* rw.po: Remove.
[official-gcc.git] / gcc / reload.c
blobc4130bdbde3f16a7c55da8a836138d079eec675f
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 , 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 #include "config.h"
91 #include "system.h"
92 #include "coretypes.h"
93 #include "tm.h"
94 #include "rtl.h"
95 #include "tm_p.h"
96 #include "insn-config.h"
97 #include "expr.h"
98 #include "optabs.h"
99 #include "recog.h"
100 #include "reload.h"
101 #include "regs.h"
102 #include "addresses.h"
103 #include "hard-reg-set.h"
104 #include "flags.h"
105 #include "real.h"
106 #include "output.h"
107 #include "function.h"
108 #include "toplev.h"
109 #include "params.h"
110 #include "target.h"
112 /* True if X is a constant that can be forced into the constant pool. */
113 #define CONST_POOL_OK_P(X) \
114 (CONSTANT_P (X) \
115 && GET_CODE (X) != HIGH \
116 && !targetm.cannot_force_const_mem (X))
118 /* True if C is a non-empty register class that has too few registers
119 to be safely used as a reload target class. */
120 #define SMALL_REGISTER_CLASS_P(C) \
121 (reg_class_size [(C)] == 1 \
122 || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
125 /* All reloads of the current insn are recorded here. See reload.h for
126 comments. */
127 int n_reloads;
128 struct reload rld[MAX_RELOADS];
130 /* All the "earlyclobber" operands of the current insn
131 are recorded here. */
132 int n_earlyclobbers;
133 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
135 int reload_n_operands;
137 /* Replacing reloads.
139 If `replace_reloads' is nonzero, then as each reload is recorded
140 an entry is made for it in the table `replacements'.
141 Then later `subst_reloads' can look through that table and
142 perform all the replacements needed. */
144 /* Nonzero means record the places to replace. */
145 static int replace_reloads;
147 /* Each replacement is recorded with a structure like this. */
148 struct replacement
150 rtx *where; /* Location to store in */
151 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
152 a SUBREG; 0 otherwise. */
153 int what; /* which reload this is for */
154 enum machine_mode mode; /* mode it must have */
157 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
159 /* Number of replacements currently recorded. */
160 static int n_replacements;
162 /* Used to track what is modified by an operand. */
163 struct decomposition
165 int reg_flag; /* Nonzero if referencing a register. */
166 int safe; /* Nonzero if this can't conflict with anything. */
167 rtx base; /* Base address for MEM. */
168 HOST_WIDE_INT start; /* Starting offset or register number. */
169 HOST_WIDE_INT end; /* Ending offset or register number. */
172 #ifdef SECONDARY_MEMORY_NEEDED
174 /* Save MEMs needed to copy from one class of registers to another. One MEM
175 is used per mode, but normally only one or two modes are ever used.
177 We keep two versions, before and after register elimination. The one
178 after register elimination is record separately for each operand. This
179 is done in case the address is not valid to be sure that we separately
180 reload each. */
182 static rtx secondary_memlocs[NUM_MACHINE_MODES];
183 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
184 static int secondary_memlocs_elim_used = 0;
185 #endif
187 /* The instruction we are doing reloads for;
188 so we can test whether a register dies in it. */
189 static rtx this_insn;
191 /* Nonzero if this instruction is a user-specified asm with operands. */
192 static int this_insn_is_asm;
194 /* If hard_regs_live_known is nonzero,
195 we can tell which hard regs are currently live,
196 at least enough to succeed in choosing dummy reloads. */
197 static int hard_regs_live_known;
199 /* Indexed by hard reg number,
200 element is nonnegative if hard reg has been spilled.
201 This vector is passed to `find_reloads' as an argument
202 and is not changed here. */
203 static short *static_reload_reg_p;
205 /* Set to 1 in subst_reg_equivs if it changes anything. */
206 static int subst_reg_equivs_changed;
208 /* On return from push_reload, holds the reload-number for the OUT
209 operand, which can be different for that from the input operand. */
210 static int output_reloadnum;
212 /* Compare two RTX's. */
213 #define MATCHES(x, y) \
214 (x == y || (x != 0 && (REG_P (x) \
215 ? REG_P (y) && REGNO (x) == REGNO (y) \
216 : rtx_equal_p (x, y) && ! side_effects_p (x))))
218 /* Indicates if two reloads purposes are for similar enough things that we
219 can merge their reloads. */
220 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
221 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
222 || ((when1) == (when2) && (op1) == (op2)) \
223 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
224 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
225 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
226 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
227 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
229 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
230 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
231 ((when1) != (when2) \
232 || ! ((op1) == (op2) \
233 || (when1) == RELOAD_FOR_INPUT \
234 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
235 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
237 /* If we are going to reload an address, compute the reload type to
238 use. */
239 #define ADDR_TYPE(type) \
240 ((type) == RELOAD_FOR_INPUT_ADDRESS \
241 ? RELOAD_FOR_INPADDR_ADDRESS \
242 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
243 ? RELOAD_FOR_OUTADDR_ADDRESS \
244 : (type)))
246 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
247 enum machine_mode, enum reload_type,
248 enum insn_code *, secondary_reload_info *);
249 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
250 int, unsigned int);
251 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
252 static void push_replacement (rtx *, int, enum machine_mode);
253 static void dup_replacements (rtx *, rtx *);
254 static void combine_reloads (void);
255 static int find_reusable_reload (rtx *, rtx, enum reg_class,
256 enum reload_type, int, int);
257 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
258 enum machine_mode, enum reg_class, int, int);
259 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
260 static struct decomposition decompose (rtx);
261 static int immune_p (rtx, rtx, struct decomposition);
262 static int alternative_allows_memconst (const char *, int);
263 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
264 int *);
265 static rtx make_memloc (rtx, int);
266 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
267 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
268 int, enum reload_type, int, rtx);
269 static rtx subst_reg_equivs (rtx, rtx);
270 static rtx subst_indexed_address (rtx);
271 static void update_auto_inc_notes (rtx, int, int);
272 static int find_reloads_address_1 (enum machine_mode, rtx, int,
273 enum rtx_code, enum rtx_code, rtx *,
274 int, enum reload_type,int, rtx);
275 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
276 enum machine_mode, int,
277 enum reload_type, int);
278 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
279 int, rtx);
280 static void copy_replacements_1 (rtx *, rtx *, int);
281 static int find_inc_amount (rtx, rtx);
282 static int refers_to_mem_for_reload_p (rtx);
283 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
284 rtx, rtx *);
286 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
287 list yet. */
289 static void
290 push_reg_equiv_alt_mem (int regno, rtx mem)
292 rtx it;
294 for (it = reg_equiv_alt_mem_list [regno]; it; it = XEXP (it, 1))
295 if (rtx_equal_p (XEXP (it, 0), mem))
296 return;
298 reg_equiv_alt_mem_list [regno]
299 = alloc_EXPR_LIST (REG_EQUIV, mem,
300 reg_equiv_alt_mem_list [regno]);
303 /* Determine if any secondary reloads are needed for loading (if IN_P is
304 nonzero) or storing (if IN_P is zero) X to or from a reload register of
305 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
306 are needed, push them.
308 Return the reload number of the secondary reload we made, or -1 if
309 we didn't need one. *PICODE is set to the insn_code to use if we do
310 need a secondary reload. */
312 static int
313 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
314 enum reg_class reload_class,
315 enum machine_mode reload_mode, enum reload_type type,
316 enum insn_code *picode, secondary_reload_info *prev_sri)
318 enum reg_class class = NO_REGS;
319 enum reg_class scratch_class;
320 enum machine_mode mode = reload_mode;
321 enum insn_code icode = CODE_FOR_nothing;
322 enum insn_code t_icode = CODE_FOR_nothing;
323 enum reload_type secondary_type;
324 int s_reload, t_reload = -1;
325 const char *scratch_constraint;
326 char letter;
327 secondary_reload_info sri;
329 if (type == RELOAD_FOR_INPUT_ADDRESS
330 || type == RELOAD_FOR_OUTPUT_ADDRESS
331 || type == RELOAD_FOR_INPADDR_ADDRESS
332 || type == RELOAD_FOR_OUTADDR_ADDRESS)
333 secondary_type = type;
334 else
335 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
337 *picode = CODE_FOR_nothing;
339 /* If X is a paradoxical SUBREG, use the inner value to determine both the
340 mode and object being reloaded. */
341 if (GET_CODE (x) == SUBREG
342 && (GET_MODE_SIZE (GET_MODE (x))
343 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
345 x = SUBREG_REG (x);
346 reload_mode = GET_MODE (x);
349 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
350 is still a pseudo-register by now, it *must* have an equivalent MEM
351 but we don't want to assume that), use that equivalent when seeing if
352 a secondary reload is needed since whether or not a reload is needed
353 might be sensitive to the form of the MEM. */
355 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
356 && reg_equiv_mem[REGNO (x)] != 0)
357 x = reg_equiv_mem[REGNO (x)];
359 sri.icode = CODE_FOR_nothing;
360 sri.prev_sri = prev_sri;
361 class = targetm.secondary_reload (in_p, x, reload_class, reload_mode, &sri);
362 icode = sri.icode;
364 /* If we don't need any secondary registers, done. */
365 if (class == NO_REGS && icode == CODE_FOR_nothing)
366 return -1;
368 if (class != NO_REGS)
369 t_reload = push_secondary_reload (in_p, x, opnum, optional, class,
370 reload_mode, type, &t_icode, &sri);
372 /* If we will be using an insn, the secondary reload is for a
373 scratch register. */
375 if (icode != CODE_FOR_nothing)
377 /* If IN_P is nonzero, the reload register will be the output in
378 operand 0. If IN_P is zero, the reload register will be the input
379 in operand 1. Outputs should have an initial "=", which we must
380 skip. */
382 /* ??? It would be useful to be able to handle only two, or more than
383 three, operands, but for now we can only handle the case of having
384 exactly three: output, input and one temp/scratch. */
385 gcc_assert (insn_data[(int) icode].n_operands == 3);
387 /* ??? We currently have no way to represent a reload that needs
388 an icode to reload from an intermediate tertiary reload register.
389 We should probably have a new field in struct reload to tag a
390 chain of scratch operand reloads onto. */
391 gcc_assert (class == NO_REGS);
393 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
394 gcc_assert (*scratch_constraint == '=');
395 scratch_constraint++;
396 if (*scratch_constraint == '&')
397 scratch_constraint++;
398 letter = *scratch_constraint;
399 scratch_class = (letter == 'r' ? GENERAL_REGS
400 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
401 scratch_constraint));
403 class = scratch_class;
404 mode = insn_data[(int) icode].operand[2].mode;
407 /* This case isn't valid, so fail. Reload is allowed to use the same
408 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
409 in the case of a secondary register, we actually need two different
410 registers for correct code. We fail here to prevent the possibility of
411 silently generating incorrect code later.
413 The convention is that secondary input reloads are valid only if the
414 secondary_class is different from class. If you have such a case, you
415 can not use secondary reloads, you must work around the problem some
416 other way.
418 Allow this when a reload_in/out pattern is being used. I.e. assume
419 that the generated code handles this case. */
421 gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
422 || t_icode != CODE_FOR_nothing);
424 /* See if we can reuse an existing secondary reload. */
425 for (s_reload = 0; s_reload < n_reloads; s_reload++)
426 if (rld[s_reload].secondary_p
427 && (reg_class_subset_p (class, rld[s_reload].class)
428 || reg_class_subset_p (rld[s_reload].class, class))
429 && ((in_p && rld[s_reload].inmode == mode)
430 || (! in_p && rld[s_reload].outmode == mode))
431 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
432 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
433 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
434 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
435 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
436 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
437 opnum, rld[s_reload].opnum))
439 if (in_p)
440 rld[s_reload].inmode = mode;
441 if (! in_p)
442 rld[s_reload].outmode = mode;
444 if (reg_class_subset_p (class, rld[s_reload].class))
445 rld[s_reload].class = class;
447 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
448 rld[s_reload].optional &= optional;
449 rld[s_reload].secondary_p = 1;
450 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
451 opnum, rld[s_reload].opnum))
452 rld[s_reload].when_needed = RELOAD_OTHER;
455 if (s_reload == n_reloads)
457 #ifdef SECONDARY_MEMORY_NEEDED
458 /* If we need a memory location to copy between the two reload regs,
459 set it up now. Note that we do the input case before making
460 the reload and the output case after. This is due to the
461 way reloads are output. */
463 if (in_p && icode == CODE_FOR_nothing
464 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
466 get_secondary_mem (x, reload_mode, opnum, type);
468 /* We may have just added new reloads. Make sure we add
469 the new reload at the end. */
470 s_reload = n_reloads;
472 #endif
474 /* We need to make a new secondary reload for this register class. */
475 rld[s_reload].in = rld[s_reload].out = 0;
476 rld[s_reload].class = class;
478 rld[s_reload].inmode = in_p ? mode : VOIDmode;
479 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
480 rld[s_reload].reg_rtx = 0;
481 rld[s_reload].optional = optional;
482 rld[s_reload].inc = 0;
483 /* Maybe we could combine these, but it seems too tricky. */
484 rld[s_reload].nocombine = 1;
485 rld[s_reload].in_reg = 0;
486 rld[s_reload].out_reg = 0;
487 rld[s_reload].opnum = opnum;
488 rld[s_reload].when_needed = secondary_type;
489 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
490 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
491 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
492 rld[s_reload].secondary_out_icode
493 = ! in_p ? t_icode : CODE_FOR_nothing;
494 rld[s_reload].secondary_p = 1;
496 n_reloads++;
498 #ifdef SECONDARY_MEMORY_NEEDED
499 if (! in_p && icode == CODE_FOR_nothing
500 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
501 get_secondary_mem (x, mode, opnum, type);
502 #endif
505 *picode = icode;
506 return s_reload;
509 /* If a secondary reload is needed, return its class. If both an intermediate
510 register and a scratch register is needed, we return the class of the
511 intermediate register. */
512 enum reg_class
513 secondary_reload_class (bool in_p, enum reg_class class,
514 enum machine_mode mode, rtx x)
516 enum insn_code icode;
517 secondary_reload_info sri;
519 sri.icode = CODE_FOR_nothing;
520 sri.prev_sri = NULL;
521 class = targetm.secondary_reload (in_p, x, class, mode, &sri);
522 icode = sri.icode;
524 /* If there are no secondary reloads at all, we return NO_REGS.
525 If an intermediate register is needed, we return its class. */
526 if (icode == CODE_FOR_nothing || class != NO_REGS)
527 return class;
529 /* No intermediate register is needed, but we have a special reload
530 pattern, which we assume for now needs a scratch register. */
531 return scratch_reload_class (icode);
534 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
535 three operands, verify that operand 2 is an output operand, and return
536 its register class.
537 ??? We'd like to be able to handle any pattern with at least 2 operands,
538 for zero or more scratch registers, but that needs more infrastructure. */
539 enum reg_class
540 scratch_reload_class (enum insn_code icode)
542 const char *scratch_constraint;
543 char scratch_letter;
544 enum reg_class class;
546 gcc_assert (insn_data[(int) icode].n_operands == 3);
547 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
548 gcc_assert (*scratch_constraint == '=');
549 scratch_constraint++;
550 if (*scratch_constraint == '&')
551 scratch_constraint++;
552 scratch_letter = *scratch_constraint;
553 if (scratch_letter == 'r')
554 return GENERAL_REGS;
555 class = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
556 scratch_constraint);
557 gcc_assert (class != NO_REGS);
558 return class;
561 #ifdef SECONDARY_MEMORY_NEEDED
563 /* Return a memory location that will be used to copy X in mode MODE.
564 If we haven't already made a location for this mode in this insn,
565 call find_reloads_address on the location being returned. */
568 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
569 int opnum, enum reload_type type)
571 rtx loc;
572 int mem_valid;
574 /* By default, if MODE is narrower than a word, widen it to a word.
575 This is required because most machines that require these memory
576 locations do not support short load and stores from all registers
577 (e.g., FP registers). */
579 #ifdef SECONDARY_MEMORY_NEEDED_MODE
580 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
581 #else
582 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
583 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
584 #endif
586 /* If we already have made a MEM for this operand in MODE, return it. */
587 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
588 return secondary_memlocs_elim[(int) mode][opnum];
590 /* If this is the first time we've tried to get a MEM for this mode,
591 allocate a new one. `something_changed' in reload will get set
592 by noticing that the frame size has changed. */
594 if (secondary_memlocs[(int) mode] == 0)
596 #ifdef SECONDARY_MEMORY_NEEDED_RTX
597 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
598 #else
599 secondary_memlocs[(int) mode]
600 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
601 #endif
604 /* Get a version of the address doing any eliminations needed. If that
605 didn't give us a new MEM, make a new one if it isn't valid. */
607 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
608 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
610 if (! mem_valid && loc == secondary_memlocs[(int) mode])
611 loc = copy_rtx (loc);
613 /* The only time the call below will do anything is if the stack
614 offset is too large. In that case IND_LEVELS doesn't matter, so we
615 can just pass a zero. Adjust the type to be the address of the
616 corresponding object. If the address was valid, save the eliminated
617 address. If it wasn't valid, we need to make a reload each time, so
618 don't save it. */
620 if (! mem_valid)
622 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
623 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
624 : RELOAD_OTHER);
626 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
627 opnum, type, 0, 0);
630 secondary_memlocs_elim[(int) mode][opnum] = loc;
631 if (secondary_memlocs_elim_used <= (int)mode)
632 secondary_memlocs_elim_used = (int)mode + 1;
633 return loc;
636 /* Clear any secondary memory locations we've made. */
638 void
639 clear_secondary_mem (void)
641 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
643 #endif /* SECONDARY_MEMORY_NEEDED */
646 /* Find the largest class which has at least one register valid in
647 mode INNER, and which for every such register, that register number
648 plus N is also valid in OUTER (if in range) and is cheap to move
649 into REGNO. Such a class must exist. */
651 static enum reg_class
652 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
653 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
654 unsigned int dest_regno ATTRIBUTE_UNUSED)
656 int best_cost = -1;
657 int class;
658 int regno;
659 enum reg_class best_class = NO_REGS;
660 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
661 unsigned int best_size = 0;
662 int cost;
664 for (class = 1; class < N_REG_CLASSES; class++)
666 int bad = 0;
667 int good = 0;
668 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
669 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno))
671 if (HARD_REGNO_MODE_OK (regno, inner))
673 good = 1;
674 if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
675 || ! HARD_REGNO_MODE_OK (regno + n, outer))
676 bad = 1;
680 if (bad || !good)
681 continue;
682 cost = REGISTER_MOVE_COST (outer, class, dest_class);
684 if ((reg_class_size[class] > best_size
685 && (best_cost < 0 || best_cost >= cost))
686 || best_cost > cost)
688 best_class = class;
689 best_size = reg_class_size[class];
690 best_cost = REGISTER_MOVE_COST (outer, class, dest_class);
694 gcc_assert (best_size != 0);
696 return best_class;
699 /* Return the number of a previously made reload that can be combined with
700 a new one, or n_reloads if none of the existing reloads can be used.
701 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
702 push_reload, they determine the kind of the new reload that we try to
703 combine. P_IN points to the corresponding value of IN, which can be
704 modified by this function.
705 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
707 static int
708 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
709 enum reload_type type, int opnum, int dont_share)
711 rtx in = *p_in;
712 int i;
713 /* We can't merge two reloads if the output of either one is
714 earlyclobbered. */
716 if (earlyclobber_operand_p (out))
717 return n_reloads;
719 /* We can use an existing reload if the class is right
720 and at least one of IN and OUT is a match
721 and the other is at worst neutral.
722 (A zero compared against anything is neutral.)
724 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
725 for the same thing since that can cause us to need more reload registers
726 than we otherwise would. */
728 for (i = 0; i < n_reloads; i++)
729 if ((reg_class_subset_p (class, rld[i].class)
730 || reg_class_subset_p (rld[i].class, class))
731 /* If the existing reload has a register, it must fit our class. */
732 && (rld[i].reg_rtx == 0
733 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
734 true_regnum (rld[i].reg_rtx)))
735 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
736 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
737 || (out != 0 && MATCHES (rld[i].out, out)
738 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
739 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
740 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
741 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
742 return i;
744 /* Reloading a plain reg for input can match a reload to postincrement
745 that reg, since the postincrement's value is the right value.
746 Likewise, it can match a preincrement reload, since we regard
747 the preincrementation as happening before any ref in this insn
748 to that register. */
749 for (i = 0; i < n_reloads; i++)
750 if ((reg_class_subset_p (class, rld[i].class)
751 || reg_class_subset_p (rld[i].class, class))
752 /* If the existing reload has a register, it must fit our
753 class. */
754 && (rld[i].reg_rtx == 0
755 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
756 true_regnum (rld[i].reg_rtx)))
757 && out == 0 && rld[i].out == 0 && rld[i].in != 0
758 && ((REG_P (in)
759 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
760 && MATCHES (XEXP (rld[i].in, 0), in))
761 || (REG_P (rld[i].in)
762 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
763 && MATCHES (XEXP (in, 0), rld[i].in)))
764 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
765 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
766 && MERGABLE_RELOADS (type, rld[i].when_needed,
767 opnum, rld[i].opnum))
769 /* Make sure reload_in ultimately has the increment,
770 not the plain register. */
771 if (REG_P (in))
772 *p_in = rld[i].in;
773 return i;
775 return n_reloads;
778 /* Return nonzero if X is a SUBREG which will require reloading of its
779 SUBREG_REG expression. */
781 static int
782 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
784 rtx inner;
786 /* Only SUBREGs are problematical. */
787 if (GET_CODE (x) != SUBREG)
788 return 0;
790 inner = SUBREG_REG (x);
792 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
793 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
794 return 1;
796 /* If INNER is not a hard register, then INNER will not need to
797 be reloaded. */
798 if (!REG_P (inner)
799 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
800 return 0;
802 /* If INNER is not ok for MODE, then INNER will need reloading. */
803 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
804 return 1;
806 /* If the outer part is a word or smaller, INNER larger than a
807 word and the number of regs for INNER is not the same as the
808 number of words in INNER, then INNER will need reloading. */
809 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
810 && output
811 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
812 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
813 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
816 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
817 requiring an extra reload register. The caller has already found that
818 IN contains some reference to REGNO, so check that we can produce the
819 new value in a single step. E.g. if we have
820 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
821 instruction that adds one to a register, this should succeed.
822 However, if we have something like
823 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
824 needs to be loaded into a register first, we need a separate reload
825 register.
826 Such PLUS reloads are generated by find_reload_address_part.
827 The out-of-range PLUS expressions are usually introduced in the instruction
828 patterns by register elimination and substituting pseudos without a home
829 by their function-invariant equivalences. */
830 static int
831 can_reload_into (rtx in, int regno, enum machine_mode mode)
833 rtx dst, test_insn;
834 int r = 0;
835 struct recog_data save_recog_data;
837 /* For matching constraints, we often get notional input reloads where
838 we want to use the original register as the reload register. I.e.
839 technically this is a non-optional input-output reload, but IN is
840 already a valid register, and has been chosen as the reload register.
841 Speed this up, since it trivially works. */
842 if (REG_P (in))
843 return 1;
845 /* To test MEMs properly, we'd have to take into account all the reloads
846 that are already scheduled, which can become quite complicated.
847 And since we've already handled address reloads for this MEM, it
848 should always succeed anyway. */
849 if (MEM_P (in))
850 return 1;
852 /* If we can make a simple SET insn that does the job, everything should
853 be fine. */
854 dst = gen_rtx_REG (mode, regno);
855 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
856 save_recog_data = recog_data;
857 if (recog_memoized (test_insn) >= 0)
859 extract_insn (test_insn);
860 r = constrain_operands (1);
862 recog_data = save_recog_data;
863 return r;
866 /* Record one reload that needs to be performed.
867 IN is an rtx saying where the data are to be found before this instruction.
868 OUT says where they must be stored after the instruction.
869 (IN is zero for data not read, and OUT is zero for data not written.)
870 INLOC and OUTLOC point to the places in the instructions where
871 IN and OUT were found.
872 If IN and OUT are both nonzero, it means the same register must be used
873 to reload both IN and OUT.
875 CLASS is a register class required for the reloaded data.
876 INMODE is the machine mode that the instruction requires
877 for the reg that replaces IN and OUTMODE is likewise for OUT.
879 If IN is zero, then OUT's location and mode should be passed as
880 INLOC and INMODE.
882 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
884 OPTIONAL nonzero means this reload does not need to be performed:
885 it can be discarded if that is more convenient.
887 OPNUM and TYPE say what the purpose of this reload is.
889 The return value is the reload-number for this reload.
891 If both IN and OUT are nonzero, in some rare cases we might
892 want to make two separate reloads. (Actually we never do this now.)
893 Therefore, the reload-number for OUT is stored in
894 output_reloadnum when we return; the return value applies to IN.
895 Usually (presently always), when IN and OUT are nonzero,
896 the two reload-numbers are equal, but the caller should be careful to
897 distinguish them. */
900 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
901 enum reg_class class, enum machine_mode inmode,
902 enum machine_mode outmode, int strict_low, int optional,
903 int opnum, enum reload_type type)
905 int i;
906 int dont_share = 0;
907 int dont_remove_subreg = 0;
908 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
909 int secondary_in_reload = -1, secondary_out_reload = -1;
910 enum insn_code secondary_in_icode = CODE_FOR_nothing;
911 enum insn_code secondary_out_icode = CODE_FOR_nothing;
913 /* INMODE and/or OUTMODE could be VOIDmode if no mode
914 has been specified for the operand. In that case,
915 use the operand's mode as the mode to reload. */
916 if (inmode == VOIDmode && in != 0)
917 inmode = GET_MODE (in);
918 if (outmode == VOIDmode && out != 0)
919 outmode = GET_MODE (out);
921 /* If IN is a pseudo register everywhere-equivalent to a constant, and
922 it is not in a hard register, reload straight from the constant,
923 since we want to get rid of such pseudo registers.
924 Often this is done earlier, but not always in find_reloads_address. */
925 if (in != 0 && REG_P (in))
927 int regno = REGNO (in);
929 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
930 && reg_equiv_constant[regno] != 0)
931 in = reg_equiv_constant[regno];
934 /* Likewise for OUT. Of course, OUT will never be equivalent to
935 an actual constant, but it might be equivalent to a memory location
936 (in the case of a parameter). */
937 if (out != 0 && REG_P (out))
939 int regno = REGNO (out);
941 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
942 && reg_equiv_constant[regno] != 0)
943 out = reg_equiv_constant[regno];
946 /* If we have a read-write operand with an address side-effect,
947 change either IN or OUT so the side-effect happens only once. */
948 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
949 switch (GET_CODE (XEXP (in, 0)))
951 case POST_INC: case POST_DEC: case POST_MODIFY:
952 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
953 break;
955 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
956 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
957 break;
959 default:
960 break;
963 /* If we are reloading a (SUBREG constant ...), really reload just the
964 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
965 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
966 a pseudo and hence will become a MEM) with M1 wider than M2 and the
967 register is a pseudo, also reload the inside expression.
968 For machines that extend byte loads, do this for any SUBREG of a pseudo
969 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
970 M2 is an integral mode that gets extended when loaded.
971 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
972 either M1 is not valid for R or M2 is wider than a word but we only
973 need one word to store an M2-sized quantity in R.
974 (However, if OUT is nonzero, we need to reload the reg *and*
975 the subreg, so do nothing here, and let following statement handle it.)
977 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
978 we can't handle it here because CONST_INT does not indicate a mode.
980 Similarly, we must reload the inside expression if we have a
981 STRICT_LOW_PART (presumably, in == out in the cas).
983 Also reload the inner expression if it does not require a secondary
984 reload but the SUBREG does.
986 Finally, reload the inner expression if it is a register that is in
987 the class whose registers cannot be referenced in a different size
988 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
989 cannot reload just the inside since we might end up with the wrong
990 register class. But if it is inside a STRICT_LOW_PART, we have
991 no choice, so we hope we do get the right register class there. */
993 if (in != 0 && GET_CODE (in) == SUBREG
994 && (subreg_lowpart_p (in) || strict_low)
995 #ifdef CANNOT_CHANGE_MODE_CLASS
996 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
997 #endif
998 && (CONSTANT_P (SUBREG_REG (in))
999 || GET_CODE (SUBREG_REG (in)) == PLUS
1000 || strict_low
1001 || (((REG_P (SUBREG_REG (in))
1002 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1003 || MEM_P (SUBREG_REG (in)))
1004 && ((GET_MODE_SIZE (inmode)
1005 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1006 #ifdef LOAD_EXTEND_OP
1007 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1008 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1009 <= UNITS_PER_WORD)
1010 && (GET_MODE_SIZE (inmode)
1011 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1012 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1013 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1014 #endif
1015 #ifdef WORD_REGISTER_OPERATIONS
1016 || ((GET_MODE_SIZE (inmode)
1017 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1018 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1019 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1020 / UNITS_PER_WORD)))
1021 #endif
1023 || (REG_P (SUBREG_REG (in))
1024 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1025 /* The case where out is nonzero
1026 is handled differently in the following statement. */
1027 && (out == 0 || subreg_lowpart_p (in))
1028 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1029 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1030 > UNITS_PER_WORD)
1031 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1032 / UNITS_PER_WORD)
1033 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1034 [GET_MODE (SUBREG_REG (in))]))
1035 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1036 || (secondary_reload_class (1, class, inmode, in) != NO_REGS
1037 && (secondary_reload_class (1, class, GET_MODE (SUBREG_REG (in)),
1038 SUBREG_REG (in))
1039 == NO_REGS))
1040 #ifdef CANNOT_CHANGE_MODE_CLASS
1041 || (REG_P (SUBREG_REG (in))
1042 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1043 && REG_CANNOT_CHANGE_MODE_P
1044 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1045 #endif
1048 in_subreg_loc = inloc;
1049 inloc = &SUBREG_REG (in);
1050 in = *inloc;
1051 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1052 if (MEM_P (in))
1053 /* This is supposed to happen only for paradoxical subregs made by
1054 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1055 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1056 #endif
1057 inmode = GET_MODE (in);
1060 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1061 either M1 is not valid for R or M2 is wider than a word but we only
1062 need one word to store an M2-sized quantity in R.
1064 However, we must reload the inner reg *as well as* the subreg in
1065 that case. */
1067 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1068 code above. This can happen if SUBREG_BYTE != 0. */
1070 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1072 enum reg_class in_class = class;
1074 if (REG_P (SUBREG_REG (in)))
1075 in_class
1076 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1077 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1078 GET_MODE (SUBREG_REG (in)),
1079 SUBREG_BYTE (in),
1080 GET_MODE (in)),
1081 REGNO (SUBREG_REG (in)));
1083 /* This relies on the fact that emit_reload_insns outputs the
1084 instructions for input reloads of type RELOAD_OTHER in the same
1085 order as the reloads. Thus if the outer reload is also of type
1086 RELOAD_OTHER, we are guaranteed that this inner reload will be
1087 output before the outer reload. */
1088 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1089 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1090 dont_remove_subreg = 1;
1093 /* Similarly for paradoxical and problematical SUBREGs on the output.
1094 Note that there is no reason we need worry about the previous value
1095 of SUBREG_REG (out); even if wider than out,
1096 storing in a subreg is entitled to clobber it all
1097 (except in the case of STRICT_LOW_PART,
1098 and in that case the constraint should label it input-output.) */
1099 if (out != 0 && GET_CODE (out) == SUBREG
1100 && (subreg_lowpart_p (out) || strict_low)
1101 #ifdef CANNOT_CHANGE_MODE_CLASS
1102 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1103 #endif
1104 && (CONSTANT_P (SUBREG_REG (out))
1105 || strict_low
1106 || (((REG_P (SUBREG_REG (out))
1107 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1108 || MEM_P (SUBREG_REG (out)))
1109 && ((GET_MODE_SIZE (outmode)
1110 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1111 #ifdef WORD_REGISTER_OPERATIONS
1112 || ((GET_MODE_SIZE (outmode)
1113 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1114 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1115 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1116 / UNITS_PER_WORD)))
1117 #endif
1119 || (REG_P (SUBREG_REG (out))
1120 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1121 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1122 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1123 > UNITS_PER_WORD)
1124 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1125 / UNITS_PER_WORD)
1126 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1127 [GET_MODE (SUBREG_REG (out))]))
1128 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1129 || (secondary_reload_class (0, class, outmode, out) != NO_REGS
1130 && (secondary_reload_class (0, class, GET_MODE (SUBREG_REG (out)),
1131 SUBREG_REG (out))
1132 == NO_REGS))
1133 #ifdef CANNOT_CHANGE_MODE_CLASS
1134 || (REG_P (SUBREG_REG (out))
1135 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1136 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1137 GET_MODE (SUBREG_REG (out)),
1138 outmode))
1139 #endif
1142 out_subreg_loc = outloc;
1143 outloc = &SUBREG_REG (out);
1144 out = *outloc;
1145 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1146 gcc_assert (!MEM_P (out)
1147 || GET_MODE_SIZE (GET_MODE (out))
1148 <= GET_MODE_SIZE (outmode));
1149 #endif
1150 outmode = GET_MODE (out);
1153 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1154 either M1 is not valid for R or M2 is wider than a word but we only
1155 need one word to store an M2-sized quantity in R.
1157 However, we must reload the inner reg *as well as* the subreg in
1158 that case. In this case, the inner reg is an in-out reload. */
1160 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1162 /* This relies on the fact that emit_reload_insns outputs the
1163 instructions for output reloads of type RELOAD_OTHER in reverse
1164 order of the reloads. Thus if the outer reload is also of type
1165 RELOAD_OTHER, we are guaranteed that this inner reload will be
1166 output after the outer reload. */
1167 dont_remove_subreg = 1;
1168 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1169 &SUBREG_REG (out),
1170 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1171 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1172 GET_MODE (SUBREG_REG (out)),
1173 SUBREG_BYTE (out),
1174 GET_MODE (out)),
1175 REGNO (SUBREG_REG (out))),
1176 VOIDmode, VOIDmode, 0, 0,
1177 opnum, RELOAD_OTHER);
1180 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1181 if (in != 0 && out != 0 && MEM_P (out)
1182 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1183 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1184 dont_share = 1;
1186 /* If IN is a SUBREG of a hard register, make a new REG. This
1187 simplifies some of the cases below. */
1189 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1190 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1191 && ! dont_remove_subreg)
1192 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1194 /* Similarly for OUT. */
1195 if (out != 0 && GET_CODE (out) == SUBREG
1196 && REG_P (SUBREG_REG (out))
1197 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1198 && ! dont_remove_subreg)
1199 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1201 /* Narrow down the class of register wanted if that is
1202 desirable on this machine for efficiency. */
1204 enum reg_class preferred_class = class;
1206 if (in != 0)
1207 preferred_class = PREFERRED_RELOAD_CLASS (in, class);
1209 /* Output reloads may need analogous treatment, different in detail. */
1210 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1211 if (out != 0)
1212 preferred_class = PREFERRED_OUTPUT_RELOAD_CLASS (out, preferred_class);
1213 #endif
1215 /* Discard what the target said if we cannot do it. */
1216 if (preferred_class != NO_REGS
1217 || (optional && type == RELOAD_FOR_OUTPUT))
1218 class = preferred_class;
1221 /* Make sure we use a class that can handle the actual pseudo
1222 inside any subreg. For example, on the 386, QImode regs
1223 can appear within SImode subregs. Although GENERAL_REGS
1224 can handle SImode, QImode needs a smaller class. */
1225 #ifdef LIMIT_RELOAD_CLASS
1226 if (in_subreg_loc)
1227 class = LIMIT_RELOAD_CLASS (inmode, class);
1228 else if (in != 0 && GET_CODE (in) == SUBREG)
1229 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1231 if (out_subreg_loc)
1232 class = LIMIT_RELOAD_CLASS (outmode, class);
1233 if (out != 0 && GET_CODE (out) == SUBREG)
1234 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1235 #endif
1237 /* Verify that this class is at least possible for the mode that
1238 is specified. */
1239 if (this_insn_is_asm)
1241 enum machine_mode mode;
1242 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1243 mode = inmode;
1244 else
1245 mode = outmode;
1246 if (mode == VOIDmode)
1248 error_for_asm (this_insn, "cannot reload integer constant "
1249 "operand in %<asm%>");
1250 mode = word_mode;
1251 if (in != 0)
1252 inmode = word_mode;
1253 if (out != 0)
1254 outmode = word_mode;
1256 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1257 if (HARD_REGNO_MODE_OK (i, mode)
1258 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1260 int nregs = hard_regno_nregs[i][mode];
1262 int j;
1263 for (j = 1; j < nregs; j++)
1264 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1265 break;
1266 if (j == nregs)
1267 break;
1269 if (i == FIRST_PSEUDO_REGISTER)
1271 error_for_asm (this_insn, "impossible register constraint "
1272 "in %<asm%>");
1273 /* Avoid further trouble with this insn. */
1274 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1275 /* We used to continue here setting class to ALL_REGS, but it triggers
1276 sanity check on i386 for:
1277 void foo(long double d)
1279 asm("" :: "a" (d));
1281 Returning zero here ought to be safe as we take care in
1282 find_reloads to not process the reloads when instruction was
1283 replaced by USE. */
1285 return 0;
1289 /* Optional output reloads are always OK even if we have no register class,
1290 since the function of these reloads is only to have spill_reg_store etc.
1291 set, so that the storing insn can be deleted later. */
1292 gcc_assert (class != NO_REGS
1293 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1295 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1297 if (i == n_reloads)
1299 /* See if we need a secondary reload register to move between CLASS
1300 and IN or CLASS and OUT. Get the icode and push any required reloads
1301 needed for each of them if so. */
1303 if (in != 0)
1304 secondary_in_reload
1305 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1306 &secondary_in_icode, NULL);
1307 if (out != 0 && GET_CODE (out) != SCRATCH)
1308 secondary_out_reload
1309 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1310 type, &secondary_out_icode, NULL);
1312 /* We found no existing reload suitable for re-use.
1313 So add an additional reload. */
1315 #ifdef SECONDARY_MEMORY_NEEDED
1316 /* If a memory location is needed for the copy, make one. */
1317 if (in != 0
1318 && (REG_P (in)
1319 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1320 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1321 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1322 class, inmode))
1323 get_secondary_mem (in, inmode, opnum, type);
1324 #endif
1326 i = n_reloads;
1327 rld[i].in = in;
1328 rld[i].out = out;
1329 rld[i].class = class;
1330 rld[i].inmode = inmode;
1331 rld[i].outmode = outmode;
1332 rld[i].reg_rtx = 0;
1333 rld[i].optional = optional;
1334 rld[i].inc = 0;
1335 rld[i].nocombine = 0;
1336 rld[i].in_reg = inloc ? *inloc : 0;
1337 rld[i].out_reg = outloc ? *outloc : 0;
1338 rld[i].opnum = opnum;
1339 rld[i].when_needed = type;
1340 rld[i].secondary_in_reload = secondary_in_reload;
1341 rld[i].secondary_out_reload = secondary_out_reload;
1342 rld[i].secondary_in_icode = secondary_in_icode;
1343 rld[i].secondary_out_icode = secondary_out_icode;
1344 rld[i].secondary_p = 0;
1346 n_reloads++;
1348 #ifdef SECONDARY_MEMORY_NEEDED
1349 if (out != 0
1350 && (REG_P (out)
1351 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1352 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1353 && SECONDARY_MEMORY_NEEDED (class,
1354 REGNO_REG_CLASS (reg_or_subregno (out)),
1355 outmode))
1356 get_secondary_mem (out, outmode, opnum, type);
1357 #endif
1359 else
1361 /* We are reusing an existing reload,
1362 but we may have additional information for it.
1363 For example, we may now have both IN and OUT
1364 while the old one may have just one of them. */
1366 /* The modes can be different. If they are, we want to reload in
1367 the larger mode, so that the value is valid for both modes. */
1368 if (inmode != VOIDmode
1369 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1370 rld[i].inmode = inmode;
1371 if (outmode != VOIDmode
1372 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1373 rld[i].outmode = outmode;
1374 if (in != 0)
1376 rtx in_reg = inloc ? *inloc : 0;
1377 /* If we merge reloads for two distinct rtl expressions that
1378 are identical in content, there might be duplicate address
1379 reloads. Remove the extra set now, so that if we later find
1380 that we can inherit this reload, we can get rid of the
1381 address reloads altogether.
1383 Do not do this if both reloads are optional since the result
1384 would be an optional reload which could potentially leave
1385 unresolved address replacements.
1387 It is not sufficient to call transfer_replacements since
1388 choose_reload_regs will remove the replacements for address
1389 reloads of inherited reloads which results in the same
1390 problem. */
1391 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1392 && ! (rld[i].optional && optional))
1394 /* We must keep the address reload with the lower operand
1395 number alive. */
1396 if (opnum > rld[i].opnum)
1398 remove_address_replacements (in);
1399 in = rld[i].in;
1400 in_reg = rld[i].in_reg;
1402 else
1403 remove_address_replacements (rld[i].in);
1405 rld[i].in = in;
1406 rld[i].in_reg = in_reg;
1408 if (out != 0)
1410 rld[i].out = out;
1411 rld[i].out_reg = outloc ? *outloc : 0;
1413 if (reg_class_subset_p (class, rld[i].class))
1414 rld[i].class = class;
1415 rld[i].optional &= optional;
1416 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1417 opnum, rld[i].opnum))
1418 rld[i].when_needed = RELOAD_OTHER;
1419 rld[i].opnum = MIN (rld[i].opnum, opnum);
1422 /* If the ostensible rtx being reloaded differs from the rtx found
1423 in the location to substitute, this reload is not safe to combine
1424 because we cannot reliably tell whether it appears in the insn. */
1426 if (in != 0 && in != *inloc)
1427 rld[i].nocombine = 1;
1429 #if 0
1430 /* This was replaced by changes in find_reloads_address_1 and the new
1431 function inc_for_reload, which go with a new meaning of reload_inc. */
1433 /* If this is an IN/OUT reload in an insn that sets the CC,
1434 it must be for an autoincrement. It doesn't work to store
1435 the incremented value after the insn because that would clobber the CC.
1436 So we must do the increment of the value reloaded from,
1437 increment it, store it back, then decrement again. */
1438 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1440 out = 0;
1441 rld[i].out = 0;
1442 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1443 /* If we did not find a nonzero amount-to-increment-by,
1444 that contradicts the belief that IN is being incremented
1445 in an address in this insn. */
1446 gcc_assert (rld[i].inc != 0);
1448 #endif
1450 /* If we will replace IN and OUT with the reload-reg,
1451 record where they are located so that substitution need
1452 not do a tree walk. */
1454 if (replace_reloads)
1456 if (inloc != 0)
1458 struct replacement *r = &replacements[n_replacements++];
1459 r->what = i;
1460 r->subreg_loc = in_subreg_loc;
1461 r->where = inloc;
1462 r->mode = inmode;
1464 if (outloc != 0 && outloc != inloc)
1466 struct replacement *r = &replacements[n_replacements++];
1467 r->what = i;
1468 r->where = outloc;
1469 r->subreg_loc = out_subreg_loc;
1470 r->mode = outmode;
1474 /* If this reload is just being introduced and it has both
1475 an incoming quantity and an outgoing quantity that are
1476 supposed to be made to match, see if either one of the two
1477 can serve as the place to reload into.
1479 If one of them is acceptable, set rld[i].reg_rtx
1480 to that one. */
1482 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1484 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1485 inmode, outmode,
1486 rld[i].class, i,
1487 earlyclobber_operand_p (out));
1489 /* If the outgoing register already contains the same value
1490 as the incoming one, we can dispense with loading it.
1491 The easiest way to tell the caller that is to give a phony
1492 value for the incoming operand (same as outgoing one). */
1493 if (rld[i].reg_rtx == out
1494 && (REG_P (in) || CONSTANT_P (in))
1495 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1496 static_reload_reg_p, i, inmode))
1497 rld[i].in = out;
1500 /* If this is an input reload and the operand contains a register that
1501 dies in this insn and is used nowhere else, see if it is the right class
1502 to be used for this reload. Use it if so. (This occurs most commonly
1503 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1504 this if it is also an output reload that mentions the register unless
1505 the output is a SUBREG that clobbers an entire register.
1507 Note that the operand might be one of the spill regs, if it is a
1508 pseudo reg and we are in a block where spilling has not taken place.
1509 But if there is no spilling in this block, that is OK.
1510 An explicitly used hard reg cannot be a spill reg. */
1512 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1514 rtx note;
1515 int regno;
1516 enum machine_mode rel_mode = inmode;
1518 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1519 rel_mode = outmode;
1521 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1522 if (REG_NOTE_KIND (note) == REG_DEAD
1523 && REG_P (XEXP (note, 0))
1524 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1525 && reg_mentioned_p (XEXP (note, 0), in)
1526 /* Check that we don't use a hardreg for an uninitialized
1527 pseudo. See also find_dummy_reload(). */
1528 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1529 || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
1530 ORIGINAL_REGNO (XEXP (note, 0))))
1531 && ! refers_to_regno_for_reload_p (regno,
1532 (regno
1533 + hard_regno_nregs[regno]
1534 [rel_mode]),
1535 PATTERN (this_insn), inloc)
1536 /* If this is also an output reload, IN cannot be used as
1537 the reload register if it is set in this insn unless IN
1538 is also OUT. */
1539 && (out == 0 || in == out
1540 || ! hard_reg_set_here_p (regno,
1541 (regno
1542 + hard_regno_nregs[regno]
1543 [rel_mode]),
1544 PATTERN (this_insn)))
1545 /* ??? Why is this code so different from the previous?
1546 Is there any simple coherent way to describe the two together?
1547 What's going on here. */
1548 && (in != out
1549 || (GET_CODE (in) == SUBREG
1550 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1551 / UNITS_PER_WORD)
1552 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1553 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1554 /* Make sure the operand fits in the reg that dies. */
1555 && (GET_MODE_SIZE (rel_mode)
1556 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1557 && HARD_REGNO_MODE_OK (regno, inmode)
1558 && HARD_REGNO_MODE_OK (regno, outmode))
1560 unsigned int offs;
1561 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1562 hard_regno_nregs[regno][outmode]);
1564 for (offs = 0; offs < nregs; offs++)
1565 if (fixed_regs[regno + offs]
1566 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1567 regno + offs))
1568 break;
1570 if (offs == nregs
1571 && (! (refers_to_regno_for_reload_p
1572 (regno, (regno + hard_regno_nregs[regno][inmode]),
1573 in, (rtx *)0))
1574 || can_reload_into (in, regno, inmode)))
1576 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1577 break;
1582 if (out)
1583 output_reloadnum = i;
1585 return i;
1588 /* Record an additional place we must replace a value
1589 for which we have already recorded a reload.
1590 RELOADNUM is the value returned by push_reload
1591 when the reload was recorded.
1592 This is used in insn patterns that use match_dup. */
1594 static void
1595 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1597 if (replace_reloads)
1599 struct replacement *r = &replacements[n_replacements++];
1600 r->what = reloadnum;
1601 r->where = loc;
1602 r->subreg_loc = 0;
1603 r->mode = mode;
1607 /* Duplicate any replacement we have recorded to apply at
1608 location ORIG_LOC to also be performed at DUP_LOC.
1609 This is used in insn patterns that use match_dup. */
1611 static void
1612 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1614 int i, n = n_replacements;
1616 for (i = 0; i < n; i++)
1618 struct replacement *r = &replacements[i];
1619 if (r->where == orig_loc)
1620 push_replacement (dup_loc, r->what, r->mode);
1624 /* Transfer all replacements that used to be in reload FROM to be in
1625 reload TO. */
1627 void
1628 transfer_replacements (int to, int from)
1630 int i;
1632 for (i = 0; i < n_replacements; i++)
1633 if (replacements[i].what == from)
1634 replacements[i].what = to;
1637 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1638 or a subpart of it. If we have any replacements registered for IN_RTX,
1639 cancel the reloads that were supposed to load them.
1640 Return nonzero if we canceled any reloads. */
1642 remove_address_replacements (rtx in_rtx)
1644 int i, j;
1645 char reload_flags[MAX_RELOADS];
1646 int something_changed = 0;
1648 memset (reload_flags, 0, sizeof reload_flags);
1649 for (i = 0, j = 0; i < n_replacements; i++)
1651 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1652 reload_flags[replacements[i].what] |= 1;
1653 else
1655 replacements[j++] = replacements[i];
1656 reload_flags[replacements[i].what] |= 2;
1659 /* Note that the following store must be done before the recursive calls. */
1660 n_replacements = j;
1662 for (i = n_reloads - 1; i >= 0; i--)
1664 if (reload_flags[i] == 1)
1666 deallocate_reload_reg (i);
1667 remove_address_replacements (rld[i].in);
1668 rld[i].in = 0;
1669 something_changed = 1;
1672 return something_changed;
1675 /* If there is only one output reload, and it is not for an earlyclobber
1676 operand, try to combine it with a (logically unrelated) input reload
1677 to reduce the number of reload registers needed.
1679 This is safe if the input reload does not appear in
1680 the value being output-reloaded, because this implies
1681 it is not needed any more once the original insn completes.
1683 If that doesn't work, see we can use any of the registers that
1684 die in this insn as a reload register. We can if it is of the right
1685 class and does not appear in the value being output-reloaded. */
1687 static void
1688 combine_reloads (void)
1690 int i;
1691 int output_reload = -1;
1692 int secondary_out = -1;
1693 rtx note;
1695 /* Find the output reload; return unless there is exactly one
1696 and that one is mandatory. */
1698 for (i = 0; i < n_reloads; i++)
1699 if (rld[i].out != 0)
1701 if (output_reload >= 0)
1702 return;
1703 output_reload = i;
1706 if (output_reload < 0 || rld[output_reload].optional)
1707 return;
1709 /* An input-output reload isn't combinable. */
1711 if (rld[output_reload].in != 0)
1712 return;
1714 /* If this reload is for an earlyclobber operand, we can't do anything. */
1715 if (earlyclobber_operand_p (rld[output_reload].out))
1716 return;
1718 /* If there is a reload for part of the address of this operand, we would
1719 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1720 its life to the point where doing this combine would not lower the
1721 number of spill registers needed. */
1722 for (i = 0; i < n_reloads; i++)
1723 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1724 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1725 && rld[i].opnum == rld[output_reload].opnum)
1726 return;
1728 /* Check each input reload; can we combine it? */
1730 for (i = 0; i < n_reloads; i++)
1731 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1732 /* Life span of this reload must not extend past main insn. */
1733 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1734 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1735 && rld[i].when_needed != RELOAD_OTHER
1736 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1737 == CLASS_MAX_NREGS (rld[output_reload].class,
1738 rld[output_reload].outmode))
1739 && rld[i].inc == 0
1740 && rld[i].reg_rtx == 0
1741 #ifdef SECONDARY_MEMORY_NEEDED
1742 /* Don't combine two reloads with different secondary
1743 memory locations. */
1744 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1745 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1746 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1747 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1748 #endif
1749 && (SMALL_REGISTER_CLASSES
1750 ? (rld[i].class == rld[output_reload].class)
1751 : (reg_class_subset_p (rld[i].class,
1752 rld[output_reload].class)
1753 || reg_class_subset_p (rld[output_reload].class,
1754 rld[i].class)))
1755 && (MATCHES (rld[i].in, rld[output_reload].out)
1756 /* Args reversed because the first arg seems to be
1757 the one that we imagine being modified
1758 while the second is the one that might be affected. */
1759 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1760 rld[i].in)
1761 /* However, if the input is a register that appears inside
1762 the output, then we also can't share.
1763 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1764 If the same reload reg is used for both reg 69 and the
1765 result to be stored in memory, then that result
1766 will clobber the address of the memory ref. */
1767 && ! (REG_P (rld[i].in)
1768 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1769 rld[output_reload].out))))
1770 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1771 rld[i].when_needed != RELOAD_FOR_INPUT)
1772 && (reg_class_size[(int) rld[i].class]
1773 || SMALL_REGISTER_CLASSES)
1774 /* We will allow making things slightly worse by combining an
1775 input and an output, but no worse than that. */
1776 && (rld[i].when_needed == RELOAD_FOR_INPUT
1777 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1779 int j;
1781 /* We have found a reload to combine with! */
1782 rld[i].out = rld[output_reload].out;
1783 rld[i].out_reg = rld[output_reload].out_reg;
1784 rld[i].outmode = rld[output_reload].outmode;
1785 /* Mark the old output reload as inoperative. */
1786 rld[output_reload].out = 0;
1787 /* The combined reload is needed for the entire insn. */
1788 rld[i].when_needed = RELOAD_OTHER;
1789 /* If the output reload had a secondary reload, copy it. */
1790 if (rld[output_reload].secondary_out_reload != -1)
1792 rld[i].secondary_out_reload
1793 = rld[output_reload].secondary_out_reload;
1794 rld[i].secondary_out_icode
1795 = rld[output_reload].secondary_out_icode;
1798 #ifdef SECONDARY_MEMORY_NEEDED
1799 /* Copy any secondary MEM. */
1800 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1801 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1802 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1803 #endif
1804 /* If required, minimize the register class. */
1805 if (reg_class_subset_p (rld[output_reload].class,
1806 rld[i].class))
1807 rld[i].class = rld[output_reload].class;
1809 /* Transfer all replacements from the old reload to the combined. */
1810 for (j = 0; j < n_replacements; j++)
1811 if (replacements[j].what == output_reload)
1812 replacements[j].what = i;
1814 return;
1817 /* If this insn has only one operand that is modified or written (assumed
1818 to be the first), it must be the one corresponding to this reload. It
1819 is safe to use anything that dies in this insn for that output provided
1820 that it does not occur in the output (we already know it isn't an
1821 earlyclobber. If this is an asm insn, give up. */
1823 if (INSN_CODE (this_insn) == -1)
1824 return;
1826 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1827 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1828 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1829 return;
1831 /* See if some hard register that dies in this insn and is not used in
1832 the output is the right class. Only works if the register we pick
1833 up can fully hold our output reload. */
1834 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1835 if (REG_NOTE_KIND (note) == REG_DEAD
1836 && REG_P (XEXP (note, 0))
1837 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1838 rld[output_reload].out)
1839 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1840 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1841 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1842 REGNO (XEXP (note, 0)))
1843 && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1844 <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
1845 /* Ensure that a secondary or tertiary reload for this output
1846 won't want this register. */
1847 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1848 || (! (TEST_HARD_REG_BIT
1849 (reg_class_contents[(int) rld[secondary_out].class],
1850 REGNO (XEXP (note, 0))))
1851 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1852 || ! (TEST_HARD_REG_BIT
1853 (reg_class_contents[(int) rld[secondary_out].class],
1854 REGNO (XEXP (note, 0)))))))
1855 && ! fixed_regs[REGNO (XEXP (note, 0))]
1856 /* Check that we don't use a hardreg for an uninitialized
1857 pseudo. See also find_dummy_reload(). */
1858 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1859 || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
1860 ORIGINAL_REGNO (XEXP (note, 0)))))
1862 rld[output_reload].reg_rtx
1863 = gen_rtx_REG (rld[output_reload].outmode,
1864 REGNO (XEXP (note, 0)));
1865 return;
1869 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1870 See if one of IN and OUT is a register that may be used;
1871 this is desirable since a spill-register won't be needed.
1872 If so, return the register rtx that proves acceptable.
1874 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1875 CLASS is the register class required for the reload.
1877 If FOR_REAL is >= 0, it is the number of the reload,
1878 and in some cases when it can be discovered that OUT doesn't need
1879 to be computed, clear out rld[FOR_REAL].out.
1881 If FOR_REAL is -1, this should not be done, because this call
1882 is just to see if a register can be found, not to find and install it.
1884 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1885 puts an additional constraint on being able to use IN for OUT since
1886 IN must not appear elsewhere in the insn (it is assumed that IN itself
1887 is safe from the earlyclobber). */
1889 static rtx
1890 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1891 enum machine_mode inmode, enum machine_mode outmode,
1892 enum reg_class class, int for_real, int earlyclobber)
1894 rtx in = real_in;
1895 rtx out = real_out;
1896 int in_offset = 0;
1897 int out_offset = 0;
1898 rtx value = 0;
1900 /* If operands exceed a word, we can't use either of them
1901 unless they have the same size. */
1902 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1903 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1904 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1905 return 0;
1907 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1908 respectively refers to a hard register. */
1910 /* Find the inside of any subregs. */
1911 while (GET_CODE (out) == SUBREG)
1913 if (REG_P (SUBREG_REG (out))
1914 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1915 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1916 GET_MODE (SUBREG_REG (out)),
1917 SUBREG_BYTE (out),
1918 GET_MODE (out));
1919 out = SUBREG_REG (out);
1921 while (GET_CODE (in) == SUBREG)
1923 if (REG_P (SUBREG_REG (in))
1924 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1925 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1926 GET_MODE (SUBREG_REG (in)),
1927 SUBREG_BYTE (in),
1928 GET_MODE (in));
1929 in = SUBREG_REG (in);
1932 /* Narrow down the reg class, the same way push_reload will;
1933 otherwise we might find a dummy now, but push_reload won't. */
1935 enum reg_class preferred_class = PREFERRED_RELOAD_CLASS (in, class);
1936 if (preferred_class != NO_REGS)
1937 class = preferred_class;
1940 /* See if OUT will do. */
1941 if (REG_P (out)
1942 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1944 unsigned int regno = REGNO (out) + out_offset;
1945 unsigned int nwords = hard_regno_nregs[regno][outmode];
1946 rtx saved_rtx;
1948 /* When we consider whether the insn uses OUT,
1949 ignore references within IN. They don't prevent us
1950 from copying IN into OUT, because those refs would
1951 move into the insn that reloads IN.
1953 However, we only ignore IN in its role as this reload.
1954 If the insn uses IN elsewhere and it contains OUT,
1955 that counts. We can't be sure it's the "same" operand
1956 so it might not go through this reload. */
1957 saved_rtx = *inloc;
1958 *inloc = const0_rtx;
1960 if (regno < FIRST_PSEUDO_REGISTER
1961 && HARD_REGNO_MODE_OK (regno, outmode)
1962 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1963 PATTERN (this_insn), outloc))
1965 unsigned int i;
1967 for (i = 0; i < nwords; i++)
1968 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1969 regno + i))
1970 break;
1972 if (i == nwords)
1974 if (REG_P (real_out))
1975 value = real_out;
1976 else
1977 value = gen_rtx_REG (outmode, regno);
1981 *inloc = saved_rtx;
1984 /* Consider using IN if OUT was not acceptable
1985 or if OUT dies in this insn (like the quotient in a divmod insn).
1986 We can't use IN unless it is dies in this insn,
1987 which means we must know accurately which hard regs are live.
1988 Also, the result can't go in IN if IN is used within OUT,
1989 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1990 if (hard_regs_live_known
1991 && REG_P (in)
1992 && REGNO (in) < FIRST_PSEUDO_REGISTER
1993 && (value == 0
1994 || find_reg_note (this_insn, REG_UNUSED, real_out))
1995 && find_reg_note (this_insn, REG_DEAD, real_in)
1996 && !fixed_regs[REGNO (in)]
1997 && HARD_REGNO_MODE_OK (REGNO (in),
1998 /* The only case where out and real_out might
1999 have different modes is where real_out
2000 is a subreg, and in that case, out
2001 has a real mode. */
2002 (GET_MODE (out) != VOIDmode
2003 ? GET_MODE (out) : outmode))
2004 /* But only do all this if we can be sure, that this input
2005 operand doesn't correspond with an uninitialized pseudoreg.
2006 global can assign some hardreg to it, which is the same as
2007 a different pseudo also currently live (as it can ignore the
2008 conflict). So we never must introduce writes to such hardregs,
2009 as they would clobber the other live pseudo using the same.
2010 See also PR20973. */
2011 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2012 || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
2013 ORIGINAL_REGNO (in))))
2015 unsigned int regno = REGNO (in) + in_offset;
2016 unsigned int nwords = hard_regno_nregs[regno][inmode];
2018 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2019 && ! hard_reg_set_here_p (regno, regno + nwords,
2020 PATTERN (this_insn))
2021 && (! earlyclobber
2022 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2023 PATTERN (this_insn), inloc)))
2025 unsigned int i;
2027 for (i = 0; i < nwords; i++)
2028 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2029 regno + i))
2030 break;
2032 if (i == nwords)
2034 /* If we were going to use OUT as the reload reg
2035 and changed our mind, it means OUT is a dummy that
2036 dies here. So don't bother copying value to it. */
2037 if (for_real >= 0 && value == real_out)
2038 rld[for_real].out = 0;
2039 if (REG_P (real_in))
2040 value = real_in;
2041 else
2042 value = gen_rtx_REG (inmode, regno);
2047 return value;
2050 /* This page contains subroutines used mainly for determining
2051 whether the IN or an OUT of a reload can serve as the
2052 reload register. */
2054 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2057 earlyclobber_operand_p (rtx x)
2059 int i;
2061 for (i = 0; i < n_earlyclobbers; i++)
2062 if (reload_earlyclobbers[i] == x)
2063 return 1;
2065 return 0;
2068 /* Return 1 if expression X alters a hard reg in the range
2069 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2070 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2071 X should be the body of an instruction. */
2073 static int
2074 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2076 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2078 rtx op0 = SET_DEST (x);
2080 while (GET_CODE (op0) == SUBREG)
2081 op0 = SUBREG_REG (op0);
2082 if (REG_P (op0))
2084 unsigned int r = REGNO (op0);
2086 /* See if this reg overlaps range under consideration. */
2087 if (r < end_regno
2088 && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
2089 return 1;
2092 else if (GET_CODE (x) == PARALLEL)
2094 int i = XVECLEN (x, 0) - 1;
2096 for (; i >= 0; i--)
2097 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2098 return 1;
2101 return 0;
2104 /* Return 1 if ADDR is a valid memory address for mode MODE,
2105 and check that each pseudo reg has the proper kind of
2106 hard reg. */
2109 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2111 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2112 return 0;
2114 win:
2115 return 1;
2118 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2119 if they are the same hard reg, and has special hacks for
2120 autoincrement and autodecrement.
2121 This is specifically intended for find_reloads to use
2122 in determining whether two operands match.
2123 X is the operand whose number is the lower of the two.
2125 The value is 2 if Y contains a pre-increment that matches
2126 a non-incrementing address in X. */
2128 /* ??? To be completely correct, we should arrange to pass
2129 for X the output operand and for Y the input operand.
2130 For now, we assume that the output operand has the lower number
2131 because that is natural in (SET output (... input ...)). */
2134 operands_match_p (rtx x, rtx y)
2136 int i;
2137 RTX_CODE code = GET_CODE (x);
2138 const char *fmt;
2139 int success_2;
2141 if (x == y)
2142 return 1;
2143 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2144 && (REG_P (y) || (GET_CODE (y) == SUBREG
2145 && REG_P (SUBREG_REG (y)))))
2147 int j;
2149 if (code == SUBREG)
2151 i = REGNO (SUBREG_REG (x));
2152 if (i >= FIRST_PSEUDO_REGISTER)
2153 goto slow;
2154 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2155 GET_MODE (SUBREG_REG (x)),
2156 SUBREG_BYTE (x),
2157 GET_MODE (x));
2159 else
2160 i = REGNO (x);
2162 if (GET_CODE (y) == SUBREG)
2164 j = REGNO (SUBREG_REG (y));
2165 if (j >= FIRST_PSEUDO_REGISTER)
2166 goto slow;
2167 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2168 GET_MODE (SUBREG_REG (y)),
2169 SUBREG_BYTE (y),
2170 GET_MODE (y));
2172 else
2173 j = REGNO (y);
2175 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2176 multiple hard register group of scalar integer registers, so that
2177 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2178 register. */
2179 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2180 && SCALAR_INT_MODE_P (GET_MODE (x))
2181 && i < FIRST_PSEUDO_REGISTER)
2182 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2183 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2184 && SCALAR_INT_MODE_P (GET_MODE (y))
2185 && j < FIRST_PSEUDO_REGISTER)
2186 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2188 return i == j;
2190 /* If two operands must match, because they are really a single
2191 operand of an assembler insn, then two postincrements are invalid
2192 because the assembler insn would increment only once.
2193 On the other hand, a postincrement matches ordinary indexing
2194 if the postincrement is the output operand. */
2195 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2196 return operands_match_p (XEXP (x, 0), y);
2197 /* Two preincrements are invalid
2198 because the assembler insn would increment only once.
2199 On the other hand, a preincrement matches ordinary indexing
2200 if the preincrement is the input operand.
2201 In this case, return 2, since some callers need to do special
2202 things when this happens. */
2203 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2204 || GET_CODE (y) == PRE_MODIFY)
2205 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2207 slow:
2209 /* Now we have disposed of all the cases in which different rtx codes
2210 can match. */
2211 if (code != GET_CODE (y))
2212 return 0;
2214 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2215 if (GET_MODE (x) != GET_MODE (y))
2216 return 0;
2218 switch (code)
2220 case CONST_INT:
2221 case CONST_DOUBLE:
2222 return 0;
2224 case LABEL_REF:
2225 return XEXP (x, 0) == XEXP (y, 0);
2226 case SYMBOL_REF:
2227 return XSTR (x, 0) == XSTR (y, 0);
2229 default:
2230 break;
2233 /* Compare the elements. If any pair of corresponding elements
2234 fail to match, return 0 for the whole things. */
2236 success_2 = 0;
2237 fmt = GET_RTX_FORMAT (code);
2238 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2240 int val, j;
2241 switch (fmt[i])
2243 case 'w':
2244 if (XWINT (x, i) != XWINT (y, i))
2245 return 0;
2246 break;
2248 case 'i':
2249 if (XINT (x, i) != XINT (y, i))
2250 return 0;
2251 break;
2253 case 'e':
2254 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2255 if (val == 0)
2256 return 0;
2257 /* If any subexpression returns 2,
2258 we should return 2 if we are successful. */
2259 if (val == 2)
2260 success_2 = 1;
2261 break;
2263 case '0':
2264 break;
2266 case 'E':
2267 if (XVECLEN (x, i) != XVECLEN (y, i))
2268 return 0;
2269 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2271 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2272 if (val == 0)
2273 return 0;
2274 if (val == 2)
2275 success_2 = 1;
2277 break;
2279 /* It is believed that rtx's at this level will never
2280 contain anything but integers and other rtx's,
2281 except for within LABEL_REFs and SYMBOL_REFs. */
2282 default:
2283 gcc_unreachable ();
2286 return 1 + success_2;
2289 /* Describe the range of registers or memory referenced by X.
2290 If X is a register, set REG_FLAG and put the first register
2291 number into START and the last plus one into END.
2292 If X is a memory reference, put a base address into BASE
2293 and a range of integer offsets into START and END.
2294 If X is pushing on the stack, we can assume it causes no trouble,
2295 so we set the SAFE field. */
2297 static struct decomposition
2298 decompose (rtx x)
2300 struct decomposition val;
2301 int all_const = 0;
2303 memset (&val, 0, sizeof (val));
2305 switch (GET_CODE (x))
2307 case MEM:
2309 rtx base = NULL_RTX, offset = 0;
2310 rtx addr = XEXP (x, 0);
2312 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2313 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2315 val.base = XEXP (addr, 0);
2316 val.start = -GET_MODE_SIZE (GET_MODE (x));
2317 val.end = GET_MODE_SIZE (GET_MODE (x));
2318 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2319 return val;
2322 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2324 if (GET_CODE (XEXP (addr, 1)) == PLUS
2325 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2326 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2328 val.base = XEXP (addr, 0);
2329 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2330 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2331 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2332 return val;
2336 if (GET_CODE (addr) == CONST)
2338 addr = XEXP (addr, 0);
2339 all_const = 1;
2341 if (GET_CODE (addr) == PLUS)
2343 if (CONSTANT_P (XEXP (addr, 0)))
2345 base = XEXP (addr, 1);
2346 offset = XEXP (addr, 0);
2348 else if (CONSTANT_P (XEXP (addr, 1)))
2350 base = XEXP (addr, 0);
2351 offset = XEXP (addr, 1);
2355 if (offset == 0)
2357 base = addr;
2358 offset = const0_rtx;
2360 if (GET_CODE (offset) == CONST)
2361 offset = XEXP (offset, 0);
2362 if (GET_CODE (offset) == PLUS)
2364 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2366 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2367 offset = XEXP (offset, 0);
2369 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2371 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2372 offset = XEXP (offset, 1);
2374 else
2376 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2377 offset = const0_rtx;
2380 else if (GET_CODE (offset) != CONST_INT)
2382 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2383 offset = const0_rtx;
2386 if (all_const && GET_CODE (base) == PLUS)
2387 base = gen_rtx_CONST (GET_MODE (base), base);
2389 gcc_assert (GET_CODE (offset) == CONST_INT);
2391 val.start = INTVAL (offset);
2392 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2393 val.base = base;
2395 break;
2397 case REG:
2398 val.reg_flag = 1;
2399 val.start = true_regnum (x);
2400 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2402 /* A pseudo with no hard reg. */
2403 val.start = REGNO (x);
2404 val.end = val.start + 1;
2406 else
2407 /* A hard reg. */
2408 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2409 break;
2411 case SUBREG:
2412 if (!REG_P (SUBREG_REG (x)))
2413 /* This could be more precise, but it's good enough. */
2414 return decompose (SUBREG_REG (x));
2415 val.reg_flag = 1;
2416 val.start = true_regnum (x);
2417 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2418 return decompose (SUBREG_REG (x));
2419 else
2420 /* A hard reg. */
2421 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2422 break;
2424 case SCRATCH:
2425 /* This hasn't been assigned yet, so it can't conflict yet. */
2426 val.safe = 1;
2427 break;
2429 default:
2430 gcc_assert (CONSTANT_P (x));
2431 val.safe = 1;
2432 break;
2434 return val;
2437 /* Return 1 if altering Y will not modify the value of X.
2438 Y is also described by YDATA, which should be decompose (Y). */
2440 static int
2441 immune_p (rtx x, rtx y, struct decomposition ydata)
2443 struct decomposition xdata;
2445 if (ydata.reg_flag)
2446 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2447 if (ydata.safe)
2448 return 1;
2450 gcc_assert (MEM_P (y));
2451 /* If Y is memory and X is not, Y can't affect X. */
2452 if (!MEM_P (x))
2453 return 1;
2455 xdata = decompose (x);
2457 if (! rtx_equal_p (xdata.base, ydata.base))
2459 /* If bases are distinct symbolic constants, there is no overlap. */
2460 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2461 return 1;
2462 /* Constants and stack slots never overlap. */
2463 if (CONSTANT_P (xdata.base)
2464 && (ydata.base == frame_pointer_rtx
2465 || ydata.base == hard_frame_pointer_rtx
2466 || ydata.base == stack_pointer_rtx))
2467 return 1;
2468 if (CONSTANT_P (ydata.base)
2469 && (xdata.base == frame_pointer_rtx
2470 || xdata.base == hard_frame_pointer_rtx
2471 || xdata.base == stack_pointer_rtx))
2472 return 1;
2473 /* If either base is variable, we don't know anything. */
2474 return 0;
2477 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2480 /* Similar, but calls decompose. */
2483 safe_from_earlyclobber (rtx op, rtx clobber)
2485 struct decomposition early_data;
2487 early_data = decompose (clobber);
2488 return immune_p (op, clobber, early_data);
2491 /* Main entry point of this file: search the body of INSN
2492 for values that need reloading and record them with push_reload.
2493 REPLACE nonzero means record also where the values occur
2494 so that subst_reloads can be used.
2496 IND_LEVELS says how many levels of indirection are supported by this
2497 machine; a value of zero means that a memory reference is not a valid
2498 memory address.
2500 LIVE_KNOWN says we have valid information about which hard
2501 regs are live at each point in the program; this is true when
2502 we are called from global_alloc but false when stupid register
2503 allocation has been done.
2505 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2506 which is nonnegative if the reg has been commandeered for reloading into.
2507 It is copied into STATIC_RELOAD_REG_P and referenced from there
2508 by various subroutines.
2510 Return TRUE if some operands need to be changed, because of swapping
2511 commutative operands, reg_equiv_address substitution, or whatever. */
2514 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2515 short *reload_reg_p)
2517 int insn_code_number;
2518 int i, j;
2519 int noperands;
2520 /* These start out as the constraints for the insn
2521 and they are chewed up as we consider alternatives. */
2522 char *constraints[MAX_RECOG_OPERANDS];
2523 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2524 a register. */
2525 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2526 char pref_or_nothing[MAX_RECOG_OPERANDS];
2527 /* Nonzero for a MEM operand whose entire address needs a reload.
2528 May be -1 to indicate the entire address may or may not need a reload. */
2529 int address_reloaded[MAX_RECOG_OPERANDS];
2530 /* Nonzero for an address operand that needs to be completely reloaded.
2531 May be -1 to indicate the entire operand may or may not need a reload. */
2532 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2533 /* Value of enum reload_type to use for operand. */
2534 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2535 /* Value of enum reload_type to use within address of operand. */
2536 enum reload_type address_type[MAX_RECOG_OPERANDS];
2537 /* Save the usage of each operand. */
2538 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2539 int no_input_reloads = 0, no_output_reloads = 0;
2540 int n_alternatives;
2541 int this_alternative[MAX_RECOG_OPERANDS];
2542 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2543 char this_alternative_win[MAX_RECOG_OPERANDS];
2544 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2545 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2546 int this_alternative_matches[MAX_RECOG_OPERANDS];
2547 int swapped;
2548 int goal_alternative[MAX_RECOG_OPERANDS];
2549 int this_alternative_number;
2550 int goal_alternative_number = 0;
2551 int operand_reloadnum[MAX_RECOG_OPERANDS];
2552 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2553 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2554 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2555 char goal_alternative_win[MAX_RECOG_OPERANDS];
2556 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2557 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2558 int goal_alternative_swapped;
2559 int best;
2560 int commutative;
2561 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2562 rtx substed_operand[MAX_RECOG_OPERANDS];
2563 rtx body = PATTERN (insn);
2564 rtx set = single_set (insn);
2565 int goal_earlyclobber = 0, this_earlyclobber;
2566 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2567 int retval = 0;
2569 this_insn = insn;
2570 n_reloads = 0;
2571 n_replacements = 0;
2572 n_earlyclobbers = 0;
2573 replace_reloads = replace;
2574 hard_regs_live_known = live_known;
2575 static_reload_reg_p = reload_reg_p;
2577 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2578 neither are insns that SET cc0. Insns that use CC0 are not allowed
2579 to have any input reloads. */
2580 if (JUMP_P (insn) || CALL_P (insn))
2581 no_output_reloads = 1;
2583 #ifdef HAVE_cc0
2584 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2585 no_input_reloads = 1;
2586 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2587 no_output_reloads = 1;
2588 #endif
2590 #ifdef SECONDARY_MEMORY_NEEDED
2591 /* The eliminated forms of any secondary memory locations are per-insn, so
2592 clear them out here. */
2594 if (secondary_memlocs_elim_used)
2596 memset (secondary_memlocs_elim, 0,
2597 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2598 secondary_memlocs_elim_used = 0;
2600 #endif
2602 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2603 is cheap to move between them. If it is not, there may not be an insn
2604 to do the copy, so we may need a reload. */
2605 if (GET_CODE (body) == SET
2606 && REG_P (SET_DEST (body))
2607 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2608 && REG_P (SET_SRC (body))
2609 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2610 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2611 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2612 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2613 return 0;
2615 extract_insn (insn);
2617 noperands = reload_n_operands = recog_data.n_operands;
2618 n_alternatives = recog_data.n_alternatives;
2620 /* Just return "no reloads" if insn has no operands with constraints. */
2621 if (noperands == 0 || n_alternatives == 0)
2622 return 0;
2624 insn_code_number = INSN_CODE (insn);
2625 this_insn_is_asm = insn_code_number < 0;
2627 memcpy (operand_mode, recog_data.operand_mode,
2628 noperands * sizeof (enum machine_mode));
2629 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2631 commutative = -1;
2633 /* If we will need to know, later, whether some pair of operands
2634 are the same, we must compare them now and save the result.
2635 Reloading the base and index registers will clobber them
2636 and afterward they will fail to match. */
2638 for (i = 0; i < noperands; i++)
2640 char *p;
2641 int c;
2643 substed_operand[i] = recog_data.operand[i];
2644 p = constraints[i];
2646 modified[i] = RELOAD_READ;
2648 /* Scan this operand's constraint to see if it is an output operand,
2649 an in-out operand, is commutative, or should match another. */
2651 while ((c = *p))
2653 p += CONSTRAINT_LEN (c, p);
2654 switch (c)
2656 case '=':
2657 modified[i] = RELOAD_WRITE;
2658 break;
2659 case '+':
2660 modified[i] = RELOAD_READ_WRITE;
2661 break;
2662 case '%':
2664 /* The last operand should not be marked commutative. */
2665 gcc_assert (i != noperands - 1);
2667 /* We currently only support one commutative pair of
2668 operands. Some existing asm code currently uses more
2669 than one pair. Previously, that would usually work,
2670 but sometimes it would crash the compiler. We
2671 continue supporting that case as well as we can by
2672 silently ignoring all but the first pair. In the
2673 future we may handle it correctly. */
2674 if (commutative < 0)
2675 commutative = i;
2676 else
2677 gcc_assert (this_insn_is_asm);
2679 break;
2680 /* Use of ISDIGIT is tempting here, but it may get expensive because
2681 of locale support we don't want. */
2682 case '0': case '1': case '2': case '3': case '4':
2683 case '5': case '6': case '7': case '8': case '9':
2685 c = strtoul (p - 1, &p, 10);
2687 operands_match[c][i]
2688 = operands_match_p (recog_data.operand[c],
2689 recog_data.operand[i]);
2691 /* An operand may not match itself. */
2692 gcc_assert (c != i);
2694 /* If C can be commuted with C+1, and C might need to match I,
2695 then C+1 might also need to match I. */
2696 if (commutative >= 0)
2698 if (c == commutative || c == commutative + 1)
2700 int other = c + (c == commutative ? 1 : -1);
2701 operands_match[other][i]
2702 = operands_match_p (recog_data.operand[other],
2703 recog_data.operand[i]);
2705 if (i == commutative || i == commutative + 1)
2707 int other = i + (i == commutative ? 1 : -1);
2708 operands_match[c][other]
2709 = operands_match_p (recog_data.operand[c],
2710 recog_data.operand[other]);
2712 /* Note that C is supposed to be less than I.
2713 No need to consider altering both C and I because in
2714 that case we would alter one into the other. */
2721 /* Examine each operand that is a memory reference or memory address
2722 and reload parts of the addresses into index registers.
2723 Also here any references to pseudo regs that didn't get hard regs
2724 but are equivalent to constants get replaced in the insn itself
2725 with those constants. Nobody will ever see them again.
2727 Finally, set up the preferred classes of each operand. */
2729 for (i = 0; i < noperands; i++)
2731 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2733 address_reloaded[i] = 0;
2734 address_operand_reloaded[i] = 0;
2735 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2736 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2737 : RELOAD_OTHER);
2738 address_type[i]
2739 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2740 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2741 : RELOAD_OTHER);
2743 if (*constraints[i] == 0)
2744 /* Ignore things like match_operator operands. */
2746 else if (constraints[i][0] == 'p'
2747 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2749 address_operand_reloaded[i]
2750 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2751 recog_data.operand[i],
2752 recog_data.operand_loc[i],
2753 i, operand_type[i], ind_levels, insn);
2755 /* If we now have a simple operand where we used to have a
2756 PLUS or MULT, re-recognize and try again. */
2757 if ((OBJECT_P (*recog_data.operand_loc[i])
2758 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2759 && (GET_CODE (recog_data.operand[i]) == MULT
2760 || GET_CODE (recog_data.operand[i]) == PLUS))
2762 INSN_CODE (insn) = -1;
2763 retval = find_reloads (insn, replace, ind_levels, live_known,
2764 reload_reg_p);
2765 return retval;
2768 recog_data.operand[i] = *recog_data.operand_loc[i];
2769 substed_operand[i] = recog_data.operand[i];
2771 /* Address operands are reloaded in their existing mode,
2772 no matter what is specified in the machine description. */
2773 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2775 else if (code == MEM)
2777 address_reloaded[i]
2778 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2779 recog_data.operand_loc[i],
2780 XEXP (recog_data.operand[i], 0),
2781 &XEXP (recog_data.operand[i], 0),
2782 i, address_type[i], ind_levels, insn);
2783 recog_data.operand[i] = *recog_data.operand_loc[i];
2784 substed_operand[i] = recog_data.operand[i];
2786 else if (code == SUBREG)
2788 rtx reg = SUBREG_REG (recog_data.operand[i]);
2789 rtx op
2790 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2791 ind_levels,
2792 set != 0
2793 && &SET_DEST (set) == recog_data.operand_loc[i],
2794 insn,
2795 &address_reloaded[i]);
2797 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2798 that didn't get a hard register, emit a USE with a REG_EQUAL
2799 note in front so that we might inherit a previous, possibly
2800 wider reload. */
2802 if (replace
2803 && MEM_P (op)
2804 && REG_P (reg)
2805 && (GET_MODE_SIZE (GET_MODE (reg))
2806 >= GET_MODE_SIZE (GET_MODE (op))))
2807 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2808 insn),
2809 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2811 substed_operand[i] = recog_data.operand[i] = op;
2813 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2814 /* We can get a PLUS as an "operand" as a result of register
2815 elimination. See eliminate_regs and gen_reload. We handle
2816 a unary operator by reloading the operand. */
2817 substed_operand[i] = recog_data.operand[i]
2818 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2819 ind_levels, 0, insn,
2820 &address_reloaded[i]);
2821 else if (code == REG)
2823 /* This is equivalent to calling find_reloads_toplev.
2824 The code is duplicated for speed.
2825 When we find a pseudo always equivalent to a constant,
2826 we replace it by the constant. We must be sure, however,
2827 that we don't try to replace it in the insn in which it
2828 is being set. */
2829 int regno = REGNO (recog_data.operand[i]);
2830 if (reg_equiv_constant[regno] != 0
2831 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2833 /* Record the existing mode so that the check if constants are
2834 allowed will work when operand_mode isn't specified. */
2836 if (operand_mode[i] == VOIDmode)
2837 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2839 substed_operand[i] = recog_data.operand[i]
2840 = reg_equiv_constant[regno];
2842 if (reg_equiv_memory_loc[regno] != 0
2843 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2844 /* We need not give a valid is_set_dest argument since the case
2845 of a constant equivalence was checked above. */
2846 substed_operand[i] = recog_data.operand[i]
2847 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2848 ind_levels, 0, insn,
2849 &address_reloaded[i]);
2851 /* If the operand is still a register (we didn't replace it with an
2852 equivalent), get the preferred class to reload it into. */
2853 code = GET_CODE (recog_data.operand[i]);
2854 preferred_class[i]
2855 = ((code == REG && REGNO (recog_data.operand[i])
2856 >= FIRST_PSEUDO_REGISTER)
2857 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2858 : NO_REGS);
2859 pref_or_nothing[i]
2860 = (code == REG
2861 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2862 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2865 /* If this is simply a copy from operand 1 to operand 0, merge the
2866 preferred classes for the operands. */
2867 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2868 && recog_data.operand[1] == SET_SRC (set))
2870 preferred_class[0] = preferred_class[1]
2871 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2872 pref_or_nothing[0] |= pref_or_nothing[1];
2873 pref_or_nothing[1] |= pref_or_nothing[0];
2876 /* Now see what we need for pseudo-regs that didn't get hard regs
2877 or got the wrong kind of hard reg. For this, we must consider
2878 all the operands together against the register constraints. */
2880 best = MAX_RECOG_OPERANDS * 2 + 600;
2882 swapped = 0;
2883 goal_alternative_swapped = 0;
2884 try_swapped:
2886 /* The constraints are made of several alternatives.
2887 Each operand's constraint looks like foo,bar,... with commas
2888 separating the alternatives. The first alternatives for all
2889 operands go together, the second alternatives go together, etc.
2891 First loop over alternatives. */
2893 for (this_alternative_number = 0;
2894 this_alternative_number < n_alternatives;
2895 this_alternative_number++)
2897 /* Loop over operands for one constraint alternative. */
2898 /* LOSERS counts those that don't fit this alternative
2899 and would require loading. */
2900 int losers = 0;
2901 /* BAD is set to 1 if it some operand can't fit this alternative
2902 even after reloading. */
2903 int bad = 0;
2904 /* REJECT is a count of how undesirable this alternative says it is
2905 if any reloading is required. If the alternative matches exactly
2906 then REJECT is ignored, but otherwise it gets this much
2907 counted against it in addition to the reloading needed. Each
2908 ? counts three times here since we want the disparaging caused by
2909 a bad register class to only count 1/3 as much. */
2910 int reject = 0;
2912 this_earlyclobber = 0;
2914 for (i = 0; i < noperands; i++)
2916 char *p = constraints[i];
2917 char *end;
2918 int len;
2919 int win = 0;
2920 int did_match = 0;
2921 /* 0 => this operand can be reloaded somehow for this alternative. */
2922 int badop = 1;
2923 /* 0 => this operand can be reloaded if the alternative allows regs. */
2924 int winreg = 0;
2925 int c;
2926 int m;
2927 rtx operand = recog_data.operand[i];
2928 int offset = 0;
2929 /* Nonzero means this is a MEM that must be reloaded into a reg
2930 regardless of what the constraint says. */
2931 int force_reload = 0;
2932 int offmemok = 0;
2933 /* Nonzero if a constant forced into memory would be OK for this
2934 operand. */
2935 int constmemok = 0;
2936 int earlyclobber = 0;
2938 /* If the predicate accepts a unary operator, it means that
2939 we need to reload the operand, but do not do this for
2940 match_operator and friends. */
2941 if (UNARY_P (operand) && *p != 0)
2942 operand = XEXP (operand, 0);
2944 /* If the operand is a SUBREG, extract
2945 the REG or MEM (or maybe even a constant) within.
2946 (Constants can occur as a result of reg_equiv_constant.) */
2948 while (GET_CODE (operand) == SUBREG)
2950 /* Offset only matters when operand is a REG and
2951 it is a hard reg. This is because it is passed
2952 to reg_fits_class_p if it is a REG and all pseudos
2953 return 0 from that function. */
2954 if (REG_P (SUBREG_REG (operand))
2955 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2957 if (!subreg_offset_representable_p
2958 (REGNO (SUBREG_REG (operand)),
2959 GET_MODE (SUBREG_REG (operand)),
2960 SUBREG_BYTE (operand),
2961 GET_MODE (operand)))
2962 force_reload = 1;
2963 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2964 GET_MODE (SUBREG_REG (operand)),
2965 SUBREG_BYTE (operand),
2966 GET_MODE (operand));
2968 operand = SUBREG_REG (operand);
2969 /* Force reload if this is a constant or PLUS or if there may
2970 be a problem accessing OPERAND in the outer mode. */
2971 if (CONSTANT_P (operand)
2972 || GET_CODE (operand) == PLUS
2973 /* We must force a reload of paradoxical SUBREGs
2974 of a MEM because the alignment of the inner value
2975 may not be enough to do the outer reference. On
2976 big-endian machines, it may also reference outside
2977 the object.
2979 On machines that extend byte operations and we have a
2980 SUBREG where both the inner and outer modes are no wider
2981 than a word and the inner mode is narrower, is integral,
2982 and gets extended when loaded from memory, combine.c has
2983 made assumptions about the behavior of the machine in such
2984 register access. If the data is, in fact, in memory we
2985 must always load using the size assumed to be in the
2986 register and let the insn do the different-sized
2987 accesses.
2989 This is doubly true if WORD_REGISTER_OPERATIONS. In
2990 this case eliminate_regs has left non-paradoxical
2991 subregs for push_reload to see. Make sure it does
2992 by forcing the reload.
2994 ??? When is it right at this stage to have a subreg
2995 of a mem that is _not_ to be handled specially? IMO
2996 those should have been reduced to just a mem. */
2997 || ((MEM_P (operand)
2998 || (REG_P (operand)
2999 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3000 #ifndef WORD_REGISTER_OPERATIONS
3001 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3002 < BIGGEST_ALIGNMENT)
3003 && (GET_MODE_SIZE (operand_mode[i])
3004 > GET_MODE_SIZE (GET_MODE (operand))))
3005 || BYTES_BIG_ENDIAN
3006 #ifdef LOAD_EXTEND_OP
3007 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3008 && (GET_MODE_SIZE (GET_MODE (operand))
3009 <= UNITS_PER_WORD)
3010 && (GET_MODE_SIZE (operand_mode[i])
3011 > GET_MODE_SIZE (GET_MODE (operand)))
3012 && INTEGRAL_MODE_P (GET_MODE (operand))
3013 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3014 #endif
3016 #endif
3019 force_reload = 1;
3022 this_alternative[i] = (int) NO_REGS;
3023 this_alternative_win[i] = 0;
3024 this_alternative_match_win[i] = 0;
3025 this_alternative_offmemok[i] = 0;
3026 this_alternative_earlyclobber[i] = 0;
3027 this_alternative_matches[i] = -1;
3029 /* An empty constraint or empty alternative
3030 allows anything which matched the pattern. */
3031 if (*p == 0 || *p == ',')
3032 win = 1, badop = 0;
3034 /* Scan this alternative's specs for this operand;
3035 set WIN if the operand fits any letter in this alternative.
3036 Otherwise, clear BADOP if this operand could
3037 fit some letter after reloads,
3038 or set WINREG if this operand could fit after reloads
3039 provided the constraint allows some registers. */
3042 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3044 case '\0':
3045 len = 0;
3046 break;
3047 case ',':
3048 c = '\0';
3049 break;
3051 case '=': case '+': case '*':
3052 break;
3054 case '%':
3055 /* We only support one commutative marker, the first
3056 one. We already set commutative above. */
3057 break;
3059 case '?':
3060 reject += 6;
3061 break;
3063 case '!':
3064 reject = 600;
3065 break;
3067 case '#':
3068 /* Ignore rest of this alternative as far as
3069 reloading is concerned. */
3071 p++;
3072 while (*p && *p != ',');
3073 len = 0;
3074 break;
3076 case '0': case '1': case '2': case '3': case '4':
3077 case '5': case '6': case '7': case '8': case '9':
3078 m = strtoul (p, &end, 10);
3079 p = end;
3080 len = 0;
3082 this_alternative_matches[i] = m;
3083 /* We are supposed to match a previous operand.
3084 If we do, we win if that one did.
3085 If we do not, count both of the operands as losers.
3086 (This is too conservative, since most of the time
3087 only a single reload insn will be needed to make
3088 the two operands win. As a result, this alternative
3089 may be rejected when it is actually desirable.) */
3090 if ((swapped && (m != commutative || i != commutative + 1))
3091 /* If we are matching as if two operands were swapped,
3092 also pretend that operands_match had been computed
3093 with swapped.
3094 But if I is the second of those and C is the first,
3095 don't exchange them, because operands_match is valid
3096 only on one side of its diagonal. */
3097 ? (operands_match
3098 [(m == commutative || m == commutative + 1)
3099 ? 2 * commutative + 1 - m : m]
3100 [(i == commutative || i == commutative + 1)
3101 ? 2 * commutative + 1 - i : i])
3102 : operands_match[m][i])
3104 /* If we are matching a non-offsettable address where an
3105 offsettable address was expected, then we must reject
3106 this combination, because we can't reload it. */
3107 if (this_alternative_offmemok[m]
3108 && MEM_P (recog_data.operand[m])
3109 && this_alternative[m] == (int) NO_REGS
3110 && ! this_alternative_win[m])
3111 bad = 1;
3113 did_match = this_alternative_win[m];
3115 else
3117 /* Operands don't match. */
3118 rtx value;
3119 int loc1, loc2;
3120 /* Retroactively mark the operand we had to match
3121 as a loser, if it wasn't already. */
3122 if (this_alternative_win[m])
3123 losers++;
3124 this_alternative_win[m] = 0;
3125 if (this_alternative[m] == (int) NO_REGS)
3126 bad = 1;
3127 /* But count the pair only once in the total badness of
3128 this alternative, if the pair can be a dummy reload.
3129 The pointers in operand_loc are not swapped; swap
3130 them by hand if necessary. */
3131 if (swapped && i == commutative)
3132 loc1 = commutative + 1;
3133 else if (swapped && i == commutative + 1)
3134 loc1 = commutative;
3135 else
3136 loc1 = i;
3137 if (swapped && m == commutative)
3138 loc2 = commutative + 1;
3139 else if (swapped && m == commutative + 1)
3140 loc2 = commutative;
3141 else
3142 loc2 = m;
3143 value
3144 = find_dummy_reload (recog_data.operand[i],
3145 recog_data.operand[m],
3146 recog_data.operand_loc[loc1],
3147 recog_data.operand_loc[loc2],
3148 operand_mode[i], operand_mode[m],
3149 this_alternative[m], -1,
3150 this_alternative_earlyclobber[m]);
3152 if (value != 0)
3153 losers--;
3155 /* This can be fixed with reloads if the operand
3156 we are supposed to match can be fixed with reloads. */
3157 badop = 0;
3158 this_alternative[i] = this_alternative[m];
3160 /* If we have to reload this operand and some previous
3161 operand also had to match the same thing as this
3162 operand, we don't know how to do that. So reject this
3163 alternative. */
3164 if (! did_match || force_reload)
3165 for (j = 0; j < i; j++)
3166 if (this_alternative_matches[j]
3167 == this_alternative_matches[i])
3168 badop = 1;
3169 break;
3171 case 'p':
3172 /* All necessary reloads for an address_operand
3173 were handled in find_reloads_address. */
3174 this_alternative[i]
3175 = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
3176 win = 1;
3177 badop = 0;
3178 break;
3180 case 'm':
3181 if (force_reload)
3182 break;
3183 if (MEM_P (operand)
3184 || (REG_P (operand)
3185 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3186 && reg_renumber[REGNO (operand)] < 0))
3187 win = 1;
3188 if (CONST_POOL_OK_P (operand))
3189 badop = 0;
3190 constmemok = 1;
3191 break;
3193 case '<':
3194 if (MEM_P (operand)
3195 && ! address_reloaded[i]
3196 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3197 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3198 win = 1;
3199 break;
3201 case '>':
3202 if (MEM_P (operand)
3203 && ! address_reloaded[i]
3204 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3205 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3206 win = 1;
3207 break;
3209 /* Memory operand whose address is not offsettable. */
3210 case 'V':
3211 if (force_reload)
3212 break;
3213 if (MEM_P (operand)
3214 && ! (ind_levels ? offsettable_memref_p (operand)
3215 : offsettable_nonstrict_memref_p (operand))
3216 /* Certain mem addresses will become offsettable
3217 after they themselves are reloaded. This is important;
3218 we don't want our own handling of unoffsettables
3219 to override the handling of reg_equiv_address. */
3220 && !(REG_P (XEXP (operand, 0))
3221 && (ind_levels == 0
3222 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3223 win = 1;
3224 break;
3226 /* Memory operand whose address is offsettable. */
3227 case 'o':
3228 if (force_reload)
3229 break;
3230 if ((MEM_P (operand)
3231 /* If IND_LEVELS, find_reloads_address won't reload a
3232 pseudo that didn't get a hard reg, so we have to
3233 reject that case. */
3234 && ((ind_levels ? offsettable_memref_p (operand)
3235 : offsettable_nonstrict_memref_p (operand))
3236 /* A reloaded address is offsettable because it is now
3237 just a simple register indirect. */
3238 || address_reloaded[i] == 1))
3239 || (REG_P (operand)
3240 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3241 && reg_renumber[REGNO (operand)] < 0
3242 /* If reg_equiv_address is nonzero, we will be
3243 loading it into a register; hence it will be
3244 offsettable, but we cannot say that reg_equiv_mem
3245 is offsettable without checking. */
3246 && ((reg_equiv_mem[REGNO (operand)] != 0
3247 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3248 || (reg_equiv_address[REGNO (operand)] != 0))))
3249 win = 1;
3250 if (CONST_POOL_OK_P (operand)
3251 || MEM_P (operand))
3252 badop = 0;
3253 constmemok = 1;
3254 offmemok = 1;
3255 break;
3257 case '&':
3258 /* Output operand that is stored before the need for the
3259 input operands (and their index registers) is over. */
3260 earlyclobber = 1, this_earlyclobber = 1;
3261 break;
3263 case 'E':
3264 case 'F':
3265 if (GET_CODE (operand) == CONST_DOUBLE
3266 || (GET_CODE (operand) == CONST_VECTOR
3267 && (GET_MODE_CLASS (GET_MODE (operand))
3268 == MODE_VECTOR_FLOAT)))
3269 win = 1;
3270 break;
3272 case 'G':
3273 case 'H':
3274 if (GET_CODE (operand) == CONST_DOUBLE
3275 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3276 win = 1;
3277 break;
3279 case 's':
3280 if (GET_CODE (operand) == CONST_INT
3281 || (GET_CODE (operand) == CONST_DOUBLE
3282 && GET_MODE (operand) == VOIDmode))
3283 break;
3284 case 'i':
3285 if (CONSTANT_P (operand)
3286 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3287 win = 1;
3288 break;
3290 case 'n':
3291 if (GET_CODE (operand) == CONST_INT
3292 || (GET_CODE (operand) == CONST_DOUBLE
3293 && GET_MODE (operand) == VOIDmode))
3294 win = 1;
3295 break;
3297 case 'I':
3298 case 'J':
3299 case 'K':
3300 case 'L':
3301 case 'M':
3302 case 'N':
3303 case 'O':
3304 case 'P':
3305 if (GET_CODE (operand) == CONST_INT
3306 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3307 win = 1;
3308 break;
3310 case 'X':
3311 force_reload = 0;
3312 win = 1;
3313 break;
3315 case 'g':
3316 if (! force_reload
3317 /* A PLUS is never a valid operand, but reload can make
3318 it from a register when eliminating registers. */
3319 && GET_CODE (operand) != PLUS
3320 /* A SCRATCH is not a valid operand. */
3321 && GET_CODE (operand) != SCRATCH
3322 && (! CONSTANT_P (operand)
3323 || ! flag_pic
3324 || LEGITIMATE_PIC_OPERAND_P (operand))
3325 && (GENERAL_REGS == ALL_REGS
3326 || !REG_P (operand)
3327 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3328 && reg_renumber[REGNO (operand)] < 0)))
3329 win = 1;
3330 /* Drop through into 'r' case. */
3332 case 'r':
3333 this_alternative[i]
3334 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3335 goto reg;
3337 default:
3338 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3340 #ifdef EXTRA_CONSTRAINT_STR
3341 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3343 if (force_reload)
3344 break;
3345 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3346 win = 1;
3347 /* If the address was already reloaded,
3348 we win as well. */
3349 else if (MEM_P (operand)
3350 && address_reloaded[i] == 1)
3351 win = 1;
3352 /* Likewise if the address will be reloaded because
3353 reg_equiv_address is nonzero. For reg_equiv_mem
3354 we have to check. */
3355 else if (REG_P (operand)
3356 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3357 && reg_renumber[REGNO (operand)] < 0
3358 && ((reg_equiv_mem[REGNO (operand)] != 0
3359 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3360 || (reg_equiv_address[REGNO (operand)] != 0)))
3361 win = 1;
3363 /* If we didn't already win, we can reload
3364 constants via force_const_mem, and other
3365 MEMs by reloading the address like for 'o'. */
3366 if (CONST_POOL_OK_P (operand)
3367 || MEM_P (operand))
3368 badop = 0;
3369 constmemok = 1;
3370 offmemok = 1;
3371 break;
3373 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3375 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3376 win = 1;
3378 /* If we didn't already win, we can reload
3379 the address into a base register. */
3380 this_alternative[i]
3381 = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
3382 badop = 0;
3383 break;
3386 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3387 win = 1;
3388 #endif
3389 break;
3392 this_alternative[i]
3393 = (int) (reg_class_subunion
3394 [this_alternative[i]]
3395 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3396 reg:
3397 if (GET_MODE (operand) == BLKmode)
3398 break;
3399 winreg = 1;
3400 if (REG_P (operand)
3401 && reg_fits_class_p (operand, this_alternative[i],
3402 offset, GET_MODE (recog_data.operand[i])))
3403 win = 1;
3404 break;
3406 while ((p += len), c);
3408 constraints[i] = p;
3410 /* If this operand could be handled with a reg,
3411 and some reg is allowed, then this operand can be handled. */
3412 if (winreg && this_alternative[i] != (int) NO_REGS)
3413 badop = 0;
3415 /* Record which operands fit this alternative. */
3416 this_alternative_earlyclobber[i] = earlyclobber;
3417 if (win && ! force_reload)
3418 this_alternative_win[i] = 1;
3419 else if (did_match && ! force_reload)
3420 this_alternative_match_win[i] = 1;
3421 else
3423 int const_to_mem = 0;
3425 this_alternative_offmemok[i] = offmemok;
3426 losers++;
3427 if (badop)
3428 bad = 1;
3429 /* Alternative loses if it has no regs for a reg operand. */
3430 if (REG_P (operand)
3431 && this_alternative[i] == (int) NO_REGS
3432 && this_alternative_matches[i] < 0)
3433 bad = 1;
3435 /* If this is a constant that is reloaded into the desired
3436 class by copying it to memory first, count that as another
3437 reload. This is consistent with other code and is
3438 required to avoid choosing another alternative when
3439 the constant is moved into memory by this function on
3440 an early reload pass. Note that the test here is
3441 precisely the same as in the code below that calls
3442 force_const_mem. */
3443 if (CONST_POOL_OK_P (operand)
3444 && ((PREFERRED_RELOAD_CLASS (operand,
3445 (enum reg_class) this_alternative[i])
3446 == NO_REGS)
3447 || no_input_reloads)
3448 && operand_mode[i] != VOIDmode)
3450 const_to_mem = 1;
3451 if (this_alternative[i] != (int) NO_REGS)
3452 losers++;
3455 /* Alternative loses if it requires a type of reload not
3456 permitted for this insn. We can always reload SCRATCH
3457 and objects with a REG_UNUSED note. */
3458 if (GET_CODE (operand) != SCRATCH
3459 && modified[i] != RELOAD_READ && no_output_reloads
3460 && ! find_reg_note (insn, REG_UNUSED, operand))
3461 bad = 1;
3462 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3463 && ! const_to_mem)
3464 bad = 1;
3466 /* If we can't reload this value at all, reject this
3467 alternative. Note that we could also lose due to
3468 LIMIT_RELOAD_CLASS, but we don't check that
3469 here. */
3471 if (! CONSTANT_P (operand)
3472 && (enum reg_class) this_alternative[i] != NO_REGS)
3474 if (PREFERRED_RELOAD_CLASS
3475 (operand, (enum reg_class) this_alternative[i])
3476 == NO_REGS)
3477 reject = 600;
3479 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
3480 if (operand_type[i] == RELOAD_FOR_OUTPUT
3481 && PREFERRED_OUTPUT_RELOAD_CLASS
3482 (operand, (enum reg_class) this_alternative[i])
3483 == NO_REGS)
3484 reject = 600;
3485 #endif
3488 /* We prefer to reload pseudos over reloading other things,
3489 since such reloads may be able to be eliminated later.
3490 If we are reloading a SCRATCH, we won't be generating any
3491 insns, just using a register, so it is also preferred.
3492 So bump REJECT in other cases. Don't do this in the
3493 case where we are forcing a constant into memory and
3494 it will then win since we don't want to have a different
3495 alternative match then. */
3496 if (! (REG_P (operand)
3497 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3498 && GET_CODE (operand) != SCRATCH
3499 && ! (const_to_mem && constmemok))
3500 reject += 2;
3502 /* Input reloads can be inherited more often than output
3503 reloads can be removed, so penalize output reloads. */
3504 if (operand_type[i] != RELOAD_FOR_INPUT
3505 && GET_CODE (operand) != SCRATCH)
3506 reject++;
3509 /* If this operand is a pseudo register that didn't get a hard
3510 reg and this alternative accepts some register, see if the
3511 class that we want is a subset of the preferred class for this
3512 register. If not, but it intersects that class, use the
3513 preferred class instead. If it does not intersect the preferred
3514 class, show that usage of this alternative should be discouraged;
3515 it will be discouraged more still if the register is `preferred
3516 or nothing'. We do this because it increases the chance of
3517 reusing our spill register in a later insn and avoiding a pair
3518 of memory stores and loads.
3520 Don't bother with this if this alternative will accept this
3521 operand.
3523 Don't do this for a multiword operand, since it is only a
3524 small win and has the risk of requiring more spill registers,
3525 which could cause a large loss.
3527 Don't do this if the preferred class has only one register
3528 because we might otherwise exhaust the class. */
3530 if (! win && ! did_match
3531 && this_alternative[i] != (int) NO_REGS
3532 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3533 && reg_class_size [(int) preferred_class[i]] > 0
3534 && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
3536 if (! reg_class_subset_p (this_alternative[i],
3537 preferred_class[i]))
3539 /* Since we don't have a way of forming the intersection,
3540 we just do something special if the preferred class
3541 is a subset of the class we have; that's the most
3542 common case anyway. */
3543 if (reg_class_subset_p (preferred_class[i],
3544 this_alternative[i]))
3545 this_alternative[i] = (int) preferred_class[i];
3546 else
3547 reject += (2 + 2 * pref_or_nothing[i]);
3552 /* Now see if any output operands that are marked "earlyclobber"
3553 in this alternative conflict with any input operands
3554 or any memory addresses. */
3556 for (i = 0; i < noperands; i++)
3557 if (this_alternative_earlyclobber[i]
3558 && (this_alternative_win[i] || this_alternative_match_win[i]))
3560 struct decomposition early_data;
3562 early_data = decompose (recog_data.operand[i]);
3564 gcc_assert (modified[i] != RELOAD_READ);
3566 if (this_alternative[i] == NO_REGS)
3568 this_alternative_earlyclobber[i] = 0;
3569 gcc_assert (this_insn_is_asm);
3570 error_for_asm (this_insn,
3571 "%<&%> constraint used with no register class");
3574 for (j = 0; j < noperands; j++)
3575 /* Is this an input operand or a memory ref? */
3576 if ((MEM_P (recog_data.operand[j])
3577 || modified[j] != RELOAD_WRITE)
3578 && j != i
3579 /* Ignore things like match_operator operands. */
3580 && *recog_data.constraints[j] != 0
3581 /* Don't count an input operand that is constrained to match
3582 the early clobber operand. */
3583 && ! (this_alternative_matches[j] == i
3584 && rtx_equal_p (recog_data.operand[i],
3585 recog_data.operand[j]))
3586 /* Is it altered by storing the earlyclobber operand? */
3587 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3588 early_data))
3590 /* If the output is in a non-empty few-regs class,
3591 it's costly to reload it, so reload the input instead. */
3592 if (SMALL_REGISTER_CLASS_P (this_alternative[i])
3593 && (REG_P (recog_data.operand[j])
3594 || GET_CODE (recog_data.operand[j]) == SUBREG))
3596 losers++;
3597 this_alternative_win[j] = 0;
3598 this_alternative_match_win[j] = 0;
3600 else
3601 break;
3603 /* If an earlyclobber operand conflicts with something,
3604 it must be reloaded, so request this and count the cost. */
3605 if (j != noperands)
3607 losers++;
3608 this_alternative_win[i] = 0;
3609 this_alternative_match_win[j] = 0;
3610 for (j = 0; j < noperands; j++)
3611 if (this_alternative_matches[j] == i
3612 && this_alternative_match_win[j])
3614 this_alternative_win[j] = 0;
3615 this_alternative_match_win[j] = 0;
3616 losers++;
3621 /* If one alternative accepts all the operands, no reload required,
3622 choose that alternative; don't consider the remaining ones. */
3623 if (losers == 0)
3625 /* Unswap these so that they are never swapped at `finish'. */
3626 if (commutative >= 0)
3628 recog_data.operand[commutative] = substed_operand[commutative];
3629 recog_data.operand[commutative + 1]
3630 = substed_operand[commutative + 1];
3632 for (i = 0; i < noperands; i++)
3634 goal_alternative_win[i] = this_alternative_win[i];
3635 goal_alternative_match_win[i] = this_alternative_match_win[i];
3636 goal_alternative[i] = this_alternative[i];
3637 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3638 goal_alternative_matches[i] = this_alternative_matches[i];
3639 goal_alternative_earlyclobber[i]
3640 = this_alternative_earlyclobber[i];
3642 goal_alternative_number = this_alternative_number;
3643 goal_alternative_swapped = swapped;
3644 goal_earlyclobber = this_earlyclobber;
3645 goto finish;
3648 /* REJECT, set by the ! and ? constraint characters and when a register
3649 would be reloaded into a non-preferred class, discourages the use of
3650 this alternative for a reload goal. REJECT is incremented by six
3651 for each ? and two for each non-preferred class. */
3652 losers = losers * 6 + reject;
3654 /* If this alternative can be made to work by reloading,
3655 and it needs less reloading than the others checked so far,
3656 record it as the chosen goal for reloading. */
3657 if (! bad && best > losers)
3659 for (i = 0; i < noperands; i++)
3661 goal_alternative[i] = this_alternative[i];
3662 goal_alternative_win[i] = this_alternative_win[i];
3663 goal_alternative_match_win[i] = this_alternative_match_win[i];
3664 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3665 goal_alternative_matches[i] = this_alternative_matches[i];
3666 goal_alternative_earlyclobber[i]
3667 = this_alternative_earlyclobber[i];
3669 goal_alternative_swapped = swapped;
3670 best = losers;
3671 goal_alternative_number = this_alternative_number;
3672 goal_earlyclobber = this_earlyclobber;
3676 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3677 then we need to try each alternative twice,
3678 the second time matching those two operands
3679 as if we had exchanged them.
3680 To do this, really exchange them in operands.
3682 If we have just tried the alternatives the second time,
3683 return operands to normal and drop through. */
3685 if (commutative >= 0)
3687 swapped = !swapped;
3688 if (swapped)
3690 enum reg_class tclass;
3691 int t;
3693 recog_data.operand[commutative] = substed_operand[commutative + 1];
3694 recog_data.operand[commutative + 1] = substed_operand[commutative];
3695 /* Swap the duplicates too. */
3696 for (i = 0; i < recog_data.n_dups; i++)
3697 if (recog_data.dup_num[i] == commutative
3698 || recog_data.dup_num[i] == commutative + 1)
3699 *recog_data.dup_loc[i]
3700 = recog_data.operand[(int) recog_data.dup_num[i]];
3702 tclass = preferred_class[commutative];
3703 preferred_class[commutative] = preferred_class[commutative + 1];
3704 preferred_class[commutative + 1] = tclass;
3706 t = pref_or_nothing[commutative];
3707 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3708 pref_or_nothing[commutative + 1] = t;
3710 t = address_reloaded[commutative];
3711 address_reloaded[commutative] = address_reloaded[commutative + 1];
3712 address_reloaded[commutative + 1] = t;
3714 memcpy (constraints, recog_data.constraints,
3715 noperands * sizeof (char *));
3716 goto try_swapped;
3718 else
3720 recog_data.operand[commutative] = substed_operand[commutative];
3721 recog_data.operand[commutative + 1]
3722 = substed_operand[commutative + 1];
3723 /* Unswap the duplicates too. */
3724 for (i = 0; i < recog_data.n_dups; i++)
3725 if (recog_data.dup_num[i] == commutative
3726 || recog_data.dup_num[i] == commutative + 1)
3727 *recog_data.dup_loc[i]
3728 = recog_data.operand[(int) recog_data.dup_num[i]];
3732 /* The operands don't meet the constraints.
3733 goal_alternative describes the alternative
3734 that we could reach by reloading the fewest operands.
3735 Reload so as to fit it. */
3737 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3739 /* No alternative works with reloads?? */
3740 if (insn_code_number >= 0)
3741 fatal_insn ("unable to generate reloads for:", insn);
3742 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3743 /* Avoid further trouble with this insn. */
3744 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3745 n_reloads = 0;
3746 return 0;
3749 /* Jump to `finish' from above if all operands are valid already.
3750 In that case, goal_alternative_win is all 1. */
3751 finish:
3753 /* Right now, for any pair of operands I and J that are required to match,
3754 with I < J,
3755 goal_alternative_matches[J] is I.
3756 Set up goal_alternative_matched as the inverse function:
3757 goal_alternative_matched[I] = J. */
3759 for (i = 0; i < noperands; i++)
3760 goal_alternative_matched[i] = -1;
3762 for (i = 0; i < noperands; i++)
3763 if (! goal_alternative_win[i]
3764 && goal_alternative_matches[i] >= 0)
3765 goal_alternative_matched[goal_alternative_matches[i]] = i;
3767 for (i = 0; i < noperands; i++)
3768 goal_alternative_win[i] |= goal_alternative_match_win[i];
3770 /* If the best alternative is with operands 1 and 2 swapped,
3771 consider them swapped before reporting the reloads. Update the
3772 operand numbers of any reloads already pushed. */
3774 if (goal_alternative_swapped)
3776 rtx tem;
3778 tem = substed_operand[commutative];
3779 substed_operand[commutative] = substed_operand[commutative + 1];
3780 substed_operand[commutative + 1] = tem;
3781 tem = recog_data.operand[commutative];
3782 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3783 recog_data.operand[commutative + 1] = tem;
3784 tem = *recog_data.operand_loc[commutative];
3785 *recog_data.operand_loc[commutative]
3786 = *recog_data.operand_loc[commutative + 1];
3787 *recog_data.operand_loc[commutative + 1] = tem;
3789 for (i = 0; i < n_reloads; i++)
3791 if (rld[i].opnum == commutative)
3792 rld[i].opnum = commutative + 1;
3793 else if (rld[i].opnum == commutative + 1)
3794 rld[i].opnum = commutative;
3798 for (i = 0; i < noperands; i++)
3800 operand_reloadnum[i] = -1;
3802 /* If this is an earlyclobber operand, we need to widen the scope.
3803 The reload must remain valid from the start of the insn being
3804 reloaded until after the operand is stored into its destination.
3805 We approximate this with RELOAD_OTHER even though we know that we
3806 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3808 One special case that is worth checking is when we have an
3809 output that is earlyclobber but isn't used past the insn (typically
3810 a SCRATCH). In this case, we only need have the reload live
3811 through the insn itself, but not for any of our input or output
3812 reloads.
3813 But we must not accidentally narrow the scope of an existing
3814 RELOAD_OTHER reload - leave these alone.
3816 In any case, anything needed to address this operand can remain
3817 however they were previously categorized. */
3819 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3820 operand_type[i]
3821 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3822 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3825 /* Any constants that aren't allowed and can't be reloaded
3826 into registers are here changed into memory references. */
3827 for (i = 0; i < noperands; i++)
3828 if (! goal_alternative_win[i]
3829 && CONST_POOL_OK_P (recog_data.operand[i])
3830 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3831 (enum reg_class) goal_alternative[i])
3832 == NO_REGS)
3833 || no_input_reloads)
3834 && operand_mode[i] != VOIDmode)
3836 substed_operand[i] = recog_data.operand[i]
3837 = find_reloads_toplev (force_const_mem (operand_mode[i],
3838 recog_data.operand[i]),
3839 i, address_type[i], ind_levels, 0, insn,
3840 NULL);
3841 if (alternative_allows_memconst (recog_data.constraints[i],
3842 goal_alternative_number))
3843 goal_alternative_win[i] = 1;
3846 /* Likewise any invalid constants appearing as operand of a PLUS
3847 that is to be reloaded. */
3848 for (i = 0; i < noperands; i++)
3849 if (! goal_alternative_win[i]
3850 && GET_CODE (recog_data.operand[i]) == PLUS
3851 && CONST_POOL_OK_P (XEXP (recog_data.operand[i], 1))
3852 && (PREFERRED_RELOAD_CLASS (XEXP (recog_data.operand[i], 1),
3853 (enum reg_class) goal_alternative[i])
3854 == NO_REGS)
3855 && operand_mode[i] != VOIDmode)
3857 rtx tem = force_const_mem (operand_mode[i],
3858 XEXP (recog_data.operand[i], 1));
3859 tem = gen_rtx_PLUS (operand_mode[i],
3860 XEXP (recog_data.operand[i], 0), tem);
3862 substed_operand[i] = recog_data.operand[i]
3863 = find_reloads_toplev (tem, i, address_type[i],
3864 ind_levels, 0, insn, NULL);
3867 /* Record the values of the earlyclobber operands for the caller. */
3868 if (goal_earlyclobber)
3869 for (i = 0; i < noperands; i++)
3870 if (goal_alternative_earlyclobber[i])
3871 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3873 /* Now record reloads for all the operands that need them. */
3874 for (i = 0; i < noperands; i++)
3875 if (! goal_alternative_win[i])
3877 /* Operands that match previous ones have already been handled. */
3878 if (goal_alternative_matches[i] >= 0)
3880 /* Handle an operand with a nonoffsettable address
3881 appearing where an offsettable address will do
3882 by reloading the address into a base register.
3884 ??? We can also do this when the operand is a register and
3885 reg_equiv_mem is not offsettable, but this is a bit tricky,
3886 so we don't bother with it. It may not be worth doing. */
3887 else if (goal_alternative_matched[i] == -1
3888 && goal_alternative_offmemok[i]
3889 && MEM_P (recog_data.operand[i]))
3891 /* If the address to be reloaded is a VOIDmode constant,
3892 use Pmode as mode of the reload register, as would have
3893 been done by find_reloads_address. */
3894 enum machine_mode address_mode;
3895 address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
3896 if (address_mode == VOIDmode)
3897 address_mode = Pmode;
3899 operand_reloadnum[i]
3900 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3901 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3902 base_reg_class (VOIDmode, MEM, SCRATCH),
3903 address_mode,
3904 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3905 rld[operand_reloadnum[i]].inc
3906 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3908 /* If this operand is an output, we will have made any
3909 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3910 now we are treating part of the operand as an input, so
3911 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3913 if (modified[i] == RELOAD_WRITE)
3915 for (j = 0; j < n_reloads; j++)
3917 if (rld[j].opnum == i)
3919 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3920 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3921 else if (rld[j].when_needed
3922 == RELOAD_FOR_OUTADDR_ADDRESS)
3923 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3928 else if (goal_alternative_matched[i] == -1)
3930 operand_reloadnum[i]
3931 = push_reload ((modified[i] != RELOAD_WRITE
3932 ? recog_data.operand[i] : 0),
3933 (modified[i] != RELOAD_READ
3934 ? recog_data.operand[i] : 0),
3935 (modified[i] != RELOAD_WRITE
3936 ? recog_data.operand_loc[i] : 0),
3937 (modified[i] != RELOAD_READ
3938 ? recog_data.operand_loc[i] : 0),
3939 (enum reg_class) goal_alternative[i],
3940 (modified[i] == RELOAD_WRITE
3941 ? VOIDmode : operand_mode[i]),
3942 (modified[i] == RELOAD_READ
3943 ? VOIDmode : operand_mode[i]),
3944 (insn_code_number < 0 ? 0
3945 : insn_data[insn_code_number].operand[i].strict_low),
3946 0, i, operand_type[i]);
3948 /* In a matching pair of operands, one must be input only
3949 and the other must be output only.
3950 Pass the input operand as IN and the other as OUT. */
3951 else if (modified[i] == RELOAD_READ
3952 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3954 operand_reloadnum[i]
3955 = push_reload (recog_data.operand[i],
3956 recog_data.operand[goal_alternative_matched[i]],
3957 recog_data.operand_loc[i],
3958 recog_data.operand_loc[goal_alternative_matched[i]],
3959 (enum reg_class) goal_alternative[i],
3960 operand_mode[i],
3961 operand_mode[goal_alternative_matched[i]],
3962 0, 0, i, RELOAD_OTHER);
3963 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3965 else if (modified[i] == RELOAD_WRITE
3966 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3968 operand_reloadnum[goal_alternative_matched[i]]
3969 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3970 recog_data.operand[i],
3971 recog_data.operand_loc[goal_alternative_matched[i]],
3972 recog_data.operand_loc[i],
3973 (enum reg_class) goal_alternative[i],
3974 operand_mode[goal_alternative_matched[i]],
3975 operand_mode[i],
3976 0, 0, i, RELOAD_OTHER);
3977 operand_reloadnum[i] = output_reloadnum;
3979 else
3981 gcc_assert (insn_code_number < 0);
3982 error_for_asm (insn, "inconsistent operand constraints "
3983 "in an %<asm%>");
3984 /* Avoid further trouble with this insn. */
3985 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3986 n_reloads = 0;
3987 return 0;
3990 else if (goal_alternative_matched[i] < 0
3991 && goal_alternative_matches[i] < 0
3992 && address_operand_reloaded[i] != 1
3993 && optimize)
3995 /* For each non-matching operand that's a MEM or a pseudo-register
3996 that didn't get a hard register, make an optional reload.
3997 This may get done even if the insn needs no reloads otherwise. */
3999 rtx operand = recog_data.operand[i];
4001 while (GET_CODE (operand) == SUBREG)
4002 operand = SUBREG_REG (operand);
4003 if ((MEM_P (operand)
4004 || (REG_P (operand)
4005 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4006 /* If this is only for an output, the optional reload would not
4007 actually cause us to use a register now, just note that
4008 something is stored here. */
4009 && ((enum reg_class) goal_alternative[i] != NO_REGS
4010 || modified[i] == RELOAD_WRITE)
4011 && ! no_input_reloads
4012 /* An optional output reload might allow to delete INSN later.
4013 We mustn't make in-out reloads on insns that are not permitted
4014 output reloads.
4015 If this is an asm, we can't delete it; we must not even call
4016 push_reload for an optional output reload in this case,
4017 because we can't be sure that the constraint allows a register,
4018 and push_reload verifies the constraints for asms. */
4019 && (modified[i] == RELOAD_READ
4020 || (! no_output_reloads && ! this_insn_is_asm)))
4021 operand_reloadnum[i]
4022 = push_reload ((modified[i] != RELOAD_WRITE
4023 ? recog_data.operand[i] : 0),
4024 (modified[i] != RELOAD_READ
4025 ? recog_data.operand[i] : 0),
4026 (modified[i] != RELOAD_WRITE
4027 ? recog_data.operand_loc[i] : 0),
4028 (modified[i] != RELOAD_READ
4029 ? recog_data.operand_loc[i] : 0),
4030 (enum reg_class) goal_alternative[i],
4031 (modified[i] == RELOAD_WRITE
4032 ? VOIDmode : operand_mode[i]),
4033 (modified[i] == RELOAD_READ
4034 ? VOIDmode : operand_mode[i]),
4035 (insn_code_number < 0 ? 0
4036 : insn_data[insn_code_number].operand[i].strict_low),
4037 1, i, operand_type[i]);
4038 /* If a memory reference remains (either as a MEM or a pseudo that
4039 did not get a hard register), yet we can't make an optional
4040 reload, check if this is actually a pseudo register reference;
4041 we then need to emit a USE and/or a CLOBBER so that reload
4042 inheritance will do the right thing. */
4043 else if (replace
4044 && (MEM_P (operand)
4045 || (REG_P (operand)
4046 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4047 && reg_renumber [REGNO (operand)] < 0)))
4049 operand = *recog_data.operand_loc[i];
4051 while (GET_CODE (operand) == SUBREG)
4052 operand = SUBREG_REG (operand);
4053 if (REG_P (operand))
4055 if (modified[i] != RELOAD_WRITE)
4056 /* We mark the USE with QImode so that we recognize
4057 it as one that can be safely deleted at the end
4058 of reload. */
4059 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4060 insn), QImode);
4061 if (modified[i] != RELOAD_READ)
4062 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
4066 else if (goal_alternative_matches[i] >= 0
4067 && goal_alternative_win[goal_alternative_matches[i]]
4068 && modified[i] == RELOAD_READ
4069 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4070 && ! no_input_reloads && ! no_output_reloads
4071 && optimize)
4073 /* Similarly, make an optional reload for a pair of matching
4074 objects that are in MEM or a pseudo that didn't get a hard reg. */
4076 rtx operand = recog_data.operand[i];
4078 while (GET_CODE (operand) == SUBREG)
4079 operand = SUBREG_REG (operand);
4080 if ((MEM_P (operand)
4081 || (REG_P (operand)
4082 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4083 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4084 != NO_REGS))
4085 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4086 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4087 recog_data.operand[i],
4088 recog_data.operand_loc[goal_alternative_matches[i]],
4089 recog_data.operand_loc[i],
4090 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4091 operand_mode[goal_alternative_matches[i]],
4092 operand_mode[i],
4093 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4096 /* Perform whatever substitutions on the operands we are supposed
4097 to make due to commutativity or replacement of registers
4098 with equivalent constants or memory slots. */
4100 for (i = 0; i < noperands; i++)
4102 /* We only do this on the last pass through reload, because it is
4103 possible for some data (like reg_equiv_address) to be changed during
4104 later passes. Moreover, we lose the opportunity to get a useful
4105 reload_{in,out}_reg when we do these replacements. */
4107 if (replace)
4109 rtx substitution = substed_operand[i];
4111 *recog_data.operand_loc[i] = substitution;
4113 /* If we're replacing an operand with a LABEL_REF, we need
4114 to make sure that there's a REG_LABEL note attached to
4115 this instruction. */
4116 if (!JUMP_P (insn)
4117 && GET_CODE (substitution) == LABEL_REF
4118 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4119 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4120 XEXP (substitution, 0),
4121 REG_NOTES (insn));
4123 else
4124 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4127 /* If this insn pattern contains any MATCH_DUP's, make sure that
4128 they will be substituted if the operands they match are substituted.
4129 Also do now any substitutions we already did on the operands.
4131 Don't do this if we aren't making replacements because we might be
4132 propagating things allocated by frame pointer elimination into places
4133 it doesn't expect. */
4135 if (insn_code_number >= 0 && replace)
4136 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4138 int opno = recog_data.dup_num[i];
4139 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4140 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4143 #if 0
4144 /* This loses because reloading of prior insns can invalidate the equivalence
4145 (or at least find_equiv_reg isn't smart enough to find it any more),
4146 causing this insn to need more reload regs than it needed before.
4147 It may be too late to make the reload regs available.
4148 Now this optimization is done safely in choose_reload_regs. */
4150 /* For each reload of a reg into some other class of reg,
4151 search for an existing equivalent reg (same value now) in the right class.
4152 We can use it as long as we don't need to change its contents. */
4153 for (i = 0; i < n_reloads; i++)
4154 if (rld[i].reg_rtx == 0
4155 && rld[i].in != 0
4156 && REG_P (rld[i].in)
4157 && rld[i].out == 0)
4159 rld[i].reg_rtx
4160 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4161 static_reload_reg_p, 0, rld[i].inmode);
4162 /* Prevent generation of insn to load the value
4163 because the one we found already has the value. */
4164 if (rld[i].reg_rtx)
4165 rld[i].in = rld[i].reg_rtx;
4167 #endif
4169 /* If we detected error and replaced asm instruction by USE, forget about the
4170 reloads. */
4171 if (GET_CODE (PATTERN (insn)) == USE
4172 && GET_CODE (XEXP (PATTERN (insn), 0)) == CONST_INT)
4173 n_reloads = 0;
4175 /* Perhaps an output reload can be combined with another
4176 to reduce needs by one. */
4177 if (!goal_earlyclobber)
4178 combine_reloads ();
4180 /* If we have a pair of reloads for parts of an address, they are reloading
4181 the same object, the operands themselves were not reloaded, and they
4182 are for two operands that are supposed to match, merge the reloads and
4183 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4185 for (i = 0; i < n_reloads; i++)
4187 int k;
4189 for (j = i + 1; j < n_reloads; j++)
4190 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4191 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4192 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4193 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4194 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4195 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4196 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4197 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4198 && rtx_equal_p (rld[i].in, rld[j].in)
4199 && (operand_reloadnum[rld[i].opnum] < 0
4200 || rld[operand_reloadnum[rld[i].opnum]].optional)
4201 && (operand_reloadnum[rld[j].opnum] < 0
4202 || rld[operand_reloadnum[rld[j].opnum]].optional)
4203 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4204 || (goal_alternative_matches[rld[j].opnum]
4205 == rld[i].opnum)))
4207 for (k = 0; k < n_replacements; k++)
4208 if (replacements[k].what == j)
4209 replacements[k].what = i;
4211 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4212 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4213 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4214 else
4215 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4216 rld[j].in = 0;
4220 /* Scan all the reloads and update their type.
4221 If a reload is for the address of an operand and we didn't reload
4222 that operand, change the type. Similarly, change the operand number
4223 of a reload when two operands match. If a reload is optional, treat it
4224 as though the operand isn't reloaded.
4226 ??? This latter case is somewhat odd because if we do the optional
4227 reload, it means the object is hanging around. Thus we need only
4228 do the address reload if the optional reload was NOT done.
4230 Change secondary reloads to be the address type of their operand, not
4231 the normal type.
4233 If an operand's reload is now RELOAD_OTHER, change any
4234 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4235 RELOAD_FOR_OTHER_ADDRESS. */
4237 for (i = 0; i < n_reloads; i++)
4239 if (rld[i].secondary_p
4240 && rld[i].when_needed == operand_type[rld[i].opnum])
4241 rld[i].when_needed = address_type[rld[i].opnum];
4243 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4244 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4245 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4246 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4247 && (operand_reloadnum[rld[i].opnum] < 0
4248 || rld[operand_reloadnum[rld[i].opnum]].optional))
4250 /* If we have a secondary reload to go along with this reload,
4251 change its type to RELOAD_FOR_OPADDR_ADDR. */
4253 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4254 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4255 && rld[i].secondary_in_reload != -1)
4257 int secondary_in_reload = rld[i].secondary_in_reload;
4259 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4261 /* If there's a tertiary reload we have to change it also. */
4262 if (secondary_in_reload > 0
4263 && rld[secondary_in_reload].secondary_in_reload != -1)
4264 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4265 = RELOAD_FOR_OPADDR_ADDR;
4268 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4269 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4270 && rld[i].secondary_out_reload != -1)
4272 int secondary_out_reload = rld[i].secondary_out_reload;
4274 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4276 /* If there's a tertiary reload we have to change it also. */
4277 if (secondary_out_reload
4278 && rld[secondary_out_reload].secondary_out_reload != -1)
4279 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4280 = RELOAD_FOR_OPADDR_ADDR;
4283 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4284 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4285 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4286 else
4287 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4290 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4291 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4292 && operand_reloadnum[rld[i].opnum] >= 0
4293 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4294 == RELOAD_OTHER))
4295 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4297 if (goal_alternative_matches[rld[i].opnum] >= 0)
4298 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4301 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4302 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4303 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4305 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4306 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4307 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4308 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4309 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4310 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4311 This is complicated by the fact that a single operand can have more
4312 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4313 choose_reload_regs without affecting code quality, and cases that
4314 actually fail are extremely rare, so it turns out to be better to fix
4315 the problem here by not generating cases that choose_reload_regs will
4316 fail for. */
4317 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4318 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4319 a single operand.
4320 We can reduce the register pressure by exploiting that a
4321 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4322 does not conflict with any of them, if it is only used for the first of
4323 the RELOAD_FOR_X_ADDRESS reloads. */
4325 int first_op_addr_num = -2;
4326 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4327 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4328 int need_change = 0;
4329 /* We use last_op_addr_reload and the contents of the above arrays
4330 first as flags - -2 means no instance encountered, -1 means exactly
4331 one instance encountered.
4332 If more than one instance has been encountered, we store the reload
4333 number of the first reload of the kind in question; reload numbers
4334 are known to be non-negative. */
4335 for (i = 0; i < noperands; i++)
4336 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4337 for (i = n_reloads - 1; i >= 0; i--)
4339 switch (rld[i].when_needed)
4341 case RELOAD_FOR_OPERAND_ADDRESS:
4342 if (++first_op_addr_num >= 0)
4344 first_op_addr_num = i;
4345 need_change = 1;
4347 break;
4348 case RELOAD_FOR_INPUT_ADDRESS:
4349 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4351 first_inpaddr_num[rld[i].opnum] = i;
4352 need_change = 1;
4354 break;
4355 case RELOAD_FOR_OUTPUT_ADDRESS:
4356 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4358 first_outpaddr_num[rld[i].opnum] = i;
4359 need_change = 1;
4361 break;
4362 default:
4363 break;
4367 if (need_change)
4369 for (i = 0; i < n_reloads; i++)
4371 int first_num;
4372 enum reload_type type;
4374 switch (rld[i].when_needed)
4376 case RELOAD_FOR_OPADDR_ADDR:
4377 first_num = first_op_addr_num;
4378 type = RELOAD_FOR_OPERAND_ADDRESS;
4379 break;
4380 case RELOAD_FOR_INPADDR_ADDRESS:
4381 first_num = first_inpaddr_num[rld[i].opnum];
4382 type = RELOAD_FOR_INPUT_ADDRESS;
4383 break;
4384 case RELOAD_FOR_OUTADDR_ADDRESS:
4385 first_num = first_outpaddr_num[rld[i].opnum];
4386 type = RELOAD_FOR_OUTPUT_ADDRESS;
4387 break;
4388 default:
4389 continue;
4391 if (first_num < 0)
4392 continue;
4393 else if (i > first_num)
4394 rld[i].when_needed = type;
4395 else
4397 /* Check if the only TYPE reload that uses reload I is
4398 reload FIRST_NUM. */
4399 for (j = n_reloads - 1; j > first_num; j--)
4401 if (rld[j].when_needed == type
4402 && (rld[i].secondary_p
4403 ? rld[j].secondary_in_reload == i
4404 : reg_mentioned_p (rld[i].in, rld[j].in)))
4406 rld[i].when_needed = type;
4407 break;
4415 /* See if we have any reloads that are now allowed to be merged
4416 because we've changed when the reload is needed to
4417 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4418 check for the most common cases. */
4420 for (i = 0; i < n_reloads; i++)
4421 if (rld[i].in != 0 && rld[i].out == 0
4422 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4423 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4424 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4425 for (j = 0; j < n_reloads; j++)
4426 if (i != j && rld[j].in != 0 && rld[j].out == 0
4427 && rld[j].when_needed == rld[i].when_needed
4428 && MATCHES (rld[i].in, rld[j].in)
4429 && rld[i].class == rld[j].class
4430 && !rld[i].nocombine && !rld[j].nocombine
4431 && rld[i].reg_rtx == rld[j].reg_rtx)
4433 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4434 transfer_replacements (i, j);
4435 rld[j].in = 0;
4438 #ifdef HAVE_cc0
4439 /* If we made any reloads for addresses, see if they violate a
4440 "no input reloads" requirement for this insn. But loads that we
4441 do after the insn (such as for output addresses) are fine. */
4442 if (no_input_reloads)
4443 for (i = 0; i < n_reloads; i++)
4444 gcc_assert (rld[i].in == 0
4445 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4446 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4447 #endif
4449 /* Compute reload_mode and reload_nregs. */
4450 for (i = 0; i < n_reloads; i++)
4452 rld[i].mode
4453 = (rld[i].inmode == VOIDmode
4454 || (GET_MODE_SIZE (rld[i].outmode)
4455 > GET_MODE_SIZE (rld[i].inmode)))
4456 ? rld[i].outmode : rld[i].inmode;
4458 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4461 /* Special case a simple move with an input reload and a
4462 destination of a hard reg, if the hard reg is ok, use it. */
4463 for (i = 0; i < n_reloads; i++)
4464 if (rld[i].when_needed == RELOAD_FOR_INPUT
4465 && GET_CODE (PATTERN (insn)) == SET
4466 && REG_P (SET_DEST (PATTERN (insn)))
4467 && SET_SRC (PATTERN (insn)) == rld[i].in)
4469 rtx dest = SET_DEST (PATTERN (insn));
4470 unsigned int regno = REGNO (dest);
4472 if (regno < FIRST_PSEUDO_REGISTER
4473 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4474 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4476 int nr = hard_regno_nregs[regno][rld[i].mode];
4477 int ok = 1, nri;
4479 for (nri = 1; nri < nr; nri ++)
4480 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4481 ok = 0;
4483 if (ok)
4484 rld[i].reg_rtx = dest;
4488 return retval;
4491 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4492 accepts a memory operand with constant address. */
4494 static int
4495 alternative_allows_memconst (const char *constraint, int altnum)
4497 int c;
4498 /* Skip alternatives before the one requested. */
4499 while (altnum > 0)
4501 while (*constraint++ != ',');
4502 altnum--;
4504 /* Scan the requested alternative for 'm' or 'o'.
4505 If one of them is present, this alternative accepts memory constants. */
4506 for (; (c = *constraint) && c != ',' && c != '#';
4507 constraint += CONSTRAINT_LEN (c, constraint))
4508 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4509 return 1;
4510 return 0;
4513 /* Scan X for memory references and scan the addresses for reloading.
4514 Also checks for references to "constant" regs that we want to eliminate
4515 and replaces them with the values they stand for.
4516 We may alter X destructively if it contains a reference to such.
4517 If X is just a constant reg, we return the equivalent value
4518 instead of X.
4520 IND_LEVELS says how many levels of indirect addressing this machine
4521 supports.
4523 OPNUM and TYPE identify the purpose of the reload.
4525 IS_SET_DEST is true if X is the destination of a SET, which is not
4526 appropriate to be replaced by a constant.
4528 INSN, if nonzero, is the insn in which we do the reload. It is used
4529 to determine if we may generate output reloads, and where to put USEs
4530 for pseudos that we have to replace with stack slots.
4532 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4533 result of find_reloads_address. */
4535 static rtx
4536 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4537 int ind_levels, int is_set_dest, rtx insn,
4538 int *address_reloaded)
4540 RTX_CODE code = GET_CODE (x);
4542 const char *fmt = GET_RTX_FORMAT (code);
4543 int i;
4544 int copied;
4546 if (code == REG)
4548 /* This code is duplicated for speed in find_reloads. */
4549 int regno = REGNO (x);
4550 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4551 x = reg_equiv_constant[regno];
4552 #if 0
4553 /* This creates (subreg (mem...)) which would cause an unnecessary
4554 reload of the mem. */
4555 else if (reg_equiv_mem[regno] != 0)
4556 x = reg_equiv_mem[regno];
4557 #endif
4558 else if (reg_equiv_memory_loc[regno]
4559 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4561 rtx mem = make_memloc (x, regno);
4562 if (reg_equiv_address[regno]
4563 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4565 /* If this is not a toplevel operand, find_reloads doesn't see
4566 this substitution. We have to emit a USE of the pseudo so
4567 that delete_output_reload can see it. */
4568 if (replace_reloads && recog_data.operand[opnum] != x)
4569 /* We mark the USE with QImode so that we recognize it
4570 as one that can be safely deleted at the end of
4571 reload. */
4572 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4573 QImode);
4574 x = mem;
4575 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4576 opnum, type, ind_levels, insn);
4577 if (!rtx_equal_p (x, mem))
4578 push_reg_equiv_alt_mem (regno, x);
4579 if (address_reloaded)
4580 *address_reloaded = i;
4583 return x;
4585 if (code == MEM)
4587 rtx tem = x;
4589 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4590 opnum, type, ind_levels, insn);
4591 if (address_reloaded)
4592 *address_reloaded = i;
4594 return tem;
4597 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4599 /* Check for SUBREG containing a REG that's equivalent to a
4600 constant. If the constant has a known value, truncate it
4601 right now. Similarly if we are extracting a single-word of a
4602 multi-word constant. If the constant is symbolic, allow it
4603 to be substituted normally. push_reload will strip the
4604 subreg later. The constant must not be VOIDmode, because we
4605 will lose the mode of the register (this should never happen
4606 because one of the cases above should handle it). */
4608 int regno = REGNO (SUBREG_REG (x));
4609 rtx tem;
4611 if (subreg_lowpart_p (x)
4612 && regno >= FIRST_PSEUDO_REGISTER
4613 && reg_renumber[regno] < 0
4614 && reg_equiv_constant[regno] != 0
4615 && (tem = gen_lowpart_common (GET_MODE (x),
4616 reg_equiv_constant[regno])) != 0)
4617 return tem;
4619 if (regno >= FIRST_PSEUDO_REGISTER
4620 && reg_renumber[regno] < 0
4621 && reg_equiv_constant[regno] != 0)
4623 tem =
4624 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4625 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4626 gcc_assert (tem);
4627 return tem;
4630 /* If the subreg contains a reg that will be converted to a mem,
4631 convert the subreg to a narrower memref now.
4632 Otherwise, we would get (subreg (mem ...) ...),
4633 which would force reload of the mem.
4635 We also need to do this if there is an equivalent MEM that is
4636 not offsettable. In that case, alter_subreg would produce an
4637 invalid address on big-endian machines.
4639 For machines that extend byte loads, we must not reload using
4640 a wider mode if we have a paradoxical SUBREG. find_reloads will
4641 force a reload in that case. So we should not do anything here. */
4643 if (regno >= FIRST_PSEUDO_REGISTER
4644 #ifdef LOAD_EXTEND_OP
4645 && (GET_MODE_SIZE (GET_MODE (x))
4646 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4647 #endif
4648 && (reg_equiv_address[regno] != 0
4649 || (reg_equiv_mem[regno] != 0
4650 && (! strict_memory_address_p (GET_MODE (x),
4651 XEXP (reg_equiv_mem[regno], 0))
4652 || ! offsettable_memref_p (reg_equiv_mem[regno])
4653 || num_not_at_initial_offset))))
4654 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4655 insn);
4658 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4660 if (fmt[i] == 'e')
4662 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4663 ind_levels, is_set_dest, insn,
4664 address_reloaded);
4665 /* If we have replaced a reg with it's equivalent memory loc -
4666 that can still be handled here e.g. if it's in a paradoxical
4667 subreg - we must make the change in a copy, rather than using
4668 a destructive change. This way, find_reloads can still elect
4669 not to do the change. */
4670 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4672 x = shallow_copy_rtx (x);
4673 copied = 1;
4675 XEXP (x, i) = new_part;
4678 return x;
4681 /* Return a mem ref for the memory equivalent of reg REGNO.
4682 This mem ref is not shared with anything. */
4684 static rtx
4685 make_memloc (rtx ad, int regno)
4687 /* We must rerun eliminate_regs, in case the elimination
4688 offsets have changed. */
4689 rtx tem
4690 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4692 /* If TEM might contain a pseudo, we must copy it to avoid
4693 modifying it when we do the substitution for the reload. */
4694 if (rtx_varies_p (tem, 0))
4695 tem = copy_rtx (tem);
4697 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4698 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4700 /* Copy the result if it's still the same as the equivalence, to avoid
4701 modifying it when we do the substitution for the reload. */
4702 if (tem == reg_equiv_memory_loc[regno])
4703 tem = copy_rtx (tem);
4704 return tem;
4707 /* Returns true if AD could be turned into a valid memory reference
4708 to mode MODE by reloading the part pointed to by PART into a
4709 register. */
4711 static int
4712 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4714 int retv;
4715 rtx tem = *part;
4716 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4718 *part = reg;
4719 retv = memory_address_p (mode, ad);
4720 *part = tem;
4722 return retv;
4725 /* Record all reloads needed for handling memory address AD
4726 which appears in *LOC in a memory reference to mode MODE
4727 which itself is found in location *MEMREFLOC.
4728 Note that we take shortcuts assuming that no multi-reg machine mode
4729 occurs as part of an address.
4731 OPNUM and TYPE specify the purpose of this reload.
4733 IND_LEVELS says how many levels of indirect addressing this machine
4734 supports.
4736 INSN, if nonzero, is the insn in which we do the reload. It is used
4737 to determine if we may generate output reloads, and where to put USEs
4738 for pseudos that we have to replace with stack slots.
4740 Value is one if this address is reloaded or replaced as a whole; it is
4741 zero if the top level of this address was not reloaded or replaced, and
4742 it is -1 if it may or may not have been reloaded or replaced.
4744 Note that there is no verification that the address will be valid after
4745 this routine does its work. Instead, we rely on the fact that the address
4746 was valid when reload started. So we need only undo things that reload
4747 could have broken. These are wrong register types, pseudos not allocated
4748 to a hard register, and frame pointer elimination. */
4750 static int
4751 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4752 rtx *loc, int opnum, enum reload_type type,
4753 int ind_levels, rtx insn)
4755 int regno;
4756 int removed_and = 0;
4757 int op_index;
4758 rtx tem;
4760 /* If the address is a register, see if it is a legitimate address and
4761 reload if not. We first handle the cases where we need not reload
4762 or where we must reload in a non-standard way. */
4764 if (REG_P (ad))
4766 regno = REGNO (ad);
4768 /* If the register is equivalent to an invariant expression, substitute
4769 the invariant, and eliminate any eliminable register references. */
4770 tem = reg_equiv_constant[regno];
4771 if (tem != 0
4772 && (tem = eliminate_regs (tem, mode, insn))
4773 && strict_memory_address_p (mode, tem))
4775 *loc = ad = tem;
4776 return 0;
4779 tem = reg_equiv_memory_loc[regno];
4780 if (tem != 0)
4782 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4784 tem = make_memloc (ad, regno);
4785 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4787 rtx orig = tem;
4789 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4790 &XEXP (tem, 0), opnum,
4791 ADDR_TYPE (type), ind_levels, insn);
4792 if (tem != orig)
4793 push_reg_equiv_alt_mem (regno, tem);
4795 /* We can avoid a reload if the register's equivalent memory
4796 expression is valid as an indirect memory address.
4797 But not all addresses are valid in a mem used as an indirect
4798 address: only reg or reg+constant. */
4800 if (ind_levels > 0
4801 && strict_memory_address_p (mode, tem)
4802 && (REG_P (XEXP (tem, 0))
4803 || (GET_CODE (XEXP (tem, 0)) == PLUS
4804 && REG_P (XEXP (XEXP (tem, 0), 0))
4805 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4807 /* TEM is not the same as what we'll be replacing the
4808 pseudo with after reload, put a USE in front of INSN
4809 in the final reload pass. */
4810 if (replace_reloads
4811 && num_not_at_initial_offset
4812 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4814 *loc = tem;
4815 /* We mark the USE with QImode so that we
4816 recognize it as one that can be safely
4817 deleted at the end of reload. */
4818 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4819 insn), QImode);
4821 /* This doesn't really count as replacing the address
4822 as a whole, since it is still a memory access. */
4824 return 0;
4826 ad = tem;
4830 /* The only remaining case where we can avoid a reload is if this is a
4831 hard register that is valid as a base register and which is not the
4832 subject of a CLOBBER in this insn. */
4834 else if (regno < FIRST_PSEUDO_REGISTER
4835 && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
4836 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4837 return 0;
4839 /* If we do not have one of the cases above, we must do the reload. */
4840 push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
4841 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4842 return 1;
4845 if (strict_memory_address_p (mode, ad))
4847 /* The address appears valid, so reloads are not needed.
4848 But the address may contain an eliminable register.
4849 This can happen because a machine with indirect addressing
4850 may consider a pseudo register by itself a valid address even when
4851 it has failed to get a hard reg.
4852 So do a tree-walk to find and eliminate all such regs. */
4854 /* But first quickly dispose of a common case. */
4855 if (GET_CODE (ad) == PLUS
4856 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4857 && REG_P (XEXP (ad, 0))
4858 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4859 return 0;
4861 subst_reg_equivs_changed = 0;
4862 *loc = subst_reg_equivs (ad, insn);
4864 if (! subst_reg_equivs_changed)
4865 return 0;
4867 /* Check result for validity after substitution. */
4868 if (strict_memory_address_p (mode, ad))
4869 return 0;
4872 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4875 if (memrefloc)
4877 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4878 ind_levels, win);
4880 break;
4881 win:
4882 *memrefloc = copy_rtx (*memrefloc);
4883 XEXP (*memrefloc, 0) = ad;
4884 move_replacements (&ad, &XEXP (*memrefloc, 0));
4885 return -1;
4887 while (0);
4888 #endif
4890 /* The address is not valid. We have to figure out why. First see if
4891 we have an outer AND and remove it if so. Then analyze what's inside. */
4893 if (GET_CODE (ad) == AND)
4895 removed_and = 1;
4896 loc = &XEXP (ad, 0);
4897 ad = *loc;
4900 /* One possibility for why the address is invalid is that it is itself
4901 a MEM. This can happen when the frame pointer is being eliminated, a
4902 pseudo is not allocated to a hard register, and the offset between the
4903 frame and stack pointers is not its initial value. In that case the
4904 pseudo will have been replaced by a MEM referring to the
4905 stack pointer. */
4906 if (MEM_P (ad))
4908 /* First ensure that the address in this MEM is valid. Then, unless
4909 indirect addresses are valid, reload the MEM into a register. */
4910 tem = ad;
4911 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4912 opnum, ADDR_TYPE (type),
4913 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4915 /* If tem was changed, then we must create a new memory reference to
4916 hold it and store it back into memrefloc. */
4917 if (tem != ad && memrefloc)
4919 *memrefloc = copy_rtx (*memrefloc);
4920 copy_replacements (tem, XEXP (*memrefloc, 0));
4921 loc = &XEXP (*memrefloc, 0);
4922 if (removed_and)
4923 loc = &XEXP (*loc, 0);
4926 /* Check similar cases as for indirect addresses as above except
4927 that we can allow pseudos and a MEM since they should have been
4928 taken care of above. */
4930 if (ind_levels == 0
4931 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4932 || MEM_P (XEXP (tem, 0))
4933 || ! (REG_P (XEXP (tem, 0))
4934 || (GET_CODE (XEXP (tem, 0)) == PLUS
4935 && REG_P (XEXP (XEXP (tem, 0), 0))
4936 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4938 /* Must use TEM here, not AD, since it is the one that will
4939 have any subexpressions reloaded, if needed. */
4940 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4941 base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
4942 VOIDmode, 0,
4943 0, opnum, type);
4944 return ! removed_and;
4946 else
4947 return 0;
4950 /* If we have address of a stack slot but it's not valid because the
4951 displacement is too large, compute the sum in a register.
4952 Handle all base registers here, not just fp/ap/sp, because on some
4953 targets (namely SH) we can also get too large displacements from
4954 big-endian corrections. */
4955 else if (GET_CODE (ad) == PLUS
4956 && REG_P (XEXP (ad, 0))
4957 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4958 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4959 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
4960 CONST_INT))
4963 /* Unshare the MEM rtx so we can safely alter it. */
4964 if (memrefloc)
4966 *memrefloc = copy_rtx (*memrefloc);
4967 loc = &XEXP (*memrefloc, 0);
4968 if (removed_and)
4969 loc = &XEXP (*loc, 0);
4972 if (double_reg_address_ok)
4974 /* Unshare the sum as well. */
4975 *loc = ad = copy_rtx (ad);
4977 /* Reload the displacement into an index reg.
4978 We assume the frame pointer or arg pointer is a base reg. */
4979 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4980 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4981 type, ind_levels);
4982 return 0;
4984 else
4986 /* If the sum of two regs is not necessarily valid,
4987 reload the sum into a base reg.
4988 That will at least work. */
4989 find_reloads_address_part (ad, loc,
4990 base_reg_class (mode, MEM, SCRATCH),
4991 Pmode, opnum, type, ind_levels);
4993 return ! removed_and;
4996 /* If we have an indexed stack slot, there are three possible reasons why
4997 it might be invalid: The index might need to be reloaded, the address
4998 might have been made by frame pointer elimination and hence have a
4999 constant out of range, or both reasons might apply.
5001 We can easily check for an index needing reload, but even if that is the
5002 case, we might also have an invalid constant. To avoid making the
5003 conservative assumption and requiring two reloads, we see if this address
5004 is valid when not interpreted strictly. If it is, the only problem is
5005 that the index needs a reload and find_reloads_address_1 will take care
5006 of it.
5008 Handle all base registers here, not just fp/ap/sp, because on some
5009 targets (namely SPARC) we can also get invalid addresses from preventive
5010 subreg big-endian corrections made by find_reloads_toplev. We
5011 can also get expressions involving LO_SUM (rather than PLUS) from
5012 find_reloads_subreg_address.
5014 If we decide to do something, it must be that `double_reg_address_ok'
5015 is true. We generate a reload of the base register + constant and
5016 rework the sum so that the reload register will be added to the index.
5017 This is safe because we know the address isn't shared.
5019 We check for the base register as both the first and second operand of
5020 the innermost PLUS and/or LO_SUM. */
5022 for (op_index = 0; op_index < 2; ++op_index)
5024 rtx operand, addend;
5025 enum rtx_code inner_code;
5027 if (GET_CODE (ad) != PLUS)
5028 continue;
5030 inner_code = GET_CODE (XEXP (ad, 0));
5031 if (!(GET_CODE (ad) == PLUS
5032 && GET_CODE (XEXP (ad, 1)) == CONST_INT
5033 && (inner_code == PLUS || inner_code == LO_SUM)))
5034 continue;
5036 operand = XEXP (XEXP (ad, 0), op_index);
5037 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5038 continue;
5040 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5042 if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
5043 GET_CODE (addend))
5044 || operand == frame_pointer_rtx
5045 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
5046 || operand == hard_frame_pointer_rtx
5047 #endif
5048 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5049 || operand == arg_pointer_rtx
5050 #endif
5051 || operand == stack_pointer_rtx)
5052 && ! maybe_memory_address_p (mode, ad,
5053 &XEXP (XEXP (ad, 0), 1 - op_index)))
5055 rtx offset_reg;
5056 enum reg_class cls;
5058 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
5060 /* Form the adjusted address. */
5061 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5062 ad = gen_rtx_PLUS (GET_MODE (ad),
5063 op_index == 0 ? offset_reg : addend,
5064 op_index == 0 ? addend : offset_reg);
5065 else
5066 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5067 op_index == 0 ? offset_reg : addend,
5068 op_index == 0 ? addend : offset_reg);
5069 *loc = ad;
5071 cls = base_reg_class (mode, MEM, GET_CODE (addend));
5072 find_reloads_address_part (XEXP (ad, op_index),
5073 &XEXP (ad, op_index), cls,
5074 GET_MODE (ad), opnum, type, ind_levels);
5075 find_reloads_address_1 (mode,
5076 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5077 GET_CODE (XEXP (ad, op_index)),
5078 &XEXP (ad, 1 - op_index), opnum,
5079 type, 0, insn);
5081 return 0;
5085 /* See if address becomes valid when an eliminable register
5086 in a sum is replaced. */
5088 tem = ad;
5089 if (GET_CODE (ad) == PLUS)
5090 tem = subst_indexed_address (ad);
5091 if (tem != ad && strict_memory_address_p (mode, tem))
5093 /* Ok, we win that way. Replace any additional eliminable
5094 registers. */
5096 subst_reg_equivs_changed = 0;
5097 tem = subst_reg_equivs (tem, insn);
5099 /* Make sure that didn't make the address invalid again. */
5101 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
5103 *loc = tem;
5104 return 0;
5108 /* If constants aren't valid addresses, reload the constant address
5109 into a register. */
5110 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
5112 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5113 Unshare it so we can safely alter it. */
5114 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5115 && CONSTANT_POOL_ADDRESS_P (ad))
5117 *memrefloc = copy_rtx (*memrefloc);
5118 loc = &XEXP (*memrefloc, 0);
5119 if (removed_and)
5120 loc = &XEXP (*loc, 0);
5123 find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
5124 Pmode, opnum, type, ind_levels);
5125 return ! removed_and;
5128 return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
5129 ind_levels, insn);
5132 /* Find all pseudo regs appearing in AD
5133 that are eliminable in favor of equivalent values
5134 and do not have hard regs; replace them by their equivalents.
5135 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5136 front of it for pseudos that we have to replace with stack slots. */
5138 static rtx
5139 subst_reg_equivs (rtx ad, rtx insn)
5141 RTX_CODE code = GET_CODE (ad);
5142 int i;
5143 const char *fmt;
5145 switch (code)
5147 case HIGH:
5148 case CONST_INT:
5149 case CONST:
5150 case CONST_DOUBLE:
5151 case CONST_VECTOR:
5152 case SYMBOL_REF:
5153 case LABEL_REF:
5154 case PC:
5155 case CC0:
5156 return ad;
5158 case REG:
5160 int regno = REGNO (ad);
5162 if (reg_equiv_constant[regno] != 0)
5164 subst_reg_equivs_changed = 1;
5165 return reg_equiv_constant[regno];
5167 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5169 rtx mem = make_memloc (ad, regno);
5170 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5172 subst_reg_equivs_changed = 1;
5173 /* We mark the USE with QImode so that we recognize it
5174 as one that can be safely deleted at the end of
5175 reload. */
5176 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5177 QImode);
5178 return mem;
5182 return ad;
5184 case PLUS:
5185 /* Quickly dispose of a common case. */
5186 if (XEXP (ad, 0) == frame_pointer_rtx
5187 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5188 return ad;
5189 break;
5191 default:
5192 break;
5195 fmt = GET_RTX_FORMAT (code);
5196 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5197 if (fmt[i] == 'e')
5198 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5199 return ad;
5202 /* Compute the sum of X and Y, making canonicalizations assumed in an
5203 address, namely: sum constant integers, surround the sum of two
5204 constants with a CONST, put the constant as the second operand, and
5205 group the constant on the outermost sum.
5207 This routine assumes both inputs are already in canonical form. */
5210 form_sum (rtx x, rtx y)
5212 rtx tem;
5213 enum machine_mode mode = GET_MODE (x);
5215 if (mode == VOIDmode)
5216 mode = GET_MODE (y);
5218 if (mode == VOIDmode)
5219 mode = Pmode;
5221 if (GET_CODE (x) == CONST_INT)
5222 return plus_constant (y, INTVAL (x));
5223 else if (GET_CODE (y) == CONST_INT)
5224 return plus_constant (x, INTVAL (y));
5225 else if (CONSTANT_P (x))
5226 tem = x, x = y, y = tem;
5228 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5229 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5231 /* Note that if the operands of Y are specified in the opposite
5232 order in the recursive calls below, infinite recursion will occur. */
5233 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5234 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5236 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5237 constant will have been placed second. */
5238 if (CONSTANT_P (x) && CONSTANT_P (y))
5240 if (GET_CODE (x) == CONST)
5241 x = XEXP (x, 0);
5242 if (GET_CODE (y) == CONST)
5243 y = XEXP (y, 0);
5245 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5248 return gen_rtx_PLUS (mode, x, y);
5251 /* If ADDR is a sum containing a pseudo register that should be
5252 replaced with a constant (from reg_equiv_constant),
5253 return the result of doing so, and also apply the associative
5254 law so that the result is more likely to be a valid address.
5255 (But it is not guaranteed to be one.)
5257 Note that at most one register is replaced, even if more are
5258 replaceable. Also, we try to put the result into a canonical form
5259 so it is more likely to be a valid address.
5261 In all other cases, return ADDR. */
5263 static rtx
5264 subst_indexed_address (rtx addr)
5266 rtx op0 = 0, op1 = 0, op2 = 0;
5267 rtx tem;
5268 int regno;
5270 if (GET_CODE (addr) == PLUS)
5272 /* Try to find a register to replace. */
5273 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5274 if (REG_P (op0)
5275 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5276 && reg_renumber[regno] < 0
5277 && reg_equiv_constant[regno] != 0)
5278 op0 = reg_equiv_constant[regno];
5279 else if (REG_P (op1)
5280 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5281 && reg_renumber[regno] < 0
5282 && reg_equiv_constant[regno] != 0)
5283 op1 = reg_equiv_constant[regno];
5284 else if (GET_CODE (op0) == PLUS
5285 && (tem = subst_indexed_address (op0)) != op0)
5286 op0 = tem;
5287 else if (GET_CODE (op1) == PLUS
5288 && (tem = subst_indexed_address (op1)) != op1)
5289 op1 = tem;
5290 else
5291 return addr;
5293 /* Pick out up to three things to add. */
5294 if (GET_CODE (op1) == PLUS)
5295 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5296 else if (GET_CODE (op0) == PLUS)
5297 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5299 /* Compute the sum. */
5300 if (op2 != 0)
5301 op1 = form_sum (op1, op2);
5302 if (op1 != 0)
5303 op0 = form_sum (op0, op1);
5305 return op0;
5307 return addr;
5310 /* Update the REG_INC notes for an insn. It updates all REG_INC
5311 notes for the instruction which refer to REGNO the to refer
5312 to the reload number.
5314 INSN is the insn for which any REG_INC notes need updating.
5316 REGNO is the register number which has been reloaded.
5318 RELOADNUM is the reload number. */
5320 static void
5321 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5322 int reloadnum ATTRIBUTE_UNUSED)
5324 #ifdef AUTO_INC_DEC
5325 rtx link;
5327 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5328 if (REG_NOTE_KIND (link) == REG_INC
5329 && (int) REGNO (XEXP (link, 0)) == regno)
5330 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5331 #endif
5334 /* Record the pseudo registers we must reload into hard registers in a
5335 subexpression of a would-be memory address, X referring to a value
5336 in mode MODE. (This function is not called if the address we find
5337 is strictly valid.)
5339 CONTEXT = 1 means we are considering regs as index regs,
5340 = 0 means we are considering them as base regs.
5341 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5342 or an autoinc code.
5343 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5344 is the code of the index part of the address. Otherwise, pass SCRATCH
5345 for this argument.
5346 OPNUM and TYPE specify the purpose of any reloads made.
5348 IND_LEVELS says how many levels of indirect addressing are
5349 supported at this point in the address.
5351 INSN, if nonzero, is the insn in which we do the reload. It is used
5352 to determine if we may generate output reloads.
5354 We return nonzero if X, as a whole, is reloaded or replaced. */
5356 /* Note that we take shortcuts assuming that no multi-reg machine mode
5357 occurs as part of an address.
5358 Also, this is not fully machine-customizable; it works for machines
5359 such as VAXen and 68000's and 32000's, but other possible machines
5360 could have addressing modes that this does not handle right.
5361 If you add push_reload calls here, you need to make sure gen_reload
5362 handles those cases gracefully. */
5364 static int
5365 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5366 enum rtx_code outer_code, enum rtx_code index_code,
5367 rtx *loc, int opnum, enum reload_type type,
5368 int ind_levels, rtx insn)
5370 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX) \
5371 ((CONTEXT) == 0 \
5372 ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX) \
5373 : REGNO_OK_FOR_INDEX_P (REGNO))
5375 enum reg_class context_reg_class;
5376 RTX_CODE code = GET_CODE (x);
5378 if (context == 1)
5379 context_reg_class = INDEX_REG_CLASS;
5380 else
5381 context_reg_class = base_reg_class (mode, outer_code, index_code);
5383 switch (code)
5385 case PLUS:
5387 rtx orig_op0 = XEXP (x, 0);
5388 rtx orig_op1 = XEXP (x, 1);
5389 RTX_CODE code0 = GET_CODE (orig_op0);
5390 RTX_CODE code1 = GET_CODE (orig_op1);
5391 rtx op0 = orig_op0;
5392 rtx op1 = orig_op1;
5394 if (GET_CODE (op0) == SUBREG)
5396 op0 = SUBREG_REG (op0);
5397 code0 = GET_CODE (op0);
5398 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5399 op0 = gen_rtx_REG (word_mode,
5400 (REGNO (op0) +
5401 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5402 GET_MODE (SUBREG_REG (orig_op0)),
5403 SUBREG_BYTE (orig_op0),
5404 GET_MODE (orig_op0))));
5407 if (GET_CODE (op1) == SUBREG)
5409 op1 = SUBREG_REG (op1);
5410 code1 = GET_CODE (op1);
5411 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5412 /* ??? Why is this given op1's mode and above for
5413 ??? op0 SUBREGs we use word_mode? */
5414 op1 = gen_rtx_REG (GET_MODE (op1),
5415 (REGNO (op1) +
5416 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5417 GET_MODE (SUBREG_REG (orig_op1)),
5418 SUBREG_BYTE (orig_op1),
5419 GET_MODE (orig_op1))));
5421 /* Plus in the index register may be created only as a result of
5422 register rematerialization for expression like &localvar*4. Reload it.
5423 It may be possible to combine the displacement on the outer level,
5424 but it is probably not worthwhile to do so. */
5425 if (context == 1)
5427 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5428 opnum, ADDR_TYPE (type), ind_levels, insn);
5429 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5430 context_reg_class,
5431 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5432 return 1;
5435 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5436 || code0 == ZERO_EXTEND || code1 == MEM)
5438 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5439 &XEXP (x, 0), opnum, type, ind_levels,
5440 insn);
5441 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5442 &XEXP (x, 1), opnum, type, ind_levels,
5443 insn);
5446 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5447 || code1 == ZERO_EXTEND || code0 == MEM)
5449 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5450 &XEXP (x, 0), opnum, type, ind_levels,
5451 insn);
5452 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5453 &XEXP (x, 1), opnum, type, ind_levels,
5454 insn);
5457 else if (code0 == CONST_INT || code0 == CONST
5458 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5459 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5460 &XEXP (x, 1), opnum, type, ind_levels,
5461 insn);
5463 else if (code1 == CONST_INT || code1 == CONST
5464 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5465 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5466 &XEXP (x, 0), opnum, type, ind_levels,
5467 insn);
5469 else if (code0 == REG && code1 == REG)
5471 if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5472 && regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5473 return 0;
5474 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5475 && regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5476 return 0;
5477 else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5478 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5479 &XEXP (x, 0), opnum, type, ind_levels,
5480 insn);
5481 else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5482 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5483 &XEXP (x, 1), opnum, type, ind_levels,
5484 insn);
5485 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5486 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5487 &XEXP (x, 0), opnum, type, ind_levels,
5488 insn);
5489 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5490 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5491 &XEXP (x, 1), opnum, type, ind_levels,
5492 insn);
5493 else
5495 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5496 &XEXP (x, 0), opnum, type, ind_levels,
5497 insn);
5498 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5499 &XEXP (x, 1), opnum, type, ind_levels,
5500 insn);
5504 else if (code0 == REG)
5506 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5507 &XEXP (x, 0), opnum, type, ind_levels,
5508 insn);
5509 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5510 &XEXP (x, 1), opnum, type, ind_levels,
5511 insn);
5514 else if (code1 == REG)
5516 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5517 &XEXP (x, 1), opnum, type, ind_levels,
5518 insn);
5519 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5520 &XEXP (x, 0), opnum, type, ind_levels,
5521 insn);
5525 return 0;
5527 case POST_MODIFY:
5528 case PRE_MODIFY:
5530 rtx op0 = XEXP (x, 0);
5531 rtx op1 = XEXP (x, 1);
5532 enum rtx_code index_code;
5533 int regno;
5534 int reloadnum;
5536 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5537 return 0;
5539 /* Currently, we only support {PRE,POST}_MODIFY constructs
5540 where a base register is {inc,dec}remented by the contents
5541 of another register or by a constant value. Thus, these
5542 operands must match. */
5543 gcc_assert (op0 == XEXP (op1, 0));
5545 /* Require index register (or constant). Let's just handle the
5546 register case in the meantime... If the target allows
5547 auto-modify by a constant then we could try replacing a pseudo
5548 register with its equivalent constant where applicable.
5550 If we later decide to reload the whole PRE_MODIFY or
5551 POST_MODIFY, inc_for_reload might clobber the reload register
5552 before reading the index. The index register might therefore
5553 need to live longer than a TYPE reload normally would, so be
5554 conservative and class it as RELOAD_OTHER. */
5555 if (REG_P (XEXP (op1, 1)))
5556 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5557 find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
5558 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5559 ind_levels, insn);
5561 gcc_assert (REG_P (XEXP (op1, 0)));
5563 regno = REGNO (XEXP (op1, 0));
5564 index_code = GET_CODE (XEXP (op1, 1));
5566 /* A register that is incremented cannot be constant! */
5567 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5568 || reg_equiv_constant[regno] == 0);
5570 /* Handle a register that is equivalent to a memory location
5571 which cannot be addressed directly. */
5572 if (reg_equiv_memory_loc[regno] != 0
5573 && (reg_equiv_address[regno] != 0
5574 || num_not_at_initial_offset))
5576 rtx tem = make_memloc (XEXP (x, 0), regno);
5578 if (reg_equiv_address[regno]
5579 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5581 rtx orig = tem;
5583 /* First reload the memory location's address.
5584 We can't use ADDR_TYPE (type) here, because we need to
5585 write back the value after reading it, hence we actually
5586 need two registers. */
5587 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5588 &XEXP (tem, 0), opnum,
5589 RELOAD_OTHER,
5590 ind_levels, insn);
5592 if (tem != orig)
5593 push_reg_equiv_alt_mem (regno, tem);
5595 /* Then reload the memory location into a base
5596 register. */
5597 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5598 &XEXP (op1, 0),
5599 base_reg_class (mode, code,
5600 index_code),
5601 GET_MODE (x), GET_MODE (x), 0,
5602 0, opnum, RELOAD_OTHER);
5604 update_auto_inc_notes (this_insn, regno, reloadnum);
5605 return 0;
5609 if (reg_renumber[regno] >= 0)
5610 regno = reg_renumber[regno];
5612 /* We require a base register here... */
5613 if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
5615 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5616 &XEXP (op1, 0), &XEXP (x, 0),
5617 base_reg_class (mode, code, index_code),
5618 GET_MODE (x), GET_MODE (x), 0, 0,
5619 opnum, RELOAD_OTHER);
5621 update_auto_inc_notes (this_insn, regno, reloadnum);
5622 return 0;
5625 return 0;
5627 case POST_INC:
5628 case POST_DEC:
5629 case PRE_INC:
5630 case PRE_DEC:
5631 if (REG_P (XEXP (x, 0)))
5633 int regno = REGNO (XEXP (x, 0));
5634 int value = 0;
5635 rtx x_orig = x;
5637 /* A register that is incremented cannot be constant! */
5638 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5639 || reg_equiv_constant[regno] == 0);
5641 /* Handle a register that is equivalent to a memory location
5642 which cannot be addressed directly. */
5643 if (reg_equiv_memory_loc[regno] != 0
5644 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5646 rtx tem = make_memloc (XEXP (x, 0), regno);
5647 if (reg_equiv_address[regno]
5648 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5650 rtx orig = tem;
5652 /* First reload the memory location's address.
5653 We can't use ADDR_TYPE (type) here, because we need to
5654 write back the value after reading it, hence we actually
5655 need two registers. */
5656 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5657 &XEXP (tem, 0), opnum, type,
5658 ind_levels, insn);
5659 if (tem != orig)
5660 push_reg_equiv_alt_mem (regno, tem);
5661 /* Put this inside a new increment-expression. */
5662 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5663 /* Proceed to reload that, as if it contained a register. */
5667 /* If we have a hard register that is ok as an index,
5668 don't make a reload. If an autoincrement of a nice register
5669 isn't "valid", it must be that no autoincrement is "valid".
5670 If that is true and something made an autoincrement anyway,
5671 this must be a special context where one is allowed.
5672 (For example, a "push" instruction.)
5673 We can't improve this address, so leave it alone. */
5675 /* Otherwise, reload the autoincrement into a suitable hard reg
5676 and record how much to increment by. */
5678 if (reg_renumber[regno] >= 0)
5679 regno = reg_renumber[regno];
5680 if (regno >= FIRST_PSEUDO_REGISTER
5681 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5682 index_code))
5684 int reloadnum;
5686 /* If we can output the register afterwards, do so, this
5687 saves the extra update.
5688 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5689 CALL_INSN - and it does not set CC0.
5690 But don't do this if we cannot directly address the
5691 memory location, since this will make it harder to
5692 reuse address reloads, and increases register pressure.
5693 Also don't do this if we can probably update x directly. */
5694 rtx equiv = (MEM_P (XEXP (x, 0))
5695 ? XEXP (x, 0)
5696 : reg_equiv_mem[regno]);
5697 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5698 if (insn && NONJUMP_INSN_P (insn) && equiv
5699 && memory_operand (equiv, GET_MODE (equiv))
5700 #ifdef HAVE_cc0
5701 && ! sets_cc0_p (PATTERN (insn))
5702 #endif
5703 && ! (icode != CODE_FOR_nothing
5704 && ((*insn_data[icode].operand[0].predicate)
5705 (equiv, Pmode))
5706 && ((*insn_data[icode].operand[1].predicate)
5707 (equiv, Pmode))))
5709 /* We use the original pseudo for loc, so that
5710 emit_reload_insns() knows which pseudo this
5711 reload refers to and updates the pseudo rtx, not
5712 its equivalent memory location, as well as the
5713 corresponding entry in reg_last_reload_reg. */
5714 loc = &XEXP (x_orig, 0);
5715 x = XEXP (x, 0);
5716 reloadnum
5717 = push_reload (x, x, loc, loc,
5718 context_reg_class,
5719 GET_MODE (x), GET_MODE (x), 0, 0,
5720 opnum, RELOAD_OTHER);
5722 else
5724 reloadnum
5725 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5726 context_reg_class,
5727 GET_MODE (x), GET_MODE (x), 0, 0,
5728 opnum, type);
5729 rld[reloadnum].inc
5730 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5732 value = 1;
5735 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5736 reloadnum);
5738 return value;
5741 else if (MEM_P (XEXP (x, 0)))
5743 /* This is probably the result of a substitution, by eliminate_regs,
5744 of an equivalent address for a pseudo that was not allocated to a
5745 hard register. Verify that the specified address is valid and
5746 reload it into a register. */
5747 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5748 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5749 rtx link;
5750 int reloadnum;
5752 /* Since we know we are going to reload this item, don't decrement
5753 for the indirection level.
5755 Note that this is actually conservative: it would be slightly
5756 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5757 reload1.c here. */
5758 /* We can't use ADDR_TYPE (type) here, because we need to
5759 write back the value after reading it, hence we actually
5760 need two registers. */
5761 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5762 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5763 opnum, type, ind_levels, insn);
5765 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5766 context_reg_class,
5767 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5768 rld[reloadnum].inc
5769 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5771 link = FIND_REG_INC_NOTE (this_insn, tem);
5772 if (link != 0)
5773 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5775 return 1;
5777 return 0;
5779 case TRUNCATE:
5780 case SIGN_EXTEND:
5781 case ZERO_EXTEND:
5782 /* Look for parts to reload in the inner expression and reload them
5783 too, in addition to this operation. Reloading all inner parts in
5784 addition to this one shouldn't be necessary, but at this point,
5785 we don't know if we can possibly omit any part that *can* be
5786 reloaded. Targets that are better off reloading just either part
5787 (or perhaps even a different part of an outer expression), should
5788 define LEGITIMIZE_RELOAD_ADDRESS. */
5789 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
5790 context, code, SCRATCH, &XEXP (x, 0), opnum,
5791 type, ind_levels, insn);
5792 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5793 context_reg_class,
5794 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5795 return 1;
5797 case MEM:
5798 /* This is probably the result of a substitution, by eliminate_regs, of
5799 an equivalent address for a pseudo that was not allocated to a hard
5800 register. Verify that the specified address is valid and reload it
5801 into a register.
5803 Since we know we are going to reload this item, don't decrement for
5804 the indirection level.
5806 Note that this is actually conservative: it would be slightly more
5807 efficient to use the value of SPILL_INDIRECT_LEVELS from
5808 reload1.c here. */
5810 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5811 opnum, ADDR_TYPE (type), ind_levels, insn);
5812 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5813 context_reg_class,
5814 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5815 return 1;
5817 case REG:
5819 int regno = REGNO (x);
5821 if (reg_equiv_constant[regno] != 0)
5823 find_reloads_address_part (reg_equiv_constant[regno], loc,
5824 context_reg_class,
5825 GET_MODE (x), opnum, type, ind_levels);
5826 return 1;
5829 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5830 that feeds this insn. */
5831 if (reg_equiv_mem[regno] != 0)
5833 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5834 context_reg_class,
5835 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5836 return 1;
5838 #endif
5840 if (reg_equiv_memory_loc[regno]
5841 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5843 rtx tem = make_memloc (x, regno);
5844 if (reg_equiv_address[regno] != 0
5845 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5847 x = tem;
5848 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5849 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5850 ind_levels, insn);
5851 if (x != tem)
5852 push_reg_equiv_alt_mem (regno, x);
5856 if (reg_renumber[regno] >= 0)
5857 regno = reg_renumber[regno];
5859 if (regno >= FIRST_PSEUDO_REGISTER
5860 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5861 index_code))
5863 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5864 context_reg_class,
5865 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5866 return 1;
5869 /* If a register appearing in an address is the subject of a CLOBBER
5870 in this insn, reload it into some other register to be safe.
5871 The CLOBBER is supposed to make the register unavailable
5872 from before this insn to after it. */
5873 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5875 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5876 context_reg_class,
5877 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5878 return 1;
5881 return 0;
5883 case SUBREG:
5884 if (REG_P (SUBREG_REG (x)))
5886 /* If this is a SUBREG of a hard register and the resulting register
5887 is of the wrong class, reload the whole SUBREG. This avoids
5888 needless copies if SUBREG_REG is multi-word. */
5889 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5891 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5893 if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5894 index_code))
5896 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5897 context_reg_class,
5898 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5899 return 1;
5902 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5903 is larger than the class size, then reload the whole SUBREG. */
5904 else
5906 enum reg_class class = context_reg_class;
5907 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5908 > reg_class_size[class])
5910 x = find_reloads_subreg_address (x, 0, opnum,
5911 ADDR_TYPE (type),
5912 ind_levels, insn);
5913 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5914 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5915 return 1;
5919 break;
5921 default:
5922 break;
5926 const char *fmt = GET_RTX_FORMAT (code);
5927 int i;
5929 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5931 if (fmt[i] == 'e')
5932 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
5933 we get here. */
5934 find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
5935 &XEXP (x, i), opnum, type, ind_levels, insn);
5939 #undef REG_OK_FOR_CONTEXT
5940 return 0;
5943 /* X, which is found at *LOC, is a part of an address that needs to be
5944 reloaded into a register of class CLASS. If X is a constant, or if
5945 X is a PLUS that contains a constant, check that the constant is a
5946 legitimate operand and that we are supposed to be able to load
5947 it into the register.
5949 If not, force the constant into memory and reload the MEM instead.
5951 MODE is the mode to use, in case X is an integer constant.
5953 OPNUM and TYPE describe the purpose of any reloads made.
5955 IND_LEVELS says how many levels of indirect addressing this machine
5956 supports. */
5958 static void
5959 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5960 enum machine_mode mode, int opnum,
5961 enum reload_type type, int ind_levels)
5963 if (CONSTANT_P (x)
5964 && (! LEGITIMATE_CONSTANT_P (x)
5965 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5967 rtx tem;
5969 tem = x = force_const_mem (mode, x);
5970 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5971 opnum, type, ind_levels, 0);
5974 else if (GET_CODE (x) == PLUS
5975 && CONSTANT_P (XEXP (x, 1))
5976 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5977 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5979 rtx tem;
5981 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5982 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5983 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5984 opnum, type, ind_levels, 0);
5987 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5988 mode, VOIDmode, 0, 0, opnum, type);
5991 /* X, a subreg of a pseudo, is a part of an address that needs to be
5992 reloaded.
5994 If the pseudo is equivalent to a memory location that cannot be directly
5995 addressed, make the necessary address reloads.
5997 If address reloads have been necessary, or if the address is changed
5998 by register elimination, return the rtx of the memory location;
5999 otherwise, return X.
6001 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
6002 memory location.
6004 OPNUM and TYPE identify the purpose of the reload.
6006 IND_LEVELS says how many levels of indirect addressing are
6007 supported at this point in the address.
6009 INSN, if nonzero, is the insn in which we do the reload. It is used
6010 to determine where to put USEs for pseudos that we have to replace with
6011 stack slots. */
6013 static rtx
6014 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
6015 enum reload_type type, int ind_levels, rtx insn)
6017 int regno = REGNO (SUBREG_REG (x));
6019 if (reg_equiv_memory_loc[regno])
6021 /* If the address is not directly addressable, or if the address is not
6022 offsettable, then it must be replaced. */
6023 if (! force_replace
6024 && (reg_equiv_address[regno]
6025 || ! offsettable_memref_p (reg_equiv_mem[regno])))
6026 force_replace = 1;
6028 if (force_replace || num_not_at_initial_offset)
6030 rtx tem = make_memloc (SUBREG_REG (x), regno);
6032 /* If the address changes because of register elimination, then
6033 it must be replaced. */
6034 if (force_replace
6035 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
6037 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
6038 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
6039 int offset;
6040 rtx orig = tem;
6041 enum machine_mode orig_mode = GET_MODE (orig);
6042 int reloaded;
6044 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6045 hold the correct (negative) byte offset. */
6046 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
6047 offset = inner_size - outer_size;
6048 else
6049 offset = SUBREG_BYTE (x);
6051 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
6052 PUT_MODE (tem, GET_MODE (x));
6054 /* If this was a paradoxical subreg that we replaced, the
6055 resulting memory must be sufficiently aligned to allow
6056 us to widen the mode of the memory. */
6057 if (outer_size > inner_size)
6059 rtx base;
6061 base = XEXP (tem, 0);
6062 if (GET_CODE (base) == PLUS)
6064 if (GET_CODE (XEXP (base, 1)) == CONST_INT
6065 && INTVAL (XEXP (base, 1)) % outer_size != 0)
6066 return x;
6067 base = XEXP (base, 0);
6069 if (!REG_P (base)
6070 || (REGNO_POINTER_ALIGN (REGNO (base))
6071 < outer_size * BITS_PER_UNIT))
6072 return x;
6075 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6076 XEXP (tem, 0), &XEXP (tem, 0),
6077 opnum, type, ind_levels, insn);
6078 /* ??? Do we need to handle nonzero offsets somehow? */
6079 if (!offset && tem != orig)
6080 push_reg_equiv_alt_mem (regno, tem);
6082 /* For some processors an address may be valid in the
6083 original mode but not in a smaller mode. For
6084 example, ARM accepts a scaled index register in
6085 SImode but not in HImode. find_reloads_address
6086 assumes that we pass it a valid address, and doesn't
6087 force a reload. This will probably be fine if
6088 find_reloads_address finds some reloads. But if it
6089 doesn't find any, then we may have just converted a
6090 valid address into an invalid one. Check for that
6091 here. */
6092 if (reloaded != 1
6093 && strict_memory_address_p (orig_mode, XEXP (tem, 0))
6094 && !strict_memory_address_p (GET_MODE (tem),
6095 XEXP (tem, 0)))
6096 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6097 base_reg_class (GET_MODE (tem), MEM, SCRATCH),
6098 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
6099 opnum, type);
6101 /* If this is not a toplevel operand, find_reloads doesn't see
6102 this substitution. We have to emit a USE of the pseudo so
6103 that delete_output_reload can see it. */
6104 if (replace_reloads && recog_data.operand[opnum] != x)
6105 /* We mark the USE with QImode so that we recognize it
6106 as one that can be safely deleted at the end of
6107 reload. */
6108 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6109 SUBREG_REG (x)),
6110 insn), QImode);
6111 x = tem;
6115 return x;
6118 /* Substitute into the current INSN the registers into which we have reloaded
6119 the things that need reloading. The array `replacements'
6120 contains the locations of all pointers that must be changed
6121 and says what to replace them with.
6123 Return the rtx that X translates into; usually X, but modified. */
6125 void
6126 subst_reloads (rtx insn)
6128 int i;
6130 for (i = 0; i < n_replacements; i++)
6132 struct replacement *r = &replacements[i];
6133 rtx reloadreg = rld[r->what].reg_rtx;
6134 if (reloadreg)
6136 #ifdef ENABLE_CHECKING
6137 /* Internal consistency test. Check that we don't modify
6138 anything in the equivalence arrays. Whenever something from
6139 those arrays needs to be reloaded, it must be unshared before
6140 being substituted into; the equivalence must not be modified.
6141 Otherwise, if the equivalence is used after that, it will
6142 have been modified, and the thing substituted (probably a
6143 register) is likely overwritten and not a usable equivalence. */
6144 int check_regno;
6146 for (check_regno = 0; check_regno < max_regno; check_regno++)
6148 #define CHECK_MODF(ARRAY) \
6149 gcc_assert (!ARRAY[check_regno] \
6150 || !loc_mentioned_in_p (r->where, \
6151 ARRAY[check_regno]))
6153 CHECK_MODF (reg_equiv_constant);
6154 CHECK_MODF (reg_equiv_memory_loc);
6155 CHECK_MODF (reg_equiv_address);
6156 CHECK_MODF (reg_equiv_mem);
6157 #undef CHECK_MODF
6159 #endif /* ENABLE_CHECKING */
6161 /* If we're replacing a LABEL_REF jump target with a register,
6162 add a REG_LABEL note to indicate to flow which label this
6163 register refers to. */
6164 if (GET_CODE (*r->where) == LABEL_REF
6165 && JUMP_P (insn)
6166 && JUMP_LABEL (insn) == XEXP (*r->where, 0)
6167 && !find_reg_note (insn, REG_LABEL, XEXP (*r->where, 0)))
6168 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
6169 XEXP (*r->where, 0),
6170 REG_NOTES (insn));
6172 /* Encapsulate RELOADREG so its machine mode matches what
6173 used to be there. Note that gen_lowpart_common will
6174 do the wrong thing if RELOADREG is multi-word. RELOADREG
6175 will always be a REG here. */
6176 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6177 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6179 /* If we are putting this into a SUBREG and RELOADREG is a
6180 SUBREG, we would be making nested SUBREGs, so we have to fix
6181 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6183 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6185 if (GET_MODE (*r->subreg_loc)
6186 == GET_MODE (SUBREG_REG (reloadreg)))
6187 *r->subreg_loc = SUBREG_REG (reloadreg);
6188 else
6190 int final_offset =
6191 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6193 /* When working with SUBREGs the rule is that the byte
6194 offset must be a multiple of the SUBREG's mode. */
6195 final_offset = (final_offset /
6196 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6197 final_offset = (final_offset *
6198 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6200 *r->where = SUBREG_REG (reloadreg);
6201 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6204 else
6205 *r->where = reloadreg;
6207 /* If reload got no reg and isn't optional, something's wrong. */
6208 else
6209 gcc_assert (rld[r->what].optional);
6213 /* Make a copy of any replacements being done into X and move those
6214 copies to locations in Y, a copy of X. */
6216 void
6217 copy_replacements (rtx x, rtx y)
6219 /* We can't support X being a SUBREG because we might then need to know its
6220 location if something inside it was replaced. */
6221 gcc_assert (GET_CODE (x) != SUBREG);
6223 copy_replacements_1 (&x, &y, n_replacements);
6226 static void
6227 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6229 int i, j;
6230 rtx x, y;
6231 struct replacement *r;
6232 enum rtx_code code;
6233 const char *fmt;
6235 for (j = 0; j < orig_replacements; j++)
6237 if (replacements[j].subreg_loc == px)
6239 r = &replacements[n_replacements++];
6240 r->where = replacements[j].where;
6241 r->subreg_loc = py;
6242 r->what = replacements[j].what;
6243 r->mode = replacements[j].mode;
6245 else if (replacements[j].where == px)
6247 r = &replacements[n_replacements++];
6248 r->where = py;
6249 r->subreg_loc = 0;
6250 r->what = replacements[j].what;
6251 r->mode = replacements[j].mode;
6255 x = *px;
6256 y = *py;
6257 code = GET_CODE (x);
6258 fmt = GET_RTX_FORMAT (code);
6260 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6262 if (fmt[i] == 'e')
6263 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6264 else if (fmt[i] == 'E')
6265 for (j = XVECLEN (x, i); --j >= 0; )
6266 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6267 orig_replacements);
6271 /* Change any replacements being done to *X to be done to *Y. */
6273 void
6274 move_replacements (rtx *x, rtx *y)
6276 int i;
6278 for (i = 0; i < n_replacements; i++)
6279 if (replacements[i].subreg_loc == x)
6280 replacements[i].subreg_loc = y;
6281 else if (replacements[i].where == x)
6283 replacements[i].where = y;
6284 replacements[i].subreg_loc = 0;
6288 /* If LOC was scheduled to be replaced by something, return the replacement.
6289 Otherwise, return *LOC. */
6292 find_replacement (rtx *loc)
6294 struct replacement *r;
6296 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6298 rtx reloadreg = rld[r->what].reg_rtx;
6300 if (reloadreg && r->where == loc)
6302 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6303 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6305 return reloadreg;
6307 else if (reloadreg && r->subreg_loc == loc)
6309 /* RELOADREG must be either a REG or a SUBREG.
6311 ??? Is it actually still ever a SUBREG? If so, why? */
6313 if (REG_P (reloadreg))
6314 return gen_rtx_REG (GET_MODE (*loc),
6315 (REGNO (reloadreg) +
6316 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6317 GET_MODE (SUBREG_REG (*loc)),
6318 SUBREG_BYTE (*loc),
6319 GET_MODE (*loc))));
6320 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6321 return reloadreg;
6322 else
6324 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6326 /* When working with SUBREGs the rule is that the byte
6327 offset must be a multiple of the SUBREG's mode. */
6328 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6329 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6330 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6331 final_offset);
6336 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6337 what's inside and make a new rtl if so. */
6338 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6339 || GET_CODE (*loc) == MULT)
6341 rtx x = find_replacement (&XEXP (*loc, 0));
6342 rtx y = find_replacement (&XEXP (*loc, 1));
6344 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6345 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6348 return *loc;
6351 /* Return nonzero if register in range [REGNO, ENDREGNO)
6352 appears either explicitly or implicitly in X
6353 other than being stored into (except for earlyclobber operands).
6355 References contained within the substructure at LOC do not count.
6356 LOC may be zero, meaning don't ignore anything.
6358 This is similar to refers_to_regno_p in rtlanal.c except that we
6359 look at equivalences for pseudos that didn't get hard registers. */
6361 static int
6362 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6363 rtx x, rtx *loc)
6365 int i;
6366 unsigned int r;
6367 RTX_CODE code;
6368 const char *fmt;
6370 if (x == 0)
6371 return 0;
6373 repeat:
6374 code = GET_CODE (x);
6376 switch (code)
6378 case REG:
6379 r = REGNO (x);
6381 /* If this is a pseudo, a hard register must not have been allocated.
6382 X must therefore either be a constant or be in memory. */
6383 if (r >= FIRST_PSEUDO_REGISTER)
6385 if (reg_equiv_memory_loc[r])
6386 return refers_to_regno_for_reload_p (regno, endregno,
6387 reg_equiv_memory_loc[r],
6388 (rtx*) 0);
6390 gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
6391 return 0;
6394 return (endregno > r
6395 && regno < r + (r < FIRST_PSEUDO_REGISTER
6396 ? hard_regno_nregs[r][GET_MODE (x)]
6397 : 1));
6399 case SUBREG:
6400 /* If this is a SUBREG of a hard reg, we can see exactly which
6401 registers are being modified. Otherwise, handle normally. */
6402 if (REG_P (SUBREG_REG (x))
6403 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6405 unsigned int inner_regno = subreg_regno (x);
6406 unsigned int inner_endregno
6407 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6408 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
6410 return endregno > inner_regno && regno < inner_endregno;
6412 break;
6414 case CLOBBER:
6415 case SET:
6416 if (&SET_DEST (x) != loc
6417 /* Note setting a SUBREG counts as referring to the REG it is in for
6418 a pseudo but not for hard registers since we can
6419 treat each word individually. */
6420 && ((GET_CODE (SET_DEST (x)) == SUBREG
6421 && loc != &SUBREG_REG (SET_DEST (x))
6422 && REG_P (SUBREG_REG (SET_DEST (x)))
6423 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6424 && refers_to_regno_for_reload_p (regno, endregno,
6425 SUBREG_REG (SET_DEST (x)),
6426 loc))
6427 /* If the output is an earlyclobber operand, this is
6428 a conflict. */
6429 || ((!REG_P (SET_DEST (x))
6430 || earlyclobber_operand_p (SET_DEST (x)))
6431 && refers_to_regno_for_reload_p (regno, endregno,
6432 SET_DEST (x), loc))))
6433 return 1;
6435 if (code == CLOBBER || loc == &SET_SRC (x))
6436 return 0;
6437 x = SET_SRC (x);
6438 goto repeat;
6440 default:
6441 break;
6444 /* X does not match, so try its subexpressions. */
6446 fmt = GET_RTX_FORMAT (code);
6447 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6449 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6451 if (i == 0)
6453 x = XEXP (x, 0);
6454 goto repeat;
6456 else
6457 if (refers_to_regno_for_reload_p (regno, endregno,
6458 XEXP (x, i), loc))
6459 return 1;
6461 else if (fmt[i] == 'E')
6463 int j;
6464 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6465 if (loc != &XVECEXP (x, i, j)
6466 && refers_to_regno_for_reload_p (regno, endregno,
6467 XVECEXP (x, i, j), loc))
6468 return 1;
6471 return 0;
6474 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6475 we check if any register number in X conflicts with the relevant register
6476 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6477 contains a MEM (we don't bother checking for memory addresses that can't
6478 conflict because we expect this to be a rare case.
6480 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6481 that we look at equivalences for pseudos that didn't get hard registers. */
6484 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6486 int regno, endregno;
6488 /* Overly conservative. */
6489 if (GET_CODE (x) == STRICT_LOW_PART
6490 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6491 x = XEXP (x, 0);
6493 /* If either argument is a constant, then modifying X can not affect IN. */
6494 if (CONSTANT_P (x) || CONSTANT_P (in))
6495 return 0;
6496 else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
6497 return refers_to_mem_for_reload_p (in);
6498 else if (GET_CODE (x) == SUBREG)
6500 regno = REGNO (SUBREG_REG (x));
6501 if (regno < FIRST_PSEUDO_REGISTER)
6502 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6503 GET_MODE (SUBREG_REG (x)),
6504 SUBREG_BYTE (x),
6505 GET_MODE (x));
6507 else if (REG_P (x))
6509 regno = REGNO (x);
6511 /* If this is a pseudo, it must not have been assigned a hard register.
6512 Therefore, it must either be in memory or be a constant. */
6514 if (regno >= FIRST_PSEUDO_REGISTER)
6516 if (reg_equiv_memory_loc[regno])
6517 return refers_to_mem_for_reload_p (in);
6518 gcc_assert (reg_equiv_constant[regno]);
6519 return 0;
6522 else if (MEM_P (x))
6523 return refers_to_mem_for_reload_p (in);
6524 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6525 || GET_CODE (x) == CC0)
6526 return reg_mentioned_p (x, in);
6527 else
6529 gcc_assert (GET_CODE (x) == PLUS);
6531 /* We actually want to know if X is mentioned somewhere inside IN.
6532 We must not say that (plus (sp) (const_int 124)) is in
6533 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6534 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6535 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6536 while (MEM_P (in))
6537 in = XEXP (in, 0);
6538 if (REG_P (in))
6539 return 0;
6540 else if (GET_CODE (in) == PLUS)
6541 return (rtx_equal_p (x, in)
6542 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6543 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6544 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6545 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6548 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6549 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
6551 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6554 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6555 registers. */
6557 static int
6558 refers_to_mem_for_reload_p (rtx x)
6560 const char *fmt;
6561 int i;
6563 if (MEM_P (x))
6564 return 1;
6566 if (REG_P (x))
6567 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6568 && reg_equiv_memory_loc[REGNO (x)]);
6570 fmt = GET_RTX_FORMAT (GET_CODE (x));
6571 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6572 if (fmt[i] == 'e'
6573 && (MEM_P (XEXP (x, i))
6574 || refers_to_mem_for_reload_p (XEXP (x, i))))
6575 return 1;
6577 return 0;
6580 /* Check the insns before INSN to see if there is a suitable register
6581 containing the same value as GOAL.
6582 If OTHER is -1, look for a register in class CLASS.
6583 Otherwise, just see if register number OTHER shares GOAL's value.
6585 Return an rtx for the register found, or zero if none is found.
6587 If RELOAD_REG_P is (short *)1,
6588 we reject any hard reg that appears in reload_reg_rtx
6589 because such a hard reg is also needed coming into this insn.
6591 If RELOAD_REG_P is any other nonzero value,
6592 it is a vector indexed by hard reg number
6593 and we reject any hard reg whose element in the vector is nonnegative
6594 as well as any that appears in reload_reg_rtx.
6596 If GOAL is zero, then GOALREG is a register number; we look
6597 for an equivalent for that register.
6599 MODE is the machine mode of the value we want an equivalence for.
6600 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6602 This function is used by jump.c as well as in the reload pass.
6604 If GOAL is the sum of the stack pointer and a constant, we treat it
6605 as if it were a constant except that sp is required to be unchanging. */
6608 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6609 short *reload_reg_p, int goalreg, enum machine_mode mode)
6611 rtx p = insn;
6612 rtx goaltry, valtry, value, where;
6613 rtx pat;
6614 int regno = -1;
6615 int valueno;
6616 int goal_mem = 0;
6617 int goal_const = 0;
6618 int goal_mem_addr_varies = 0;
6619 int need_stable_sp = 0;
6620 int nregs;
6621 int valuenregs;
6622 int num = 0;
6624 if (goal == 0)
6625 regno = goalreg;
6626 else if (REG_P (goal))
6627 regno = REGNO (goal);
6628 else if (MEM_P (goal))
6630 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6631 if (MEM_VOLATILE_P (goal))
6632 return 0;
6633 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6634 return 0;
6635 /* An address with side effects must be reexecuted. */
6636 switch (code)
6638 case POST_INC:
6639 case PRE_INC:
6640 case POST_DEC:
6641 case PRE_DEC:
6642 case POST_MODIFY:
6643 case PRE_MODIFY:
6644 return 0;
6645 default:
6646 break;
6648 goal_mem = 1;
6650 else if (CONSTANT_P (goal))
6651 goal_const = 1;
6652 else if (GET_CODE (goal) == PLUS
6653 && XEXP (goal, 0) == stack_pointer_rtx
6654 && CONSTANT_P (XEXP (goal, 1)))
6655 goal_const = need_stable_sp = 1;
6656 else if (GET_CODE (goal) == PLUS
6657 && XEXP (goal, 0) == frame_pointer_rtx
6658 && CONSTANT_P (XEXP (goal, 1)))
6659 goal_const = 1;
6660 else
6661 return 0;
6663 num = 0;
6664 /* Scan insns back from INSN, looking for one that copies
6665 a value into or out of GOAL.
6666 Stop and give up if we reach a label. */
6668 while (1)
6670 p = PREV_INSN (p);
6671 num++;
6672 if (p == 0 || LABEL_P (p)
6673 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6674 return 0;
6676 if (NONJUMP_INSN_P (p)
6677 /* If we don't want spill regs ... */
6678 && (! (reload_reg_p != 0
6679 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6680 /* ... then ignore insns introduced by reload; they aren't
6681 useful and can cause results in reload_as_needed to be
6682 different from what they were when calculating the need for
6683 spills. If we notice an input-reload insn here, we will
6684 reject it below, but it might hide a usable equivalent.
6685 That makes bad code. It may even fail: perhaps no reg was
6686 spilled for this insn because it was assumed we would find
6687 that equivalent. */
6688 || INSN_UID (p) < reload_first_uid))
6690 rtx tem;
6691 pat = single_set (p);
6693 /* First check for something that sets some reg equal to GOAL. */
6694 if (pat != 0
6695 && ((regno >= 0
6696 && true_regnum (SET_SRC (pat)) == regno
6697 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6699 (regno >= 0
6700 && true_regnum (SET_DEST (pat)) == regno
6701 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6703 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6704 /* When looking for stack pointer + const,
6705 make sure we don't use a stack adjust. */
6706 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6707 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6708 || (goal_mem
6709 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6710 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6711 || (goal_mem
6712 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6713 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6714 /* If we are looking for a constant,
6715 and something equivalent to that constant was copied
6716 into a reg, we can use that reg. */
6717 || (goal_const && REG_NOTES (p) != 0
6718 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6719 && ((rtx_equal_p (XEXP (tem, 0), goal)
6720 && (valueno
6721 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6722 || (REG_P (SET_DEST (pat))
6723 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6724 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6725 && GET_CODE (goal) == CONST_INT
6726 && 0 != (goaltry
6727 = operand_subword (XEXP (tem, 0), 0, 0,
6728 VOIDmode))
6729 && rtx_equal_p (goal, goaltry)
6730 && (valtry
6731 = operand_subword (SET_DEST (pat), 0, 0,
6732 VOIDmode))
6733 && (valueno = true_regnum (valtry)) >= 0)))
6734 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6735 NULL_RTX))
6736 && REG_P (SET_DEST (pat))
6737 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6738 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6739 && GET_CODE (goal) == CONST_INT
6740 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6741 VOIDmode))
6742 && rtx_equal_p (goal, goaltry)
6743 && (valtry
6744 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6745 && (valueno = true_regnum (valtry)) >= 0)))
6747 if (other >= 0)
6749 if (valueno != other)
6750 continue;
6752 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6753 continue;
6754 else
6756 int i;
6758 for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
6759 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6760 valueno + i))
6761 break;
6762 if (i >= 0)
6763 continue;
6765 value = valtry;
6766 where = p;
6767 break;
6772 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6773 (or copying VALUE into GOAL, if GOAL is also a register).
6774 Now verify that VALUE is really valid. */
6776 /* VALUENO is the register number of VALUE; a hard register. */
6778 /* Don't try to re-use something that is killed in this insn. We want
6779 to be able to trust REG_UNUSED notes. */
6780 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6781 return 0;
6783 /* If we propose to get the value from the stack pointer or if GOAL is
6784 a MEM based on the stack pointer, we need a stable SP. */
6785 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6786 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6787 goal)))
6788 need_stable_sp = 1;
6790 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6791 if (GET_MODE (value) != mode)
6792 return 0;
6794 /* Reject VALUE if it was loaded from GOAL
6795 and is also a register that appears in the address of GOAL. */
6797 if (goal_mem && value == SET_DEST (single_set (where))
6798 && refers_to_regno_for_reload_p (valueno,
6799 (valueno
6800 + hard_regno_nregs[valueno][mode]),
6801 goal, (rtx*) 0))
6802 return 0;
6804 /* Reject registers that overlap GOAL. */
6806 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6807 nregs = hard_regno_nregs[regno][mode];
6808 else
6809 nregs = 1;
6810 valuenregs = hard_regno_nregs[valueno][mode];
6812 if (!goal_mem && !goal_const
6813 && regno + nregs > valueno && regno < valueno + valuenregs)
6814 return 0;
6816 /* Reject VALUE if it is one of the regs reserved for reloads.
6817 Reload1 knows how to reuse them anyway, and it would get
6818 confused if we allocated one without its knowledge.
6819 (Now that insns introduced by reload are ignored above,
6820 this case shouldn't happen, but I'm not positive.) */
6822 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6824 int i;
6825 for (i = 0; i < valuenregs; ++i)
6826 if (reload_reg_p[valueno + i] >= 0)
6827 return 0;
6830 /* Reject VALUE if it is a register being used for an input reload
6831 even if it is not one of those reserved. */
6833 if (reload_reg_p != 0)
6835 int i;
6836 for (i = 0; i < n_reloads; i++)
6837 if (rld[i].reg_rtx != 0 && rld[i].in)
6839 int regno1 = REGNO (rld[i].reg_rtx);
6840 int nregs1 = hard_regno_nregs[regno1]
6841 [GET_MODE (rld[i].reg_rtx)];
6842 if (regno1 < valueno + valuenregs
6843 && regno1 + nregs1 > valueno)
6844 return 0;
6848 if (goal_mem)
6849 /* We must treat frame pointer as varying here,
6850 since it can vary--in a nonlocal goto as generated by expand_goto. */
6851 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6853 /* Now verify that the values of GOAL and VALUE remain unaltered
6854 until INSN is reached. */
6856 p = insn;
6857 while (1)
6859 p = PREV_INSN (p);
6860 if (p == where)
6861 return value;
6863 /* Don't trust the conversion past a function call
6864 if either of the two is in a call-clobbered register, or memory. */
6865 if (CALL_P (p))
6867 int i;
6869 if (goal_mem || need_stable_sp)
6870 return 0;
6872 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6873 for (i = 0; i < nregs; ++i)
6874 if (call_used_regs[regno + i]
6875 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6876 return 0;
6878 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6879 for (i = 0; i < valuenregs; ++i)
6880 if (call_used_regs[valueno + i]
6881 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6882 return 0;
6885 if (INSN_P (p))
6887 pat = PATTERN (p);
6889 /* Watch out for unspec_volatile, and volatile asms. */
6890 if (volatile_insn_p (pat))
6891 return 0;
6893 /* If this insn P stores in either GOAL or VALUE, return 0.
6894 If GOAL is a memory ref and this insn writes memory, return 0.
6895 If GOAL is a memory ref and its address is not constant,
6896 and this insn P changes a register used in GOAL, return 0. */
6898 if (GET_CODE (pat) == COND_EXEC)
6899 pat = COND_EXEC_CODE (pat);
6900 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6902 rtx dest = SET_DEST (pat);
6903 while (GET_CODE (dest) == SUBREG
6904 || GET_CODE (dest) == ZERO_EXTRACT
6905 || GET_CODE (dest) == STRICT_LOW_PART)
6906 dest = XEXP (dest, 0);
6907 if (REG_P (dest))
6909 int xregno = REGNO (dest);
6910 int xnregs;
6911 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6912 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6913 else
6914 xnregs = 1;
6915 if (xregno < regno + nregs && xregno + xnregs > regno)
6916 return 0;
6917 if (xregno < valueno + valuenregs
6918 && xregno + xnregs > valueno)
6919 return 0;
6920 if (goal_mem_addr_varies
6921 && reg_overlap_mentioned_for_reload_p (dest, goal))
6922 return 0;
6923 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6924 return 0;
6926 else if (goal_mem && MEM_P (dest)
6927 && ! push_operand (dest, GET_MODE (dest)))
6928 return 0;
6929 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6930 && reg_equiv_memory_loc[regno] != 0)
6931 return 0;
6932 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6933 return 0;
6935 else if (GET_CODE (pat) == PARALLEL)
6937 int i;
6938 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6940 rtx v1 = XVECEXP (pat, 0, i);
6941 if (GET_CODE (v1) == COND_EXEC)
6942 v1 = COND_EXEC_CODE (v1);
6943 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6945 rtx dest = SET_DEST (v1);
6946 while (GET_CODE (dest) == SUBREG
6947 || GET_CODE (dest) == ZERO_EXTRACT
6948 || GET_CODE (dest) == STRICT_LOW_PART)
6949 dest = XEXP (dest, 0);
6950 if (REG_P (dest))
6952 int xregno = REGNO (dest);
6953 int xnregs;
6954 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6955 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6956 else
6957 xnregs = 1;
6958 if (xregno < regno + nregs
6959 && xregno + xnregs > regno)
6960 return 0;
6961 if (xregno < valueno + valuenregs
6962 && xregno + xnregs > valueno)
6963 return 0;
6964 if (goal_mem_addr_varies
6965 && reg_overlap_mentioned_for_reload_p (dest,
6966 goal))
6967 return 0;
6968 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6969 return 0;
6971 else if (goal_mem && MEM_P (dest)
6972 && ! push_operand (dest, GET_MODE (dest)))
6973 return 0;
6974 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6975 && reg_equiv_memory_loc[regno] != 0)
6976 return 0;
6977 else if (need_stable_sp
6978 && push_operand (dest, GET_MODE (dest)))
6979 return 0;
6984 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
6986 rtx link;
6988 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6989 link = XEXP (link, 1))
6991 pat = XEXP (link, 0);
6992 if (GET_CODE (pat) == CLOBBER)
6994 rtx dest = SET_DEST (pat);
6996 if (REG_P (dest))
6998 int xregno = REGNO (dest);
6999 int xnregs
7000 = hard_regno_nregs[xregno][GET_MODE (dest)];
7002 if (xregno < regno + nregs
7003 && xregno + xnregs > regno)
7004 return 0;
7005 else if (xregno < valueno + valuenregs
7006 && xregno + xnregs > valueno)
7007 return 0;
7008 else if (goal_mem_addr_varies
7009 && reg_overlap_mentioned_for_reload_p (dest,
7010 goal))
7011 return 0;
7014 else if (goal_mem && MEM_P (dest)
7015 && ! push_operand (dest, GET_MODE (dest)))
7016 return 0;
7017 else if (need_stable_sp
7018 && push_operand (dest, GET_MODE (dest)))
7019 return 0;
7024 #ifdef AUTO_INC_DEC
7025 /* If this insn auto-increments or auto-decrements
7026 either regno or valueno, return 0 now.
7027 If GOAL is a memory ref and its address is not constant,
7028 and this insn P increments a register used in GOAL, return 0. */
7030 rtx link;
7032 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7033 if (REG_NOTE_KIND (link) == REG_INC
7034 && REG_P (XEXP (link, 0)))
7036 int incno = REGNO (XEXP (link, 0));
7037 if (incno < regno + nregs && incno >= regno)
7038 return 0;
7039 if (incno < valueno + valuenregs && incno >= valueno)
7040 return 0;
7041 if (goal_mem_addr_varies
7042 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7043 goal))
7044 return 0;
7047 #endif
7052 /* Find a place where INCED appears in an increment or decrement operator
7053 within X, and return the amount INCED is incremented or decremented by.
7054 The value is always positive. */
7056 static int
7057 find_inc_amount (rtx x, rtx inced)
7059 enum rtx_code code = GET_CODE (x);
7060 const char *fmt;
7061 int i;
7063 if (code == MEM)
7065 rtx addr = XEXP (x, 0);
7066 if ((GET_CODE (addr) == PRE_DEC
7067 || GET_CODE (addr) == POST_DEC
7068 || GET_CODE (addr) == PRE_INC
7069 || GET_CODE (addr) == POST_INC)
7070 && XEXP (addr, 0) == inced)
7071 return GET_MODE_SIZE (GET_MODE (x));
7072 else if ((GET_CODE (addr) == PRE_MODIFY
7073 || GET_CODE (addr) == POST_MODIFY)
7074 && GET_CODE (XEXP (addr, 1)) == PLUS
7075 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7076 && XEXP (addr, 0) == inced
7077 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
7079 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7080 return i < 0 ? -i : i;
7084 fmt = GET_RTX_FORMAT (code);
7085 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7087 if (fmt[i] == 'e')
7089 int tem = find_inc_amount (XEXP (x, i), inced);
7090 if (tem != 0)
7091 return tem;
7093 if (fmt[i] == 'E')
7095 int j;
7096 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7098 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7099 if (tem != 0)
7100 return tem;
7105 return 0;
7108 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7109 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7111 #ifdef AUTO_INC_DEC
7112 static int
7113 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7114 rtx insn)
7116 rtx link;
7118 gcc_assert (insn);
7120 if (! INSN_P (insn))
7121 return 0;
7123 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7124 if (REG_NOTE_KIND (link) == REG_INC)
7126 unsigned int test = (int) REGNO (XEXP (link, 0));
7127 if (test >= regno && test < endregno)
7128 return 1;
7130 return 0;
7132 #else
7134 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7136 #endif
7138 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7139 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7140 REG_INC. REGNO must refer to a hard register. */
7143 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7144 int sets)
7146 unsigned int nregs, endregno;
7148 /* regno must be a hard register. */
7149 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7151 nregs = hard_regno_nregs[regno][mode];
7152 endregno = regno + nregs;
7154 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7155 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7156 && REG_P (XEXP (PATTERN (insn), 0)))
7158 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7160 return test >= regno && test < endregno;
7163 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7164 return 1;
7166 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7168 int i = XVECLEN (PATTERN (insn), 0) - 1;
7170 for (; i >= 0; i--)
7172 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7173 if ((GET_CODE (elt) == CLOBBER
7174 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7175 && REG_P (XEXP (elt, 0)))
7177 unsigned int test = REGNO (XEXP (elt, 0));
7179 if (test >= regno && test < endregno)
7180 return 1;
7182 if (sets == 2
7183 && reg_inc_found_and_valid_p (regno, endregno, elt))
7184 return 1;
7188 return 0;
7191 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7193 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7195 int regno;
7197 if (GET_MODE (reloadreg) == mode)
7198 return reloadreg;
7200 regno = REGNO (reloadreg);
7202 if (WORDS_BIG_ENDIAN)
7203 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7204 - (int) hard_regno_nregs[regno][mode];
7206 return gen_rtx_REG (mode, regno);
7209 static const char *const reload_when_needed_name[] =
7211 "RELOAD_FOR_INPUT",
7212 "RELOAD_FOR_OUTPUT",
7213 "RELOAD_FOR_INSN",
7214 "RELOAD_FOR_INPUT_ADDRESS",
7215 "RELOAD_FOR_INPADDR_ADDRESS",
7216 "RELOAD_FOR_OUTPUT_ADDRESS",
7217 "RELOAD_FOR_OUTADDR_ADDRESS",
7218 "RELOAD_FOR_OPERAND_ADDRESS",
7219 "RELOAD_FOR_OPADDR_ADDR",
7220 "RELOAD_OTHER",
7221 "RELOAD_FOR_OTHER_ADDRESS"
7224 /* These functions are used to print the variables set by 'find_reloads' */
7226 void
7227 debug_reload_to_stream (FILE *f)
7229 int r;
7230 const char *prefix;
7232 if (! f)
7233 f = stderr;
7234 for (r = 0; r < n_reloads; r++)
7236 fprintf (f, "Reload %d: ", r);
7238 if (rld[r].in != 0)
7240 fprintf (f, "reload_in (%s) = ",
7241 GET_MODE_NAME (rld[r].inmode));
7242 print_inline_rtx (f, rld[r].in, 24);
7243 fprintf (f, "\n\t");
7246 if (rld[r].out != 0)
7248 fprintf (f, "reload_out (%s) = ",
7249 GET_MODE_NAME (rld[r].outmode));
7250 print_inline_rtx (f, rld[r].out, 24);
7251 fprintf (f, "\n\t");
7254 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7256 fprintf (f, "%s (opnum = %d)",
7257 reload_when_needed_name[(int) rld[r].when_needed],
7258 rld[r].opnum);
7260 if (rld[r].optional)
7261 fprintf (f, ", optional");
7263 if (rld[r].nongroup)
7264 fprintf (f, ", nongroup");
7266 if (rld[r].inc != 0)
7267 fprintf (f, ", inc by %d", rld[r].inc);
7269 if (rld[r].nocombine)
7270 fprintf (f, ", can't combine");
7272 if (rld[r].secondary_p)
7273 fprintf (f, ", secondary_reload_p");
7275 if (rld[r].in_reg != 0)
7277 fprintf (f, "\n\treload_in_reg: ");
7278 print_inline_rtx (f, rld[r].in_reg, 24);
7281 if (rld[r].out_reg != 0)
7283 fprintf (f, "\n\treload_out_reg: ");
7284 print_inline_rtx (f, rld[r].out_reg, 24);
7287 if (rld[r].reg_rtx != 0)
7289 fprintf (f, "\n\treload_reg_rtx: ");
7290 print_inline_rtx (f, rld[r].reg_rtx, 24);
7293 prefix = "\n\t";
7294 if (rld[r].secondary_in_reload != -1)
7296 fprintf (f, "%ssecondary_in_reload = %d",
7297 prefix, rld[r].secondary_in_reload);
7298 prefix = ", ";
7301 if (rld[r].secondary_out_reload != -1)
7302 fprintf (f, "%ssecondary_out_reload = %d\n",
7303 prefix, rld[r].secondary_out_reload);
7305 prefix = "\n\t";
7306 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7308 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7309 insn_data[rld[r].secondary_in_icode].name);
7310 prefix = ", ";
7313 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7314 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7315 insn_data[rld[r].secondary_out_icode].name);
7317 fprintf (f, "\n");
7321 void
7322 debug_reload (void)
7324 debug_reload_to_stream (stderr);