* rw.po: Remove.
[official-gcc.git] / gcc / ddg.c
blob4beef674e1417ccc47294038e046e06b93770898
1 /* DDG - Data Dependence Graph implementation.
2 Copyright (C) 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "regs.h"
32 #include "function.h"
33 #include "flags.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 #include "except.h"
37 #include "recog.h"
38 #include "sched-int.h"
39 #include "target.h"
40 #include "cfglayout.h"
41 #include "cfgloop.h"
42 #include "sbitmap.h"
43 #include "expr.h"
44 #include "bitmap.h"
45 #include "df.h"
46 #include "ddg.h"
48 /* A flag indicating that a ddg edge belongs to an SCC or not. */
49 enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
51 /* Forward declarations. */
52 static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
53 static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
54 static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
55 static void create_ddg_dependence (ddg_ptr, ddg_node_ptr, ddg_node_ptr, rtx);
56 static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
57 dep_type, dep_data_type, int);
58 static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
59 dep_data_type, int, int);
60 static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
62 /* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
63 static bool mem_ref_p;
65 /* Auxiliary function for mem_read_insn_p. */
66 static int
67 mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
69 if (MEM_P (*x))
70 mem_ref_p = true;
71 return 0;
74 /* Auxiliary function for mem_read_insn_p. */
75 static void
76 mark_mem_use_1 (rtx *x, void *data)
78 for_each_rtx (x, mark_mem_use, data);
81 /* Returns nonzero if INSN reads from memory. */
82 static bool
83 mem_read_insn_p (rtx insn)
85 mem_ref_p = false;
86 note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
87 return mem_ref_p;
90 static void
91 mark_mem_store (rtx loc, rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
93 if (MEM_P (loc))
94 mem_ref_p = true;
97 /* Returns nonzero if INSN writes to memory. */
98 static bool
99 mem_write_insn_p (rtx insn)
101 mem_ref_p = false;
102 note_stores (PATTERN (insn), mark_mem_store, NULL);
103 return mem_ref_p;
106 /* Returns nonzero if X has access to memory. */
107 static bool
108 rtx_mem_access_p (rtx x)
110 int i, j;
111 const char *fmt;
112 enum rtx_code code;
114 if (x == 0)
115 return false;
117 if (MEM_P (x))
118 return true;
120 code = GET_CODE (x);
121 fmt = GET_RTX_FORMAT (code);
122 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
124 if (fmt[i] == 'e')
126 if (rtx_mem_access_p (XEXP (x, i)))
127 return true;
129 else if (fmt[i] == 'E')
130 for (j = 0; j < XVECLEN (x, i); j++)
132 if (rtx_mem_access_p (XVECEXP (x, i, j)))
133 return true;
136 return false;
139 /* Returns nonzero if INSN reads to or writes from memory. */
140 static bool
141 mem_access_insn_p (rtx insn)
143 return rtx_mem_access_p (PATTERN (insn));
146 /* Computes the dependence parameters (latency, distance etc.), creates
147 a ddg_edge and adds it to the given DDG. */
148 static void
149 create_ddg_dependence (ddg_ptr g, ddg_node_ptr src_node,
150 ddg_node_ptr dest_node, rtx link)
152 ddg_edge_ptr e;
153 int latency, distance = 0;
154 int interloop = (src_node->cuid >= dest_node->cuid);
155 dep_type t = TRUE_DEP;
156 dep_data_type dt = (mem_access_insn_p (src_node->insn)
157 && mem_access_insn_p (dest_node->insn) ? MEM_DEP
158 : REG_DEP);
160 /* For now we don't have an exact calculation of the distance,
161 so assume 1 conservatively. */
162 if (interloop)
163 distance = 1;
165 gcc_assert (link);
167 /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
168 if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
169 t = ANTI_DEP;
170 else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
171 t = OUTPUT_DEP;
172 latency = insn_cost (src_node->insn, link, dest_node->insn);
174 e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
176 if (interloop)
178 /* Some interloop dependencies are relaxed:
179 1. Every insn is output dependent on itself; ignore such deps.
180 2. Every true/flow dependence is an anti dependence in the
181 opposite direction with distance 1; such register deps
182 will be removed by renaming if broken --- ignore them. */
183 if (!(t == OUTPUT_DEP && src_node == dest_node)
184 && !(t == ANTI_DEP && dt == REG_DEP))
185 add_backarc_to_ddg (g, e);
186 else
187 free (e);
189 else if (t == ANTI_DEP && dt == REG_DEP)
190 free (e); /* We can fix broken anti register deps using reg-moves. */
191 else
192 add_edge_to_ddg (g, e);
195 /* The same as the above function, but it doesn't require a link parameter. */
196 static void
197 create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
198 dep_type d_t, dep_data_type d_dt, int distance)
200 ddg_edge_ptr e;
201 int l;
202 rtx link = alloc_INSN_LIST (to->insn, NULL_RTX);
204 if (d_t == ANTI_DEP)
205 PUT_REG_NOTE_KIND (link, REG_DEP_ANTI);
206 else if (d_t == OUTPUT_DEP)
207 PUT_REG_NOTE_KIND (link, REG_DEP_OUTPUT);
209 l = insn_cost (from->insn, link, to->insn);
210 free_INSN_LIST_node (link);
212 e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
213 if (distance > 0)
214 add_backarc_to_ddg (g, e);
215 else
216 add_edge_to_ddg (g, e);
220 /* Given a downwards exposed register def RD, add inter-loop true dependences
221 for all its uses in the next iteration, and an output dependence to the
222 first def of the next iteration. */
223 static void
224 add_deps_for_def (ddg_ptr g, struct df *df, struct df_ref *rd)
226 int regno = DF_REF_REGNO (rd);
227 struct df_ru_bb_info *bb_info = DF_RU_BB_INFO (df, g->bb);
228 struct df_link *r_use;
229 int use_before_def = false;
230 rtx def_insn = DF_REF_INSN (rd);
231 ddg_node_ptr src_node = get_node_of_insn (g, def_insn);
233 /* Create and inter-loop true dependence between RD and each of its uses
234 that is upwards exposed in RD's block. */
235 for (r_use = DF_REF_CHAIN (rd); r_use != NULL; r_use = r_use->next)
237 if (bitmap_bit_p (bb_info->gen, r_use->ref->id))
239 rtx use_insn = DF_REF_INSN (r_use->ref);
240 ddg_node_ptr dest_node = get_node_of_insn (g, use_insn);
242 gcc_assert (src_node && dest_node);
244 /* Any such upwards exposed use appears before the rd def. */
245 use_before_def = true;
246 create_ddg_dep_no_link (g, src_node, dest_node, TRUE_DEP,
247 REG_DEP, 1);
251 /* Create an inter-loop output dependence between RD (which is the
252 last def in its block, being downwards exposed) and the first def
253 in its block. Avoid creating a self output dependence. Avoid creating
254 an output dependence if there is a dependence path between the two defs
255 starting with a true dependence followed by an anti dependence (i.e. if
256 there is a use between the two defs. */
257 if (! use_before_def)
259 struct df_ref *def = df_bb_regno_first_def_find (df, g->bb, regno);
260 int i;
261 ddg_node_ptr dest_node;
263 if (!def || rd->id == def->id)
264 return;
266 /* Check if there are uses after RD. */
267 for (i = src_node->cuid + 1; i < g->num_nodes; i++)
268 if (df_find_use (df, g->nodes[i].insn, rd->reg))
269 return;
271 dest_node = get_node_of_insn (g, def->insn);
272 create_ddg_dep_no_link (g, src_node, dest_node, OUTPUT_DEP, REG_DEP, 1);
276 /* Given a register USE, add an inter-loop anti dependence to the first
277 (nearest BLOCK_BEGIN) def of the next iteration, unless USE is followed
278 by a def in the block. */
279 static void
280 add_deps_for_use (ddg_ptr g, struct df *df, struct df_ref *use)
282 int i;
283 int regno = DF_REF_REGNO (use);
284 struct df_ref *first_def = df_bb_regno_first_def_find (df, g->bb, regno);
285 ddg_node_ptr use_node;
286 ddg_node_ptr def_node;
287 struct df_rd_bb_info *bb_info;
289 bb_info = DF_RD_BB_INFO (df, g->bb);
291 if (!first_def)
292 return;
294 use_node = get_node_of_insn (g, use->insn);
295 def_node = get_node_of_insn (g, first_def->insn);
297 gcc_assert (use_node && def_node);
299 /* Make sure there are no defs after USE. */
300 for (i = use_node->cuid + 1; i < g->num_nodes; i++)
301 if (df_find_def (df, g->nodes[i].insn, use->reg))
302 return;
303 /* We must not add ANTI dep when there is an intra-loop TRUE dep in
304 the opposite direction. If the first_def reaches the USE then there is
305 such a dep. */
306 if (! bitmap_bit_p (bb_info->gen, first_def->id))
307 create_ddg_dep_no_link (g, use_node, def_node, ANTI_DEP, REG_DEP, 1);
310 /* Build inter-loop dependencies, by looking at DF analysis backwards. */
311 static void
312 build_inter_loop_deps (ddg_ptr g, struct df *df)
314 unsigned rd_num, u_num;
315 struct df_rd_bb_info *rd_bb_info;
316 struct df_ru_bb_info *ru_bb_info;
317 bitmap_iterator bi;
319 rd_bb_info = DF_RD_BB_INFO (df, g->bb);
321 /* Find inter-loop output and true deps by connecting downward exposed defs
322 to the first def of the BB and to upwards exposed uses. */
323 EXECUTE_IF_SET_IN_BITMAP (rd_bb_info->gen, 0, rd_num, bi)
325 struct df_ref *rd = DF_DEFS_GET (df, rd_num);
327 add_deps_for_def (g, df, rd);
330 ru_bb_info = DF_RU_BB_INFO (df, g->bb);
332 /* Find inter-loop anti deps. We are interested in uses of the block that
333 appear below all defs; this implies that these uses are killed. */
334 EXECUTE_IF_SET_IN_BITMAP (ru_bb_info->kill, 0, u_num, bi)
336 struct df_ref *use = DF_USES_GET (df, u_num);
338 /* We are interested in uses of this BB. */
339 if (BLOCK_FOR_INSN (use->insn) == g->bb)
340 add_deps_for_use (g, df, use);
344 /* Given two nodes, analyze their RTL insns and add inter-loop mem deps
345 to ddg G. */
346 static void
347 add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
349 if (mem_write_insn_p (from->insn))
351 if (mem_read_insn_p (to->insn))
352 create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 1);
353 else if (from->cuid != to->cuid)
354 create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 1);
356 else
358 if (mem_read_insn_p (to->insn))
359 return;
360 else if (from->cuid != to->cuid)
362 create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
363 create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
369 /* Perform intra-block Data Dependency analysis and connect the nodes in
370 the DDG. We assume the loop has a single basic block. */
371 static void
372 build_intra_loop_deps (ddg_ptr g)
374 int i;
375 /* Hold the dependency analysis state during dependency calculations. */
376 struct deps tmp_deps;
377 rtx head, tail, link;
379 /* Build the dependence information, using the sched_analyze function. */
380 init_deps_global ();
381 init_deps (&tmp_deps);
383 /* Do the intra-block data dependence analysis for the given block. */
384 get_ebb_head_tail (g->bb, g->bb, &head, &tail);
385 sched_analyze (&tmp_deps, head, tail);
387 /* Build intra-loop data dependencies using the scheduler dependency
388 analysis. */
389 for (i = 0; i < g->num_nodes; i++)
391 ddg_node_ptr dest_node = &g->nodes[i];
393 if (! INSN_P (dest_node->insn))
394 continue;
396 for (link = LOG_LINKS (dest_node->insn); link; link = XEXP (link, 1))
398 ddg_node_ptr src_node = get_node_of_insn (g, XEXP (link, 0));
400 if (!src_node)
401 continue;
403 add_forw_dep (dest_node->insn, link);
404 create_ddg_dependence (g, src_node, dest_node,
405 INSN_DEPEND (src_node->insn));
408 /* If this insn modifies memory, add an edge to all insns that access
409 memory. */
410 if (mem_access_insn_p (dest_node->insn))
412 int j;
414 for (j = 0; j <= i; j++)
416 ddg_node_ptr j_node = &g->nodes[j];
417 if (mem_access_insn_p (j_node->insn))
418 /* Don't bother calculating inter-loop dep if an intra-loop dep
419 already exists. */
420 if (! TEST_BIT (dest_node->successors, j))
421 add_inter_loop_mem_dep (g, dest_node, j_node);
426 /* Free the INSN_LISTs. */
427 finish_deps_global ();
428 free_deps (&tmp_deps);
432 /* Given a basic block, create its DDG and return a pointer to a variable
433 of ddg type that represents it.
434 Initialize the ddg structure fields to the appropriate values. */
435 ddg_ptr
436 create_ddg (basic_block bb, struct df *df, int closing_branch_deps)
438 ddg_ptr g;
439 rtx insn, first_note;
440 int i;
441 int num_nodes = 0;
443 g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
445 g->bb = bb;
446 g->closing_branch_deps = closing_branch_deps;
448 /* Count the number of insns in the BB. */
449 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
450 insn = NEXT_INSN (insn))
452 if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
453 continue;
455 if (mem_read_insn_p (insn))
456 g->num_loads++;
457 if (mem_write_insn_p (insn))
458 g->num_stores++;
459 num_nodes++;
462 /* There is nothing to do for this BB. */
463 if (num_nodes <= 1)
465 free (g);
466 return NULL;
469 /* Allocate the nodes array, and initialize the nodes. */
470 g->num_nodes = num_nodes;
471 g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
472 g->closing_branch = NULL;
473 i = 0;
474 first_note = NULL_RTX;
475 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
476 insn = NEXT_INSN (insn))
478 if (! INSN_P (insn))
480 if (! first_note && NOTE_P (insn)
481 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK)
482 first_note = insn;
483 continue;
485 if (JUMP_P (insn))
487 gcc_assert (!g->closing_branch);
488 g->closing_branch = &g->nodes[i];
490 else if (GET_CODE (PATTERN (insn)) == USE)
492 if (! first_note)
493 first_note = insn;
494 continue;
497 g->nodes[i].cuid = i;
498 g->nodes[i].successors = sbitmap_alloc (num_nodes);
499 sbitmap_zero (g->nodes[i].successors);
500 g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
501 sbitmap_zero (g->nodes[i].predecessors);
502 g->nodes[i].first_note = (first_note ? first_note : insn);
503 g->nodes[i++].insn = insn;
504 first_note = NULL_RTX;
507 /* We must have found a branch in DDG. */
508 gcc_assert (g->closing_branch);
511 /* Build the data dependency graph. */
512 build_intra_loop_deps (g);
513 build_inter_loop_deps (g, df);
514 return g;
517 /* Free all the memory allocated for the DDG. */
518 void
519 free_ddg (ddg_ptr g)
521 int i;
523 if (!g)
524 return;
526 for (i = 0; i < g->num_nodes; i++)
528 ddg_edge_ptr e = g->nodes[i].out;
530 while (e)
532 ddg_edge_ptr next = e->next_out;
534 free (e);
535 e = next;
537 sbitmap_free (g->nodes[i].successors);
538 sbitmap_free (g->nodes[i].predecessors);
540 if (g->num_backarcs > 0)
541 free (g->backarcs);
542 free (g->nodes);
543 free (g);
546 void
547 print_ddg_edge (FILE *file, ddg_edge_ptr e)
549 char dep_c;
551 switch (e->type) {
552 case OUTPUT_DEP :
553 dep_c = 'O';
554 break;
555 case ANTI_DEP :
556 dep_c = 'A';
557 break;
558 default:
559 dep_c = 'T';
562 fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
563 dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
566 /* Print the DDG nodes with there in/out edges to the dump file. */
567 void
568 print_ddg (FILE *file, ddg_ptr g)
570 int i;
572 for (i = 0; i < g->num_nodes; i++)
574 ddg_edge_ptr e;
576 print_rtl_single (file, g->nodes[i].insn);
577 fprintf (file, "OUT ARCS: ");
578 for (e = g->nodes[i].out; e; e = e->next_out)
579 print_ddg_edge (file, e);
581 fprintf (file, "\nIN ARCS: ");
582 for (e = g->nodes[i].in; e; e = e->next_in)
583 print_ddg_edge (file, e);
585 fprintf (file, "\n");
589 /* Print the given DDG in VCG format. */
590 void
591 vcg_print_ddg (FILE *file, ddg_ptr g)
593 int src_cuid;
595 fprintf (file, "graph: {\n");
596 for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
598 ddg_edge_ptr e;
599 int src_uid = INSN_UID (g->nodes[src_cuid].insn);
601 fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
602 print_rtl_single (file, g->nodes[src_cuid].insn);
603 fprintf (file, "\"}\n");
604 for (e = g->nodes[src_cuid].out; e; e = e->next_out)
606 int dst_uid = INSN_UID (e->dest->insn);
607 int dst_cuid = e->dest->cuid;
609 /* Give the backarcs a different color. */
610 if (e->distance > 0)
611 fprintf (file, "backedge: {color: red ");
612 else
613 fprintf (file, "edge: { ");
615 fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
616 fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
617 fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
620 fprintf (file, "}\n");
623 /* Create an edge and initialize it with given values. */
624 static ddg_edge_ptr
625 create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
626 dep_type t, dep_data_type dt, int l, int d)
628 ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
630 e->src = src;
631 e->dest = dest;
632 e->type = t;
633 e->data_type = dt;
634 e->latency = l;
635 e->distance = d;
636 e->next_in = e->next_out = NULL;
637 e->aux.info = 0;
638 return e;
641 /* Add the given edge to the in/out linked lists of the DDG nodes. */
642 static void
643 add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
645 ddg_node_ptr src = e->src;
646 ddg_node_ptr dest = e->dest;
648 /* Should have allocated the sbitmaps. */
649 gcc_assert (src->successors && dest->predecessors);
651 SET_BIT (src->successors, dest->cuid);
652 SET_BIT (dest->predecessors, src->cuid);
653 e->next_in = dest->in;
654 dest->in = e;
655 e->next_out = src->out;
656 src->out = e;
661 /* Algorithm for computing the recurrence_length of an scc. We assume at
662 for now that cycles in the data dependence graph contain a single backarc.
663 This simplifies the algorithm, and can be generalized later. */
664 static void
665 set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
667 int j;
668 int result = -1;
670 for (j = 0; j < scc->num_backarcs; j++)
672 ddg_edge_ptr backarc = scc->backarcs[j];
673 int length;
674 int distance = backarc->distance;
675 ddg_node_ptr src = backarc->dest;
676 ddg_node_ptr dest = backarc->src;
678 length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
679 if (length < 0 )
681 /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
682 continue;
684 length += backarc->latency;
685 result = MAX (result, (length / distance));
687 scc->recurrence_length = result;
690 /* Create a new SCC given the set of its nodes. Compute its recurrence_length
691 and mark edges that belong to this scc as IN_SCC. */
692 static ddg_scc_ptr
693 create_scc (ddg_ptr g, sbitmap nodes)
695 ddg_scc_ptr scc;
696 unsigned int u = 0;
697 sbitmap_iterator sbi;
699 scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
700 scc->backarcs = NULL;
701 scc->num_backarcs = 0;
702 scc->nodes = sbitmap_alloc (g->num_nodes);
703 sbitmap_copy (scc->nodes, nodes);
705 /* Mark the backarcs that belong to this SCC. */
706 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
708 ddg_edge_ptr e;
709 ddg_node_ptr n = &g->nodes[u];
711 for (e = n->out; e; e = e->next_out)
712 if (TEST_BIT (nodes, e->dest->cuid))
714 e->aux.count = IN_SCC;
715 if (e->distance > 0)
716 add_backarc_to_scc (scc, e);
720 set_recurrence_length (scc, g);
721 return scc;
724 /* Cleans the memory allocation of a given SCC. */
725 static void
726 free_scc (ddg_scc_ptr scc)
728 if (!scc)
729 return;
731 sbitmap_free (scc->nodes);
732 if (scc->num_backarcs > 0)
733 free (scc->backarcs);
734 free (scc);
738 /* Add a given edge known to be a backarc to the given DDG. */
739 static void
740 add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
742 int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
744 add_edge_to_ddg (g, e);
745 g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
746 g->backarcs[g->num_backarcs++] = e;
749 /* Add backarc to an SCC. */
750 static void
751 add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
753 int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
755 scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
756 scc->backarcs[scc->num_backarcs++] = e;
759 /* Add the given SCC to the DDG. */
760 static void
761 add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
763 int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
765 g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
766 g->sccs[g->num_sccs++] = scc;
769 /* Given the instruction INSN return the node that represents it. */
770 ddg_node_ptr
771 get_node_of_insn (ddg_ptr g, rtx insn)
773 int i;
775 for (i = 0; i < g->num_nodes; i++)
776 if (insn == g->nodes[i].insn)
777 return &g->nodes[i];
778 return NULL;
781 /* Given a set OPS of nodes in the DDG, find the set of their successors
782 which are not in OPS, and set their bits in SUCC. Bits corresponding to
783 OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
784 void
785 find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
787 unsigned int i = 0;
788 sbitmap_iterator sbi;
790 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
792 const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
793 sbitmap_a_or_b (succ, succ, node_succ);
796 /* We want those that are not in ops. */
797 sbitmap_difference (succ, succ, ops);
800 /* Given a set OPS of nodes in the DDG, find the set of their predecessors
801 which are not in OPS, and set their bits in PREDS. Bits corresponding to
802 OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
803 void
804 find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
806 unsigned int i = 0;
807 sbitmap_iterator sbi;
809 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
811 const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
812 sbitmap_a_or_b (preds, preds, node_preds);
815 /* We want those that are not in ops. */
816 sbitmap_difference (preds, preds, ops);
820 /* Compare function to be passed to qsort to order the backarcs in descending
821 recMII order. */
822 static int
823 compare_sccs (const void *s1, const void *s2)
825 int rec_l1 = (*(ddg_scc_ptr *)s1)->recurrence_length;
826 int rec_l2 = (*(ddg_scc_ptr *)s2)->recurrence_length;
827 return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
831 /* Order the backarcs in descending recMII order using compare_sccs. */
832 static void
833 order_sccs (ddg_all_sccs_ptr g)
835 qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
836 (int (*) (const void *, const void *)) compare_sccs);
839 /* Perform the Strongly Connected Components decomposing algorithm on the
840 DDG and return DDG_ALL_SCCS structure that contains them. */
841 ddg_all_sccs_ptr
842 create_ddg_all_sccs (ddg_ptr g)
844 int i;
845 int num_nodes = g->num_nodes;
846 sbitmap from = sbitmap_alloc (num_nodes);
847 sbitmap to = sbitmap_alloc (num_nodes);
848 sbitmap scc_nodes = sbitmap_alloc (num_nodes);
849 ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
850 xmalloc (sizeof (struct ddg_all_sccs));
852 sccs->ddg = g;
853 sccs->sccs = NULL;
854 sccs->num_sccs = 0;
856 for (i = 0; i < g->num_backarcs; i++)
858 ddg_scc_ptr scc;
859 ddg_edge_ptr backarc = g->backarcs[i];
860 ddg_node_ptr src = backarc->src;
861 ddg_node_ptr dest = backarc->dest;
863 /* If the backarc already belongs to an SCC, continue. */
864 if (backarc->aux.count == IN_SCC)
865 continue;
867 sbitmap_zero (from);
868 sbitmap_zero (to);
869 SET_BIT (from, dest->cuid);
870 SET_BIT (to, src->cuid);
872 if (find_nodes_on_paths (scc_nodes, g, from, to))
874 scc = create_scc (g, scc_nodes);
875 add_scc_to_ddg (sccs, scc);
878 order_sccs (sccs);
879 sbitmap_free (from);
880 sbitmap_free (to);
881 sbitmap_free (scc_nodes);
882 return sccs;
885 /* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
886 void
887 free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
889 int i;
891 if (!all_sccs)
892 return;
894 for (i = 0; i < all_sccs->num_sccs; i++)
895 free_scc (all_sccs->sccs[i]);
897 free (all_sccs);
901 /* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
902 nodes - find all nodes that lie on paths from FROM to TO (not excluding
903 nodes from FROM and TO). Return nonzero if nodes exist. */
905 find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
907 int answer;
908 int change;
909 unsigned int u = 0;
910 int num_nodes = g->num_nodes;
911 sbitmap_iterator sbi;
913 sbitmap workset = sbitmap_alloc (num_nodes);
914 sbitmap reachable_from = sbitmap_alloc (num_nodes);
915 sbitmap reach_to = sbitmap_alloc (num_nodes);
916 sbitmap tmp = sbitmap_alloc (num_nodes);
918 sbitmap_copy (reachable_from, from);
919 sbitmap_copy (tmp, from);
921 change = 1;
922 while (change)
924 change = 0;
925 sbitmap_copy (workset, tmp);
926 sbitmap_zero (tmp);
927 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
929 ddg_edge_ptr e;
930 ddg_node_ptr u_node = &g->nodes[u];
932 for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
934 ddg_node_ptr v_node = e->dest;
935 int v = v_node->cuid;
937 if (!TEST_BIT (reachable_from, v))
939 SET_BIT (reachable_from, v);
940 SET_BIT (tmp, v);
941 change = 1;
947 sbitmap_copy (reach_to, to);
948 sbitmap_copy (tmp, to);
950 change = 1;
951 while (change)
953 change = 0;
954 sbitmap_copy (workset, tmp);
955 sbitmap_zero (tmp);
956 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
958 ddg_edge_ptr e;
959 ddg_node_ptr u_node = &g->nodes[u];
961 for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
963 ddg_node_ptr v_node = e->src;
964 int v = v_node->cuid;
966 if (!TEST_BIT (reach_to, v))
968 SET_BIT (reach_to, v);
969 SET_BIT (tmp, v);
970 change = 1;
976 answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to);
977 sbitmap_free (workset);
978 sbitmap_free (reachable_from);
979 sbitmap_free (reach_to);
980 sbitmap_free (tmp);
981 return answer;
985 /* Updates the counts of U_NODE's successors (that belong to NODES) to be
986 at-least as large as the count of U_NODE plus the latency between them.
987 Sets a bit in TMP for each successor whose count was changed (increased).
988 Returns nonzero if any count was changed. */
989 static int
990 update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
992 ddg_edge_ptr e;
993 int result = 0;
995 for (e = u_node->out; e; e = e->next_out)
997 ddg_node_ptr v_node = e->dest;
998 int v = v_node->cuid;
1000 if (TEST_BIT (nodes, v)
1001 && (e->distance == 0)
1002 && (v_node->aux.count < u_node->aux.count + e->latency))
1004 v_node->aux.count = u_node->aux.count + e->latency;
1005 SET_BIT (tmp, v);
1006 result = 1;
1009 return result;
1013 /* Find the length of a longest path from SRC to DEST in G,
1014 going only through NODES, and disregarding backarcs. */
1016 longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
1018 int i;
1019 unsigned int u = 0;
1020 int change = 1;
1021 int result;
1022 int num_nodes = g->num_nodes;
1023 sbitmap workset = sbitmap_alloc (num_nodes);
1024 sbitmap tmp = sbitmap_alloc (num_nodes);
1027 /* Data will hold the distance of the longest path found so far from
1028 src to each node. Initialize to -1 = less than minimum. */
1029 for (i = 0; i < g->num_nodes; i++)
1030 g->nodes[i].aux.count = -1;
1031 g->nodes[src].aux.count = 0;
1033 sbitmap_zero (tmp);
1034 SET_BIT (tmp, src);
1036 while (change)
1038 sbitmap_iterator sbi;
1040 change = 0;
1041 sbitmap_copy (workset, tmp);
1042 sbitmap_zero (tmp);
1043 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1045 ddg_node_ptr u_node = &g->nodes[u];
1047 change |= update_dist_to_successors (u_node, nodes, tmp);
1050 result = g->nodes[dest].aux.count;
1051 sbitmap_free (workset);
1052 sbitmap_free (tmp);
1053 return result;