1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This pass converts stack-like registers from the "flat register
22 file" model that gcc uses, to a stack convention that the 387 uses.
24 * The form of the input:
26 On input, the function consists of insn that have had their
27 registers fully allocated to a set of "virtual" registers. Note that
28 the word "virtual" is used differently here than elsewhere in gcc: for
29 each virtual stack reg, there is a hard reg, but the mapping between
30 them is not known until this pass is run. On output, hard register
31 numbers have been substituted, and various pop and exchange insns have
32 been emitted. The hard register numbers and the virtual register
33 numbers completely overlap - before this pass, all stack register
34 numbers are virtual, and afterward they are all hard.
36 The virtual registers can be manipulated normally by gcc, and their
37 semantics are the same as for normal registers. After the hard
38 register numbers are substituted, the semantics of an insn containing
39 stack-like regs are not the same as for an insn with normal regs: for
40 instance, it is not safe to delete an insn that appears to be a no-op
41 move. In general, no insn containing hard regs should be changed
42 after this pass is done.
44 * The form of the output:
46 After this pass, hard register numbers represent the distance from
47 the current top of stack to the desired register. A reference to
48 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
49 represents the register just below that, and so forth. Also, REG_DEAD
50 notes indicate whether or not a stack register should be popped.
52 A "swap" insn looks like a parallel of two patterns, where each
53 pattern is a SET: one sets A to B, the other B to A.
55 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
56 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
57 will replace the existing stack top, not push a new value.
59 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
60 SET_SRC is REG or MEM.
62 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
63 appears ambiguous. As a special case, the presence of a REG_DEAD note
64 for FIRST_STACK_REG differentiates between a load insn and a pop.
66 If a REG_DEAD is present, the insn represents a "pop" that discards
67 the top of the register stack. If there is no REG_DEAD note, then the
68 insn represents a "dup" or a push of the current top of stack onto the
73 Existing REG_DEAD and REG_UNUSED notes for stack registers are
74 deleted and recreated from scratch. REG_DEAD is never created for a
75 SET_DEST, only REG_UNUSED.
79 There are several rules on the usage of stack-like regs in
80 asm_operands insns. These rules apply only to the operands that are
83 1. Given a set of input regs that die in an asm_operands, it is
84 necessary to know which are implicitly popped by the asm, and
85 which must be explicitly popped by gcc.
87 An input reg that is implicitly popped by the asm must be
88 explicitly clobbered, unless it is constrained to match an
91 2. For any input reg that is implicitly popped by an asm, it is
92 necessary to know how to adjust the stack to compensate for the pop.
93 If any non-popped input is closer to the top of the reg-stack than
94 the implicitly popped reg, it would not be possible to know what the
95 stack looked like - it's not clear how the rest of the stack "slides
98 All implicitly popped input regs must be closer to the top of
99 the reg-stack than any input that is not implicitly popped.
101 3. It is possible that if an input dies in an insn, reload might
102 use the input reg for an output reload. Consider this example:
104 asm ("foo" : "=t" (a) : "f" (b));
106 This asm says that input B is not popped by the asm, and that
107 the asm pushes a result onto the reg-stack, i.e., the stack is one
108 deeper after the asm than it was before. But, it is possible that
109 reload will think that it can use the same reg for both the input and
110 the output, if input B dies in this insn.
112 If any input operand uses the "f" constraint, all output reg
113 constraints must use the "&" earlyclobber.
115 The asm above would be written as
117 asm ("foo" : "=&t" (a) : "f" (b));
119 4. Some operands need to be in particular places on the stack. All
120 output operands fall in this category - there is no other way to
121 know which regs the outputs appear in unless the user indicates
122 this in the constraints.
124 Output operands must specifically indicate which reg an output
125 appears in after an asm. "=f" is not allowed: the operand
126 constraints must select a class with a single reg.
128 5. Output operands may not be "inserted" between existing stack regs.
129 Since no 387 opcode uses a read/write operand, all output operands
130 are dead before the asm_operands, and are pushed by the asm_operands.
131 It makes no sense to push anywhere but the top of the reg-stack.
133 Output operands must start at the top of the reg-stack: output
134 operands may not "skip" a reg.
136 6. Some asm statements may need extra stack space for internal
137 calculations. This can be guaranteed by clobbering stack registers
138 unrelated to the inputs and outputs.
140 Here are a couple of reasonable asms to want to write. This asm
141 takes one input, which is internally popped, and produces two outputs.
143 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
146 and replaces them with one output. The user must code the "st(1)"
147 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
155 #include "coretypes.h"
160 #include "function.h"
161 #include "insn-config.h"
163 #include "hard-reg-set.h"
168 #include "basic-block.h"
173 #include "tree-pass.h"
179 /* We use this array to cache info about insns, because otherwise we
180 spend too much time in stack_regs_mentioned_p.
182 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
183 the insn uses stack registers, two indicates the insn does not use
185 static VEC(char,heap
) *stack_regs_mentioned_data
;
187 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
189 int regstack_completed
= 0;
191 /* This is the basic stack record. TOP is an index into REG[] such
192 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
194 If TOP is -2, REG[] is not yet initialized. Stack initialization
195 consists of placing each live reg in array `reg' and setting `top'
198 REG_SET indicates which registers are live. */
200 typedef struct stack_def
202 int top
; /* index to top stack element */
203 HARD_REG_SET reg_set
; /* set of live registers */
204 unsigned char reg
[REG_STACK_SIZE
];/* register - stack mapping */
207 /* This is used to carry information about basic blocks. It is
208 attached to the AUX field of the standard CFG block. */
210 typedef struct block_info_def
212 struct stack_def stack_in
; /* Input stack configuration. */
213 struct stack_def stack_out
; /* Output stack configuration. */
214 HARD_REG_SET out_reg_set
; /* Stack regs live on output. */
215 int done
; /* True if block already converted. */
216 int predecessors
; /* Number of predecessors that need
220 #define BLOCK_INFO(B) ((block_info) (B)->aux)
222 /* Passed to change_stack to indicate where to emit insns. */
229 /* The block we're currently working on. */
230 static basic_block current_block
;
232 /* In the current_block, whether we're processing the first register
233 stack or call instruction, i.e. the regstack is currently the
234 same as BLOCK_INFO(current_block)->stack_in. */
235 static bool starting_stack_p
;
237 /* This is the register file for all register after conversion. */
239 FP_mode_reg
[LAST_STACK_REG
+1-FIRST_STACK_REG
][(int) MAX_MACHINE_MODE
];
241 #define FP_MODE_REG(regno,mode) \
242 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
244 /* Used to initialize uninitialized registers. */
245 static rtx not_a_num
;
247 /* Forward declarations */
249 static int stack_regs_mentioned_p (rtx pat
);
250 static void pop_stack (stack
, int);
251 static rtx
*get_true_reg (rtx
*);
253 static int check_asm_stack_operands (rtx
);
254 static int get_asm_operand_n_inputs (rtx
);
255 static rtx
stack_result (tree
);
256 static void replace_reg (rtx
*, int);
257 static void remove_regno_note (rtx
, enum reg_note
, unsigned int);
258 static int get_hard_regnum (stack
, rtx
);
259 static rtx
emit_pop_insn (rtx
, stack
, rtx
, enum emit_where
);
260 static void swap_to_top(rtx
, stack
, rtx
, rtx
);
261 static bool move_for_stack_reg (rtx
, stack
, rtx
);
262 static bool move_nan_for_stack_reg (rtx
, stack
, rtx
);
263 static int swap_rtx_condition_1 (rtx
);
264 static int swap_rtx_condition (rtx
);
265 static void compare_for_stack_reg (rtx
, stack
, rtx
);
266 static bool subst_stack_regs_pat (rtx
, stack
, rtx
);
267 static void subst_asm_stack_regs (rtx
, stack
);
268 static bool subst_stack_regs (rtx
, stack
);
269 static void change_stack (rtx
, stack
, stack
, enum emit_where
);
270 static void print_stack (FILE *, stack
);
271 static rtx
next_flags_user (rtx
);
273 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
276 stack_regs_mentioned_p (rtx pat
)
281 if (STACK_REG_P (pat
))
284 fmt
= GET_RTX_FORMAT (GET_CODE (pat
));
285 for (i
= GET_RTX_LENGTH (GET_CODE (pat
)) - 1; i
>= 0; i
--)
291 for (j
= XVECLEN (pat
, i
) - 1; j
>= 0; j
--)
292 if (stack_regs_mentioned_p (XVECEXP (pat
, i
, j
)))
295 else if (fmt
[i
] == 'e' && stack_regs_mentioned_p (XEXP (pat
, i
)))
302 /* Return nonzero if INSN mentions stacked registers, else return zero. */
305 stack_regs_mentioned (rtx insn
)
307 unsigned int uid
, max
;
310 if (! INSN_P (insn
) || !stack_regs_mentioned_data
)
313 uid
= INSN_UID (insn
);
314 max
= VEC_length (char, stack_regs_mentioned_data
);
318 unsigned int old_max
= max
;
320 /* Allocate some extra size to avoid too many reallocs, but
321 do not grow too quickly. */
322 max
= uid
+ uid
/ 20 + 1;
323 VEC_safe_grow (char, heap
, stack_regs_mentioned_data
, max
);
324 p
= VEC_address (char, stack_regs_mentioned_data
);
325 memset (&p
[old_max
], 0,
326 sizeof (char) * (max
- old_max
));
329 test
= VEC_index (char, stack_regs_mentioned_data
, uid
);
332 /* This insn has yet to be examined. Do so now. */
333 test
= stack_regs_mentioned_p (PATTERN (insn
)) ? 1 : 2;
334 VEC_replace (char, stack_regs_mentioned_data
, uid
, test
);
340 static rtx ix86_flags_rtx
;
343 next_flags_user (rtx insn
)
345 /* Search forward looking for the first use of this value.
346 Stop at block boundaries. */
348 while (insn
!= BB_END (current_block
))
350 insn
= NEXT_INSN (insn
);
352 if (INSN_P (insn
) && reg_mentioned_p (ix86_flags_rtx
, PATTERN (insn
)))
361 /* Reorganize the stack into ascending numbers, before this insn. */
364 straighten_stack (rtx insn
, stack regstack
)
366 struct stack_def temp_stack
;
369 /* If there is only a single register on the stack, then the stack is
370 already in increasing order and no reorganization is needed.
372 Similarly if the stack is empty. */
373 if (regstack
->top
<= 0)
376 COPY_HARD_REG_SET (temp_stack
.reg_set
, regstack
->reg_set
);
378 for (top
= temp_stack
.top
= regstack
->top
; top
>= 0; top
--)
379 temp_stack
.reg
[top
] = FIRST_STACK_REG
+ temp_stack
.top
- top
;
381 change_stack (insn
, regstack
, &temp_stack
, EMIT_BEFORE
);
384 /* Pop a register from the stack. */
387 pop_stack (stack regstack
, int regno
)
389 int top
= regstack
->top
;
391 CLEAR_HARD_REG_BIT (regstack
->reg_set
, regno
);
393 /* If regno was not at the top of stack then adjust stack. */
394 if (regstack
->reg
[top
] != regno
)
397 for (i
= regstack
->top
; i
>= 0; i
--)
398 if (regstack
->reg
[i
] == regno
)
401 for (j
= i
; j
< top
; j
++)
402 regstack
->reg
[j
] = regstack
->reg
[j
+ 1];
408 /* Return a pointer to the REG expression within PAT. If PAT is not a
409 REG, possible enclosed by a conversion rtx, return the inner part of
410 PAT that stopped the search. */
413 get_true_reg (rtx
*pat
)
416 switch (GET_CODE (*pat
))
419 /* Eliminate FP subregister accesses in favor of the
420 actual FP register in use. */
423 if (FP_REG_P (subreg
= SUBREG_REG (*pat
)))
425 int regno_off
= subreg_regno_offset (REGNO (subreg
),
429 *pat
= FP_MODE_REG (REGNO (subreg
) + regno_off
,
438 pat
= & XEXP (*pat
, 0);
442 if (!flag_unsafe_math_optimizations
)
444 pat
= & XEXP (*pat
, 0);
449 /* Set if we find any malformed asms in a block. */
450 static bool any_malformed_asm
;
452 /* There are many rules that an asm statement for stack-like regs must
453 follow. Those rules are explained at the top of this file: the rule
454 numbers below refer to that explanation. */
457 check_asm_stack_operands (rtx insn
)
461 int malformed_asm
= 0;
462 rtx body
= PATTERN (insn
);
464 char reg_used_as_output
[FIRST_PSEUDO_REGISTER
];
465 char implicitly_dies
[FIRST_PSEUDO_REGISTER
];
468 rtx
*clobber_reg
= 0;
469 int n_inputs
, n_outputs
;
471 /* Find out what the constraints require. If no constraint
472 alternative matches, this asm is malformed. */
474 constrain_operands (1);
475 alt
= which_alternative
;
477 preprocess_constraints ();
479 n_inputs
= get_asm_operand_n_inputs (body
);
480 n_outputs
= recog_data
.n_operands
- n_inputs
;
485 /* Avoid further trouble with this insn. */
486 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
490 /* Strip SUBREGs here to make the following code simpler. */
491 for (i
= 0; i
< recog_data
.n_operands
; i
++)
492 if (GET_CODE (recog_data
.operand
[i
]) == SUBREG
493 && REG_P (SUBREG_REG (recog_data
.operand
[i
])))
494 recog_data
.operand
[i
] = SUBREG_REG (recog_data
.operand
[i
]);
496 /* Set up CLOBBER_REG. */
500 if (GET_CODE (body
) == PARALLEL
)
502 clobber_reg
= alloca (XVECLEN (body
, 0) * sizeof (rtx
));
504 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
505 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
507 rtx clobber
= XVECEXP (body
, 0, i
);
508 rtx reg
= XEXP (clobber
, 0);
510 if (GET_CODE (reg
) == SUBREG
&& REG_P (SUBREG_REG (reg
)))
511 reg
= SUBREG_REG (reg
);
513 if (STACK_REG_P (reg
))
515 clobber_reg
[n_clobbers
] = reg
;
521 /* Enforce rule #4: Output operands must specifically indicate which
522 reg an output appears in after an asm. "=f" is not allowed: the
523 operand constraints must select a class with a single reg.
525 Also enforce rule #5: Output operands must start at the top of
526 the reg-stack: output operands may not "skip" a reg. */
528 memset (reg_used_as_output
, 0, sizeof (reg_used_as_output
));
529 for (i
= 0; i
< n_outputs
; i
++)
530 if (STACK_REG_P (recog_data
.operand
[i
]))
532 if (reg_class_size
[(int) recog_op_alt
[i
][alt
].cl
] != 1)
534 error_for_asm (insn
, "output constraint %d must specify a single register", i
);
541 for (j
= 0; j
< n_clobbers
; j
++)
542 if (REGNO (recog_data
.operand
[i
]) == REGNO (clobber_reg
[j
]))
544 error_for_asm (insn
, "output constraint %d cannot be specified together with \"%s\" clobber",
545 i
, reg_names
[REGNO (clobber_reg
[j
])]);
550 reg_used_as_output
[REGNO (recog_data
.operand
[i
])] = 1;
555 /* Search for first non-popped reg. */
556 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
557 if (! reg_used_as_output
[i
])
560 /* If there are any other popped regs, that's an error. */
561 for (; i
< LAST_STACK_REG
+ 1; i
++)
562 if (reg_used_as_output
[i
])
565 if (i
!= LAST_STACK_REG
+ 1)
567 error_for_asm (insn
, "output regs must be grouped at top of stack");
571 /* Enforce rule #2: All implicitly popped input regs must be closer
572 to the top of the reg-stack than any input that is not implicitly
575 memset (implicitly_dies
, 0, sizeof (implicitly_dies
));
576 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
577 if (STACK_REG_P (recog_data
.operand
[i
]))
579 /* An input reg is implicitly popped if it is tied to an
580 output, or if there is a CLOBBER for it. */
583 for (j
= 0; j
< n_clobbers
; j
++)
584 if (operands_match_p (clobber_reg
[j
], recog_data
.operand
[i
]))
587 if (j
< n_clobbers
|| recog_op_alt
[i
][alt
].matches
>= 0)
588 implicitly_dies
[REGNO (recog_data
.operand
[i
])] = 1;
591 /* Search for first non-popped reg. */
592 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
593 if (! implicitly_dies
[i
])
596 /* If there are any other popped regs, that's an error. */
597 for (; i
< LAST_STACK_REG
+ 1; i
++)
598 if (implicitly_dies
[i
])
601 if (i
!= LAST_STACK_REG
+ 1)
604 "implicitly popped regs must be grouped at top of stack");
608 /* Enforce rule #3: If any input operand uses the "f" constraint, all
609 output constraints must use the "&" earlyclobber.
611 ??? Detect this more deterministically by having constrain_asm_operands
612 record any earlyclobber. */
614 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
615 if (recog_op_alt
[i
][alt
].matches
== -1)
619 for (j
= 0; j
< n_outputs
; j
++)
620 if (operands_match_p (recog_data
.operand
[j
], recog_data
.operand
[i
]))
623 "output operand %d must use %<&%> constraint", j
);
630 /* Avoid further trouble with this insn. */
631 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
632 any_malformed_asm
= true;
639 /* Calculate the number of inputs and outputs in BODY, an
640 asm_operands. N_OPERANDS is the total number of operands, and
641 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
645 get_asm_operand_n_inputs (rtx body
)
647 switch (GET_CODE (body
))
650 gcc_assert (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
);
651 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body
));
654 return ASM_OPERANDS_INPUT_LENGTH (body
);
657 return get_asm_operand_n_inputs (XVECEXP (body
, 0, 0));
664 /* If current function returns its result in an fp stack register,
665 return the REG. Otherwise, return 0. */
668 stack_result (tree decl
)
672 /* If the value is supposed to be returned in memory, then clearly
673 it is not returned in a stack register. */
674 if (aggregate_value_p (DECL_RESULT (decl
), decl
))
677 result
= DECL_RTL_IF_SET (DECL_RESULT (decl
));
679 result
= targetm
.calls
.function_value (TREE_TYPE (DECL_RESULT (decl
)),
682 return result
!= 0 && STACK_REG_P (result
) ? result
: 0;
687 * This section deals with stack register substitution, and forms the second
691 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
692 the desired hard REGNO. */
695 replace_reg (rtx
*reg
, int regno
)
697 gcc_assert (regno
>= FIRST_STACK_REG
);
698 gcc_assert (regno
<= LAST_STACK_REG
);
699 gcc_assert (STACK_REG_P (*reg
));
701 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg
))
702 || GET_MODE_CLASS (GET_MODE (*reg
)) == MODE_COMPLEX_FLOAT
);
704 *reg
= FP_MODE_REG (regno
, GET_MODE (*reg
));
707 /* Remove a note of type NOTE, which must be found, for register
708 number REGNO from INSN. Remove only one such note. */
711 remove_regno_note (rtx insn
, enum reg_note note
, unsigned int regno
)
713 rtx
*note_link
, this;
715 note_link
= ®_NOTES (insn
);
716 for (this = *note_link
; this; this = XEXP (this, 1))
717 if (REG_NOTE_KIND (this) == note
718 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno
)
720 *note_link
= XEXP (this, 1);
724 note_link
= &XEXP (this, 1);
729 /* Find the hard register number of virtual register REG in REGSTACK.
730 The hard register number is relative to the top of the stack. -1 is
731 returned if the register is not found. */
734 get_hard_regnum (stack regstack
, rtx reg
)
738 gcc_assert (STACK_REG_P (reg
));
740 for (i
= regstack
->top
; i
>= 0; i
--)
741 if (regstack
->reg
[i
] == REGNO (reg
))
744 return i
>= 0 ? (FIRST_STACK_REG
+ regstack
->top
- i
) : -1;
747 /* Emit an insn to pop virtual register REG before or after INSN.
748 REGSTACK is the stack state after INSN and is updated to reflect this
749 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
750 is represented as a SET whose destination is the register to be popped
751 and source is the top of stack. A death note for the top of stack
752 cases the movdf pattern to pop. */
755 emit_pop_insn (rtx insn
, stack regstack
, rtx reg
, enum emit_where where
)
757 rtx pop_insn
, pop_rtx
;
760 /* For complex types take care to pop both halves. These may survive in
761 CLOBBER and USE expressions. */
762 if (COMPLEX_MODE_P (GET_MODE (reg
)))
764 rtx reg1
= FP_MODE_REG (REGNO (reg
), DFmode
);
765 rtx reg2
= FP_MODE_REG (REGNO (reg
) + 1, DFmode
);
768 if (get_hard_regnum (regstack
, reg1
) >= 0)
769 pop_insn
= emit_pop_insn (insn
, regstack
, reg1
, where
);
770 if (get_hard_regnum (regstack
, reg2
) >= 0)
771 pop_insn
= emit_pop_insn (insn
, regstack
, reg2
, where
);
772 gcc_assert (pop_insn
);
776 hard_regno
= get_hard_regnum (regstack
, reg
);
778 gcc_assert (hard_regno
>= FIRST_STACK_REG
);
780 pop_rtx
= gen_rtx_SET (VOIDmode
, FP_MODE_REG (hard_regno
, DFmode
),
781 FP_MODE_REG (FIRST_STACK_REG
, DFmode
));
783 if (where
== EMIT_AFTER
)
784 pop_insn
= emit_insn_after (pop_rtx
, insn
);
786 pop_insn
= emit_insn_before (pop_rtx
, insn
);
789 = gen_rtx_EXPR_LIST (REG_DEAD
, FP_MODE_REG (FIRST_STACK_REG
, DFmode
),
790 REG_NOTES (pop_insn
));
792 regstack
->reg
[regstack
->top
- (hard_regno
- FIRST_STACK_REG
)]
793 = regstack
->reg
[regstack
->top
];
795 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (reg
));
800 /* Emit an insn before or after INSN to swap virtual register REG with
801 the top of stack. REGSTACK is the stack state before the swap, and
802 is updated to reflect the swap. A swap insn is represented as a
803 PARALLEL of two patterns: each pattern moves one reg to the other.
805 If REG is already at the top of the stack, no insn is emitted. */
808 emit_swap_insn (rtx insn
, stack regstack
, rtx reg
)
812 int tmp
, other_reg
; /* swap regno temps */
813 rtx i1
; /* the stack-reg insn prior to INSN */
814 rtx i1set
= NULL_RTX
; /* the SET rtx within I1 */
816 hard_regno
= get_hard_regnum (regstack
, reg
);
818 if (hard_regno
== FIRST_STACK_REG
)
820 if (hard_regno
== -1)
822 /* Something failed if the register wasn't on the stack. If we had
823 malformed asms, we zapped the instruction itself, but that didn't
824 produce the same pattern of register sets as before. To prevent
825 further failure, adjust REGSTACK to include REG at TOP. */
826 gcc_assert (any_malformed_asm
);
827 regstack
->reg
[++regstack
->top
] = REGNO (reg
);
830 gcc_assert (hard_regno
>= FIRST_STACK_REG
);
832 other_reg
= regstack
->top
- (hard_regno
- FIRST_STACK_REG
);
834 tmp
= regstack
->reg
[other_reg
];
835 regstack
->reg
[other_reg
] = regstack
->reg
[regstack
->top
];
836 regstack
->reg
[regstack
->top
] = tmp
;
838 /* Find the previous insn involving stack regs, but don't pass a
841 if (current_block
&& insn
!= BB_HEAD (current_block
))
843 rtx tmp
= PREV_INSN (insn
);
844 rtx limit
= PREV_INSN (BB_HEAD (current_block
));
849 || NOTE_INSN_BASIC_BLOCK_P (tmp
)
850 || (NONJUMP_INSN_P (tmp
)
851 && stack_regs_mentioned (tmp
)))
856 tmp
= PREV_INSN (tmp
);
861 && (i1set
= single_set (i1
)) != NULL_RTX
)
863 rtx i1src
= *get_true_reg (&SET_SRC (i1set
));
864 rtx i1dest
= *get_true_reg (&SET_DEST (i1set
));
866 /* If the previous register stack push was from the reg we are to
867 swap with, omit the swap. */
869 if (REG_P (i1dest
) && REGNO (i1dest
) == FIRST_STACK_REG
871 && REGNO (i1src
) == (unsigned) hard_regno
- 1
872 && find_regno_note (i1
, REG_DEAD
, FIRST_STACK_REG
) == NULL_RTX
)
875 /* If the previous insn wrote to the reg we are to swap with,
878 if (REG_P (i1dest
) && REGNO (i1dest
) == (unsigned) hard_regno
879 && REG_P (i1src
) && REGNO (i1src
) == FIRST_STACK_REG
880 && find_regno_note (i1
, REG_DEAD
, FIRST_STACK_REG
) == NULL_RTX
)
884 /* Avoid emitting the swap if this is the first register stack insn
885 of the current_block. Instead update the current_block's stack_in
886 and let compensate edges take care of this for us. */
887 if (current_block
&& starting_stack_p
)
889 BLOCK_INFO (current_block
)->stack_in
= *regstack
;
890 starting_stack_p
= false;
894 swap_rtx
= gen_swapxf (FP_MODE_REG (hard_regno
, XFmode
),
895 FP_MODE_REG (FIRST_STACK_REG
, XFmode
));
898 emit_insn_after (swap_rtx
, i1
);
899 else if (current_block
)
900 emit_insn_before (swap_rtx
, BB_HEAD (current_block
));
902 emit_insn_before (swap_rtx
, insn
);
905 /* Emit an insns before INSN to swap virtual register SRC1 with
906 the top of stack and virtual register SRC2 with second stack
907 slot. REGSTACK is the stack state before the swaps, and
908 is updated to reflect the swaps. A swap insn is represented as a
909 PARALLEL of two patterns: each pattern moves one reg to the other.
911 If SRC1 and/or SRC2 are already at the right place, no swap insn
915 swap_to_top (rtx insn
, stack regstack
, rtx src1
, rtx src2
)
917 struct stack_def temp_stack
;
918 int regno
, j
, k
, temp
;
920 temp_stack
= *regstack
;
922 /* Place operand 1 at the top of stack. */
923 regno
= get_hard_regnum (&temp_stack
, src1
);
924 gcc_assert (regno
>= 0);
925 if (regno
!= FIRST_STACK_REG
)
927 k
= temp_stack
.top
- (regno
- FIRST_STACK_REG
);
930 temp
= temp_stack
.reg
[k
];
931 temp_stack
.reg
[k
] = temp_stack
.reg
[j
];
932 temp_stack
.reg
[j
] = temp
;
935 /* Place operand 2 next on the stack. */
936 regno
= get_hard_regnum (&temp_stack
, src2
);
937 gcc_assert (regno
>= 0);
938 if (regno
!= FIRST_STACK_REG
+ 1)
940 k
= temp_stack
.top
- (regno
- FIRST_STACK_REG
);
941 j
= temp_stack
.top
- 1;
943 temp
= temp_stack
.reg
[k
];
944 temp_stack
.reg
[k
] = temp_stack
.reg
[j
];
945 temp_stack
.reg
[j
] = temp
;
948 change_stack (insn
, regstack
, &temp_stack
, EMIT_BEFORE
);
951 /* Handle a move to or from a stack register in PAT, which is in INSN.
952 REGSTACK is the current stack. Return whether a control flow insn
953 was deleted in the process. */
956 move_for_stack_reg (rtx insn
, stack regstack
, rtx pat
)
958 rtx
*psrc
= get_true_reg (&SET_SRC (pat
));
959 rtx
*pdest
= get_true_reg (&SET_DEST (pat
));
962 bool control_flow_insn_deleted
= false;
964 src
= *psrc
; dest
= *pdest
;
966 if (STACK_REG_P (src
) && STACK_REG_P (dest
))
968 /* Write from one stack reg to another. If SRC dies here, then
969 just change the register mapping and delete the insn. */
971 note
= find_regno_note (insn
, REG_DEAD
, REGNO (src
));
976 /* If this is a no-op move, there must not be a REG_DEAD note. */
977 gcc_assert (REGNO (src
) != REGNO (dest
));
979 for (i
= regstack
->top
; i
>= 0; i
--)
980 if (regstack
->reg
[i
] == REGNO (src
))
983 /* The destination must be dead, or life analysis is borked. */
984 gcc_assert (get_hard_regnum (regstack
, dest
) < FIRST_STACK_REG
);
986 /* If the source is not live, this is yet another case of
987 uninitialized variables. Load up a NaN instead. */
989 return move_nan_for_stack_reg (insn
, regstack
, dest
);
991 /* It is possible that the dest is unused after this insn.
992 If so, just pop the src. */
994 if (find_regno_note (insn
, REG_UNUSED
, REGNO (dest
)))
995 emit_pop_insn (insn
, regstack
, src
, EMIT_AFTER
);
998 regstack
->reg
[i
] = REGNO (dest
);
999 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1000 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (src
));
1003 control_flow_insn_deleted
|= control_flow_insn_p (insn
);
1005 return control_flow_insn_deleted
;
1008 /* The source reg does not die. */
1010 /* If this appears to be a no-op move, delete it, or else it
1011 will confuse the machine description output patterns. But if
1012 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1013 for REG_UNUSED will not work for deleted insns. */
1015 if (REGNO (src
) == REGNO (dest
))
1017 if (find_regno_note (insn
, REG_UNUSED
, REGNO (dest
)))
1018 emit_pop_insn (insn
, regstack
, dest
, EMIT_AFTER
);
1020 control_flow_insn_deleted
|= control_flow_insn_p (insn
);
1022 return control_flow_insn_deleted
;
1025 /* The destination ought to be dead. */
1026 gcc_assert (get_hard_regnum (regstack
, dest
) < FIRST_STACK_REG
);
1028 replace_reg (psrc
, get_hard_regnum (regstack
, src
));
1030 regstack
->reg
[++regstack
->top
] = REGNO (dest
);
1031 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1032 replace_reg (pdest
, FIRST_STACK_REG
);
1034 else if (STACK_REG_P (src
))
1036 /* Save from a stack reg to MEM, or possibly integer reg. Since
1037 only top of stack may be saved, emit an exchange first if
1040 emit_swap_insn (insn
, regstack
, src
);
1042 note
= find_regno_note (insn
, REG_DEAD
, REGNO (src
));
1045 replace_reg (&XEXP (note
, 0), FIRST_STACK_REG
);
1047 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (src
));
1049 else if ((GET_MODE (src
) == XFmode
)
1050 && regstack
->top
< REG_STACK_SIZE
- 1)
1052 /* A 387 cannot write an XFmode value to a MEM without
1053 clobbering the source reg. The output code can handle
1054 this by reading back the value from the MEM.
1055 But it is more efficient to use a temp register if one is
1056 available. Push the source value here if the register
1057 stack is not full, and then write the value to memory via
1060 rtx top_stack_reg
= FP_MODE_REG (FIRST_STACK_REG
, GET_MODE (src
));
1062 push_rtx
= gen_movxf (top_stack_reg
, top_stack_reg
);
1063 emit_insn_before (push_rtx
, insn
);
1064 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_DEAD
, top_stack_reg
,
1068 replace_reg (psrc
, FIRST_STACK_REG
);
1072 gcc_assert (STACK_REG_P (dest
));
1074 /* Load from MEM, or possibly integer REG or constant, into the
1075 stack regs. The actual target is always the top of the
1076 stack. The stack mapping is changed to reflect that DEST is
1077 now at top of stack. */
1079 /* The destination ought to be dead. */
1080 gcc_assert (get_hard_regnum (regstack
, dest
) < FIRST_STACK_REG
);
1082 gcc_assert (regstack
->top
< REG_STACK_SIZE
);
1084 regstack
->reg
[++regstack
->top
] = REGNO (dest
);
1085 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1086 replace_reg (pdest
, FIRST_STACK_REG
);
1089 return control_flow_insn_deleted
;
1092 /* A helper function which replaces INSN with a pattern that loads up
1093 a NaN into DEST, then invokes move_for_stack_reg. */
1096 move_nan_for_stack_reg (rtx insn
, stack regstack
, rtx dest
)
1100 dest
= FP_MODE_REG (REGNO (dest
), SFmode
);
1101 pat
= gen_rtx_SET (VOIDmode
, dest
, not_a_num
);
1102 PATTERN (insn
) = pat
;
1103 INSN_CODE (insn
) = -1;
1105 return move_for_stack_reg (insn
, regstack
, pat
);
1108 /* Swap the condition on a branch, if there is one. Return true if we
1109 found a condition to swap. False if the condition was not used as
1113 swap_rtx_condition_1 (rtx pat
)
1118 if (COMPARISON_P (pat
))
1120 PUT_CODE (pat
, swap_condition (GET_CODE (pat
)));
1125 fmt
= GET_RTX_FORMAT (GET_CODE (pat
));
1126 for (i
= GET_RTX_LENGTH (GET_CODE (pat
)) - 1; i
>= 0; i
--)
1132 for (j
= XVECLEN (pat
, i
) - 1; j
>= 0; j
--)
1133 r
|= swap_rtx_condition_1 (XVECEXP (pat
, i
, j
));
1135 else if (fmt
[i
] == 'e')
1136 r
|= swap_rtx_condition_1 (XEXP (pat
, i
));
1144 swap_rtx_condition (rtx insn
)
1146 rtx pat
= PATTERN (insn
);
1148 /* We're looking for a single set to cc0 or an HImode temporary. */
1150 if (GET_CODE (pat
) == SET
1151 && REG_P (SET_DEST (pat
))
1152 && REGNO (SET_DEST (pat
)) == FLAGS_REG
)
1154 insn
= next_flags_user (insn
);
1155 if (insn
== NULL_RTX
)
1157 pat
= PATTERN (insn
);
1160 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1161 with the cc value right now. We may be able to search for one
1164 if (GET_CODE (pat
) == SET
1165 && GET_CODE (SET_SRC (pat
)) == UNSPEC
1166 && XINT (SET_SRC (pat
), 1) == UNSPEC_FNSTSW
)
1168 rtx dest
= SET_DEST (pat
);
1170 /* Search forward looking for the first use of this value.
1171 Stop at block boundaries. */
1172 while (insn
!= BB_END (current_block
))
1174 insn
= NEXT_INSN (insn
);
1175 if (INSN_P (insn
) && reg_mentioned_p (dest
, insn
))
1181 /* We haven't found it. */
1182 if (insn
== BB_END (current_block
))
1185 /* So we've found the insn using this value. If it is anything
1186 other than sahf or the value does not die (meaning we'd have
1187 to search further), then we must give up. */
1188 pat
= PATTERN (insn
);
1189 if (GET_CODE (pat
) != SET
1190 || GET_CODE (SET_SRC (pat
)) != UNSPEC
1191 || XINT (SET_SRC (pat
), 1) != UNSPEC_SAHF
1192 || ! dead_or_set_p (insn
, dest
))
1195 /* Now we are prepared to handle this as a normal cc0 setter. */
1196 insn
= next_flags_user (insn
);
1197 if (insn
== NULL_RTX
)
1199 pat
= PATTERN (insn
);
1202 if (swap_rtx_condition_1 (pat
))
1205 INSN_CODE (insn
) = -1;
1206 if (recog_memoized (insn
) == -1)
1208 /* In case the flags don't die here, recurse to try fix
1209 following user too. */
1210 else if (! dead_or_set_p (insn
, ix86_flags_rtx
))
1212 insn
= next_flags_user (insn
);
1213 if (!insn
|| !swap_rtx_condition (insn
))
1218 swap_rtx_condition_1 (pat
);
1226 /* Handle a comparison. Special care needs to be taken to avoid
1227 causing comparisons that a 387 cannot do correctly, such as EQ.
1229 Also, a pop insn may need to be emitted. The 387 does have an
1230 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1231 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1235 compare_for_stack_reg (rtx insn
, stack regstack
, rtx pat_src
)
1238 rtx src1_note
, src2_note
;
1240 src1
= get_true_reg (&XEXP (pat_src
, 0));
1241 src2
= get_true_reg (&XEXP (pat_src
, 1));
1243 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1244 registers that die in this insn - move those to stack top first. */
1245 if ((! STACK_REG_P (*src1
)
1246 || (STACK_REG_P (*src2
)
1247 && get_hard_regnum (regstack
, *src2
) == FIRST_STACK_REG
))
1248 && swap_rtx_condition (insn
))
1251 temp
= XEXP (pat_src
, 0);
1252 XEXP (pat_src
, 0) = XEXP (pat_src
, 1);
1253 XEXP (pat_src
, 1) = temp
;
1255 src1
= get_true_reg (&XEXP (pat_src
, 0));
1256 src2
= get_true_reg (&XEXP (pat_src
, 1));
1258 INSN_CODE (insn
) = -1;
1261 /* We will fix any death note later. */
1263 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1265 if (STACK_REG_P (*src2
))
1266 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1268 src2_note
= NULL_RTX
;
1270 emit_swap_insn (insn
, regstack
, *src1
);
1272 replace_reg (src1
, FIRST_STACK_REG
);
1274 if (STACK_REG_P (*src2
))
1275 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1279 pop_stack (regstack
, REGNO (XEXP (src1_note
, 0)));
1280 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1283 /* If the second operand dies, handle that. But if the operands are
1284 the same stack register, don't bother, because only one death is
1285 needed, and it was just handled. */
1288 && ! (STACK_REG_P (*src1
) && STACK_REG_P (*src2
)
1289 && REGNO (*src1
) == REGNO (*src2
)))
1291 /* As a special case, two regs may die in this insn if src2 is
1292 next to top of stack and the top of stack also dies. Since
1293 we have already popped src1, "next to top of stack" is really
1294 at top (FIRST_STACK_REG) now. */
1296 if (get_hard_regnum (regstack
, XEXP (src2_note
, 0)) == FIRST_STACK_REG
1299 pop_stack (regstack
, REGNO (XEXP (src2_note
, 0)));
1300 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
+ 1);
1304 /* The 386 can only represent death of the first operand in
1305 the case handled above. In all other cases, emit a separate
1306 pop and remove the death note from here. */
1308 /* link_cc0_insns (insn); */
1310 remove_regno_note (insn
, REG_DEAD
, REGNO (XEXP (src2_note
, 0)));
1312 emit_pop_insn (insn
, regstack
, XEXP (src2_note
, 0),
1318 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1319 is the current register layout. Return whether a control flow insn
1320 was deleted in the process. */
1323 subst_stack_regs_pat (rtx insn
, stack regstack
, rtx pat
)
1326 bool control_flow_insn_deleted
= false;
1328 switch (GET_CODE (pat
))
1331 /* Deaths in USE insns can happen in non optimizing compilation.
1332 Handle them by popping the dying register. */
1333 src
= get_true_reg (&XEXP (pat
, 0));
1334 if (STACK_REG_P (*src
)
1335 && find_regno_note (insn
, REG_DEAD
, REGNO (*src
)))
1337 emit_pop_insn (insn
, regstack
, *src
, EMIT_AFTER
);
1338 return control_flow_insn_deleted
;
1340 /* ??? Uninitialized USE should not happen. */
1342 gcc_assert (get_hard_regnum (regstack
, *src
) != -1);
1349 dest
= get_true_reg (&XEXP (pat
, 0));
1350 if (STACK_REG_P (*dest
))
1352 note
= find_reg_note (insn
, REG_DEAD
, *dest
);
1354 if (pat
!= PATTERN (insn
))
1356 /* The fix_truncdi_1 pattern wants to be able to allocate
1357 its own scratch register. It does this by clobbering
1358 an fp reg so that it is assured of an empty reg-stack
1359 register. If the register is live, kill it now.
1360 Remove the DEAD/UNUSED note so we don't try to kill it
1364 emit_pop_insn (insn
, regstack
, *dest
, EMIT_BEFORE
);
1367 note
= find_reg_note (insn
, REG_UNUSED
, *dest
);
1370 remove_note (insn
, note
);
1371 replace_reg (dest
, FIRST_STACK_REG
+ 1);
1375 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1376 indicates an uninitialized value. Because reload removed
1377 all other clobbers, this must be due to a function
1378 returning without a value. Load up a NaN. */
1383 if (COMPLEX_MODE_P (GET_MODE (t
)))
1385 rtx u
= FP_MODE_REG (REGNO (t
) + 1, SFmode
);
1386 if (get_hard_regnum (regstack
, u
) == -1)
1388 rtx pat2
= gen_rtx_CLOBBER (VOIDmode
, u
);
1389 rtx insn2
= emit_insn_before (pat2
, insn
);
1390 control_flow_insn_deleted
1391 |= move_nan_for_stack_reg (insn2
, regstack
, u
);
1394 if (get_hard_regnum (regstack
, t
) == -1)
1395 control_flow_insn_deleted
1396 |= move_nan_for_stack_reg (insn
, regstack
, t
);
1405 rtx
*src1
= (rtx
*) 0, *src2
;
1406 rtx src1_note
, src2_note
;
1409 dest
= get_true_reg (&SET_DEST (pat
));
1410 src
= get_true_reg (&SET_SRC (pat
));
1411 pat_src
= SET_SRC (pat
);
1413 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1414 if (STACK_REG_P (*src
)
1415 || (STACK_REG_P (*dest
)
1416 && (REG_P (*src
) || MEM_P (*src
)
1417 || GET_CODE (*src
) == CONST_DOUBLE
)))
1419 control_flow_insn_deleted
|= move_for_stack_reg (insn
, regstack
, pat
);
1423 switch (GET_CODE (pat_src
))
1426 compare_for_stack_reg (insn
, regstack
, pat_src
);
1432 for (count
= hard_regno_nregs
[REGNO (*dest
)][GET_MODE (*dest
)];
1435 regstack
->reg
[++regstack
->top
] = REGNO (*dest
) + count
;
1436 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
) + count
);
1439 replace_reg (dest
, FIRST_STACK_REG
);
1443 /* This is a `tstM2' case. */
1444 gcc_assert (*dest
== cc0_rtx
);
1449 case FLOAT_TRUNCATE
:
1453 /* These insns only operate on the top of the stack. DEST might
1454 be cc0_rtx if we're processing a tstM pattern. Also, it's
1455 possible that the tstM case results in a REG_DEAD note on the
1459 src1
= get_true_reg (&XEXP (pat_src
, 0));
1461 emit_swap_insn (insn
, regstack
, *src1
);
1463 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1465 if (STACK_REG_P (*dest
))
1466 replace_reg (dest
, FIRST_STACK_REG
);
1470 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1472 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src1
));
1475 replace_reg (src1
, FIRST_STACK_REG
);
1480 /* On i386, reversed forms of subM3 and divM3 exist for
1481 MODE_FLOAT, so the same code that works for addM3 and mulM3
1485 /* These insns can accept the top of stack as a destination
1486 from a stack reg or mem, or can use the top of stack as a
1487 source and some other stack register (possibly top of stack)
1488 as a destination. */
1490 src1
= get_true_reg (&XEXP (pat_src
, 0));
1491 src2
= get_true_reg (&XEXP (pat_src
, 1));
1493 /* We will fix any death note later. */
1495 if (STACK_REG_P (*src1
))
1496 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1498 src1_note
= NULL_RTX
;
1499 if (STACK_REG_P (*src2
))
1500 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1502 src2_note
= NULL_RTX
;
1504 /* If either operand is not a stack register, then the dest
1505 must be top of stack. */
1507 if (! STACK_REG_P (*src1
) || ! STACK_REG_P (*src2
))
1508 emit_swap_insn (insn
, regstack
, *dest
);
1511 /* Both operands are REG. If neither operand is already
1512 at the top of stack, choose to make the one that is the dest
1513 the new top of stack. */
1515 int src1_hard_regnum
, src2_hard_regnum
;
1517 src1_hard_regnum
= get_hard_regnum (regstack
, *src1
);
1518 src2_hard_regnum
= get_hard_regnum (regstack
, *src2
);
1519 gcc_assert (src1_hard_regnum
!= -1);
1520 gcc_assert (src2_hard_regnum
!= -1);
1522 if (src1_hard_regnum
!= FIRST_STACK_REG
1523 && src2_hard_regnum
!= FIRST_STACK_REG
)
1524 emit_swap_insn (insn
, regstack
, *dest
);
1527 if (STACK_REG_P (*src1
))
1528 replace_reg (src1
, get_hard_regnum (regstack
, *src1
));
1529 if (STACK_REG_P (*src2
))
1530 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1534 rtx src1_reg
= XEXP (src1_note
, 0);
1536 /* If the register that dies is at the top of stack, then
1537 the destination is somewhere else - merely substitute it.
1538 But if the reg that dies is not at top of stack, then
1539 move the top of stack to the dead reg, as though we had
1540 done the insn and then a store-with-pop. */
1542 if (REGNO (src1_reg
) == regstack
->reg
[regstack
->top
])
1544 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1545 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1549 int regno
= get_hard_regnum (regstack
, src1_reg
);
1551 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1552 replace_reg (dest
, regno
);
1554 regstack
->reg
[regstack
->top
- (regno
- FIRST_STACK_REG
)]
1555 = regstack
->reg
[regstack
->top
];
1558 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1559 REGNO (XEXP (src1_note
, 0)));
1560 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1565 rtx src2_reg
= XEXP (src2_note
, 0);
1566 if (REGNO (src2_reg
) == regstack
->reg
[regstack
->top
])
1568 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1569 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1573 int regno
= get_hard_regnum (regstack
, src2_reg
);
1575 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1576 replace_reg (dest
, regno
);
1578 regstack
->reg
[regstack
->top
- (regno
- FIRST_STACK_REG
)]
1579 = regstack
->reg
[regstack
->top
];
1582 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1583 REGNO (XEXP (src2_note
, 0)));
1584 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
);
1589 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1590 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1593 /* Keep operand 1 matching with destination. */
1594 if (COMMUTATIVE_ARITH_P (pat_src
)
1595 && REG_P (*src1
) && REG_P (*src2
)
1596 && REGNO (*src1
) != REGNO (*dest
))
1598 int tmp
= REGNO (*src1
);
1599 replace_reg (src1
, REGNO (*src2
));
1600 replace_reg (src2
, tmp
);
1605 switch (XINT (pat_src
, 1))
1609 case UNSPEC_FIST_FLOOR
:
1610 case UNSPEC_FIST_CEIL
:
1612 /* These insns only operate on the top of the stack. */
1614 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1615 emit_swap_insn (insn
, regstack
, *src1
);
1617 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1619 if (STACK_REG_P (*dest
))
1620 replace_reg (dest
, FIRST_STACK_REG
);
1624 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1626 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src1
));
1629 replace_reg (src1
, FIRST_STACK_REG
);
1634 case UNSPEC_FRNDINT
:
1637 case UNSPEC_FRNDINT_FLOOR
:
1638 case UNSPEC_FRNDINT_CEIL
:
1639 case UNSPEC_FRNDINT_TRUNC
:
1640 case UNSPEC_FRNDINT_MASK_PM
:
1642 /* These insns only operate on the top of the stack. */
1644 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1646 emit_swap_insn (insn
, regstack
, *src1
);
1648 /* Input should never die, it is
1649 replaced with output. */
1650 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1651 gcc_assert (!src1_note
);
1653 if (STACK_REG_P (*dest
))
1654 replace_reg (dest
, FIRST_STACK_REG
);
1656 replace_reg (src1
, FIRST_STACK_REG
);
1661 case UNSPEC_FYL2XP1
:
1662 /* These insns operate on the top two stack slots. */
1664 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1665 src2
= get_true_reg (&XVECEXP (pat_src
, 0, 1));
1667 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1668 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1670 swap_to_top (insn
, regstack
, *src1
, *src2
);
1672 replace_reg (src1
, FIRST_STACK_REG
);
1673 replace_reg (src2
, FIRST_STACK_REG
+ 1);
1676 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1678 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
+ 1);
1680 /* Pop both input operands from the stack. */
1681 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1682 regstack
->reg
[regstack
->top
]);
1683 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1684 regstack
->reg
[regstack
->top
- 1]);
1687 /* Push the result back onto the stack. */
1688 regstack
->reg
[++regstack
->top
] = REGNO (*dest
);
1689 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1690 replace_reg (dest
, FIRST_STACK_REG
);
1693 case UNSPEC_FSCALE_FRACT
:
1694 case UNSPEC_FPREM_F
:
1695 case UNSPEC_FPREM1_F
:
1696 /* These insns operate on the top two stack slots.
1697 first part of double input, double output insn. */
1699 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1700 src2
= get_true_reg (&XVECEXP (pat_src
, 0, 1));
1702 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1703 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1705 /* Inputs should never die, they are
1706 replaced with outputs. */
1707 gcc_assert (!src1_note
);
1708 gcc_assert (!src2_note
);
1710 swap_to_top (insn
, regstack
, *src1
, *src2
);
1712 /* Push the result back onto stack. Empty stack slot
1713 will be filled in second part of insn. */
1714 if (STACK_REG_P (*dest
)) {
1715 regstack
->reg
[regstack
->top
] = REGNO (*dest
);
1716 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1717 replace_reg (dest
, FIRST_STACK_REG
);
1720 replace_reg (src1
, FIRST_STACK_REG
);
1721 replace_reg (src2
, FIRST_STACK_REG
+ 1);
1724 case UNSPEC_FSCALE_EXP
:
1725 case UNSPEC_FPREM_U
:
1726 case UNSPEC_FPREM1_U
:
1727 /* These insns operate on the top two stack slots./
1728 second part of double input, double output insn. */
1730 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1731 src2
= get_true_reg (&XVECEXP (pat_src
, 0, 1));
1733 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1734 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1736 /* Inputs should never die, they are
1737 replaced with outputs. */
1738 gcc_assert (!src1_note
);
1739 gcc_assert (!src2_note
);
1741 swap_to_top (insn
, regstack
, *src1
, *src2
);
1743 /* Push the result back onto stack. Fill empty slot from
1744 first part of insn and fix top of stack pointer. */
1745 if (STACK_REG_P (*dest
)) {
1746 regstack
->reg
[regstack
->top
- 1] = REGNO (*dest
);
1747 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1748 replace_reg (dest
, FIRST_STACK_REG
+ 1);
1751 replace_reg (src1
, FIRST_STACK_REG
);
1752 replace_reg (src2
, FIRST_STACK_REG
+ 1);
1755 case UNSPEC_SINCOS_COS
:
1756 case UNSPEC_TAN_ONE
:
1757 case UNSPEC_XTRACT_FRACT
:
1758 /* These insns operate on the top two stack slots,
1759 first part of one input, double output insn. */
1761 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1763 emit_swap_insn (insn
, regstack
, *src1
);
1765 /* Input should never die, it is
1766 replaced with output. */
1767 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1768 gcc_assert (!src1_note
);
1770 /* Push the result back onto stack. Empty stack slot
1771 will be filled in second part of insn. */
1772 if (STACK_REG_P (*dest
)) {
1773 regstack
->reg
[regstack
->top
+ 1] = REGNO (*dest
);
1774 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1775 replace_reg (dest
, FIRST_STACK_REG
);
1778 replace_reg (src1
, FIRST_STACK_REG
);
1781 case UNSPEC_SINCOS_SIN
:
1782 case UNSPEC_TAN_TAN
:
1783 case UNSPEC_XTRACT_EXP
:
1784 /* These insns operate on the top two stack slots,
1785 second part of one input, double output insn. */
1787 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1789 emit_swap_insn (insn
, regstack
, *src1
);
1791 /* Input should never die, it is
1792 replaced with output. */
1793 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1794 gcc_assert (!src1_note
);
1796 /* Push the result back onto stack. Fill empty slot from
1797 first part of insn and fix top of stack pointer. */
1798 if (STACK_REG_P (*dest
)) {
1799 regstack
->reg
[regstack
->top
] = REGNO (*dest
);
1800 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1801 replace_reg (dest
, FIRST_STACK_REG
+ 1);
1806 replace_reg (src1
, FIRST_STACK_REG
);
1810 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1811 The combination matches the PPRO fcomi instruction. */
1813 pat_src
= XVECEXP (pat_src
, 0, 0);
1814 gcc_assert (GET_CODE (pat_src
) == UNSPEC
);
1815 gcc_assert (XINT (pat_src
, 1) == UNSPEC_FNSTSW
);
1819 /* Combined fcomp+fnstsw generated for doing well with
1820 CSE. When optimizing this would have been broken
1823 pat_src
= XVECEXP (pat_src
, 0, 0);
1824 gcc_assert (GET_CODE (pat_src
) == COMPARE
);
1826 compare_for_stack_reg (insn
, regstack
, pat_src
);
1835 /* This insn requires the top of stack to be the destination. */
1837 src1
= get_true_reg (&XEXP (pat_src
, 1));
1838 src2
= get_true_reg (&XEXP (pat_src
, 2));
1840 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1841 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1843 /* If the comparison operator is an FP comparison operator,
1844 it is handled correctly by compare_for_stack_reg () who
1845 will move the destination to the top of stack. But if the
1846 comparison operator is not an FP comparison operator, we
1847 have to handle it here. */
1848 if (get_hard_regnum (regstack
, *dest
) >= FIRST_STACK_REG
1849 && REGNO (*dest
) != regstack
->reg
[regstack
->top
])
1851 /* In case one of operands is the top of stack and the operands
1852 dies, it is safe to make it the destination operand by
1853 reversing the direction of cmove and avoid fxch. */
1854 if ((REGNO (*src1
) == regstack
->reg
[regstack
->top
]
1856 || (REGNO (*src2
) == regstack
->reg
[regstack
->top
]
1859 int idx1
= (get_hard_regnum (regstack
, *src1
)
1861 int idx2
= (get_hard_regnum (regstack
, *src2
)
1864 /* Make reg-stack believe that the operands are already
1865 swapped on the stack */
1866 regstack
->reg
[regstack
->top
- idx1
] = REGNO (*src2
);
1867 regstack
->reg
[regstack
->top
- idx2
] = REGNO (*src1
);
1869 /* Reverse condition to compensate the operand swap.
1870 i386 do have comparison always reversible. */
1871 PUT_CODE (XEXP (pat_src
, 0),
1872 reversed_comparison_code (XEXP (pat_src
, 0), insn
));
1875 emit_swap_insn (insn
, regstack
, *dest
);
1883 src_note
[1] = src1_note
;
1884 src_note
[2] = src2_note
;
1886 if (STACK_REG_P (*src1
))
1887 replace_reg (src1
, get_hard_regnum (regstack
, *src1
));
1888 if (STACK_REG_P (*src2
))
1889 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1891 for (i
= 1; i
<= 2; i
++)
1894 int regno
= REGNO (XEXP (src_note
[i
], 0));
1896 /* If the register that dies is not at the top of
1897 stack, then move the top of stack to the dead reg.
1898 Top of stack should never die, as it is the
1900 gcc_assert (regno
!= regstack
->reg
[regstack
->top
]);
1901 remove_regno_note (insn
, REG_DEAD
, regno
);
1902 emit_pop_insn (insn
, regstack
, XEXP (src_note
[i
], 0),
1907 /* Make dest the top of stack. Add dest to regstack if
1909 if (get_hard_regnum (regstack
, *dest
) < FIRST_STACK_REG
)
1910 regstack
->reg
[++regstack
->top
] = REGNO (*dest
);
1911 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1912 replace_reg (dest
, FIRST_STACK_REG
);
1925 return control_flow_insn_deleted
;
1928 /* Substitute hard regnums for any stack regs in INSN, which has
1929 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1930 before the insn, and is updated with changes made here.
1932 There are several requirements and assumptions about the use of
1933 stack-like regs in asm statements. These rules are enforced by
1934 record_asm_stack_regs; see comments there for details. Any
1935 asm_operands left in the RTL at this point may be assume to meet the
1936 requirements, since record_asm_stack_regs removes any problem asm. */
1939 subst_asm_stack_regs (rtx insn
, stack regstack
)
1941 rtx body
= PATTERN (insn
);
1944 rtx
*note_reg
; /* Array of note contents */
1945 rtx
**note_loc
; /* Address of REG field of each note */
1946 enum reg_note
*note_kind
; /* The type of each note */
1948 rtx
*clobber_reg
= 0;
1949 rtx
**clobber_loc
= 0;
1951 struct stack_def temp_stack
;
1956 int n_inputs
, n_outputs
;
1958 if (! check_asm_stack_operands (insn
))
1961 /* Find out what the constraints required. If no constraint
1962 alternative matches, that is a compiler bug: we should have caught
1963 such an insn in check_asm_stack_operands. */
1964 extract_insn (insn
);
1965 constrain_operands (1);
1966 alt
= which_alternative
;
1968 preprocess_constraints ();
1970 n_inputs
= get_asm_operand_n_inputs (body
);
1971 n_outputs
= recog_data
.n_operands
- n_inputs
;
1973 gcc_assert (alt
>= 0);
1975 /* Strip SUBREGs here to make the following code simpler. */
1976 for (i
= 0; i
< recog_data
.n_operands
; i
++)
1977 if (GET_CODE (recog_data
.operand
[i
]) == SUBREG
1978 && REG_P (SUBREG_REG (recog_data
.operand
[i
])))
1980 recog_data
.operand_loc
[i
] = & SUBREG_REG (recog_data
.operand
[i
]);
1981 recog_data
.operand
[i
] = SUBREG_REG (recog_data
.operand
[i
]);
1984 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
1986 for (i
= 0, note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1989 note_reg
= alloca (i
* sizeof (rtx
));
1990 note_loc
= alloca (i
* sizeof (rtx
*));
1991 note_kind
= alloca (i
* sizeof (enum reg_note
));
1994 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1996 rtx reg
= XEXP (note
, 0);
1997 rtx
*loc
= & XEXP (note
, 0);
1999 if (GET_CODE (reg
) == SUBREG
&& REG_P (SUBREG_REG (reg
)))
2001 loc
= & SUBREG_REG (reg
);
2002 reg
= SUBREG_REG (reg
);
2005 if (STACK_REG_P (reg
)
2006 && (REG_NOTE_KIND (note
) == REG_DEAD
2007 || REG_NOTE_KIND (note
) == REG_UNUSED
))
2009 note_reg
[n_notes
] = reg
;
2010 note_loc
[n_notes
] = loc
;
2011 note_kind
[n_notes
] = REG_NOTE_KIND (note
);
2016 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2020 if (GET_CODE (body
) == PARALLEL
)
2022 clobber_reg
= alloca (XVECLEN (body
, 0) * sizeof (rtx
));
2023 clobber_loc
= alloca (XVECLEN (body
, 0) * sizeof (rtx
*));
2025 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
2026 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
2028 rtx clobber
= XVECEXP (body
, 0, i
);
2029 rtx reg
= XEXP (clobber
, 0);
2030 rtx
*loc
= & XEXP (clobber
, 0);
2032 if (GET_CODE (reg
) == SUBREG
&& REG_P (SUBREG_REG (reg
)))
2034 loc
= & SUBREG_REG (reg
);
2035 reg
= SUBREG_REG (reg
);
2038 if (STACK_REG_P (reg
))
2040 clobber_reg
[n_clobbers
] = reg
;
2041 clobber_loc
[n_clobbers
] = loc
;
2047 temp_stack
= *regstack
;
2049 /* Put the input regs into the desired place in TEMP_STACK. */
2051 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2052 if (STACK_REG_P (recog_data
.operand
[i
])
2053 && reg_class_subset_p (recog_op_alt
[i
][alt
].cl
,
2055 && recog_op_alt
[i
][alt
].cl
!= FLOAT_REGS
)
2057 /* If an operand needs to be in a particular reg in
2058 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2059 these constraints are for single register classes, and
2060 reload guaranteed that operand[i] is already in that class,
2061 we can just use REGNO (recog_data.operand[i]) to know which
2062 actual reg this operand needs to be in. */
2064 int regno
= get_hard_regnum (&temp_stack
, recog_data
.operand
[i
]);
2066 gcc_assert (regno
>= 0);
2068 if ((unsigned int) regno
!= REGNO (recog_data
.operand
[i
]))
2070 /* recog_data.operand[i] is not in the right place. Find
2071 it and swap it with whatever is already in I's place.
2072 K is where recog_data.operand[i] is now. J is where it
2076 k
= temp_stack
.top
- (regno
- FIRST_STACK_REG
);
2078 - (REGNO (recog_data
.operand
[i
]) - FIRST_STACK_REG
));
2080 temp
= temp_stack
.reg
[k
];
2081 temp_stack
.reg
[k
] = temp_stack
.reg
[j
];
2082 temp_stack
.reg
[j
] = temp
;
2086 /* Emit insns before INSN to make sure the reg-stack is in the right
2089 change_stack (insn
, regstack
, &temp_stack
, EMIT_BEFORE
);
2091 /* Make the needed input register substitutions. Do death notes and
2092 clobbers too, because these are for inputs, not outputs. */
2094 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2095 if (STACK_REG_P (recog_data
.operand
[i
]))
2097 int regnum
= get_hard_regnum (regstack
, recog_data
.operand
[i
]);
2099 gcc_assert (regnum
>= 0);
2101 replace_reg (recog_data
.operand_loc
[i
], regnum
);
2104 for (i
= 0; i
< n_notes
; i
++)
2105 if (note_kind
[i
] == REG_DEAD
)
2107 int regnum
= get_hard_regnum (regstack
, note_reg
[i
]);
2109 gcc_assert (regnum
>= 0);
2111 replace_reg (note_loc
[i
], regnum
);
2114 for (i
= 0; i
< n_clobbers
; i
++)
2116 /* It's OK for a CLOBBER to reference a reg that is not live.
2117 Don't try to replace it in that case. */
2118 int regnum
= get_hard_regnum (regstack
, clobber_reg
[i
]);
2122 /* Sigh - clobbers always have QImode. But replace_reg knows
2123 that these regs can't be MODE_INT and will assert. Just put
2124 the right reg there without calling replace_reg. */
2126 *clobber_loc
[i
] = FP_MODE_REG (regnum
, DFmode
);
2130 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2132 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2133 if (STACK_REG_P (recog_data
.operand
[i
]))
2135 /* An input reg is implicitly popped if it is tied to an
2136 output, or if there is a CLOBBER for it. */
2139 for (j
= 0; j
< n_clobbers
; j
++)
2140 if (operands_match_p (clobber_reg
[j
], recog_data
.operand
[i
]))
2143 if (j
< n_clobbers
|| recog_op_alt
[i
][alt
].matches
>= 0)
2145 /* recog_data.operand[i] might not be at the top of stack.
2146 But that's OK, because all we need to do is pop the
2147 right number of regs off of the top of the reg-stack.
2148 record_asm_stack_regs guaranteed that all implicitly
2149 popped regs were grouped at the top of the reg-stack. */
2151 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
2152 regstack
->reg
[regstack
->top
]);
2157 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2158 Note that there isn't any need to substitute register numbers.
2159 ??? Explain why this is true. */
2161 for (i
= LAST_STACK_REG
; i
>= FIRST_STACK_REG
; i
--)
2163 /* See if there is an output for this hard reg. */
2166 for (j
= 0; j
< n_outputs
; j
++)
2167 if (STACK_REG_P (recog_data
.operand
[j
])
2168 && REGNO (recog_data
.operand
[j
]) == (unsigned) i
)
2170 regstack
->reg
[++regstack
->top
] = i
;
2171 SET_HARD_REG_BIT (regstack
->reg_set
, i
);
2176 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2177 input that the asm didn't implicitly pop. If the asm didn't
2178 implicitly pop an input reg, that reg will still be live.
2180 Note that we can't use find_regno_note here: the register numbers
2181 in the death notes have already been substituted. */
2183 for (i
= 0; i
< n_outputs
; i
++)
2184 if (STACK_REG_P (recog_data
.operand
[i
]))
2188 for (j
= 0; j
< n_notes
; j
++)
2189 if (REGNO (recog_data
.operand
[i
]) == REGNO (note_reg
[j
])
2190 && note_kind
[j
] == REG_UNUSED
)
2192 insn
= emit_pop_insn (insn
, regstack
, recog_data
.operand
[i
],
2198 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2199 if (STACK_REG_P (recog_data
.operand
[i
]))
2203 for (j
= 0; j
< n_notes
; j
++)
2204 if (REGNO (recog_data
.operand
[i
]) == REGNO (note_reg
[j
])
2205 && note_kind
[j
] == REG_DEAD
2206 && TEST_HARD_REG_BIT (regstack
->reg_set
,
2207 REGNO (recog_data
.operand
[i
])))
2209 insn
= emit_pop_insn (insn
, regstack
, recog_data
.operand
[i
],
2216 /* Substitute stack hard reg numbers for stack virtual registers in
2217 INSN. Non-stack register numbers are not changed. REGSTACK is the
2218 current stack content. Insns may be emitted as needed to arrange the
2219 stack for the 387 based on the contents of the insn. Return whether
2220 a control flow insn was deleted in the process. */
2223 subst_stack_regs (rtx insn
, stack regstack
)
2225 rtx
*note_link
, note
;
2226 bool control_flow_insn_deleted
= false;
2231 int top
= regstack
->top
;
2233 /* If there are any floating point parameters to be passed in
2234 registers for this call, make sure they are in the right
2239 straighten_stack (insn
, regstack
);
2241 /* Now mark the arguments as dead after the call. */
2243 while (regstack
->top
>= 0)
2245 CLEAR_HARD_REG_BIT (regstack
->reg_set
, FIRST_STACK_REG
+ regstack
->top
);
2251 /* Do the actual substitution if any stack regs are mentioned.
2252 Since we only record whether entire insn mentions stack regs, and
2253 subst_stack_regs_pat only works for patterns that contain stack regs,
2254 we must check each pattern in a parallel here. A call_value_pop could
2257 if (stack_regs_mentioned (insn
))
2259 int n_operands
= asm_noperands (PATTERN (insn
));
2260 if (n_operands
>= 0)
2262 /* This insn is an `asm' with operands. Decode the operands,
2263 decide how many are inputs, and do register substitution.
2264 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2266 subst_asm_stack_regs (insn
, regstack
);
2267 return control_flow_insn_deleted
;
2270 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
2271 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
2273 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn
), 0, i
)))
2275 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == CLOBBER
)
2276 XVECEXP (PATTERN (insn
), 0, i
)
2277 = shallow_copy_rtx (XVECEXP (PATTERN (insn
), 0, i
));
2278 control_flow_insn_deleted
2279 |= subst_stack_regs_pat (insn
, regstack
,
2280 XVECEXP (PATTERN (insn
), 0, i
));
2284 control_flow_insn_deleted
2285 |= subst_stack_regs_pat (insn
, regstack
, PATTERN (insn
));
2288 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2289 REG_UNUSED will already have been dealt with, so just return. */
2291 if (NOTE_P (insn
) || INSN_DELETED_P (insn
))
2292 return control_flow_insn_deleted
;
2294 /* If this a noreturn call, we can't insert pop insns after it.
2295 Instead, reset the stack state to empty. */
2297 && find_reg_note (insn
, REG_NORETURN
, NULL
))
2300 CLEAR_HARD_REG_SET (regstack
->reg_set
);
2301 return control_flow_insn_deleted
;
2304 /* If there is a REG_UNUSED note on a stack register on this insn,
2305 the indicated reg must be popped. The REG_UNUSED note is removed,
2306 since the form of the newly emitted pop insn references the reg,
2307 making it no longer `unset'. */
2309 note_link
= ®_NOTES (insn
);
2310 for (note
= *note_link
; note
; note
= XEXP (note
, 1))
2311 if (REG_NOTE_KIND (note
) == REG_UNUSED
&& STACK_REG_P (XEXP (note
, 0)))
2313 *note_link
= XEXP (note
, 1);
2314 insn
= emit_pop_insn (insn
, regstack
, XEXP (note
, 0), EMIT_AFTER
);
2317 note_link
= &XEXP (note
, 1);
2319 return control_flow_insn_deleted
;
2322 /* Change the organization of the stack so that it fits a new basic
2323 block. Some registers might have to be popped, but there can never be
2324 a register live in the new block that is not now live.
2326 Insert any needed insns before or after INSN, as indicated by
2327 WHERE. OLD is the original stack layout, and NEW is the desired
2328 form. OLD is updated to reflect the code emitted, i.e., it will be
2329 the same as NEW upon return.
2331 This function will not preserve block_end[]. But that information
2332 is no longer needed once this has executed. */
2335 change_stack (rtx insn
, stack old
, stack
new, enum emit_where where
)
2340 /* Stack adjustments for the first insn in a block update the
2341 current_block's stack_in instead of inserting insns directly.
2342 compensate_edges will add the necessary code later. */
2345 && where
== EMIT_BEFORE
)
2347 BLOCK_INFO (current_block
)->stack_in
= *new;
2348 starting_stack_p
= false;
2353 /* We will be inserting new insns "backwards". If we are to insert
2354 after INSN, find the next insn, and insert before it. */
2356 if (where
== EMIT_AFTER
)
2358 if (current_block
&& BB_END (current_block
) == insn
)
2360 insn
= NEXT_INSN (insn
);
2363 /* Pop any registers that are not needed in the new block. */
2365 /* If the destination block's stack already has a specified layout
2366 and contains two or more registers, use a more intelligent algorithm
2367 to pop registers that minimizes the number number of fxchs below. */
2370 bool slots
[REG_STACK_SIZE
];
2371 int pops
[REG_STACK_SIZE
];
2372 int next
, dest
, topsrc
;
2374 /* First pass to determine the free slots. */
2375 for (reg
= 0; reg
<= new->top
; reg
++)
2376 slots
[reg
] = TEST_HARD_REG_BIT (new->reg_set
, old
->reg
[reg
]);
2378 /* Second pass to allocate preferred slots. */
2380 for (reg
= old
->top
; reg
> new->top
; reg
--)
2381 if (TEST_HARD_REG_BIT (new->reg_set
, old
->reg
[reg
]))
2384 for (next
= 0; next
<= new->top
; next
++)
2385 if (!slots
[next
] && new->reg
[next
] == old
->reg
[reg
])
2387 /* If this is a preference for the new top of stack, record
2388 the fact by remembering it's old->reg in topsrc. */
2389 if (next
== new->top
)
2400 /* Intentionally, avoid placing the top of stack in it's correct
2401 location, if we still need to permute the stack below and we
2402 can usefully place it somewhere else. This is the case if any
2403 slot is still unallocated, in which case we should place the
2404 top of stack there. */
2406 for (reg
= 0; reg
< new->top
; reg
++)
2410 slots
[new->top
] = false;
2415 /* Third pass allocates remaining slots and emits pop insns. */
2417 for (reg
= old
->top
; reg
> new->top
; reg
--)
2422 /* Find next free slot. */
2427 emit_pop_insn (insn
, old
, FP_MODE_REG (old
->reg
[dest
], DFmode
),
2433 /* The following loop attempts to maximize the number of times we
2434 pop the top of the stack, as this permits the use of the faster
2435 ffreep instruction on platforms that support it. */
2439 for (reg
= 0; reg
<= old
->top
; reg
++)
2440 if (TEST_HARD_REG_BIT (new->reg_set
, old
->reg
[reg
]))
2444 while (old
->top
>= live
)
2445 if (TEST_HARD_REG_BIT (new->reg_set
, old
->reg
[old
->top
]))
2447 while (TEST_HARD_REG_BIT (new->reg_set
, old
->reg
[next
]))
2449 emit_pop_insn (insn
, old
, FP_MODE_REG (old
->reg
[next
], DFmode
),
2453 emit_pop_insn (insn
, old
, FP_MODE_REG (old
->reg
[old
->top
], DFmode
),
2459 /* If the new block has never been processed, then it can inherit
2460 the old stack order. */
2462 new->top
= old
->top
;
2463 memcpy (new->reg
, old
->reg
, sizeof (new->reg
));
2467 /* This block has been entered before, and we must match the
2468 previously selected stack order. */
2470 /* By now, the only difference should be the order of the stack,
2471 not their depth or liveliness. */
2473 GO_IF_HARD_REG_EQUAL (old
->reg_set
, new->reg_set
, win
);
2476 gcc_assert (old
->top
== new->top
);
2478 /* If the stack is not empty (new->top != -1), loop here emitting
2479 swaps until the stack is correct.
2481 The worst case number of swaps emitted is N + 2, where N is the
2482 depth of the stack. In some cases, the reg at the top of
2483 stack may be correct, but swapped anyway in order to fix
2484 other regs. But since we never swap any other reg away from
2485 its correct slot, this algorithm will converge. */
2490 /* Swap the reg at top of stack into the position it is
2491 supposed to be in, until the correct top of stack appears. */
2493 while (old
->reg
[old
->top
] != new->reg
[new->top
])
2495 for (reg
= new->top
; reg
>= 0; reg
--)
2496 if (new->reg
[reg
] == old
->reg
[old
->top
])
2499 gcc_assert (reg
!= -1);
2501 emit_swap_insn (insn
, old
,
2502 FP_MODE_REG (old
->reg
[reg
], DFmode
));
2505 /* See if any regs remain incorrect. If so, bring an
2506 incorrect reg to the top of stack, and let the while loop
2509 for (reg
= new->top
; reg
>= 0; reg
--)
2510 if (new->reg
[reg
] != old
->reg
[reg
])
2512 emit_swap_insn (insn
, old
,
2513 FP_MODE_REG (old
->reg
[reg
], DFmode
));
2518 /* At this point there must be no differences. */
2520 for (reg
= old
->top
; reg
>= 0; reg
--)
2521 gcc_assert (old
->reg
[reg
] == new->reg
[reg
]);
2525 BB_END (current_block
) = PREV_INSN (insn
);
2528 /* Print stack configuration. */
2531 print_stack (FILE *file
, stack s
)
2537 fprintf (file
, "uninitialized\n");
2538 else if (s
->top
== -1)
2539 fprintf (file
, "empty\n");
2544 for (i
= 0; i
<= s
->top
; ++i
)
2545 fprintf (file
, "%d ", s
->reg
[i
]);
2546 fputs ("]\n", file
);
2550 /* This function was doing life analysis. We now let the regular live
2551 code do it's job, so we only need to check some extra invariants
2552 that reg-stack expects. Primary among these being that all registers
2553 are initialized before use.
2555 The function returns true when code was emitted to CFG edges and
2556 commit_edge_insertions needs to be called. */
2559 convert_regs_entry (void)
2565 /* Load something into each stack register live at function entry.
2566 Such live registers can be caused by uninitialized variables or
2567 functions not returning values on all paths. In order to keep
2568 the push/pop code happy, and to not scrog the register stack, we
2569 must put something in these registers. Use a QNaN.
2571 Note that we are inserting converted code here. This code is
2572 never seen by the convert_regs pass. */
2574 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
2576 basic_block block
= e
->dest
;
2577 block_info bi
= BLOCK_INFO (block
);
2580 for (reg
= LAST_STACK_REG
; reg
>= FIRST_STACK_REG
; --reg
)
2581 if (TEST_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
))
2585 bi
->stack_in
.reg
[++top
] = reg
;
2587 init
= gen_rtx_SET (VOIDmode
,
2588 FP_MODE_REG (FIRST_STACK_REG
, SFmode
),
2590 insert_insn_on_edge (init
, e
);
2594 bi
->stack_in
.top
= top
;
2600 /* Construct the desired stack for function exit. This will either
2601 be `empty', or the function return value at top-of-stack. */
2604 convert_regs_exit (void)
2606 int value_reg_low
, value_reg_high
;
2610 retvalue
= stack_result (current_function_decl
);
2611 value_reg_low
= value_reg_high
= -1;
2614 value_reg_low
= REGNO (retvalue
);
2615 value_reg_high
= value_reg_low
2616 + hard_regno_nregs
[value_reg_low
][GET_MODE (retvalue
)] - 1;
2619 output_stack
= &BLOCK_INFO (EXIT_BLOCK_PTR
)->stack_in
;
2620 if (value_reg_low
== -1)
2621 output_stack
->top
= -1;
2626 output_stack
->top
= value_reg_high
- value_reg_low
;
2627 for (reg
= value_reg_low
; reg
<= value_reg_high
; ++reg
)
2629 output_stack
->reg
[value_reg_high
- reg
] = reg
;
2630 SET_HARD_REG_BIT (output_stack
->reg_set
, reg
);
2635 /* Copy the stack info from the end of edge E's source block to the
2636 start of E's destination block. */
2639 propagate_stack (edge e
)
2641 stack src_stack
= &BLOCK_INFO (e
->src
)->stack_out
;
2642 stack dest_stack
= &BLOCK_INFO (e
->dest
)->stack_in
;
2645 /* Preserve the order of the original stack, but check whether
2646 any pops are needed. */
2647 dest_stack
->top
= -1;
2648 for (reg
= 0; reg
<= src_stack
->top
; ++reg
)
2649 if (TEST_HARD_REG_BIT (dest_stack
->reg_set
, src_stack
->reg
[reg
]))
2650 dest_stack
->reg
[++dest_stack
->top
] = src_stack
->reg
[reg
];
2654 /* Adjust the stack of edge E's source block on exit to match the stack
2655 of it's target block upon input. The stack layouts of both blocks
2656 should have been defined by now. */
2659 compensate_edge (edge e
)
2661 basic_block source
= e
->src
, target
= e
->dest
;
2662 stack target_stack
= &BLOCK_INFO (target
)->stack_in
;
2663 stack source_stack
= &BLOCK_INFO (source
)->stack_out
;
2664 struct stack_def regstack
;
2668 fprintf (dump_file
, "Edge %d->%d: ", source
->index
, target
->index
);
2670 gcc_assert (target_stack
->top
!= -2);
2672 /* Check whether stacks are identical. */
2673 if (target_stack
->top
== source_stack
->top
)
2675 for (reg
= target_stack
->top
; reg
>= 0; --reg
)
2676 if (target_stack
->reg
[reg
] != source_stack
->reg
[reg
])
2682 fprintf (dump_file
, "no changes needed\n");
2689 fprintf (dump_file
, "correcting stack to ");
2690 print_stack (dump_file
, target_stack
);
2693 /* Abnormal calls may appear to have values live in st(0), but the
2694 abnormal return path will not have actually loaded the values. */
2695 if (e
->flags
& EDGE_ABNORMAL_CALL
)
2697 /* Assert that the lifetimes are as we expect -- one value
2698 live at st(0) on the end of the source block, and no
2699 values live at the beginning of the destination block.
2700 For complex return values, we may have st(1) live as well. */
2701 gcc_assert (source_stack
->top
== 0 || source_stack
->top
== 1);
2702 gcc_assert (target_stack
->top
== -1);
2706 /* Handle non-call EH edges specially. The normal return path have
2707 values in registers. These will be popped en masse by the unwind
2709 if (e
->flags
& EDGE_EH
)
2711 gcc_assert (target_stack
->top
== -1);
2715 /* We don't support abnormal edges. Global takes care to
2716 avoid any live register across them, so we should never
2717 have to insert instructions on such edges. */
2718 gcc_assert (! (e
->flags
& EDGE_ABNORMAL
));
2720 /* Make a copy of source_stack as change_stack is destructive. */
2721 regstack
= *source_stack
;
2723 /* It is better to output directly to the end of the block
2724 instead of to the edge, because emit_swap can do minimal
2725 insn scheduling. We can do this when there is only one
2726 edge out, and it is not abnormal. */
2727 if (EDGE_COUNT (source
->succs
) == 1)
2729 current_block
= source
;
2730 change_stack (BB_END (source
), ®stack
, target_stack
,
2731 (JUMP_P (BB_END (source
)) ? EMIT_BEFORE
: EMIT_AFTER
));
2737 current_block
= NULL
;
2740 /* ??? change_stack needs some point to emit insns after. */
2741 after
= emit_note (NOTE_INSN_DELETED
);
2743 change_stack (after
, ®stack
, target_stack
, EMIT_BEFORE
);
2748 insert_insn_on_edge (seq
, e
);
2754 /* Traverse all non-entry edges in the CFG, and emit the necessary
2755 edge compensation code to change the stack from stack_out of the
2756 source block to the stack_in of the destination block. */
2759 compensate_edges (void)
2761 bool inserted
= false;
2764 starting_stack_p
= false;
2767 if (bb
!= ENTRY_BLOCK_PTR
)
2772 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2773 inserted
|= compensate_edge (e
);
2778 /* Select the better of two edges E1 and E2 to use to determine the
2779 stack layout for their shared destination basic block. This is
2780 typically the more frequently executed. The edge E1 may be NULL
2781 (in which case E2 is returned), but E2 is always non-NULL. */
2784 better_edge (edge e1
, edge e2
)
2789 if (EDGE_FREQUENCY (e1
) > EDGE_FREQUENCY (e2
))
2791 if (EDGE_FREQUENCY (e1
) < EDGE_FREQUENCY (e2
))
2794 if (e1
->count
> e2
->count
)
2796 if (e1
->count
< e2
->count
)
2799 /* Prefer critical edges to minimize inserting compensation code on
2802 if (EDGE_CRITICAL_P (e1
) != EDGE_CRITICAL_P (e2
))
2803 return EDGE_CRITICAL_P (e1
) ? e1
: e2
;
2805 /* Avoid non-deterministic behavior. */
2806 return (e1
->src
->index
< e2
->src
->index
) ? e1
: e2
;
2809 /* Convert stack register references in one block. */
2812 convert_regs_1 (basic_block block
)
2814 struct stack_def regstack
;
2815 block_info bi
= BLOCK_INFO (block
);
2818 bool control_flow_insn_deleted
= false;
2820 any_malformed_asm
= false;
2822 /* Choose an initial stack layout, if one hasn't already been chosen. */
2823 if (bi
->stack_in
.top
== -2)
2825 edge e
, beste
= NULL
;
2828 /* Select the best incoming edge (typically the most frequent) to
2829 use as a template for this basic block. */
2830 FOR_EACH_EDGE (e
, ei
, block
->preds
)
2831 if (BLOCK_INFO (e
->src
)->done
)
2832 beste
= better_edge (beste
, e
);
2835 propagate_stack (beste
);
2838 /* No predecessors. Create an arbitrary input stack. */
2839 bi
->stack_in
.top
= -1;
2840 for (reg
= LAST_STACK_REG
; reg
>= FIRST_STACK_REG
; --reg
)
2841 if (TEST_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
))
2842 bi
->stack_in
.reg
[++bi
->stack_in
.top
] = reg
;
2848 fprintf (dump_file
, "\nBasic block %d\nInput stack: ", block
->index
);
2849 print_stack (dump_file
, &bi
->stack_in
);
2852 /* Process all insns in this block. Keep track of NEXT so that we
2853 don't process insns emitted while substituting in INSN. */
2854 current_block
= block
;
2855 next
= BB_HEAD (block
);
2856 regstack
= bi
->stack_in
;
2857 starting_stack_p
= true;
2862 next
= NEXT_INSN (insn
);
2864 /* Ensure we have not missed a block boundary. */
2866 if (insn
== BB_END (block
))
2869 /* Don't bother processing unless there is a stack reg
2870 mentioned or if it's a CALL_INSN. */
2871 if (stack_regs_mentioned (insn
)
2876 fprintf (dump_file
, " insn %d input stack: ",
2878 print_stack (dump_file
, ®stack
);
2880 control_flow_insn_deleted
|= subst_stack_regs (insn
, ®stack
);
2881 starting_stack_p
= false;
2888 fprintf (dump_file
, "Expected live registers [");
2889 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; ++reg
)
2890 if (TEST_HARD_REG_BIT (bi
->out_reg_set
, reg
))
2891 fprintf (dump_file
, " %d", reg
);
2892 fprintf (dump_file
, " ]\nOutput stack: ");
2893 print_stack (dump_file
, ®stack
);
2896 insn
= BB_END (block
);
2898 insn
= PREV_INSN (insn
);
2900 /* If the function is declared to return a value, but it returns one
2901 in only some cases, some registers might come live here. Emit
2902 necessary moves for them. */
2904 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; ++reg
)
2906 if (TEST_HARD_REG_BIT (bi
->out_reg_set
, reg
)
2907 && ! TEST_HARD_REG_BIT (regstack
.reg_set
, reg
))
2912 fprintf (dump_file
, "Emitting insn initializing reg %d\n", reg
);
2914 set
= gen_rtx_SET (VOIDmode
, FP_MODE_REG (reg
, SFmode
), not_a_num
);
2915 insn
= emit_insn_after (set
, insn
);
2916 control_flow_insn_deleted
|= subst_stack_regs (insn
, ®stack
);
2920 /* Amongst the insns possibly deleted during the substitution process above,
2921 might have been the only trapping insn in the block. We purge the now
2922 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2923 called at the end of convert_regs. The order in which we process the
2924 blocks ensures that we never delete an already processed edge.
2926 Note that, at this point, the CFG may have been damaged by the emission
2927 of instructions after an abnormal call, which moves the basic block end
2928 (and is the reason why we call fixup_abnormal_edges later). So we must
2929 be sure that the trapping insn has been deleted before trying to purge
2930 dead edges, otherwise we risk purging valid edges.
2932 ??? We are normally supposed not to delete trapping insns, so we pretend
2933 that the insns deleted above don't actually trap. It would have been
2934 better to detect this earlier and avoid creating the EH edge in the first
2935 place, still, but we don't have enough information at that time. */
2937 if (control_flow_insn_deleted
)
2938 purge_dead_edges (block
);
2940 /* Something failed if the stack lives don't match. If we had malformed
2941 asms, we zapped the instruction itself, but that didn't produce the
2942 same pattern of register kills as before. */
2943 GO_IF_HARD_REG_EQUAL (regstack
.reg_set
, bi
->out_reg_set
, win
);
2944 gcc_assert (any_malformed_asm
);
2946 bi
->stack_out
= regstack
;
2950 /* Convert registers in all blocks reachable from BLOCK. */
2953 convert_regs_2 (basic_block block
)
2955 basic_block
*stack
, *sp
;
2957 /* We process the blocks in a top-down manner, in a way such that one block
2958 is only processed after all its predecessors. The number of predecessors
2959 of every block has already been computed. */
2961 stack
= XNEWVEC (basic_block
, n_basic_blocks
);
2973 /* Processing BLOCK is achieved by convert_regs_1, which may purge
2974 some dead EH outgoing edge after the deletion of the trapping
2975 insn inside the block. Since the number of predecessors of
2976 BLOCK's successors was computed based on the initial edge set,
2977 we check the necessity to process some of these successors
2978 before such an edge deletion may happen. However, there is
2979 a pitfall: if BLOCK is the only predecessor of a successor and
2980 the edge between them happens to be deleted, the successor
2981 becomes unreachable and should not be processed. The problem
2982 is that there is no way to preventively detect this case so we
2983 stack the successor in all cases and hand over the task of
2984 fixing up the discrepancy to convert_regs_1. */
2986 FOR_EACH_EDGE (e
, ei
, block
->succs
)
2987 if (! (e
->flags
& EDGE_DFS_BACK
))
2989 BLOCK_INFO (e
->dest
)->predecessors
--;
2990 if (!BLOCK_INFO (e
->dest
)->predecessors
)
2994 convert_regs_1 (block
);
2996 while (sp
!= stack
);
3001 /* Traverse all basic blocks in a function, converting the register
3002 references in each insn from the "flat" register file that gcc uses,
3003 to the stack-like registers the 387 uses. */
3013 /* Initialize uninitialized registers on function entry. */
3014 inserted
= convert_regs_entry ();
3016 /* Construct the desired stack for function exit. */
3017 convert_regs_exit ();
3018 BLOCK_INFO (EXIT_BLOCK_PTR
)->done
= 1;
3020 /* ??? Future: process inner loops first, and give them arbitrary
3021 initial stacks which emit_swap_insn can modify. This ought to
3022 prevent double fxch that often appears at the head of a loop. */
3024 /* Process all blocks reachable from all entry points. */
3025 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
3026 convert_regs_2 (e
->dest
);
3028 /* ??? Process all unreachable blocks. Though there's no excuse
3029 for keeping these even when not optimizing. */
3032 block_info bi
= BLOCK_INFO (b
);
3038 inserted
|= compensate_edges ();
3040 clear_aux_for_blocks ();
3042 fixup_abnormal_edges ();
3044 commit_edge_insertions ();
3047 fputc ('\n', dump_file
);
3050 /* Convert register usage from "flat" register file usage to a "stack
3051 register file. FILE is the dump file, if used.
3053 Construct a CFG and run life analysis. Then convert each insn one
3054 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3055 code duplication created when the converter inserts pop insns on
3065 /* Clean up previous run. */
3066 if (stack_regs_mentioned_data
!= NULL
)
3067 VEC_free (char, heap
, stack_regs_mentioned_data
);
3069 /* See if there is something to do. Flow analysis is quite
3070 expensive so we might save some compilation time. */
3071 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
3072 if (regs_ever_live
[i
])
3074 if (i
> LAST_STACK_REG
)
3077 /* Ok, floating point instructions exist. If not optimizing,
3078 build the CFG and run life analysis.
3079 Also need to rebuild life when superblock scheduling is done
3080 as it don't update liveness yet. */
3082 || ((flag_sched2_use_superblocks
|| flag_sched2_use_traces
)
3083 && flag_schedule_insns_after_reload
))
3085 count_or_remove_death_notes (NULL
, 1);
3086 life_analysis (PROP_DEATH_NOTES
);
3088 mark_dfs_back_edges ();
3090 /* Set up block info for each basic block. */
3091 alloc_aux_for_blocks (sizeof (struct block_info_def
));
3094 block_info bi
= BLOCK_INFO (bb
);
3099 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3100 if (!(e
->flags
& EDGE_DFS_BACK
)
3101 && e
->src
!= ENTRY_BLOCK_PTR
)
3104 /* Set current register status at last instruction `uninitialized'. */
3105 bi
->stack_in
.top
= -2;
3107 /* Copy live_at_end and live_at_start into temporaries. */
3108 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; reg
++)
3110 if (REGNO_REG_SET_P (bb
->il
.rtl
->global_live_at_end
, reg
))
3111 SET_HARD_REG_BIT (bi
->out_reg_set
, reg
);
3112 if (REGNO_REG_SET_P (bb
->il
.rtl
->global_live_at_start
, reg
))
3113 SET_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
);
3117 /* Create the replacement registers up front. */
3118 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
3120 enum machine_mode mode
;
3121 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
3123 mode
= GET_MODE_WIDER_MODE (mode
))
3124 FP_MODE_REG (i
, mode
) = gen_rtx_REG (mode
, i
);
3125 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
3127 mode
= GET_MODE_WIDER_MODE (mode
))
3128 FP_MODE_REG (i
, mode
) = gen_rtx_REG (mode
, i
);
3131 ix86_flags_rtx
= gen_rtx_REG (CCmode
, FLAGS_REG
);
3133 /* A QNaN for initializing uninitialized variables.
3135 ??? We can't load from constant memory in PIC mode, because
3136 we're inserting these instructions before the prologue and
3137 the PIC register hasn't been set up. In that case, fall back
3138 on zero, which we can get from `ldz'. */
3141 not_a_num
= CONST0_RTX (SFmode
);
3144 not_a_num
= gen_lowpart (SFmode
, GEN_INT (0x7fc00000));
3145 not_a_num
= force_const_mem (SFmode
, not_a_num
);
3148 /* Allocate a cache for stack_regs_mentioned. */
3149 max_uid
= get_max_uid ();
3150 stack_regs_mentioned_data
= VEC_alloc (char, heap
, max_uid
+ 1);
3151 memset (VEC_address (char, stack_regs_mentioned_data
),
3152 0, sizeof (char) * max_uid
+ 1);
3156 free_aux_for_blocks ();
3159 #endif /* STACK_REGS */
3162 gate_handle_stack_regs (void)
3171 /* Convert register usage from flat register file usage to a stack
3174 rest_of_handle_stack_regs (void)
3177 if (reg_to_stack () && optimize
)
3179 regstack_completed
= 1;
3180 if (cleanup_cfg (CLEANUP_EXPENSIVE
| CLEANUP_POST_REGSTACK
3181 | (flag_crossjumping
? CLEANUP_CROSSJUMP
: 0))
3182 && (flag_reorder_blocks
|| flag_reorder_blocks_and_partition
))
3184 reorder_basic_blocks (0);
3185 cleanup_cfg (CLEANUP_EXPENSIVE
| CLEANUP_POST_REGSTACK
);
3189 regstack_completed
= 1;
3194 struct tree_opt_pass pass_stack_regs
=
3197 gate_handle_stack_regs
, /* gate */
3198 rest_of_handle_stack_regs
, /* execute */
3201 0, /* static_pass_number */
3202 TV_REG_STACK
, /* tv_id */
3203 0, /* properties_required */
3204 0, /* properties_provided */
3205 0, /* properties_destroyed */
3206 0, /* todo_flags_start */
3208 TODO_ggc_collect
, /* todo_flags_finish */