
4694 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
4697 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
4702 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
4704 /* Store each element of the constructor into the
4705 corresponding field of TARGET. */
4707 for (elt
= CONSTRUCTOR_ELTS (exp
); elt
; elt
= TREE_CHAIN (elt
))
4709 tree field
= TREE_PURPOSE (elt
);
4710 tree value
= TREE_VALUE (elt
);
4711 enum machine_mode mode
;
4712 HOST_WIDE_INT bitsize
;
4713 HOST_WIDE_INT bitpos
= 0;
4715 rtx to_rtx
= target
;
4717 /* Just ignore missing fields. We cleared the whole
4718 structure, above, if any fields are missing. */
4722 if (cleared
&& initializer_zerop (value
))
4725 if (host_integerp (DECL_SIZE (field
), 1))
4726 bitsize
= tree_low_cst (DECL_SIZE (field
), 1);
4730 mode
= DECL_MODE (field
);
4731 if (DECL_BIT_FIELD (field
))
4734 offset
= DECL_FIELD_OFFSET (field
);
4735 if (host_integerp (offset
, 0)
4736 && host_integerp (bit_position (field
), 0))
4738 bitpos
= int_bit_position (field
);
4742 bitpos
= tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 0);
4749 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
4750 make_tree (TREE_TYPE (exp
),
4753 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, 0);
4754 gcc_assert (MEM_P (to_rtx
));
4756 #ifdef POINTERS_EXTEND_UNSIGNED
4757 if (GET_MODE (offset_rtx
) != Pmode
)
4758 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
4760 if (GET_MODE (offset_rtx
) != ptr_mode
)
4761 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
4764 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4765 highest_pow2_factor (offset
));
4768 #ifdef WORD_REGISTER_OPERATIONS
4769 /* If this initializes a field that is smaller than a
4770 word, at the start of a word, try to widen it to a full
4771 word. This special case allows us to output C++ member
4772 function initializations in a form that the optimizers
4775 && bitsize
< BITS_PER_WORD
4776 && bitpos
% BITS_PER_WORD
== 0
4777 && GET_MODE_CLASS (mode
) == MODE_INT
4778 && TREE_CODE (value
) == INTEGER_CST
4780 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
4782 tree type
= TREE_TYPE (value
);
4784 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
4786 type
= lang_hooks
.types
.type_for_size
4787 (BITS_PER_WORD
, TYPE_UNSIGNED (type
));
4788 value
= convert (type
, value
);
4791 if (BYTES_BIG_ENDIAN
)
4793 = fold_build2 (LSHIFT_EXPR
, type
, value
,
4794 build_int_cst (NULL_TREE
,
4795 BITS_PER_WORD
- bitsize
));
4796 bitsize
= BITS_PER_WORD
;
4801 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
4802 && DECL_NONADDRESSABLE_P (field
))
4804 to_rtx
= copy_rtx (to_rtx
);
4805 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
4808 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
4809 value
, type
, cleared
,
4810 get_alias_set (TREE_TYPE (field
)));
4820 tree elttype
= TREE_TYPE (type
);
4822 HOST_WIDE_INT minelt
= 0;
4823 HOST_WIDE_INT maxelt
= 0;
4825 domain
= TYPE_DOMAIN (type
);
4826 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
4827 && TYPE_MAX_VALUE (domain
)
4828 && host_integerp (TYPE_MIN_VALUE (domain
), 0)
4829 && host_integerp (TYPE_MAX_VALUE (domain
), 0));
4831 /* If we have constant bounds for the range of the type, get them. */
4834 minelt
= tree_low_cst (TYPE_MIN_VALUE (domain
), 0);
4835 maxelt
= tree_low_cst (TYPE_MAX_VALUE (domain
), 0);
4838 /* If the constructor has fewer elements than the array, clear
4839 the whole array first. Similarly if this is static
4840 constructor of a non-BLKmode object. */
4843 else if (REG_P (target
) && TREE_STATIC (exp
))
4847 HOST_WIDE_INT count
= 0, zero_count
= 0;
4848 need_to_clear
= ! const_bounds_p
;
4850 /* This loop is a more accurate version of the loop in
4851 mostly_zeros_p (it handles RANGE_EXPR in an index). It
4852 is also needed to check for missing elements. */
4853 for (elt
= CONSTRUCTOR_ELTS (exp
);
4854 elt
!= NULL_TREE
&& ! need_to_clear
;
4855 elt
= TREE_CHAIN (elt
))
4857 tree index
= TREE_PURPOSE (elt
);
4858 HOST_WIDE_INT this_node_count
;
4860 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
4862 tree lo_index
= TREE_OPERAND (index
, 0);
4863 tree hi_index
= TREE_OPERAND (index
, 1);
4865 if (! host_integerp (lo_index
, 1)
4866 || ! host_integerp (hi_index
, 1))
4872 this_node_count
= (tree_low_cst (hi_index
, 1)
4873 - tree_low_cst (lo_index
, 1) + 1);
4876 this_node_count
= 1;
4878 count
+= this_node_count
;
4879 if (mostly_zeros_p (TREE_VALUE (elt
)))
4880 zero_count
+= this_node_count
;
4883 /* Clear the entire array first if there are any missing
4884 elements, or if the incidence of zero elements is >=
4887 && (count
< maxelt
- minelt
+ 1
4888 || 4 * zero_count
>= 3 * count
))
4892 if (need_to_clear
&& size
> 0)
4895 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
4897 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
4901 if (!cleared
&& REG_P (target
))
4902 /* Inform later passes that the old value is dead. */
4903 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
4905 /* Store each element of the constructor into the
4906 corresponding element of TARGET, determined by counting the
4908 for (elt
= CONSTRUCTOR_ELTS (exp
), i
= 0;
4910 elt
= TREE_CHAIN (elt
), i
++)
4912 enum machine_mode mode
;
4913 HOST_WIDE_INT bitsize
;
4914 HOST_WIDE_INT bitpos
;
4916 tree value
= TREE_VALUE (elt
);
4917 tree index
= TREE_PURPOSE (elt
);
4918 rtx xtarget
= target
;
4920 if (cleared
&& initializer_zerop (value
))
4923 unsignedp
= TYPE_UNSIGNED (elttype
);
4924 mode
= TYPE_MODE (elttype
);
4925 if (mode
== BLKmode
)
4926 bitsize
= (host_integerp (TYPE_SIZE (elttype
), 1)
4927 ? tree_low_cst (TYPE_SIZE (elttype
), 1)
4930 bitsize
= GET_MODE_BITSIZE (mode
);
4932 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
4934 tree lo_index
= TREE_OPERAND (index
, 0);
4935 tree hi_index
= TREE_OPERAND (index
, 1);
4936 rtx index_r
, pos_rtx
;
4937 HOST_WIDE_INT lo
, hi
, count
;
4940 /* If the range is constant and "small", unroll the loop. */
4942 && host_integerp (lo_index
, 0)
4943 && host_integerp (hi_index
, 0)
4944 && (lo
= tree_low_cst (lo_index
, 0),
4945 hi
= tree_low_cst (hi_index
, 0),
4946 count
= hi
- lo
+ 1,
4949 || (host_integerp (TYPE_SIZE (elttype
), 1)
4950 && (tree_low_cst (TYPE_SIZE (elttype
), 1) * count
4953 lo
-= minelt
; hi
-= minelt
;
4954 for (; lo
<= hi
; lo
++)
4956 bitpos
= lo
* tree_low_cst (TYPE_SIZE (elttype
), 0);
4959 && !MEM_KEEP_ALIAS_SET_P (target
)
4960 && TREE_CODE (type
) == ARRAY_TYPE
4961 && TYPE_NONALIASED_COMPONENT (type
))
4963 target
= copy_rtx (target
);
4964 MEM_KEEP_ALIAS_SET_P (target
) = 1;
4967 store_constructor_field
4968 (target
, bitsize
, bitpos
, mode
, value
, type
, cleared
,
4969 get_alias_set (elttype
));
4974 rtx loop_start
= gen_label_rtx ();
4975 rtx loop_end
= gen_label_rtx ();
4978 expand_expr (hi_index
, NULL_RTX
, VOIDmode
, 0);
4979 unsignedp
= TYPE_UNSIGNED (domain
);
4981 index
= build_decl (VAR_DECL
, NULL_TREE
, domain
);
4984 = gen_reg_rtx (promote_mode (domain
, DECL_MODE (index
),
4986 SET_DECL_RTL (index
, index_r
);
4987 store_expr (lo_index
, index_r
, 0);
4989 /* Build the head of the loop. */
4990 do_pending_stack_adjust ();
4991 emit_label (loop_start
);
4993 /* Assign value to element index. */
4995 = convert (ssizetype
,
4996 fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
4997 index
, TYPE_MIN_VALUE (domain
)));
4998 position
= size_binop (MULT_EXPR
, position
,
5000 TYPE_SIZE_UNIT (elttype
)));
5002 pos_rtx
= expand_expr (position
, 0, VOIDmode
, 0);
5003 xtarget
= offset_address (target
, pos_rtx
,
5004 highest_pow2_factor (position
));
5005 xtarget
= adjust_address (xtarget
, mode
, 0);
5006 if (TREE_CODE (value
) == CONSTRUCTOR
)
5007 store_constructor (value
, xtarget
, cleared
,
5008 bitsize
/ BITS_PER_UNIT
);
5010 store_expr (value
, xtarget
, 0);
5012 /* Generate a conditional jump to exit the loop. */
5013 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
5015 jumpif (exit_cond
, loop_end
);
5017 /* Update the loop counter, and jump to the head of
5019 expand_assignment (index
,
5020 build2 (PLUS_EXPR
, TREE_TYPE (index
),
5021 index
, integer_one_node
));
5023 emit_jump (loop_start
);
5025 /* Build the end of the loop. */
5026 emit_label (loop_end
);
5029 else if ((index
!= 0 && ! host_integerp (index
, 0))
5030 || ! host_integerp (TYPE_SIZE (elttype
), 1))
5035 index
= ssize_int (1);
5038 index
= fold_convert (ssizetype
,
5039 fold_build2 (MINUS_EXPR
,
5042 TYPE_MIN_VALUE (domain
)));
5044 position
= size_binop (MULT_EXPR
, index
,
5046 TYPE_SIZE_UNIT (elttype
)));
5047 xtarget
= offset_address (target
,
5048 expand_expr (position
, 0, VOIDmode
, 0),
5049 highest_pow2_factor (position
));
5050 xtarget
= adjust_address (xtarget
, mode
, 0);
5051 store_expr (value
, xtarget
, 0);
5056 bitpos
= ((tree_low_cst (index
, 0) - minelt
)
5057 * tree_low_cst (TYPE_SIZE (elttype
), 1));
5059 bitpos
= (i
* tree_low_cst (TYPE_SIZE (elttype
), 1));
5061 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
5062 && TREE_CODE (type
) == ARRAY_TYPE
5063 && TYPE_NONALIASED_COMPONENT (type
))
5065 target
= copy_rtx (target
);
5066 MEM_KEEP_ALIAS_SET_P (target
) = 1;
5068 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
5069 type
, cleared
, get_alias_set (elttype
));
5081 tree elttype
= TREE_TYPE (type
);
5082 int elt_size
= tree_low_cst (TYPE_SIZE (elttype
), 1);
5083 enum machine_mode eltmode
= TYPE_MODE (elttype
);
5084 HOST_WIDE_INT bitsize
;
5085 HOST_WIDE_INT bitpos
;
5086 rtvec vector
= NULL
;
5089 gcc_assert (eltmode
!= BLKmode
);
5091 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
5092 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
5094 enum machine_mode mode
= GET_MODE (target
);
5096 icode
= (int) vec_init_optab
->handlers
[mode
].insn_code
;
5097 if (icode
!= CODE_FOR_nothing
)
5101 vector
= rtvec_alloc (n_elts
);
5102 for (i
= 0; i
< n_elts
; i
++)
5103 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
5107 /* If the constructor has fewer elements than the vector,
5108 clear the whole array first. Similarly if this is static
5109 constructor of a non-BLKmode object. */
5112 else if (REG_P (target
) && TREE_STATIC (exp
))
5116 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
5118 for (elt
= CONSTRUCTOR_ELTS (exp
);
5120 elt
= TREE_CHAIN (elt
))
5122 int n_elts_here
= tree_low_cst
5123 (int_const_binop (TRUNC_DIV_EXPR
,
5124 TYPE_SIZE (TREE_TYPE (TREE_VALUE (elt
))),
5125 TYPE_SIZE (elttype
), 0), 1);
5127 count
+= n_elts_here
;
5128 if (mostly_zeros_p (TREE_VALUE (elt
)))
5129 zero_count
+= n_elts_here
;
5132 /* Clear the entire vector first if there are any missing elements,
5133 or if the incidence of zero elements is >= 75%. */
5134 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
5137 if (need_to_clear
&& size
> 0 && !vector
)
5140 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5142 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5146 if (!cleared
&& REG_P (target
))
5147 /* Inform later passes that the old value is dead. */
5148 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
5150 /* Store each element of the constructor into the corresponding
5151 element of TARGET, determined by counting the elements. */
5152 for (elt
= CONSTRUCTOR_ELTS (exp
), i
= 0;
5154 elt
= TREE_CHAIN (elt
), i
+= bitsize
/ elt_size
)
5156 tree value
= TREE_VALUE (elt
);
5157 tree index
= TREE_PURPOSE (elt
);
5158 HOST_WIDE_INT eltpos
;
5160 bitsize
= tree_low_cst (TYPE_SIZE (TREE_TYPE (value
)), 1);
5161 if (cleared
&& initializer_zerop (value
))
5165 eltpos
= tree_low_cst (index
, 1);
5171 /* Vector CONSTRUCTORs should only be built from smaller
5172 vectors in the case of BLKmode vectors. */
5173 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
5174 RTVEC_ELT (vector
, eltpos
)
5175 = expand_expr (value
, NULL_RTX
, VOIDmode
, 0);
5179 enum machine_mode value_mode
=
5180 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
5181 ? TYPE_MODE (TREE_TYPE (value
))
5183 bitpos
= eltpos
* elt_size
;
5184 store_constructor_field (target
, bitsize
, bitpos
,
5185 value_mode
, value
, type
,
5186 cleared
, get_alias_set (elttype
));
5191 emit_insn (GEN_FCN (icode
)
5193 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
5202 /* Store the value of EXP (an expression tree)
5203 into a subfield of TARGET which has mode MODE and occupies
5204 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5205 If MODE is VOIDmode, it means that we are storing into a bit-field.
5207 Always return const0_rtx unless we have something particular to
5210 TYPE is the type of the underlying object,
5212 ALIAS_SET is the alias set for the destination. This value will
5213 (in general) be different from that for TARGET, since TARGET is a
5214 reference to the containing structure. */
5217 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
5218 enum machine_mode mode
, tree exp
, tree type
, int alias_set
)
5220 HOST_WIDE_INT width_mask
= 0;
5222 if (TREE_CODE (exp
) == ERROR_MARK
)
5225 /* If we have nothing to store, do nothing unless the expression has
5228 return expand_expr (exp
, const0_rtx
, VOIDmode
, 0);
5229 else if (bitsize
>= 0 && bitsize
< HOST_BITS_PER_WIDE_INT
)
5230 width_mask
= ((HOST_WIDE_INT
) 1 << bitsize
) - 1;
5232 /* If we are storing into an unaligned field of an aligned union that is
5233 in a register, we may have the mode of TARGET being an integer mode but
5234 MODE == BLKmode. In that case, get an aligned object whose size and
5235 alignment are the same as TARGET and store TARGET into it (we can avoid
5236 the store if the field being stored is the entire width of TARGET). Then
5237 call ourselves recursively to store the field into a BLKmode version of
5238 that object. Finally, load from the object into TARGET. This is not
5239 very efficient in general, but should only be slightly more expensive
5240 than the otherwise-required unaligned accesses. Perhaps this can be
5241 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5242 twice, once with emit_move_insn and once via store_field. */
5245 && (REG_P (target
) || GET_CODE (target
) == SUBREG
))
5247 rtx object
= assign_temp (type
, 0, 1, 1);
5248 rtx blk_object
= adjust_address (object
, BLKmode
, 0);
5250 if (bitsize
!= (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (target
)))
5251 emit_move_insn (object
, target
);
5253 store_field (blk_object
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
);
5255 emit_move_insn (target
, object
);
5257 /* We want to return the BLKmode version of the data. */
5261 if (GET_CODE (target
) == CONCAT
)
5263 /* We're storing into a struct containing a single __complex. */
5265 gcc_assert (!bitpos
);
5266 return store_expr (exp
, target
, 0);
5269 /* If the structure is in a register or if the component
5270 is a bit field, we cannot use addressing to access it.
5271 Use bit-field techniques or SUBREG to store in it. */
5273 if (mode
== VOIDmode
5274 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
5275 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
5276 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
5278 || GET_CODE (target
) == SUBREG
5279 /* If the field isn't aligned enough to store as an ordinary memref,
5280 store it as a bit field. */
5282 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
5283 || bitpos
% GET_MODE_ALIGNMENT (mode
))
5284 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
5285 || (bitpos
% BITS_PER_UNIT
!= 0)))
5286 /* If the RHS and field are a constant size and the size of the
5287 RHS isn't the same size as the bitfield, we must use bitfield
5290 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
5291 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0))
5295 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5296 implies a mask operation. If the precision is the same size as
5297 the field we're storing into, that mask is redundant. This is
5298 particularly common with bit field assignments generated by the
5300 if (TREE_CODE (exp
) == NOP_EXPR
)
5302 tree type
= TREE_TYPE (exp
);
5303 if (INTEGRAL_TYPE_P (type
)
5304 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
5305 && bitsize
== TYPE_PRECISION (type
))
5307 type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
5308 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
5309 exp
= TREE_OPERAND (exp
, 0);
5313 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, 0);
5315 /* If BITSIZE is narrower than the size of the type of EXP
5316 we will be narrowing TEMP. Normally, what's wanted are the
5317 low-order bits. However, if EXP's type is a record and this is
5318 big-endian machine, we want the upper BITSIZE bits. */
5319 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
5320 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
5321 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
5322 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
5323 size_int (GET_MODE_BITSIZE (GET_MODE (temp
))
5327 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5329 if (mode
!= VOIDmode
&& mode
!= BLKmode
5330 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
5331 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
5333 /* If the modes of TARGET and TEMP are both BLKmode, both
5334 must be in memory and BITPOS must be aligned on a byte
5335 boundary. If so, we simply do a block copy. */
5336 if (GET_MODE (target
) == BLKmode
&& GET_MODE (temp
) == BLKmode
)
5338 gcc_assert (MEM_P (target
) && MEM_P (temp
)
5339 && !(bitpos
% BITS_PER_UNIT
));
5341 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5342 emit_block_move (target
, temp
,
5343 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
5350 /* Store the value in the bitfield. */
5351 store_bit_field (target
, bitsize
, bitpos
, mode
, temp
);
5357 /* Now build a reference to just the desired component. */
5358 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
5360 if (to_rtx
== target
)
5361 to_rtx
= copy_rtx (to_rtx
);
5363 MEM_SET_IN_STRUCT_P (to_rtx
, 1);
5364 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
5365 set_mem_alias_set (to_rtx
, alias_set
);
5367 return store_expr (exp
, to_rtx
, 0);
5371 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5372 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5373 codes and find the ultimate containing object, which we return.
5375 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5376 bit position, and *PUNSIGNEDP to the signedness of the field.
5377 If the position of the field is variable, we store a tree
5378 giving the variable offset (in units) in *POFFSET.
5379 This offset is in addition to the bit position.
5380 If the position is not variable, we store 0 in *POFFSET.
5382 If any of the extraction expressions is volatile,
5383 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5385 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5386 is a mode that can be used to access the field. In that case, *PBITSIZE
5389 If the field describes a variable-sized object, *PMODE is set to
5390 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5391 this case, but the address of the object can be found.
5393 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5394 look through nodes that serve as markers of a greater alignment than
5395 the one that can be deduced from the expression. These nodes make it
5396 possible for front-ends to prevent temporaries from being created by
5397 the middle-end on alignment considerations. For that purpose, the
5398 normal operating mode at high-level is to always pass FALSE so that
5399 the ultimate containing object is really returned; moreover, the
5400 associated predicate handled_component_p will always return TRUE
5401 on these nodes, thus indicating that they are essentially handled
5402 by get_inner_reference. TRUE should only be passed when the caller
5403 is scanning the expression in order to build another representation
5404 and specifically knows how to handle these nodes; as such, this is
5405 the normal operating mode in the RTL expanders. */
5408 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
5409 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
5410 enum machine_mode
*pmode
, int *punsignedp
,
5411 int *pvolatilep
, bool keep_aligning
)
5414 enum machine_mode mode
= VOIDmode
;
5415 tree offset
= size_zero_node
;
5416 tree bit_offset
= bitsize_zero_node
;
5419 /* First get the mode, signedness, and size. We do this from just the
5420 outermost expression. */
5421 if (TREE_CODE (exp
) == COMPONENT_REF
)
5423 size_tree
= DECL_SIZE (TREE_OPERAND (exp
, 1));
5424 if (! DECL_BIT_FIELD (TREE_OPERAND (exp
, 1)))
5425 mode
= DECL_MODE (TREE_OPERAND (exp
, 1));
5427 *punsignedp
= DECL_UNSIGNED (TREE_OPERAND (exp
, 1));
5429 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
5431 size_tree
= TREE_OPERAND (exp
, 1);
5432 *punsignedp
= BIT_FIELD_REF_UNSIGNED (exp
);
5436 mode
= TYPE_MODE (TREE_TYPE (exp
));
5437 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
5439 if (mode
== BLKmode
)
5440 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
5442 *pbitsize
= GET_MODE_BITSIZE (mode
);
5447 if (! host_integerp (size_tree
, 1))
5448 mode
= BLKmode
, *pbitsize
= -1;
5450 *pbitsize
= tree_low_cst (size_tree
, 1);
5453 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5454 and find the ultimate containing object. */
5457 switch (TREE_CODE (exp
))
5460 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5461 TREE_OPERAND (exp
, 2));
5466 tree field
= TREE_OPERAND (exp
, 1);
5467 tree this_offset
= component_ref_field_offset (exp
);
5469 /* If this field hasn't been filled in yet, don't go past it.
5470 This should only happen when folding expressions made during
5471 type construction. */
5472 if (this_offset
== 0)
5475 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
5476 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5477 DECL_FIELD_BIT_OFFSET (field
));
5479 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5484 case ARRAY_RANGE_REF
:
5486 tree index
= TREE_OPERAND (exp
, 1);
5487 tree low_bound
= array_ref_low_bound (exp
);
5488 tree unit_size
= array_ref_element_size (exp
);
5490 /* We assume all arrays have sizes that are a multiple of a byte.
5491 First subtract the lower bound, if any, in the type of the
5492 index, then convert to sizetype and multiply by the size of
5493 the array element. */
5494 if (! integer_zerop (low_bound
))
5495 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
5498 offset
= size_binop (PLUS_EXPR
, offset
,
5499 size_binop (MULT_EXPR
,
5500 convert (sizetype
, index
),
5509 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5510 bitsize_int (*pbitsize
));
5513 case VIEW_CONVERT_EXPR
:
5514 if (keep_aligning
&& STRICT_ALIGNMENT
5515 && (TYPE_ALIGN (TREE_TYPE (exp
))
5516 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
5517 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
5518 < BIGGEST_ALIGNMENT
)
5519 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
5520 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
5528 /* If any reference in the chain is volatile, the effect is volatile. */
5529 if (TREE_THIS_VOLATILE (exp
))
5532 exp
= TREE_OPERAND (exp
, 0);
5536 /* If OFFSET is constant, see if we can return the whole thing as a
5537 constant bit position. Otherwise, split it up. */
5538 if (host_integerp (offset
, 0)
5539 && 0 != (tem
= size_binop (MULT_EXPR
, convert (bitsizetype
, offset
),
5541 && 0 != (tem
= size_binop (PLUS_EXPR
, tem
, bit_offset
))
5542 && host_integerp (tem
, 0))
5543 *pbitpos
= tree_low_cst (tem
, 0), *poffset
= 0;
5545 *pbitpos
= tree_low_cst (bit_offset
, 0), *poffset
= offset
;
5551 /* Return a tree of sizetype representing the size, in bytes, of the element
5552 of EXP, an ARRAY_REF. */
5555 array_ref_element_size (tree exp
)
5557 tree aligned_size
= TREE_OPERAND (exp
, 3);
5558 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5560 /* If a size was specified in the ARRAY_REF, it's the size measured
5561 in alignment units of the element type. So multiply by that value. */
5564 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5565 sizetype from another type of the same width and signedness. */
5566 if (TREE_TYPE (aligned_size
) != sizetype
)
5567 aligned_size
= fold_convert (sizetype
, aligned_size
);
5568 return size_binop (MULT_EXPR
, aligned_size
,
5569 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
5572 /* Otherwise, take the size from that of the element type. Substitute
5573 any PLACEHOLDER_EXPR that we have. */
5575 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
5578 /* Return a tree representing the lower bound of the array mentioned in
5579 EXP, an ARRAY_REF. */
5582 array_ref_low_bound (tree exp
)
5584 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5586 /* If a lower bound is specified in EXP, use it. */
5587 if (TREE_OPERAND (exp
, 2))
5588 return TREE_OPERAND (exp
, 2);
5590 /* Otherwise, if there is a domain type and it has a lower bound, use it,
5591 substituting for a PLACEHOLDER_EXPR as needed. */
5592 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
5593 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
5595 /* Otherwise, return a zero of the appropriate type. */
5596 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
5599 /* Return a tree representing the upper bound of the array mentioned in
5600 EXP, an ARRAY_REF. */
5603 array_ref_up_bound (tree exp
)
5605 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5607 /* If there is a domain type and it has an upper bound, use it, substituting
5608 for a PLACEHOLDER_EXPR as needed. */
5609 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
5610 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
5612 /* Otherwise fail. */
5616 /* Return a tree representing the offset, in bytes, of the field referenced
5617 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
5620 component_ref_field_offset (tree exp
)
5622 tree aligned_offset
= TREE_OPERAND (exp
, 2);
5623 tree field
= TREE_OPERAND (exp
, 1);
5625 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
5626 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
5630 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5631 sizetype from another type of the same width and signedness. */
5632 if (TREE_TYPE (aligned_offset
) != sizetype
)
5633 aligned_offset
= fold_convert (sizetype
, aligned_offset
);
5634 return size_binop (MULT_EXPR
, aligned_offset
,
5635 size_int (DECL_OFFSET_ALIGN (field
) / BITS_PER_UNIT
));
5638 /* Otherwise, take the offset from that of the field. Substitute
5639 any PLACEHOLDER_EXPR that we have. */
5641 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
5644 /* Return 1 if T is an expression that get_inner_reference handles. */
5647 handled_component_p (tree t
)
5649 switch (TREE_CODE (t
))
5654 case ARRAY_RANGE_REF
:
5655 case VIEW_CONVERT_EXPR
:
5665 /* Given an rtx VALUE that may contain additions and multiplications, return
5666 an equivalent value that just refers to a register, memory, or constant.
5667 This is done by generating instructions to perform the arithmetic and
5668 returning a pseudo-register containing the value.
5670 The returned value may be a REG, SUBREG, MEM or constant. */
5673 force_operand (rtx value
, rtx target
)
5676 /* Use subtarget as the target for operand 0 of a binary operation. */
5677 rtx subtarget
= get_subtarget (target
);
5678 enum rtx_code code
= GET_CODE (value
);
5680 /* Check for subreg applied to an expression produced by loop optimizer. */
5682 && !REG_P (SUBREG_REG (value
))
5683 && !MEM_P (SUBREG_REG (value
)))
5685 value
= simplify_gen_subreg (GET_MODE (value
),
5686 force_reg (GET_MODE (SUBREG_REG (value
)),
5687 force_operand (SUBREG_REG (value
),
5689 GET_MODE (SUBREG_REG (value
)),
5690 SUBREG_BYTE (value
));
5691 code
= GET_CODE (value
);
5694 /* Check for a PIC address load. */
5695 if ((code
== PLUS
|| code
== MINUS
)
5696 && XEXP (value
, 0) == pic_offset_table_rtx
5697 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
5698 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
5699 || GET_CODE (XEXP (value
, 1)) == CONST
))
5702 subtarget
= gen_reg_rtx (GET_MODE (value
));
5703 emit_move_insn (subtarget
, value
);
5707 if (code
== ZERO_EXTEND
|| code
== SIGN_EXTEND
)
5710 target
= gen_reg_rtx (GET_MODE (value
));
5711 convert_move (target
, force_operand (XEXP (value
, 0), NULL
),
5712 code
== ZERO_EXTEND
);
5716 if (ARITHMETIC_P (value
))
5718 op2
= XEXP (value
, 1);
5719 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
5721 if (code
== MINUS
&& GET_CODE (op2
) == CONST_INT
)
5724 op2
= negate_rtx (GET_MODE (value
), op2
);
5727 /* Check for an addition with OP2 a constant integer and our first
5728 operand a PLUS of a virtual register and something else. In that
5729 case, we want to emit the sum of the virtual register and the
5730 constant first and then add the other value. This allows virtual
5731 register instantiation to simply modify the constant rather than
5732 creating another one around this addition. */
5733 if (code
== PLUS
&& GET_CODE (op2
) == CONST_INT
5734 && GET_CODE (XEXP (value
, 0)) == PLUS
5735 && REG_P (XEXP (XEXP (value
, 0), 0))
5736 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
5737 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
5739 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
5740 XEXP (XEXP (value
, 0), 0), op2
,
5741 subtarget
, 0, OPTAB_LIB_WIDEN
);
5742 return expand_simple_binop (GET_MODE (value
), code
, temp
,
5743 force_operand (XEXP (XEXP (value
,
5745 target
, 0, OPTAB_LIB_WIDEN
);
5748 op1
= force_operand (XEXP (value
, 0), subtarget
);
5749 op2
= force_operand (op2
, NULL_RTX
);
5753 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
5755 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
5756 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5757 target
, 1, OPTAB_LIB_WIDEN
);
5759 return expand_divmod (0,
5760 FLOAT_MODE_P (GET_MODE (value
))
5761 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
5762 GET_MODE (value
), op1
, op2
, target
, 0);
5765 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
5769 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
5773 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
5777 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5778 target
, 0, OPTAB_LIB_WIDEN
);
5781 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5782 target
, 1, OPTAB_LIB_WIDEN
);
5785 if (UNARY_P (value
))
5787 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
5788 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
5791 #ifdef INSN_SCHEDULING
5792 /* On machines that have insn scheduling, we want all memory reference to be
5793 explicit, so we need to deal with such paradoxical SUBREGs. */
5794 if (GET_CODE (value
) == SUBREG
&& MEM_P (SUBREG_REG (value
))
5795 && (GET_MODE_SIZE (GET_MODE (value
))
5796 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value
)))))
5798 = simplify_gen_subreg (GET_MODE (value
),
5799 force_reg (GET_MODE (SUBREG_REG (value
)),
5800 force_operand (SUBREG_REG (value
),
5802 GET_MODE (SUBREG_REG (value
)),
5803 SUBREG_BYTE (value
));
5809 /* Subroutine of expand_expr: return nonzero iff there is no way that
5810 EXP can reference X, which is being modified. TOP_P is nonzero if this
5811 call is going to be used to determine whether we need a temporary
5812 for EXP, as opposed to a recursive call to this function.
5814 It is always safe for this routine to return zero since it merely
5815 searches for optimization opportunities. */
5818 safe_from_p (rtx x
, tree exp
, int top_p
)
5824 /* If EXP has varying size, we MUST use a target since we currently
5825 have no way of allocating temporaries of variable size
5826 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
5827 So we assume here that something at a higher level has prevented a
5828 clash. This is somewhat bogus, but the best we can do. Only
5829 do this when X is BLKmode and when we are at the top level. */
5830 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
5831 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
5832 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
5833 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
5834 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
5836 && GET_MODE (x
) == BLKmode
)
5837 /* If X is in the outgoing argument area, it is always safe. */
5839 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
5840 || (GET_CODE (XEXP (x
, 0)) == PLUS
5841 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
5844 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
5845 find the underlying pseudo. */
5846 if (GET_CODE (x
) == SUBREG
)
5849 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
5853 /* Now look at our tree code and possibly recurse. */
5854 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
5856 case tcc_declaration
:
5857 exp_rtl
= DECL_RTL_IF_SET (exp
);
5863 case tcc_exceptional
:
5864 if (TREE_CODE (exp
) == TREE_LIST
)
5868 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
5870 exp
= TREE_CHAIN (exp
);
5873 if (TREE_CODE (exp
) != TREE_LIST
)
5874 return safe_from_p (x
, exp
, 0);
5877 else if (TREE_CODE (exp
) == ERROR_MARK
)
5878 return 1; /* An already-visited SAVE_EXPR? */
5883 /* The only case we look at here is the DECL_INITIAL inside a
5885 return (TREE_CODE (exp
) != DECL_EXPR
5886 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
5887 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
5888 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
5891 case tcc_comparison
:
5892 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
5897 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
5899 case tcc_expression
:
5901 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
5902 the expression. If it is set, we conflict iff we are that rtx or
5903 both are in memory. Otherwise, we check all operands of the
5904 expression recursively. */
5906 switch (TREE_CODE (exp
))
5909 /* If the operand is static or we are static, we can't conflict.
5910 Likewise if we don't conflict with the operand at all. */
5911 if (staticp (TREE_OPERAND (exp
, 0))
5912 || TREE_STATIC (exp
)
5913 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
5916 /* Otherwise, the only way this can conflict is if we are taking
5917 the address of a DECL a that address if part of X, which is
5919 exp
= TREE_OPERAND (exp
, 0);
5922 if (!DECL_RTL_SET_P (exp
)
5923 || !MEM_P (DECL_RTL (exp
)))
5926 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
5930 case MISALIGNED_INDIRECT_REF
:
5931 case ALIGN_INDIRECT_REF
:
5934 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
5935 get_alias_set (exp
)))
5940 /* Assume that the call will clobber all hard registers and
5942 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
5947 case WITH_CLEANUP_EXPR
:
5948 case CLEANUP_POINT_EXPR
:
5949 /* Lowered by gimplify.c. */
5953 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
5959 /* If we have an rtx, we do not need to scan our operands. */
5963 nops
= TREE_CODE_LENGTH (TREE_CODE (exp
));
5964 for (i
= 0; i
< nops
; i
++)
5965 if (TREE_OPERAND (exp
, i
) != 0
5966 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
5969 /* If this is a language-specific tree code, it may require
5970 special handling. */
5971 if ((unsigned int) TREE_CODE (exp
)
5972 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
5973 && !lang_hooks
.safe_from_p (x
, exp
))
5978 /* Should never get a type here. */
5982 /* If we have an rtl, find any enclosed object. Then see if we conflict
5986 if (GET_CODE (exp_rtl
) == SUBREG
)
5988 exp_rtl
= SUBREG_REG (exp_rtl
);
5990 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
5994 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
5995 are memory and they conflict. */
5996 return ! (rtx_equal_p (x
, exp_rtl
)
5997 || (MEM_P (x
) && MEM_P (exp_rtl
)
5998 && true_dependence (exp_rtl
, VOIDmode
, x
,
5999 rtx_addr_varies_p
)));
6002 /* If we reach here, it is safe. */
6007 /* Return the highest power of two that EXP is known to be a multiple of.
6008 This is used in updating alignment of MEMs in array references. */
6010 static unsigned HOST_WIDE_INT
6011 highest_pow2_factor (tree exp
)
6013 unsigned HOST_WIDE_INT c0
, c1
;
6015 switch (TREE_CODE (exp
))
6018 /* We can find the lowest bit that's a one. If the low
6019 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6020 We need to handle this case since we can find it in a COND_EXPR,
6021 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6022 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6024 if (TREE_CONSTANT_OVERFLOW (exp
))
6025 return BIGGEST_ALIGNMENT
;
6028 /* Note: tree_low_cst is intentionally not used here,
6029 we don't care about the upper bits. */
6030 c0
= TREE_INT_CST_LOW (exp
);
6032 return c0
? c0
: BIGGEST_ALIGNMENT
;
6036 case PLUS_EXPR
: case MINUS_EXPR
: case MIN_EXPR
: case MAX_EXPR
:
6037 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6038 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6039 return MIN (c0
, c1
);
6042 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6043 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6046 case ROUND_DIV_EXPR
: case TRUNC_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6048 if (integer_pow2p (TREE_OPERAND (exp
, 1))
6049 && host_integerp (TREE_OPERAND (exp
, 1), 1))
6051 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6052 c1
= tree_low_cst (TREE_OPERAND (exp
, 1), 1);
6053 return MAX (1, c0
/ c1
);
6057 case NON_LVALUE_EXPR
: case NOP_EXPR
: case CONVERT_EXPR
:
6059 return highest_pow2_factor (TREE_OPERAND (exp
, 0));
6062 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
6065 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6066 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 2));
6067 return MIN (c0
, c1
);
6076 /* Similar, except that the alignment requirements of TARGET are
6077 taken into account. Assume it is at least as aligned as its
6078 type, unless it is a COMPONENT_REF in which case the layout of
6079 the structure gives the alignment. */
6081 static unsigned HOST_WIDE_INT
6082 highest_pow2_factor_for_target (tree target
, tree exp
)
6084 unsigned HOST_WIDE_INT target_align
, factor
;
6086 factor
= highest_pow2_factor (exp
);
6087 if (TREE_CODE (target
) == COMPONENT_REF
)
6088 target_align
= DECL_ALIGN_UNIT (TREE_OPERAND (target
, 1));
6090 target_align
= TYPE_ALIGN_UNIT (TREE_TYPE (target
));
6091 return MAX (factor
, target_align
);
6094 /* Expands variable VAR. */
6097 expand_var (tree var
)
6099 if (DECL_EXTERNAL (var
))
6102 if (TREE_STATIC (var
))
6103 /* If this is an inlined copy of a static local variable,
6104 look up the original decl. */
6105 var
= DECL_ORIGIN (var
);
6107 if (TREE_STATIC (var
)
6108 ? !TREE_ASM_WRITTEN (var
)
6109 : !DECL_RTL_SET_P (var
))
6111 if (TREE_CODE (var
) == VAR_DECL
&& DECL_VALUE_EXPR (var
))
6112 /* Should be ignored. */;
6113 else if (lang_hooks
.expand_decl (var
))
6115 else if (TREE_CODE (var
) == VAR_DECL
&& !TREE_STATIC (var
))
6117 else if (TREE_CODE (var
) == VAR_DECL
&& TREE_STATIC (var
))
6118 rest_of_decl_compilation (var
, 0, 0);
6120 /* No expansion needed. */
6121 gcc_assert (TREE_CODE (var
) == TYPE_DECL
6122 || TREE_CODE (var
) == CONST_DECL
6123 || TREE_CODE (var
) == FUNCTION_DECL
6124 || TREE_CODE (var
) == LABEL_DECL
);
6128 /* Subroutine of expand_expr. Expand the two operands of a binary
6129 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6130 The value may be stored in TARGET if TARGET is nonzero. The
6131 MODIFIER argument is as documented by expand_expr. */
6134 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
6135 enum expand_modifier modifier
)
6137 if (! safe_from_p (target
, exp1
, 1))
6139 if (operand_equal_p (exp0
, exp1
, 0))
6141 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6142 *op1
= copy_rtx (*op0
);
6146 /* If we need to preserve evaluation order, copy exp0 into its own
6147 temporary variable so that it can't be clobbered by exp1. */
6148 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
6149 exp0
= save_expr (exp0
);
6150 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6151 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
6156 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6157 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6160 expand_expr_addr_expr_1 (tree exp
, rtx target
, enum machine_mode tmode
,
6161 enum expand_modifier modifier
)
6163 rtx result
, subtarget
;
6165 HOST_WIDE_INT bitsize
, bitpos
;
6166 int volatilep
, unsignedp
;
6167 enum machine_mode mode1
;
6169 /* If we are taking the address of a constant and are at the top level,
6170 we have to use output_constant_def since we can't call force_const_mem
6172 /* ??? This should be considered a front-end bug. We should not be
6173 generating ADDR_EXPR of something that isn't an LVALUE. The only
6174 exception here is STRING_CST. */
6175 if (TREE_CODE (exp
) == CONSTRUCTOR
6176 || CONSTANT_CLASS_P (exp
))
6177 return XEXP (output_constant_def (exp
, 0), 0);
6179 /* Everything must be something allowed by is_gimple_addressable. */
6180 switch (TREE_CODE (exp
))
6183 /* This case will happen via recursion for &a->b. */
6184 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, EXPAND_NORMAL
);
6187 /* Recurse and make the output_constant_def clause above handle this. */
6188 return expand_expr_addr_expr_1 (DECL_INITIAL (exp
), target
,
6192 /* The real part of the complex number is always first, therefore
6193 the address is the same as the address of the parent object. */
6196 inner
= TREE_OPERAND (exp
, 0);
6200 /* The imaginary part of the complex number is always second.
6201 The expression is therefore always offset by the size of the
6204 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
6205 inner
= TREE_OPERAND (exp
, 0);
6209 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6210 expand_expr, as that can have various side effects; LABEL_DECLs for
6211 example, may not have their DECL_RTL set yet. Assume language
6212 specific tree nodes can be expanded in some interesting way. */
6214 || TREE_CODE (exp
) >= LAST_AND_UNUSED_TREE_CODE
)
6216 result
= expand_expr (exp
, target
, tmode
,
6217 modifier
== EXPAND_INITIALIZER
6218 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
6220 /* If the DECL isn't in memory, then the DECL wasn't properly
6221 marked TREE_ADDRESSABLE, which will be either a front-end
6222 or a tree optimizer bug. */
6223 gcc_assert (MEM_P (result
));
6224 result
= XEXP (result
, 0);
6226 /* ??? Is this needed anymore? */
6227 if (DECL_P (exp
) && !TREE_USED (exp
) == 0)
6229 assemble_external (exp
);
6230 TREE_USED (exp
) = 1;
6233 if (modifier
!= EXPAND_INITIALIZER
6234 && modifier
!= EXPAND_CONST_ADDRESS
)
6235 result
= force_operand (result
, target
);
6239 /* Pass FALSE as the last argument to get_inner_reference although
6240 we are expanding to RTL. The rationale is that we know how to
6241 handle "aligning nodes" here: we can just bypass them because
6242 they won't change the final object whose address will be returned
6243 (they actually exist only for that purpose). */
6244 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
6245 &mode1
, &unsignedp
, &volatilep
, false);
6249 /* We must have made progress. */
6250 gcc_assert (inner
!= exp
);
6252 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
6253 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
);
6259 if (modifier
!= EXPAND_NORMAL
)
6260 result
= force_operand (result
, NULL
);
6261 tmp
= expand_expr (offset
, NULL
, tmode
, EXPAND_NORMAL
);
6263 result
= convert_memory_address (tmode
, result
);
6264 tmp
= convert_memory_address (tmode
, tmp
);
6266 if (modifier
== EXPAND_SUM
)
6267 result
= gen_rtx_PLUS (tmode
, result
, tmp
);
6270 subtarget
= bitpos
? NULL_RTX
: target
;
6271 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
6272 1, OPTAB_LIB_WIDEN
);
6278 /* Someone beforehand should have rejected taking the address
6279 of such an object. */
6280 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
6282 result
= plus_constant (result
, bitpos
/ BITS_PER_UNIT
);
6283 if (modifier
< EXPAND_SUM
)
6284 result
= force_operand (result
, target
);
6290 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6291 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6294 expand_expr_addr_expr (tree exp
, rtx target
, enum machine_mode tmode
,
6295 enum expand_modifier modifier
)
6297 enum machine_mode rmode
;
6300 /* Target mode of VOIDmode says "whatever's natural". */
6301 if (tmode
== VOIDmode
)
6302 tmode
= TYPE_MODE (TREE_TYPE (exp
));
6304 /* We can get called with some Weird Things if the user does silliness
6305 like "(short) &a". In that case, convert_memory_address won't do
6306 the right thing, so ignore the given target mode. */
6307 if (tmode
!= Pmode
&& tmode
!= ptr_mode
)
6310 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
6313 /* Despite expand_expr claims concerning ignoring TMODE when not
6314 strictly convenient, stuff breaks if we don't honor it. Note
6315 that combined with the above, we only do this for pointer modes. */
6316 rmode
= GET_MODE (result
);
6317 if (rmode
== VOIDmode
)
6320 result
= convert_memory_address (tmode
, result
);
6326 /* expand_expr: generate code for computing expression EXP.
6327 An rtx for the computed value is returned. The value is never null.
6328 In the case of a void EXP, const0_rtx is returned.
6330 The value may be stored in TARGET if TARGET is nonzero.
6331 TARGET is just a suggestion; callers must assume that
6332 the rtx returned may not be the same as TARGET.
6334 If TARGET is CONST0_RTX, it means that the value will be ignored.
6336 If TMODE is not VOIDmode, it suggests generating the
6337 result in mode TMODE. But this is done only when convenient.
6338 Otherwise, TMODE is ignored and the value generated in its natural mode.
6339 TMODE is just a suggestion; callers must assume that
6340 the rtx returned may not have mode TMODE.
6342 Note that TARGET may have neither TMODE nor MODE. In that case, it
6343 probably will not be used.
6345 If MODIFIER is EXPAND_SUM then when EXP is an addition
6346 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6347 or a nest of (PLUS ...) and (MINUS ...) where the terms are
6348 products as above, or REG or MEM, or constant.
6349 Ordinarily in such cases we would output mul or add instructions
6350 and then return a pseudo reg containing the sum.
6352 EXPAND_INITIALIZER is much like EXPAND_SUM except that
6353 it also marks a label as absolutely required (it can't be dead).
6354 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
6355 This is used for outputting expressions used in initializers.
6357 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
6358 with a constant address even if that address is not normally legitimate.
6359 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
6361 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
6362 a call parameter. Such targets require special care as we haven't yet
6363 marked TARGET so that it's safe from being trashed by libcalls. We
6364 don't want to use TARGET for anything but the final result;
6365 Intermediate values must go elsewhere. Additionally, calls to
6366 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
6368 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
6369 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
6370 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
6371 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
6374 static rtx
expand_expr_real_1 (tree
, rtx
, enum machine_mode
,
6375 enum expand_modifier
, rtx
*);
6378 expand_expr_real (tree exp
, rtx target
, enum machine_mode tmode
,
6379 enum expand_modifier modifier
, rtx
*alt_rtl
)
6382 rtx ret
, last
= NULL
;
6384 /* Handle ERROR_MARK before anybody tries to access its type. */
6385 if (TREE_CODE (exp
) == ERROR_MARK
6386 || TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
)
6388 ret
= CONST0_RTX (tmode
);
6389 return ret
? ret
: const0_rtx
;
6392 if (flag_non_call_exceptions
)
6394 rn
= lookup_stmt_eh_region (exp
);
6395 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
6397 last
= get_last_insn ();
6400 /* If this is an expression of some kind and it has an associated line
6401 number, then emit the line number before expanding the expression.
6403 We need to save and restore the file and line information so that
6404 errors discovered during expansion are emitted with the right
6405 information. It would be better of the diagnostic routines
6406 used the file/line information embedded in the tree nodes rather
6408 if (cfun
&& EXPR_HAS_LOCATION (exp
))
6410 location_t saved_location
= input_location
;
6411 input_location
= EXPR_LOCATION (exp
);
6412 emit_line_note (input_location
);
6414 /* Record where the insns produced belong. */
6415 record_block_change (TREE_BLOCK (exp
));
6417 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
6419 input_location
= saved_location
;
6423 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
6426 /* If using non-call exceptions, mark all insns that may trap.
6427 expand_call() will mark CALL_INSNs before we get to this code,
6428 but it doesn't handle libcalls, and these may trap. */
6432 for (insn
= next_real_insn (last
); insn
;
6433 insn
= next_real_insn (insn
))
6435 if (! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
6436 /* If we want exceptions for non-call insns, any
6437 may_trap_p instruction may throw. */
6438 && GET_CODE (PATTERN (insn
)) != CLOBBER
6439 && GET_CODE (PATTERN (insn
)) != USE
6440 && (CALL_P (insn
) || may_trap_p (PATTERN (insn
))))
6442 REG_NOTES (insn
) = alloc_EXPR_LIST (REG_EH_REGION
, GEN_INT (rn
),
6452 expand_expr_real_1 (tree exp
, rtx target
, enum machine_mode tmode
,
6453 enum expand_modifier modifier
, rtx
*alt_rtl
)
6456 tree type
= TREE_TYPE (exp
);
6458 enum machine_mode mode
;
6459 enum tree_code code
= TREE_CODE (exp
);
6461 rtx subtarget
, original_target
;
6464 bool reduce_bit_field
= false;
6465 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
6466 ? reduce_to_bit_field_precision ((expr), \
6471 mode
= TYPE_MODE (type
);
6472 unsignedp
= TYPE_UNSIGNED (type
);
6473 if (lang_hooks
.reduce_bit_field_operations
6474 && TREE_CODE (type
) == INTEGER_TYPE
6475 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
))
6477 /* An operation in what may be a bit-field type needs the
6478 result to be reduced to the precision of the bit-field type,
6479 which is narrower than that of the type's mode. */
6480 reduce_bit_field
= true;
6481 if (modifier
== EXPAND_STACK_PARM
)
6485 /* Use subtarget as the target for operand 0 of a binary operation. */
6486 subtarget
= get_subtarget (target
);
6487 original_target
= target
;
6488 ignore
= (target
== const0_rtx
6489 || ((code
== NON_LVALUE_EXPR
|| code
== NOP_EXPR
6490 || code
== CONVERT_EXPR
|| code
== COND_EXPR
6491 || code
== VIEW_CONVERT_EXPR
)
6492 && TREE_CODE (type
) == VOID_TYPE
));
6494 /* If we are going to ignore this result, we need only do something
6495 if there is a side-effect somewhere in the expression. If there
6496 is, short-circuit the most common cases here. Note that we must
6497 not call expand_expr with anything but const0_rtx in case this
6498 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
6502 if (! TREE_SIDE_EFFECTS (exp
))
6505 /* Ensure we reference a volatile object even if value is ignored, but
6506 don't do this if all we are doing is taking its address. */
6507 if (TREE_THIS_VOLATILE (exp
)
6508 && TREE_CODE (exp
) != FUNCTION_DECL
6509 && mode
!= VOIDmode
&& mode
!= BLKmode
6510 && modifier
!= EXPAND_CONST_ADDRESS
)
6512 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
6514 temp
= copy_to_reg (temp
);
6518 if (TREE_CODE_CLASS (code
) == tcc_unary
6519 || code
== COMPONENT_REF
|| code
== INDIRECT_REF
)
6520 return expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
6523 else if (TREE_CODE_CLASS (code
) == tcc_binary
6524 || TREE_CODE_CLASS (code
) == tcc_comparison
6525 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
6527 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
6528 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
6531 else if (code
== BIT_FIELD_REF
)
6533 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
6534 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
6535 expand_expr (TREE_OPERAND (exp
, 2), const0_rtx
, VOIDmode
, modifier
);
6542 /* If will do cse, generate all results into pseudo registers
6543 since 1) that allows cse to find more things
6544 and 2) otherwise cse could produce an insn the machine
6545 cannot support. An exception is a CONSTRUCTOR into a multi-word
6546 MEM: that's much more likely to be most efficient into the MEM.
6547 Another is a CALL_EXPR which must return in memory. */
6549 if (! cse_not_expected
&& mode
!= BLKmode
&& target
6550 && (!REG_P (target
) || REGNO (target
) < FIRST_PSEUDO_REGISTER
)
6551 && ! (code
== CONSTRUCTOR
&& GET_MODE_SIZE (mode
) > UNITS_PER_WORD
)
6552 && ! (code
== CALL_EXPR
&& aggregate_value_p (exp
, exp
)))
6559 tree function
= decl_function_context (exp
);
6561 temp
= label_rtx (exp
);
6562 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
6564 if (function
!= current_function_decl
6566 LABEL_REF_NONLOCAL_P (temp
) = 1;
6568 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
6573 return expand_expr_real_1 (SSA_NAME_VAR (exp
), target
, tmode
, modifier
,
6578 /* If a static var's type was incomplete when the decl was written,
6579 but the type is complete now, lay out the decl now. */
6580 if (DECL_SIZE (exp
) == 0
6581 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
6582 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
6583 layout_decl (exp
, 0);
6585 /* ... fall through ... */
6589 gcc_assert (DECL_RTL (exp
));
6591 /* Ensure variable marked as used even if it doesn't go through
6592 a parser. If it hasn't be used yet, write out an external
6594 if (! TREE_USED (exp
))
6596 assemble_external (exp
);
6597 TREE_USED (exp
) = 1;
6600 /* Show we haven't gotten RTL for this yet. */
6603 /* Variables inherited from containing functions should have
6604 been lowered by this point. */
6605 context
= decl_function_context (exp
);
6606 gcc_assert (!context
6607 || context
== current_function_decl
6608 || TREE_STATIC (exp
)
6609 /* ??? C++ creates functions that are not TREE_STATIC. */
6610 || TREE_CODE (exp
) == FUNCTION_DECL
);
6612 /* This is the case of an array whose size is to be determined
6613 from its initializer, while the initializer is still being parsed.
6616 if (MEM_P (DECL_RTL (exp
))
6617 && REG_P (XEXP (DECL_RTL (exp
), 0)))
6618 temp
= validize_mem (DECL_RTL (exp
));
6620 /* If DECL_RTL is memory, we are in the normal case and either
6621 the address is not valid or it is not a register and -fforce-addr
6622 is specified, get the address into a register. */
6624 else if (MEM_P (DECL_RTL (exp
))
6625 && modifier
!= EXPAND_CONST_ADDRESS
6626 && modifier
!= EXPAND_SUM
6627 && modifier
!= EXPAND_INITIALIZER
6628 && (! memory_address_p (DECL_MODE (exp
),
6629 XEXP (DECL_RTL (exp
), 0))
6631 && !REG_P (XEXP (DECL_RTL (exp
), 0)))))
6634 *alt_rtl
= DECL_RTL (exp
);
6635 temp
= replace_equiv_address (DECL_RTL (exp
),
6636 copy_rtx (XEXP (DECL_RTL (exp
), 0)));
6639 /* If we got something, return it. But first, set the alignment
6640 if the address is a register. */
6643 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
6644 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
6649 /* If the mode of DECL_RTL does not match that of the decl, it
6650 must be a promoted value. We return a SUBREG of the wanted mode,
6651 but mark it so that we know that it was already extended. */
6653 if (REG_P (DECL_RTL (exp
))
6654 && GET_MODE (DECL_RTL (exp
)) != DECL_MODE (exp
))
6656 enum machine_mode pmode
;
6658 /* Get the signedness used for this variable. Ensure we get the
6659 same mode we got when the variable was declared. */
6660 pmode
= promote_mode (type
, DECL_MODE (exp
), &unsignedp
,
6661 (TREE_CODE (exp
) == RESULT_DECL
? 1 : 0));
6662 gcc_assert (GET_MODE (DECL_RTL (exp
)) == pmode
);
6664 temp
= gen_lowpart_SUBREG (mode
, DECL_RTL (exp
));
6665 SUBREG_PROMOTED_VAR_P (temp
) = 1;
6666 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
6670 return DECL_RTL (exp
);
6673 temp
= immed_double_const (TREE_INT_CST_LOW (exp
),
6674 TREE_INT_CST_HIGH (exp
), mode
);
6676 /* ??? If overflow is set, fold will have done an incomplete job,
6677 which can result in (plus xx (const_int 0)), which can get
6678 simplified by validate_replace_rtx during virtual register
6679 instantiation, which can result in unrecognizable insns.
6680 Avoid this by forcing all overflows into registers. */
6681 if (TREE_CONSTANT_OVERFLOW (exp
)
6682 && modifier
!= EXPAND_INITIALIZER
)
6683 temp
= force_reg (mode
, temp
);
6688 if (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp
))) == MODE_VECTOR_INT
6689 || GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp
))) == MODE_VECTOR_FLOAT
)
6690 return const_vector_from_tree (exp
);
6692 return expand_expr (build1 (CONSTRUCTOR
, TREE_TYPE (exp
),
6693 TREE_VECTOR_CST_ELTS (exp
)),
6694 ignore
? const0_rtx
: target
, tmode
, modifier
);
6697 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
6700 /* If optimized, generate immediate CONST_DOUBLE
6701 which will be turned into memory by reload if necessary.
6703 We used to force a register so that loop.c could see it. But
6704 this does not allow gen_* patterns to perform optimizations with
6705 the constants. It also produces two insns in cases like "x = 1.0;".
6706 On most machines, floating-point constants are not permitted in
6707 many insns, so we'd end up copying it to a register in any case.
6709 Now, we do the copying in expand_binop, if appropriate. */
6710 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
6711 TYPE_MODE (TREE_TYPE (exp
)));
6714 /* Handle evaluating a complex constant in a CONCAT target. */
6715 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
6717 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
6720 rtarg
= XEXP (original_target
, 0);
6721 itarg
= XEXP (original_target
, 1);
6723 /* Move the real and imaginary parts separately. */
6724 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, 0);
6725 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, 0);
6728 emit_move_insn (rtarg
, op0
);
6730 emit_move_insn (itarg
, op1
);
6732 return original_target
;
6735 /* ... fall through ... */
6738 temp
= output_constant_def (exp
, 1);
6740 /* temp contains a constant address.
6741 On RISC machines where a constant address isn't valid,
6742 make some insns to get that address into a register. */
6743 if (modifier
!= EXPAND_CONST_ADDRESS
6744 && modifier
!= EXPAND_INITIALIZER
6745 && modifier
!= EXPAND_SUM
6746 && (! memory_address_p (mode
, XEXP (temp
, 0))
6747 || flag_force_addr
))
6748 return replace_equiv_address (temp
,
6749 copy_rtx (XEXP (temp
, 0)));
6754 tree val
= TREE_OPERAND (exp
, 0);
6755 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
);
6757 if (!SAVE_EXPR_RESOLVED_P (exp
))
6759 /* We can indeed still hit this case, typically via builtin
6760 expanders calling save_expr immediately before expanding
6761 something. Assume this means that we only have to deal
6762 with non-BLKmode values. */
6763 gcc_assert (GET_MODE (ret
) != BLKmode
);
6765 val
= build_decl (VAR_DECL
, NULL
, TREE_TYPE (exp
));
6766 DECL_ARTIFICIAL (val
) = 1;
6767 DECL_IGNORED_P (val
) = 1;
6768 TREE_OPERAND (exp
, 0) = val
;
6769 SAVE_EXPR_RESOLVED_P (exp
) = 1;
6771 if (!CONSTANT_P (ret
))
6772 ret
= copy_to_reg (ret
);
6773 SET_DECL_RTL (val
, ret
);
6780 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == LABEL_DECL
)
6781 expand_goto (TREE_OPERAND (exp
, 0));
6783 expand_computed_goto (TREE_OPERAND (exp
, 0));
6787 /* If we don't need the result, just ensure we evaluate any
6793 for (elt
= CONSTRUCTOR_ELTS (exp
); elt
; elt
= TREE_CHAIN (elt
))
6794 expand_expr (TREE_VALUE (elt
), const0_rtx
, VOIDmode
, 0);
6799 /* All elts simple constants => refer to a constant in memory. But
6800 if this is a non-BLKmode mode, let it store a field at a time
6801 since that should make a CONST_INT or CONST_DOUBLE when we
6802 fold. Likewise, if we have a target we can use, it is best to
6803 store directly into the target unless the type is large enough
6804 that memcpy will be used. If we are making an initializer and
6805 all operands are constant, put it in memory as well.
6807 FIXME: Avoid trying to fill vector constructors piece-meal.
6808 Output them with output_constant_def below unless we're sure
6809 they're zeros. This should go away when vector initializers
6810 are treated like VECTOR_CST instead of arrays.
6812 else if ((TREE_STATIC (exp
)
6813 && ((mode
== BLKmode
6814 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
6815 || TREE_ADDRESSABLE (exp
)
6816 || (host_integerp (TYPE_SIZE_UNIT (type
), 1)
6817 && (! MOVE_BY_PIECES_P
6818 (tree_low_cst (TYPE_SIZE_UNIT (type
), 1),
6820 && ! mostly_zeros_p (exp
))))
6821 || ((modifier
== EXPAND_INITIALIZER
6822 || modifier
== EXPAND_CONST_ADDRESS
)
6823 && TREE_CONSTANT (exp
)))
6825 rtx constructor
= output_constant_def (exp
, 1);
6827 if (modifier
!= EXPAND_CONST_ADDRESS
6828 && modifier
!= EXPAND_INITIALIZER
6829 && modifier
!= EXPAND_SUM
)
6830 constructor
= validize_mem (constructor
);
6836 /* Handle calls that pass values in multiple non-contiguous
6837 locations. The Irix 6 ABI has examples of this. */
6838 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
6839 || GET_CODE (target
) == PARALLEL
6840 || modifier
== EXPAND_STACK_PARM
)
6842 = assign_temp (build_qualified_type (type
,
6844 | (TREE_READONLY (exp
)
6845 * TYPE_QUAL_CONST
))),
6846 0, TREE_ADDRESSABLE (exp
), 1);
6848 store_constructor (exp
, target
, 0, int_expr_size (exp
));
6852 case MISALIGNED_INDIRECT_REF
:
6853 case ALIGN_INDIRECT_REF
:
6856 tree exp1
= TREE_OPERAND (exp
, 0);
6859 if (modifier
!= EXPAND_WRITE
)
6863 t
= fold_read_from_constant_string (exp
);
6865 return expand_expr (t
, target
, tmode
, modifier
);
6868 op0
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
6869 op0
= memory_address (mode
, op0
);
6871 if (code
== ALIGN_INDIRECT_REF
)
6873 int align
= TYPE_ALIGN_UNIT (type
);
6874 op0
= gen_rtx_AND (Pmode
, op0
, GEN_INT (-align
));
6875 op0
= memory_address (mode
, op0
);
6878 temp
= gen_rtx_MEM (mode
, op0
);
6880 orig
= REF_ORIGINAL (exp
);
6883 set_mem_attributes (temp
, orig
, 0);
6885 /* Resolve the misalignment now, so that we don't have to remember
6886 to resolve it later. Of course, this only works for reads. */
6887 /* ??? When we get around to supporting writes, we'll have to handle
6888 this in store_expr directly. The vectorizer isn't generating
6889 those yet, however. */
6890 if (code
== MISALIGNED_INDIRECT_REF
)
6895 gcc_assert (modifier
== EXPAND_NORMAL
);
6897 /* The vectorizer should have already checked the mode. */
6898 icode
= movmisalign_optab
->handlers
[mode
].insn_code
;
6899 gcc_assert (icode
!= CODE_FOR_nothing
);
6901 /* We've already validated the memory, and we're creating a
6902 new pseudo destination. The predicates really can't fail. */
6903 reg
= gen_reg_rtx (mode
);
6905 /* Nor can the insn generator. */
6906 insn
= GEN_FCN (icode
) (reg
, temp
);
6918 tree array
= TREE_OPERAND (exp
, 0);
6919 tree index
= TREE_OPERAND (exp
, 1);
6921 /* Fold an expression like: "foo"[2].
6922 This is not done in fold so it won't happen inside &.
6923 Don't fold if this is for wide characters since it's too
6924 difficult to do correctly and this is a very rare case. */
6926 if (modifier
!= EXPAND_CONST_ADDRESS
6927 && modifier
!= EXPAND_INITIALIZER
6928 && modifier
!= EXPAND_MEMORY
)
6930 tree t
= fold_read_from_constant_string (exp
);
6933 return expand_expr (t
, target
, tmode
, modifier
);
6936 /* If this is a constant index into a constant array,
6937 just get the value from the array. Handle both the cases when
6938 we have an explicit constructor and when our operand is a variable
6939 that was declared const. */
6941 if (modifier
!= EXPAND_CONST_ADDRESS
6942 && modifier
!= EXPAND_INITIALIZER
6943 && modifier
!= EXPAND_MEMORY
6944 && TREE_CODE (array
) == CONSTRUCTOR
6945 && ! TREE_SIDE_EFFECTS (array
)
6946 && TREE_CODE (index
) == INTEGER_CST
)
6950 for (elem
= CONSTRUCTOR_ELTS (array
);
6951 (elem
&& !tree_int_cst_equal (TREE_PURPOSE (elem
), index
));
6952 elem
= TREE_CHAIN (elem
))
6955 if (elem
&& !TREE_SIDE_EFFECTS (TREE_VALUE (elem
)))
6956 return expand_expr (fold (TREE_VALUE (elem
)), target
, tmode
,
6960 else if (optimize
>= 1
6961 && modifier
!= EXPAND_CONST_ADDRESS
6962 && modifier
!= EXPAND_INITIALIZER
6963 && modifier
!= EXPAND_MEMORY
6964 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
6965 && TREE_CODE (array
) == VAR_DECL
&& DECL_INITIAL (array
)
6966 && TREE_CODE (DECL_INITIAL (array
)) != ERROR_MARK
6967 && targetm
.binds_local_p (array
))
6969 if (TREE_CODE (index
) == INTEGER_CST
)
6971 tree init
= DECL_INITIAL (array
);
6973 if (TREE_CODE (init
) == CONSTRUCTOR
)
6977 for (elem
= CONSTRUCTOR_ELTS (init
);
6979 && !tree_int_cst_equal (TREE_PURPOSE (elem
), index
));
6980 elem
= TREE_CHAIN (elem
))
6983 if (elem
&& !TREE_SIDE_EFFECTS (TREE_VALUE (elem
)))
6984 return expand_expr (fold (TREE_VALUE (elem
)), target
,
6987 else if (TREE_CODE (init
) == STRING_CST
6988 && 0 > compare_tree_int (index
,
6989 TREE_STRING_LENGTH (init
)))
6991 tree type
= TREE_TYPE (TREE_TYPE (init
));
6992 enum machine_mode mode
= TYPE_MODE (type
);
6994 if (GET_MODE_CLASS (mode
) == MODE_INT
6995 && GET_MODE_SIZE (mode
) == 1)
6996 return gen_int_mode (TREE_STRING_POINTER (init
)
6997 [TREE_INT_CST_LOW (index
)], mode
);
7002 goto normal_inner_ref
;
7005 /* If the operand is a CONSTRUCTOR, we can just extract the
7006 appropriate field if it is present. */
7007 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == CONSTRUCTOR
)
7011 for (elt
= CONSTRUCTOR_ELTS (TREE_OPERAND (exp
, 0)); elt
;
7012 elt
= TREE_CHAIN (elt
))
7013 if (TREE_PURPOSE (elt
) == TREE_OPERAND (exp
, 1)
7014 /* We can normally use the value of the field in the
7015 CONSTRUCTOR. However, if this is a bitfield in
7016 an integral mode that we can fit in a HOST_WIDE_INT,
7017 we must mask only the number of bits in the bitfield,
7018 since this is done implicitly by the constructor. If
7019 the bitfield does not meet either of those conditions,
7020 we can't do this optimization. */
7021 && (! DECL_BIT_FIELD (TREE_PURPOSE (elt
))
7022 || ((GET_MODE_CLASS (DECL_MODE (TREE_PURPOSE (elt
)))
7024 && (GET_MODE_BITSIZE (DECL_MODE (TREE_PURPOSE (elt
)))
7025 <= HOST_BITS_PER_WIDE_INT
))))
7027 if (DECL_BIT_FIELD (TREE_PURPOSE (elt
))
7028 && modifier
== EXPAND_STACK_PARM
)
7030 op0
= expand_expr (TREE_VALUE (elt
), target
, tmode
, modifier
);
7031 if (DECL_BIT_FIELD (TREE_PURPOSE (elt
)))
7033 HOST_WIDE_INT bitsize
7034 = TREE_INT_CST_LOW (DECL_SIZE (TREE_PURPOSE (elt
)));
7035 enum machine_mode imode
7036 = TYPE_MODE (TREE_TYPE (TREE_PURPOSE (elt
)));
7038 if (TYPE_UNSIGNED (TREE_TYPE (TREE_PURPOSE (elt
))))
7040 op1
= GEN_INT (((HOST_WIDE_INT
) 1 << bitsize
) - 1);
7041 op0
= expand_and (imode
, op0
, op1
, target
);
7046 = build_int_cst (NULL_TREE
,
7047 GET_MODE_BITSIZE (imode
) - bitsize
);
7049 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
7051 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
7059 goto normal_inner_ref
;
7062 case ARRAY_RANGE_REF
:
7065 enum machine_mode mode1
;
7066 HOST_WIDE_INT bitsize
, bitpos
;
7069 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7070 &mode1
, &unsignedp
, &volatilep
, true);
7073 /* If we got back the original object, something is wrong. Perhaps
7074 we are evaluating an expression too early. In any event, don't
7075 infinitely recurse. */
7076 gcc_assert (tem
!= exp
);
7078 /* If TEM's type is a union of variable size, pass TARGET to the inner
7079 computation, since it will need a temporary and TARGET is known
7080 to have to do. This occurs in unchecked conversion in Ada. */
7084 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
7085 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
7087 && modifier
!= EXPAND_STACK_PARM
7088 ? target
: NULL_RTX
),
7090 (modifier
== EXPAND_INITIALIZER
7091 || modifier
== EXPAND_CONST_ADDRESS
7092 || modifier
== EXPAND_STACK_PARM
)
7093 ? modifier
: EXPAND_NORMAL
);
7095 /* If this is a constant, put it into a register if it is a
7096 legitimate constant and OFFSET is 0 and memory if it isn't. */
7097 if (CONSTANT_P (op0
))
7099 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (tem
));
7100 if (mode
!= BLKmode
&& LEGITIMATE_CONSTANT_P (op0
)
7102 op0
= force_reg (mode
, op0
);
7104 op0
= validize_mem (force_const_mem (mode
, op0
));
7107 /* Otherwise, if this object not in memory and we either have an
7108 offset or a BLKmode result, put it there. This case can't occur in
7109 C, but can in Ada if we have unchecked conversion of an expression
7110 from a scalar type to an array or record type or for an
7111 ARRAY_RANGE_REF whose type is BLKmode. */
7112 else if (!MEM_P (op0
)
7114 || (code
== ARRAY_RANGE_REF
&& mode
== BLKmode
)))
7116 tree nt
= build_qualified_type (TREE_TYPE (tem
),
7117 (TYPE_QUALS (TREE_TYPE (tem
))
7118 | TYPE_QUAL_CONST
));
7119 rtx memloc
= assign_temp (nt
, 1, 1, 1);
7121 emit_move_insn (memloc
, op0
);
7127 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
7130 gcc_assert (MEM_P (op0
));
7132 #ifdef POINTERS_EXTEND_UNSIGNED
7133 if (GET_MODE (offset_rtx
) != Pmode
)
7134 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
7136 if (GET_MODE (offset_rtx
) != ptr_mode
)
7137 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
7140 if (GET_MODE (op0
) == BLKmode
7141 /* A constant address in OP0 can have VOIDmode, we must
7142 not try to call force_reg in that case. */
7143 && GET_MODE (XEXP (op0
, 0)) != VOIDmode
7145 && (bitpos
% bitsize
) == 0
7146 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
7147 && MEM_ALIGN (op0
) == GET_MODE_ALIGNMENT (mode1
))
7149 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7153 op0
= offset_address (op0
, offset_rtx
,
7154 highest_pow2_factor (offset
));
7157 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7158 record its alignment as BIGGEST_ALIGNMENT. */
7159 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
7160 && is_aligning_offset (offset
, tem
))
7161 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
7163 /* Don't forget about volatility even if this is a bitfield. */
7164 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
7166 if (op0
== orig_op0
)
7167 op0
= copy_rtx (op0
);
7169 MEM_VOLATILE_P (op0
) = 1;
7172 /* The following code doesn't handle CONCAT.
7173 Assume only bitpos == 0 can be used for CONCAT, due to
7174 one element arrays having the same mode as its element. */
7175 if (GET_CODE (op0
) == CONCAT
)
7177 gcc_assert (bitpos
== 0
7178 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)));
7182 /* In cases where an aligned union has an unaligned object
7183 as a field, we might be extracting a BLKmode value from
7184 an integer-mode (e.g., SImode) object. Handle this case
7185 by doing the extract into an object as wide as the field
7186 (which we know to be the width of a basic mode), then
7187 storing into memory, and changing the mode to BLKmode. */
7188 if (mode1
== VOIDmode
7189 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
7190 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
7191 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
7192 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
7193 && modifier
!= EXPAND_CONST_ADDRESS
7194 && modifier
!= EXPAND_INITIALIZER
)
7195 /* If the field isn't aligned enough to fetch as a memref,
7196 fetch it as a bit field. */
7197 || (mode1
!= BLKmode
7198 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
7199 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
7201 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
7202 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
7203 && ((modifier
== EXPAND_CONST_ADDRESS
7204 || modifier
== EXPAND_INITIALIZER
)
7206 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
7207 || (bitpos
% BITS_PER_UNIT
!= 0)))
7208 /* If the type and the field are a constant size and the
7209 size of the type isn't the same size as the bitfield,
7210 we must use bitfield operations. */
7212 && TYPE_SIZE (TREE_TYPE (exp
))
7213 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
7214 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
7217 enum machine_mode ext_mode
= mode
;
7219 if (ext_mode
== BLKmode
7220 && ! (target
!= 0 && MEM_P (op0
)
7222 && bitpos
% BITS_PER_UNIT
== 0))
7223 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
7225 if (ext_mode
== BLKmode
)
7228 target
= assign_temp (type
, 0, 1, 1);
7233 /* In this case, BITPOS must start at a byte boundary and
7234 TARGET, if specified, must be a MEM. */
7235 gcc_assert (MEM_P (op0
)
7236 && (!target
|| MEM_P (target
))
7237 && !(bitpos
% BITS_PER_UNIT
));
7239 emit_block_move (target
,
7240 adjust_address (op0
, VOIDmode
,
7241 bitpos
/ BITS_PER_UNIT
),
7242 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
7244 (modifier
== EXPAND_STACK_PARM
7245 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
7250 op0
= validize_mem (op0
);
7252 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
7253 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7255 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
7256 (modifier
== EXPAND_STACK_PARM
7257 ? NULL_RTX
: target
),
7258 ext_mode
, ext_mode
);
7260 /* If the result is a record type and BITSIZE is narrower than
7261 the mode of OP0, an integral mode, and this is a big endian
7262 machine, we must put the field into the high-order bits. */
7263 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
7264 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
7265 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
7266 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
7267 size_int (GET_MODE_BITSIZE (GET_MODE (op0
))
7271 /* If the result type is BLKmode, store the data into a temporary
7272 of the appropriate type, but with the mode corresponding to the
7273 mode for the data we have (op0's mode). It's tempting to make
7274 this a constant type, since we know it's only being stored once,
7275 but that can cause problems if we are taking the address of this
7276 COMPONENT_REF because the MEM of any reference via that address
7277 will have flags corresponding to the type, which will not
7278 necessarily be constant. */
7279 if (mode
== BLKmode
)
7282 = assign_stack_temp_for_type
7283 (ext_mode
, GET_MODE_BITSIZE (ext_mode
), 0, type
);
7285 emit_move_insn (new, op0
);
7286 op0
= copy_rtx (new);
7287 PUT_MODE (op0
, BLKmode
);
7288 set_mem_attributes (op0
, exp
, 1);
7294 /* If the result is BLKmode, use that to access the object
7296 if (mode
== BLKmode
)
7299 /* Get a reference to just this component. */
7300 if (modifier
== EXPAND_CONST_ADDRESS
7301 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7302 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7304 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7306 if (op0
== orig_op0
)
7307 op0
= copy_rtx (op0
);
7309 set_mem_attributes (op0
, exp
, 0);
7310 if (REG_P (XEXP (op0
, 0)))
7311 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7313 MEM_VOLATILE_P (op0
) |= volatilep
;
7314 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
7315 || modifier
== EXPAND_CONST_ADDRESS
7316 || modifier
== EXPAND_INITIALIZER
)
7318 else if (target
== 0)
7319 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
7321 convert_move (target
, op0
, unsignedp
);
7326 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
7329 /* Check for a built-in function. */
7330 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
7331 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7333 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7335 if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7336 == BUILT_IN_FRONTEND
)
7337 return lang_hooks
.expand_expr (exp
, original_target
,
7341 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
7344 return expand_call (exp
, target
, ignore
);
7346 case NON_LVALUE_EXPR
:
7349 if (TREE_OPERAND (exp
, 0) == error_mark_node
)
7352 if (TREE_CODE (type
) == UNION_TYPE
)
7354 tree valtype
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7356 /* If both input and output are BLKmode, this conversion isn't doing
7357 anything except possibly changing memory attribute. */
7358 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
7360 rtx result
= expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
,
7363 result
= copy_rtx (result
);
7364 set_mem_attributes (result
, exp
, 0);
7370 if (TYPE_MODE (type
) != BLKmode
)
7371 target
= gen_reg_rtx (TYPE_MODE (type
));
7373 target
= assign_temp (type
, 0, 1, 1);
7377 /* Store data into beginning of memory target. */
7378 store_expr (TREE_OPERAND (exp
, 0),
7379 adjust_address (target
, TYPE_MODE (valtype
), 0),
7380 modifier
== EXPAND_STACK_PARM
);
7384 gcc_assert (REG_P (target
));
7386 /* Store this field into a union of the proper type. */
7387 store_field (target
,
7388 MIN ((int_size_in_bytes (TREE_TYPE
7389 (TREE_OPERAND (exp
, 0)))
7391 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
7392 0, TYPE_MODE (valtype
), TREE_OPERAND (exp
, 0),
7396 /* Return the entire union. */
7400 if (mode
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
7402 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
,
7405 /* If the signedness of the conversion differs and OP0 is
7406 a promoted SUBREG, clear that indication since we now
7407 have to do the proper extension. */
7408 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))) != unsignedp
7409 && GET_CODE (op0
) == SUBREG
)
7410 SUBREG_PROMOTED_VAR_P (op0
) = 0;
7412 return REDUCE_BIT_FIELD (op0
);
7415 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
, modifier
);
7416 if (GET_MODE (op0
) == mode
)
7419 /* If OP0 is a constant, just convert it into the proper mode. */
7420 else if (CONSTANT_P (op0
))
7422 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7423 enum machine_mode inner_mode
= TYPE_MODE (inner_type
);
7425 if (modifier
== EXPAND_INITIALIZER
)
7426 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
7427 subreg_lowpart_offset (mode
,
7430 op0
= convert_modes (mode
, inner_mode
, op0
,
7431 TYPE_UNSIGNED (inner_type
));
7434 else if (modifier
== EXPAND_INITIALIZER
)
7435 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
7437 else if (target
== 0)
7438 op0
= convert_to_mode (mode
, op0
,
7439 TYPE_UNSIGNED (TREE_TYPE
7440 (TREE_OPERAND (exp
, 0))));
7443 convert_move (target
, op0
,
7444 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7448 return REDUCE_BIT_FIELD (op0
);
7450 case VIEW_CONVERT_EXPR
:
7451 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
, modifier
);
7453 /* If the input and output modes are both the same, we are done.
7454 Otherwise, if neither mode is BLKmode and both are integral and within
7455 a word, we can use gen_lowpart. If neither is true, make sure the
7456 operand is in memory and convert the MEM to the new mode. */
7457 if (TYPE_MODE (type
) == GET_MODE (op0
))
7459 else if (TYPE_MODE (type
) != BLKmode
&& GET_MODE (op0
) != BLKmode
7460 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
7461 && GET_MODE_CLASS (TYPE_MODE (type
)) == MODE_INT
7462 && GET_MODE_SIZE (TYPE_MODE (type
)) <= UNITS_PER_WORD
7463 && GET_MODE_SIZE (GET_MODE (op0
)) <= UNITS_PER_WORD
)
7464 op0
= gen_lowpart (TYPE_MODE (type
), op0
);
7465 else if (!MEM_P (op0
))
7467 /* If the operand is not a MEM, force it into memory. Since we
7468 are going to be be changing the mode of the MEM, don't call
7469 force_const_mem for constants because we don't allow pool
7470 constants to change mode. */
7471 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7473 gcc_assert (!TREE_ADDRESSABLE (exp
));
7475 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
7477 = assign_stack_temp_for_type
7478 (TYPE_MODE (inner_type
),
7479 GET_MODE_SIZE (TYPE_MODE (inner_type
)), 0, inner_type
);
7481 emit_move_insn (target
, op0
);
7485 /* At this point, OP0 is in the correct mode. If the output type is such
7486 that the operand is known to be aligned, indicate that it is.
7487 Otherwise, we need only be concerned about alignment for non-BLKmode
7491 op0
= copy_rtx (op0
);
7493 if (TYPE_ALIGN_OK (type
))
7494 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
7495 else if (TYPE_MODE (type
) != BLKmode
&& STRICT_ALIGNMENT
7496 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (TYPE_MODE (type
)))
7498 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7499 HOST_WIDE_INT temp_size
7500 = MAX (int_size_in_bytes (inner_type
),
7501 (HOST_WIDE_INT
) GET_MODE_SIZE (TYPE_MODE (type
)));
7502 rtx
new = assign_stack_temp_for_type (TYPE_MODE (type
),
7503 temp_size
, 0, type
);
7504 rtx new_with_op0_mode
= adjust_address (new, GET_MODE (op0
), 0);
7506 gcc_assert (!TREE_ADDRESSABLE (exp
));
7508 if (GET_MODE (op0
) == BLKmode
)
7509 emit_block_move (new_with_op0_mode
, op0
,
7510 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type
))),
7511 (modifier
== EXPAND_STACK_PARM
7512 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
7514 emit_move_insn (new_with_op0_mode
, op0
);
7519 op0
= adjust_address (op0
, TYPE_MODE (type
), 0);
7525 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7526 something else, make sure we add the register to the constant and
7527 then to the other thing. This case can occur during strength
7528 reduction and doing it this way will produce better code if the
7529 frame pointer or argument pointer is eliminated.
7531 fold-const.c will ensure that the constant is always in the inner
7532 PLUS_EXPR, so the only case we need to do anything about is if
7533 sp, ap, or fp is our second argument, in which case we must swap
7534 the innermost first argument and our second argument. */
7536 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == PLUS_EXPR
7537 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 1)) == INTEGER_CST
7538 && TREE_CODE (TREE_OPERAND (exp
, 1)) == VAR_DECL
7539 && (DECL_RTL (TREE_OPERAND (exp
, 1)) == frame_pointer_rtx
7540 || DECL_RTL (TREE_OPERAND (exp
, 1)) == stack_pointer_rtx
7541 || DECL_RTL (TREE_OPERAND (exp
, 1)) == arg_pointer_rtx
))
7543 tree t
= TREE_OPERAND (exp
, 1);
7545 TREE_OPERAND (exp
, 1) = TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
7546 TREE_OPERAND (TREE_OPERAND (exp
, 0), 0) = t
;
7549 /* If the result is to be ptr_mode and we are adding an integer to
7550 something, we might be forming a constant. So try to use
7551 plus_constant. If it produces a sum and we can't accept it,
7552 use force_operand. This allows P = &ARR[const] to generate
7553 efficient code on machines where a SYMBOL_REF is not a valid
7556 If this is an EXPAND_SUM call, always return the sum. */
7557 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
7558 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
7560 if (modifier
== EXPAND_STACK_PARM
)
7562 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
7563 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
7564 && TREE_CONSTANT (TREE_OPERAND (exp
, 1)))
7568 op1
= expand_expr (TREE_OPERAND (exp
, 1), subtarget
, VOIDmode
,
7570 /* Use immed_double_const to ensure that the constant is
7571 truncated according to the mode of OP1, then sign extended
7572 to a HOST_WIDE_INT. Using the constant directly can result
7573 in non-canonical RTL in a 64x32 cross compile. */
7575 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 0)),
7577 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))));
7578 op1
= plus_constant (op1
, INTVAL (constant_part
));
7579 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7580 op1
= force_operand (op1
, target
);
7581 return REDUCE_BIT_FIELD (op1
);
7584 else if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
7585 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_INT
7586 && TREE_CONSTANT (TREE_OPERAND (exp
, 0)))
7590 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
7591 (modifier
== EXPAND_INITIALIZER
7592 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
7593 if (! CONSTANT_P (op0
))
7595 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
,
7596 VOIDmode
, modifier
);
7597 /* Return a PLUS if modifier says it's OK. */
7598 if (modifier
== EXPAND_SUM
7599 || modifier
== EXPAND_INITIALIZER
)
7600 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
7603 /* Use immed_double_const to ensure that the constant is
7604 truncated according to the mode of OP1, then sign extended
7605 to a HOST_WIDE_INT. Using the constant directly can result
7606 in non-canonical RTL in a 64x32 cross compile. */
7608 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1)),
7610 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7611 op0
= plus_constant (op0
, INTVAL (constant_part
));
7612 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7613 op0
= force_operand (op0
, target
);
7614 return REDUCE_BIT_FIELD (op0
);
7618 /* No sense saving up arithmetic to be done
7619 if it's all in the wrong mode to form part of an address.
7620 And force_operand won't know whether to sign-extend or
7622 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7623 || mode
!= ptr_mode
)
7625 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7626 subtarget
, &op0
, &op1
, 0);
7627 if (op0
== const0_rtx
)
7629 if (op1
== const0_rtx
)
7634 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7635 subtarget
, &op0
, &op1
, modifier
);
7636 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
7639 /* For initializers, we are allowed to return a MINUS of two
7640 symbolic constants. Here we handle all cases when both operands
7642 /* Handle difference of two symbolic constants,
7643 for the sake of an initializer. */
7644 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7645 && really_constant_p (TREE_OPERAND (exp
, 0))
7646 && really_constant_p (TREE_OPERAND (exp
, 1)))
7648 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7649 NULL_RTX
, &op0
, &op1
, modifier
);
7651 /* If the last operand is a CONST_INT, use plus_constant of
7652 the negated constant. Else make the MINUS. */
7653 if (GET_CODE (op1
) == CONST_INT
)
7654 return REDUCE_BIT_FIELD (plus_constant (op0
, - INTVAL (op1
)));
7656 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
7659 /* No sense saving up arithmetic to be done
7660 if it's all in the wrong mode to form part of an address.
7661 And force_operand won't know whether to sign-extend or
7663 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7664 || mode
!= ptr_mode
)
7667 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7668 subtarget
, &op0
, &op1
, modifier
);
7670 /* Convert A - const to A + (-const). */
7671 if (GET_CODE (op1
) == CONST_INT
)
7673 op1
= negate_rtx (mode
, op1
);
7674 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
7680 /* If first operand is constant, swap them.
7681 Thus the following special case checks need only
7682 check the second operand. */
7683 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
)
7685 tree t1
= TREE_OPERAND (exp
, 0);
7686 TREE_OPERAND (exp
, 0) = TREE_OPERAND (exp
, 1);
7687 TREE_OPERAND (exp
, 1) = t1
;
7690 /* Attempt to return something suitable for generating an
7691 indexed address, for machines that support that. */
7693 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
7694 && host_integerp (TREE_OPERAND (exp
, 1), 0))
7696 tree exp1
= TREE_OPERAND (exp
, 1);
7698 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
7702 op0
= force_operand (op0
, NULL_RTX
);
7704 op0
= copy_to_mode_reg (mode
, op0
);
7706 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
7707 gen_int_mode (tree_low_cst (exp1
, 0),
7708 TYPE_MODE (TREE_TYPE (exp1
)))));
7711 if (modifier
== EXPAND_STACK_PARM
)
7714 /* Check for multiplying things that have been extended
7715 from a narrower type. If this machine supports multiplying
7716 in that narrower type with a result in the desired type,
7717 do it that way, and avoid the explicit type-conversion. */
7718 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == NOP_EXPR
7719 && TREE_CODE (type
) == INTEGER_TYPE
7720 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7721 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))))
7722 && ((TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
7723 && int_fits_type_p (TREE_OPERAND (exp
, 1),
7724 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7725 /* Don't use a widening multiply if a shift will do. */
7726 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
7727 > HOST_BITS_PER_WIDE_INT
)
7728 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1))) < 0))
7730 (TREE_CODE (TREE_OPERAND (exp
, 1)) == NOP_EXPR
7731 && (TYPE_PRECISION (TREE_TYPE
7732 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
7733 == TYPE_PRECISION (TREE_TYPE
7735 (TREE_OPERAND (exp
, 0), 0))))
7736 /* If both operands are extended, they must either both
7737 be zero-extended or both be sign-extended. */
7738 && (TYPE_UNSIGNED (TREE_TYPE
7739 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
7740 == TYPE_UNSIGNED (TREE_TYPE
7742 (TREE_OPERAND (exp
, 0), 0)))))))
7744 tree op0type
= TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0));
7745 enum machine_mode innermode
= TYPE_MODE (op0type
);
7746 bool zextend_p
= TYPE_UNSIGNED (op0type
);
7747 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
7748 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
7750 if (mode
== GET_MODE_WIDER_MODE (innermode
))
7752 if (this_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
7754 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
7755 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
7756 TREE_OPERAND (exp
, 1),
7757 NULL_RTX
, &op0
, &op1
, 0);
7759 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
7760 TREE_OPERAND (TREE_OPERAND (exp
, 1), 0),
7761 NULL_RTX
, &op0
, &op1
, 0);
7764 else if (other_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
7765 && innermode
== word_mode
)
7768 op0
= expand_expr (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
7769 NULL_RTX
, VOIDmode
, 0);
7770 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
7771 op1
= convert_modes (innermode
, mode
,
7772 expand_expr (TREE_OPERAND (exp
, 1),
7773 NULL_RTX
, VOIDmode
, 0),
7776 op1
= expand_expr (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0),
7777 NULL_RTX
, VOIDmode
, 0);
7778 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
7779 unsignedp
, OPTAB_LIB_WIDEN
);
7780 hipart
= gen_highpart (innermode
, temp
);
7781 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
7785 emit_move_insn (hipart
, htem
);
7786 return REDUCE_BIT_FIELD (temp
);
7790 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7791 subtarget
, &op0
, &op1
, 0);
7792 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
7794 case TRUNC_DIV_EXPR
:
7795 case FLOOR_DIV_EXPR
:
7797 case ROUND_DIV_EXPR
:
7798 case EXACT_DIV_EXPR
:
7799 if (modifier
== EXPAND_STACK_PARM
)
7801 /* Possible optimization: compute the dividend with EXPAND_SUM
7802 then if the divisor is constant can optimize the case
7803 where some terms of the dividend have coeffs divisible by it. */
7804 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7805 subtarget
, &op0
, &op1
, 0);
7806 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
7809 /* Emit a/b as a*(1/b). Later we may manage CSE the reciprocal saving
7810 expensive divide. If not, combine will rebuild the original
7812 if (flag_unsafe_math_optimizations
&& optimize
&& !optimize_size
7813 && TREE_CODE (type
) == REAL_TYPE
7814 && !real_onep (TREE_OPERAND (exp
, 0)))
7815 return expand_expr (build2 (MULT_EXPR
, type
, TREE_OPERAND (exp
, 0),
7816 build2 (RDIV_EXPR
, type
,
7817 build_real (type
, dconst1
),
7818 TREE_OPERAND (exp
, 1))),
7819 target
, tmode
, modifier
);
7823 case TRUNC_MOD_EXPR
:
7824 case FLOOR_MOD_EXPR
:
7826 case ROUND_MOD_EXPR
:
7827 if (modifier
== EXPAND_STACK_PARM
)
7829 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7830 subtarget
, &op0
, &op1
, 0);
7831 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
7833 case FIX_ROUND_EXPR
:
7834 case FIX_FLOOR_EXPR
:
7836 gcc_unreachable (); /* Not used for C. */
7838 case FIX_TRUNC_EXPR
:
7839 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, VOIDmode
, 0);
7840 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
7841 target
= gen_reg_rtx (mode
);
7842 expand_fix (target
, op0
, unsignedp
);
7846 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, VOIDmode
, 0);
7847 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
7848 target
= gen_reg_rtx (mode
);
7849 /* expand_float can't figure out what to do if FROM has VOIDmode.
7850 So give it the correct mode. With -O, cse will optimize this. */
7851 if (GET_MODE (op0
) == VOIDmode
)
7852 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))),
7854 expand_float (target
, op0
,
7855 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7859 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
7860 if (modifier
== EXPAND_STACK_PARM
)
7862 temp
= expand_unop (mode
,
7863 optab_for_tree_code (NEGATE_EXPR
, type
),
7866 return REDUCE_BIT_FIELD (temp
);
7869 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
7870 if (modifier
== EXPAND_STACK_PARM
)
7873 /* ABS_EXPR is not valid for complex arguments. */
7874 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
7875 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
7877 /* Unsigned abs is simply the operand. Testing here means we don't
7878 risk generating incorrect code below. */
7879 if (TYPE_UNSIGNED (type
))
7882 return expand_abs (mode
, op0
, target
, unsignedp
,
7883 safe_from_p (target
, TREE_OPERAND (exp
, 0), 1));
7887 target
= original_target
;
7889 || modifier
== EXPAND_STACK_PARM
7890 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
7891 || GET_MODE (target
) != mode
7893 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
7894 target
= gen_reg_rtx (mode
);
7895 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7896 target
, &op0
, &op1
, 0);
7898 /* First try to do it with a special MIN or MAX instruction.
7899 If that does not win, use a conditional jump to select the proper
7901 this_optab
= optab_for_tree_code (code
, type
);
7902 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
7907 /* At this point, a MEM target is no longer useful; we will get better
7910 if (! REG_P (target
))
7911 target
= gen_reg_rtx (mode
);
7913 /* If op1 was placed in target, swap op0 and op1. */
7914 if (target
!= op0
&& target
== op1
)
7921 /* We generate better code and avoid problems with op1 mentioning
7922 target by forcing op1 into a pseudo if it isn't a constant. */
7923 if (! CONSTANT_P (op1
))
7924 op1
= force_reg (mode
, op1
);
7926 #ifdef HAVE_conditional_move
7927 /* Use a conditional move if possible. */
7928 if (can_conditionally_move_p (mode
))
7930 enum rtx_code comparison_code
;
7933 if (code
== MAX_EXPR
)
7934 comparison_code
= unsignedp
? GEU
: GE
;
7936 comparison_code
= unsignedp
? LEU
: LE
;
7938 /* ??? Same problem as in expmed.c: emit_conditional_move
7939 forces a stack adjustment via compare_from_rtx, and we
7940 lose the stack adjustment if the sequence we are about
7941 to create is discarded. */
7942 do_pending_stack_adjust ();
7946 /* Try to emit the conditional move. */
7947 insn
= emit_conditional_move (target
, comparison_code
,
7952 /* If we could do the conditional move, emit the sequence,
7956 rtx seq
= get_insns ();
7962 /* Otherwise discard the sequence and fall back to code with
7968 emit_move_insn (target
, op0
);
7970 temp
= gen_label_rtx ();
7972 /* If this mode is an integer too wide to compare properly,
7973 compare word by word. Rely on cse to optimize constant cases. */
7974 if (GET_MODE_CLASS (mode
) == MODE_INT
7975 && ! can_compare_p (GE
, mode
, ccp_jump
))
7977 if (code
== MAX_EXPR
)
7978 do_jump_by_parts_greater_rtx (mode
, unsignedp
, target
, op1
,
7981 do_jump_by_parts_greater_rtx (mode
, unsignedp
, op1
, target
,
7986 do_compare_rtx_and_jump (target
, op1
, code
== MAX_EXPR
? GE
: LE
,
7987 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
);
7989 emit_move_insn (target
, op1
);
7994 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
7995 if (modifier
== EXPAND_STACK_PARM
)
7997 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
8001 /* ??? Can optimize bitwise operations with one arg constant.
8002 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8003 and (a bitwise1 b) bitwise2 b (etc)
8004 but that is probably not worth while. */
8006 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8007 boolean values when we want in all cases to compute both of them. In
8008 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8009 as actual zero-or-1 values and then bitwise anding. In cases where
8010 there cannot be any side effects, better code would be made by
8011 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8012 how to recognize those cases. */
8014 case TRUTH_AND_EXPR
:
8015 code
= BIT_AND_EXPR
;
8020 code
= BIT_IOR_EXPR
;
8024 case TRUTH_XOR_EXPR
:
8025 code
= BIT_XOR_EXPR
;
8033 if (! safe_from_p (subtarget
, TREE_OPERAND (exp
, 1), 1))
8035 if (modifier
== EXPAND_STACK_PARM
)
8037 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8038 return expand_shift (code
, mode
, op0
, TREE_OPERAND (exp
, 1), target
,
8041 /* Could determine the answer when only additive constants differ. Also,
8042 the addition of one can be handled by changing the condition. */
8049 case UNORDERED_EXPR
:
8057 temp
= do_store_flag (exp
,
8058 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
8059 tmode
!= VOIDmode
? tmode
: mode
, 0);
8063 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
8064 if (code
== NE_EXPR
&& integer_zerop (TREE_OPERAND (exp
, 1))
8066 && REG_P (original_target
)
8067 && (GET_MODE (original_target
)
8068 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
8070 temp
= expand_expr (TREE_OPERAND (exp
, 0), original_target
,
8073 /* If temp is constant, we can just compute the result. */
8074 if (GET_CODE (temp
) == CONST_INT
)
8076 if (INTVAL (temp
) != 0)
8077 emit_move_insn (target
, const1_rtx
);
8079 emit_move_insn (target
, const0_rtx
);
8084 if (temp
!= original_target
)
8086 enum machine_mode mode1
= GET_MODE (temp
);
8087 if (mode1
== VOIDmode
)
8088 mode1
= tmode
!= VOIDmode
? tmode
: mode
;
8090 temp
= copy_to_mode_reg (mode1
, temp
);
8093 op1
= gen_label_rtx ();
8094 emit_cmp_and_jump_insns (temp
, const0_rtx
, EQ
, NULL_RTX
,
8095 GET_MODE (temp
), unsignedp
, op1
);
8096 emit_move_insn (temp
, const1_rtx
);
8101 /* If no set-flag instruction, must generate a conditional store
8102 into a temporary variable. Drop through and handle this
8107 || modifier
== EXPAND_STACK_PARM
8108 || ! safe_from_p (target
, exp
, 1)
8109 /* Make sure we don't have a hard reg (such as function's return
8110 value) live across basic blocks, if not optimizing. */
8111 || (!optimize
&& REG_P (target
)
8112 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
8113 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
8116 emit_move_insn (target
, const0_rtx
);
8118 op1
= gen_label_rtx ();
8119 jumpifnot (exp
, op1
);
8122 emit_move_insn (target
, const1_rtx
);
8125 return ignore
? const0_rtx
: target
;
8127 case TRUTH_NOT_EXPR
:
8128 if (modifier
== EXPAND_STACK_PARM
)
8130 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
, 0);
8131 /* The parser is careful to generate TRUTH_NOT_EXPR
8132 only with operands that are always zero or one. */
8133 temp
= expand_binop (mode
, xor_optab
, op0
, const1_rtx
,
8134 target
, 1, OPTAB_LIB_WIDEN
);
8138 case STATEMENT_LIST
:
8140 tree_stmt_iterator iter
;
8142 gcc_assert (ignore
);
8144 for (iter
= tsi_start (exp
); !tsi_end_p (iter
); tsi_next (&iter
))
8145 expand_expr (tsi_stmt (iter
), const0_rtx
, VOIDmode
, modifier
);
8150 /* A COND_EXPR with its type being VOID_TYPE represents a
8151 conditional jump and is handled in
8152 expand_gimple_cond_expr. */
8153 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp
)));
8155 /* Note that COND_EXPRs whose type is a structure or union
8156 are required to be constructed to contain assignments of
8157 a temporary variable, so that we can evaluate them here
8158 for side effect only. If type is void, we must do likewise. */
8160 gcc_assert (!TREE_ADDRESSABLE (type
)
8162 && TREE_TYPE (TREE_OPERAND (exp
, 1)) != void_type_node
8163 && TREE_TYPE (TREE_OPERAND (exp
, 2)) != void_type_node
);
8165 /* If we are not to produce a result, we have no target. Otherwise,
8166 if a target was specified use it; it will not be used as an
8167 intermediate target unless it is safe. If no target, use a
8170 if (modifier
!= EXPAND_STACK_PARM
8172 && safe_from_p (original_target
, TREE_OPERAND (exp
, 0), 1)
8173 && GET_MODE (original_target
) == mode
8174 #ifdef HAVE_conditional_move
8175 && (! can_conditionally_move_p (mode
)
8176 || REG_P (original_target
))
8178 && !MEM_P (original_target
))
8179 temp
= original_target
;
8181 temp
= assign_temp (type
, 0, 0, 1);
8183 do_pending_stack_adjust ();
8185 op0
= gen_label_rtx ();
8186 op1
= gen_label_rtx ();
8187 jumpifnot (TREE_OPERAND (exp
, 0), op0
);
8188 store_expr (TREE_OPERAND (exp
, 1), temp
,
8189 modifier
== EXPAND_STACK_PARM
);
8191 emit_jump_insn (gen_jump (op1
));
8194 store_expr (TREE_OPERAND (exp
, 2), temp
,
8195 modifier
== EXPAND_STACK_PARM
);
8202 target
= expand_vec_cond_expr (exp
, target
);
8207 tree lhs
= TREE_OPERAND (exp
, 0);
8208 tree rhs
= TREE_OPERAND (exp
, 1);
8210 gcc_assert (ignore
);
8212 /* Check for |= or &= of a bitfield of size one into another bitfield
8213 of size 1. In this case, (unless we need the result of the
8214 assignment) we can do this more efficiently with a
8215 test followed by an assignment, if necessary.
8217 ??? At this point, we can't get a BIT_FIELD_REF here. But if
8218 things change so we do, this code should be enhanced to
8220 if (TREE_CODE (lhs
) == COMPONENT_REF
8221 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
8222 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
8223 && TREE_OPERAND (rhs
, 0) == lhs
8224 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
8225 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
8226 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
8228 rtx label
= gen_label_rtx ();
8230 do_jump (TREE_OPERAND (rhs
, 1),
8231 TREE_CODE (rhs
) == BIT_IOR_EXPR
? label
: 0,
8232 TREE_CODE (rhs
) == BIT_AND_EXPR
? label
: 0);
8233 expand_assignment (lhs
, convert (TREE_TYPE (rhs
),
8234 (TREE_CODE (rhs
) == BIT_IOR_EXPR
8236 : integer_zero_node
)));
8237 do_pending_stack_adjust ();
8242 expand_assignment (lhs
, rhs
);
8248 if (!TREE_OPERAND (exp
, 0))
8249 expand_null_return ();
8251 expand_return (TREE_OPERAND (exp
, 0));
8255 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
8258 /* Get the rtx code of the operands. */
8259 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
8260 op1
= expand_expr (TREE_OPERAND (exp
, 1), 0, VOIDmode
, 0);
8263 target
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp
)));
8265 /* Move the real (op0) and imaginary (op1) parts to their location. */
8266 write_complex_part (target
, op0
, false);
8267 write_complex_part (target
, op1
, true);
8272 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
8273 return read_complex_part (op0
, false);
8276 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
8277 return read_complex_part (op0
, true);
8280 expand_resx_expr (exp
);
8283 case TRY_CATCH_EXPR
:
8285 case EH_FILTER_EXPR
:
8286 case TRY_FINALLY_EXPR
:
8287 /* Lowered by tree-eh.c. */
8290 case WITH_CLEANUP_EXPR
:
8291 case CLEANUP_POINT_EXPR
:
8293 case CASE_LABEL_EXPR
:
8299 case PREINCREMENT_EXPR
:
8300 case PREDECREMENT_EXPR
:
8301 case POSTINCREMENT_EXPR
:
8302 case POSTDECREMENT_EXPR
:
8305 case TRUTH_ANDIF_EXPR
:
8306 case TRUTH_ORIF_EXPR
:
8307 /* Lowered by gimplify.c. */
8311 return get_exception_pointer (cfun
);
8314 return get_exception_filter (cfun
);
8317 /* Function descriptors are not valid except for as
8318 initialization constants, and should not be expanded. */
8326 expand_label (TREE_OPERAND (exp
, 0));
8330 expand_asm_expr (exp
);
8333 case WITH_SIZE_EXPR
:
8334 /* WITH_SIZE_EXPR expands to its first argument. The caller should
8335 have pulled out the size to use in whatever context it needed. */
8336 return expand_expr_real (TREE_OPERAND (exp
, 0), original_target
, tmode
,
8339 case REALIGN_LOAD_EXPR
:
8341 tree oprnd0
= TREE_OPERAND (exp
, 0);
8342 tree oprnd1
= TREE_OPERAND (exp
, 1);
8343 tree oprnd2
= TREE_OPERAND (exp
, 2);
8346 this_optab
= optab_for_tree_code (code
, type
);
8347 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, 0);
8348 op2
= expand_expr (oprnd2
, NULL_RTX
, VOIDmode
, 0);
8349 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
8357 return lang_hooks
.expand_expr (exp
, original_target
, tmode
,
8361 /* Here to do an ordinary binary operator. */
8363 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8364 subtarget
, &op0
, &op1
, 0);
8366 this_optab
= optab_for_tree_code (code
, type
);
8368 if (modifier
== EXPAND_STACK_PARM
)
8370 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
8371 unsignedp
, OPTAB_LIB_WIDEN
);
8373 return REDUCE_BIT_FIELD (temp
);
8375 #undef REDUCE_BIT_FIELD
8377 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
8378 signedness of TYPE), possibly returning the result in TARGET. */
8380 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
8382 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
8383 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
8385 if (TYPE_UNSIGNED (type
))
8388 if (prec
< HOST_BITS_PER_WIDE_INT
)
8389 mask
= immed_double_const (((unsigned HOST_WIDE_INT
) 1 << prec
) - 1, 0,
8392 mask
= immed_double_const ((unsigned HOST_WIDE_INT
) -1,
8393 ((unsigned HOST_WIDE_INT
) 1
8394 << (prec
- HOST_BITS_PER_WIDE_INT
)) - 1,
8396 return expand_and (GET_MODE (exp
), exp
, mask
, target
);
8400 tree count
= build_int_cst (NULL_TREE
,
8401 GET_MODE_BITSIZE (GET_MODE (exp
)) - prec
);
8402 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
8403 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
8407 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
8408 when applied to the address of EXP produces an address known to be
8409 aligned more than BIGGEST_ALIGNMENT. */
8412 is_aligning_offset (tree offset
, tree exp
)
8414 /* Strip off any conversions. */
8415 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8416 || TREE_CODE (offset
) == NOP_EXPR
8417 || TREE_CODE (offset
) == CONVERT_EXPR
)
8418 offset
= TREE_OPERAND (offset
, 0);
8420 /* We must now have a BIT_AND_EXPR with a constant that is one less than
8421 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
8422 if (TREE_CODE (offset
) != BIT_AND_EXPR
8423 || !host_integerp (TREE_OPERAND (offset
, 1), 1)
8424 || compare_tree_int (TREE_OPERAND (offset
, 1),
8425 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
8426 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset
, 1), 1) + 1) < 0)
8429 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
8430 It must be NEGATE_EXPR. Then strip any more conversions. */
8431 offset
= TREE_OPERAND (offset
, 0);
8432 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8433 || TREE_CODE (offset
) == NOP_EXPR
8434 || TREE_CODE (offset
) == CONVERT_EXPR
)
8435 offset
= TREE_OPERAND (offset
, 0);
8437 if (TREE_CODE (offset
) != NEGATE_EXPR
)
8440 offset
= TREE_OPERAND (offset
, 0);
8441 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8442 || TREE_CODE (offset
) == NOP_EXPR
8443 || TREE_CODE (offset
) == CONVERT_EXPR
)
8444 offset
= TREE_OPERAND (offset
, 0);
8446 /* This must now be the address of EXP. */
8447 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
8450 /* Return the tree node if an ARG corresponds to a string constant or zero
8451 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
8452 in bytes within the string that ARG is accessing. The type of the
8453 offset will be `sizetype'. */
8456 string_constant (tree arg
, tree
*ptr_offset
)
8461 if (TREE_CODE (arg
) == ADDR_EXPR
)
8463 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
8465 *ptr_offset
= size_zero_node
;
8466 return TREE_OPERAND (arg
, 0);
8468 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
8470 array
= TREE_OPERAND (arg
, 0);
8471 offset
= size_zero_node
;
8473 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
8475 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
8476 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
8477 if (TREE_CODE (array
) != STRING_CST
8478 && TREE_CODE (array
) != VAR_DECL
)
8484 else if (TREE_CODE (arg
) == PLUS_EXPR
)
8486 tree arg0
= TREE_OPERAND (arg
, 0);
8487 tree arg1
= TREE_OPERAND (arg
, 1);
8492 if (TREE_CODE (arg0
) == ADDR_EXPR
8493 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
8494 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
8496 array
= TREE_OPERAND (arg0
, 0);
8499 else if (TREE_CODE (arg1
) == ADDR_EXPR
8500 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
8501 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
8503 array
= TREE_OPERAND (arg1
, 0);
8512 if (TREE_CODE (array
) == STRING_CST
)
8514 *ptr_offset
= convert (sizetype
, offset
);
8517 else if (TREE_CODE (array
) == VAR_DECL
)
8521 /* Variables initialized to string literals can be handled too. */
8522 if (DECL_INITIAL (array
) == NULL_TREE
8523 || TREE_CODE (DECL_INITIAL (array
)) != STRING_CST
)
8526 /* If they are read-only, non-volatile and bind locally. */
8527 if (! TREE_READONLY (array
)
8528 || TREE_SIDE_EFFECTS (array
)
8529 || ! targetm
.binds_local_p (array
))
8532 /* Avoid const char foo[4] = "abcde"; */
8533 if (DECL_SIZE_UNIT (array
) == NULL_TREE
8534 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
8535 || (length
= TREE_STRING_LENGTH (DECL_INITIAL (array
))) <= 0
8536 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
8539 /* If variable is bigger than the string literal, OFFSET must be constant
8540 and inside of the bounds of the string literal. */
8541 offset
= convert (sizetype
, offset
);
8542 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
8543 && (! host_integerp (offset
, 1)
8544 || compare_tree_int (offset
, length
) >= 0))
8547 *ptr_offset
= offset
;
8548 return DECL_INITIAL (array
);
8554 /* Generate code to calculate EXP using a store-flag instruction
8555 and return an rtx for the result. EXP is either a comparison
8556 or a TRUTH_NOT_EXPR whose operand is a comparison.
8558 If TARGET is nonzero, store the result there if convenient.
8560 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
8563 Return zero if there is no suitable set-flag instruction
8564 available on this machine.
8566 Once expand_expr has been called on the arguments of the comparison,
8567 we are committed to doing the store flag, since it is not safe to
8568 re-evaluate the expression. We emit the store-flag insn by calling
8569 emit_store_flag, but only expand the arguments if we have a reason
8570 to believe that emit_store_flag will be successful. If we think that
8571 it will, but it isn't, we have to simulate the store-flag with a
8572 set/jump/set sequence. */
8575 do_store_flag (tree exp
, rtx target
, enum machine_mode mode
, int only_cheap
)
8578 tree arg0
, arg1
, type
;
8580 enum machine_mode operand_mode
;
8584 enum insn_code icode
;
8585 rtx subtarget
= target
;
8588 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
8589 result at the end. We can't simply invert the test since it would
8590 have already been inverted if it were valid. This case occurs for
8591 some floating-point comparisons. */
8593 if (TREE_CODE (exp
) == TRUTH_NOT_EXPR
)
8594 invert
= 1, exp
= TREE_OPERAND (exp
, 0);
8596 arg0
= TREE_OPERAND (exp
, 0);
8597 arg1
= TREE_OPERAND (exp
, 1);
8599 /* Don't crash if the comparison was erroneous. */
8600 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
8603 type
= TREE_TYPE (arg0
);
8604 operand_mode
= TYPE_MODE (type
);
8605 unsignedp
= TYPE_UNSIGNED (type
);
8607 /* We won't bother with BLKmode store-flag operations because it would mean
8608 passing a lot of information to emit_store_flag. */
8609 if (operand_mode
== BLKmode
)
8612 /* We won't bother with store-flag operations involving function pointers
8613 when function pointers must be canonicalized before comparisons. */
8614 #ifdef HAVE_canonicalize_funcptr_for_compare
8615 if (HAVE_canonicalize_funcptr_for_compare
8616 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == POINTER_TYPE
8617 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8619 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 1))) == POINTER_TYPE
8620 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
8621 == FUNCTION_TYPE
))))
8628 /* Get the rtx comparison code to use. We know that EXP is a comparison
8629 operation of some type. Some comparisons against 1 and -1 can be
8630 converted to comparisons with zero. Do so here so that the tests
8631 below will be aware that we have a comparison with zero. These
8632 tests will not catch constants in the first operand, but constants
8633 are rarely passed as the first operand. */
8635 switch (TREE_CODE (exp
))
8644 if (integer_onep (arg1
))
8645 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
8647 code
= unsignedp
? LTU
: LT
;
8650 if (! unsignedp
&& integer_all_onesp (arg1
))
8651 arg1
= integer_zero_node
, code
= LT
;
8653 code
= unsignedp
? LEU
: LE
;
8656 if (! unsignedp
&& integer_all_onesp (arg1
))
8657 arg1
= integer_zero_node
, code
= GE
;
8659 code
= unsignedp
? GTU
: GT
;
8662 if (integer_onep (arg1
))
8663 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
8665 code
= unsignedp
? GEU
: GE
;
8668 case UNORDERED_EXPR
:
8697 /* Put a constant second. */
8698 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
)
8700 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
8701 code
= swap_condition (code
);
8704 /* If this is an equality or inequality test of a single bit, we can
8705 do this by shifting the bit being tested to the low-order bit and
8706 masking the result with the constant 1. If the condition was EQ,
8707 we xor it with 1. This does not require an scc insn and is faster
8708 than an scc insn even if we have it.
8710 The code to make this transformation was moved into fold_single_bit_test,
8711 so we just call into the folder and expand its result. */
8713 if ((code
== NE
|| code
== EQ
)
8714 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
8715 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
8717 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
8718 return expand_expr (fold_single_bit_test (code
== NE
? NE_EXPR
: EQ_EXPR
,
8720 target
, VOIDmode
, EXPAND_NORMAL
);
8723 /* Now see if we are likely to be able to do this. Return if not. */
8724 if (! can_compare_p (code
, operand_mode
, ccp_store_flag
))
8727 icode
= setcc_gen_code
[(int) code
];
8728 if (icode
== CODE_FOR_nothing
8729 || (only_cheap
&& insn_data
[(int) icode
].operand
[0].mode
!= mode
))
8731 /* We can only do this if it is one of the special cases that
8732 can be handled without an scc insn. */
8733 if ((code
== LT
&& integer_zerop (arg1
))
8734 || (! only_cheap
&& code
== GE
&& integer_zerop (arg1
)))
8736 else if (BRANCH_COST
>= 0
8737 && ! only_cheap
&& (code
== NE
|| code
== EQ
)
8738 && TREE_CODE (type
) != REAL_TYPE
8739 && ((abs_optab
->handlers
[(int) operand_mode
].insn_code
8740 != CODE_FOR_nothing
)
8741 || (ffs_optab
->handlers
[(int) operand_mode
].insn_code
8742 != CODE_FOR_nothing
)))
8748 if (! get_subtarget (target
)
8749 || GET_MODE (subtarget
) != operand_mode
)
8752 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, 0);
8755 target
= gen_reg_rtx (mode
);
8757 result
= emit_store_flag (target
, code
, op0
, op1
,
8758 operand_mode
, unsignedp
, 1);
8763 result
= expand_binop (mode
, xor_optab
, result
, const1_rtx
,
8764 result
, 0, OPTAB_LIB_WIDEN
);
8768 /* If this failed, we have to do this with set/compare/jump/set code. */
8770 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
8771 target
= gen_reg_rtx (GET_MODE (target
));
8773 emit_move_insn (target
, invert
? const0_rtx
: const1_rtx
);
8774 result
= compare_from_rtx (op0
, op1
, code
, unsignedp
,
8775 operand_mode
, NULL_RTX
);
8776 if (GET_CODE (result
) == CONST_INT
)
8777 return (((result
== const0_rtx
&& ! invert
)
8778 || (result
!= const0_rtx
&& invert
))
8779 ? const0_rtx
: const1_rtx
);
8781 /* The code of RESULT may not match CODE if compare_from_rtx
8782 decided to swap its operands and reverse the original code.
8784 We know that compare_from_rtx returns either a CONST_INT or
8785 a new comparison code, so it is safe to just extract the
8786 code from RESULT. */
8787 code
= GET_CODE (result
);
8789 label
= gen_label_rtx ();
8790 gcc_assert (bcc_gen_fctn
[(int) code
]);
8792 emit_jump_insn ((*bcc_gen_fctn
[(int) code
]) (label
));
8793 emit_move_insn (target
, invert
? const1_rtx
: const0_rtx
);
8800 /* Stubs in case we haven't got a casesi insn. */
8802 # define HAVE_casesi 0
8803 # define gen_casesi(a, b, c, d, e) (0)
8804 # define CODE_FOR_casesi CODE_FOR_nothing
8807 /* If the machine does not have a case insn that compares the bounds,
8808 this means extra overhead for dispatch tables, which raises the
8809 threshold for using them. */
8810 #ifndef CASE_VALUES_THRESHOLD
8811 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
8812 #endif /* CASE_VALUES_THRESHOLD */
8815 case_values_threshold (void)
8817 return CASE_VALUES_THRESHOLD
;
8820 /* Attempt to generate a casesi instruction. Returns 1 if successful,
8821 0 otherwise (i.e. if there is no casesi instruction). */
8823 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
8824 rtx table_label ATTRIBUTE_UNUSED
, rtx default_label
)
8826 enum machine_mode index_mode
= SImode
;
8827 int index_bits
= GET_MODE_BITSIZE (index_mode
);
8828 rtx op1
, op2
, index
;
8829 enum machine_mode op_mode
;
8834 /* Convert the index to SImode. */
8835 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
8837 enum machine_mode omode
= TYPE_MODE (index_type
);
8838 rtx rangertx
= expand_expr (range
, NULL_RTX
, VOIDmode
, 0);
8840 /* We must handle the endpoints in the original mode. */
8841 index_expr
= build2 (MINUS_EXPR
, index_type
,
8842 index_expr
, minval
);
8843 minval
= integer_zero_node
;
8844 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
8845 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
8846 omode
, 1, default_label
);
8847 /* Now we can safely truncate. */
8848 index
= convert_to_mode (index_mode
, index
, 0);
8852 if (TYPE_MODE (index_type
) != index_mode
)
8854 index_expr
= convert (lang_hooks
.types
.type_for_size
8855 (index_bits
, 0), index_expr
);
8856 index_type
= TREE_TYPE (index_expr
);
8859 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
8862 do_pending_stack_adjust ();
8864 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[0].mode
;
8865 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[0].predicate
)
8867 index
= copy_to_mode_reg (op_mode
, index
);
8869 op1
= expand_expr (minval
, NULL_RTX
, VOIDmode
, 0);
8871 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[1].mode
;
8872 op1
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (minval
)),
8873 op1
, TYPE_UNSIGNED (TREE_TYPE (minval
)));
8874 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[1].predicate
)
8876 op1
= copy_to_mode_reg (op_mode
, op1
);
8878 op2
= expand_expr (range
, NULL_RTX
, VOIDmode
, 0);
8880 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[2].mode
;
8881 op2
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (range
)),
8882 op2
, TYPE_UNSIGNED (TREE_TYPE (range
)));
8883 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[2].predicate
)
8885 op2
= copy_to_mode_reg (op_mode
, op2
);
8887 emit_jump_insn (gen_casesi (index
, op1
, op2
,
8888 table_label
, default_label
));
8892 /* Attempt to generate a tablejump instruction; same concept. */
8893 #ifndef HAVE_tablejump
8894 #define HAVE_tablejump 0
8895 #define gen_tablejump(x, y) (0)
8898 /* Subroutine of the next function.
8900 INDEX is the value being switched on, with the lowest value
8901 in the table already subtracted.
8902 MODE is its expected mode (needed if INDEX is constant).
8903 RANGE is the length of the jump table.
8904 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
8906 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
8907 index value is out of range. */
8910 do_tablejump (rtx index
, enum machine_mode mode
, rtx range
, rtx table_label
,
8915 if (INTVAL (range
) > cfun
->max_jumptable_ents
)
8916 cfun
->max_jumptable_ents
= INTVAL (range
);
8918 /* Do an unsigned comparison (in the proper mode) between the index
8919 expression and the value which represents the length of the range.
8920 Since we just finished subtracting the lower bound of the range
8921 from the index expression, this comparison allows us to simultaneously
8922 check that the original index expression value is both greater than
8923 or equal to the minimum value of the range and less than or equal to
8924 the maximum value of the range. */
8926 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
8929 /* If index is in range, it must fit in Pmode.
8930 Convert to Pmode so we can index with it. */
8932 index
= convert_to_mode (Pmode
, index
, 1);
8934 /* Don't let a MEM slip through, because then INDEX that comes
8935 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
8936 and break_out_memory_refs will go to work on it and mess it up. */
8937 #ifdef PIC_CASE_VECTOR_ADDRESS
8938 if (flag_pic
&& !REG_P (index
))
8939 index
= copy_to_mode_reg (Pmode
, index
);
8942 /* If flag_force_addr were to affect this address
8943 it could interfere with the tricky assumptions made
8944 about addresses that contain label-refs,
8945 which may be valid only very near the tablejump itself. */
8946 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
8947 GET_MODE_SIZE, because this indicates how large insns are. The other
8948 uses should all be Pmode, because they are addresses. This code
8949 could fail if addresses and insns are not the same size. */
8950 index
= gen_rtx_PLUS (Pmode
,
8951 gen_rtx_MULT (Pmode
, index
,
8952 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE
))),
8953 gen_rtx_LABEL_REF (Pmode
, table_label
));
8954 #ifdef PIC_CASE_VECTOR_ADDRESS
8956 index
= PIC_CASE_VECTOR_ADDRESS (index
);
8959 index
= memory_address_noforce (CASE_VECTOR_MODE
, index
);
8960 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
8961 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
8962 convert_move (temp
, vector
, 0);
8964 emit_jump_insn (gen_tablejump (temp
, table_label
));
8966 /* If we are generating PIC code or if the table is PC-relative, the
8967 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
8968 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
8973 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
8974 rtx table_label
, rtx default_label
)
8978 if (! HAVE_tablejump
)
8981 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
8982 convert (index_type
, index_expr
),
8983 convert (index_type
, minval
));
8984 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
8985 do_pending_stack_adjust ();
8987 do_tablejump (index
, TYPE_MODE (index_type
),
8988 convert_modes (TYPE_MODE (index_type
),
8989 TYPE_MODE (TREE_TYPE (range
)),
8990 expand_expr (range
, NULL_RTX
,
8992 TYPE_UNSIGNED (TREE_TYPE (range
))),
8993 table_label
, default_label
);
8997 /* Nonzero if the mode is a valid vector mode for this architecture.
8998 This returns nonzero even if there is no hardware support for the
8999 vector mode, but we can emulate with narrower modes. */
9002 vector_mode_valid_p (enum machine_mode mode
)
9004 enum mode_class
class = GET_MODE_CLASS (mode
);
9005 enum machine_mode innermode
;
9007 /* Doh! What's going on? */
9008 if (class != MODE_VECTOR_INT
9009 && class != MODE_VECTOR_FLOAT
)
9012 /* Hardware support. Woo hoo! */
9013 if (targetm
.vector_mode_supported_p (mode
))
9016 innermode
= GET_MODE_INNER (mode
);
9018 /* We should probably return 1 if requesting V4DI and we have no DI,
9019 but we have V2DI, but this is probably very unlikely. */
9021 /* If we have support for the inner mode, we can safely emulate it.
9022 We may not have V2DI, but me can emulate with a pair of DIs. */
9023 return targetm
.scalar_mode_supported_p (innermode
);
9026 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
9028 const_vector_from_tree (tree exp
)
9033 enum machine_mode inner
, mode
;
9035 mode
= TYPE_MODE (TREE_TYPE (exp
));
9037 if (initializer_zerop (exp
))
9038 return CONST0_RTX (mode
);
9040 units
= GET_MODE_NUNITS (mode
);
9041 inner
= GET_MODE_INNER (mode
);
9043 v
= rtvec_alloc (units
);
9045 link
= TREE_VECTOR_CST_ELTS (exp
);
9046 for (i
= 0; link
; link
= TREE_CHAIN (link
), ++i
)
9048 elt
= TREE_VALUE (link
);
9050 if (TREE_CODE (elt
) == REAL_CST
)
9051 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
9054 RTVEC_ELT (v
, i
) = immed_double_const (TREE_INT_CST_LOW (elt
),
9055 TREE_INT_CST_HIGH (elt
),
9059 /* Initialize remaining elements to 0. */
9060 for (; i
< units
; ++i
)
9061 RTVEC_ELT (v
, i
) = CONST0_RTX (inner
);
9063 return gen_rtx_CONST_VECTOR (mode
, v
);
9065 #include "gt-expr.h"