* config/i386/i386.c (output_387_binary_op,
[official-gcc.git] / gcc / tree-ssa-operands.c
blobf8d70156aba40369b8ffe8a431d943935f20342d
1 /* SSA operands management for trees.
2 Copyright (C) 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "function.h"
28 #include "diagnostic.h"
29 #include "errors.h"
30 #include "tree-flow.h"
31 #include "tree-inline.h"
32 #include "tree-pass.h"
33 #include "ggc.h"
34 #include "timevar.h"
36 #include "langhooks.h"
38 /* This file contains the code required to manage the operands cache of the
39 SSA optimizer. For every stmt, we maintain an operand cache in the stmt
40 annotation. This cache contains operands that will be of interest to
41 optimizers and other passes wishing to manipulate the IL.
43 The operand type are broken up into REAL and VIRTUAL operands. The real
44 operands are represented as pointers into the stmt's operand tree. Thus
45 any manipulation of the real operands will be reflected in the actual tree.
46 Virtual operands are represented solely in the cache, although the base
47 variable for the SSA_NAME may, or may not occur in the stmt's tree.
48 Manipulation of the virtual operands will not be reflected in the stmt tree.
50 The routines in this file are concerned with creating this operand cache
51 from a stmt tree.
53 get_stmt_operands() in the primary entry point.
55 The operand tree is the parsed by the various get_* routines which look
56 through the stmt tree for the occurrence of operands which may be of
57 interest, and calls are made to the append_* routines whenever one is
58 found. There are 5 of these routines, each representing one of the
59 5 types of operands. Defs, Uses, Virtual Uses, Virtual May Defs, and
60 Virtual Must Defs.
62 The append_* routines check for duplication, and simply keep a list of
63 unique objects for each operand type in the build_* extendable vectors.
65 Once the stmt tree is completely parsed, the finalize_ssa_operands()
66 routine is called, which proceeds to perform the finalization routine
67 on each of the 5 operand vectors which have been built up.
69 If the stmt had a previous operand cache, the finalization routines
70 attempt to match up the new operands with the old ones. If its a perfect
71 match, the old vector is simply reused. If it isn't a perfect match, then
72 a new vector is created and the new operands are placed there. For
73 virtual operands, if the previous cache had SSA_NAME version of a
74 variable, and that same variable occurs in the same operands cache, then
75 the new cache vector will also get the same SSA_NAME.
77 i.e., if a stmt had a VUSE of 'a_5', and 'a' occurs in the new operand
78 vector for VUSE, then the new vector will also be modified such that
79 it contains 'a_5' rather than 'a'.
84 /* Flags to describe operand properties in get_stmt_operands and helpers. */
86 /* By default, operands are loaded. */
87 #define opf_none 0
89 /* Operand is the target of an assignment expression or a
90 call-clobbered variable */
91 #define opf_is_def (1 << 0)
93 /* Operand is the target of an assignment expression. */
94 #define opf_kill_def (1 << 1)
96 /* No virtual operands should be created in the expression. This is used
97 when traversing ADDR_EXPR nodes which have different semantics than
98 other expressions. Inside an ADDR_EXPR node, the only operands that we
99 need to consider are indices into arrays. For instance, &a.b[i] should
100 generate a USE of 'i' but it should not generate a VUSE for 'a' nor a
101 VUSE for 'b'. */
102 #define opf_no_vops (1 << 2)
104 /* Array for building all the def operands. */
105 static GTY (()) varray_type build_defs;
107 /* Array for building all the use operands. */
108 static GTY (()) varray_type build_uses;
110 /* Array for building all the v_may_def operands. */
111 static GTY (()) varray_type build_v_may_defs;
113 /* Array for building all the vuse operands. */
114 static GTY (()) varray_type build_vuses;
116 /* Array for building all the v_must_def operands. */
117 static GTY (()) varray_type build_v_must_defs;
119 /* True if the operands for call clobbered vars are cached and valid. */
120 bool ssa_call_clobbered_cache_valid;
121 bool ssa_ro_call_cache_valid;
123 /* These arrays are the cached operand vectors for call clobbered calls. */
124 static GTY (()) varray_type clobbered_v_may_defs;
125 static GTY (()) varray_type clobbered_vuses;
126 static GTY (()) varray_type ro_call_vuses;
127 static bool clobbered_aliased_loads;
128 static bool clobbered_aliased_stores;
129 static bool ro_call_aliased_loads;
131 #ifdef ENABLE_CHECKING
132 /* Used to make sure operand construction is working on the proper stmt. */
133 tree check_build_stmt;
134 #endif
136 def_operand_p NULL_DEF_OPERAND_P = { NULL };
137 use_operand_p NULL_USE_OPERAND_P = { NULL };
139 static void note_addressable (tree, stmt_ann_t);
140 static void get_expr_operands (tree, tree *, int);
141 static void get_asm_expr_operands (tree);
142 static void get_indirect_ref_operands (tree, tree, int);
143 static void get_call_expr_operands (tree, tree);
144 static inline void append_def (tree *);
145 static inline void append_use (tree *);
146 static void append_v_may_def (tree);
147 static void append_v_must_def (tree);
148 static void add_call_clobber_ops (tree);
149 static void add_call_read_ops (tree);
150 static void add_stmt_operand (tree *, stmt_ann_t, int);
152 /* Return a vector of contiguous memory for NUM def operands. */
154 static inline def_optype
155 allocate_def_optype (unsigned num)
157 def_optype def_ops;
158 unsigned size;
159 size = sizeof (struct def_optype_d) + sizeof (tree *) * (num - 1);
160 def_ops = ggc_alloc (size);
161 def_ops->num_defs = num;
162 return def_ops;
166 /* Return a vector of contiguous memory for NUM use operands. */
168 static inline use_optype
169 allocate_use_optype (unsigned num)
171 use_optype use_ops;
172 unsigned size;
173 size = sizeof (struct use_optype_d) + sizeof (tree *) * (num - 1);
174 use_ops = ggc_alloc (size);
175 use_ops->num_uses = num;
176 return use_ops;
180 /* Return a vector of contiguous memory for NUM v_may_def operands. */
182 static inline v_may_def_optype
183 allocate_v_may_def_optype (unsigned num)
185 v_may_def_optype v_may_def_ops;
186 unsigned size;
187 size = sizeof (struct v_may_def_optype_d)
188 + sizeof (v_def_use_operand_type_t) * (num - 1);
189 v_may_def_ops = ggc_alloc (size);
190 v_may_def_ops->num_v_may_defs = num;
191 return v_may_def_ops;
195 /* Return a vector of contiguous memory for NUM v_use operands. */
197 static inline vuse_optype
198 allocate_vuse_optype (unsigned num)
200 vuse_optype vuse_ops;
201 unsigned size;
202 size = sizeof (struct vuse_optype_d) + sizeof (tree) * (num - 1);
203 vuse_ops = ggc_alloc (size);
204 vuse_ops->num_vuses = num;
205 return vuse_ops;
209 /* Return a vector of contiguous memory for NUM v_must_def operands. */
211 static inline v_must_def_optype
212 allocate_v_must_def_optype (unsigned num)
214 v_must_def_optype v_must_def_ops;
215 unsigned size;
216 size = sizeof (struct v_must_def_optype_d) + sizeof (v_def_use_operand_type_t) * (num - 1);
217 v_must_def_ops = ggc_alloc (size);
218 v_must_def_ops->num_v_must_defs = num;
219 return v_must_def_ops;
223 /* Free memory for USES. */
225 static inline void
226 free_uses (use_optype *uses)
228 if (*uses)
230 ggc_free (*uses);
231 *uses = NULL;
236 /* Free memory for DEFS. */
238 static inline void
239 free_defs (def_optype *defs)
241 if (*defs)
243 ggc_free (*defs);
244 *defs = NULL;
249 /* Free memory for VUSES. */
251 static inline void
252 free_vuses (vuse_optype *vuses)
254 if (*vuses)
256 ggc_free (*vuses);
257 *vuses = NULL;
262 /* Free memory for V_MAY_DEFS. */
264 static inline void
265 free_v_may_defs (v_may_def_optype *v_may_defs)
267 if (*v_may_defs)
269 ggc_free (*v_may_defs);
270 *v_may_defs = NULL;
275 /* Free memory for V_MUST_DEFS. */
277 static inline void
278 free_v_must_defs (v_must_def_optype *v_must_defs)
280 if (*v_must_defs)
282 ggc_free (*v_must_defs);
283 *v_must_defs = NULL;
288 /* Initialize the operand cache routines. */
290 void
291 init_ssa_operands (void)
293 VARRAY_TREE_PTR_INIT (build_defs, 5, "build defs");
294 VARRAY_TREE_PTR_INIT (build_uses, 10, "build uses");
295 VARRAY_TREE_INIT (build_v_may_defs, 10, "build v_may_defs");
296 VARRAY_TREE_INIT (build_vuses, 10, "build vuses");
297 VARRAY_TREE_INIT (build_v_must_defs, 10, "build v_must_defs");
301 /* Dispose of anything required by the operand routines. */
303 void
304 fini_ssa_operands (void)
306 ggc_free (build_defs);
307 ggc_free (build_uses);
308 ggc_free (build_v_may_defs);
309 ggc_free (build_vuses);
310 ggc_free (build_v_must_defs);
311 build_defs = NULL;
312 build_uses = NULL;
313 build_v_may_defs = NULL;
314 build_vuses = NULL;
315 build_v_must_defs = NULL;
316 if (clobbered_v_may_defs)
318 ggc_free (clobbered_v_may_defs);
319 ggc_free (clobbered_vuses);
320 clobbered_v_may_defs = NULL;
321 clobbered_vuses = NULL;
323 if (ro_call_vuses)
325 ggc_free (ro_call_vuses);
326 ro_call_vuses = NULL;
331 /* All the finalize_ssa_* routines do the work required to turn the build_
332 VARRAY into an operand_vector of the appropriate type. The original vector,
333 if any, is passed in for comparison and virtual SSA_NAME reuse. If the
334 old vector is reused, the pointer passed in is set to NULL so that
335 the memory is not freed when the old operands are freed. */
337 /* Return a new def operand vector for STMT, comparing to OLD_OPS_P. */
339 static def_optype
340 finalize_ssa_defs (def_optype *old_ops_p, tree stmt ATTRIBUTE_UNUSED)
342 unsigned num, x;
343 def_optype def_ops, old_ops;
344 bool build_diff;
346 num = VARRAY_ACTIVE_SIZE (build_defs);
347 if (num == 0)
348 return NULL;
350 /* There should only be a single real definition per assignment. */
351 gcc_assert (TREE_CODE (stmt) != MODIFY_EXPR || num <= 1);
353 old_ops = *old_ops_p;
355 /* Compare old vector and new array. */
356 build_diff = true;
357 if (old_ops && old_ops->num_defs == num)
359 build_diff = false;
360 for (x = 0; x < num; x++)
361 if (old_ops->defs[x].def != VARRAY_TREE_PTR (build_defs, x))
363 build_diff = true;
364 break;
368 if (!build_diff)
370 def_ops = old_ops;
371 *old_ops_p = NULL;
373 else
375 def_ops = allocate_def_optype (num);
376 for (x = 0; x < num ; x++)
377 def_ops->defs[x].def = VARRAY_TREE_PTR (build_defs, x);
380 VARRAY_POP_ALL (build_defs);
382 return def_ops;
386 /* Return a new use operand vector for STMT, comparing to OLD_OPS_P. */
388 static use_optype
389 finalize_ssa_uses (use_optype *old_ops_p, tree stmt ATTRIBUTE_UNUSED)
391 unsigned num, x;
392 use_optype use_ops, old_ops;
393 bool build_diff;
395 num = VARRAY_ACTIVE_SIZE (build_uses);
396 if (num == 0)
397 return NULL;
399 #ifdef ENABLE_CHECKING
401 unsigned x;
402 /* If the pointer to the operand is the statement itself, something is
403 wrong. It means that we are pointing to a local variable (the
404 initial call to get_stmt_operands does not pass a pointer to a
405 statement). */
406 for (x = 0; x < num; x++)
407 gcc_assert (*(VARRAY_TREE_PTR (build_uses, x)) != stmt);
409 #endif
410 old_ops = *old_ops_p;
412 /* Check if the old vector and the new array are the same. */
413 build_diff = true;
414 if (old_ops && old_ops->num_uses == num)
416 build_diff = false;
417 for (x = 0; x < num; x++)
418 if (old_ops->uses[x].use != VARRAY_TREE_PTR (build_uses, x))
420 build_diff = true;
421 break;
425 if (!build_diff)
427 use_ops = old_ops;
428 *old_ops_p = NULL;
430 else
432 use_ops = allocate_use_optype (num);
433 for (x = 0; x < num ; x++)
434 use_ops->uses[x].use = VARRAY_TREE_PTR (build_uses, x);
436 VARRAY_POP_ALL (build_uses);
438 return use_ops;
442 /* Return a new v_may_def operand vector for STMT, comparing to OLD_OPS_P. */
444 static v_may_def_optype
445 finalize_ssa_v_may_defs (v_may_def_optype *old_ops_p)
447 unsigned num, x, i, old_num;
448 v_may_def_optype v_may_def_ops, old_ops;
449 tree result, var;
450 bool build_diff;
452 num = VARRAY_ACTIVE_SIZE (build_v_may_defs);
453 if (num == 0)
454 return NULL;
456 old_ops = *old_ops_p;
458 /* Check if the old vector and the new array are the same. */
459 build_diff = true;
460 if (old_ops && old_ops->num_v_may_defs == num)
462 old_num = num;
463 build_diff = false;
464 for (x = 0; x < num; x++)
466 var = old_ops->v_may_defs[x].def;
467 if (TREE_CODE (var) == SSA_NAME)
468 var = SSA_NAME_VAR (var);
469 if (var != VARRAY_TREE (build_v_may_defs, x))
471 build_diff = true;
472 break;
476 else
477 old_num = (old_ops ? old_ops->num_v_may_defs : 0);
479 if (!build_diff)
481 v_may_def_ops = old_ops;
482 *old_ops_p = NULL;
484 else
486 v_may_def_ops = allocate_v_may_def_optype (num);
487 for (x = 0; x < num; x++)
489 var = VARRAY_TREE (build_v_may_defs, x);
490 /* Look for VAR in the old operands vector. */
491 for (i = 0; i < old_num; i++)
493 result = old_ops->v_may_defs[i].def;
494 if (TREE_CODE (result) == SSA_NAME)
495 result = SSA_NAME_VAR (result);
496 if (result == var)
498 v_may_def_ops->v_may_defs[x] = old_ops->v_may_defs[i];
499 break;
502 if (i == old_num)
504 v_may_def_ops->v_may_defs[x].def = var;
505 v_may_def_ops->v_may_defs[x].use = var;
510 /* Empty the V_MAY_DEF build vector after VUSES have been processed. */
512 return v_may_def_ops;
516 /* Clear the in_list bits and empty the build array for v_may_defs. */
518 static inline void
519 cleanup_v_may_defs (void)
521 unsigned x, num;
522 num = VARRAY_ACTIVE_SIZE (build_v_may_defs);
524 for (x = 0; x < num; x++)
526 tree t = VARRAY_TREE (build_v_may_defs, x);
527 var_ann_t ann = var_ann (t);
528 ann->in_v_may_def_list = 0;
530 VARRAY_POP_ALL (build_v_may_defs);
533 /* Return a new vuse operand vector, comparing to OLD_OPS_P. */
535 static vuse_optype
536 finalize_ssa_vuses (vuse_optype *old_ops_p)
538 unsigned num, x, i, num_v_may_defs, old_num;
539 vuse_optype vuse_ops, old_ops;
540 bool build_diff;
542 num = VARRAY_ACTIVE_SIZE (build_vuses);
543 if (num == 0)
545 cleanup_v_may_defs ();
546 return NULL;
549 /* Remove superfluous VUSE operands. If the statement already has a
550 V_MAY_DEF operation for a variable 'a', then a VUSE for 'a' is not
551 needed because V_MAY_DEFs imply a VUSE of the variable. For instance,
552 suppose that variable 'a' is aliased:
554 # VUSE <a_2>
555 # a_3 = V_MAY_DEF <a_2>
556 a = a + 1;
558 The VUSE <a_2> is superfluous because it is implied by the V_MAY_DEF
559 operation. */
561 num_v_may_defs = VARRAY_ACTIVE_SIZE (build_v_may_defs);
563 if (num_v_may_defs > 0)
565 size_t i;
566 tree vuse;
567 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++)
569 vuse = VARRAY_TREE (build_vuses, i);
570 if (TREE_CODE (vuse) != SSA_NAME)
572 var_ann_t ann = var_ann (vuse);
573 ann->in_vuse_list = 0;
574 if (ann->in_v_may_def_list)
576 /* If we found a useless VUSE operand, remove it from the
577 operand array by replacing it with the last active element
578 in the operand array (unless the useless VUSE was the
579 last operand, in which case we simply remove it. */
580 if (i != VARRAY_ACTIVE_SIZE (build_vuses) - 1)
582 VARRAY_TREE (build_vuses, i)
583 = VARRAY_TREE (build_vuses,
584 VARRAY_ACTIVE_SIZE (build_vuses) - 1);
586 VARRAY_POP (build_vuses);
588 /* We want to rescan the element at this index, unless
589 this was the last element, in which case the loop
590 terminates. */
591 i--;
596 else
597 /* Clear out the in_list bits. */
598 for (x = 0; x < num; x++)
600 tree t = VARRAY_TREE (build_vuses, x);
601 if (TREE_CODE (t) != SSA_NAME)
603 var_ann_t ann = var_ann (t);
604 ann->in_vuse_list = 0;
609 num = VARRAY_ACTIVE_SIZE (build_vuses);
610 /* We could have reduced the size to zero now, however. */
611 if (num == 0)
613 cleanup_v_may_defs ();
614 return NULL;
617 old_ops = *old_ops_p;
619 /* Determine whether vuses is the same as the old vector. */
620 build_diff = true;
621 if (old_ops && old_ops->num_vuses == num)
623 old_num = num;
624 build_diff = false;
625 for (x = 0; x < num ; x++)
627 tree v;
628 v = old_ops->vuses[x];
629 if (TREE_CODE (v) == SSA_NAME)
630 v = SSA_NAME_VAR (v);
631 if (v != VARRAY_TREE (build_vuses, x))
633 build_diff = true;
634 break;
638 else
639 old_num = (old_ops ? old_ops->num_vuses : 0);
641 if (!build_diff)
643 vuse_ops = old_ops;
644 *old_ops_p = NULL;
646 else
648 vuse_ops = allocate_vuse_optype (num);
649 for (x = 0; x < num; x++)
651 tree result, var = VARRAY_TREE (build_vuses, x);
652 /* Look for VAR in the old vector, and use that SSA_NAME. */
653 for (i = 0; i < old_num; i++)
655 result = old_ops->vuses[i];
656 if (TREE_CODE (result) == SSA_NAME)
657 result = SSA_NAME_VAR (result);
658 if (result == var)
660 vuse_ops->vuses[x] = old_ops->vuses[i];
661 break;
664 if (i == old_num)
665 vuse_ops->vuses[x] = var;
669 /* The v_may_def build vector wasn't freed because we needed it here.
670 Free it now with the vuses build vector. */
671 VARRAY_POP_ALL (build_vuses);
672 cleanup_v_may_defs ();
674 return vuse_ops;
677 /* Return a new v_must_def operand vector for STMT, comparing to OLD_OPS_P. */
679 static v_must_def_optype
680 finalize_ssa_v_must_defs (v_must_def_optype *old_ops_p,
681 tree stmt ATTRIBUTE_UNUSED)
683 unsigned num, x, i, old_num = 0;
684 v_must_def_optype v_must_def_ops, old_ops;
685 bool build_diff;
687 num = VARRAY_ACTIVE_SIZE (build_v_must_defs);
688 if (num == 0)
689 return NULL;
691 /* There should only be a single V_MUST_DEF per assignment. */
692 gcc_assert (TREE_CODE (stmt) != MODIFY_EXPR || num <= 1);
694 old_ops = *old_ops_p;
696 /* Check if the old vector and the new array are the same. */
697 build_diff = true;
698 if (old_ops && old_ops->num_v_must_defs == num)
700 old_num = num;
701 build_diff = false;
702 for (x = 0; x < num; x++)
704 tree var = old_ops->v_must_defs[x].def;
705 if (TREE_CODE (var) == SSA_NAME)
706 var = SSA_NAME_VAR (var);
707 if (var != VARRAY_TREE (build_v_must_defs, x))
709 build_diff = true;
710 break;
714 else
715 old_num = (old_ops ? old_ops->num_v_must_defs : 0);
717 if (!build_diff)
719 v_must_def_ops = old_ops;
720 *old_ops_p = NULL;
722 else
724 v_must_def_ops = allocate_v_must_def_optype (num);
725 for (x = 0; x < num ; x++)
727 tree result, var = VARRAY_TREE (build_v_must_defs, x);
728 /* Look for VAR in the original vector. */
729 for (i = 0; i < old_num; i++)
731 result = old_ops->v_must_defs[i].def;
732 if (TREE_CODE (result) == SSA_NAME)
733 result = SSA_NAME_VAR (result);
734 if (result == var)
736 v_must_def_ops->v_must_defs[x].def = old_ops->v_must_defs[i].def;
737 v_must_def_ops->v_must_defs[x].use = old_ops->v_must_defs[i].use;
738 break;
741 if (i == old_num)
743 v_must_def_ops->v_must_defs[x].def = var;
744 v_must_def_ops->v_must_defs[x].use = var;
748 VARRAY_POP_ALL (build_v_must_defs);
750 return v_must_def_ops;
754 /* Finalize all the build vectors, fill the new ones into INFO. */
756 static inline void
757 finalize_ssa_stmt_operands (tree stmt, stmt_operands_p old_ops,
758 stmt_operands_p new_ops)
760 new_ops->def_ops = finalize_ssa_defs (&(old_ops->def_ops), stmt);
761 new_ops->use_ops = finalize_ssa_uses (&(old_ops->use_ops), stmt);
762 new_ops->v_must_def_ops
763 = finalize_ssa_v_must_defs (&(old_ops->v_must_def_ops), stmt);
764 new_ops->v_may_def_ops = finalize_ssa_v_may_defs (&(old_ops->v_may_def_ops));
765 new_ops->vuse_ops = finalize_ssa_vuses (&(old_ops->vuse_ops));
769 /* Start the process of building up operands vectors in INFO. */
771 static inline void
772 start_ssa_stmt_operands (void)
774 gcc_assert (VARRAY_ACTIVE_SIZE (build_defs) == 0);
775 gcc_assert (VARRAY_ACTIVE_SIZE (build_uses) == 0);
776 gcc_assert (VARRAY_ACTIVE_SIZE (build_vuses) == 0);
777 gcc_assert (VARRAY_ACTIVE_SIZE (build_v_may_defs) == 0);
778 gcc_assert (VARRAY_ACTIVE_SIZE (build_v_must_defs) == 0);
782 /* Add DEF_P to the list of pointers to operands. */
784 static inline void
785 append_def (tree *def_p)
787 VARRAY_PUSH_TREE_PTR (build_defs, def_p);
791 /* Add USE_P to the list of pointers to operands. */
793 static inline void
794 append_use (tree *use_p)
796 VARRAY_PUSH_TREE_PTR (build_uses, use_p);
800 /* Add a new virtual may def for variable VAR to the build array. */
802 static inline void
803 append_v_may_def (tree var)
805 var_ann_t ann = get_var_ann (var);
807 /* Don't allow duplicate entries. */
808 if (ann->in_v_may_def_list)
809 return;
810 ann->in_v_may_def_list = 1;
812 VARRAY_PUSH_TREE (build_v_may_defs, var);
816 /* Add VAR to the list of virtual uses. */
818 static inline void
819 append_vuse (tree var)
822 /* Don't allow duplicate entries. */
823 if (TREE_CODE (var) != SSA_NAME)
825 var_ann_t ann = get_var_ann (var);
827 if (ann->in_vuse_list || ann->in_v_may_def_list)
828 return;
829 ann->in_vuse_list = 1;
832 VARRAY_PUSH_TREE (build_vuses, var);
836 /* Add VAR to the list of virtual must definitions for INFO. */
838 static inline void
839 append_v_must_def (tree var)
841 unsigned i;
843 /* Don't allow duplicate entries. */
844 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_v_must_defs); i++)
845 if (var == VARRAY_TREE (build_v_must_defs, i))
846 return;
848 VARRAY_PUSH_TREE (build_v_must_defs, var);
851 /* Create an operands cache for STMT, returning it in NEW_OPS. OLD_OPS are the
852 original operands, and if ANN is non-null, appropriate stmt flags are set
853 in the stmt's annotation. Note that some fields in old_ops may
854 change to NULL, although none of the memory they originally pointed to
855 will be destroyed. It is appropriate to call free_stmt_operands() on
856 the value returned in old_ops.
858 The rationale for this: Certain optimizations wish to examine the difference
859 between new_ops and old_ops after processing. If a set of operands don't
860 change, new_ops will simply assume the pointer in old_ops, and the old_ops
861 pointer will be set to NULL, indicating no memory needs to be cleared.
862 Usage might appear something like:
864 old_ops_copy = old_ops = stmt_ann(stmt)->operands;
865 build_ssa_operands (stmt, NULL, &old_ops, &new_ops);
866 <* compare old_ops_copy and new_ops *>
867 free_ssa_operands (old_ops); */
869 static void
870 build_ssa_operands (tree stmt, stmt_ann_t ann, stmt_operands_p old_ops,
871 stmt_operands_p new_ops)
873 enum tree_code code;
874 tree_ann_t saved_ann = stmt->common.ann;
876 /* Replace stmt's annotation with the one passed in for the duration
877 of the operand building process. This allows "fake" stmts to be built
878 and not be included in other data structures which can be built here. */
879 stmt->common.ann = (tree_ann_t) ann;
881 /* Initially assume that the statement has no volatile operands, nor
882 makes aliased loads or stores. */
883 if (ann)
885 ann->has_volatile_ops = false;
886 ann->makes_aliased_stores = false;
887 ann->makes_aliased_loads = false;
890 start_ssa_stmt_operands ();
892 code = TREE_CODE (stmt);
893 switch (code)
895 case MODIFY_EXPR:
896 /* First get operands from the RHS. For the LHS, we use a V_MAY_DEF if
897 either only part of LHS is modified or if the RHS might throw,
898 otherwise, use V_MUST_DEF.
900 ??? If it might throw, we should represent somehow that it is killed
901 on the fallthrough path. */
903 tree lhs = TREE_OPERAND (stmt, 0);
904 int lhs_flags = opf_is_def;
906 get_expr_operands (stmt, &TREE_OPERAND (stmt, 1), opf_none);
908 /* If the LHS is a VIEW_CONVERT_EXPR, it isn't changing whether
909 or not the entire LHS is modified; that depends on what's
910 inside the VIEW_CONVERT_EXPR. */
911 if (TREE_CODE (lhs) == VIEW_CONVERT_EXPR)
912 lhs = TREE_OPERAND (lhs, 0);
914 if (TREE_CODE (lhs) != ARRAY_REF && TREE_CODE (lhs) != ARRAY_RANGE_REF
915 && TREE_CODE (lhs) != COMPONENT_REF
916 && TREE_CODE (lhs) != BIT_FIELD_REF
917 && TREE_CODE (lhs) != REALPART_EXPR
918 && TREE_CODE (lhs) != IMAGPART_EXPR)
919 lhs_flags |= opf_kill_def;
921 get_expr_operands (stmt, &TREE_OPERAND (stmt, 0), lhs_flags);
923 break;
925 case COND_EXPR:
926 get_expr_operands (stmt, &COND_EXPR_COND (stmt), opf_none);
927 break;
929 case SWITCH_EXPR:
930 get_expr_operands (stmt, &SWITCH_COND (stmt), opf_none);
931 break;
933 case ASM_EXPR:
934 get_asm_expr_operands (stmt);
935 break;
937 case RETURN_EXPR:
938 get_expr_operands (stmt, &TREE_OPERAND (stmt, 0), opf_none);
939 break;
941 case GOTO_EXPR:
942 get_expr_operands (stmt, &GOTO_DESTINATION (stmt), opf_none);
943 break;
945 case LABEL_EXPR:
946 get_expr_operands (stmt, &LABEL_EXPR_LABEL (stmt), opf_none);
947 break;
949 /* These nodes contain no variable references. */
950 case BIND_EXPR:
951 case CASE_LABEL_EXPR:
952 case TRY_CATCH_EXPR:
953 case TRY_FINALLY_EXPR:
954 case EH_FILTER_EXPR:
955 case CATCH_EXPR:
956 case RESX_EXPR:
957 break;
959 default:
960 /* Notice that if get_expr_operands tries to use &STMT as the operand
961 pointer (which may only happen for USE operands), we will abort in
962 append_use. This default will handle statements like empty
963 statements, or CALL_EXPRs that may appear on the RHS of a statement
964 or as statements themselves. */
965 get_expr_operands (stmt, &stmt, opf_none);
966 break;
969 finalize_ssa_stmt_operands (stmt, old_ops, new_ops);
970 stmt->common.ann = saved_ann;
974 /* Free any operands vectors in OPS. */
976 static void
977 free_ssa_operands (stmt_operands_p ops)
979 if (ops->def_ops)
980 free_defs (&(ops->def_ops));
981 if (ops->use_ops)
982 free_uses (&(ops->use_ops));
983 if (ops->vuse_ops)
984 free_vuses (&(ops->vuse_ops));
985 if (ops->v_may_def_ops)
986 free_v_may_defs (&(ops->v_may_def_ops));
987 if (ops->v_must_def_ops)
988 free_v_must_defs (&(ops->v_must_def_ops));
992 /* Get the operands of statement STMT. Note that repeated calls to
993 get_stmt_operands for the same statement will do nothing until the
994 statement is marked modified by a call to modify_stmt(). */
996 void
997 get_stmt_operands (tree stmt)
999 stmt_ann_t ann;
1000 stmt_operands_t old_operands;
1002 /* The optimizers cannot handle statements that are nothing but a
1003 _DECL. This indicates a bug in the gimplifier. */
1004 gcc_assert (!SSA_VAR_P (stmt));
1006 /* Ignore error statements. */
1007 if (TREE_CODE (stmt) == ERROR_MARK)
1008 return;
1010 ann = get_stmt_ann (stmt);
1012 /* If the statement has not been modified, the operands are still valid. */
1013 if (!ann->modified)
1014 return;
1016 timevar_push (TV_TREE_OPS);
1018 old_operands = ann->operands;
1019 memset (&(ann->operands), 0, sizeof (stmt_operands_t));
1021 build_ssa_operands (stmt, ann, &old_operands, &(ann->operands));
1022 free_ssa_operands (&old_operands);
1024 /* Clear the modified bit for STMT. Subsequent calls to
1025 get_stmt_operands for this statement will do nothing until the
1026 statement is marked modified by a call to modify_stmt(). */
1027 ann->modified = 0;
1029 timevar_pop (TV_TREE_OPS);
1033 /* Recursively scan the expression pointed by EXPR_P in statement referred to
1034 by INFO. FLAGS is one of the OPF_* constants modifying how to interpret the
1035 operands found. */
1037 static void
1038 get_expr_operands (tree stmt, tree *expr_p, int flags)
1040 enum tree_code code;
1041 enum tree_code_class class;
1042 tree expr = *expr_p;
1043 stmt_ann_t s_ann = stmt_ann (stmt);
1045 if (expr == NULL || expr == error_mark_node)
1046 return;
1048 code = TREE_CODE (expr);
1049 class = TREE_CODE_CLASS (code);
1051 switch (code)
1053 case ADDR_EXPR:
1054 /* We could have the address of a component, array member,
1055 etc which has interesting variable references. */
1056 /* Taking the address of a variable does not represent a
1057 reference to it, but the fact that the stmt takes its address will be
1058 of interest to some passes (e.g. alias resolution). */
1059 add_stmt_operand (expr_p, s_ann, 0);
1061 /* If the address is invariant, there may be no interesting variable
1062 references inside. */
1063 if (is_gimple_min_invariant (expr))
1064 return;
1066 /* There should be no VUSEs created, since the referenced objects are
1067 not really accessed. The only operands that we should find here
1068 are ARRAY_REF indices which will always be real operands (GIMPLE
1069 does not allow non-registers as array indices). */
1070 flags |= opf_no_vops;
1072 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1073 return;
1075 case SSA_NAME:
1076 case VAR_DECL:
1077 case PARM_DECL:
1078 case RESULT_DECL:
1079 case CONST_DECL:
1080 /* If we found a variable, add it to DEFS or USES depending
1081 on the operand flags. */
1082 add_stmt_operand (expr_p, s_ann, flags);
1083 return;
1085 case MISALIGNED_INDIRECT_REF:
1086 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
1087 /* fall through */
1089 case ALIGN_INDIRECT_REF:
1090 case INDIRECT_REF:
1091 get_indirect_ref_operands (stmt, expr, flags);
1092 return;
1094 case ARRAY_REF:
1095 case ARRAY_RANGE_REF:
1096 /* Treat array references as references to the virtual variable
1097 representing the array. The virtual variable for an ARRAY_REF
1098 is the VAR_DECL for the array. */
1100 /* Add the virtual variable for the ARRAY_REF to VDEFS or VUSES
1101 according to the value of IS_DEF. Recurse if the LHS of the
1102 ARRAY_REF node is not a regular variable. */
1103 if (SSA_VAR_P (TREE_OPERAND (expr, 0)))
1104 add_stmt_operand (expr_p, s_ann, flags);
1105 else
1106 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1108 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1109 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1110 get_expr_operands (stmt, &TREE_OPERAND (expr, 3), opf_none);
1111 return;
1113 case COMPONENT_REF:
1114 case REALPART_EXPR:
1115 case IMAGPART_EXPR:
1116 /* Similarly to arrays, references to compound variables (complex
1117 types and structures/unions) are globbed.
1119 FIXME: This means that
1121 a.x = 6;
1122 a.y = 7;
1123 foo (a.x, a.y);
1125 will not be constant propagated because the two partial
1126 definitions to 'a' will kill each other. Note that SRA may be
1127 able to fix this problem if 'a' can be scalarized. */
1129 /* If the LHS of the compound reference is not a regular variable,
1130 recurse to keep looking for more operands in the subexpression. */
1131 if (SSA_VAR_P (TREE_OPERAND (expr, 0)))
1132 add_stmt_operand (expr_p, s_ann, flags);
1133 else
1134 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1136 if (code == COMPONENT_REF)
1137 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1138 return;
1140 case WITH_SIZE_EXPR:
1141 /* WITH_SIZE_EXPR is a pass-through reference to its first argument,
1142 and an rvalue reference to its second argument. */
1143 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1144 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1145 return;
1147 case CALL_EXPR:
1148 get_call_expr_operands (stmt, expr);
1149 return;
1151 case COND_EXPR:
1152 case VEC_COND_EXPR:
1153 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);
1154 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1155 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1156 return;
1158 case MODIFY_EXPR:
1160 int subflags;
1161 tree op;
1163 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1165 op = TREE_OPERAND (expr, 0);
1166 if (TREE_CODE (op) == WITH_SIZE_EXPR)
1167 op = TREE_OPERAND (expr, 0);
1168 if (TREE_CODE (op) == ARRAY_REF
1169 || TREE_CODE (op) == ARRAY_RANGE_REF
1170 || TREE_CODE (op) == COMPONENT_REF
1171 || TREE_CODE (op) == REALPART_EXPR
1172 || TREE_CODE (op) == IMAGPART_EXPR)
1173 subflags = opf_is_def;
1174 else
1175 subflags = opf_is_def | opf_kill_def;
1177 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), subflags);
1178 return;
1181 case CONSTRUCTOR:
1183 /* General aggregate CONSTRUCTORs have been decomposed, but they
1184 are still in use as the COMPLEX_EXPR equivalent for vectors. */
1186 tree t;
1187 for (t = TREE_OPERAND (expr, 0); t ; t = TREE_CHAIN (t))
1188 get_expr_operands (stmt, &TREE_VALUE (t), opf_none);
1190 return;
1193 case TRUTH_NOT_EXPR:
1194 case BIT_FIELD_REF:
1195 case VIEW_CONVERT_EXPR:
1196 do_unary:
1197 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1198 return;
1200 case TRUTH_AND_EXPR:
1201 case TRUTH_OR_EXPR:
1202 case TRUTH_XOR_EXPR:
1203 case COMPOUND_EXPR:
1204 case OBJ_TYPE_REF:
1205 do_binary:
1207 tree op0 = TREE_OPERAND (expr, 0);
1208 tree op1 = TREE_OPERAND (expr, 1);
1210 /* If it would be profitable to swap the operands, then do so to
1211 canonicalize the statement, enabling better optimization.
1213 By placing canonicalization of such expressions here we
1214 transparently keep statements in canonical form, even
1215 when the statement is modified. */
1216 if (tree_swap_operands_p (op0, op1, false))
1218 /* For relationals we need to swap the operands
1219 and change the code. */
1220 if (code == LT_EXPR
1221 || code == GT_EXPR
1222 || code == LE_EXPR
1223 || code == GE_EXPR)
1225 TREE_SET_CODE (expr, swap_tree_comparison (code));
1226 TREE_OPERAND (expr, 0) = op1;
1227 TREE_OPERAND (expr, 1) = op0;
1230 /* For a commutative operator we can just swap the operands. */
1231 else if (commutative_tree_code (code))
1233 TREE_OPERAND (expr, 0) = op1;
1234 TREE_OPERAND (expr, 1) = op0;
1238 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1239 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
1240 return;
1243 case REALIGN_LOAD_EXPR:
1245 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1246 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
1247 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), flags);
1248 return;
1251 case BLOCK:
1252 case FUNCTION_DECL:
1253 case EXC_PTR_EXPR:
1254 case FILTER_EXPR:
1255 case LABEL_DECL:
1256 /* Expressions that make no memory references. */
1257 return;
1259 default:
1260 if (class == tcc_unary)
1261 goto do_unary;
1262 if (class == tcc_binary || class == tcc_comparison)
1263 goto do_binary;
1264 if (class == tcc_constant || class == tcc_type)
1265 return;
1268 /* If we get here, something has gone wrong. */
1269 #ifdef ENABLE_CHECKING
1270 fprintf (stderr, "unhandled expression in get_expr_operands():\n");
1271 debug_tree (expr);
1272 fputs ("\n", stderr);
1273 internal_error ("internal error");
1274 #endif
1275 gcc_unreachable ();
1279 /* Scan operands in the ASM_EXPR stmt referred to in INFO. */
1281 static void
1282 get_asm_expr_operands (tree stmt)
1284 stmt_ann_t s_ann = stmt_ann (stmt);
1285 int noutputs = list_length (ASM_OUTPUTS (stmt));
1286 const char **oconstraints
1287 = (const char **) alloca ((noutputs) * sizeof (const char *));
1288 int i;
1289 tree link;
1290 const char *constraint;
1291 bool allows_mem, allows_reg, is_inout;
1293 for (i=0, link = ASM_OUTPUTS (stmt); link; ++i, link = TREE_CHAIN (link))
1295 oconstraints[i] = constraint
1296 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1297 parse_output_constraint (&constraint, i, 0, 0,
1298 &allows_mem, &allows_reg, &is_inout);
1300 /* This should have been split in gimplify_asm_expr. */
1301 gcc_assert (!allows_reg || !is_inout);
1303 /* Memory operands are addressable. Note that STMT needs the
1304 address of this operand. */
1305 if (!allows_reg && allows_mem)
1307 tree t = get_base_address (TREE_VALUE (link));
1308 if (t && DECL_P (t))
1309 note_addressable (t, s_ann);
1312 get_expr_operands (stmt, &TREE_VALUE (link), opf_is_def);
1315 for (link = ASM_INPUTS (stmt); link; link = TREE_CHAIN (link))
1317 constraint
1318 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1319 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1320 oconstraints, &allows_mem, &allows_reg);
1322 /* Memory operands are addressable. Note that STMT needs the
1323 address of this operand. */
1324 if (!allows_reg && allows_mem)
1326 tree t = get_base_address (TREE_VALUE (link));
1327 if (t && DECL_P (t))
1328 note_addressable (t, s_ann);
1331 get_expr_operands (stmt, &TREE_VALUE (link), 0);
1335 /* Clobber memory for asm ("" : : : "memory"); */
1336 for (link = ASM_CLOBBERS (stmt); link; link = TREE_CHAIN (link))
1337 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (link)), "memory") == 0)
1339 unsigned i;
1340 bitmap_iterator bi;
1342 /* Clobber all call-clobbered variables (or .GLOBAL_VAR if we
1343 decided to group them). */
1344 if (global_var)
1345 add_stmt_operand (&global_var, s_ann, opf_is_def);
1346 else
1347 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1349 tree var = referenced_var (i);
1350 add_stmt_operand (&var, s_ann, opf_is_def);
1353 /* Now clobber all addressables. */
1354 EXECUTE_IF_SET_IN_BITMAP (addressable_vars, 0, i, bi)
1356 tree var = referenced_var (i);
1357 add_stmt_operand (&var, s_ann, opf_is_def);
1360 break;
1364 /* A subroutine of get_expr_operands to handle INDIRECT_REF,
1365 ALIGN_INDIRECT_REF and MISALIGNED_INDIRECT_REF. */
1367 static void
1368 get_indirect_ref_operands (tree stmt, tree expr, int flags)
1370 tree *pptr = &TREE_OPERAND (expr, 0);
1371 tree ptr = *pptr;
1372 stmt_ann_t s_ann = stmt_ann (stmt);
1374 /* Stores into INDIRECT_REF operands are never killing definitions. */
1375 flags &= ~opf_kill_def;
1377 if (REF_ORIGINAL (expr))
1379 enum tree_code ocode = TREE_CODE (REF_ORIGINAL (expr));
1381 /* If we originally accessed part of a structure, we do it still. */
1382 if (ocode == ARRAY_REF
1383 || ocode == COMPONENT_REF
1384 || ocode == REALPART_EXPR
1385 || ocode == IMAGPART_EXPR)
1386 flags &= ~opf_kill_def;
1389 if (SSA_VAR_P (ptr))
1391 struct ptr_info_def *pi = NULL;
1393 /* If PTR has flow-sensitive points-to information, use it. */
1394 if (TREE_CODE (ptr) == SSA_NAME
1395 && (pi = SSA_NAME_PTR_INFO (ptr)) != NULL
1396 && pi->name_mem_tag)
1398 /* PTR has its own memory tag. Use it. */
1399 add_stmt_operand (&pi->name_mem_tag, s_ann, flags);
1401 else
1403 /* If PTR is not an SSA_NAME or it doesn't have a name
1404 tag, use its type memory tag. */
1405 var_ann_t v_ann;
1407 /* If we are emitting debugging dumps, display a warning if
1408 PTR is an SSA_NAME with no flow-sensitive alias
1409 information. That means that we may need to compute
1410 aliasing again. */
1411 if (dump_file
1412 && TREE_CODE (ptr) == SSA_NAME
1413 && pi == NULL)
1415 fprintf (dump_file,
1416 "NOTE: no flow-sensitive alias info for ");
1417 print_generic_expr (dump_file, ptr, dump_flags);
1418 fprintf (dump_file, " in ");
1419 print_generic_stmt (dump_file, stmt, dump_flags);
1422 if (TREE_CODE (ptr) == SSA_NAME)
1423 ptr = SSA_NAME_VAR (ptr);
1424 v_ann = var_ann (ptr);
1425 if (v_ann->type_mem_tag)
1426 add_stmt_operand (&v_ann->type_mem_tag, s_ann, flags);
1430 /* If a constant is used as a pointer, we can't generate a real
1431 operand for it but we mark the statement volatile to prevent
1432 optimizations from messing things up. */
1433 else if (TREE_CODE (ptr) == INTEGER_CST)
1435 if (s_ann)
1436 s_ann->has_volatile_ops = true;
1437 return;
1440 /* Everything else *should* have been folded elsewhere, but users
1441 are smarter than we in finding ways to write invalid code. We
1442 cannot just abort here. If we were absolutely certain that we
1443 do handle all valid cases, then we could just do nothing here.
1444 That seems optimistic, so attempt to do something logical... */
1445 else if ((TREE_CODE (ptr) == PLUS_EXPR || TREE_CODE (ptr) == MINUS_EXPR)
1446 && TREE_CODE (TREE_OPERAND (ptr, 0)) == ADDR_EXPR
1447 && TREE_CODE (TREE_OPERAND (ptr, 1)) == INTEGER_CST)
1449 /* Make sure we know the object is addressable. */
1450 pptr = &TREE_OPERAND (ptr, 0);
1451 add_stmt_operand (pptr, s_ann, 0);
1453 /* Mark the object itself with a VUSE. */
1454 pptr = &TREE_OPERAND (*pptr, 0);
1455 get_expr_operands (stmt, pptr, flags);
1456 return;
1459 /* Ok, this isn't even is_gimple_min_invariant. Something's broke. */
1460 else
1461 gcc_unreachable ();
1463 /* Add a USE operand for the base pointer. */
1464 get_expr_operands (stmt, pptr, opf_none);
1467 /* A subroutine of get_expr_operands to handle CALL_EXPR. */
1469 static void
1470 get_call_expr_operands (tree stmt, tree expr)
1472 tree op;
1473 int call_flags = call_expr_flags (expr);
1475 if (!bitmap_empty_p (call_clobbered_vars))
1477 /* A 'pure' or a 'const' functions never call clobber anything.
1478 A 'noreturn' function might, but since we don't return anyway
1479 there is no point in recording that. */
1480 if (TREE_SIDE_EFFECTS (expr)
1481 && !(call_flags & (ECF_PURE | ECF_CONST | ECF_NORETURN)))
1482 add_call_clobber_ops (stmt);
1483 else if (!(call_flags & ECF_CONST))
1484 add_call_read_ops (stmt);
1487 /* Find uses in the called function. */
1488 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);
1490 for (op = TREE_OPERAND (expr, 1); op; op = TREE_CHAIN (op))
1491 get_expr_operands (stmt, &TREE_VALUE (op), opf_none);
1493 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1498 /* Add *VAR_P to the appropriate operand array for INFO. FLAGS is as in
1499 get_expr_operands. If *VAR_P is a GIMPLE register, it will be added to
1500 the statement's real operands, otherwise it is added to virtual
1501 operands. */
1503 static void
1504 add_stmt_operand (tree *var_p, stmt_ann_t s_ann, int flags)
1506 bool is_real_op;
1507 tree var, sym;
1508 var_ann_t v_ann;
1510 var = *var_p;
1511 STRIP_NOPS (var);
1513 /* If the operand is an ADDR_EXPR, add its operand to the list of
1514 variables that have had their address taken in this statement. */
1515 if (TREE_CODE (var) == ADDR_EXPR)
1517 note_addressable (TREE_OPERAND (var, 0), s_ann);
1518 return;
1521 /* If the original variable is not a scalar, it will be added to the list
1522 of virtual operands. In that case, use its base symbol as the virtual
1523 variable representing it. */
1524 is_real_op = is_gimple_reg (var);
1525 if (!is_real_op && !DECL_P (var))
1526 var = get_virtual_var (var);
1528 /* If VAR is not a variable that we care to optimize, do nothing. */
1529 if (var == NULL_TREE || !SSA_VAR_P (var))
1530 return;
1532 sym = (TREE_CODE (var) == SSA_NAME ? SSA_NAME_VAR (var) : var);
1533 v_ann = var_ann (sym);
1535 /* Don't expose volatile variables to the optimizers. */
1536 if (TREE_THIS_VOLATILE (sym))
1538 if (s_ann)
1539 s_ann->has_volatile_ops = true;
1540 return;
1543 if (is_real_op)
1545 /* The variable is a GIMPLE register. Add it to real operands. */
1546 if (flags & opf_is_def)
1547 append_def (var_p);
1548 else
1549 append_use (var_p);
1551 else
1553 varray_type aliases;
1555 /* The variable is not a GIMPLE register. Add it (or its aliases) to
1556 virtual operands, unless the caller has specifically requested
1557 not to add virtual operands (used when adding operands inside an
1558 ADDR_EXPR expression). */
1559 if (flags & opf_no_vops)
1560 return;
1562 aliases = v_ann->may_aliases;
1564 if (aliases == NULL)
1566 /* The variable is not aliased or it is an alias tag. */
1567 if (flags & opf_is_def)
1569 if (flags & opf_kill_def)
1571 /* Only regular variables may get a V_MUST_DEF
1572 operand. */
1573 gcc_assert (v_ann->mem_tag_kind == NOT_A_TAG);
1574 /* V_MUST_DEF for non-aliased, non-GIMPLE register
1575 variable definitions. */
1576 append_v_must_def (var);
1578 else
1580 /* Add a V_MAY_DEF for call-clobbered variables and
1581 memory tags. */
1582 append_v_may_def (var);
1585 else
1587 append_vuse (var);
1588 if (s_ann && v_ann->is_alias_tag)
1589 s_ann->makes_aliased_loads = 1;
1592 else
1594 size_t i;
1596 /* The variable is aliased. Add its aliases to the virtual
1597 operands. */
1598 gcc_assert (VARRAY_ACTIVE_SIZE (aliases) != 0);
1600 if (flags & opf_is_def)
1602 /* If the variable is also an alias tag, add a virtual
1603 operand for it, otherwise we will miss representing
1604 references to the members of the variable's alias set.
1605 This fixes the bug in gcc.c-torture/execute/20020503-1.c. */
1606 if (v_ann->is_alias_tag)
1607 append_v_may_def (var);
1609 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
1610 append_v_may_def (VARRAY_TREE (aliases, i));
1612 if (s_ann)
1613 s_ann->makes_aliased_stores = 1;
1615 else
1617 /* Similarly, append a virtual uses for VAR itself, when
1618 it is an alias tag. */
1619 if (v_ann->is_alias_tag)
1620 append_vuse (var);
1622 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
1623 append_vuse (VARRAY_TREE (aliases, i));
1625 if (s_ann)
1626 s_ann->makes_aliased_loads = 1;
1633 /* Record that VAR had its address taken in the statement with annotations
1634 S_ANN. */
1636 static void
1637 note_addressable (tree var, stmt_ann_t s_ann)
1639 if (!s_ann)
1640 return;
1642 var = get_base_address (var);
1643 if (var && SSA_VAR_P (var))
1645 if (s_ann->addresses_taken == NULL)
1646 s_ann->addresses_taken = BITMAP_GGC_ALLOC ();
1647 bitmap_set_bit (s_ann->addresses_taken, var_ann (var)->uid);
1652 /* Add clobbering definitions for .GLOBAL_VAR or for each of the call
1653 clobbered variables in the function. */
1655 static void
1656 add_call_clobber_ops (tree stmt)
1658 unsigned i;
1659 tree t;
1660 bitmap_iterator bi;
1661 stmt_ann_t s_ann = stmt_ann (stmt);
1662 struct stmt_ann_d empty_ann;
1664 /* Functions that are not const, pure or never return may clobber
1665 call-clobbered variables. */
1666 if (s_ann)
1667 s_ann->makes_clobbering_call = true;
1669 /* If we created .GLOBAL_VAR earlier, just use it. See compute_may_aliases
1670 for the heuristic used to decide whether to create .GLOBAL_VAR or not. */
1671 if (global_var)
1673 add_stmt_operand (&global_var, s_ann, opf_is_def);
1674 return;
1677 /* If cache is valid, copy the elements into the build vectors. */
1678 if (ssa_call_clobbered_cache_valid)
1680 for (i = 0; i < VARRAY_ACTIVE_SIZE (clobbered_vuses); i++)
1682 t = VARRAY_TREE (clobbered_vuses, i);
1683 gcc_assert (TREE_CODE (t) != SSA_NAME);
1684 var_ann (t)->in_vuse_list = 1;
1685 VARRAY_PUSH_TREE (build_vuses, t);
1687 for (i = 0; i < VARRAY_ACTIVE_SIZE (clobbered_v_may_defs); i++)
1689 t = VARRAY_TREE (clobbered_v_may_defs, i);
1690 gcc_assert (TREE_CODE (t) != SSA_NAME);
1691 var_ann (t)->in_v_may_def_list = 1;
1692 VARRAY_PUSH_TREE (build_v_may_defs, t);
1694 if (s_ann)
1696 s_ann->makes_aliased_loads = clobbered_aliased_loads;
1697 s_ann->makes_aliased_stores = clobbered_aliased_stores;
1699 return;
1702 memset (&empty_ann, 0, sizeof (struct stmt_ann_d));
1704 /* Add a V_MAY_DEF operand for every call clobbered variable. */
1705 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1707 tree var = referenced_var (i);
1708 if (TREE_READONLY (var)
1709 && (TREE_STATIC (var) || DECL_EXTERNAL (var)))
1710 add_stmt_operand (&var, &empty_ann, opf_none);
1711 else
1712 add_stmt_operand (&var, &empty_ann, opf_is_def);
1715 clobbered_aliased_loads = empty_ann.makes_aliased_loads;
1716 clobbered_aliased_stores = empty_ann.makes_aliased_stores;
1718 /* Set the flags for a stmt's annotation. */
1719 if (s_ann)
1721 s_ann->makes_aliased_loads = empty_ann.makes_aliased_loads;
1722 s_ann->makes_aliased_stores = empty_ann.makes_aliased_stores;
1725 /* Prepare empty cache vectors. */
1726 if (clobbered_v_may_defs)
1728 VARRAY_POP_ALL (clobbered_vuses);
1729 VARRAY_POP_ALL (clobbered_v_may_defs);
1731 else
1733 VARRAY_TREE_INIT (clobbered_v_may_defs, 10, "clobbered_v_may_defs");
1734 VARRAY_TREE_INIT (clobbered_vuses, 10, "clobbered_vuses");
1737 /* Now fill the clobbered cache with the values that have been found. */
1738 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++)
1739 VARRAY_PUSH_TREE (clobbered_vuses, VARRAY_TREE (build_vuses, i));
1740 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_v_may_defs); i++)
1741 VARRAY_PUSH_TREE (clobbered_v_may_defs, VARRAY_TREE (build_v_may_defs, i));
1743 ssa_call_clobbered_cache_valid = true;
1747 /* Add VUSE operands for .GLOBAL_VAR or all call clobbered variables in the
1748 function. */
1750 static void
1751 add_call_read_ops (tree stmt)
1753 unsigned i;
1754 tree t;
1755 bitmap_iterator bi;
1756 stmt_ann_t s_ann = stmt_ann (stmt);
1757 struct stmt_ann_d empty_ann;
1759 /* if the function is not pure, it may reference memory. Add
1760 a VUSE for .GLOBAL_VAR if it has been created. See add_referenced_var
1761 for the heuristic used to decide whether to create .GLOBAL_VAR. */
1762 if (global_var)
1764 add_stmt_operand (&global_var, s_ann, opf_none);
1765 return;
1768 /* If cache is valid, copy the elements into the build vector. */
1769 if (ssa_ro_call_cache_valid)
1771 for (i = 0; i < VARRAY_ACTIVE_SIZE (ro_call_vuses); i++)
1773 t = VARRAY_TREE (ro_call_vuses, i);
1774 gcc_assert (TREE_CODE (t) != SSA_NAME);
1775 var_ann (t)->in_vuse_list = 1;
1776 VARRAY_PUSH_TREE (build_vuses, t);
1778 if (s_ann)
1779 s_ann->makes_aliased_loads = ro_call_aliased_loads;
1780 return;
1783 memset (&empty_ann, 0, sizeof (struct stmt_ann_d));
1785 /* Add a VUSE for each call-clobbered variable. */
1786 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1788 tree var = referenced_var (i);
1789 add_stmt_operand (&var, &empty_ann, opf_none);
1792 ro_call_aliased_loads = empty_ann.makes_aliased_loads;
1793 if (s_ann)
1794 s_ann->makes_aliased_loads = empty_ann.makes_aliased_loads;
1796 /* Prepare empty cache vectors. */
1797 if (ro_call_vuses)
1798 VARRAY_POP_ALL (ro_call_vuses);
1799 else
1800 VARRAY_TREE_INIT (ro_call_vuses, 10, "ro_call_vuses");
1802 /* Now fill the clobbered cache with the values that have been found. */
1803 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++)
1804 VARRAY_PUSH_TREE (ro_call_vuses, VARRAY_TREE (build_vuses, i));
1806 ssa_ro_call_cache_valid = true;
1809 /* Copies virtual operands from SRC to DST. */
1811 void
1812 copy_virtual_operands (tree dst, tree src)
1814 unsigned i;
1815 vuse_optype vuses = STMT_VUSE_OPS (src);
1816 v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (src);
1817 v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (src);
1818 vuse_optype *vuses_new = &stmt_ann (dst)->operands.vuse_ops;
1819 v_may_def_optype *v_may_defs_new = &stmt_ann (dst)->operands.v_may_def_ops;
1820 v_must_def_optype *v_must_defs_new = &stmt_ann (dst)->operands.v_must_def_ops;
1822 if (vuses)
1824 *vuses_new = allocate_vuse_optype (NUM_VUSES (vuses));
1825 for (i = 0; i < NUM_VUSES (vuses); i++)
1826 SET_VUSE_OP (*vuses_new, i, VUSE_OP (vuses, i));
1829 if (v_may_defs)
1831 *v_may_defs_new = allocate_v_may_def_optype (NUM_V_MAY_DEFS (v_may_defs));
1832 for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs); i++)
1834 SET_V_MAY_DEF_OP (*v_may_defs_new, i, V_MAY_DEF_OP (v_may_defs, i));
1835 SET_V_MAY_DEF_RESULT (*v_may_defs_new, i,
1836 V_MAY_DEF_RESULT (v_may_defs, i));
1840 if (v_must_defs)
1842 *v_must_defs_new = allocate_v_must_def_optype (NUM_V_MUST_DEFS (v_must_defs));
1843 for (i = 0; i < NUM_V_MUST_DEFS (v_must_defs); i++)
1845 SET_V_MUST_DEF_RESULT (*v_must_defs_new, i, V_MUST_DEF_RESULT (v_must_defs, i));
1846 SET_V_MUST_DEF_KILL (*v_must_defs_new, i, V_MUST_DEF_KILL (v_must_defs, i));
1852 /* Specifically for use in DOM's expression analysis. Given a store, we
1853 create an artificial stmt which looks like a load from the store, this can
1854 be used to eliminate redundant loads. OLD_OPS are the operands from the
1855 store stmt, and NEW_STMT is the new load which represents a load of the
1856 values stored. */
1858 void
1859 create_ssa_artficial_load_stmt (stmt_operands_p old_ops, tree new_stmt)
1861 stmt_ann_t ann;
1862 tree op;
1863 stmt_operands_t tmp;
1864 unsigned j;
1866 memset (&tmp, 0, sizeof (stmt_operands_t));
1867 ann = get_stmt_ann (new_stmt);
1869 /* Free operands just in case is was an existing stmt. */
1870 free_ssa_operands (&(ann->operands));
1872 build_ssa_operands (new_stmt, NULL, &tmp, &(ann->operands));
1873 free_vuses (&(ann->operands.vuse_ops));
1874 free_v_may_defs (&(ann->operands.v_may_def_ops));
1875 free_v_must_defs (&(ann->operands.v_must_def_ops));
1877 /* For each VDEF on the original statement, we want to create a
1878 VUSE of the V_MAY_DEF result or V_MUST_DEF op on the new
1879 statement. */
1880 for (j = 0; j < NUM_V_MAY_DEFS (old_ops->v_may_def_ops); j++)
1882 op = V_MAY_DEF_RESULT (old_ops->v_may_def_ops, j);
1883 append_vuse (op);
1886 for (j = 0; j < NUM_V_MUST_DEFS (old_ops->v_must_def_ops); j++)
1888 op = V_MUST_DEF_RESULT (old_ops->v_must_def_ops, j);
1889 append_vuse (op);
1892 /* Now set the vuses for this new stmt. */
1893 ann->operands.vuse_ops = finalize_ssa_vuses (&(tmp.vuse_ops));
1896 #include "gt-tree-ssa-operands.h"