* combine.c (expand_compound_operation) <ZERO_EXTRACT>: Add
[official-gcc.git] / gcc / combine.c
bloba870ff3751c7f42bc0e48b333b00e17cee47b792
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93 #include "rtlhooks-def.h"
94 /* Include output.h for dump_file. */
95 #include "output.h"
97 /* Number of attempts to combine instructions in this function. */
99 static int combine_attempts;
101 /* Number of attempts that got as far as substitution in this function. */
103 static int combine_merges;
105 /* Number of instructions combined with added SETs in this function. */
107 static int combine_extras;
109 /* Number of instructions combined in this function. */
111 static int combine_successes;
113 /* Totals over entire compilation. */
115 static int total_attempts, total_merges, total_extras, total_successes;
118 /* Vector mapping INSN_UIDs to cuids.
119 The cuids are like uids but increase monotonically always.
120 Combine always uses cuids so that it can compare them.
121 But actually renumbering the uids, which we used to do,
122 proves to be a bad idea because it makes it hard to compare
123 the dumps produced by earlier passes with those from later passes. */
125 static int *uid_cuid;
126 static int max_uid_cuid;
128 /* Get the cuid of an insn. */
130 #define INSN_CUID(INSN) \
131 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
133 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
134 BITS_PER_WORD would invoke undefined behavior. Work around it. */
136 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
137 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
139 /* Maximum register number, which is the size of the tables below. */
141 static unsigned int combine_max_regno;
143 struct reg_stat {
144 /* Record last point of death of (hard or pseudo) register n. */
145 rtx last_death;
147 /* Record last point of modification of (hard or pseudo) register n. */
148 rtx last_set;
150 /* The next group of fields allows the recording of the last value assigned
151 to (hard or pseudo) register n. We use this information to see if an
152 operation being processed is redundant given a prior operation performed
153 on the register. For example, an `and' with a constant is redundant if
154 all the zero bits are already known to be turned off.
156 We use an approach similar to that used by cse, but change it in the
157 following ways:
159 (1) We do not want to reinitialize at each label.
160 (2) It is useful, but not critical, to know the actual value assigned
161 to a register. Often just its form is helpful.
163 Therefore, we maintain the following fields:
165 last_set_value the last value assigned
166 last_set_label records the value of label_tick when the
167 register was assigned
168 last_set_table_tick records the value of label_tick when a
169 value using the register is assigned
170 last_set_invalid set to nonzero when it is not valid
171 to use the value of this register in some
172 register's value
174 To understand the usage of these tables, it is important to understand
175 the distinction between the value in last_set_value being valid and
176 the register being validly contained in some other expression in the
177 table.
179 (The next two parameters are out of date).
181 reg_stat[i].last_set_value is valid if it is nonzero, and either
182 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
184 Register I may validly appear in any expression returned for the value
185 of another register if reg_n_sets[i] is 1. It may also appear in the
186 value for register J if reg_stat[j].last_set_invalid is zero, or
187 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
189 If an expression is found in the table containing a register which may
190 not validly appear in an expression, the register is replaced by
191 something that won't match, (clobber (const_int 0)). */
193 /* Record last value assigned to (hard or pseudo) register n. */
195 rtx last_set_value;
197 /* Record the value of label_tick when an expression involving register n
198 is placed in last_set_value. */
200 int last_set_table_tick;
202 /* Record the value of label_tick when the value for register n is placed in
203 last_set_value. */
205 int last_set_label;
207 /* These fields are maintained in parallel with last_set_value and are
208 used to store the mode in which the register was last set, the bits
209 that were known to be zero when it was last set, and the number of
210 sign bits copies it was known to have when it was last set. */
212 unsigned HOST_WIDE_INT last_set_nonzero_bits;
213 char last_set_sign_bit_copies;
214 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
216 /* Set nonzero if references to register n in expressions should not be
217 used. last_set_invalid is set nonzero when this register is being
218 assigned to and last_set_table_tick == label_tick. */
220 char last_set_invalid;
222 /* Some registers that are set more than once and used in more than one
223 basic block are nevertheless always set in similar ways. For example,
224 a QImode register may be loaded from memory in two places on a machine
225 where byte loads zero extend.
227 We record in the following fields if a register has some leading bits
228 that are always equal to the sign bit, and what we know about the
229 nonzero bits of a register, specifically which bits are known to be
230 zero.
232 If an entry is zero, it means that we don't know anything special. */
234 unsigned char sign_bit_copies;
236 unsigned HOST_WIDE_INT nonzero_bits;
239 static struct reg_stat *reg_stat;
241 /* Record the cuid of the last insn that invalidated memory
242 (anything that writes memory, and subroutine calls, but not pushes). */
244 static int mem_last_set;
246 /* Record the cuid of the last CALL_INSN
247 so we can tell whether a potential combination crosses any calls. */
249 static int last_call_cuid;
251 /* When `subst' is called, this is the insn that is being modified
252 (by combining in a previous insn). The PATTERN of this insn
253 is still the old pattern partially modified and it should not be
254 looked at, but this may be used to examine the successors of the insn
255 to judge whether a simplification is valid. */
257 static rtx subst_insn;
259 /* This is the lowest CUID that `subst' is currently dealing with.
260 get_last_value will not return a value if the register was set at or
261 after this CUID. If not for this mechanism, we could get confused if
262 I2 or I1 in try_combine were an insn that used the old value of a register
263 to obtain a new value. In that case, we might erroneously get the
264 new value of the register when we wanted the old one. */
266 static int subst_low_cuid;
268 /* This contains any hard registers that are used in newpat; reg_dead_at_p
269 must consider all these registers to be always live. */
271 static HARD_REG_SET newpat_used_regs;
273 /* This is an insn to which a LOG_LINKS entry has been added. If this
274 insn is the earlier than I2 or I3, combine should rescan starting at
275 that location. */
277 static rtx added_links_insn;
279 /* Basic block in which we are performing combines. */
280 static basic_block this_basic_block;
282 /* A bitmap indicating which blocks had registers go dead at entry.
283 After combine, we'll need to re-do global life analysis with
284 those blocks as starting points. */
285 static sbitmap refresh_blocks;
287 /* The following array records the insn_rtx_cost for every insn
288 in the instruction stream. */
290 static int *uid_insn_cost;
292 /* Length of the currently allocated uid_insn_cost array. */
294 static int last_insn_cost;
296 /* Incremented for each label. */
298 static int label_tick;
300 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
301 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
303 static enum machine_mode nonzero_bits_mode;
305 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
306 be safely used. It is zero while computing them and after combine has
307 completed. This former test prevents propagating values based on
308 previously set values, which can be incorrect if a variable is modified
309 in a loop. */
311 static int nonzero_sign_valid;
314 /* Record one modification to rtl structure
315 to be undone by storing old_contents into *where.
316 is_int is 1 if the contents are an int. */
318 struct undo
320 struct undo *next;
321 int is_int;
322 union {rtx r; int i;} old_contents;
323 union {rtx *r; int *i;} where;
326 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
327 num_undo says how many are currently recorded.
329 other_insn is nonzero if we have modified some other insn in the process
330 of working on subst_insn. It must be verified too. */
332 struct undobuf
334 struct undo *undos;
335 struct undo *frees;
336 rtx other_insn;
339 static struct undobuf undobuf;
341 /* Number of times the pseudo being substituted for
342 was found and replaced. */
344 static int n_occurrences;
346 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
347 enum machine_mode,
348 unsigned HOST_WIDE_INT,
349 unsigned HOST_WIDE_INT *);
350 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
351 enum machine_mode,
352 unsigned int, unsigned int *);
353 static void do_SUBST (rtx *, rtx);
354 static void do_SUBST_INT (int *, int);
355 static void init_reg_last (void);
356 static void setup_incoming_promotions (void);
357 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
358 static int cant_combine_insn_p (rtx);
359 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
360 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
361 static int contains_muldiv (rtx);
362 static rtx try_combine (rtx, rtx, rtx, int *);
363 static void undo_all (void);
364 static void undo_commit (void);
365 static rtx *find_split_point (rtx *, rtx);
366 static rtx subst (rtx, rtx, rtx, int, int);
367 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
368 static rtx simplify_if_then_else (rtx);
369 static rtx simplify_set (rtx);
370 static rtx simplify_logical (rtx);
371 static rtx expand_compound_operation (rtx);
372 static rtx expand_field_assignment (rtx);
373 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
374 rtx, unsigned HOST_WIDE_INT, int, int, int);
375 static rtx extract_left_shift (rtx, int);
376 static rtx make_compound_operation (rtx, enum rtx_code);
377 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
378 unsigned HOST_WIDE_INT *);
379 static rtx force_to_mode (rtx, enum machine_mode,
380 unsigned HOST_WIDE_INT, rtx, int);
381 static rtx if_then_else_cond (rtx, rtx *, rtx *);
382 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
383 static int rtx_equal_for_field_assignment_p (rtx, rtx);
384 static rtx make_field_assignment (rtx);
385 static rtx apply_distributive_law (rtx);
386 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
387 unsigned HOST_WIDE_INT);
388 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
389 HOST_WIDE_INT, enum machine_mode, int *);
390 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
391 int);
392 static int recog_for_combine (rtx *, rtx, rtx *);
393 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
394 static rtx gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
395 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
396 static void update_table_tick (rtx);
397 static void record_value_for_reg (rtx, rtx, rtx);
398 static void check_promoted_subreg (rtx, rtx);
399 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
400 static void record_dead_and_set_regs (rtx);
401 static int get_last_value_validate (rtx *, rtx, int, int);
402 static rtx get_last_value (rtx);
403 static int use_crosses_set_p (rtx, int);
404 static void reg_dead_at_p_1 (rtx, rtx, void *);
405 static int reg_dead_at_p (rtx, rtx);
406 static void move_deaths (rtx, rtx, int, rtx, rtx *);
407 static int reg_bitfield_target_p (rtx, rtx);
408 static void distribute_notes (rtx, rtx, rtx, rtx);
409 static void distribute_links (rtx);
410 static void mark_used_regs_combine (rtx);
411 static int insn_cuid (rtx);
412 static void record_promoted_value (rtx, rtx);
413 static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
414 static enum rtx_code combine_reversed_comparison_code (rtx);
415 static int unmentioned_reg_p_1 (rtx *, void *);
416 static bool unmentioned_reg_p (rtx, rtx);
419 /* It is not safe to use ordinary gen_lowpart in combine.
420 See comments in gen_lowpart_for_combine. */
421 #undef RTL_HOOKS_GEN_LOWPART
422 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
424 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
425 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
427 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
428 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
430 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
433 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
434 insn. The substitution can be undone by undo_all. If INTO is already
435 set to NEWVAL, do not record this change. Because computing NEWVAL might
436 also call SUBST, we have to compute it before we put anything into
437 the undo table. */
439 static void
440 do_SUBST (rtx *into, rtx newval)
442 struct undo *buf;
443 rtx oldval = *into;
445 if (oldval == newval)
446 return;
448 /* We'd like to catch as many invalid transformations here as
449 possible. Unfortunately, there are way too many mode changes
450 that are perfectly valid, so we'd waste too much effort for
451 little gain doing the checks here. Focus on catching invalid
452 transformations involving integer constants. */
453 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
454 && GET_CODE (newval) == CONST_INT)
456 /* Sanity check that we're replacing oldval with a CONST_INT
457 that is a valid sign-extension for the original mode. */
458 gcc_assert (INTVAL (newval)
459 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
461 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
462 CONST_INT is not valid, because after the replacement, the
463 original mode would be gone. Unfortunately, we can't tell
464 when do_SUBST is called to replace the operand thereof, so we
465 perform this test on oldval instead, checking whether an
466 invalid replacement took place before we got here. */
467 gcc_assert (!(GET_CODE (oldval) == SUBREG
468 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
469 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
470 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
473 if (undobuf.frees)
474 buf = undobuf.frees, undobuf.frees = buf->next;
475 else
476 buf = xmalloc (sizeof (struct undo));
478 buf->is_int = 0;
479 buf->where.r = into;
480 buf->old_contents.r = oldval;
481 *into = newval;
483 buf->next = undobuf.undos, undobuf.undos = buf;
486 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
488 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
489 for the value of a HOST_WIDE_INT value (including CONST_INT) is
490 not safe. */
492 static void
493 do_SUBST_INT (int *into, int newval)
495 struct undo *buf;
496 int oldval = *into;
498 if (oldval == newval)
499 return;
501 if (undobuf.frees)
502 buf = undobuf.frees, undobuf.frees = buf->next;
503 else
504 buf = xmalloc (sizeof (struct undo));
506 buf->is_int = 1;
507 buf->where.i = into;
508 buf->old_contents.i = oldval;
509 *into = newval;
511 buf->next = undobuf.undos, undobuf.undos = buf;
514 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
516 /* Subroutine of try_combine. Determine whether the combine replacement
517 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
518 that the original instruction sequence I1, I2 and I3. Note that I1
519 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
520 costs of all instructions can be estimated, and the replacements are
521 more expensive than the original sequence. */
523 static bool
524 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
526 int i1_cost, i2_cost, i3_cost;
527 int new_i2_cost, new_i3_cost;
528 int old_cost, new_cost;
530 /* Lookup the original insn_rtx_costs. */
531 i2_cost = INSN_UID (i2) <= last_insn_cost
532 ? uid_insn_cost[INSN_UID (i2)] : 0;
533 i3_cost = INSN_UID (i3) <= last_insn_cost
534 ? uid_insn_cost[INSN_UID (i3)] : 0;
536 if (i1)
538 i1_cost = INSN_UID (i1) <= last_insn_cost
539 ? uid_insn_cost[INSN_UID (i1)] : 0;
540 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
541 ? i1_cost + i2_cost + i3_cost : 0;
543 else
545 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
546 i1_cost = 0;
549 /* Calculate the replacement insn_rtx_costs. */
550 new_i3_cost = insn_rtx_cost (newpat);
551 if (newi2pat)
553 new_i2_cost = insn_rtx_cost (newi2pat);
554 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
555 ? new_i2_cost + new_i3_cost : 0;
557 else
559 new_cost = new_i3_cost;
560 new_i2_cost = 0;
563 if (undobuf.other_insn)
565 int old_other_cost, new_other_cost;
567 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
568 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
569 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
570 if (old_other_cost > 0 && new_other_cost > 0)
572 old_cost += old_other_cost;
573 new_cost += new_other_cost;
575 else
576 old_cost = 0;
579 /* Disallow this recombination if both new_cost and old_cost are
580 greater than zero, and new_cost is greater than old cost. */
581 if (old_cost > 0
582 && new_cost > old_cost)
584 if (dump_file)
586 if (i1)
588 fprintf (dump_file,
589 "rejecting combination of insns %d, %d and %d\n",
590 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
591 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
592 i1_cost, i2_cost, i3_cost, old_cost);
594 else
596 fprintf (dump_file,
597 "rejecting combination of insns %d and %d\n",
598 INSN_UID (i2), INSN_UID (i3));
599 fprintf (dump_file, "original costs %d + %d = %d\n",
600 i2_cost, i3_cost, old_cost);
603 if (newi2pat)
605 fprintf (dump_file, "replacement costs %d + %d = %d\n",
606 new_i2_cost, new_i3_cost, new_cost);
608 else
609 fprintf (dump_file, "replacement cost %d\n", new_cost);
612 return false;
615 /* Update the uid_insn_cost array with the replacement costs. */
616 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
617 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
618 if (i1)
619 uid_insn_cost[INSN_UID (i1)] = 0;
621 return true;
624 /* Main entry point for combiner. F is the first insn of the function.
625 NREGS is the first unused pseudo-reg number.
627 Return nonzero if the combiner has turned an indirect jump
628 instruction into a direct jump. */
630 combine_instructions (rtx f, unsigned int nregs)
632 rtx insn, next;
633 #ifdef HAVE_cc0
634 rtx prev;
635 #endif
636 int i;
637 rtx links, nextlinks;
639 int new_direct_jump_p = 0;
641 combine_attempts = 0;
642 combine_merges = 0;
643 combine_extras = 0;
644 combine_successes = 0;
646 combine_max_regno = nregs;
648 rtl_hooks = combine_rtl_hooks;
650 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
652 init_recog_no_volatile ();
654 /* Compute maximum uid value so uid_cuid can be allocated. */
656 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
657 if (INSN_UID (insn) > i)
658 i = INSN_UID (insn);
660 uid_cuid = xmalloc ((i + 1) * sizeof (int));
661 max_uid_cuid = i;
663 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
665 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
666 problems when, for example, we have j <<= 1 in a loop. */
668 nonzero_sign_valid = 0;
670 /* Compute the mapping from uids to cuids.
671 Cuids are numbers assigned to insns, like uids,
672 except that cuids increase monotonically through the code.
674 Scan all SETs and see if we can deduce anything about what
675 bits are known to be zero for some registers and how many copies
676 of the sign bit are known to exist for those registers.
678 Also set any known values so that we can use it while searching
679 for what bits are known to be set. */
681 label_tick = 1;
683 setup_incoming_promotions ();
685 refresh_blocks = sbitmap_alloc (last_basic_block);
686 sbitmap_zero (refresh_blocks);
688 /* Allocate array of current insn_rtx_costs. */
689 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
690 last_insn_cost = max_uid_cuid;
692 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
694 uid_cuid[INSN_UID (insn)] = ++i;
695 subst_low_cuid = i;
696 subst_insn = insn;
698 if (INSN_P (insn))
700 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
701 NULL);
702 record_dead_and_set_regs (insn);
704 #ifdef AUTO_INC_DEC
705 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
706 if (REG_NOTE_KIND (links) == REG_INC)
707 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
708 NULL);
709 #endif
711 /* Record the current insn_rtx_cost of this instruction. */
712 if (NONJUMP_INSN_P (insn))
713 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
714 if (dump_file)
715 fprintf(dump_file, "insn_cost %d: %d\n",
716 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
719 if (LABEL_P (insn))
720 label_tick++;
723 nonzero_sign_valid = 1;
725 /* Now scan all the insns in forward order. */
727 label_tick = 1;
728 last_call_cuid = 0;
729 mem_last_set = 0;
730 init_reg_last ();
731 setup_incoming_promotions ();
733 FOR_EACH_BB (this_basic_block)
735 for (insn = BB_HEAD (this_basic_block);
736 insn != NEXT_INSN (BB_END (this_basic_block));
737 insn = next ? next : NEXT_INSN (insn))
739 next = 0;
741 if (LABEL_P (insn))
742 label_tick++;
744 else if (INSN_P (insn))
746 /* See if we know about function return values before this
747 insn based upon SUBREG flags. */
748 check_promoted_subreg (insn, PATTERN (insn));
750 /* Try this insn with each insn it links back to. */
752 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
753 if ((next = try_combine (insn, XEXP (links, 0),
754 NULL_RTX, &new_direct_jump_p)) != 0)
755 goto retry;
757 /* Try each sequence of three linked insns ending with this one. */
759 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
761 rtx link = XEXP (links, 0);
763 /* If the linked insn has been replaced by a note, then there
764 is no point in pursuing this chain any further. */
765 if (NOTE_P (link))
766 continue;
768 for (nextlinks = LOG_LINKS (link);
769 nextlinks;
770 nextlinks = XEXP (nextlinks, 1))
771 if ((next = try_combine (insn, link,
772 XEXP (nextlinks, 0),
773 &new_direct_jump_p)) != 0)
774 goto retry;
777 #ifdef HAVE_cc0
778 /* Try to combine a jump insn that uses CC0
779 with a preceding insn that sets CC0, and maybe with its
780 logical predecessor as well.
781 This is how we make decrement-and-branch insns.
782 We need this special code because data flow connections
783 via CC0 do not get entered in LOG_LINKS. */
785 if (JUMP_P (insn)
786 && (prev = prev_nonnote_insn (insn)) != 0
787 && NONJUMP_INSN_P (prev)
788 && sets_cc0_p (PATTERN (prev)))
790 if ((next = try_combine (insn, prev,
791 NULL_RTX, &new_direct_jump_p)) != 0)
792 goto retry;
794 for (nextlinks = LOG_LINKS (prev); nextlinks;
795 nextlinks = XEXP (nextlinks, 1))
796 if ((next = try_combine (insn, prev,
797 XEXP (nextlinks, 0),
798 &new_direct_jump_p)) != 0)
799 goto retry;
802 /* Do the same for an insn that explicitly references CC0. */
803 if (NONJUMP_INSN_P (insn)
804 && (prev = prev_nonnote_insn (insn)) != 0
805 && NONJUMP_INSN_P (prev)
806 && sets_cc0_p (PATTERN (prev))
807 && GET_CODE (PATTERN (insn)) == SET
808 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
810 if ((next = try_combine (insn, prev,
811 NULL_RTX, &new_direct_jump_p)) != 0)
812 goto retry;
814 for (nextlinks = LOG_LINKS (prev); nextlinks;
815 nextlinks = XEXP (nextlinks, 1))
816 if ((next = try_combine (insn, prev,
817 XEXP (nextlinks, 0),
818 &new_direct_jump_p)) != 0)
819 goto retry;
822 /* Finally, see if any of the insns that this insn links to
823 explicitly references CC0. If so, try this insn, that insn,
824 and its predecessor if it sets CC0. */
825 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
826 if (NONJUMP_INSN_P (XEXP (links, 0))
827 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
828 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
829 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
830 && NONJUMP_INSN_P (prev)
831 && sets_cc0_p (PATTERN (prev))
832 && (next = try_combine (insn, XEXP (links, 0),
833 prev, &new_direct_jump_p)) != 0)
834 goto retry;
835 #endif
837 /* Try combining an insn with two different insns whose results it
838 uses. */
839 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
840 for (nextlinks = XEXP (links, 1); nextlinks;
841 nextlinks = XEXP (nextlinks, 1))
842 if ((next = try_combine (insn, XEXP (links, 0),
843 XEXP (nextlinks, 0),
844 &new_direct_jump_p)) != 0)
845 goto retry;
847 /* Try this insn with each REG_EQUAL note it links back to. */
848 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
850 rtx set, note;
851 rtx temp = XEXP (links, 0);
852 if ((set = single_set (temp)) != 0
853 && (note = find_reg_equal_equiv_note (temp)) != 0
854 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
855 /* Avoid using a register that may already been marked
856 dead by an earlier instruction. */
857 && ! unmentioned_reg_p (XEXP (note, 0), SET_SRC (set)))
859 /* Temporarily replace the set's source with the
860 contents of the REG_EQUAL note. The insn will
861 be deleted or recognized by try_combine. */
862 rtx orig = SET_SRC (set);
863 SET_SRC (set) = XEXP (note, 0);
864 next = try_combine (insn, temp, NULL_RTX,
865 &new_direct_jump_p);
866 if (next)
867 goto retry;
868 SET_SRC (set) = orig;
872 if (!NOTE_P (insn))
873 record_dead_and_set_regs (insn);
875 retry:
880 clear_bb_flags ();
882 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
883 BASIC_BLOCK (i)->flags |= BB_DIRTY);
884 new_direct_jump_p |= purge_all_dead_edges (0);
885 delete_noop_moves ();
887 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
888 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
889 | PROP_KILL_DEAD_CODE);
891 /* Clean up. */
892 sbitmap_free (refresh_blocks);
893 free (uid_insn_cost);
894 free (reg_stat);
895 free (uid_cuid);
898 struct undo *undo, *next;
899 for (undo = undobuf.frees; undo; undo = next)
901 next = undo->next;
902 free (undo);
904 undobuf.frees = 0;
907 total_attempts += combine_attempts;
908 total_merges += combine_merges;
909 total_extras += combine_extras;
910 total_successes += combine_successes;
912 nonzero_sign_valid = 0;
913 rtl_hooks = general_rtl_hooks;
915 /* Make recognizer allow volatile MEMs again. */
916 init_recog ();
918 return new_direct_jump_p;
921 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
923 static void
924 init_reg_last (void)
926 unsigned int i;
927 for (i = 0; i < combine_max_regno; i++)
928 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
931 /* Set up any promoted values for incoming argument registers. */
933 static void
934 setup_incoming_promotions (void)
936 unsigned int regno;
937 rtx reg;
938 enum machine_mode mode;
939 int unsignedp;
940 rtx first = get_insns ();
942 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
944 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
945 /* Check whether this register can hold an incoming pointer
946 argument. FUNCTION_ARG_REGNO_P tests outgoing register
947 numbers, so translate if necessary due to register windows. */
948 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
949 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
951 record_value_for_reg
952 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
953 : SIGN_EXTEND),
954 GET_MODE (reg),
955 gen_rtx_CLOBBER (mode, const0_rtx)));
960 /* Called via note_stores. If X is a pseudo that is narrower than
961 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
963 If we are setting only a portion of X and we can't figure out what
964 portion, assume all bits will be used since we don't know what will
965 be happening.
967 Similarly, set how many bits of X are known to be copies of the sign bit
968 at all locations in the function. This is the smallest number implied
969 by any set of X. */
971 static void
972 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
973 void *data ATTRIBUTE_UNUSED)
975 unsigned int num;
977 if (REG_P (x)
978 && REGNO (x) >= FIRST_PSEUDO_REGISTER
979 /* If this register is undefined at the start of the file, we can't
980 say what its contents were. */
981 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
982 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
984 if (set == 0 || GET_CODE (set) == CLOBBER)
986 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
987 reg_stat[REGNO (x)].sign_bit_copies = 1;
988 return;
991 /* If this is a complex assignment, see if we can convert it into a
992 simple assignment. */
993 set = expand_field_assignment (set);
995 /* If this is a simple assignment, or we have a paradoxical SUBREG,
996 set what we know about X. */
998 if (SET_DEST (set) == x
999 || (GET_CODE (SET_DEST (set)) == SUBREG
1000 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1001 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1002 && SUBREG_REG (SET_DEST (set)) == x))
1004 rtx src = SET_SRC (set);
1006 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1007 /* If X is narrower than a word and SRC is a non-negative
1008 constant that would appear negative in the mode of X,
1009 sign-extend it for use in reg_stat[].nonzero_bits because some
1010 machines (maybe most) will actually do the sign-extension
1011 and this is the conservative approach.
1013 ??? For 2.5, try to tighten up the MD files in this regard
1014 instead of this kludge. */
1016 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1017 && GET_CODE (src) == CONST_INT
1018 && INTVAL (src) > 0
1019 && 0 != (INTVAL (src)
1020 & ((HOST_WIDE_INT) 1
1021 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1022 src = GEN_INT (INTVAL (src)
1023 | ((HOST_WIDE_INT) (-1)
1024 << GET_MODE_BITSIZE (GET_MODE (x))));
1025 #endif
1027 /* Don't call nonzero_bits if it cannot change anything. */
1028 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1029 reg_stat[REGNO (x)].nonzero_bits
1030 |= nonzero_bits (src, nonzero_bits_mode);
1031 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1032 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1033 || reg_stat[REGNO (x)].sign_bit_copies > num)
1034 reg_stat[REGNO (x)].sign_bit_copies = num;
1036 else
1038 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1039 reg_stat[REGNO (x)].sign_bit_copies = 1;
1044 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1045 insns that were previously combined into I3 or that will be combined
1046 into the merger of INSN and I3.
1048 Return 0 if the combination is not allowed for any reason.
1050 If the combination is allowed, *PDEST will be set to the single
1051 destination of INSN and *PSRC to the single source, and this function
1052 will return 1. */
1054 static int
1055 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1056 rtx *pdest, rtx *psrc)
1058 int i;
1059 rtx set = 0, src, dest;
1060 rtx p;
1061 #ifdef AUTO_INC_DEC
1062 rtx link;
1063 #endif
1064 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1065 && next_active_insn (succ) == i3)
1066 : next_active_insn (insn) == i3);
1068 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1069 or a PARALLEL consisting of such a SET and CLOBBERs.
1071 If INSN has CLOBBER parallel parts, ignore them for our processing.
1072 By definition, these happen during the execution of the insn. When it
1073 is merged with another insn, all bets are off. If they are, in fact,
1074 needed and aren't also supplied in I3, they may be added by
1075 recog_for_combine. Otherwise, it won't match.
1077 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1078 note.
1080 Get the source and destination of INSN. If more than one, can't
1081 combine. */
1083 if (GET_CODE (PATTERN (insn)) == SET)
1084 set = PATTERN (insn);
1085 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1086 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1088 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1090 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1091 rtx note;
1093 switch (GET_CODE (elt))
1095 /* This is important to combine floating point insns
1096 for the SH4 port. */
1097 case USE:
1098 /* Combining an isolated USE doesn't make sense.
1099 We depend here on combinable_i3pat to reject them. */
1100 /* The code below this loop only verifies that the inputs of
1101 the SET in INSN do not change. We call reg_set_between_p
1102 to verify that the REG in the USE does not change between
1103 I3 and INSN.
1104 If the USE in INSN was for a pseudo register, the matching
1105 insn pattern will likely match any register; combining this
1106 with any other USE would only be safe if we knew that the
1107 used registers have identical values, or if there was
1108 something to tell them apart, e.g. different modes. For
1109 now, we forgo such complicated tests and simply disallow
1110 combining of USES of pseudo registers with any other USE. */
1111 if (REG_P (XEXP (elt, 0))
1112 && GET_CODE (PATTERN (i3)) == PARALLEL)
1114 rtx i3pat = PATTERN (i3);
1115 int i = XVECLEN (i3pat, 0) - 1;
1116 unsigned int regno = REGNO (XEXP (elt, 0));
1120 rtx i3elt = XVECEXP (i3pat, 0, i);
1122 if (GET_CODE (i3elt) == USE
1123 && REG_P (XEXP (i3elt, 0))
1124 && (REGNO (XEXP (i3elt, 0)) == regno
1125 ? reg_set_between_p (XEXP (elt, 0),
1126 PREV_INSN (insn), i3)
1127 : regno >= FIRST_PSEUDO_REGISTER))
1128 return 0;
1130 while (--i >= 0);
1132 break;
1134 /* We can ignore CLOBBERs. */
1135 case CLOBBER:
1136 break;
1138 case SET:
1139 /* Ignore SETs whose result isn't used but not those that
1140 have side-effects. */
1141 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1142 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1143 || INTVAL (XEXP (note, 0)) <= 0)
1144 && ! side_effects_p (elt))
1145 break;
1147 /* If we have already found a SET, this is a second one and
1148 so we cannot combine with this insn. */
1149 if (set)
1150 return 0;
1152 set = elt;
1153 break;
1155 default:
1156 /* Anything else means we can't combine. */
1157 return 0;
1161 if (set == 0
1162 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1163 so don't do anything with it. */
1164 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1165 return 0;
1167 else
1168 return 0;
1170 if (set == 0)
1171 return 0;
1173 set = expand_field_assignment (set);
1174 src = SET_SRC (set), dest = SET_DEST (set);
1176 /* Don't eliminate a store in the stack pointer. */
1177 if (dest == stack_pointer_rtx
1178 /* Don't combine with an insn that sets a register to itself if it has
1179 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1180 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1181 /* Can't merge an ASM_OPERANDS. */
1182 || GET_CODE (src) == ASM_OPERANDS
1183 /* Can't merge a function call. */
1184 || GET_CODE (src) == CALL
1185 /* Don't eliminate a function call argument. */
1186 || (CALL_P (i3)
1187 && (find_reg_fusage (i3, USE, dest)
1188 || (REG_P (dest)
1189 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1190 && global_regs[REGNO (dest)])))
1191 /* Don't substitute into an incremented register. */
1192 || FIND_REG_INC_NOTE (i3, dest)
1193 || (succ && FIND_REG_INC_NOTE (succ, dest))
1194 /* Don't substitute into a non-local goto, this confuses CFG. */
1195 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1196 #if 0
1197 /* Don't combine the end of a libcall into anything. */
1198 /* ??? This gives worse code, and appears to be unnecessary, since no
1199 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1200 use REG_RETVAL notes for noconflict blocks, but other code here
1201 makes sure that those insns don't disappear. */
1202 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1203 #endif
1204 /* Make sure that DEST is not used after SUCC but before I3. */
1205 || (succ && ! all_adjacent
1206 && reg_used_between_p (dest, succ, i3))
1207 /* Make sure that the value that is to be substituted for the register
1208 does not use any registers whose values alter in between. However,
1209 If the insns are adjacent, a use can't cross a set even though we
1210 think it might (this can happen for a sequence of insns each setting
1211 the same destination; last_set of that register might point to
1212 a NOTE). If INSN has a REG_EQUIV note, the register is always
1213 equivalent to the memory so the substitution is valid even if there
1214 are intervening stores. Also, don't move a volatile asm or
1215 UNSPEC_VOLATILE across any other insns. */
1216 || (! all_adjacent
1217 && (((!MEM_P (src)
1218 || ! find_reg_note (insn, REG_EQUIV, src))
1219 && use_crosses_set_p (src, INSN_CUID (insn)))
1220 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1221 || GET_CODE (src) == UNSPEC_VOLATILE))
1222 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1223 better register allocation by not doing the combine. */
1224 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1225 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1226 /* Don't combine across a CALL_INSN, because that would possibly
1227 change whether the life span of some REGs crosses calls or not,
1228 and it is a pain to update that information.
1229 Exception: if source is a constant, moving it later can't hurt.
1230 Accept that special case, because it helps -fforce-addr a lot. */
1231 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1232 return 0;
1234 /* DEST must either be a REG or CC0. */
1235 if (REG_P (dest))
1237 /* If register alignment is being enforced for multi-word items in all
1238 cases except for parameters, it is possible to have a register copy
1239 insn referencing a hard register that is not allowed to contain the
1240 mode being copied and which would not be valid as an operand of most
1241 insns. Eliminate this problem by not combining with such an insn.
1243 Also, on some machines we don't want to extend the life of a hard
1244 register. */
1246 if (REG_P (src)
1247 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1248 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1249 /* Don't extend the life of a hard register unless it is
1250 user variable (if we have few registers) or it can't
1251 fit into the desired register (meaning something special
1252 is going on).
1253 Also avoid substituting a return register into I3, because
1254 reload can't handle a conflict with constraints of other
1255 inputs. */
1256 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1257 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1258 return 0;
1260 else if (GET_CODE (dest) != CC0)
1261 return 0;
1264 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1265 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1266 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1268 /* Don't substitute for a register intended as a clobberable
1269 operand. */
1270 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1271 if (rtx_equal_p (reg, dest))
1272 return 0;
1274 /* If the clobber represents an earlyclobber operand, we must not
1275 substitute an expression containing the clobbered register.
1276 As we do not analyse the constraint strings here, we have to
1277 make the conservative assumption. However, if the register is
1278 a fixed hard reg, the clobber cannot represent any operand;
1279 we leave it up to the machine description to either accept or
1280 reject use-and-clobber patterns. */
1281 if (!REG_P (reg)
1282 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1283 || !fixed_regs[REGNO (reg)])
1284 if (reg_overlap_mentioned_p (reg, src))
1285 return 0;
1288 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1289 or not), reject, unless nothing volatile comes between it and I3 */
1291 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1293 /* Make sure succ doesn't contain a volatile reference. */
1294 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1295 return 0;
1297 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1298 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1299 return 0;
1302 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1303 to be an explicit register variable, and was chosen for a reason. */
1305 if (GET_CODE (src) == ASM_OPERANDS
1306 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1307 return 0;
1309 /* If there are any volatile insns between INSN and I3, reject, because
1310 they might affect machine state. */
1312 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1313 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1314 return 0;
1316 /* If INSN or I2 contains an autoincrement or autodecrement,
1317 make sure that register is not used between there and I3,
1318 and not already used in I3 either.
1319 Also insist that I3 not be a jump; if it were one
1320 and the incremented register were spilled, we would lose. */
1322 #ifdef AUTO_INC_DEC
1323 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1324 if (REG_NOTE_KIND (link) == REG_INC
1325 && (JUMP_P (i3)
1326 || reg_used_between_p (XEXP (link, 0), insn, i3)
1327 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1328 return 0;
1329 #endif
1331 #ifdef HAVE_cc0
1332 /* Don't combine an insn that follows a CC0-setting insn.
1333 An insn that uses CC0 must not be separated from the one that sets it.
1334 We do, however, allow I2 to follow a CC0-setting insn if that insn
1335 is passed as I1; in that case it will be deleted also.
1336 We also allow combining in this case if all the insns are adjacent
1337 because that would leave the two CC0 insns adjacent as well.
1338 It would be more logical to test whether CC0 occurs inside I1 or I2,
1339 but that would be much slower, and this ought to be equivalent. */
1341 p = prev_nonnote_insn (insn);
1342 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1343 && ! all_adjacent)
1344 return 0;
1345 #endif
1347 /* If we get here, we have passed all the tests and the combination is
1348 to be allowed. */
1350 *pdest = dest;
1351 *psrc = src;
1353 return 1;
1356 /* LOC is the location within I3 that contains its pattern or the component
1357 of a PARALLEL of the pattern. We validate that it is valid for combining.
1359 One problem is if I3 modifies its output, as opposed to replacing it
1360 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1361 so would produce an insn that is not equivalent to the original insns.
1363 Consider:
1365 (set (reg:DI 101) (reg:DI 100))
1366 (set (subreg:SI (reg:DI 101) 0) <foo>)
1368 This is NOT equivalent to:
1370 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1371 (set (reg:DI 101) (reg:DI 100))])
1373 Not only does this modify 100 (in which case it might still be valid
1374 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1376 We can also run into a problem if I2 sets a register that I1
1377 uses and I1 gets directly substituted into I3 (not via I2). In that
1378 case, we would be getting the wrong value of I2DEST into I3, so we
1379 must reject the combination. This case occurs when I2 and I1 both
1380 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1381 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1382 of a SET must prevent combination from occurring.
1384 Before doing the above check, we first try to expand a field assignment
1385 into a set of logical operations.
1387 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1388 we place a register that is both set and used within I3. If more than one
1389 such register is detected, we fail.
1391 Return 1 if the combination is valid, zero otherwise. */
1393 static int
1394 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1395 int i1_not_in_src, rtx *pi3dest_killed)
1397 rtx x = *loc;
1399 if (GET_CODE (x) == SET)
1401 rtx set = x ;
1402 rtx dest = SET_DEST (set);
1403 rtx src = SET_SRC (set);
1404 rtx inner_dest = dest;
1406 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1407 || GET_CODE (inner_dest) == SUBREG
1408 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1409 inner_dest = XEXP (inner_dest, 0);
1411 /* Check for the case where I3 modifies its output, as discussed
1412 above. We don't want to prevent pseudos from being combined
1413 into the address of a MEM, so only prevent the combination if
1414 i1 or i2 set the same MEM. */
1415 if ((inner_dest != dest &&
1416 (!MEM_P (inner_dest)
1417 || rtx_equal_p (i2dest, inner_dest)
1418 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1419 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1420 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1422 /* This is the same test done in can_combine_p except we can't test
1423 all_adjacent; we don't have to, since this instruction will stay
1424 in place, thus we are not considering increasing the lifetime of
1425 INNER_DEST.
1427 Also, if this insn sets a function argument, combining it with
1428 something that might need a spill could clobber a previous
1429 function argument; the all_adjacent test in can_combine_p also
1430 checks this; here, we do a more specific test for this case. */
1432 || (REG_P (inner_dest)
1433 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1434 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1435 GET_MODE (inner_dest))))
1436 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1437 return 0;
1439 /* If DEST is used in I3, it is being killed in this insn,
1440 so record that for later.
1441 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1442 STACK_POINTER_REGNUM, since these are always considered to be
1443 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1444 if (pi3dest_killed && REG_P (dest)
1445 && reg_referenced_p (dest, PATTERN (i3))
1446 && REGNO (dest) != FRAME_POINTER_REGNUM
1447 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1448 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1449 #endif
1450 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1451 && (REGNO (dest) != ARG_POINTER_REGNUM
1452 || ! fixed_regs [REGNO (dest)])
1453 #endif
1454 && REGNO (dest) != STACK_POINTER_REGNUM)
1456 if (*pi3dest_killed)
1457 return 0;
1459 *pi3dest_killed = dest;
1463 else if (GET_CODE (x) == PARALLEL)
1465 int i;
1467 for (i = 0; i < XVECLEN (x, 0); i++)
1468 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1469 i1_not_in_src, pi3dest_killed))
1470 return 0;
1473 return 1;
1476 /* Return 1 if X is an arithmetic expression that contains a multiplication
1477 and division. We don't count multiplications by powers of two here. */
1479 static int
1480 contains_muldiv (rtx x)
1482 switch (GET_CODE (x))
1484 case MOD: case DIV: case UMOD: case UDIV:
1485 return 1;
1487 case MULT:
1488 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1489 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1490 default:
1491 if (BINARY_P (x))
1492 return contains_muldiv (XEXP (x, 0))
1493 || contains_muldiv (XEXP (x, 1));
1495 if (UNARY_P (x))
1496 return contains_muldiv (XEXP (x, 0));
1498 return 0;
1502 /* Determine whether INSN can be used in a combination. Return nonzero if
1503 not. This is used in try_combine to detect early some cases where we
1504 can't perform combinations. */
1506 static int
1507 cant_combine_insn_p (rtx insn)
1509 rtx set;
1510 rtx src, dest;
1512 /* If this isn't really an insn, we can't do anything.
1513 This can occur when flow deletes an insn that it has merged into an
1514 auto-increment address. */
1515 if (! INSN_P (insn))
1516 return 1;
1518 /* Never combine loads and stores involving hard regs that are likely
1519 to be spilled. The register allocator can usually handle such
1520 reg-reg moves by tying. If we allow the combiner to make
1521 substitutions of likely-spilled regs, we may abort in reload.
1522 As an exception, we allow combinations involving fixed regs; these are
1523 not available to the register allocator so there's no risk involved. */
1525 set = single_set (insn);
1526 if (! set)
1527 return 0;
1528 src = SET_SRC (set);
1529 dest = SET_DEST (set);
1530 if (GET_CODE (src) == SUBREG)
1531 src = SUBREG_REG (src);
1532 if (GET_CODE (dest) == SUBREG)
1533 dest = SUBREG_REG (dest);
1534 if (REG_P (src) && REG_P (dest)
1535 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1536 && ! fixed_regs[REGNO (src)]
1537 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1538 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1539 && ! fixed_regs[REGNO (dest)]
1540 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1541 return 1;
1543 return 0;
1546 /* Adjust INSN after we made a change to its destination.
1548 Changing the destination can invalidate notes that say something about
1549 the results of the insn and a LOG_LINK pointing to the insn. */
1551 static void
1552 adjust_for_new_dest (rtx insn)
1554 rtx *loc;
1556 /* For notes, be conservative and simply remove them. */
1557 loc = &REG_NOTES (insn);
1558 while (*loc)
1560 enum reg_note kind = REG_NOTE_KIND (*loc);
1561 if (kind == REG_EQUAL || kind == REG_EQUIV)
1562 *loc = XEXP (*loc, 1);
1563 else
1564 loc = &XEXP (*loc, 1);
1567 /* The new insn will have a destination that was previously the destination
1568 of an insn just above it. Call distribute_links to make a LOG_LINK from
1569 the next use of that destination. */
1570 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1573 /* Try to combine the insns I1 and I2 into I3.
1574 Here I1 and I2 appear earlier than I3.
1575 I1 can be zero; then we combine just I2 into I3.
1577 If we are combining three insns and the resulting insn is not recognized,
1578 try splitting it into two insns. If that happens, I2 and I3 are retained
1579 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1580 are pseudo-deleted.
1582 Return 0 if the combination does not work. Then nothing is changed.
1583 If we did the combination, return the insn at which combine should
1584 resume scanning.
1586 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1587 new direct jump instruction. */
1589 static rtx
1590 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1592 /* New patterns for I3 and I2, respectively. */
1593 rtx newpat, newi2pat = 0;
1594 int substed_i2 = 0, substed_i1 = 0;
1595 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1596 int added_sets_1, added_sets_2;
1597 /* Total number of SETs to put into I3. */
1598 int total_sets;
1599 /* Nonzero if I2's body now appears in I3. */
1600 int i2_is_used;
1601 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1602 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1603 /* Contains I3 if the destination of I3 is used in its source, which means
1604 that the old life of I3 is being killed. If that usage is placed into
1605 I2 and not in I3, a REG_DEAD note must be made. */
1606 rtx i3dest_killed = 0;
1607 /* SET_DEST and SET_SRC of I2 and I1. */
1608 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1609 /* PATTERN (I2), or a copy of it in certain cases. */
1610 rtx i2pat;
1611 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1612 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1613 int i1_feeds_i3 = 0;
1614 /* Notes that must be added to REG_NOTES in I3 and I2. */
1615 rtx new_i3_notes, new_i2_notes;
1616 /* Notes that we substituted I3 into I2 instead of the normal case. */
1617 int i3_subst_into_i2 = 0;
1618 /* Notes that I1, I2 or I3 is a MULT operation. */
1619 int have_mult = 0;
1620 int swap_i2i3 = 0;
1622 int maxreg;
1623 rtx temp;
1624 rtx link;
1625 int i;
1627 /* Exit early if one of the insns involved can't be used for
1628 combinations. */
1629 if (cant_combine_insn_p (i3)
1630 || cant_combine_insn_p (i2)
1631 || (i1 && cant_combine_insn_p (i1))
1632 /* We also can't do anything if I3 has a
1633 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1634 libcall. */
1635 #if 0
1636 /* ??? This gives worse code, and appears to be unnecessary, since no
1637 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1638 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1639 #endif
1641 return 0;
1643 combine_attempts++;
1644 undobuf.other_insn = 0;
1646 /* Reset the hard register usage information. */
1647 CLEAR_HARD_REG_SET (newpat_used_regs);
1649 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1650 code below, set I1 to be the earlier of the two insns. */
1651 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1652 temp = i1, i1 = i2, i2 = temp;
1654 added_links_insn = 0;
1656 /* First check for one important special-case that the code below will
1657 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1658 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1659 we may be able to replace that destination with the destination of I3.
1660 This occurs in the common code where we compute both a quotient and
1661 remainder into a structure, in which case we want to do the computation
1662 directly into the structure to avoid register-register copies.
1664 Note that this case handles both multiple sets in I2 and also
1665 cases where I2 has a number of CLOBBER or PARALLELs.
1667 We make very conservative checks below and only try to handle the
1668 most common cases of this. For example, we only handle the case
1669 where I2 and I3 are adjacent to avoid making difficult register
1670 usage tests. */
1672 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1673 && REG_P (SET_SRC (PATTERN (i3)))
1674 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1675 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1676 && GET_CODE (PATTERN (i2)) == PARALLEL
1677 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1678 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1679 below would need to check what is inside (and reg_overlap_mentioned_p
1680 doesn't support those codes anyway). Don't allow those destinations;
1681 the resulting insn isn't likely to be recognized anyway. */
1682 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1683 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1684 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1685 SET_DEST (PATTERN (i3)))
1686 && next_real_insn (i2) == i3)
1688 rtx p2 = PATTERN (i2);
1690 /* Make sure that the destination of I3,
1691 which we are going to substitute into one output of I2,
1692 is not used within another output of I2. We must avoid making this:
1693 (parallel [(set (mem (reg 69)) ...)
1694 (set (reg 69) ...)])
1695 which is not well-defined as to order of actions.
1696 (Besides, reload can't handle output reloads for this.)
1698 The problem can also happen if the dest of I3 is a memory ref,
1699 if another dest in I2 is an indirect memory ref. */
1700 for (i = 0; i < XVECLEN (p2, 0); i++)
1701 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1702 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1703 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1704 SET_DEST (XVECEXP (p2, 0, i))))
1705 break;
1707 if (i == XVECLEN (p2, 0))
1708 for (i = 0; i < XVECLEN (p2, 0); i++)
1709 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1710 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1711 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1713 combine_merges++;
1715 subst_insn = i3;
1716 subst_low_cuid = INSN_CUID (i2);
1718 added_sets_2 = added_sets_1 = 0;
1719 i2dest = SET_SRC (PATTERN (i3));
1721 /* Replace the dest in I2 with our dest and make the resulting
1722 insn the new pattern for I3. Then skip to where we
1723 validate the pattern. Everything was set up above. */
1724 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1725 SET_DEST (PATTERN (i3)));
1727 newpat = p2;
1728 i3_subst_into_i2 = 1;
1729 goto validate_replacement;
1733 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1734 one of those words to another constant, merge them by making a new
1735 constant. */
1736 if (i1 == 0
1737 && (temp = single_set (i2)) != 0
1738 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1739 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1740 && REG_P (SET_DEST (temp))
1741 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1742 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1743 && GET_CODE (PATTERN (i3)) == SET
1744 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1745 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1746 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1747 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1748 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1750 HOST_WIDE_INT lo, hi;
1752 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1753 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1754 else
1756 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1757 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1760 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1762 /* We don't handle the case of the target word being wider
1763 than a host wide int. */
1764 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1766 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1767 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1768 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1770 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1771 hi = INTVAL (SET_SRC (PATTERN (i3)));
1772 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1774 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1775 >> (HOST_BITS_PER_WIDE_INT - 1));
1777 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1778 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1779 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1780 (INTVAL (SET_SRC (PATTERN (i3)))));
1781 if (hi == sign)
1782 hi = lo < 0 ? -1 : 0;
1784 else
1785 /* We don't handle the case of the higher word not fitting
1786 entirely in either hi or lo. */
1787 gcc_unreachable ();
1789 combine_merges++;
1790 subst_insn = i3;
1791 subst_low_cuid = INSN_CUID (i2);
1792 added_sets_2 = added_sets_1 = 0;
1793 i2dest = SET_DEST (temp);
1795 SUBST (SET_SRC (temp),
1796 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1798 newpat = PATTERN (i2);
1799 goto validate_replacement;
1802 #ifndef HAVE_cc0
1803 /* If we have no I1 and I2 looks like:
1804 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1805 (set Y OP)])
1806 make up a dummy I1 that is
1807 (set Y OP)
1808 and change I2 to be
1809 (set (reg:CC X) (compare:CC Y (const_int 0)))
1811 (We can ignore any trailing CLOBBERs.)
1813 This undoes a previous combination and allows us to match a branch-and-
1814 decrement insn. */
1816 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1817 && XVECLEN (PATTERN (i2), 0) >= 2
1818 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1819 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1820 == MODE_CC)
1821 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1822 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1823 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1824 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1825 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1826 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1828 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1829 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1830 break;
1832 if (i == 1)
1834 /* We make I1 with the same INSN_UID as I2. This gives it
1835 the same INSN_CUID for value tracking. Our fake I1 will
1836 never appear in the insn stream so giving it the same INSN_UID
1837 as I2 will not cause a problem. */
1839 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1840 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1841 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1842 NULL_RTX);
1844 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1845 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1846 SET_DEST (PATTERN (i1)));
1849 #endif
1851 /* Verify that I2 and I1 are valid for combining. */
1852 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1853 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1855 undo_all ();
1856 return 0;
1859 /* Record whether I2DEST is used in I2SRC and similarly for the other
1860 cases. Knowing this will help in register status updating below. */
1861 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1862 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1863 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1865 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1866 in I2SRC. */
1867 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1869 /* Ensure that I3's pattern can be the destination of combines. */
1870 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1871 i1 && i2dest_in_i1src && i1_feeds_i3,
1872 &i3dest_killed))
1874 undo_all ();
1875 return 0;
1878 /* See if any of the insns is a MULT operation. Unless one is, we will
1879 reject a combination that is, since it must be slower. Be conservative
1880 here. */
1881 if (GET_CODE (i2src) == MULT
1882 || (i1 != 0 && GET_CODE (i1src) == MULT)
1883 || (GET_CODE (PATTERN (i3)) == SET
1884 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1885 have_mult = 1;
1887 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1888 We used to do this EXCEPT in one case: I3 has a post-inc in an
1889 output operand. However, that exception can give rise to insns like
1890 mov r3,(r3)+
1891 which is a famous insn on the PDP-11 where the value of r3 used as the
1892 source was model-dependent. Avoid this sort of thing. */
1894 #if 0
1895 if (!(GET_CODE (PATTERN (i3)) == SET
1896 && REG_P (SET_SRC (PATTERN (i3)))
1897 && MEM_P (SET_DEST (PATTERN (i3)))
1898 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1899 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1900 /* It's not the exception. */
1901 #endif
1902 #ifdef AUTO_INC_DEC
1903 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1904 if (REG_NOTE_KIND (link) == REG_INC
1905 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1906 || (i1 != 0
1907 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1909 undo_all ();
1910 return 0;
1912 #endif
1914 /* See if the SETs in I1 or I2 need to be kept around in the merged
1915 instruction: whenever the value set there is still needed past I3.
1916 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1918 For the SET in I1, we have two cases: If I1 and I2 independently
1919 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1920 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1921 in I1 needs to be kept around unless I1DEST dies or is set in either
1922 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1923 I1DEST. If so, we know I1 feeds into I2. */
1925 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1927 added_sets_1
1928 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1929 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1931 /* If the set in I2 needs to be kept around, we must make a copy of
1932 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1933 PATTERN (I2), we are only substituting for the original I1DEST, not into
1934 an already-substituted copy. This also prevents making self-referential
1935 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1936 I2DEST. */
1938 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1939 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1940 : PATTERN (i2));
1942 if (added_sets_2)
1943 i2pat = copy_rtx (i2pat);
1945 combine_merges++;
1947 /* Substitute in the latest insn for the regs set by the earlier ones. */
1949 maxreg = max_reg_num ();
1951 subst_insn = i3;
1953 /* It is possible that the source of I2 or I1 may be performing an
1954 unneeded operation, such as a ZERO_EXTEND of something that is known
1955 to have the high part zero. Handle that case by letting subst look at
1956 the innermost one of them.
1958 Another way to do this would be to have a function that tries to
1959 simplify a single insn instead of merging two or more insns. We don't
1960 do this because of the potential of infinite loops and because
1961 of the potential extra memory required. However, doing it the way
1962 we are is a bit of a kludge and doesn't catch all cases.
1964 But only do this if -fexpensive-optimizations since it slows things down
1965 and doesn't usually win. */
1967 if (flag_expensive_optimizations)
1969 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1970 if (i1)
1972 subst_low_cuid = INSN_CUID (i1);
1973 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1975 else
1977 subst_low_cuid = INSN_CUID (i2);
1978 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1982 #ifndef HAVE_cc0
1983 /* Many machines that don't use CC0 have insns that can both perform an
1984 arithmetic operation and set the condition code. These operations will
1985 be represented as a PARALLEL with the first element of the vector
1986 being a COMPARE of an arithmetic operation with the constant zero.
1987 The second element of the vector will set some pseudo to the result
1988 of the same arithmetic operation. If we simplify the COMPARE, we won't
1989 match such a pattern and so will generate an extra insn. Here we test
1990 for this case, where both the comparison and the operation result are
1991 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1992 I2SRC. Later we will make the PARALLEL that contains I2. */
1994 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1995 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1996 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1997 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1999 #ifdef SELECT_CC_MODE
2000 rtx *cc_use;
2001 enum machine_mode compare_mode;
2002 #endif
2004 newpat = PATTERN (i3);
2005 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2007 i2_is_used = 1;
2009 #ifdef SELECT_CC_MODE
2010 /* See if a COMPARE with the operand we substituted in should be done
2011 with the mode that is currently being used. If not, do the same
2012 processing we do in `subst' for a SET; namely, if the destination
2013 is used only once, try to replace it with a register of the proper
2014 mode and also replace the COMPARE. */
2015 if (undobuf.other_insn == 0
2016 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2017 &undobuf.other_insn))
2018 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2019 i2src, const0_rtx))
2020 != GET_MODE (SET_DEST (newpat))))
2022 unsigned int regno = REGNO (SET_DEST (newpat));
2023 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2025 if (regno < FIRST_PSEUDO_REGISTER
2026 || (REG_N_SETS (regno) == 1 && ! added_sets_2
2027 && ! REG_USERVAR_P (SET_DEST (newpat))))
2029 if (regno >= FIRST_PSEUDO_REGISTER)
2030 SUBST (regno_reg_rtx[regno], new_dest);
2032 SUBST (SET_DEST (newpat), new_dest);
2033 SUBST (XEXP (*cc_use, 0), new_dest);
2034 SUBST (SET_SRC (newpat),
2035 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2037 else
2038 undobuf.other_insn = 0;
2040 #endif
2042 else
2043 #endif
2045 n_occurrences = 0; /* `subst' counts here */
2047 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2048 need to make a unique copy of I2SRC each time we substitute it
2049 to avoid self-referential rtl. */
2051 subst_low_cuid = INSN_CUID (i2);
2052 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2053 ! i1_feeds_i3 && i1dest_in_i1src);
2054 substed_i2 = 1;
2056 /* Record whether i2's body now appears within i3's body. */
2057 i2_is_used = n_occurrences;
2060 /* If we already got a failure, don't try to do more. Otherwise,
2061 try to substitute in I1 if we have it. */
2063 if (i1 && GET_CODE (newpat) != CLOBBER)
2065 /* Before we can do this substitution, we must redo the test done
2066 above (see detailed comments there) that ensures that I1DEST
2067 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2069 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2070 0, (rtx*) 0))
2072 undo_all ();
2073 return 0;
2076 n_occurrences = 0;
2077 subst_low_cuid = INSN_CUID (i1);
2078 newpat = subst (newpat, i1dest, i1src, 0, 0);
2079 substed_i1 = 1;
2082 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2083 to count all the ways that I2SRC and I1SRC can be used. */
2084 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2085 && i2_is_used + added_sets_2 > 1)
2086 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2087 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2088 > 1))
2089 /* Fail if we tried to make a new register (we used to abort, but there's
2090 really no reason to). */
2091 || max_reg_num () != maxreg
2092 /* Fail if we couldn't do something and have a CLOBBER. */
2093 || GET_CODE (newpat) == CLOBBER
2094 /* Fail if this new pattern is a MULT and we didn't have one before
2095 at the outer level. */
2096 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2097 && ! have_mult))
2099 undo_all ();
2100 return 0;
2103 /* If the actions of the earlier insns must be kept
2104 in addition to substituting them into the latest one,
2105 we must make a new PARALLEL for the latest insn
2106 to hold additional the SETs. */
2108 if (added_sets_1 || added_sets_2)
2110 combine_extras++;
2112 if (GET_CODE (newpat) == PARALLEL)
2114 rtvec old = XVEC (newpat, 0);
2115 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2116 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2117 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2118 sizeof (old->elem[0]) * old->num_elem);
2120 else
2122 rtx old = newpat;
2123 total_sets = 1 + added_sets_1 + added_sets_2;
2124 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2125 XVECEXP (newpat, 0, 0) = old;
2128 if (added_sets_1)
2129 XVECEXP (newpat, 0, --total_sets)
2130 = (GET_CODE (PATTERN (i1)) == PARALLEL
2131 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2133 if (added_sets_2)
2135 /* If there is no I1, use I2's body as is. We used to also not do
2136 the subst call below if I2 was substituted into I3,
2137 but that could lose a simplification. */
2138 if (i1 == 0)
2139 XVECEXP (newpat, 0, --total_sets) = i2pat;
2140 else
2141 /* See comment where i2pat is assigned. */
2142 XVECEXP (newpat, 0, --total_sets)
2143 = subst (i2pat, i1dest, i1src, 0, 0);
2147 /* We come here when we are replacing a destination in I2 with the
2148 destination of I3. */
2149 validate_replacement:
2151 /* Note which hard regs this insn has as inputs. */
2152 mark_used_regs_combine (newpat);
2154 /* Is the result of combination a valid instruction? */
2155 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2157 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2158 the second SET's destination is a register that is unused and isn't
2159 marked as an instruction that might trap in an EH region. In that case,
2160 we just need the first SET. This can occur when simplifying a divmod
2161 insn. We *must* test for this case here because the code below that
2162 splits two independent SETs doesn't handle this case correctly when it
2163 updates the register status.
2165 It's pointless doing this if we originally had two sets, one from
2166 i3, and one from i2. Combining then splitting the parallel results
2167 in the original i2 again plus an invalid insn (which we delete).
2168 The net effect is only to move instructions around, which makes
2169 debug info less accurate.
2171 Also check the case where the first SET's destination is unused.
2172 That would not cause incorrect code, but does cause an unneeded
2173 insn to remain. */
2175 if (insn_code_number < 0
2176 && !(added_sets_2 && i1 == 0)
2177 && GET_CODE (newpat) == PARALLEL
2178 && XVECLEN (newpat, 0) == 2
2179 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2180 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2181 && asm_noperands (newpat) < 0)
2183 rtx set0 = XVECEXP (newpat, 0, 0);
2184 rtx set1 = XVECEXP (newpat, 0, 1);
2185 rtx note;
2187 if (((REG_P (SET_DEST (set1))
2188 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2189 || (GET_CODE (SET_DEST (set1)) == SUBREG
2190 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2191 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2192 || INTVAL (XEXP (note, 0)) <= 0)
2193 && ! side_effects_p (SET_SRC (set1)))
2195 newpat = set0;
2196 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2199 else if (((REG_P (SET_DEST (set0))
2200 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2201 || (GET_CODE (SET_DEST (set0)) == SUBREG
2202 && find_reg_note (i3, REG_UNUSED,
2203 SUBREG_REG (SET_DEST (set0)))))
2204 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2205 || INTVAL (XEXP (note, 0)) <= 0)
2206 && ! side_effects_p (SET_SRC (set0)))
2208 newpat = set1;
2209 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2211 if (insn_code_number >= 0)
2213 /* If we will be able to accept this, we have made a
2214 change to the destination of I3. This requires us to
2215 do a few adjustments. */
2217 PATTERN (i3) = newpat;
2218 adjust_for_new_dest (i3);
2223 /* If we were combining three insns and the result is a simple SET
2224 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2225 insns. There are two ways to do this. It can be split using a
2226 machine-specific method (like when you have an addition of a large
2227 constant) or by combine in the function find_split_point. */
2229 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2230 && asm_noperands (newpat) < 0)
2232 rtx m_split, *split;
2233 rtx ni2dest = i2dest;
2235 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2236 use I2DEST as a scratch register will help. In the latter case,
2237 convert I2DEST to the mode of the source of NEWPAT if we can. */
2239 m_split = split_insns (newpat, i3);
2241 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2242 inputs of NEWPAT. */
2244 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2245 possible to try that as a scratch reg. This would require adding
2246 more code to make it work though. */
2248 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2250 /* If I2DEST is a hard register or the only use of a pseudo,
2251 we can change its mode. */
2252 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2253 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2254 && REG_P (i2dest)
2255 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2256 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2257 && ! REG_USERVAR_P (i2dest))))
2258 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2259 REGNO (i2dest));
2261 m_split = split_insns (gen_rtx_PARALLEL
2262 (VOIDmode,
2263 gen_rtvec (2, newpat,
2264 gen_rtx_CLOBBER (VOIDmode,
2265 ni2dest))),
2266 i3);
2267 /* If the split with the mode-changed register didn't work, try
2268 the original register. */
2269 if (! m_split && ni2dest != i2dest)
2271 ni2dest = i2dest;
2272 m_split = split_insns (gen_rtx_PARALLEL
2273 (VOIDmode,
2274 gen_rtvec (2, newpat,
2275 gen_rtx_CLOBBER (VOIDmode,
2276 i2dest))),
2277 i3);
2281 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2283 m_split = PATTERN (m_split);
2284 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2285 if (insn_code_number >= 0)
2286 newpat = m_split;
2288 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2289 && (next_real_insn (i2) == i3
2290 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2292 rtx i2set, i3set;
2293 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2294 newi2pat = PATTERN (m_split);
2296 i3set = single_set (NEXT_INSN (m_split));
2297 i2set = single_set (m_split);
2299 /* In case we changed the mode of I2DEST, replace it in the
2300 pseudo-register table here. We can't do it above in case this
2301 code doesn't get executed and we do a split the other way. */
2303 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2304 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2306 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2308 /* If I2 or I3 has multiple SETs, we won't know how to track
2309 register status, so don't use these insns. If I2's destination
2310 is used between I2 and I3, we also can't use these insns. */
2312 if (i2_code_number >= 0 && i2set && i3set
2313 && (next_real_insn (i2) == i3
2314 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2315 insn_code_number = recog_for_combine (&newi3pat, i3,
2316 &new_i3_notes);
2317 if (insn_code_number >= 0)
2318 newpat = newi3pat;
2320 /* It is possible that both insns now set the destination of I3.
2321 If so, we must show an extra use of it. */
2323 if (insn_code_number >= 0)
2325 rtx new_i3_dest = SET_DEST (i3set);
2326 rtx new_i2_dest = SET_DEST (i2set);
2328 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2329 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2330 || GET_CODE (new_i3_dest) == SUBREG)
2331 new_i3_dest = XEXP (new_i3_dest, 0);
2333 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2334 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2335 || GET_CODE (new_i2_dest) == SUBREG)
2336 new_i2_dest = XEXP (new_i2_dest, 0);
2338 if (REG_P (new_i3_dest)
2339 && REG_P (new_i2_dest)
2340 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2341 REG_N_SETS (REGNO (new_i2_dest))++;
2345 /* If we can split it and use I2DEST, go ahead and see if that
2346 helps things be recognized. Verify that none of the registers
2347 are set between I2 and I3. */
2348 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2349 #ifdef HAVE_cc0
2350 && REG_P (i2dest)
2351 #endif
2352 /* We need I2DEST in the proper mode. If it is a hard register
2353 or the only use of a pseudo, we can change its mode. */
2354 && (GET_MODE (*split) == GET_MODE (i2dest)
2355 || GET_MODE (*split) == VOIDmode
2356 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2357 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2358 && ! REG_USERVAR_P (i2dest)))
2359 && (next_real_insn (i2) == i3
2360 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2361 /* We can't overwrite I2DEST if its value is still used by
2362 NEWPAT. */
2363 && ! reg_referenced_p (i2dest, newpat))
2365 rtx newdest = i2dest;
2366 enum rtx_code split_code = GET_CODE (*split);
2367 enum machine_mode split_mode = GET_MODE (*split);
2369 /* Get NEWDEST as a register in the proper mode. We have already
2370 validated that we can do this. */
2371 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2373 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2375 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2376 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2379 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2380 an ASHIFT. This can occur if it was inside a PLUS and hence
2381 appeared to be a memory address. This is a kludge. */
2382 if (split_code == MULT
2383 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2384 && INTVAL (XEXP (*split, 1)) > 0
2385 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2387 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2388 XEXP (*split, 0), GEN_INT (i)));
2389 /* Update split_code because we may not have a multiply
2390 anymore. */
2391 split_code = GET_CODE (*split);
2394 #ifdef INSN_SCHEDULING
2395 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2396 be written as a ZERO_EXTEND. */
2397 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2399 #ifdef LOAD_EXTEND_OP
2400 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2401 what it really is. */
2402 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2403 == SIGN_EXTEND)
2404 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2405 SUBREG_REG (*split)));
2406 else
2407 #endif
2408 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2409 SUBREG_REG (*split)));
2411 #endif
2413 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2414 SUBST (*split, newdest);
2415 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2417 /* If the split point was a MULT and we didn't have one before,
2418 don't use one now. */
2419 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2420 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2424 /* Check for a case where we loaded from memory in a narrow mode and
2425 then sign extended it, but we need both registers. In that case,
2426 we have a PARALLEL with both loads from the same memory location.
2427 We can split this into a load from memory followed by a register-register
2428 copy. This saves at least one insn, more if register allocation can
2429 eliminate the copy.
2431 We cannot do this if the destination of the first assignment is a
2432 condition code register or cc0. We eliminate this case by making sure
2433 the SET_DEST and SET_SRC have the same mode.
2435 We cannot do this if the destination of the second assignment is
2436 a register that we have already assumed is zero-extended. Similarly
2437 for a SUBREG of such a register. */
2439 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2440 && GET_CODE (newpat) == PARALLEL
2441 && XVECLEN (newpat, 0) == 2
2442 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2443 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2444 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2445 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2446 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2447 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2448 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2449 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2450 INSN_CUID (i2))
2451 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2452 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2453 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2454 (REG_P (temp)
2455 && reg_stat[REGNO (temp)].nonzero_bits != 0
2456 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2457 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2458 && (reg_stat[REGNO (temp)].nonzero_bits
2459 != GET_MODE_MASK (word_mode))))
2460 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2461 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2462 (REG_P (temp)
2463 && reg_stat[REGNO (temp)].nonzero_bits != 0
2464 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2465 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2466 && (reg_stat[REGNO (temp)].nonzero_bits
2467 != GET_MODE_MASK (word_mode)))))
2468 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2469 SET_SRC (XVECEXP (newpat, 0, 1)))
2470 && ! find_reg_note (i3, REG_UNUSED,
2471 SET_DEST (XVECEXP (newpat, 0, 0))))
2473 rtx ni2dest;
2475 newi2pat = XVECEXP (newpat, 0, 0);
2476 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2477 newpat = XVECEXP (newpat, 0, 1);
2478 SUBST (SET_SRC (newpat),
2479 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2480 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2482 if (i2_code_number >= 0)
2483 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2485 if (insn_code_number >= 0)
2486 swap_i2i3 = 1;
2489 /* Similarly, check for a case where we have a PARALLEL of two independent
2490 SETs but we started with three insns. In this case, we can do the sets
2491 as two separate insns. This case occurs when some SET allows two
2492 other insns to combine, but the destination of that SET is still live. */
2494 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2495 && GET_CODE (newpat) == PARALLEL
2496 && XVECLEN (newpat, 0) == 2
2497 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2498 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2499 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2500 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2501 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2502 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2503 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2504 INSN_CUID (i2))
2505 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2506 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2507 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2508 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2509 XVECEXP (newpat, 0, 0))
2510 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2511 XVECEXP (newpat, 0, 1))
2512 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2513 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2515 /* Normally, it doesn't matter which of the two is done first,
2516 but it does if one references cc0. In that case, it has to
2517 be first. */
2518 #ifdef HAVE_cc0
2519 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2521 newi2pat = XVECEXP (newpat, 0, 0);
2522 newpat = XVECEXP (newpat, 0, 1);
2524 else
2525 #endif
2527 newi2pat = XVECEXP (newpat, 0, 1);
2528 newpat = XVECEXP (newpat, 0, 0);
2531 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2533 if (i2_code_number >= 0)
2534 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2537 /* If it still isn't recognized, fail and change things back the way they
2538 were. */
2539 if ((insn_code_number < 0
2540 /* Is the result a reasonable ASM_OPERANDS? */
2541 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2543 undo_all ();
2544 return 0;
2547 /* If we had to change another insn, make sure it is valid also. */
2548 if (undobuf.other_insn)
2550 rtx other_pat = PATTERN (undobuf.other_insn);
2551 rtx new_other_notes;
2552 rtx note, next;
2554 CLEAR_HARD_REG_SET (newpat_used_regs);
2556 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2557 &new_other_notes);
2559 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2561 undo_all ();
2562 return 0;
2565 PATTERN (undobuf.other_insn) = other_pat;
2567 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2568 are still valid. Then add any non-duplicate notes added by
2569 recog_for_combine. */
2570 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2572 next = XEXP (note, 1);
2574 if (REG_NOTE_KIND (note) == REG_UNUSED
2575 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2577 if (REG_P (XEXP (note, 0)))
2578 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2580 remove_note (undobuf.other_insn, note);
2584 for (note = new_other_notes; note; note = XEXP (note, 1))
2585 if (REG_P (XEXP (note, 0)))
2586 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2588 distribute_notes (new_other_notes, undobuf.other_insn,
2589 undobuf.other_insn, NULL_RTX);
2591 #ifdef HAVE_cc0
2592 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2593 they are adjacent to each other or not. */
2595 rtx p = prev_nonnote_insn (i3);
2596 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2597 && sets_cc0_p (newi2pat))
2599 undo_all ();
2600 return 0;
2603 #endif
2605 /* Only allow this combination if insn_rtx_costs reports that the
2606 replacement instructions are cheaper than the originals. */
2607 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2609 undo_all ();
2610 return 0;
2613 /* We now know that we can do this combination. Merge the insns and
2614 update the status of registers and LOG_LINKS. */
2616 if (swap_i2i3)
2618 rtx insn;
2619 rtx link;
2620 rtx ni2dest;
2622 /* I3 now uses what used to be its destination and which is now
2623 I2's destination. This requires us to do a few adjustments. */
2624 PATTERN (i3) = newpat;
2625 adjust_for_new_dest (i3);
2627 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2628 so we still will.
2630 However, some later insn might be using I2's dest and have
2631 a LOG_LINK pointing at I3. We must remove this link.
2632 The simplest way to remove the link is to point it at I1,
2633 which we know will be a NOTE. */
2635 /* newi2pat is usually a SET here; however, recog_for_combine might
2636 have added some clobbers. */
2637 if (GET_CODE (newi2pat) == PARALLEL)
2638 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2639 else
2640 ni2dest = SET_DEST (newi2pat);
2642 for (insn = NEXT_INSN (i3);
2643 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2644 || insn != BB_HEAD (this_basic_block->next_bb));
2645 insn = NEXT_INSN (insn))
2647 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2649 for (link = LOG_LINKS (insn); link;
2650 link = XEXP (link, 1))
2651 if (XEXP (link, 0) == i3)
2652 XEXP (link, 0) = i1;
2654 break;
2660 rtx i3notes, i2notes, i1notes = 0;
2661 rtx i3links, i2links, i1links = 0;
2662 rtx midnotes = 0;
2663 unsigned int regno;
2665 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2666 clear them. */
2667 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2668 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2669 if (i1)
2670 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2672 /* Ensure that we do not have something that should not be shared but
2673 occurs multiple times in the new insns. Check this by first
2674 resetting all the `used' flags and then copying anything is shared. */
2676 reset_used_flags (i3notes);
2677 reset_used_flags (i2notes);
2678 reset_used_flags (i1notes);
2679 reset_used_flags (newpat);
2680 reset_used_flags (newi2pat);
2681 if (undobuf.other_insn)
2682 reset_used_flags (PATTERN (undobuf.other_insn));
2684 i3notes = copy_rtx_if_shared (i3notes);
2685 i2notes = copy_rtx_if_shared (i2notes);
2686 i1notes = copy_rtx_if_shared (i1notes);
2687 newpat = copy_rtx_if_shared (newpat);
2688 newi2pat = copy_rtx_if_shared (newi2pat);
2689 if (undobuf.other_insn)
2690 reset_used_flags (PATTERN (undobuf.other_insn));
2692 INSN_CODE (i3) = insn_code_number;
2693 PATTERN (i3) = newpat;
2695 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2697 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2699 reset_used_flags (call_usage);
2700 call_usage = copy_rtx (call_usage);
2702 if (substed_i2)
2703 replace_rtx (call_usage, i2dest, i2src);
2705 if (substed_i1)
2706 replace_rtx (call_usage, i1dest, i1src);
2708 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2711 if (undobuf.other_insn)
2712 INSN_CODE (undobuf.other_insn) = other_code_number;
2714 /* We had one special case above where I2 had more than one set and
2715 we replaced a destination of one of those sets with the destination
2716 of I3. In that case, we have to update LOG_LINKS of insns later
2717 in this basic block. Note that this (expensive) case is rare.
2719 Also, in this case, we must pretend that all REG_NOTEs for I2
2720 actually came from I3, so that REG_UNUSED notes from I2 will be
2721 properly handled. */
2723 if (i3_subst_into_i2)
2725 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2726 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2727 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2728 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2729 && ! find_reg_note (i2, REG_UNUSED,
2730 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2731 for (temp = NEXT_INSN (i2);
2732 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2733 || BB_HEAD (this_basic_block) != temp);
2734 temp = NEXT_INSN (temp))
2735 if (temp != i3 && INSN_P (temp))
2736 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2737 if (XEXP (link, 0) == i2)
2738 XEXP (link, 0) = i3;
2740 if (i3notes)
2742 rtx link = i3notes;
2743 while (XEXP (link, 1))
2744 link = XEXP (link, 1);
2745 XEXP (link, 1) = i2notes;
2747 else
2748 i3notes = i2notes;
2749 i2notes = 0;
2752 LOG_LINKS (i3) = 0;
2753 REG_NOTES (i3) = 0;
2754 LOG_LINKS (i2) = 0;
2755 REG_NOTES (i2) = 0;
2757 if (newi2pat)
2759 INSN_CODE (i2) = i2_code_number;
2760 PATTERN (i2) = newi2pat;
2762 else
2763 SET_INSN_DELETED (i2);
2765 if (i1)
2767 LOG_LINKS (i1) = 0;
2768 REG_NOTES (i1) = 0;
2769 SET_INSN_DELETED (i1);
2772 /* Get death notes for everything that is now used in either I3 or
2773 I2 and used to die in a previous insn. If we built two new
2774 patterns, move from I1 to I2 then I2 to I3 so that we get the
2775 proper movement on registers that I2 modifies. */
2777 if (newi2pat)
2779 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2780 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2782 else
2783 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2784 i3, &midnotes);
2786 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2787 if (i3notes)
2788 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2789 if (i2notes)
2790 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2791 if (i1notes)
2792 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2793 if (midnotes)
2794 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2796 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2797 know these are REG_UNUSED and want them to go to the desired insn,
2798 so we always pass it as i3. We have not counted the notes in
2799 reg_n_deaths yet, so we need to do so now. */
2801 if (newi2pat && new_i2_notes)
2803 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2804 if (REG_P (XEXP (temp, 0)))
2805 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2807 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2810 if (new_i3_notes)
2812 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2813 if (REG_P (XEXP (temp, 0)))
2814 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2816 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2819 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2820 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2821 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2822 in that case, it might delete I2. Similarly for I2 and I1.
2823 Show an additional death due to the REG_DEAD note we make here. If
2824 we discard it in distribute_notes, we will decrement it again. */
2826 if (i3dest_killed)
2828 if (REG_P (i3dest_killed))
2829 REG_N_DEATHS (REGNO (i3dest_killed))++;
2831 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2832 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2833 NULL_RTX),
2834 NULL_RTX, i2, NULL_RTX);
2835 else
2836 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2837 NULL_RTX),
2838 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2841 if (i2dest_in_i2src)
2843 if (REG_P (i2dest))
2844 REG_N_DEATHS (REGNO (i2dest))++;
2846 if (newi2pat && reg_set_p (i2dest, newi2pat))
2847 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2848 NULL_RTX, i2, NULL_RTX);
2849 else
2850 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2851 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2854 if (i1dest_in_i1src)
2856 if (REG_P (i1dest))
2857 REG_N_DEATHS (REGNO (i1dest))++;
2859 if (newi2pat && reg_set_p (i1dest, newi2pat))
2860 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2861 NULL_RTX, i2, NULL_RTX);
2862 else
2863 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2864 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2867 distribute_links (i3links);
2868 distribute_links (i2links);
2869 distribute_links (i1links);
2871 if (REG_P (i2dest))
2873 rtx link;
2874 rtx i2_insn = 0, i2_val = 0, set;
2876 /* The insn that used to set this register doesn't exist, and
2877 this life of the register may not exist either. See if one of
2878 I3's links points to an insn that sets I2DEST. If it does,
2879 that is now the last known value for I2DEST. If we don't update
2880 this and I2 set the register to a value that depended on its old
2881 contents, we will get confused. If this insn is used, thing
2882 will be set correctly in combine_instructions. */
2884 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2885 if ((set = single_set (XEXP (link, 0))) != 0
2886 && rtx_equal_p (i2dest, SET_DEST (set)))
2887 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2889 record_value_for_reg (i2dest, i2_insn, i2_val);
2891 /* If the reg formerly set in I2 died only once and that was in I3,
2892 zero its use count so it won't make `reload' do any work. */
2893 if (! added_sets_2
2894 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2895 && ! i2dest_in_i2src)
2897 regno = REGNO (i2dest);
2898 REG_N_SETS (regno)--;
2902 if (i1 && REG_P (i1dest))
2904 rtx link;
2905 rtx i1_insn = 0, i1_val = 0, set;
2907 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2908 if ((set = single_set (XEXP (link, 0))) != 0
2909 && rtx_equal_p (i1dest, SET_DEST (set)))
2910 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2912 record_value_for_reg (i1dest, i1_insn, i1_val);
2914 regno = REGNO (i1dest);
2915 if (! added_sets_1 && ! i1dest_in_i1src)
2916 REG_N_SETS (regno)--;
2919 /* Update reg_stat[].nonzero_bits et al for any changes that may have
2920 been made to this insn. The order of
2921 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
2922 can affect nonzero_bits of newpat */
2923 if (newi2pat)
2924 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2925 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2927 /* Set new_direct_jump_p if a new return or simple jump instruction
2928 has been created.
2930 If I3 is now an unconditional jump, ensure that it has a
2931 BARRIER following it since it may have initially been a
2932 conditional jump. It may also be the last nonnote insn. */
2934 if (returnjump_p (i3) || any_uncondjump_p (i3))
2936 *new_direct_jump_p = 1;
2937 mark_jump_label (PATTERN (i3), i3, 0);
2939 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2940 || !BARRIER_P (temp))
2941 emit_barrier_after (i3);
2944 if (undobuf.other_insn != NULL_RTX
2945 && (returnjump_p (undobuf.other_insn)
2946 || any_uncondjump_p (undobuf.other_insn)))
2948 *new_direct_jump_p = 1;
2950 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2951 || !BARRIER_P (temp))
2952 emit_barrier_after (undobuf.other_insn);
2955 /* An NOOP jump does not need barrier, but it does need cleaning up
2956 of CFG. */
2957 if (GET_CODE (newpat) == SET
2958 && SET_SRC (newpat) == pc_rtx
2959 && SET_DEST (newpat) == pc_rtx)
2960 *new_direct_jump_p = 1;
2963 combine_successes++;
2964 undo_commit ();
2966 if (added_links_insn
2967 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2968 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2969 return added_links_insn;
2970 else
2971 return newi2pat ? i2 : i3;
2974 /* Undo all the modifications recorded in undobuf. */
2976 static void
2977 undo_all (void)
2979 struct undo *undo, *next;
2981 for (undo = undobuf.undos; undo; undo = next)
2983 next = undo->next;
2984 if (undo->is_int)
2985 *undo->where.i = undo->old_contents.i;
2986 else
2987 *undo->where.r = undo->old_contents.r;
2989 undo->next = undobuf.frees;
2990 undobuf.frees = undo;
2993 undobuf.undos = 0;
2996 /* We've committed to accepting the changes we made. Move all
2997 of the undos to the free list. */
2999 static void
3000 undo_commit (void)
3002 struct undo *undo, *next;
3004 for (undo = undobuf.undos; undo; undo = next)
3006 next = undo->next;
3007 undo->next = undobuf.frees;
3008 undobuf.frees = undo;
3010 undobuf.undos = 0;
3014 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3015 where we have an arithmetic expression and return that point. LOC will
3016 be inside INSN.
3018 try_combine will call this function to see if an insn can be split into
3019 two insns. */
3021 static rtx *
3022 find_split_point (rtx *loc, rtx insn)
3024 rtx x = *loc;
3025 enum rtx_code code = GET_CODE (x);
3026 rtx *split;
3027 unsigned HOST_WIDE_INT len = 0;
3028 HOST_WIDE_INT pos = 0;
3029 int unsignedp = 0;
3030 rtx inner = NULL_RTX;
3032 /* First special-case some codes. */
3033 switch (code)
3035 case SUBREG:
3036 #ifdef INSN_SCHEDULING
3037 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3038 point. */
3039 if (MEM_P (SUBREG_REG (x)))
3040 return loc;
3041 #endif
3042 return find_split_point (&SUBREG_REG (x), insn);
3044 case MEM:
3045 #ifdef HAVE_lo_sum
3046 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3047 using LO_SUM and HIGH. */
3048 if (GET_CODE (XEXP (x, 0)) == CONST
3049 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3051 SUBST (XEXP (x, 0),
3052 gen_rtx_LO_SUM (Pmode,
3053 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3054 XEXP (x, 0)));
3055 return &XEXP (XEXP (x, 0), 0);
3057 #endif
3059 /* If we have a PLUS whose second operand is a constant and the
3060 address is not valid, perhaps will can split it up using
3061 the machine-specific way to split large constants. We use
3062 the first pseudo-reg (one of the virtual regs) as a placeholder;
3063 it will not remain in the result. */
3064 if (GET_CODE (XEXP (x, 0)) == PLUS
3065 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3066 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3068 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3069 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3070 subst_insn);
3072 /* This should have produced two insns, each of which sets our
3073 placeholder. If the source of the second is a valid address,
3074 we can make put both sources together and make a split point
3075 in the middle. */
3077 if (seq
3078 && NEXT_INSN (seq) != NULL_RTX
3079 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3080 && NONJUMP_INSN_P (seq)
3081 && GET_CODE (PATTERN (seq)) == SET
3082 && SET_DEST (PATTERN (seq)) == reg
3083 && ! reg_mentioned_p (reg,
3084 SET_SRC (PATTERN (seq)))
3085 && NONJUMP_INSN_P (NEXT_INSN (seq))
3086 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3087 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3088 && memory_address_p (GET_MODE (x),
3089 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3091 rtx src1 = SET_SRC (PATTERN (seq));
3092 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3094 /* Replace the placeholder in SRC2 with SRC1. If we can
3095 find where in SRC2 it was placed, that can become our
3096 split point and we can replace this address with SRC2.
3097 Just try two obvious places. */
3099 src2 = replace_rtx (src2, reg, src1);
3100 split = 0;
3101 if (XEXP (src2, 0) == src1)
3102 split = &XEXP (src2, 0);
3103 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3104 && XEXP (XEXP (src2, 0), 0) == src1)
3105 split = &XEXP (XEXP (src2, 0), 0);
3107 if (split)
3109 SUBST (XEXP (x, 0), src2);
3110 return split;
3114 /* If that didn't work, perhaps the first operand is complex and
3115 needs to be computed separately, so make a split point there.
3116 This will occur on machines that just support REG + CONST
3117 and have a constant moved through some previous computation. */
3119 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3120 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3121 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3122 return &XEXP (XEXP (x, 0), 0);
3124 break;
3126 case SET:
3127 #ifdef HAVE_cc0
3128 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3129 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3130 we need to put the operand into a register. So split at that
3131 point. */
3133 if (SET_DEST (x) == cc0_rtx
3134 && GET_CODE (SET_SRC (x)) != COMPARE
3135 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3136 && !OBJECT_P (SET_SRC (x))
3137 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3138 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3139 return &SET_SRC (x);
3140 #endif
3142 /* See if we can split SET_SRC as it stands. */
3143 split = find_split_point (&SET_SRC (x), insn);
3144 if (split && split != &SET_SRC (x))
3145 return split;
3147 /* See if we can split SET_DEST as it stands. */
3148 split = find_split_point (&SET_DEST (x), insn);
3149 if (split && split != &SET_DEST (x))
3150 return split;
3152 /* See if this is a bitfield assignment with everything constant. If
3153 so, this is an IOR of an AND, so split it into that. */
3154 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3155 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3156 <= HOST_BITS_PER_WIDE_INT)
3157 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3158 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3159 && GET_CODE (SET_SRC (x)) == CONST_INT
3160 && ((INTVAL (XEXP (SET_DEST (x), 1))
3161 + INTVAL (XEXP (SET_DEST (x), 2)))
3162 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3163 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3165 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3166 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3167 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3168 rtx dest = XEXP (SET_DEST (x), 0);
3169 enum machine_mode mode = GET_MODE (dest);
3170 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3172 if (BITS_BIG_ENDIAN)
3173 pos = GET_MODE_BITSIZE (mode) - len - pos;
3175 if (src == mask)
3176 SUBST (SET_SRC (x),
3177 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3178 else
3179 SUBST (SET_SRC (x),
3180 gen_binary (IOR, mode,
3181 gen_binary (AND, mode, dest,
3182 gen_int_mode (~(mask << pos),
3183 mode)),
3184 GEN_INT (src << pos)));
3186 SUBST (SET_DEST (x), dest);
3188 split = find_split_point (&SET_SRC (x), insn);
3189 if (split && split != &SET_SRC (x))
3190 return split;
3193 /* Otherwise, see if this is an operation that we can split into two.
3194 If so, try to split that. */
3195 code = GET_CODE (SET_SRC (x));
3197 switch (code)
3199 case AND:
3200 /* If we are AND'ing with a large constant that is only a single
3201 bit and the result is only being used in a context where we
3202 need to know if it is zero or nonzero, replace it with a bit
3203 extraction. This will avoid the large constant, which might
3204 have taken more than one insn to make. If the constant were
3205 not a valid argument to the AND but took only one insn to make,
3206 this is no worse, but if it took more than one insn, it will
3207 be better. */
3209 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3210 && REG_P (XEXP (SET_SRC (x), 0))
3211 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3212 && REG_P (SET_DEST (x))
3213 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3214 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3215 && XEXP (*split, 0) == SET_DEST (x)
3216 && XEXP (*split, 1) == const0_rtx)
3218 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3219 XEXP (SET_SRC (x), 0),
3220 pos, NULL_RTX, 1, 1, 0, 0);
3221 if (extraction != 0)
3223 SUBST (SET_SRC (x), extraction);
3224 return find_split_point (loc, insn);
3227 break;
3229 case NE:
3230 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3231 is known to be on, this can be converted into a NEG of a shift. */
3232 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3233 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3234 && 1 <= (pos = exact_log2
3235 (nonzero_bits (XEXP (SET_SRC (x), 0),
3236 GET_MODE (XEXP (SET_SRC (x), 0))))))
3238 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3240 SUBST (SET_SRC (x),
3241 gen_rtx_NEG (mode,
3242 gen_rtx_LSHIFTRT (mode,
3243 XEXP (SET_SRC (x), 0),
3244 GEN_INT (pos))));
3246 split = find_split_point (&SET_SRC (x), insn);
3247 if (split && split != &SET_SRC (x))
3248 return split;
3250 break;
3252 case SIGN_EXTEND:
3253 inner = XEXP (SET_SRC (x), 0);
3255 /* We can't optimize if either mode is a partial integer
3256 mode as we don't know how many bits are significant
3257 in those modes. */
3258 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3259 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3260 break;
3262 pos = 0;
3263 len = GET_MODE_BITSIZE (GET_MODE (inner));
3264 unsignedp = 0;
3265 break;
3267 case SIGN_EXTRACT:
3268 case ZERO_EXTRACT:
3269 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3270 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3272 inner = XEXP (SET_SRC (x), 0);
3273 len = INTVAL (XEXP (SET_SRC (x), 1));
3274 pos = INTVAL (XEXP (SET_SRC (x), 2));
3276 if (BITS_BIG_ENDIAN)
3277 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3278 unsignedp = (code == ZERO_EXTRACT);
3280 break;
3282 default:
3283 break;
3286 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3288 enum machine_mode mode = GET_MODE (SET_SRC (x));
3290 /* For unsigned, we have a choice of a shift followed by an
3291 AND or two shifts. Use two shifts for field sizes where the
3292 constant might be too large. We assume here that we can
3293 always at least get 8-bit constants in an AND insn, which is
3294 true for every current RISC. */
3296 if (unsignedp && len <= 8)
3298 SUBST (SET_SRC (x),
3299 gen_rtx_AND (mode,
3300 gen_rtx_LSHIFTRT
3301 (mode, gen_lowpart (mode, inner),
3302 GEN_INT (pos)),
3303 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3305 split = find_split_point (&SET_SRC (x), insn);
3306 if (split && split != &SET_SRC (x))
3307 return split;
3309 else
3311 SUBST (SET_SRC (x),
3312 gen_rtx_fmt_ee
3313 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3314 gen_rtx_ASHIFT (mode,
3315 gen_lowpart (mode, inner),
3316 GEN_INT (GET_MODE_BITSIZE (mode)
3317 - len - pos)),
3318 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3320 split = find_split_point (&SET_SRC (x), insn);
3321 if (split && split != &SET_SRC (x))
3322 return split;
3326 /* See if this is a simple operation with a constant as the second
3327 operand. It might be that this constant is out of range and hence
3328 could be used as a split point. */
3329 if (BINARY_P (SET_SRC (x))
3330 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3331 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3332 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3333 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3334 return &XEXP (SET_SRC (x), 1);
3336 /* Finally, see if this is a simple operation with its first operand
3337 not in a register. The operation might require this operand in a
3338 register, so return it as a split point. We can always do this
3339 because if the first operand were another operation, we would have
3340 already found it as a split point. */
3341 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3342 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3343 return &XEXP (SET_SRC (x), 0);
3345 return 0;
3347 case AND:
3348 case IOR:
3349 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3350 it is better to write this as (not (ior A B)) so we can split it.
3351 Similarly for IOR. */
3352 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3354 SUBST (*loc,
3355 gen_rtx_NOT (GET_MODE (x),
3356 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3357 GET_MODE (x),
3358 XEXP (XEXP (x, 0), 0),
3359 XEXP (XEXP (x, 1), 0))));
3360 return find_split_point (loc, insn);
3363 /* Many RISC machines have a large set of logical insns. If the
3364 second operand is a NOT, put it first so we will try to split the
3365 other operand first. */
3366 if (GET_CODE (XEXP (x, 1)) == NOT)
3368 rtx tem = XEXP (x, 0);
3369 SUBST (XEXP (x, 0), XEXP (x, 1));
3370 SUBST (XEXP (x, 1), tem);
3372 break;
3374 default:
3375 break;
3378 /* Otherwise, select our actions depending on our rtx class. */
3379 switch (GET_RTX_CLASS (code))
3381 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3382 case RTX_TERNARY:
3383 split = find_split_point (&XEXP (x, 2), insn);
3384 if (split)
3385 return split;
3386 /* ... fall through ... */
3387 case RTX_BIN_ARITH:
3388 case RTX_COMM_ARITH:
3389 case RTX_COMPARE:
3390 case RTX_COMM_COMPARE:
3391 split = find_split_point (&XEXP (x, 1), insn);
3392 if (split)
3393 return split;
3394 /* ... fall through ... */
3395 case RTX_UNARY:
3396 /* Some machines have (and (shift ...) ...) insns. If X is not
3397 an AND, but XEXP (X, 0) is, use it as our split point. */
3398 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3399 return &XEXP (x, 0);
3401 split = find_split_point (&XEXP (x, 0), insn);
3402 if (split)
3403 return split;
3404 return loc;
3406 default:
3407 /* Otherwise, we don't have a split point. */
3408 return 0;
3412 /* Throughout X, replace FROM with TO, and return the result.
3413 The result is TO if X is FROM;
3414 otherwise the result is X, but its contents may have been modified.
3415 If they were modified, a record was made in undobuf so that
3416 undo_all will (among other things) return X to its original state.
3418 If the number of changes necessary is too much to record to undo,
3419 the excess changes are not made, so the result is invalid.
3420 The changes already made can still be undone.
3421 undobuf.num_undo is incremented for such changes, so by testing that
3422 the caller can tell whether the result is valid.
3424 `n_occurrences' is incremented each time FROM is replaced.
3426 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3428 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3429 by copying if `n_occurrences' is nonzero. */
3431 static rtx
3432 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3434 enum rtx_code code = GET_CODE (x);
3435 enum machine_mode op0_mode = VOIDmode;
3436 const char *fmt;
3437 int len, i;
3438 rtx new;
3440 /* Two expressions are equal if they are identical copies of a shared
3441 RTX or if they are both registers with the same register number
3442 and mode. */
3444 #define COMBINE_RTX_EQUAL_P(X,Y) \
3445 ((X) == (Y) \
3446 || (REG_P (X) && REG_P (Y) \
3447 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3449 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3451 n_occurrences++;
3452 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3455 /* If X and FROM are the same register but different modes, they will
3456 not have been seen as equal above. However, flow.c will make a
3457 LOG_LINKS entry for that case. If we do nothing, we will try to
3458 rerecognize our original insn and, when it succeeds, we will
3459 delete the feeding insn, which is incorrect.
3461 So force this insn not to match in this (rare) case. */
3462 if (! in_dest && code == REG && REG_P (from)
3463 && REGNO (x) == REGNO (from))
3464 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3466 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3467 of which may contain things that can be combined. */
3468 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3469 return x;
3471 /* It is possible to have a subexpression appear twice in the insn.
3472 Suppose that FROM is a register that appears within TO.
3473 Then, after that subexpression has been scanned once by `subst',
3474 the second time it is scanned, TO may be found. If we were
3475 to scan TO here, we would find FROM within it and create a
3476 self-referent rtl structure which is completely wrong. */
3477 if (COMBINE_RTX_EQUAL_P (x, to))
3478 return to;
3480 /* Parallel asm_operands need special attention because all of the
3481 inputs are shared across the arms. Furthermore, unsharing the
3482 rtl results in recognition failures. Failure to handle this case
3483 specially can result in circular rtl.
3485 Solve this by doing a normal pass across the first entry of the
3486 parallel, and only processing the SET_DESTs of the subsequent
3487 entries. Ug. */
3489 if (code == PARALLEL
3490 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3491 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3493 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3495 /* If this substitution failed, this whole thing fails. */
3496 if (GET_CODE (new) == CLOBBER
3497 && XEXP (new, 0) == const0_rtx)
3498 return new;
3500 SUBST (XVECEXP (x, 0, 0), new);
3502 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3504 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3506 if (!REG_P (dest)
3507 && GET_CODE (dest) != CC0
3508 && GET_CODE (dest) != PC)
3510 new = subst (dest, from, to, 0, unique_copy);
3512 /* If this substitution failed, this whole thing fails. */
3513 if (GET_CODE (new) == CLOBBER
3514 && XEXP (new, 0) == const0_rtx)
3515 return new;
3517 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3521 else
3523 len = GET_RTX_LENGTH (code);
3524 fmt = GET_RTX_FORMAT (code);
3526 /* We don't need to process a SET_DEST that is a register, CC0,
3527 or PC, so set up to skip this common case. All other cases
3528 where we want to suppress replacing something inside a
3529 SET_SRC are handled via the IN_DEST operand. */
3530 if (code == SET
3531 && (REG_P (SET_DEST (x))
3532 || GET_CODE (SET_DEST (x)) == CC0
3533 || GET_CODE (SET_DEST (x)) == PC))
3534 fmt = "ie";
3536 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3537 constant. */
3538 if (fmt[0] == 'e')
3539 op0_mode = GET_MODE (XEXP (x, 0));
3541 for (i = 0; i < len; i++)
3543 if (fmt[i] == 'E')
3545 int j;
3546 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3548 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3550 new = (unique_copy && n_occurrences
3551 ? copy_rtx (to) : to);
3552 n_occurrences++;
3554 else
3556 new = subst (XVECEXP (x, i, j), from, to, 0,
3557 unique_copy);
3559 /* If this substitution failed, this whole thing
3560 fails. */
3561 if (GET_CODE (new) == CLOBBER
3562 && XEXP (new, 0) == const0_rtx)
3563 return new;
3566 SUBST (XVECEXP (x, i, j), new);
3569 else if (fmt[i] == 'e')
3571 /* If this is a register being set, ignore it. */
3572 new = XEXP (x, i);
3573 if (in_dest
3574 && i == 0
3575 && (((code == SUBREG || code == ZERO_EXTRACT)
3576 && REG_P (new))
3577 || code == STRICT_LOW_PART))
3580 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3582 /* In general, don't install a subreg involving two
3583 modes not tieable. It can worsen register
3584 allocation, and can even make invalid reload
3585 insns, since the reg inside may need to be copied
3586 from in the outside mode, and that may be invalid
3587 if it is an fp reg copied in integer mode.
3589 We allow two exceptions to this: It is valid if
3590 it is inside another SUBREG and the mode of that
3591 SUBREG and the mode of the inside of TO is
3592 tieable and it is valid if X is a SET that copies
3593 FROM to CC0. */
3595 if (GET_CODE (to) == SUBREG
3596 && ! MODES_TIEABLE_P (GET_MODE (to),
3597 GET_MODE (SUBREG_REG (to)))
3598 && ! (code == SUBREG
3599 && MODES_TIEABLE_P (GET_MODE (x),
3600 GET_MODE (SUBREG_REG (to))))
3601 #ifdef HAVE_cc0
3602 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3603 #endif
3605 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3607 #ifdef CANNOT_CHANGE_MODE_CLASS
3608 if (code == SUBREG
3609 && REG_P (to)
3610 && REGNO (to) < FIRST_PSEUDO_REGISTER
3611 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3612 GET_MODE (to),
3613 GET_MODE (x)))
3614 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3615 #endif
3617 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3618 n_occurrences++;
3620 else
3621 /* If we are in a SET_DEST, suppress most cases unless we
3622 have gone inside a MEM, in which case we want to
3623 simplify the address. We assume here that things that
3624 are actually part of the destination have their inner
3625 parts in the first expression. This is true for SUBREG,
3626 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3627 things aside from REG and MEM that should appear in a
3628 SET_DEST. */
3629 new = subst (XEXP (x, i), from, to,
3630 (((in_dest
3631 && (code == SUBREG || code == STRICT_LOW_PART
3632 || code == ZERO_EXTRACT))
3633 || code == SET)
3634 && i == 0), unique_copy);
3636 /* If we found that we will have to reject this combination,
3637 indicate that by returning the CLOBBER ourselves, rather than
3638 an expression containing it. This will speed things up as
3639 well as prevent accidents where two CLOBBERs are considered
3640 to be equal, thus producing an incorrect simplification. */
3642 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3643 return new;
3645 if (GET_CODE (x) == SUBREG
3646 && (GET_CODE (new) == CONST_INT
3647 || GET_CODE (new) == CONST_DOUBLE))
3649 enum machine_mode mode = GET_MODE (x);
3651 x = simplify_subreg (GET_MODE (x), new,
3652 GET_MODE (SUBREG_REG (x)),
3653 SUBREG_BYTE (x));
3654 if (! x)
3655 x = gen_rtx_CLOBBER (mode, const0_rtx);
3657 else if (GET_CODE (new) == CONST_INT
3658 && GET_CODE (x) == ZERO_EXTEND)
3660 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3661 new, GET_MODE (XEXP (x, 0)));
3662 gcc_assert (x);
3664 else
3665 SUBST (XEXP (x, i), new);
3670 /* Try to simplify X. If the simplification changed the code, it is likely
3671 that further simplification will help, so loop, but limit the number
3672 of repetitions that will be performed. */
3674 for (i = 0; i < 4; i++)
3676 /* If X is sufficiently simple, don't bother trying to do anything
3677 with it. */
3678 if (code != CONST_INT && code != REG && code != CLOBBER)
3679 x = combine_simplify_rtx (x, op0_mode, in_dest);
3681 if (GET_CODE (x) == code)
3682 break;
3684 code = GET_CODE (x);
3686 /* We no longer know the original mode of operand 0 since we
3687 have changed the form of X) */
3688 op0_mode = VOIDmode;
3691 return x;
3694 /* Simplify X, a piece of RTL. We just operate on the expression at the
3695 outer level; call `subst' to simplify recursively. Return the new
3696 expression.
3698 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3699 if we are inside a SET_DEST. */
3701 static rtx
3702 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3704 enum rtx_code code = GET_CODE (x);
3705 enum machine_mode mode = GET_MODE (x);
3706 rtx temp;
3707 rtx reversed;
3708 int i;
3710 /* If this is a commutative operation, put a constant last and a complex
3711 expression first. We don't need to do this for comparisons here. */
3712 if (COMMUTATIVE_ARITH_P (x)
3713 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3715 temp = XEXP (x, 0);
3716 SUBST (XEXP (x, 0), XEXP (x, 1));
3717 SUBST (XEXP (x, 1), temp);
3720 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3721 sign extension of a PLUS with a constant, reverse the order of the sign
3722 extension and the addition. Note that this not the same as the original
3723 code, but overflow is undefined for signed values. Also note that the
3724 PLUS will have been partially moved "inside" the sign-extension, so that
3725 the first operand of X will really look like:
3726 (ashiftrt (plus (ashift A C4) C5) C4).
3727 We convert this to
3728 (plus (ashiftrt (ashift A C4) C2) C4)
3729 and replace the first operand of X with that expression. Later parts
3730 of this function may simplify the expression further.
3732 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3733 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3734 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3736 We do this to simplify address expressions. */
3738 if ((code == PLUS || code == MINUS || code == MULT)
3739 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3740 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3741 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3742 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3743 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3744 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3745 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3746 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3747 XEXP (XEXP (XEXP (x, 0), 0), 1),
3748 XEXP (XEXP (x, 0), 1))) != 0)
3750 rtx new
3751 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3752 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3753 INTVAL (XEXP (XEXP (x, 0), 1)));
3755 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3756 INTVAL (XEXP (XEXP (x, 0), 1)));
3758 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3761 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3762 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3763 things. Check for cases where both arms are testing the same
3764 condition.
3766 Don't do anything if all operands are very simple. */
3768 if ((BINARY_P (x)
3769 && ((!OBJECT_P (XEXP (x, 0))
3770 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3771 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3772 || (!OBJECT_P (XEXP (x, 1))
3773 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3774 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3775 || (UNARY_P (x)
3776 && (!OBJECT_P (XEXP (x, 0))
3777 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3778 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3780 rtx cond, true_rtx, false_rtx;
3782 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3783 if (cond != 0
3784 /* If everything is a comparison, what we have is highly unlikely
3785 to be simpler, so don't use it. */
3786 && ! (COMPARISON_P (x)
3787 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3789 rtx cop1 = const0_rtx;
3790 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3792 if (cond_code == NE && COMPARISON_P (cond))
3793 return x;
3795 /* Simplify the alternative arms; this may collapse the true and
3796 false arms to store-flag values. Be careful to use copy_rtx
3797 here since true_rtx or false_rtx might share RTL with x as a
3798 result of the if_then_else_cond call above. */
3799 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3800 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3802 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3803 is unlikely to be simpler. */
3804 if (general_operand (true_rtx, VOIDmode)
3805 && general_operand (false_rtx, VOIDmode))
3807 enum rtx_code reversed;
3809 /* Restarting if we generate a store-flag expression will cause
3810 us to loop. Just drop through in this case. */
3812 /* If the result values are STORE_FLAG_VALUE and zero, we can
3813 just make the comparison operation. */
3814 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3815 x = gen_binary (cond_code, mode, cond, cop1);
3816 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3817 && ((reversed = reversed_comparison_code_parts
3818 (cond_code, cond, cop1, NULL))
3819 != UNKNOWN))
3820 x = gen_binary (reversed, mode, cond, cop1);
3822 /* Likewise, we can make the negate of a comparison operation
3823 if the result values are - STORE_FLAG_VALUE and zero. */
3824 else if (GET_CODE (true_rtx) == CONST_INT
3825 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3826 && false_rtx == const0_rtx)
3827 x = simplify_gen_unary (NEG, mode,
3828 gen_binary (cond_code, mode, cond,
3829 cop1),
3830 mode);
3831 else if (GET_CODE (false_rtx) == CONST_INT
3832 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3833 && true_rtx == const0_rtx
3834 && ((reversed = reversed_comparison_code_parts
3835 (cond_code, cond, cop1, NULL))
3836 != UNKNOWN))
3837 x = simplify_gen_unary (NEG, mode,
3838 gen_binary (reversed, mode,
3839 cond, cop1),
3840 mode);
3841 else
3842 return gen_rtx_IF_THEN_ELSE (mode,
3843 gen_binary (cond_code, VOIDmode,
3844 cond, cop1),
3845 true_rtx, false_rtx);
3847 code = GET_CODE (x);
3848 op0_mode = VOIDmode;
3853 /* Try to fold this expression in case we have constants that weren't
3854 present before. */
3855 temp = 0;
3856 switch (GET_RTX_CLASS (code))
3858 case RTX_UNARY:
3859 if (op0_mode == VOIDmode)
3860 op0_mode = GET_MODE (XEXP (x, 0));
3861 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3862 break;
3863 case RTX_COMPARE:
3864 case RTX_COMM_COMPARE:
3866 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3867 if (cmp_mode == VOIDmode)
3869 cmp_mode = GET_MODE (XEXP (x, 1));
3870 if (cmp_mode == VOIDmode)
3871 cmp_mode = op0_mode;
3873 temp = simplify_relational_operation (code, mode, cmp_mode,
3874 XEXP (x, 0), XEXP (x, 1));
3876 break;
3877 case RTX_COMM_ARITH:
3878 case RTX_BIN_ARITH:
3879 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3880 break;
3881 case RTX_BITFIELD_OPS:
3882 case RTX_TERNARY:
3883 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3884 XEXP (x, 1), XEXP (x, 2));
3885 break;
3886 default:
3887 break;
3890 if (temp)
3892 x = temp;
3893 code = GET_CODE (temp);
3894 op0_mode = VOIDmode;
3895 mode = GET_MODE (temp);
3898 /* First see if we can apply the inverse distributive law. */
3899 if (code == PLUS || code == MINUS
3900 || code == AND || code == IOR || code == XOR)
3902 x = apply_distributive_law (x);
3903 code = GET_CODE (x);
3904 op0_mode = VOIDmode;
3907 /* If CODE is an associative operation not otherwise handled, see if we
3908 can associate some operands. This can win if they are constants or
3909 if they are logically related (i.e. (a & b) & a). */
3910 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3911 || code == AND || code == IOR || code == XOR
3912 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3913 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3914 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3916 if (GET_CODE (XEXP (x, 0)) == code)
3918 rtx other = XEXP (XEXP (x, 0), 0);
3919 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3920 rtx inner_op1 = XEXP (x, 1);
3921 rtx inner;
3923 /* Make sure we pass the constant operand if any as the second
3924 one if this is a commutative operation. */
3925 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
3927 rtx tem = inner_op0;
3928 inner_op0 = inner_op1;
3929 inner_op1 = tem;
3931 inner = simplify_binary_operation (code == MINUS ? PLUS
3932 : code == DIV ? MULT
3933 : code,
3934 mode, inner_op0, inner_op1);
3936 /* For commutative operations, try the other pair if that one
3937 didn't simplify. */
3938 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
3940 other = XEXP (XEXP (x, 0), 1);
3941 inner = simplify_binary_operation (code, mode,
3942 XEXP (XEXP (x, 0), 0),
3943 XEXP (x, 1));
3946 if (inner)
3947 return gen_binary (code, mode, other, inner);
3951 /* A little bit of algebraic simplification here. */
3952 switch (code)
3954 case MEM:
3955 /* Ensure that our address has any ASHIFTs converted to MULT in case
3956 address-recognizing predicates are called later. */
3957 temp = make_compound_operation (XEXP (x, 0), MEM);
3958 SUBST (XEXP (x, 0), temp);
3959 break;
3961 case SUBREG:
3962 if (op0_mode == VOIDmode)
3963 op0_mode = GET_MODE (SUBREG_REG (x));
3965 /* See if this can be moved to simplify_subreg. */
3966 if (CONSTANT_P (SUBREG_REG (x))
3967 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3968 /* Don't call gen_lowpart if the inner mode
3969 is VOIDmode and we cannot simplify it, as SUBREG without
3970 inner mode is invalid. */
3971 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3972 || gen_lowpart_common (mode, SUBREG_REG (x))))
3973 return gen_lowpart (mode, SUBREG_REG (x));
3975 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3976 break;
3978 rtx temp;
3979 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3980 SUBREG_BYTE (x));
3981 if (temp)
3982 return temp;
3985 /* Don't change the mode of the MEM if that would change the meaning
3986 of the address. Similarly, don't allow widening, as that may
3987 access memory outside the defined object or using an address
3988 that is invalid for a wider mode. */
3989 if (MEM_P (SUBREG_REG (x))
3990 && (MEM_VOLATILE_P (SUBREG_REG (x))
3991 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))
3992 || (GET_MODE_SIZE (mode)
3993 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))))
3994 return gen_rtx_CLOBBER (mode, const0_rtx);
3996 /* Note that we cannot do any narrowing for non-constants since
3997 we might have been counting on using the fact that some bits were
3998 zero. We now do this in the SET. */
4000 break;
4002 case NOT:
4003 if (GET_CODE (XEXP (x, 0)) == SUBREG
4004 && subreg_lowpart_p (XEXP (x, 0))
4005 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
4006 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
4007 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
4008 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
4010 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
4012 x = gen_rtx_ROTATE (inner_mode,
4013 simplify_gen_unary (NOT, inner_mode, const1_rtx,
4014 inner_mode),
4015 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
4016 return gen_lowpart (mode, x);
4019 /* Apply De Morgan's laws to reduce number of patterns for machines
4020 with negating logical insns (and-not, nand, etc.). If result has
4021 only one NOT, put it first, since that is how the patterns are
4022 coded. */
4024 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4026 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4027 enum machine_mode op_mode;
4029 op_mode = GET_MODE (in1);
4030 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4032 op_mode = GET_MODE (in2);
4033 if (op_mode == VOIDmode)
4034 op_mode = mode;
4035 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4037 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4039 rtx tem = in2;
4040 in2 = in1; in1 = tem;
4043 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4044 mode, in1, in2);
4046 break;
4048 case NEG:
4049 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4050 if (GET_CODE (XEXP (x, 0)) == XOR
4051 && XEXP (XEXP (x, 0), 1) == const1_rtx
4052 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4053 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4055 temp = expand_compound_operation (XEXP (x, 0));
4057 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4058 replaced by (lshiftrt X C). This will convert
4059 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4061 if (GET_CODE (temp) == ASHIFTRT
4062 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4063 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4064 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4065 INTVAL (XEXP (temp, 1)));
4067 /* If X has only a single bit that might be nonzero, say, bit I, convert
4068 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4069 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4070 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4071 or a SUBREG of one since we'd be making the expression more
4072 complex if it was just a register. */
4074 if (!REG_P (temp)
4075 && ! (GET_CODE (temp) == SUBREG
4076 && REG_P (SUBREG_REG (temp)))
4077 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4079 rtx temp1 = simplify_shift_const
4080 (NULL_RTX, ASHIFTRT, mode,
4081 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4082 GET_MODE_BITSIZE (mode) - 1 - i),
4083 GET_MODE_BITSIZE (mode) - 1 - i);
4085 /* If all we did was surround TEMP with the two shifts, we
4086 haven't improved anything, so don't use it. Otherwise,
4087 we are better off with TEMP1. */
4088 if (GET_CODE (temp1) != ASHIFTRT
4089 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4090 || XEXP (XEXP (temp1, 0), 0) != temp)
4091 return temp1;
4093 break;
4095 case TRUNCATE:
4096 /* We can't handle truncation to a partial integer mode here
4097 because we don't know the real bitsize of the partial
4098 integer mode. */
4099 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4100 break;
4102 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4103 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4104 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4105 SUBST (XEXP (x, 0),
4106 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4107 GET_MODE_MASK (mode), NULL_RTX, 0));
4109 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4110 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4111 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4112 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4113 return XEXP (XEXP (x, 0), 0);
4115 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4116 (OP:SI foo:SI) if OP is NEG or ABS. */
4117 if ((GET_CODE (XEXP (x, 0)) == ABS
4118 || GET_CODE (XEXP (x, 0)) == NEG)
4119 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4120 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4121 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4122 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4123 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4125 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4126 (truncate:SI x). */
4127 if (GET_CODE (XEXP (x, 0)) == SUBREG
4128 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4129 && subreg_lowpart_p (XEXP (x, 0)))
4130 return SUBREG_REG (XEXP (x, 0));
4132 /* If we know that the value is already truncated, we can
4133 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4134 is nonzero for the corresponding modes. But don't do this
4135 for an (LSHIFTRT (MULT ...)) since this will cause problems
4136 with the umulXi3_highpart patterns. */
4137 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4138 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4139 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4140 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4141 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4142 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4143 return gen_lowpart (mode, XEXP (x, 0));
4145 /* A truncate of a comparison can be replaced with a subreg if
4146 STORE_FLAG_VALUE permits. This is like the previous test,
4147 but it works even if the comparison is done in a mode larger
4148 than HOST_BITS_PER_WIDE_INT. */
4149 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4150 && COMPARISON_P (XEXP (x, 0))
4151 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4152 return gen_lowpart (mode, XEXP (x, 0));
4154 /* Similarly, a truncate of a register whose value is a
4155 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4156 permits. */
4157 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4158 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4159 && (temp = get_last_value (XEXP (x, 0)))
4160 && COMPARISON_P (temp))
4161 return gen_lowpart (mode, XEXP (x, 0));
4163 break;
4165 case FLOAT_TRUNCATE:
4166 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4167 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4168 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4169 return XEXP (XEXP (x, 0), 0);
4171 /* (float_truncate:SF (float_truncate:DF foo:XF))
4172 = (float_truncate:SF foo:XF).
4173 This may eliminate double rounding, so it is unsafe.
4175 (float_truncate:SF (float_extend:XF foo:DF))
4176 = (float_truncate:SF foo:DF).
4178 (float_truncate:DF (float_extend:XF foo:SF))
4179 = (float_extend:SF foo:DF). */
4180 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4181 && flag_unsafe_math_optimizations)
4182 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4183 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4184 0)))
4185 > GET_MODE_SIZE (mode)
4186 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4187 mode,
4188 XEXP (XEXP (x, 0), 0), mode);
4190 /* (float_truncate (float x)) is (float x) */
4191 if (GET_CODE (XEXP (x, 0)) == FLOAT
4192 && (flag_unsafe_math_optimizations
4193 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4194 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4195 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4196 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4197 return simplify_gen_unary (FLOAT, mode,
4198 XEXP (XEXP (x, 0), 0),
4199 GET_MODE (XEXP (XEXP (x, 0), 0)));
4201 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4202 (OP:SF foo:SF) if OP is NEG or ABS. */
4203 if ((GET_CODE (XEXP (x, 0)) == ABS
4204 || GET_CODE (XEXP (x, 0)) == NEG)
4205 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4206 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4207 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4208 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4210 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4211 is (float_truncate:SF x). */
4212 if (GET_CODE (XEXP (x, 0)) == SUBREG
4213 && subreg_lowpart_p (XEXP (x, 0))
4214 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4215 return SUBREG_REG (XEXP (x, 0));
4216 break;
4217 case FLOAT_EXTEND:
4218 /* (float_extend (float_extend x)) is (float_extend x)
4220 (float_extend (float x)) is (float x) assuming that double
4221 rounding can't happen.
4223 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4224 || (GET_CODE (XEXP (x, 0)) == FLOAT
4225 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4226 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4227 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4228 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4229 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4230 XEXP (XEXP (x, 0), 0),
4231 GET_MODE (XEXP (XEXP (x, 0), 0)));
4233 break;
4234 #ifdef HAVE_cc0
4235 case COMPARE:
4236 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4237 using cc0, in which case we want to leave it as a COMPARE
4238 so we can distinguish it from a register-register-copy. */
4239 if (XEXP (x, 1) == const0_rtx)
4240 return XEXP (x, 0);
4242 /* x - 0 is the same as x unless x's mode has signed zeros and
4243 allows rounding towards -infinity. Under those conditions,
4244 0 - 0 is -0. */
4245 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4246 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4247 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4248 return XEXP (x, 0);
4249 break;
4250 #endif
4252 case CONST:
4253 /* (const (const X)) can become (const X). Do it this way rather than
4254 returning the inner CONST since CONST can be shared with a
4255 REG_EQUAL note. */
4256 if (GET_CODE (XEXP (x, 0)) == CONST)
4257 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4258 break;
4260 #ifdef HAVE_lo_sum
4261 case LO_SUM:
4262 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4263 can add in an offset. find_split_point will split this address up
4264 again if it doesn't match. */
4265 if (GET_CODE (XEXP (x, 0)) == HIGH
4266 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4267 return XEXP (x, 1);
4268 break;
4269 #endif
4271 case PLUS:
4272 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4274 if (GET_CODE (XEXP (x, 0)) == MULT
4275 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4277 rtx in1, in2;
4279 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4280 in2 = XEXP (XEXP (x, 0), 1);
4281 return gen_binary (MINUS, mode, XEXP (x, 1),
4282 gen_binary (MULT, mode, in1, in2));
4285 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4286 outermost. That's because that's the way indexed addresses are
4287 supposed to appear. This code used to check many more cases, but
4288 they are now checked elsewhere. */
4289 if (GET_CODE (XEXP (x, 0)) == PLUS
4290 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4291 return gen_binary (PLUS, mode,
4292 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4293 XEXP (x, 1)),
4294 XEXP (XEXP (x, 0), 1));
4296 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4297 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4298 bit-field and can be replaced by either a sign_extend or a
4299 sign_extract. The `and' may be a zero_extend and the two
4300 <c>, -<c> constants may be reversed. */
4301 if (GET_CODE (XEXP (x, 0)) == XOR
4302 && GET_CODE (XEXP (x, 1)) == CONST_INT
4303 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4304 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4305 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4306 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4307 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4308 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4309 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4310 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4311 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4312 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4313 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4314 == (unsigned int) i + 1))))
4315 return simplify_shift_const
4316 (NULL_RTX, ASHIFTRT, mode,
4317 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4318 XEXP (XEXP (XEXP (x, 0), 0), 0),
4319 GET_MODE_BITSIZE (mode) - (i + 1)),
4320 GET_MODE_BITSIZE (mode) - (i + 1));
4322 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4323 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4324 is 1. This produces better code than the alternative immediately
4325 below. */
4326 if (COMPARISON_P (XEXP (x, 0))
4327 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4328 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4329 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4330 XEXP (XEXP (x, 0), 0),
4331 XEXP (XEXP (x, 0), 1))))
4332 return
4333 simplify_gen_unary (NEG, mode, reversed, mode);
4335 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4336 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4337 the bitsize of the mode - 1. This allows simplification of
4338 "a = (b & 8) == 0;" */
4339 if (XEXP (x, 1) == constm1_rtx
4340 && !REG_P (XEXP (x, 0))
4341 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4342 && REG_P (SUBREG_REG (XEXP (x, 0))))
4343 && nonzero_bits (XEXP (x, 0), mode) == 1)
4344 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4345 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4346 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4347 GET_MODE_BITSIZE (mode) - 1),
4348 GET_MODE_BITSIZE (mode) - 1);
4350 /* If we are adding two things that have no bits in common, convert
4351 the addition into an IOR. This will often be further simplified,
4352 for example in cases like ((a & 1) + (a & 2)), which can
4353 become a & 3. */
4355 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4356 && (nonzero_bits (XEXP (x, 0), mode)
4357 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4359 /* Try to simplify the expression further. */
4360 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4361 temp = combine_simplify_rtx (tor, mode, in_dest);
4363 /* If we could, great. If not, do not go ahead with the IOR
4364 replacement, since PLUS appears in many special purpose
4365 address arithmetic instructions. */
4366 if (GET_CODE (temp) != CLOBBER && temp != tor)
4367 return temp;
4369 break;
4371 case MINUS:
4372 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4373 by reversing the comparison code if valid. */
4374 if (STORE_FLAG_VALUE == 1
4375 && XEXP (x, 0) == const1_rtx
4376 && COMPARISON_P (XEXP (x, 1))
4377 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4378 XEXP (XEXP (x, 1), 0),
4379 XEXP (XEXP (x, 1), 1))))
4380 return reversed;
4382 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4383 (and <foo> (const_int pow2-1)) */
4384 if (GET_CODE (XEXP (x, 1)) == AND
4385 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4386 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4387 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4388 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4389 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4391 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4393 if (GET_CODE (XEXP (x, 1)) == MULT
4394 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4396 rtx in1, in2;
4398 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4399 in2 = XEXP (XEXP (x, 1), 1);
4400 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4401 XEXP (x, 0));
4404 /* Canonicalize (minus (neg A) (mult B C)) to
4405 (minus (mult (neg B) C) A). */
4406 if (GET_CODE (XEXP (x, 1)) == MULT
4407 && GET_CODE (XEXP (x, 0)) == NEG)
4409 rtx in1, in2;
4411 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4412 in2 = XEXP (XEXP (x, 1), 1);
4413 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4414 XEXP (XEXP (x, 0), 0));
4417 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4418 integers. */
4419 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4420 return gen_binary (MINUS, mode,
4421 gen_binary (MINUS, mode, XEXP (x, 0),
4422 XEXP (XEXP (x, 1), 0)),
4423 XEXP (XEXP (x, 1), 1));
4424 break;
4426 case MULT:
4427 /* If we have (mult (plus A B) C), apply the distributive law and then
4428 the inverse distributive law to see if things simplify. This
4429 occurs mostly in addresses, often when unrolling loops. */
4431 if (GET_CODE (XEXP (x, 0)) == PLUS)
4433 x = apply_distributive_law
4434 (gen_binary (PLUS, mode,
4435 gen_binary (MULT, mode,
4436 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4437 gen_binary (MULT, mode,
4438 XEXP (XEXP (x, 0), 1),
4439 copy_rtx (XEXP (x, 1)))));
4441 if (GET_CODE (x) != MULT)
4442 return x;
4444 /* Try simplify a*(b/c) as (a*b)/c. */
4445 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4446 && GET_CODE (XEXP (x, 0)) == DIV)
4448 rtx tem = simplify_binary_operation (MULT, mode,
4449 XEXP (XEXP (x, 0), 0),
4450 XEXP (x, 1));
4451 if (tem)
4452 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4454 break;
4456 case UDIV:
4457 /* If this is a divide by a power of two, treat it as a shift if
4458 its first operand is a shift. */
4459 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4460 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4461 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4462 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4463 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4464 || GET_CODE (XEXP (x, 0)) == ROTATE
4465 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4466 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4467 break;
4469 case EQ: case NE:
4470 case GT: case GTU: case GE: case GEU:
4471 case LT: case LTU: case LE: case LEU:
4472 case UNEQ: case LTGT:
4473 case UNGT: case UNGE:
4474 case UNLT: case UNLE:
4475 case UNORDERED: case ORDERED:
4476 /* If the first operand is a condition code, we can't do anything
4477 with it. */
4478 if (GET_CODE (XEXP (x, 0)) == COMPARE
4479 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4480 && ! CC0_P (XEXP (x, 0))))
4482 rtx op0 = XEXP (x, 0);
4483 rtx op1 = XEXP (x, 1);
4484 enum rtx_code new_code;
4486 if (GET_CODE (op0) == COMPARE)
4487 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4489 /* Simplify our comparison, if possible. */
4490 new_code = simplify_comparison (code, &op0, &op1);
4492 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4493 if only the low-order bit is possibly nonzero in X (such as when
4494 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4495 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4496 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4497 (plus X 1).
4499 Remove any ZERO_EXTRACT we made when thinking this was a
4500 comparison. It may now be simpler to use, e.g., an AND. If a
4501 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4502 the call to make_compound_operation in the SET case. */
4504 if (STORE_FLAG_VALUE == 1
4505 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4506 && op1 == const0_rtx
4507 && mode == GET_MODE (op0)
4508 && nonzero_bits (op0, mode) == 1)
4509 return gen_lowpart (mode,
4510 expand_compound_operation (op0));
4512 else if (STORE_FLAG_VALUE == 1
4513 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4514 && op1 == const0_rtx
4515 && mode == GET_MODE (op0)
4516 && (num_sign_bit_copies (op0, mode)
4517 == GET_MODE_BITSIZE (mode)))
4519 op0 = expand_compound_operation (op0);
4520 return simplify_gen_unary (NEG, mode,
4521 gen_lowpart (mode, op0),
4522 mode);
4525 else if (STORE_FLAG_VALUE == 1
4526 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4527 && op1 == const0_rtx
4528 && mode == GET_MODE (op0)
4529 && nonzero_bits (op0, mode) == 1)
4531 op0 = expand_compound_operation (op0);
4532 return gen_binary (XOR, mode,
4533 gen_lowpart (mode, op0),
4534 const1_rtx);
4537 else if (STORE_FLAG_VALUE == 1
4538 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4539 && op1 == const0_rtx
4540 && mode == GET_MODE (op0)
4541 && (num_sign_bit_copies (op0, mode)
4542 == GET_MODE_BITSIZE (mode)))
4544 op0 = expand_compound_operation (op0);
4545 return plus_constant (gen_lowpart (mode, op0), 1);
4548 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4549 those above. */
4550 if (STORE_FLAG_VALUE == -1
4551 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4552 && op1 == const0_rtx
4553 && (num_sign_bit_copies (op0, mode)
4554 == GET_MODE_BITSIZE (mode)))
4555 return gen_lowpart (mode,
4556 expand_compound_operation (op0));
4558 else if (STORE_FLAG_VALUE == -1
4559 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4560 && op1 == const0_rtx
4561 && mode == GET_MODE (op0)
4562 && nonzero_bits (op0, mode) == 1)
4564 op0 = expand_compound_operation (op0);
4565 return simplify_gen_unary (NEG, mode,
4566 gen_lowpart (mode, op0),
4567 mode);
4570 else if (STORE_FLAG_VALUE == -1
4571 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4572 && op1 == const0_rtx
4573 && mode == GET_MODE (op0)
4574 && (num_sign_bit_copies (op0, mode)
4575 == GET_MODE_BITSIZE (mode)))
4577 op0 = expand_compound_operation (op0);
4578 return simplify_gen_unary (NOT, mode,
4579 gen_lowpart (mode, op0),
4580 mode);
4583 /* If X is 0/1, (eq X 0) is X-1. */
4584 else if (STORE_FLAG_VALUE == -1
4585 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4586 && op1 == const0_rtx
4587 && mode == GET_MODE (op0)
4588 && nonzero_bits (op0, mode) == 1)
4590 op0 = expand_compound_operation (op0);
4591 return plus_constant (gen_lowpart (mode, op0), -1);
4594 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4595 one bit that might be nonzero, we can convert (ne x 0) to
4596 (ashift x c) where C puts the bit in the sign bit. Remove any
4597 AND with STORE_FLAG_VALUE when we are done, since we are only
4598 going to test the sign bit. */
4599 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4600 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4601 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4602 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4603 && op1 == const0_rtx
4604 && mode == GET_MODE (op0)
4605 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4607 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4608 expand_compound_operation (op0),
4609 GET_MODE_BITSIZE (mode) - 1 - i);
4610 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4611 return XEXP (x, 0);
4612 else
4613 return x;
4616 /* If the code changed, return a whole new comparison. */
4617 if (new_code != code)
4618 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4620 /* Otherwise, keep this operation, but maybe change its operands.
4621 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4622 SUBST (XEXP (x, 0), op0);
4623 SUBST (XEXP (x, 1), op1);
4625 break;
4627 case IF_THEN_ELSE:
4628 return simplify_if_then_else (x);
4630 case ZERO_EXTRACT:
4631 case SIGN_EXTRACT:
4632 case ZERO_EXTEND:
4633 case SIGN_EXTEND:
4634 /* If we are processing SET_DEST, we are done. */
4635 if (in_dest)
4636 return x;
4638 return expand_compound_operation (x);
4640 case SET:
4641 return simplify_set (x);
4643 case AND:
4644 case IOR:
4645 case XOR:
4646 return simplify_logical (x);
4648 case ABS:
4649 /* (abs (neg <foo>)) -> (abs <foo>) */
4650 if (GET_CODE (XEXP (x, 0)) == NEG)
4651 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4653 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4654 do nothing. */
4655 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4656 break;
4658 /* If operand is something known to be positive, ignore the ABS. */
4659 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4660 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4661 <= HOST_BITS_PER_WIDE_INT)
4662 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4663 & ((HOST_WIDE_INT) 1
4664 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4665 == 0)))
4666 return XEXP (x, 0);
4668 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4669 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4670 return gen_rtx_NEG (mode, XEXP (x, 0));
4672 break;
4674 case FFS:
4675 /* (ffs (*_extend <X>)) = (ffs <X>) */
4676 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4677 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4678 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4679 break;
4681 case POPCOUNT:
4682 case PARITY:
4683 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4684 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4685 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4686 break;
4688 case FLOAT:
4689 /* (float (sign_extend <X>)) = (float <X>). */
4690 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4691 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4692 break;
4694 case ASHIFT:
4695 case LSHIFTRT:
4696 case ASHIFTRT:
4697 case ROTATE:
4698 case ROTATERT:
4699 /* If this is a shift by a constant amount, simplify it. */
4700 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4701 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4702 INTVAL (XEXP (x, 1)));
4704 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4705 SUBST (XEXP (x, 1),
4706 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4707 ((HOST_WIDE_INT) 1
4708 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4709 - 1,
4710 NULL_RTX, 0));
4711 break;
4713 case VEC_SELECT:
4715 rtx op0 = XEXP (x, 0);
4716 rtx op1 = XEXP (x, 1);
4717 int len;
4719 gcc_assert (GET_CODE (op1) == PARALLEL);
4720 len = XVECLEN (op1, 0);
4721 if (len == 1
4722 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4723 && GET_CODE (op0) == VEC_CONCAT)
4725 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4727 /* Try to find the element in the VEC_CONCAT. */
4728 for (;;)
4730 if (GET_MODE (op0) == GET_MODE (x))
4731 return op0;
4732 if (GET_CODE (op0) == VEC_CONCAT)
4734 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4735 if (op0_size < offset)
4736 op0 = XEXP (op0, 0);
4737 else
4739 offset -= op0_size;
4740 op0 = XEXP (op0, 1);
4743 else
4744 break;
4749 break;
4751 default:
4752 break;
4755 return x;
4758 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4760 static rtx
4761 simplify_if_then_else (rtx x)
4763 enum machine_mode mode = GET_MODE (x);
4764 rtx cond = XEXP (x, 0);
4765 rtx true_rtx = XEXP (x, 1);
4766 rtx false_rtx = XEXP (x, 2);
4767 enum rtx_code true_code = GET_CODE (cond);
4768 int comparison_p = COMPARISON_P (cond);
4769 rtx temp;
4770 int i;
4771 enum rtx_code false_code;
4772 rtx reversed;
4774 /* Simplify storing of the truth value. */
4775 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4776 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4778 /* Also when the truth value has to be reversed. */
4779 if (comparison_p
4780 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4781 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4782 XEXP (cond, 1))))
4783 return reversed;
4785 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4786 in it is being compared against certain values. Get the true and false
4787 comparisons and see if that says anything about the value of each arm. */
4789 if (comparison_p
4790 && ((false_code = combine_reversed_comparison_code (cond))
4791 != UNKNOWN)
4792 && REG_P (XEXP (cond, 0)))
4794 HOST_WIDE_INT nzb;
4795 rtx from = XEXP (cond, 0);
4796 rtx true_val = XEXP (cond, 1);
4797 rtx false_val = true_val;
4798 int swapped = 0;
4800 /* If FALSE_CODE is EQ, swap the codes and arms. */
4802 if (false_code == EQ)
4804 swapped = 1, true_code = EQ, false_code = NE;
4805 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4808 /* If we are comparing against zero and the expression being tested has
4809 only a single bit that might be nonzero, that is its value when it is
4810 not equal to zero. Similarly if it is known to be -1 or 0. */
4812 if (true_code == EQ && true_val == const0_rtx
4813 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4814 false_code = EQ, false_val = GEN_INT (nzb);
4815 else if (true_code == EQ && true_val == const0_rtx
4816 && (num_sign_bit_copies (from, GET_MODE (from))
4817 == GET_MODE_BITSIZE (GET_MODE (from))))
4818 false_code = EQ, false_val = constm1_rtx;
4820 /* Now simplify an arm if we know the value of the register in the
4821 branch and it is used in the arm. Be careful due to the potential
4822 of locally-shared RTL. */
4824 if (reg_mentioned_p (from, true_rtx))
4825 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4826 from, true_val),
4827 pc_rtx, pc_rtx, 0, 0);
4828 if (reg_mentioned_p (from, false_rtx))
4829 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4830 from, false_val),
4831 pc_rtx, pc_rtx, 0, 0);
4833 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4834 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4836 true_rtx = XEXP (x, 1);
4837 false_rtx = XEXP (x, 2);
4838 true_code = GET_CODE (cond);
4841 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4842 reversed, do so to avoid needing two sets of patterns for
4843 subtract-and-branch insns. Similarly if we have a constant in the true
4844 arm, the false arm is the same as the first operand of the comparison, or
4845 the false arm is more complicated than the true arm. */
4847 if (comparison_p
4848 && combine_reversed_comparison_code (cond) != UNKNOWN
4849 && (true_rtx == pc_rtx
4850 || (CONSTANT_P (true_rtx)
4851 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4852 || true_rtx == const0_rtx
4853 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4854 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4855 && !OBJECT_P (false_rtx))
4856 || reg_mentioned_p (true_rtx, false_rtx)
4857 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4859 true_code = reversed_comparison_code (cond, NULL);
4860 SUBST (XEXP (x, 0),
4861 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4862 XEXP (cond, 1)));
4864 SUBST (XEXP (x, 1), false_rtx);
4865 SUBST (XEXP (x, 2), true_rtx);
4867 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4868 cond = XEXP (x, 0);
4870 /* It is possible that the conditional has been simplified out. */
4871 true_code = GET_CODE (cond);
4872 comparison_p = COMPARISON_P (cond);
4875 /* If the two arms are identical, we don't need the comparison. */
4877 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4878 return true_rtx;
4880 /* Convert a == b ? b : a to "a". */
4881 if (true_code == EQ && ! side_effects_p (cond)
4882 && !HONOR_NANS (mode)
4883 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4884 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4885 return false_rtx;
4886 else if (true_code == NE && ! side_effects_p (cond)
4887 && !HONOR_NANS (mode)
4888 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4889 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4890 return true_rtx;
4892 /* Look for cases where we have (abs x) or (neg (abs X)). */
4894 if (GET_MODE_CLASS (mode) == MODE_INT
4895 && GET_CODE (false_rtx) == NEG
4896 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4897 && comparison_p
4898 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4899 && ! side_effects_p (true_rtx))
4900 switch (true_code)
4902 case GT:
4903 case GE:
4904 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4905 case LT:
4906 case LE:
4907 return
4908 simplify_gen_unary (NEG, mode,
4909 simplify_gen_unary (ABS, mode, true_rtx, mode),
4910 mode);
4911 default:
4912 break;
4915 /* Look for MIN or MAX. */
4917 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4918 && comparison_p
4919 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4920 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4921 && ! side_effects_p (cond))
4922 switch (true_code)
4924 case GE:
4925 case GT:
4926 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4927 case LE:
4928 case LT:
4929 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4930 case GEU:
4931 case GTU:
4932 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4933 case LEU:
4934 case LTU:
4935 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4936 default:
4937 break;
4940 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4941 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4942 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4943 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4944 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4945 neither 1 or -1, but it isn't worth checking for. */
4947 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4948 && comparison_p
4949 && GET_MODE_CLASS (mode) == MODE_INT
4950 && ! side_effects_p (x))
4952 rtx t = make_compound_operation (true_rtx, SET);
4953 rtx f = make_compound_operation (false_rtx, SET);
4954 rtx cond_op0 = XEXP (cond, 0);
4955 rtx cond_op1 = XEXP (cond, 1);
4956 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
4957 enum machine_mode m = mode;
4958 rtx z = 0, c1 = NULL_RTX;
4960 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4961 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4962 || GET_CODE (t) == ASHIFT
4963 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4964 && rtx_equal_p (XEXP (t, 0), f))
4965 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4967 /* If an identity-zero op is commutative, check whether there
4968 would be a match if we swapped the operands. */
4969 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4970 || GET_CODE (t) == XOR)
4971 && rtx_equal_p (XEXP (t, 1), f))
4972 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4973 else if (GET_CODE (t) == SIGN_EXTEND
4974 && (GET_CODE (XEXP (t, 0)) == PLUS
4975 || GET_CODE (XEXP (t, 0)) == MINUS
4976 || GET_CODE (XEXP (t, 0)) == IOR
4977 || GET_CODE (XEXP (t, 0)) == XOR
4978 || GET_CODE (XEXP (t, 0)) == ASHIFT
4979 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4980 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4981 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4982 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4983 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4984 && (num_sign_bit_copies (f, GET_MODE (f))
4985 > (unsigned int)
4986 (GET_MODE_BITSIZE (mode)
4987 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4989 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4990 extend_op = SIGN_EXTEND;
4991 m = GET_MODE (XEXP (t, 0));
4993 else if (GET_CODE (t) == SIGN_EXTEND
4994 && (GET_CODE (XEXP (t, 0)) == PLUS
4995 || GET_CODE (XEXP (t, 0)) == IOR
4996 || GET_CODE (XEXP (t, 0)) == XOR)
4997 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4998 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4999 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5000 && (num_sign_bit_copies (f, GET_MODE (f))
5001 > (unsigned int)
5002 (GET_MODE_BITSIZE (mode)
5003 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5005 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5006 extend_op = SIGN_EXTEND;
5007 m = GET_MODE (XEXP (t, 0));
5009 else if (GET_CODE (t) == ZERO_EXTEND
5010 && (GET_CODE (XEXP (t, 0)) == PLUS
5011 || GET_CODE (XEXP (t, 0)) == MINUS
5012 || GET_CODE (XEXP (t, 0)) == IOR
5013 || GET_CODE (XEXP (t, 0)) == XOR
5014 || GET_CODE (XEXP (t, 0)) == ASHIFT
5015 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5016 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5017 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5018 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5019 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5020 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5021 && ((nonzero_bits (f, GET_MODE (f))
5022 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5023 == 0))
5025 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5026 extend_op = ZERO_EXTEND;
5027 m = GET_MODE (XEXP (t, 0));
5029 else if (GET_CODE (t) == ZERO_EXTEND
5030 && (GET_CODE (XEXP (t, 0)) == PLUS
5031 || GET_CODE (XEXP (t, 0)) == IOR
5032 || GET_CODE (XEXP (t, 0)) == XOR)
5033 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5034 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5035 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5036 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5037 && ((nonzero_bits (f, GET_MODE (f))
5038 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5039 == 0))
5041 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5042 extend_op = ZERO_EXTEND;
5043 m = GET_MODE (XEXP (t, 0));
5046 if (z)
5048 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
5049 pc_rtx, pc_rtx, 0, 0);
5050 temp = gen_binary (MULT, m, temp,
5051 gen_binary (MULT, m, c1, const_true_rtx));
5052 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5053 temp = gen_binary (op, m, gen_lowpart (m, z), temp);
5055 if (extend_op != UNKNOWN)
5056 temp = simplify_gen_unary (extend_op, mode, temp, m);
5058 return temp;
5062 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5063 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5064 negation of a single bit, we can convert this operation to a shift. We
5065 can actually do this more generally, but it doesn't seem worth it. */
5067 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5068 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5069 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5070 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5071 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5072 == GET_MODE_BITSIZE (mode))
5073 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5074 return
5075 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5076 gen_lowpart (mode, XEXP (cond, 0)), i);
5078 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5079 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5080 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5081 && GET_MODE (XEXP (cond, 0)) == mode
5082 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5083 == nonzero_bits (XEXP (cond, 0), mode)
5084 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5085 return XEXP (cond, 0);
5087 return x;
5090 /* Simplify X, a SET expression. Return the new expression. */
5092 static rtx
5093 simplify_set (rtx x)
5095 rtx src = SET_SRC (x);
5096 rtx dest = SET_DEST (x);
5097 enum machine_mode mode
5098 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5099 rtx other_insn;
5100 rtx *cc_use;
5102 /* (set (pc) (return)) gets written as (return). */
5103 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5104 return src;
5106 /* Now that we know for sure which bits of SRC we are using, see if we can
5107 simplify the expression for the object knowing that we only need the
5108 low-order bits. */
5110 if (GET_MODE_CLASS (mode) == MODE_INT
5111 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5113 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5114 SUBST (SET_SRC (x), src);
5117 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5118 the comparison result and try to simplify it unless we already have used
5119 undobuf.other_insn. */
5120 if ((GET_MODE_CLASS (mode) == MODE_CC
5121 || GET_CODE (src) == COMPARE
5122 || CC0_P (dest))
5123 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5124 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5125 && COMPARISON_P (*cc_use)
5126 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5128 enum rtx_code old_code = GET_CODE (*cc_use);
5129 enum rtx_code new_code;
5130 rtx op0, op1, tmp;
5131 int other_changed = 0;
5132 enum machine_mode compare_mode = GET_MODE (dest);
5134 if (GET_CODE (src) == COMPARE)
5135 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5136 else
5137 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5139 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5140 op0, op1);
5141 if (!tmp)
5142 new_code = old_code;
5143 else if (!CONSTANT_P (tmp))
5145 new_code = GET_CODE (tmp);
5146 op0 = XEXP (tmp, 0);
5147 op1 = XEXP (tmp, 1);
5149 else
5151 rtx pat = PATTERN (other_insn);
5152 undobuf.other_insn = other_insn;
5153 SUBST (*cc_use, tmp);
5155 /* Attempt to simplify CC user. */
5156 if (GET_CODE (pat) == SET)
5158 rtx new = simplify_rtx (SET_SRC (pat));
5159 if (new != NULL_RTX)
5160 SUBST (SET_SRC (pat), new);
5163 /* Convert X into a no-op move. */
5164 SUBST (SET_DEST (x), pc_rtx);
5165 SUBST (SET_SRC (x), pc_rtx);
5166 return x;
5169 /* Simplify our comparison, if possible. */
5170 new_code = simplify_comparison (new_code, &op0, &op1);
5172 #ifdef SELECT_CC_MODE
5173 /* If this machine has CC modes other than CCmode, check to see if we
5174 need to use a different CC mode here. */
5175 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5176 compare_mode = GET_MODE (op0);
5177 else
5178 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5180 #ifndef HAVE_cc0
5181 /* If the mode changed, we have to change SET_DEST, the mode in the
5182 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5183 a hard register, just build new versions with the proper mode. If it
5184 is a pseudo, we lose unless it is only time we set the pseudo, in
5185 which case we can safely change its mode. */
5186 if (compare_mode != GET_MODE (dest))
5188 unsigned int regno = REGNO (dest);
5189 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5191 if (regno < FIRST_PSEUDO_REGISTER
5192 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5194 if (regno >= FIRST_PSEUDO_REGISTER)
5195 SUBST (regno_reg_rtx[regno], new_dest);
5197 SUBST (SET_DEST (x), new_dest);
5198 SUBST (XEXP (*cc_use, 0), new_dest);
5199 other_changed = 1;
5201 dest = new_dest;
5204 #endif /* cc0 */
5205 #endif /* SELECT_CC_MODE */
5207 /* If the code changed, we have to build a new comparison in
5208 undobuf.other_insn. */
5209 if (new_code != old_code)
5211 int other_changed_previously = other_changed;
5212 unsigned HOST_WIDE_INT mask;
5214 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5215 dest, const0_rtx));
5216 other_changed = 1;
5218 /* If the only change we made was to change an EQ into an NE or
5219 vice versa, OP0 has only one bit that might be nonzero, and OP1
5220 is zero, check if changing the user of the condition code will
5221 produce a valid insn. If it won't, we can keep the original code
5222 in that insn by surrounding our operation with an XOR. */
5224 if (((old_code == NE && new_code == EQ)
5225 || (old_code == EQ && new_code == NE))
5226 && ! other_changed_previously && op1 == const0_rtx
5227 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5228 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5230 rtx pat = PATTERN (other_insn), note = 0;
5232 if ((recog_for_combine (&pat, other_insn, &note) < 0
5233 && ! check_asm_operands (pat)))
5235 PUT_CODE (*cc_use, old_code);
5236 other_changed = 0;
5238 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5243 if (other_changed)
5244 undobuf.other_insn = other_insn;
5246 #ifdef HAVE_cc0
5247 /* If we are now comparing against zero, change our source if
5248 needed. If we do not use cc0, we always have a COMPARE. */
5249 if (op1 == const0_rtx && dest == cc0_rtx)
5251 SUBST (SET_SRC (x), op0);
5252 src = op0;
5254 else
5255 #endif
5257 /* Otherwise, if we didn't previously have a COMPARE in the
5258 correct mode, we need one. */
5259 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5261 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5262 src = SET_SRC (x);
5264 else
5266 /* Otherwise, update the COMPARE if needed. */
5267 SUBST (XEXP (src, 0), op0);
5268 SUBST (XEXP (src, 1), op1);
5271 else
5273 /* Get SET_SRC in a form where we have placed back any
5274 compound expressions. Then do the checks below. */
5275 src = make_compound_operation (src, SET);
5276 SUBST (SET_SRC (x), src);
5279 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5280 and X being a REG or (subreg (reg)), we may be able to convert this to
5281 (set (subreg:m2 x) (op)).
5283 We can always do this if M1 is narrower than M2 because that means that
5284 we only care about the low bits of the result.
5286 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5287 perform a narrower operation than requested since the high-order bits will
5288 be undefined. On machine where it is defined, this transformation is safe
5289 as long as M1 and M2 have the same number of words. */
5291 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5292 && !OBJECT_P (SUBREG_REG (src))
5293 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5294 / UNITS_PER_WORD)
5295 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5296 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5297 #ifndef WORD_REGISTER_OPERATIONS
5298 && (GET_MODE_SIZE (GET_MODE (src))
5299 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5300 #endif
5301 #ifdef CANNOT_CHANGE_MODE_CLASS
5302 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5303 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5304 GET_MODE (SUBREG_REG (src)),
5305 GET_MODE (src)))
5306 #endif
5307 && (REG_P (dest)
5308 || (GET_CODE (dest) == SUBREG
5309 && REG_P (SUBREG_REG (dest)))))
5311 SUBST (SET_DEST (x),
5312 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5313 dest));
5314 SUBST (SET_SRC (x), SUBREG_REG (src));
5316 src = SET_SRC (x), dest = SET_DEST (x);
5319 #ifdef HAVE_cc0
5320 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5321 in SRC. */
5322 if (dest == cc0_rtx
5323 && GET_CODE (src) == SUBREG
5324 && subreg_lowpart_p (src)
5325 && (GET_MODE_BITSIZE (GET_MODE (src))
5326 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5328 rtx inner = SUBREG_REG (src);
5329 enum machine_mode inner_mode = GET_MODE (inner);
5331 /* Here we make sure that we don't have a sign bit on. */
5332 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5333 && (nonzero_bits (inner, inner_mode)
5334 < ((unsigned HOST_WIDE_INT) 1
5335 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5337 SUBST (SET_SRC (x), inner);
5338 src = SET_SRC (x);
5341 #endif
5343 #ifdef LOAD_EXTEND_OP
5344 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5345 would require a paradoxical subreg. Replace the subreg with a
5346 zero_extend to avoid the reload that would otherwise be required. */
5348 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5349 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5350 && SUBREG_BYTE (src) == 0
5351 && (GET_MODE_SIZE (GET_MODE (src))
5352 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5353 && MEM_P (SUBREG_REG (src)))
5355 SUBST (SET_SRC (x),
5356 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5357 GET_MODE (src), SUBREG_REG (src)));
5359 src = SET_SRC (x);
5361 #endif
5363 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5364 are comparing an item known to be 0 or -1 against 0, use a logical
5365 operation instead. Check for one of the arms being an IOR of the other
5366 arm with some value. We compute three terms to be IOR'ed together. In
5367 practice, at most two will be nonzero. Then we do the IOR's. */
5369 if (GET_CODE (dest) != PC
5370 && GET_CODE (src) == IF_THEN_ELSE
5371 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5372 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5373 && XEXP (XEXP (src, 0), 1) == const0_rtx
5374 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5375 #ifdef HAVE_conditional_move
5376 && ! can_conditionally_move_p (GET_MODE (src))
5377 #endif
5378 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5379 GET_MODE (XEXP (XEXP (src, 0), 0)))
5380 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5381 && ! side_effects_p (src))
5383 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5384 ? XEXP (src, 1) : XEXP (src, 2));
5385 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5386 ? XEXP (src, 2) : XEXP (src, 1));
5387 rtx term1 = const0_rtx, term2, term3;
5389 if (GET_CODE (true_rtx) == IOR
5390 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5391 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5392 else if (GET_CODE (true_rtx) == IOR
5393 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5394 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5395 else if (GET_CODE (false_rtx) == IOR
5396 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5397 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5398 else if (GET_CODE (false_rtx) == IOR
5399 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5400 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5402 term2 = gen_binary (AND, GET_MODE (src),
5403 XEXP (XEXP (src, 0), 0), true_rtx);
5404 term3 = gen_binary (AND, GET_MODE (src),
5405 simplify_gen_unary (NOT, GET_MODE (src),
5406 XEXP (XEXP (src, 0), 0),
5407 GET_MODE (src)),
5408 false_rtx);
5410 SUBST (SET_SRC (x),
5411 gen_binary (IOR, GET_MODE (src),
5412 gen_binary (IOR, GET_MODE (src), term1, term2),
5413 term3));
5415 src = SET_SRC (x);
5418 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5419 whole thing fail. */
5420 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5421 return src;
5422 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5423 return dest;
5424 else
5425 /* Convert this into a field assignment operation, if possible. */
5426 return make_field_assignment (x);
5429 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5430 result. */
5432 static rtx
5433 simplify_logical (rtx x)
5435 enum machine_mode mode = GET_MODE (x);
5436 rtx op0 = XEXP (x, 0);
5437 rtx op1 = XEXP (x, 1);
5438 rtx reversed;
5440 switch (GET_CODE (x))
5442 case AND:
5443 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5444 insn (and may simplify more). */
5445 if (GET_CODE (op0) == XOR
5446 && rtx_equal_p (XEXP (op0, 0), op1)
5447 && ! side_effects_p (op1))
5448 x = gen_binary (AND, mode,
5449 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5450 op1);
5452 if (GET_CODE (op0) == XOR
5453 && rtx_equal_p (XEXP (op0, 1), op1)
5454 && ! side_effects_p (op1))
5455 x = gen_binary (AND, mode,
5456 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5457 op1);
5459 /* Similarly for (~(A ^ B)) & A. */
5460 if (GET_CODE (op0) == NOT
5461 && GET_CODE (XEXP (op0, 0)) == XOR
5462 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5463 && ! side_effects_p (op1))
5464 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5466 if (GET_CODE (op0) == NOT
5467 && GET_CODE (XEXP (op0, 0)) == XOR
5468 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5469 && ! side_effects_p (op1))
5470 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5472 /* We can call simplify_and_const_int only if we don't lose
5473 any (sign) bits when converting INTVAL (op1) to
5474 "unsigned HOST_WIDE_INT". */
5475 if (GET_CODE (op1) == CONST_INT
5476 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5477 || INTVAL (op1) > 0))
5479 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5481 /* If we have (ior (and (X C1) C2)) and the next restart would be
5482 the last, simplify this by making C1 as small as possible
5483 and then exit. Only do this if C1 actually changes: for now
5484 this only saves memory but, should this transformation be
5485 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5486 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5487 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5488 && GET_CODE (op1) == CONST_INT
5489 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5490 return gen_binary (IOR, mode,
5491 gen_binary (AND, mode, XEXP (op0, 0),
5492 GEN_INT (INTVAL (XEXP (op0, 1))
5493 & ~INTVAL (op1))), op1);
5495 if (GET_CODE (x) != AND)
5496 return x;
5498 op0 = XEXP (x, 0);
5499 op1 = XEXP (x, 1);
5502 /* Convert (A | B) & A to A. */
5503 if (GET_CODE (op0) == IOR
5504 && (rtx_equal_p (XEXP (op0, 0), op1)
5505 || rtx_equal_p (XEXP (op0, 1), op1))
5506 && ! side_effects_p (XEXP (op0, 0))
5507 && ! side_effects_p (XEXP (op0, 1)))
5508 return op1;
5510 /* In the following group of tests (and those in case IOR below),
5511 we start with some combination of logical operations and apply
5512 the distributive law followed by the inverse distributive law.
5513 Most of the time, this results in no change. However, if some of
5514 the operands are the same or inverses of each other, simplifications
5515 will result.
5517 For example, (and (ior A B) (not B)) can occur as the result of
5518 expanding a bit field assignment. When we apply the distributive
5519 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5520 which then simplifies to (and (A (not B))).
5522 If we have (and (ior A B) C), apply the distributive law and then
5523 the inverse distributive law to see if things simplify. */
5525 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5527 x = apply_distributive_law
5528 (gen_binary (GET_CODE (op0), mode,
5529 gen_binary (AND, mode, XEXP (op0, 0), op1),
5530 gen_binary (AND, mode, XEXP (op0, 1),
5531 copy_rtx (op1))));
5532 if (GET_CODE (x) != AND)
5533 return x;
5536 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5537 return apply_distributive_law
5538 (gen_binary (GET_CODE (op1), mode,
5539 gen_binary (AND, mode, XEXP (op1, 0), op0),
5540 gen_binary (AND, mode, XEXP (op1, 1),
5541 copy_rtx (op0))));
5543 /* Similarly, taking advantage of the fact that
5544 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5546 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5547 return apply_distributive_law
5548 (gen_binary (XOR, mode,
5549 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5550 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5551 XEXP (op1, 1))));
5553 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5554 return apply_distributive_law
5555 (gen_binary (XOR, mode,
5556 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5557 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5558 break;
5560 case IOR:
5561 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5562 if (GET_CODE (op1) == CONST_INT
5563 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5564 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5565 return op1;
5567 /* Convert (A & B) | A to A. */
5568 if (GET_CODE (op0) == AND
5569 && (rtx_equal_p (XEXP (op0, 0), op1)
5570 || rtx_equal_p (XEXP (op0, 1), op1))
5571 && ! side_effects_p (XEXP (op0, 0))
5572 && ! side_effects_p (XEXP (op0, 1)))
5573 return op1;
5575 /* If we have (ior (and A B) C), apply the distributive law and then
5576 the inverse distributive law to see if things simplify. */
5578 if (GET_CODE (op0) == AND)
5580 x = apply_distributive_law
5581 (gen_binary (AND, mode,
5582 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5583 gen_binary (IOR, mode, XEXP (op0, 1),
5584 copy_rtx (op1))));
5586 if (GET_CODE (x) != IOR)
5587 return x;
5590 if (GET_CODE (op1) == AND)
5592 x = apply_distributive_law
5593 (gen_binary (AND, mode,
5594 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5595 gen_binary (IOR, mode, XEXP (op1, 1),
5596 copy_rtx (op0))));
5598 if (GET_CODE (x) != IOR)
5599 return x;
5602 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5603 mode size to (rotate A CX). */
5605 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5606 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5607 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5608 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5609 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5610 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5611 == GET_MODE_BITSIZE (mode)))
5612 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5613 (GET_CODE (op0) == ASHIFT
5614 ? XEXP (op0, 1) : XEXP (op1, 1)));
5616 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5617 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5618 does not affect any of the bits in OP1, it can really be done
5619 as a PLUS and we can associate. We do this by seeing if OP1
5620 can be safely shifted left C bits. */
5621 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5622 && GET_CODE (XEXP (op0, 0)) == PLUS
5623 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5624 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5625 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5627 int count = INTVAL (XEXP (op0, 1));
5628 HOST_WIDE_INT mask = INTVAL (op1) << count;
5630 if (mask >> count == INTVAL (op1)
5631 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5633 SUBST (XEXP (XEXP (op0, 0), 1),
5634 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5635 return op0;
5638 break;
5640 case XOR:
5641 /* If we are XORing two things that have no bits in common,
5642 convert them into an IOR. This helps to detect rotation encoded
5643 using those methods and possibly other simplifications. */
5645 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5646 && (nonzero_bits (op0, mode)
5647 & nonzero_bits (op1, mode)) == 0)
5648 return (gen_binary (IOR, mode, op0, op1));
5650 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5651 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5652 (NOT y). */
5654 int num_negated = 0;
5656 if (GET_CODE (op0) == NOT)
5657 num_negated++, op0 = XEXP (op0, 0);
5658 if (GET_CODE (op1) == NOT)
5659 num_negated++, op1 = XEXP (op1, 0);
5661 if (num_negated == 2)
5663 SUBST (XEXP (x, 0), op0);
5664 SUBST (XEXP (x, 1), op1);
5666 else if (num_negated == 1)
5667 return
5668 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5669 mode);
5672 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5673 correspond to a machine insn or result in further simplifications
5674 if B is a constant. */
5676 if (GET_CODE (op0) == AND
5677 && rtx_equal_p (XEXP (op0, 1), op1)
5678 && ! side_effects_p (op1))
5679 return gen_binary (AND, mode,
5680 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5681 op1);
5683 else if (GET_CODE (op0) == AND
5684 && rtx_equal_p (XEXP (op0, 0), op1)
5685 && ! side_effects_p (op1))
5686 return gen_binary (AND, mode,
5687 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5688 op1);
5690 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5691 comparison if STORE_FLAG_VALUE is 1. */
5692 if (STORE_FLAG_VALUE == 1
5693 && op1 == const1_rtx
5694 && COMPARISON_P (op0)
5695 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5696 XEXP (op0, 1))))
5697 return reversed;
5699 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5700 is (lt foo (const_int 0)), so we can perform the above
5701 simplification if STORE_FLAG_VALUE is 1. */
5703 if (STORE_FLAG_VALUE == 1
5704 && op1 == const1_rtx
5705 && GET_CODE (op0) == LSHIFTRT
5706 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5707 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5708 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5710 /* (xor (comparison foo bar) (const_int sign-bit))
5711 when STORE_FLAG_VALUE is the sign bit. */
5712 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5713 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5714 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5715 && op1 == const_true_rtx
5716 && COMPARISON_P (op0)
5717 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5718 XEXP (op0, 1))))
5719 return reversed;
5721 break;
5723 default:
5724 gcc_unreachable ();
5727 return x;
5730 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5731 operations" because they can be replaced with two more basic operations.
5732 ZERO_EXTEND is also considered "compound" because it can be replaced with
5733 an AND operation, which is simpler, though only one operation.
5735 The function expand_compound_operation is called with an rtx expression
5736 and will convert it to the appropriate shifts and AND operations,
5737 simplifying at each stage.
5739 The function make_compound_operation is called to convert an expression
5740 consisting of shifts and ANDs into the equivalent compound expression.
5741 It is the inverse of this function, loosely speaking. */
5743 static rtx
5744 expand_compound_operation (rtx x)
5746 unsigned HOST_WIDE_INT pos = 0, len;
5747 int unsignedp = 0;
5748 unsigned int modewidth;
5749 rtx tem;
5751 switch (GET_CODE (x))
5753 case ZERO_EXTEND:
5754 unsignedp = 1;
5755 case SIGN_EXTEND:
5756 /* We can't necessarily use a const_int for a multiword mode;
5757 it depends on implicitly extending the value.
5758 Since we don't know the right way to extend it,
5759 we can't tell whether the implicit way is right.
5761 Even for a mode that is no wider than a const_int,
5762 we can't win, because we need to sign extend one of its bits through
5763 the rest of it, and we don't know which bit. */
5764 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5765 return x;
5767 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5768 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5769 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5770 reloaded. If not for that, MEM's would very rarely be safe.
5772 Reject MODEs bigger than a word, because we might not be able
5773 to reference a two-register group starting with an arbitrary register
5774 (and currently gen_lowpart might crash for a SUBREG). */
5776 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5777 return x;
5779 /* Reject MODEs that aren't scalar integers because turning vector
5780 or complex modes into shifts causes problems. */
5782 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5783 return x;
5785 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5786 /* If the inner object has VOIDmode (the only way this can happen
5787 is if it is an ASM_OPERANDS), we can't do anything since we don't
5788 know how much masking to do. */
5789 if (len == 0)
5790 return x;
5792 break;
5794 case ZERO_EXTRACT:
5795 unsignedp = 1;
5797 /* ... fall through ... */
5799 case SIGN_EXTRACT:
5800 /* If the operand is a CLOBBER, just return it. */
5801 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5802 return XEXP (x, 0);
5804 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5805 || GET_CODE (XEXP (x, 2)) != CONST_INT
5806 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5807 return x;
5809 /* Reject MODEs that aren't scalar integers because turning vector
5810 or complex modes into shifts causes problems. */
5812 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5813 return x;
5815 len = INTVAL (XEXP (x, 1));
5816 pos = INTVAL (XEXP (x, 2));
5818 /* If this goes outside the object being extracted, replace the object
5819 with a (use (mem ...)) construct that only combine understands
5820 and is used only for this purpose. */
5821 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5822 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5824 if (BITS_BIG_ENDIAN)
5825 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5827 break;
5829 default:
5830 return x;
5832 /* Convert sign extension to zero extension, if we know that the high
5833 bit is not set, as this is easier to optimize. It will be converted
5834 back to cheaper alternative in make_extraction. */
5835 if (GET_CODE (x) == SIGN_EXTEND
5836 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5837 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5838 & ~(((unsigned HOST_WIDE_INT)
5839 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5840 >> 1))
5841 == 0)))
5843 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5844 rtx temp2 = expand_compound_operation (temp);
5846 /* Make sure this is a profitable operation. */
5847 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5848 return temp2;
5849 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5850 return temp;
5851 else
5852 return x;
5855 /* We can optimize some special cases of ZERO_EXTEND. */
5856 if (GET_CODE (x) == ZERO_EXTEND)
5858 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5859 know that the last value didn't have any inappropriate bits
5860 set. */
5861 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5862 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5863 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5864 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5865 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5866 return XEXP (XEXP (x, 0), 0);
5868 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5869 if (GET_CODE (XEXP (x, 0)) == SUBREG
5870 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5871 && subreg_lowpart_p (XEXP (x, 0))
5872 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5873 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5874 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5875 return SUBREG_REG (XEXP (x, 0));
5877 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5878 is a comparison and STORE_FLAG_VALUE permits. This is like
5879 the first case, but it works even when GET_MODE (x) is larger
5880 than HOST_WIDE_INT. */
5881 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5882 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5883 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5884 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5885 <= HOST_BITS_PER_WIDE_INT)
5886 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5887 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5888 return XEXP (XEXP (x, 0), 0);
5890 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5891 if (GET_CODE (XEXP (x, 0)) == SUBREG
5892 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5893 && subreg_lowpart_p (XEXP (x, 0))
5894 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5895 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5896 <= HOST_BITS_PER_WIDE_INT)
5897 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5898 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5899 return SUBREG_REG (XEXP (x, 0));
5903 /* If we reach here, we want to return a pair of shifts. The inner
5904 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5905 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5906 logical depending on the value of UNSIGNEDP.
5908 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5909 converted into an AND of a shift.
5911 We must check for the case where the left shift would have a negative
5912 count. This can happen in a case like (x >> 31) & 255 on machines
5913 that can't shift by a constant. On those machines, we would first
5914 combine the shift with the AND to produce a variable-position
5915 extraction. Then the constant of 31 would be substituted in to produce
5916 a such a position. */
5918 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5919 if (modewidth + len >= pos)
5920 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5921 GET_MODE (x),
5922 simplify_shift_const (NULL_RTX, ASHIFT,
5923 GET_MODE (x),
5924 XEXP (x, 0),
5925 modewidth - pos - len),
5926 modewidth - len);
5928 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5929 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5930 simplify_shift_const (NULL_RTX, LSHIFTRT,
5931 GET_MODE (x),
5932 XEXP (x, 0), pos),
5933 ((HOST_WIDE_INT) 1 << len) - 1);
5934 else
5935 /* Any other cases we can't handle. */
5936 return x;
5938 /* If we couldn't do this for some reason, return the original
5939 expression. */
5940 if (GET_CODE (tem) == CLOBBER)
5941 return x;
5943 return tem;
5946 /* X is a SET which contains an assignment of one object into
5947 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5948 or certain SUBREGS). If possible, convert it into a series of
5949 logical operations.
5951 We half-heartedly support variable positions, but do not at all
5952 support variable lengths. */
5954 static rtx
5955 expand_field_assignment (rtx x)
5957 rtx inner;
5958 rtx pos; /* Always counts from low bit. */
5959 int len;
5960 rtx mask;
5961 enum machine_mode compute_mode;
5963 /* Loop until we find something we can't simplify. */
5964 while (1)
5966 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5967 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5969 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5970 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5971 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5973 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5974 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5976 inner = XEXP (SET_DEST (x), 0);
5977 len = INTVAL (XEXP (SET_DEST (x), 1));
5978 pos = XEXP (SET_DEST (x), 2);
5980 /* If the position is constant and spans the width of INNER,
5981 surround INNER with a USE to indicate this. */
5982 if (GET_CODE (pos) == CONST_INT
5983 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5984 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5986 if (BITS_BIG_ENDIAN)
5988 if (GET_CODE (pos) == CONST_INT)
5989 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5990 - INTVAL (pos));
5991 else if (GET_CODE (pos) == MINUS
5992 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5993 && (INTVAL (XEXP (pos, 1))
5994 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5995 /* If position is ADJUST - X, new position is X. */
5996 pos = XEXP (pos, 0);
5997 else
5998 pos = gen_binary (MINUS, GET_MODE (pos),
5999 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
6000 - len),
6001 pos);
6005 /* A SUBREG between two modes that occupy the same numbers of words
6006 can be done by moving the SUBREG to the source. */
6007 else if (GET_CODE (SET_DEST (x)) == SUBREG
6008 /* We need SUBREGs to compute nonzero_bits properly. */
6009 && nonzero_sign_valid
6010 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6011 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6012 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6013 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6015 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6016 gen_lowpart
6017 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6018 SET_SRC (x)));
6019 continue;
6021 else
6022 break;
6024 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6025 inner = SUBREG_REG (inner);
6027 compute_mode = GET_MODE (inner);
6029 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6030 if (! SCALAR_INT_MODE_P (compute_mode))
6032 enum machine_mode imode;
6034 /* Don't do anything for vector or complex integral types. */
6035 if (! FLOAT_MODE_P (compute_mode))
6036 break;
6038 /* Try to find an integral mode to pun with. */
6039 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6040 if (imode == BLKmode)
6041 break;
6043 compute_mode = imode;
6044 inner = gen_lowpart (imode, inner);
6047 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6048 if (len < HOST_BITS_PER_WIDE_INT)
6049 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6050 else
6051 break;
6053 /* Now compute the equivalent expression. Make a copy of INNER
6054 for the SET_DEST in case it is a MEM into which we will substitute;
6055 we don't want shared RTL in that case. */
6056 x = gen_rtx_SET
6057 (VOIDmode, copy_rtx (inner),
6058 gen_binary (IOR, compute_mode,
6059 gen_binary (AND, compute_mode,
6060 simplify_gen_unary (NOT, compute_mode,
6061 gen_binary (ASHIFT,
6062 compute_mode,
6063 mask, pos),
6064 compute_mode),
6065 inner),
6066 gen_binary (ASHIFT, compute_mode,
6067 gen_binary (AND, compute_mode,
6068 gen_lowpart
6069 (compute_mode, SET_SRC (x)),
6070 mask),
6071 pos)));
6074 return x;
6077 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6078 it is an RTX that represents a variable starting position; otherwise,
6079 POS is the (constant) starting bit position (counted from the LSB).
6081 INNER may be a USE. This will occur when we started with a bitfield
6082 that went outside the boundary of the object in memory, which is
6083 allowed on most machines. To isolate this case, we produce a USE
6084 whose mode is wide enough and surround the MEM with it. The only
6085 code that understands the USE is this routine. If it is not removed,
6086 it will cause the resulting insn not to match.
6088 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6089 signed reference.
6091 IN_DEST is nonzero if this is a reference in the destination of a
6092 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6093 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6094 be used.
6096 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6097 ZERO_EXTRACT should be built even for bits starting at bit 0.
6099 MODE is the desired mode of the result (if IN_DEST == 0).
6101 The result is an RTX for the extraction or NULL_RTX if the target
6102 can't handle it. */
6104 static rtx
6105 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6106 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6107 int in_dest, int in_compare)
6109 /* This mode describes the size of the storage area
6110 to fetch the overall value from. Within that, we
6111 ignore the POS lowest bits, etc. */
6112 enum machine_mode is_mode = GET_MODE (inner);
6113 enum machine_mode inner_mode;
6114 enum machine_mode wanted_inner_mode = byte_mode;
6115 enum machine_mode wanted_inner_reg_mode = word_mode;
6116 enum machine_mode pos_mode = word_mode;
6117 enum machine_mode extraction_mode = word_mode;
6118 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6119 int spans_byte = 0;
6120 rtx new = 0;
6121 rtx orig_pos_rtx = pos_rtx;
6122 HOST_WIDE_INT orig_pos;
6124 /* Get some information about INNER and get the innermost object. */
6125 if (GET_CODE (inner) == USE)
6126 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6127 /* We don't need to adjust the position because we set up the USE
6128 to pretend that it was a full-word object. */
6129 spans_byte = 1, inner = XEXP (inner, 0);
6130 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6132 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6133 consider just the QI as the memory to extract from.
6134 The subreg adds or removes high bits; its mode is
6135 irrelevant to the meaning of this extraction,
6136 since POS and LEN count from the lsb. */
6137 if (MEM_P (SUBREG_REG (inner)))
6138 is_mode = GET_MODE (SUBREG_REG (inner));
6139 inner = SUBREG_REG (inner);
6141 else if (GET_CODE (inner) == ASHIFT
6142 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6143 && pos_rtx == 0 && pos == 0
6144 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6146 /* We're extracting the least significant bits of an rtx
6147 (ashift X (const_int C)), where LEN > C. Extract the
6148 least significant (LEN - C) bits of X, giving an rtx
6149 whose mode is MODE, then shift it left C times. */
6150 new = make_extraction (mode, XEXP (inner, 0),
6151 0, 0, len - INTVAL (XEXP (inner, 1)),
6152 unsignedp, in_dest, in_compare);
6153 if (new != 0)
6154 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6157 inner_mode = GET_MODE (inner);
6159 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6160 pos = INTVAL (pos_rtx), pos_rtx = 0;
6162 /* See if this can be done without an extraction. We never can if the
6163 width of the field is not the same as that of some integer mode. For
6164 registers, we can only avoid the extraction if the position is at the
6165 low-order bit and this is either not in the destination or we have the
6166 appropriate STRICT_LOW_PART operation available.
6168 For MEM, we can avoid an extract if the field starts on an appropriate
6169 boundary and we can change the mode of the memory reference. However,
6170 we cannot directly access the MEM if we have a USE and the underlying
6171 MEM is not TMODE. This combination means that MEM was being used in a
6172 context where bits outside its mode were being referenced; that is only
6173 valid in bit-field insns. */
6175 if (tmode != BLKmode
6176 && ! (spans_byte && inner_mode != tmode)
6177 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6178 && !MEM_P (inner)
6179 && (! in_dest
6180 || (REG_P (inner)
6181 && have_insn_for (STRICT_LOW_PART, tmode))))
6182 || (MEM_P (inner) && pos_rtx == 0
6183 && (pos
6184 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6185 : BITS_PER_UNIT)) == 0
6186 /* We can't do this if we are widening INNER_MODE (it
6187 may not be aligned, for one thing). */
6188 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6189 && (inner_mode == tmode
6190 || (! mode_dependent_address_p (XEXP (inner, 0))
6191 && ! MEM_VOLATILE_P (inner))))))
6193 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6194 field. If the original and current mode are the same, we need not
6195 adjust the offset. Otherwise, we do if bytes big endian.
6197 If INNER is not a MEM, get a piece consisting of just the field
6198 of interest (in this case POS % BITS_PER_WORD must be 0). */
6200 if (MEM_P (inner))
6202 HOST_WIDE_INT offset;
6204 /* POS counts from lsb, but make OFFSET count in memory order. */
6205 if (BYTES_BIG_ENDIAN)
6206 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6207 else
6208 offset = pos / BITS_PER_UNIT;
6210 new = adjust_address_nv (inner, tmode, offset);
6212 else if (REG_P (inner))
6214 if (tmode != inner_mode)
6216 /* We can't call gen_lowpart in a DEST since we
6217 always want a SUBREG (see below) and it would sometimes
6218 return a new hard register. */
6219 if (pos || in_dest)
6221 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6223 if (WORDS_BIG_ENDIAN
6224 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6225 final_word = ((GET_MODE_SIZE (inner_mode)
6226 - GET_MODE_SIZE (tmode))
6227 / UNITS_PER_WORD) - final_word;
6229 final_word *= UNITS_PER_WORD;
6230 if (BYTES_BIG_ENDIAN &&
6231 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6232 final_word += (GET_MODE_SIZE (inner_mode)
6233 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6235 /* Avoid creating invalid subregs, for example when
6236 simplifying (x>>32)&255. */
6237 if (final_word >= GET_MODE_SIZE (inner_mode))
6238 return NULL_RTX;
6240 new = gen_rtx_SUBREG (tmode, inner, final_word);
6242 else
6243 new = gen_lowpart (tmode, inner);
6245 else
6246 new = inner;
6248 else
6249 new = force_to_mode (inner, tmode,
6250 len >= HOST_BITS_PER_WIDE_INT
6251 ? ~(unsigned HOST_WIDE_INT) 0
6252 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6253 NULL_RTX, 0);
6255 /* If this extraction is going into the destination of a SET,
6256 make a STRICT_LOW_PART unless we made a MEM. */
6258 if (in_dest)
6259 return (MEM_P (new) ? new
6260 : (GET_CODE (new) != SUBREG
6261 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6262 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6264 if (mode == tmode)
6265 return new;
6267 if (GET_CODE (new) == CONST_INT)
6268 return gen_int_mode (INTVAL (new), mode);
6270 /* If we know that no extraneous bits are set, and that the high
6271 bit is not set, convert the extraction to the cheaper of
6272 sign and zero extension, that are equivalent in these cases. */
6273 if (flag_expensive_optimizations
6274 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6275 && ((nonzero_bits (new, tmode)
6276 & ~(((unsigned HOST_WIDE_INT)
6277 GET_MODE_MASK (tmode))
6278 >> 1))
6279 == 0)))
6281 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6282 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6284 /* Prefer ZERO_EXTENSION, since it gives more information to
6285 backends. */
6286 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6287 return temp;
6288 return temp1;
6291 /* Otherwise, sign- or zero-extend unless we already are in the
6292 proper mode. */
6294 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6295 mode, new));
6298 /* Unless this is a COMPARE or we have a funny memory reference,
6299 don't do anything with zero-extending field extracts starting at
6300 the low-order bit since they are simple AND operations. */
6301 if (pos_rtx == 0 && pos == 0 && ! in_dest
6302 && ! in_compare && ! spans_byte && unsignedp)
6303 return 0;
6305 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6306 we would be spanning bytes or if the position is not a constant and the
6307 length is not 1. In all other cases, we would only be going outside
6308 our object in cases when an original shift would have been
6309 undefined. */
6310 if (! spans_byte && MEM_P (inner)
6311 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6312 || (pos_rtx != 0 && len != 1)))
6313 return 0;
6315 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6316 and the mode for the result. */
6317 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6319 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6320 pos_mode = mode_for_extraction (EP_insv, 2);
6321 extraction_mode = mode_for_extraction (EP_insv, 3);
6324 if (! in_dest && unsignedp
6325 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6327 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6328 pos_mode = mode_for_extraction (EP_extzv, 3);
6329 extraction_mode = mode_for_extraction (EP_extzv, 0);
6332 if (! in_dest && ! unsignedp
6333 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6335 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6336 pos_mode = mode_for_extraction (EP_extv, 3);
6337 extraction_mode = mode_for_extraction (EP_extv, 0);
6340 /* Never narrow an object, since that might not be safe. */
6342 if (mode != VOIDmode
6343 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6344 extraction_mode = mode;
6346 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6347 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6348 pos_mode = GET_MODE (pos_rtx);
6350 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6351 if we have to change the mode of memory and cannot, the desired mode is
6352 EXTRACTION_MODE. */
6353 if (!MEM_P (inner))
6354 wanted_inner_mode = wanted_inner_reg_mode;
6355 else if (inner_mode != wanted_inner_mode
6356 && (mode_dependent_address_p (XEXP (inner, 0))
6357 || MEM_VOLATILE_P (inner)))
6358 wanted_inner_mode = extraction_mode;
6360 orig_pos = pos;
6362 if (BITS_BIG_ENDIAN)
6364 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6365 BITS_BIG_ENDIAN style. If position is constant, compute new
6366 position. Otherwise, build subtraction.
6367 Note that POS is relative to the mode of the original argument.
6368 If it's a MEM we need to recompute POS relative to that.
6369 However, if we're extracting from (or inserting into) a register,
6370 we want to recompute POS relative to wanted_inner_mode. */
6371 int width = (MEM_P (inner)
6372 ? GET_MODE_BITSIZE (is_mode)
6373 : GET_MODE_BITSIZE (wanted_inner_mode));
6375 if (pos_rtx == 0)
6376 pos = width - len - pos;
6377 else
6378 pos_rtx
6379 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6380 /* POS may be less than 0 now, but we check for that below.
6381 Note that it can only be less than 0 if !MEM_P (inner). */
6384 /* If INNER has a wider mode, make it smaller. If this is a constant
6385 extract, try to adjust the byte to point to the byte containing
6386 the value. */
6387 if (wanted_inner_mode != VOIDmode
6388 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6389 && ((MEM_P (inner)
6390 && (inner_mode == wanted_inner_mode
6391 || (! mode_dependent_address_p (XEXP (inner, 0))
6392 && ! MEM_VOLATILE_P (inner))))))
6394 int offset = 0;
6396 /* The computations below will be correct if the machine is big
6397 endian in both bits and bytes or little endian in bits and bytes.
6398 If it is mixed, we must adjust. */
6400 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6401 adjust OFFSET to compensate. */
6402 if (BYTES_BIG_ENDIAN
6403 && ! spans_byte
6404 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6405 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6407 /* If this is a constant position, we can move to the desired byte. */
6408 if (pos_rtx == 0)
6410 offset += pos / BITS_PER_UNIT;
6411 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6414 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6415 && ! spans_byte
6416 && is_mode != wanted_inner_mode)
6417 offset = (GET_MODE_SIZE (is_mode)
6418 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6420 if (offset != 0 || inner_mode != wanted_inner_mode)
6421 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6424 /* If INNER is not memory, we can always get it into the proper mode. If we
6425 are changing its mode, POS must be a constant and smaller than the size
6426 of the new mode. */
6427 else if (!MEM_P (inner))
6429 if (GET_MODE (inner) != wanted_inner_mode
6430 && (pos_rtx != 0
6431 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6432 return 0;
6434 inner = force_to_mode (inner, wanted_inner_mode,
6435 pos_rtx
6436 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6437 ? ~(unsigned HOST_WIDE_INT) 0
6438 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6439 << orig_pos),
6440 NULL_RTX, 0);
6443 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6444 have to zero extend. Otherwise, we can just use a SUBREG. */
6445 if (pos_rtx != 0
6446 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6448 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6450 /* If we know that no extraneous bits are set, and that the high
6451 bit is not set, convert extraction to cheaper one - either
6452 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6453 cases. */
6454 if (flag_expensive_optimizations
6455 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6456 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6457 & ~(((unsigned HOST_WIDE_INT)
6458 GET_MODE_MASK (GET_MODE (pos_rtx)))
6459 >> 1))
6460 == 0)))
6462 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6464 /* Prefer ZERO_EXTENSION, since it gives more information to
6465 backends. */
6466 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6467 temp = temp1;
6469 pos_rtx = temp;
6471 else if (pos_rtx != 0
6472 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6473 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6475 /* Make POS_RTX unless we already have it and it is correct. If we don't
6476 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6477 be a CONST_INT. */
6478 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6479 pos_rtx = orig_pos_rtx;
6481 else if (pos_rtx == 0)
6482 pos_rtx = GEN_INT (pos);
6484 /* Make the required operation. See if we can use existing rtx. */
6485 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6486 extraction_mode, inner, GEN_INT (len), pos_rtx);
6487 if (! in_dest)
6488 new = gen_lowpart (mode, new);
6490 return new;
6493 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6494 with any other operations in X. Return X without that shift if so. */
6496 static rtx
6497 extract_left_shift (rtx x, int count)
6499 enum rtx_code code = GET_CODE (x);
6500 enum machine_mode mode = GET_MODE (x);
6501 rtx tem;
6503 switch (code)
6505 case ASHIFT:
6506 /* This is the shift itself. If it is wide enough, we will return
6507 either the value being shifted if the shift count is equal to
6508 COUNT or a shift for the difference. */
6509 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6510 && INTVAL (XEXP (x, 1)) >= count)
6511 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6512 INTVAL (XEXP (x, 1)) - count);
6513 break;
6515 case NEG: case NOT:
6516 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6517 return simplify_gen_unary (code, mode, tem, mode);
6519 break;
6521 case PLUS: case IOR: case XOR: case AND:
6522 /* If we can safely shift this constant and we find the inner shift,
6523 make a new operation. */
6524 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6525 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6526 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6527 return gen_binary (code, mode, tem,
6528 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6530 break;
6532 default:
6533 break;
6536 return 0;
6539 /* Look at the expression rooted at X. Look for expressions
6540 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6541 Form these expressions.
6543 Return the new rtx, usually just X.
6545 Also, for machines like the VAX that don't have logical shift insns,
6546 try to convert logical to arithmetic shift operations in cases where
6547 they are equivalent. This undoes the canonicalizations to logical
6548 shifts done elsewhere.
6550 We try, as much as possible, to re-use rtl expressions to save memory.
6552 IN_CODE says what kind of expression we are processing. Normally, it is
6553 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6554 being kludges), it is MEM. When processing the arguments of a comparison
6555 or a COMPARE against zero, it is COMPARE. */
6557 static rtx
6558 make_compound_operation (rtx x, enum rtx_code in_code)
6560 enum rtx_code code = GET_CODE (x);
6561 enum machine_mode mode = GET_MODE (x);
6562 int mode_width = GET_MODE_BITSIZE (mode);
6563 rtx rhs, lhs;
6564 enum rtx_code next_code;
6565 int i;
6566 rtx new = 0;
6567 rtx tem;
6568 const char *fmt;
6570 /* Select the code to be used in recursive calls. Once we are inside an
6571 address, we stay there. If we have a comparison, set to COMPARE,
6572 but once inside, go back to our default of SET. */
6574 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6575 : ((code == COMPARE || COMPARISON_P (x))
6576 && XEXP (x, 1) == const0_rtx) ? COMPARE
6577 : in_code == COMPARE ? SET : in_code);
6579 /* Process depending on the code of this operation. If NEW is set
6580 nonzero, it will be returned. */
6582 switch (code)
6584 case ASHIFT:
6585 /* Convert shifts by constants into multiplications if inside
6586 an address. */
6587 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6588 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6589 && INTVAL (XEXP (x, 1)) >= 0)
6591 new = make_compound_operation (XEXP (x, 0), next_code);
6592 new = gen_rtx_MULT (mode, new,
6593 GEN_INT ((HOST_WIDE_INT) 1
6594 << INTVAL (XEXP (x, 1))));
6596 break;
6598 case AND:
6599 /* If the second operand is not a constant, we can't do anything
6600 with it. */
6601 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6602 break;
6604 /* If the constant is a power of two minus one and the first operand
6605 is a logical right shift, make an extraction. */
6606 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6607 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6609 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6610 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6611 0, in_code == COMPARE);
6614 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6615 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6616 && subreg_lowpart_p (XEXP (x, 0))
6617 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6618 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6620 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6621 next_code);
6622 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6623 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6624 0, in_code == COMPARE);
6626 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6627 else if ((GET_CODE (XEXP (x, 0)) == XOR
6628 || GET_CODE (XEXP (x, 0)) == IOR)
6629 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6630 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6631 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6633 /* Apply the distributive law, and then try to make extractions. */
6634 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6635 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6636 XEXP (x, 1)),
6637 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6638 XEXP (x, 1)));
6639 new = make_compound_operation (new, in_code);
6642 /* If we are have (and (rotate X C) M) and C is larger than the number
6643 of bits in M, this is an extraction. */
6645 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6646 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6647 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6648 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6650 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6651 new = make_extraction (mode, new,
6652 (GET_MODE_BITSIZE (mode)
6653 - INTVAL (XEXP (XEXP (x, 0), 1))),
6654 NULL_RTX, i, 1, 0, in_code == COMPARE);
6657 /* On machines without logical shifts, if the operand of the AND is
6658 a logical shift and our mask turns off all the propagated sign
6659 bits, we can replace the logical shift with an arithmetic shift. */
6660 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6661 && !have_insn_for (LSHIFTRT, mode)
6662 && have_insn_for (ASHIFTRT, mode)
6663 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6664 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6665 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6666 && mode_width <= HOST_BITS_PER_WIDE_INT)
6668 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6670 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6671 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6672 SUBST (XEXP (x, 0),
6673 gen_rtx_ASHIFTRT (mode,
6674 make_compound_operation
6675 (XEXP (XEXP (x, 0), 0), next_code),
6676 XEXP (XEXP (x, 0), 1)));
6679 /* If the constant is one less than a power of two, this might be
6680 representable by an extraction even if no shift is present.
6681 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6682 we are in a COMPARE. */
6683 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6684 new = make_extraction (mode,
6685 make_compound_operation (XEXP (x, 0),
6686 next_code),
6687 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6689 /* If we are in a comparison and this is an AND with a power of two,
6690 convert this into the appropriate bit extract. */
6691 else if (in_code == COMPARE
6692 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6693 new = make_extraction (mode,
6694 make_compound_operation (XEXP (x, 0),
6695 next_code),
6696 i, NULL_RTX, 1, 1, 0, 1);
6698 break;
6700 case LSHIFTRT:
6701 /* If the sign bit is known to be zero, replace this with an
6702 arithmetic shift. */
6703 if (have_insn_for (ASHIFTRT, mode)
6704 && ! have_insn_for (LSHIFTRT, mode)
6705 && mode_width <= HOST_BITS_PER_WIDE_INT
6706 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6708 new = gen_rtx_ASHIFTRT (mode,
6709 make_compound_operation (XEXP (x, 0),
6710 next_code),
6711 XEXP (x, 1));
6712 break;
6715 /* ... fall through ... */
6717 case ASHIFTRT:
6718 lhs = XEXP (x, 0);
6719 rhs = XEXP (x, 1);
6721 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6722 this is a SIGN_EXTRACT. */
6723 if (GET_CODE (rhs) == CONST_INT
6724 && GET_CODE (lhs) == ASHIFT
6725 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6726 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6728 new = make_compound_operation (XEXP (lhs, 0), next_code);
6729 new = make_extraction (mode, new,
6730 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6731 NULL_RTX, mode_width - INTVAL (rhs),
6732 code == LSHIFTRT, 0, in_code == COMPARE);
6733 break;
6736 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6737 If so, try to merge the shifts into a SIGN_EXTEND. We could
6738 also do this for some cases of SIGN_EXTRACT, but it doesn't
6739 seem worth the effort; the case checked for occurs on Alpha. */
6741 if (!OBJECT_P (lhs)
6742 && ! (GET_CODE (lhs) == SUBREG
6743 && (OBJECT_P (SUBREG_REG (lhs))))
6744 && GET_CODE (rhs) == CONST_INT
6745 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6746 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6747 new = make_extraction (mode, make_compound_operation (new, next_code),
6748 0, NULL_RTX, mode_width - INTVAL (rhs),
6749 code == LSHIFTRT, 0, in_code == COMPARE);
6751 break;
6753 case SUBREG:
6754 /* Call ourselves recursively on the inner expression. If we are
6755 narrowing the object and it has a different RTL code from
6756 what it originally did, do this SUBREG as a force_to_mode. */
6758 tem = make_compound_operation (SUBREG_REG (x), in_code);
6759 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6760 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6761 && subreg_lowpart_p (x))
6763 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6764 NULL_RTX, 0);
6766 /* If we have something other than a SUBREG, we might have
6767 done an expansion, so rerun ourselves. */
6768 if (GET_CODE (newer) != SUBREG)
6769 newer = make_compound_operation (newer, in_code);
6771 return newer;
6774 /* If this is a paradoxical subreg, and the new code is a sign or
6775 zero extension, omit the subreg and widen the extension. If it
6776 is a regular subreg, we can still get rid of the subreg by not
6777 widening so much, or in fact removing the extension entirely. */
6778 if ((GET_CODE (tem) == SIGN_EXTEND
6779 || GET_CODE (tem) == ZERO_EXTEND)
6780 && subreg_lowpart_p (x))
6782 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6783 || (GET_MODE_SIZE (mode) >
6784 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6786 if (! SCALAR_INT_MODE_P (mode))
6787 break;
6788 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6790 else
6791 tem = gen_lowpart (mode, XEXP (tem, 0));
6792 return tem;
6794 break;
6796 default:
6797 break;
6800 if (new)
6802 x = gen_lowpart (mode, new);
6803 code = GET_CODE (x);
6806 /* Now recursively process each operand of this operation. */
6807 fmt = GET_RTX_FORMAT (code);
6808 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6809 if (fmt[i] == 'e')
6811 new = make_compound_operation (XEXP (x, i), next_code);
6812 SUBST (XEXP (x, i), new);
6815 return x;
6818 /* Given M see if it is a value that would select a field of bits
6819 within an item, but not the entire word. Return -1 if not.
6820 Otherwise, return the starting position of the field, where 0 is the
6821 low-order bit.
6823 *PLEN is set to the length of the field. */
6825 static int
6826 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6828 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6829 int pos = exact_log2 (m & -m);
6830 int len = 0;
6832 if (pos >= 0)
6833 /* Now shift off the low-order zero bits and see if we have a
6834 power of two minus 1. */
6835 len = exact_log2 ((m >> pos) + 1);
6837 if (len <= 0)
6838 pos = -1;
6840 *plen = len;
6841 return pos;
6844 /* See if X can be simplified knowing that we will only refer to it in
6845 MODE and will only refer to those bits that are nonzero in MASK.
6846 If other bits are being computed or if masking operations are done
6847 that select a superset of the bits in MASK, they can sometimes be
6848 ignored.
6850 Return a possibly simplified expression, but always convert X to
6851 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6853 Also, if REG is nonzero and X is a register equal in value to REG,
6854 replace X with REG.
6856 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6857 are all off in X. This is used when X will be complemented, by either
6858 NOT, NEG, or XOR. */
6860 static rtx
6861 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6862 rtx reg, int just_select)
6864 enum rtx_code code = GET_CODE (x);
6865 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6866 enum machine_mode op_mode;
6867 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6868 rtx op0, op1, temp;
6870 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6871 code below will do the wrong thing since the mode of such an
6872 expression is VOIDmode.
6874 Also do nothing if X is a CLOBBER; this can happen if X was
6875 the return value from a call to gen_lowpart. */
6876 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6877 return x;
6879 /* We want to perform the operation is its present mode unless we know
6880 that the operation is valid in MODE, in which case we do the operation
6881 in MODE. */
6882 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6883 && have_insn_for (code, mode))
6884 ? mode : GET_MODE (x));
6886 /* It is not valid to do a right-shift in a narrower mode
6887 than the one it came in with. */
6888 if ((code == LSHIFTRT || code == ASHIFTRT)
6889 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6890 op_mode = GET_MODE (x);
6892 /* Truncate MASK to fit OP_MODE. */
6893 if (op_mode)
6894 mask &= GET_MODE_MASK (op_mode);
6896 /* When we have an arithmetic operation, or a shift whose count we
6897 do not know, we need to assume that all bits up to the highest-order
6898 bit in MASK will be needed. This is how we form such a mask. */
6899 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6900 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6901 else
6902 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6903 - 1);
6905 /* Determine what bits of X are guaranteed to be (non)zero. */
6906 nonzero = nonzero_bits (x, mode);
6908 /* If none of the bits in X are needed, return a zero. */
6909 if (! just_select && (nonzero & mask) == 0)
6910 x = const0_rtx;
6912 /* If X is a CONST_INT, return a new one. Do this here since the
6913 test below will fail. */
6914 if (GET_CODE (x) == CONST_INT)
6916 if (SCALAR_INT_MODE_P (mode))
6917 return gen_int_mode (INTVAL (x) & mask, mode);
6918 else
6920 x = GEN_INT (INTVAL (x) & mask);
6921 return gen_lowpart_common (mode, x);
6925 /* If X is narrower than MODE and we want all the bits in X's mode, just
6926 get X in the proper mode. */
6927 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6928 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6929 return gen_lowpart (mode, x);
6931 switch (code)
6933 case CLOBBER:
6934 /* If X is a (clobber (const_int)), return it since we know we are
6935 generating something that won't match. */
6936 return x;
6938 case USE:
6939 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6940 spanned the boundary of the MEM. If we are now masking so it is
6941 within that boundary, we don't need the USE any more. */
6942 if (! BITS_BIG_ENDIAN
6943 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6944 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6945 break;
6947 case SIGN_EXTEND:
6948 case ZERO_EXTEND:
6949 case ZERO_EXTRACT:
6950 case SIGN_EXTRACT:
6951 x = expand_compound_operation (x);
6952 if (GET_CODE (x) != code)
6953 return force_to_mode (x, mode, mask, reg, next_select);
6954 break;
6956 case REG:
6957 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6958 || rtx_equal_p (reg, get_last_value (x))))
6959 x = reg;
6960 break;
6962 case SUBREG:
6963 if (subreg_lowpart_p (x)
6964 /* We can ignore the effect of this SUBREG if it narrows the mode or
6965 if the constant masks to zero all the bits the mode doesn't
6966 have. */
6967 && ((GET_MODE_SIZE (GET_MODE (x))
6968 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6969 || (0 == (mask
6970 & GET_MODE_MASK (GET_MODE (x))
6971 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6972 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6973 break;
6975 case AND:
6976 /* If this is an AND with a constant, convert it into an AND
6977 whose constant is the AND of that constant with MASK. If it
6978 remains an AND of MASK, delete it since it is redundant. */
6980 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6982 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6983 mask & INTVAL (XEXP (x, 1)));
6985 /* If X is still an AND, see if it is an AND with a mask that
6986 is just some low-order bits. If so, and it is MASK, we don't
6987 need it. */
6989 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6990 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6991 == mask))
6992 x = XEXP (x, 0);
6994 /* If it remains an AND, try making another AND with the bits
6995 in the mode mask that aren't in MASK turned on. If the
6996 constant in the AND is wide enough, this might make a
6997 cheaper constant. */
6999 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7000 && GET_MODE_MASK (GET_MODE (x)) != mask
7001 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7003 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7004 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7005 int width = GET_MODE_BITSIZE (GET_MODE (x));
7006 rtx y;
7008 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7009 number, sign extend it. */
7010 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7011 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7012 cval |= (HOST_WIDE_INT) -1 << width;
7014 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
7015 if (rtx_cost (y, SET) < rtx_cost (x, SET))
7016 x = y;
7019 break;
7022 goto binop;
7024 case PLUS:
7025 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7026 low-order bits (as in an alignment operation) and FOO is already
7027 aligned to that boundary, mask C1 to that boundary as well.
7028 This may eliminate that PLUS and, later, the AND. */
7031 unsigned int width = GET_MODE_BITSIZE (mode);
7032 unsigned HOST_WIDE_INT smask = mask;
7034 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7035 number, sign extend it. */
7037 if (width < HOST_BITS_PER_WIDE_INT
7038 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7039 smask |= (HOST_WIDE_INT) -1 << width;
7041 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7042 && exact_log2 (- smask) >= 0
7043 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7044 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7045 return force_to_mode (plus_constant (XEXP (x, 0),
7046 (INTVAL (XEXP (x, 1)) & smask)),
7047 mode, smask, reg, next_select);
7050 /* ... fall through ... */
7052 case MULT:
7053 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7054 most significant bit in MASK since carries from those bits will
7055 affect the bits we are interested in. */
7056 mask = fuller_mask;
7057 goto binop;
7059 case MINUS:
7060 /* If X is (minus C Y) where C's least set bit is larger than any bit
7061 in the mask, then we may replace with (neg Y). */
7062 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7063 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7064 & -INTVAL (XEXP (x, 0))))
7065 > mask))
7067 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7068 GET_MODE (x));
7069 return force_to_mode (x, mode, mask, reg, next_select);
7072 /* Similarly, if C contains every bit in the fuller_mask, then we may
7073 replace with (not Y). */
7074 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7075 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7076 == INTVAL (XEXP (x, 0))))
7078 x = simplify_gen_unary (NOT, GET_MODE (x),
7079 XEXP (x, 1), GET_MODE (x));
7080 return force_to_mode (x, mode, mask, reg, next_select);
7083 mask = fuller_mask;
7084 goto binop;
7086 case IOR:
7087 case XOR:
7088 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7089 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7090 operation which may be a bitfield extraction. Ensure that the
7091 constant we form is not wider than the mode of X. */
7093 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7094 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7095 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7096 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7097 && GET_CODE (XEXP (x, 1)) == CONST_INT
7098 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7099 + floor_log2 (INTVAL (XEXP (x, 1))))
7100 < GET_MODE_BITSIZE (GET_MODE (x)))
7101 && (INTVAL (XEXP (x, 1))
7102 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7104 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7105 << INTVAL (XEXP (XEXP (x, 0), 1)));
7106 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7107 XEXP (XEXP (x, 0), 0), temp);
7108 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7109 XEXP (XEXP (x, 0), 1));
7110 return force_to_mode (x, mode, mask, reg, next_select);
7113 binop:
7114 /* For most binary operations, just propagate into the operation and
7115 change the mode if we have an operation of that mode. */
7117 op0 = gen_lowpart (op_mode,
7118 force_to_mode (XEXP (x, 0), mode, mask,
7119 reg, next_select));
7120 op1 = gen_lowpart (op_mode,
7121 force_to_mode (XEXP (x, 1), mode, mask,
7122 reg, next_select));
7124 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7125 x = gen_binary (code, op_mode, op0, op1);
7126 break;
7128 case ASHIFT:
7129 /* For left shifts, do the same, but just for the first operand.
7130 However, we cannot do anything with shifts where we cannot
7131 guarantee that the counts are smaller than the size of the mode
7132 because such a count will have a different meaning in a
7133 wider mode. */
7135 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7136 && INTVAL (XEXP (x, 1)) >= 0
7137 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7138 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7139 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7140 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7141 break;
7143 /* If the shift count is a constant and we can do arithmetic in
7144 the mode of the shift, refine which bits we need. Otherwise, use the
7145 conservative form of the mask. */
7146 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7147 && INTVAL (XEXP (x, 1)) >= 0
7148 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7149 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7150 mask >>= INTVAL (XEXP (x, 1));
7151 else
7152 mask = fuller_mask;
7154 op0 = gen_lowpart (op_mode,
7155 force_to_mode (XEXP (x, 0), op_mode,
7156 mask, reg, next_select));
7158 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7159 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7160 break;
7162 case LSHIFTRT:
7163 /* Here we can only do something if the shift count is a constant,
7164 this shift constant is valid for the host, and we can do arithmetic
7165 in OP_MODE. */
7167 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7168 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7169 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7171 rtx inner = XEXP (x, 0);
7172 unsigned HOST_WIDE_INT inner_mask;
7174 /* Select the mask of the bits we need for the shift operand. */
7175 inner_mask = mask << INTVAL (XEXP (x, 1));
7177 /* We can only change the mode of the shift if we can do arithmetic
7178 in the mode of the shift and INNER_MASK is no wider than the
7179 width of X's mode. */
7180 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7181 op_mode = GET_MODE (x);
7183 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7185 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7186 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7189 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7190 shift and AND produces only copies of the sign bit (C2 is one less
7191 than a power of two), we can do this with just a shift. */
7193 if (GET_CODE (x) == LSHIFTRT
7194 && GET_CODE (XEXP (x, 1)) == CONST_INT
7195 /* The shift puts one of the sign bit copies in the least significant
7196 bit. */
7197 && ((INTVAL (XEXP (x, 1))
7198 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7199 >= GET_MODE_BITSIZE (GET_MODE (x)))
7200 && exact_log2 (mask + 1) >= 0
7201 /* Number of bits left after the shift must be more than the mask
7202 needs. */
7203 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7204 <= GET_MODE_BITSIZE (GET_MODE (x)))
7205 /* Must be more sign bit copies than the mask needs. */
7206 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7207 >= exact_log2 (mask + 1)))
7208 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7209 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7210 - exact_log2 (mask + 1)));
7212 goto shiftrt;
7214 case ASHIFTRT:
7215 /* If we are just looking for the sign bit, we don't need this shift at
7216 all, even if it has a variable count. */
7217 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7218 && (mask == ((unsigned HOST_WIDE_INT) 1
7219 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7220 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7222 /* If this is a shift by a constant, get a mask that contains those bits
7223 that are not copies of the sign bit. We then have two cases: If
7224 MASK only includes those bits, this can be a logical shift, which may
7225 allow simplifications. If MASK is a single-bit field not within
7226 those bits, we are requesting a copy of the sign bit and hence can
7227 shift the sign bit to the appropriate location. */
7229 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7230 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7232 int i = -1;
7234 /* If the considered data is wider than HOST_WIDE_INT, we can't
7235 represent a mask for all its bits in a single scalar.
7236 But we only care about the lower bits, so calculate these. */
7238 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7240 nonzero = ~(HOST_WIDE_INT) 0;
7242 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7243 is the number of bits a full-width mask would have set.
7244 We need only shift if these are fewer than nonzero can
7245 hold. If not, we must keep all bits set in nonzero. */
7247 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7248 < HOST_BITS_PER_WIDE_INT)
7249 nonzero >>= INTVAL (XEXP (x, 1))
7250 + HOST_BITS_PER_WIDE_INT
7251 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7253 else
7255 nonzero = GET_MODE_MASK (GET_MODE (x));
7256 nonzero >>= INTVAL (XEXP (x, 1));
7259 if ((mask & ~nonzero) == 0
7260 || (i = exact_log2 (mask)) >= 0)
7262 x = simplify_shift_const
7263 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7264 i < 0 ? INTVAL (XEXP (x, 1))
7265 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7267 if (GET_CODE (x) != ASHIFTRT)
7268 return force_to_mode (x, mode, mask, reg, next_select);
7272 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7273 even if the shift count isn't a constant. */
7274 if (mask == 1)
7275 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7277 shiftrt:
7279 /* If this is a zero- or sign-extension operation that just affects bits
7280 we don't care about, remove it. Be sure the call above returned
7281 something that is still a shift. */
7283 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7284 && GET_CODE (XEXP (x, 1)) == CONST_INT
7285 && INTVAL (XEXP (x, 1)) >= 0
7286 && (INTVAL (XEXP (x, 1))
7287 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7288 && GET_CODE (XEXP (x, 0)) == ASHIFT
7289 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7290 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7291 reg, next_select);
7293 break;
7295 case ROTATE:
7296 case ROTATERT:
7297 /* If the shift count is constant and we can do computations
7298 in the mode of X, compute where the bits we care about are.
7299 Otherwise, we can't do anything. Don't change the mode of
7300 the shift or propagate MODE into the shift, though. */
7301 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7302 && INTVAL (XEXP (x, 1)) >= 0)
7304 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7305 GET_MODE (x), GEN_INT (mask),
7306 XEXP (x, 1));
7307 if (temp && GET_CODE (temp) == CONST_INT)
7308 SUBST (XEXP (x, 0),
7309 force_to_mode (XEXP (x, 0), GET_MODE (x),
7310 INTVAL (temp), reg, next_select));
7312 break;
7314 case NEG:
7315 /* If we just want the low-order bit, the NEG isn't needed since it
7316 won't change the low-order bit. */
7317 if (mask == 1)
7318 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7320 /* We need any bits less significant than the most significant bit in
7321 MASK since carries from those bits will affect the bits we are
7322 interested in. */
7323 mask = fuller_mask;
7324 goto unop;
7326 case NOT:
7327 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7328 same as the XOR case above. Ensure that the constant we form is not
7329 wider than the mode of X. */
7331 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7332 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7333 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7334 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7335 < GET_MODE_BITSIZE (GET_MODE (x)))
7336 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7338 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7339 GET_MODE (x));
7340 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7341 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7343 return force_to_mode (x, mode, mask, reg, next_select);
7346 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7347 use the full mask inside the NOT. */
7348 mask = fuller_mask;
7350 unop:
7351 op0 = gen_lowpart (op_mode,
7352 force_to_mode (XEXP (x, 0), mode, mask,
7353 reg, next_select));
7354 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7355 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7356 break;
7358 case NE:
7359 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7360 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7361 which is equal to STORE_FLAG_VALUE. */
7362 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7363 && GET_MODE (XEXP (x, 0)) == mode
7364 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7365 && (nonzero_bits (XEXP (x, 0), mode)
7366 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7367 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7369 break;
7371 case IF_THEN_ELSE:
7372 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7373 written in a narrower mode. We play it safe and do not do so. */
7375 SUBST (XEXP (x, 1),
7376 gen_lowpart (GET_MODE (x),
7377 force_to_mode (XEXP (x, 1), mode,
7378 mask, reg, next_select)));
7379 SUBST (XEXP (x, 2),
7380 gen_lowpart (GET_MODE (x),
7381 force_to_mode (XEXP (x, 2), mode,
7382 mask, reg, next_select)));
7383 break;
7385 default:
7386 break;
7389 /* Ensure we return a value of the proper mode. */
7390 return gen_lowpart (mode, x);
7393 /* Return nonzero if X is an expression that has one of two values depending on
7394 whether some other value is zero or nonzero. In that case, we return the
7395 value that is being tested, *PTRUE is set to the value if the rtx being
7396 returned has a nonzero value, and *PFALSE is set to the other alternative.
7398 If we return zero, we set *PTRUE and *PFALSE to X. */
7400 static rtx
7401 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7403 enum machine_mode mode = GET_MODE (x);
7404 enum rtx_code code = GET_CODE (x);
7405 rtx cond0, cond1, true0, true1, false0, false1;
7406 unsigned HOST_WIDE_INT nz;
7408 /* If we are comparing a value against zero, we are done. */
7409 if ((code == NE || code == EQ)
7410 && XEXP (x, 1) == const0_rtx)
7412 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7413 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7414 return XEXP (x, 0);
7417 /* If this is a unary operation whose operand has one of two values, apply
7418 our opcode to compute those values. */
7419 else if (UNARY_P (x)
7420 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7422 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7423 *pfalse = simplify_gen_unary (code, mode, false0,
7424 GET_MODE (XEXP (x, 0)));
7425 return cond0;
7428 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7429 make can't possibly match and would suppress other optimizations. */
7430 else if (code == COMPARE)
7433 /* If this is a binary operation, see if either side has only one of two
7434 values. If either one does or if both do and they are conditional on
7435 the same value, compute the new true and false values. */
7436 else if (BINARY_P (x))
7438 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7439 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7441 if ((cond0 != 0 || cond1 != 0)
7442 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7444 /* If if_then_else_cond returned zero, then true/false are the
7445 same rtl. We must copy one of them to prevent invalid rtl
7446 sharing. */
7447 if (cond0 == 0)
7448 true0 = copy_rtx (true0);
7449 else if (cond1 == 0)
7450 true1 = copy_rtx (true1);
7452 *ptrue = gen_binary (code, mode, true0, true1);
7453 *pfalse = gen_binary (code, mode, false0, false1);
7454 return cond0 ? cond0 : cond1;
7457 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7458 operands is zero when the other is nonzero, and vice-versa,
7459 and STORE_FLAG_VALUE is 1 or -1. */
7461 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7462 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7463 || code == UMAX)
7464 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7466 rtx op0 = XEXP (XEXP (x, 0), 1);
7467 rtx op1 = XEXP (XEXP (x, 1), 1);
7469 cond0 = XEXP (XEXP (x, 0), 0);
7470 cond1 = XEXP (XEXP (x, 1), 0);
7472 if (COMPARISON_P (cond0)
7473 && COMPARISON_P (cond1)
7474 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7475 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7476 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7477 || ((swap_condition (GET_CODE (cond0))
7478 == combine_reversed_comparison_code (cond1))
7479 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7480 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7481 && ! side_effects_p (x))
7483 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7484 *pfalse = gen_binary (MULT, mode,
7485 (code == MINUS
7486 ? simplify_gen_unary (NEG, mode, op1,
7487 mode)
7488 : op1),
7489 const_true_rtx);
7490 return cond0;
7494 /* Similarly for MULT, AND and UMIN, except that for these the result
7495 is always zero. */
7496 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7497 && (code == MULT || code == AND || code == UMIN)
7498 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7500 cond0 = XEXP (XEXP (x, 0), 0);
7501 cond1 = XEXP (XEXP (x, 1), 0);
7503 if (COMPARISON_P (cond0)
7504 && COMPARISON_P (cond1)
7505 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7506 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7507 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7508 || ((swap_condition (GET_CODE (cond0))
7509 == combine_reversed_comparison_code (cond1))
7510 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7511 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7512 && ! side_effects_p (x))
7514 *ptrue = *pfalse = const0_rtx;
7515 return cond0;
7520 else if (code == IF_THEN_ELSE)
7522 /* If we have IF_THEN_ELSE already, extract the condition and
7523 canonicalize it if it is NE or EQ. */
7524 cond0 = XEXP (x, 0);
7525 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7526 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7527 return XEXP (cond0, 0);
7528 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7530 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7531 return XEXP (cond0, 0);
7533 else
7534 return cond0;
7537 /* If X is a SUBREG, we can narrow both the true and false values
7538 if the inner expression, if there is a condition. */
7539 else if (code == SUBREG
7540 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7541 &true0, &false0)))
7543 true0 = simplify_gen_subreg (mode, true0,
7544 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7545 false0 = simplify_gen_subreg (mode, false0,
7546 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7547 if (true0 && false0)
7549 *ptrue = true0;
7550 *pfalse = false0;
7551 return cond0;
7555 /* If X is a constant, this isn't special and will cause confusions
7556 if we treat it as such. Likewise if it is equivalent to a constant. */
7557 else if (CONSTANT_P (x)
7558 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7561 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7562 will be least confusing to the rest of the compiler. */
7563 else if (mode == BImode)
7565 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7566 return x;
7569 /* If X is known to be either 0 or -1, those are the true and
7570 false values when testing X. */
7571 else if (x == constm1_rtx || x == const0_rtx
7572 || (mode != VOIDmode
7573 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7575 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7576 return x;
7579 /* Likewise for 0 or a single bit. */
7580 else if (SCALAR_INT_MODE_P (mode)
7581 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7582 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7584 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7585 return x;
7588 /* Otherwise fail; show no condition with true and false values the same. */
7589 *ptrue = *pfalse = x;
7590 return 0;
7593 /* Return the value of expression X given the fact that condition COND
7594 is known to be true when applied to REG as its first operand and VAL
7595 as its second. X is known to not be shared and so can be modified in
7596 place.
7598 We only handle the simplest cases, and specifically those cases that
7599 arise with IF_THEN_ELSE expressions. */
7601 static rtx
7602 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7604 enum rtx_code code = GET_CODE (x);
7605 rtx temp;
7606 const char *fmt;
7607 int i, j;
7609 if (side_effects_p (x))
7610 return x;
7612 /* If either operand of the condition is a floating point value,
7613 then we have to avoid collapsing an EQ comparison. */
7614 if (cond == EQ
7615 && rtx_equal_p (x, reg)
7616 && ! FLOAT_MODE_P (GET_MODE (x))
7617 && ! FLOAT_MODE_P (GET_MODE (val)))
7618 return val;
7620 if (cond == UNEQ && rtx_equal_p (x, reg))
7621 return val;
7623 /* If X is (abs REG) and we know something about REG's relationship
7624 with zero, we may be able to simplify this. */
7626 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7627 switch (cond)
7629 case GE: case GT: case EQ:
7630 return XEXP (x, 0);
7631 case LT: case LE:
7632 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7633 XEXP (x, 0),
7634 GET_MODE (XEXP (x, 0)));
7635 default:
7636 break;
7639 /* The only other cases we handle are MIN, MAX, and comparisons if the
7640 operands are the same as REG and VAL. */
7642 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7644 if (rtx_equal_p (XEXP (x, 0), val))
7645 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7647 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7649 if (COMPARISON_P (x))
7651 if (comparison_dominates_p (cond, code))
7652 return const_true_rtx;
7654 code = combine_reversed_comparison_code (x);
7655 if (code != UNKNOWN
7656 && comparison_dominates_p (cond, code))
7657 return const0_rtx;
7658 else
7659 return x;
7661 else if (code == SMAX || code == SMIN
7662 || code == UMIN || code == UMAX)
7664 int unsignedp = (code == UMIN || code == UMAX);
7666 /* Do not reverse the condition when it is NE or EQ.
7667 This is because we cannot conclude anything about
7668 the value of 'SMAX (x, y)' when x is not equal to y,
7669 but we can when x equals y. */
7670 if ((code == SMAX || code == UMAX)
7671 && ! (cond == EQ || cond == NE))
7672 cond = reverse_condition (cond);
7674 switch (cond)
7676 case GE: case GT:
7677 return unsignedp ? x : XEXP (x, 1);
7678 case LE: case LT:
7679 return unsignedp ? x : XEXP (x, 0);
7680 case GEU: case GTU:
7681 return unsignedp ? XEXP (x, 1) : x;
7682 case LEU: case LTU:
7683 return unsignedp ? XEXP (x, 0) : x;
7684 default:
7685 break;
7690 else if (code == SUBREG)
7692 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7693 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7695 if (SUBREG_REG (x) != r)
7697 /* We must simplify subreg here, before we lose track of the
7698 original inner_mode. */
7699 new = simplify_subreg (GET_MODE (x), r,
7700 inner_mode, SUBREG_BYTE (x));
7701 if (new)
7702 return new;
7703 else
7704 SUBST (SUBREG_REG (x), r);
7707 return x;
7709 /* We don't have to handle SIGN_EXTEND here, because even in the
7710 case of replacing something with a modeless CONST_INT, a
7711 CONST_INT is already (supposed to be) a valid sign extension for
7712 its narrower mode, which implies it's already properly
7713 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7714 story is different. */
7715 else if (code == ZERO_EXTEND)
7717 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7718 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7720 if (XEXP (x, 0) != r)
7722 /* We must simplify the zero_extend here, before we lose
7723 track of the original inner_mode. */
7724 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7725 r, inner_mode);
7726 if (new)
7727 return new;
7728 else
7729 SUBST (XEXP (x, 0), r);
7732 return x;
7735 fmt = GET_RTX_FORMAT (code);
7736 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7738 if (fmt[i] == 'e')
7739 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7740 else if (fmt[i] == 'E')
7741 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7742 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7743 cond, reg, val));
7746 return x;
7749 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7750 assignment as a field assignment. */
7752 static int
7753 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7755 if (x == y || rtx_equal_p (x, y))
7756 return 1;
7758 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7759 return 0;
7761 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7762 Note that all SUBREGs of MEM are paradoxical; otherwise they
7763 would have been rewritten. */
7764 if (MEM_P (x) && GET_CODE (y) == SUBREG
7765 && MEM_P (SUBREG_REG (y))
7766 && rtx_equal_p (SUBREG_REG (y),
7767 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7768 return 1;
7770 if (MEM_P (y) && GET_CODE (x) == SUBREG
7771 && MEM_P (SUBREG_REG (x))
7772 && rtx_equal_p (SUBREG_REG (x),
7773 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7774 return 1;
7776 /* We used to see if get_last_value of X and Y were the same but that's
7777 not correct. In one direction, we'll cause the assignment to have
7778 the wrong destination and in the case, we'll import a register into this
7779 insn that might have already have been dead. So fail if none of the
7780 above cases are true. */
7781 return 0;
7784 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7785 Return that assignment if so.
7787 We only handle the most common cases. */
7789 static rtx
7790 make_field_assignment (rtx x)
7792 rtx dest = SET_DEST (x);
7793 rtx src = SET_SRC (x);
7794 rtx assign;
7795 rtx rhs, lhs;
7796 HOST_WIDE_INT c1;
7797 HOST_WIDE_INT pos;
7798 unsigned HOST_WIDE_INT len;
7799 rtx other;
7800 enum machine_mode mode;
7802 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7803 a clear of a one-bit field. We will have changed it to
7804 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7805 for a SUBREG. */
7807 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7808 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7809 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7810 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7812 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7813 1, 1, 1, 0);
7814 if (assign != 0)
7815 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7816 return x;
7819 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7820 && subreg_lowpart_p (XEXP (src, 0))
7821 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7822 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7823 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7824 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7825 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7826 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7828 assign = make_extraction (VOIDmode, dest, 0,
7829 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7830 1, 1, 1, 0);
7831 if (assign != 0)
7832 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7833 return x;
7836 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7837 one-bit field. */
7838 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7839 && XEXP (XEXP (src, 0), 0) == const1_rtx
7840 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7842 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7843 1, 1, 1, 0);
7844 if (assign != 0)
7845 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7846 return x;
7849 /* The other case we handle is assignments into a constant-position
7850 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7851 a mask that has all one bits except for a group of zero bits and
7852 OTHER is known to have zeros where C1 has ones, this is such an
7853 assignment. Compute the position and length from C1. Shift OTHER
7854 to the appropriate position, force it to the required mode, and
7855 make the extraction. Check for the AND in both operands. */
7857 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7858 return x;
7860 rhs = expand_compound_operation (XEXP (src, 0));
7861 lhs = expand_compound_operation (XEXP (src, 1));
7863 if (GET_CODE (rhs) == AND
7864 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7865 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7866 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7867 else if (GET_CODE (lhs) == AND
7868 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7869 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7870 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7871 else
7872 return x;
7874 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7875 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7876 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7877 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7878 return x;
7880 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7881 if (assign == 0)
7882 return x;
7884 /* The mode to use for the source is the mode of the assignment, or of
7885 what is inside a possible STRICT_LOW_PART. */
7886 mode = (GET_CODE (assign) == STRICT_LOW_PART
7887 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7889 /* Shift OTHER right POS places and make it the source, restricting it
7890 to the proper length and mode. */
7892 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7893 GET_MODE (src), other, pos),
7894 mode,
7895 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7896 ? ~(unsigned HOST_WIDE_INT) 0
7897 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7898 dest, 0);
7900 /* If SRC is masked by an AND that does not make a difference in
7901 the value being stored, strip it. */
7902 if (GET_CODE (assign) == ZERO_EXTRACT
7903 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7904 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7905 && GET_CODE (src) == AND
7906 && GET_CODE (XEXP (src, 1)) == CONST_INT
7907 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7908 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7909 src = XEXP (src, 0);
7911 return gen_rtx_SET (VOIDmode, assign, src);
7914 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7915 if so. */
7917 static rtx
7918 apply_distributive_law (rtx x)
7920 enum rtx_code code = GET_CODE (x);
7921 enum rtx_code inner_code;
7922 rtx lhs, rhs, other;
7923 rtx tem;
7925 /* Distributivity is not true for floating point as it can change the
7926 value. So we don't do it unless -funsafe-math-optimizations. */
7927 if (FLOAT_MODE_P (GET_MODE (x))
7928 && ! flag_unsafe_math_optimizations)
7929 return x;
7931 /* The outer operation can only be one of the following: */
7932 if (code != IOR && code != AND && code != XOR
7933 && code != PLUS && code != MINUS)
7934 return x;
7936 lhs = XEXP (x, 0);
7937 rhs = XEXP (x, 1);
7939 /* If either operand is a primitive we can't do anything, so get out
7940 fast. */
7941 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7942 return x;
7944 lhs = expand_compound_operation (lhs);
7945 rhs = expand_compound_operation (rhs);
7946 inner_code = GET_CODE (lhs);
7947 if (inner_code != GET_CODE (rhs))
7948 return x;
7950 /* See if the inner and outer operations distribute. */
7951 switch (inner_code)
7953 case LSHIFTRT:
7954 case ASHIFTRT:
7955 case AND:
7956 case IOR:
7957 /* These all distribute except over PLUS. */
7958 if (code == PLUS || code == MINUS)
7959 return x;
7960 break;
7962 case MULT:
7963 if (code != PLUS && code != MINUS)
7964 return x;
7965 break;
7967 case ASHIFT:
7968 /* This is also a multiply, so it distributes over everything. */
7969 break;
7971 case SUBREG:
7972 /* Non-paradoxical SUBREGs distributes over all operations, provided
7973 the inner modes and byte offsets are the same, this is an extraction
7974 of a low-order part, we don't convert an fp operation to int or
7975 vice versa, and we would not be converting a single-word
7976 operation into a multi-word operation. The latter test is not
7977 required, but it prevents generating unneeded multi-word operations.
7978 Some of the previous tests are redundant given the latter test, but
7979 are retained because they are required for correctness.
7981 We produce the result slightly differently in this case. */
7983 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7984 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7985 || ! subreg_lowpart_p (lhs)
7986 || (GET_MODE_CLASS (GET_MODE (lhs))
7987 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7988 || (GET_MODE_SIZE (GET_MODE (lhs))
7989 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7990 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7991 return x;
7993 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7994 SUBREG_REG (lhs), SUBREG_REG (rhs));
7995 return gen_lowpart (GET_MODE (x), tem);
7997 default:
7998 return x;
8001 /* Set LHS and RHS to the inner operands (A and B in the example
8002 above) and set OTHER to the common operand (C in the example).
8003 There is only one way to do this unless the inner operation is
8004 commutative. */
8005 if (COMMUTATIVE_ARITH_P (lhs)
8006 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8007 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8008 else if (COMMUTATIVE_ARITH_P (lhs)
8009 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8010 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8011 else if (COMMUTATIVE_ARITH_P (lhs)
8012 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8013 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8014 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8015 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8016 else
8017 return x;
8019 /* Form the new inner operation, seeing if it simplifies first. */
8020 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
8022 /* There is one exception to the general way of distributing:
8023 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8024 if (code == XOR && inner_code == IOR)
8026 inner_code = AND;
8027 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8030 /* We may be able to continuing distributing the result, so call
8031 ourselves recursively on the inner operation before forming the
8032 outer operation, which we return. */
8033 return gen_binary (inner_code, GET_MODE (x),
8034 apply_distributive_law (tem), other);
8037 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8038 in MODE.
8040 Return an equivalent form, if different from X. Otherwise, return X. If
8041 X is zero, we are to always construct the equivalent form. */
8043 static rtx
8044 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8045 unsigned HOST_WIDE_INT constop)
8047 unsigned HOST_WIDE_INT nonzero;
8048 int i;
8050 /* Simplify VAROP knowing that we will be only looking at some of the
8051 bits in it.
8053 Note by passing in CONSTOP, we guarantee that the bits not set in
8054 CONSTOP are not significant and will never be examined. We must
8055 ensure that is the case by explicitly masking out those bits
8056 before returning. */
8057 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8059 /* If VAROP is a CLOBBER, we will fail so return it. */
8060 if (GET_CODE (varop) == CLOBBER)
8061 return varop;
8063 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8064 to VAROP and return the new constant. */
8065 if (GET_CODE (varop) == CONST_INT)
8066 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
8068 /* See what bits may be nonzero in VAROP. Unlike the general case of
8069 a call to nonzero_bits, here we don't care about bits outside
8070 MODE. */
8072 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8074 /* Turn off all bits in the constant that are known to already be zero.
8075 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8076 which is tested below. */
8078 constop &= nonzero;
8080 /* If we don't have any bits left, return zero. */
8081 if (constop == 0)
8082 return const0_rtx;
8084 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8085 a power of two, we can replace this with an ASHIFT. */
8086 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8087 && (i = exact_log2 (constop)) >= 0)
8088 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8090 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8091 or XOR, then try to apply the distributive law. This may eliminate
8092 operations if either branch can be simplified because of the AND.
8093 It may also make some cases more complex, but those cases probably
8094 won't match a pattern either with or without this. */
8096 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8097 return
8098 gen_lowpart
8099 (mode,
8100 apply_distributive_law
8101 (gen_binary (GET_CODE (varop), GET_MODE (varop),
8102 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8103 XEXP (varop, 0), constop),
8104 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8105 XEXP (varop, 1), constop))));
8107 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8108 the AND and see if one of the operands simplifies to zero. If so, we
8109 may eliminate it. */
8111 if (GET_CODE (varop) == PLUS
8112 && exact_log2 (constop + 1) >= 0)
8114 rtx o0, o1;
8116 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8117 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8118 if (o0 == const0_rtx)
8119 return o1;
8120 if (o1 == const0_rtx)
8121 return o0;
8124 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8125 if we already had one (just check for the simplest cases). */
8126 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8127 && GET_MODE (XEXP (x, 0)) == mode
8128 && SUBREG_REG (XEXP (x, 0)) == varop)
8129 varop = XEXP (x, 0);
8130 else
8131 varop = gen_lowpart (mode, varop);
8133 /* If we can't make the SUBREG, try to return what we were given. */
8134 if (GET_CODE (varop) == CLOBBER)
8135 return x ? x : varop;
8137 /* If we are only masking insignificant bits, return VAROP. */
8138 if (constop == nonzero)
8139 x = varop;
8140 else
8142 /* Otherwise, return an AND. */
8143 constop = trunc_int_for_mode (constop, mode);
8144 /* See how much, if any, of X we can use. */
8145 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8146 x = gen_binary (AND, mode, varop, GEN_INT (constop));
8148 else
8150 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8151 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8152 SUBST (XEXP (x, 1), GEN_INT (constop));
8154 SUBST (XEXP (x, 0), varop);
8158 return x;
8161 /* Given a REG, X, compute which bits in X can be nonzero.
8162 We don't care about bits outside of those defined in MODE.
8164 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8165 a shift, AND, or zero_extract, we can do better. */
8167 static rtx
8168 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8169 rtx known_x ATTRIBUTE_UNUSED,
8170 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8171 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8172 unsigned HOST_WIDE_INT *nonzero)
8174 rtx tem;
8176 /* If X is a register whose nonzero bits value is current, use it.
8177 Otherwise, if X is a register whose value we can find, use that
8178 value. Otherwise, use the previously-computed global nonzero bits
8179 for this register. */
8181 if (reg_stat[REGNO (x)].last_set_value != 0
8182 && (reg_stat[REGNO (x)].last_set_mode == mode
8183 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8184 && GET_MODE_CLASS (mode) == MODE_INT))
8185 && (reg_stat[REGNO (x)].last_set_label == label_tick
8186 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8187 && REG_N_SETS (REGNO (x)) == 1
8188 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8189 REGNO (x))))
8190 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8192 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8193 return NULL;
8196 tem = get_last_value (x);
8198 if (tem)
8200 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8201 /* If X is narrower than MODE and TEM is a non-negative
8202 constant that would appear negative in the mode of X,
8203 sign-extend it for use in reg_nonzero_bits because some
8204 machines (maybe most) will actually do the sign-extension
8205 and this is the conservative approach.
8207 ??? For 2.5, try to tighten up the MD files in this regard
8208 instead of this kludge. */
8210 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8211 && GET_CODE (tem) == CONST_INT
8212 && INTVAL (tem) > 0
8213 && 0 != (INTVAL (tem)
8214 & ((HOST_WIDE_INT) 1
8215 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8216 tem = GEN_INT (INTVAL (tem)
8217 | ((HOST_WIDE_INT) (-1)
8218 << GET_MODE_BITSIZE (GET_MODE (x))));
8219 #endif
8220 return tem;
8222 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8224 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8226 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8227 /* We don't know anything about the upper bits. */
8228 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8229 *nonzero &= mask;
8232 return NULL;
8235 /* Return the number of bits at the high-order end of X that are known to
8236 be equal to the sign bit. X will be used in mode MODE; if MODE is
8237 VOIDmode, X will be used in its own mode. The returned value will always
8238 be between 1 and the number of bits in MODE. */
8240 static rtx
8241 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8242 rtx known_x ATTRIBUTE_UNUSED,
8243 enum machine_mode known_mode
8244 ATTRIBUTE_UNUSED,
8245 unsigned int known_ret ATTRIBUTE_UNUSED,
8246 unsigned int *result)
8248 rtx tem;
8250 if (reg_stat[REGNO (x)].last_set_value != 0
8251 && reg_stat[REGNO (x)].last_set_mode == mode
8252 && (reg_stat[REGNO (x)].last_set_label == label_tick
8253 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8254 && REG_N_SETS (REGNO (x)) == 1
8255 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8256 REGNO (x))))
8257 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8259 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8260 return NULL;
8263 tem = get_last_value (x);
8264 if (tem != 0)
8265 return tem;
8267 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8268 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8269 *result = reg_stat[REGNO (x)].sign_bit_copies;
8271 return NULL;
8274 /* Return the number of "extended" bits there are in X, when interpreted
8275 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8276 unsigned quantities, this is the number of high-order zero bits.
8277 For signed quantities, this is the number of copies of the sign bit
8278 minus 1. In both case, this function returns the number of "spare"
8279 bits. For example, if two quantities for which this function returns
8280 at least 1 are added, the addition is known not to overflow.
8282 This function will always return 0 unless called during combine, which
8283 implies that it must be called from a define_split. */
8285 unsigned int
8286 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8288 if (nonzero_sign_valid == 0)
8289 return 0;
8291 return (unsignedp
8292 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8293 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8294 - floor_log2 (nonzero_bits (x, mode)))
8295 : 0)
8296 : num_sign_bit_copies (x, mode) - 1);
8299 /* This function is called from `simplify_shift_const' to merge two
8300 outer operations. Specifically, we have already found that we need
8301 to perform operation *POP0 with constant *PCONST0 at the outermost
8302 position. We would now like to also perform OP1 with constant CONST1
8303 (with *POP0 being done last).
8305 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8306 the resulting operation. *PCOMP_P is set to 1 if we would need to
8307 complement the innermost operand, otherwise it is unchanged.
8309 MODE is the mode in which the operation will be done. No bits outside
8310 the width of this mode matter. It is assumed that the width of this mode
8311 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8313 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8314 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8315 result is simply *PCONST0.
8317 If the resulting operation cannot be expressed as one operation, we
8318 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8320 static int
8321 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8323 enum rtx_code op0 = *pop0;
8324 HOST_WIDE_INT const0 = *pconst0;
8326 const0 &= GET_MODE_MASK (mode);
8327 const1 &= GET_MODE_MASK (mode);
8329 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8330 if (op0 == AND)
8331 const1 &= const0;
8333 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8334 if OP0 is SET. */
8336 if (op1 == UNKNOWN || op0 == SET)
8337 return 1;
8339 else if (op0 == UNKNOWN)
8340 op0 = op1, const0 = const1;
8342 else if (op0 == op1)
8344 switch (op0)
8346 case AND:
8347 const0 &= const1;
8348 break;
8349 case IOR:
8350 const0 |= const1;
8351 break;
8352 case XOR:
8353 const0 ^= const1;
8354 break;
8355 case PLUS:
8356 const0 += const1;
8357 break;
8358 case NEG:
8359 op0 = UNKNOWN;
8360 break;
8361 default:
8362 break;
8366 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8367 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8368 return 0;
8370 /* If the two constants aren't the same, we can't do anything. The
8371 remaining six cases can all be done. */
8372 else if (const0 != const1)
8373 return 0;
8375 else
8376 switch (op0)
8378 case IOR:
8379 if (op1 == AND)
8380 /* (a & b) | b == b */
8381 op0 = SET;
8382 else /* op1 == XOR */
8383 /* (a ^ b) | b == a | b */
8385 break;
8387 case XOR:
8388 if (op1 == AND)
8389 /* (a & b) ^ b == (~a) & b */
8390 op0 = AND, *pcomp_p = 1;
8391 else /* op1 == IOR */
8392 /* (a | b) ^ b == a & ~b */
8393 op0 = AND, const0 = ~const0;
8394 break;
8396 case AND:
8397 if (op1 == IOR)
8398 /* (a | b) & b == b */
8399 op0 = SET;
8400 else /* op1 == XOR */
8401 /* (a ^ b) & b) == (~a) & b */
8402 *pcomp_p = 1;
8403 break;
8404 default:
8405 break;
8408 /* Check for NO-OP cases. */
8409 const0 &= GET_MODE_MASK (mode);
8410 if (const0 == 0
8411 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8412 op0 = UNKNOWN;
8413 else if (const0 == 0 && op0 == AND)
8414 op0 = SET;
8415 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8416 && op0 == AND)
8417 op0 = UNKNOWN;
8419 /* ??? Slightly redundant with the above mask, but not entirely.
8420 Moving this above means we'd have to sign-extend the mode mask
8421 for the final test. */
8422 const0 = trunc_int_for_mode (const0, mode);
8424 *pop0 = op0;
8425 *pconst0 = const0;
8427 return 1;
8430 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8431 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8432 that we started with.
8434 The shift is normally computed in the widest mode we find in VAROP, as
8435 long as it isn't a different number of words than RESULT_MODE. Exceptions
8436 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8438 static rtx
8439 simplify_shift_const (rtx x, enum rtx_code code,
8440 enum machine_mode result_mode, rtx varop,
8441 int orig_count)
8443 enum rtx_code orig_code = code;
8444 unsigned int count;
8445 int signed_count;
8446 enum machine_mode mode = result_mode;
8447 enum machine_mode shift_mode, tmode;
8448 unsigned int mode_words
8449 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8450 /* We form (outer_op (code varop count) (outer_const)). */
8451 enum rtx_code outer_op = UNKNOWN;
8452 HOST_WIDE_INT outer_const = 0;
8453 rtx const_rtx;
8454 int complement_p = 0;
8455 rtx new;
8457 /* Make sure and truncate the "natural" shift on the way in. We don't
8458 want to do this inside the loop as it makes it more difficult to
8459 combine shifts. */
8460 if (SHIFT_COUNT_TRUNCATED)
8461 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8463 /* If we were given an invalid count, don't do anything except exactly
8464 what was requested. */
8466 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8468 if (x)
8469 return x;
8471 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8474 count = orig_count;
8476 /* Unless one of the branches of the `if' in this loop does a `continue',
8477 we will `break' the loop after the `if'. */
8479 while (count != 0)
8481 /* If we have an operand of (clobber (const_int 0)), just return that
8482 value. */
8483 if (GET_CODE (varop) == CLOBBER)
8484 return varop;
8486 /* If we discovered we had to complement VAROP, leave. Making a NOT
8487 here would cause an infinite loop. */
8488 if (complement_p)
8489 break;
8491 /* Convert ROTATERT to ROTATE. */
8492 if (code == ROTATERT)
8494 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8495 code = ROTATE;
8496 if (VECTOR_MODE_P (result_mode))
8497 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8498 else
8499 count = bitsize - count;
8502 /* We need to determine what mode we will do the shift in. If the
8503 shift is a right shift or a ROTATE, we must always do it in the mode
8504 it was originally done in. Otherwise, we can do it in MODE, the
8505 widest mode encountered. */
8506 shift_mode
8507 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8508 ? result_mode : mode);
8510 /* Handle cases where the count is greater than the size of the mode
8511 minus 1. For ASHIFT, use the size minus one as the count (this can
8512 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8513 take the count modulo the size. For other shifts, the result is
8514 zero.
8516 Since these shifts are being produced by the compiler by combining
8517 multiple operations, each of which are defined, we know what the
8518 result is supposed to be. */
8520 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8522 if (code == ASHIFTRT)
8523 count = GET_MODE_BITSIZE (shift_mode) - 1;
8524 else if (code == ROTATE || code == ROTATERT)
8525 count %= GET_MODE_BITSIZE (shift_mode);
8526 else
8528 /* We can't simply return zero because there may be an
8529 outer op. */
8530 varop = const0_rtx;
8531 count = 0;
8532 break;
8536 /* An arithmetic right shift of a quantity known to be -1 or 0
8537 is a no-op. */
8538 if (code == ASHIFTRT
8539 && (num_sign_bit_copies (varop, shift_mode)
8540 == GET_MODE_BITSIZE (shift_mode)))
8542 count = 0;
8543 break;
8546 /* If we are doing an arithmetic right shift and discarding all but
8547 the sign bit copies, this is equivalent to doing a shift by the
8548 bitsize minus one. Convert it into that shift because it will often
8549 allow other simplifications. */
8551 if (code == ASHIFTRT
8552 && (count + num_sign_bit_copies (varop, shift_mode)
8553 >= GET_MODE_BITSIZE (shift_mode)))
8554 count = GET_MODE_BITSIZE (shift_mode) - 1;
8556 /* We simplify the tests below and elsewhere by converting
8557 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8558 `make_compound_operation' will convert it to an ASHIFTRT for
8559 those machines (such as VAX) that don't have an LSHIFTRT. */
8560 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8561 && code == ASHIFTRT
8562 && ((nonzero_bits (varop, shift_mode)
8563 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8564 == 0))
8565 code = LSHIFTRT;
8567 if (code == LSHIFTRT
8568 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8569 && !(nonzero_bits (varop, shift_mode) >> count))
8570 varop = const0_rtx;
8571 if (code == ASHIFT
8572 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8573 && !((nonzero_bits (varop, shift_mode) << count)
8574 & GET_MODE_MASK (shift_mode)))
8575 varop = const0_rtx;
8577 switch (GET_CODE (varop))
8579 case SIGN_EXTEND:
8580 case ZERO_EXTEND:
8581 case SIGN_EXTRACT:
8582 case ZERO_EXTRACT:
8583 new = expand_compound_operation (varop);
8584 if (new != varop)
8586 varop = new;
8587 continue;
8589 break;
8591 case MEM:
8592 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8593 minus the width of a smaller mode, we can do this with a
8594 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8595 if ((code == ASHIFTRT || code == LSHIFTRT)
8596 && ! mode_dependent_address_p (XEXP (varop, 0))
8597 && ! MEM_VOLATILE_P (varop)
8598 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8599 MODE_INT, 1)) != BLKmode)
8601 new = adjust_address_nv (varop, tmode,
8602 BYTES_BIG_ENDIAN ? 0
8603 : count / BITS_PER_UNIT);
8605 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8606 : ZERO_EXTEND, mode, new);
8607 count = 0;
8608 continue;
8610 break;
8612 case USE:
8613 /* Similar to the case above, except that we can only do this if
8614 the resulting mode is the same as that of the underlying
8615 MEM and adjust the address depending on the *bits* endianness
8616 because of the way that bit-field extract insns are defined. */
8617 if ((code == ASHIFTRT || code == LSHIFTRT)
8618 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8619 MODE_INT, 1)) != BLKmode
8620 && tmode == GET_MODE (XEXP (varop, 0)))
8622 if (BITS_BIG_ENDIAN)
8623 new = XEXP (varop, 0);
8624 else
8626 new = copy_rtx (XEXP (varop, 0));
8627 SUBST (XEXP (new, 0),
8628 plus_constant (XEXP (new, 0),
8629 count / BITS_PER_UNIT));
8632 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8633 : ZERO_EXTEND, mode, new);
8634 count = 0;
8635 continue;
8637 break;
8639 case SUBREG:
8640 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8641 the same number of words as what we've seen so far. Then store
8642 the widest mode in MODE. */
8643 if (subreg_lowpart_p (varop)
8644 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8645 > GET_MODE_SIZE (GET_MODE (varop)))
8646 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8647 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8648 == mode_words)
8650 varop = SUBREG_REG (varop);
8651 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8652 mode = GET_MODE (varop);
8653 continue;
8655 break;
8657 case MULT:
8658 /* Some machines use MULT instead of ASHIFT because MULT
8659 is cheaper. But it is still better on those machines to
8660 merge two shifts into one. */
8661 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8662 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8664 varop
8665 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
8666 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8667 continue;
8669 break;
8671 case UDIV:
8672 /* Similar, for when divides are cheaper. */
8673 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8674 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8676 varop
8677 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
8678 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8679 continue;
8681 break;
8683 case ASHIFTRT:
8684 /* If we are extracting just the sign bit of an arithmetic
8685 right shift, that shift is not needed. However, the sign
8686 bit of a wider mode may be different from what would be
8687 interpreted as the sign bit in a narrower mode, so, if
8688 the result is narrower, don't discard the shift. */
8689 if (code == LSHIFTRT
8690 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8691 && (GET_MODE_BITSIZE (result_mode)
8692 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8694 varop = XEXP (varop, 0);
8695 continue;
8698 /* ... fall through ... */
8700 case LSHIFTRT:
8701 case ASHIFT:
8702 case ROTATE:
8703 /* Here we have two nested shifts. The result is usually the
8704 AND of a new shift with a mask. We compute the result below. */
8705 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8706 && INTVAL (XEXP (varop, 1)) >= 0
8707 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8708 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8709 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8711 enum rtx_code first_code = GET_CODE (varop);
8712 unsigned int first_count = INTVAL (XEXP (varop, 1));
8713 unsigned HOST_WIDE_INT mask;
8714 rtx mask_rtx;
8716 /* We have one common special case. We can't do any merging if
8717 the inner code is an ASHIFTRT of a smaller mode. However, if
8718 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8719 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8720 we can convert it to
8721 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8722 This simplifies certain SIGN_EXTEND operations. */
8723 if (code == ASHIFT && first_code == ASHIFTRT
8724 && count == (unsigned int)
8725 (GET_MODE_BITSIZE (result_mode)
8726 - GET_MODE_BITSIZE (GET_MODE (varop))))
8728 /* C3 has the low-order C1 bits zero. */
8730 mask = (GET_MODE_MASK (mode)
8731 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8733 varop = simplify_and_const_int (NULL_RTX, result_mode,
8734 XEXP (varop, 0), mask);
8735 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8736 varop, count);
8737 count = first_count;
8738 code = ASHIFTRT;
8739 continue;
8742 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8743 than C1 high-order bits equal to the sign bit, we can convert
8744 this to either an ASHIFT or an ASHIFTRT depending on the
8745 two counts.
8747 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8749 if (code == ASHIFTRT && first_code == ASHIFT
8750 && GET_MODE (varop) == shift_mode
8751 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8752 > first_count))
8754 varop = XEXP (varop, 0);
8756 signed_count = count - first_count;
8757 if (signed_count < 0)
8758 count = -signed_count, code = ASHIFT;
8759 else
8760 count = signed_count;
8762 continue;
8765 /* There are some cases we can't do. If CODE is ASHIFTRT,
8766 we can only do this if FIRST_CODE is also ASHIFTRT.
8768 We can't do the case when CODE is ROTATE and FIRST_CODE is
8769 ASHIFTRT.
8771 If the mode of this shift is not the mode of the outer shift,
8772 we can't do this if either shift is a right shift or ROTATE.
8774 Finally, we can't do any of these if the mode is too wide
8775 unless the codes are the same.
8777 Handle the case where the shift codes are the same
8778 first. */
8780 if (code == first_code)
8782 if (GET_MODE (varop) != result_mode
8783 && (code == ASHIFTRT || code == LSHIFTRT
8784 || code == ROTATE))
8785 break;
8787 count += first_count;
8788 varop = XEXP (varop, 0);
8789 continue;
8792 if (code == ASHIFTRT
8793 || (code == ROTATE && first_code == ASHIFTRT)
8794 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8795 || (GET_MODE (varop) != result_mode
8796 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8797 || first_code == ROTATE
8798 || code == ROTATE)))
8799 break;
8801 /* To compute the mask to apply after the shift, shift the
8802 nonzero bits of the inner shift the same way the
8803 outer shift will. */
8805 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8807 mask_rtx
8808 = simplify_binary_operation (code, result_mode, mask_rtx,
8809 GEN_INT (count));
8811 /* Give up if we can't compute an outer operation to use. */
8812 if (mask_rtx == 0
8813 || GET_CODE (mask_rtx) != CONST_INT
8814 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8815 INTVAL (mask_rtx),
8816 result_mode, &complement_p))
8817 break;
8819 /* If the shifts are in the same direction, we add the
8820 counts. Otherwise, we subtract them. */
8821 signed_count = count;
8822 if ((code == ASHIFTRT || code == LSHIFTRT)
8823 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8824 signed_count += first_count;
8825 else
8826 signed_count -= first_count;
8828 /* If COUNT is positive, the new shift is usually CODE,
8829 except for the two exceptions below, in which case it is
8830 FIRST_CODE. If the count is negative, FIRST_CODE should
8831 always be used */
8832 if (signed_count > 0
8833 && ((first_code == ROTATE && code == ASHIFT)
8834 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8835 code = first_code, count = signed_count;
8836 else if (signed_count < 0)
8837 code = first_code, count = -signed_count;
8838 else
8839 count = signed_count;
8841 varop = XEXP (varop, 0);
8842 continue;
8845 /* If we have (A << B << C) for any shift, we can convert this to
8846 (A << C << B). This wins if A is a constant. Only try this if
8847 B is not a constant. */
8849 else if (GET_CODE (varop) == code
8850 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8851 && 0 != (new
8852 = simplify_binary_operation (code, mode,
8853 XEXP (varop, 0),
8854 GEN_INT (count))))
8856 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8857 count = 0;
8858 continue;
8860 break;
8862 case NOT:
8863 /* Make this fit the case below. */
8864 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8865 GEN_INT (GET_MODE_MASK (mode)));
8866 continue;
8868 case IOR:
8869 case AND:
8870 case XOR:
8871 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8872 with C the size of VAROP - 1 and the shift is logical if
8873 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8874 we have an (le X 0) operation. If we have an arithmetic shift
8875 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8876 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8878 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8879 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8880 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8881 && (code == LSHIFTRT || code == ASHIFTRT)
8882 && count == (unsigned int)
8883 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8884 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8886 count = 0;
8887 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8888 const0_rtx);
8890 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8891 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8893 continue;
8896 /* If we have (shift (logical)), move the logical to the outside
8897 to allow it to possibly combine with another logical and the
8898 shift to combine with another shift. This also canonicalizes to
8899 what a ZERO_EXTRACT looks like. Also, some machines have
8900 (and (shift)) insns. */
8902 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8903 /* We can't do this if we have (ashiftrt (xor)) and the
8904 constant has its sign bit set in shift_mode. */
8905 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8906 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8907 shift_mode))
8908 && (new = simplify_binary_operation (code, result_mode,
8909 XEXP (varop, 1),
8910 GEN_INT (count))) != 0
8911 && GET_CODE (new) == CONST_INT
8912 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8913 INTVAL (new), result_mode, &complement_p))
8915 varop = XEXP (varop, 0);
8916 continue;
8919 /* If we can't do that, try to simplify the shift in each arm of the
8920 logical expression, make a new logical expression, and apply
8921 the inverse distributive law. This also can't be done
8922 for some (ashiftrt (xor)). */
8923 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8924 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8925 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8926 shift_mode)))
8928 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8929 XEXP (varop, 0), count);
8930 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8931 XEXP (varop, 1), count);
8933 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
8934 varop = apply_distributive_law (varop);
8936 count = 0;
8937 continue;
8939 break;
8941 case EQ:
8942 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8943 says that the sign bit can be tested, FOO has mode MODE, C is
8944 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8945 that may be nonzero. */
8946 if (code == LSHIFTRT
8947 && XEXP (varop, 1) == const0_rtx
8948 && GET_MODE (XEXP (varop, 0)) == result_mode
8949 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8950 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8951 && ((STORE_FLAG_VALUE
8952 & ((HOST_WIDE_INT) 1
8953 < (GET_MODE_BITSIZE (result_mode) - 1))))
8954 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8955 && merge_outer_ops (&outer_op, &outer_const, XOR,
8956 (HOST_WIDE_INT) 1, result_mode,
8957 &complement_p))
8959 varop = XEXP (varop, 0);
8960 count = 0;
8961 continue;
8963 break;
8965 case NEG:
8966 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8967 than the number of bits in the mode is equivalent to A. */
8968 if (code == LSHIFTRT
8969 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8970 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
8972 varop = XEXP (varop, 0);
8973 count = 0;
8974 continue;
8977 /* NEG commutes with ASHIFT since it is multiplication. Move the
8978 NEG outside to allow shifts to combine. */
8979 if (code == ASHIFT
8980 && merge_outer_ops (&outer_op, &outer_const, NEG,
8981 (HOST_WIDE_INT) 0, result_mode,
8982 &complement_p))
8984 varop = XEXP (varop, 0);
8985 continue;
8987 break;
8989 case PLUS:
8990 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
8991 is one less than the number of bits in the mode is
8992 equivalent to (xor A 1). */
8993 if (code == LSHIFTRT
8994 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8995 && XEXP (varop, 1) == constm1_rtx
8996 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8997 && merge_outer_ops (&outer_op, &outer_const, XOR,
8998 (HOST_WIDE_INT) 1, result_mode,
8999 &complement_p))
9001 count = 0;
9002 varop = XEXP (varop, 0);
9003 continue;
9006 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9007 that might be nonzero in BAR are those being shifted out and those
9008 bits are known zero in FOO, we can replace the PLUS with FOO.
9009 Similarly in the other operand order. This code occurs when
9010 we are computing the size of a variable-size array. */
9012 if ((code == ASHIFTRT || code == LSHIFTRT)
9013 && count < HOST_BITS_PER_WIDE_INT
9014 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9015 && (nonzero_bits (XEXP (varop, 1), result_mode)
9016 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9018 varop = XEXP (varop, 0);
9019 continue;
9021 else if ((code == ASHIFTRT || code == LSHIFTRT)
9022 && count < HOST_BITS_PER_WIDE_INT
9023 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9024 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9025 >> count)
9026 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9027 & nonzero_bits (XEXP (varop, 1),
9028 result_mode)))
9030 varop = XEXP (varop, 1);
9031 continue;
9034 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9035 if (code == ASHIFT
9036 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9037 && (new = simplify_binary_operation (ASHIFT, result_mode,
9038 XEXP (varop, 1),
9039 GEN_INT (count))) != 0
9040 && GET_CODE (new) == CONST_INT
9041 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9042 INTVAL (new), result_mode, &complement_p))
9044 varop = XEXP (varop, 0);
9045 continue;
9048 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9049 signbit', and attempt to change the PLUS to an XOR and move it to
9050 the outer operation as is done above in the AND/IOR/XOR case
9051 leg for shift(logical). See details in logical handling above
9052 for reasoning in doing so. */
9053 if (code == LSHIFTRT
9054 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9055 && mode_signbit_p (result_mode, XEXP (varop, 1))
9056 && (new = simplify_binary_operation (code, result_mode,
9057 XEXP (varop, 1),
9058 GEN_INT (count))) != 0
9059 && GET_CODE (new) == CONST_INT
9060 && merge_outer_ops (&outer_op, &outer_const, XOR,
9061 INTVAL (new), result_mode, &complement_p))
9063 varop = XEXP (varop, 0);
9064 continue;
9067 break;
9069 case MINUS:
9070 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9071 with C the size of VAROP - 1 and the shift is logical if
9072 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9073 we have a (gt X 0) operation. If the shift is arithmetic with
9074 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9075 we have a (neg (gt X 0)) operation. */
9077 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9078 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9079 && count == (unsigned int)
9080 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9081 && (code == LSHIFTRT || code == ASHIFTRT)
9082 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9083 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9084 == count
9085 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9087 count = 0;
9088 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9089 const0_rtx);
9091 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9092 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9094 continue;
9096 break;
9098 case TRUNCATE:
9099 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9100 if the truncate does not affect the value. */
9101 if (code == LSHIFTRT
9102 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9103 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9104 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9105 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9106 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9108 rtx varop_inner = XEXP (varop, 0);
9110 varop_inner
9111 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9112 XEXP (varop_inner, 0),
9113 GEN_INT
9114 (count + INTVAL (XEXP (varop_inner, 1))));
9115 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9116 count = 0;
9117 continue;
9119 break;
9121 default:
9122 break;
9125 break;
9128 /* We need to determine what mode to do the shift in. If the shift is
9129 a right shift or ROTATE, we must always do it in the mode it was
9130 originally done in. Otherwise, we can do it in MODE, the widest mode
9131 encountered. The code we care about is that of the shift that will
9132 actually be done, not the shift that was originally requested. */
9133 shift_mode
9134 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9135 ? result_mode : mode);
9137 /* We have now finished analyzing the shift. The result should be
9138 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9139 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9140 to the result of the shift. OUTER_CONST is the relevant constant,
9141 but we must turn off all bits turned off in the shift.
9143 If we were passed a value for X, see if we can use any pieces of
9144 it. If not, make new rtx. */
9146 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9147 && GET_CODE (XEXP (x, 1)) == CONST_INT
9148 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9149 const_rtx = XEXP (x, 1);
9150 else
9151 const_rtx = GEN_INT (count);
9153 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9154 && GET_MODE (XEXP (x, 0)) == shift_mode
9155 && SUBREG_REG (XEXP (x, 0)) == varop)
9156 varop = XEXP (x, 0);
9157 else if (GET_MODE (varop) != shift_mode)
9158 varop = gen_lowpart (shift_mode, varop);
9160 /* If we can't make the SUBREG, try to return what we were given. */
9161 if (GET_CODE (varop) == CLOBBER)
9162 return x ? x : varop;
9164 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9165 if (new != 0)
9166 x = new;
9167 else
9168 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9170 /* If we have an outer operation and we just made a shift, it is
9171 possible that we could have simplified the shift were it not
9172 for the outer operation. So try to do the simplification
9173 recursively. */
9175 if (outer_op != UNKNOWN && GET_CODE (x) == code
9176 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9177 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9178 INTVAL (XEXP (x, 1)));
9180 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9181 turn off all the bits that the shift would have turned off. */
9182 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9183 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9184 GET_MODE_MASK (result_mode) >> orig_count);
9186 /* Do the remainder of the processing in RESULT_MODE. */
9187 x = gen_lowpart (result_mode, x);
9189 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9190 operation. */
9191 if (complement_p)
9192 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9194 if (outer_op != UNKNOWN)
9196 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9197 outer_const = trunc_int_for_mode (outer_const, result_mode);
9199 if (outer_op == AND)
9200 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9201 else if (outer_op == SET)
9202 /* This means that we have determined that the result is
9203 equivalent to a constant. This should be rare. */
9204 x = GEN_INT (outer_const);
9205 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9206 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9207 else
9208 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9211 return x;
9214 /* Like recog, but we receive the address of a pointer to a new pattern.
9215 We try to match the rtx that the pointer points to.
9216 If that fails, we may try to modify or replace the pattern,
9217 storing the replacement into the same pointer object.
9219 Modifications include deletion or addition of CLOBBERs.
9221 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9222 the CLOBBERs are placed.
9224 The value is the final insn code from the pattern ultimately matched,
9225 or -1. */
9227 static int
9228 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9230 rtx pat = *pnewpat;
9231 int insn_code_number;
9232 int num_clobbers_to_add = 0;
9233 int i;
9234 rtx notes = 0;
9235 rtx old_notes, old_pat;
9237 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9238 we use to indicate that something didn't match. If we find such a
9239 thing, force rejection. */
9240 if (GET_CODE (pat) == PARALLEL)
9241 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9242 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9243 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9244 return -1;
9246 old_pat = PATTERN (insn);
9247 old_notes = REG_NOTES (insn);
9248 PATTERN (insn) = pat;
9249 REG_NOTES (insn) = 0;
9251 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9253 /* If it isn't, there is the possibility that we previously had an insn
9254 that clobbered some register as a side effect, but the combined
9255 insn doesn't need to do that. So try once more without the clobbers
9256 unless this represents an ASM insn. */
9258 if (insn_code_number < 0 && ! check_asm_operands (pat)
9259 && GET_CODE (pat) == PARALLEL)
9261 int pos;
9263 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9264 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9266 if (i != pos)
9267 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9268 pos++;
9271 SUBST_INT (XVECLEN (pat, 0), pos);
9273 if (pos == 1)
9274 pat = XVECEXP (pat, 0, 0);
9276 PATTERN (insn) = pat;
9277 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9279 PATTERN (insn) = old_pat;
9280 REG_NOTES (insn) = old_notes;
9282 /* Recognize all noop sets, these will be killed by followup pass. */
9283 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9284 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9286 /* If we had any clobbers to add, make a new pattern than contains
9287 them. Then check to make sure that all of them are dead. */
9288 if (num_clobbers_to_add)
9290 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9291 rtvec_alloc (GET_CODE (pat) == PARALLEL
9292 ? (XVECLEN (pat, 0)
9293 + num_clobbers_to_add)
9294 : num_clobbers_to_add + 1));
9296 if (GET_CODE (pat) == PARALLEL)
9297 for (i = 0; i < XVECLEN (pat, 0); i++)
9298 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9299 else
9300 XVECEXP (newpat, 0, 0) = pat;
9302 add_clobbers (newpat, insn_code_number);
9304 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9305 i < XVECLEN (newpat, 0); i++)
9307 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9308 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9309 return -1;
9310 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9311 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9313 pat = newpat;
9316 *pnewpat = pat;
9317 *pnotes = notes;
9319 return insn_code_number;
9322 /* Like gen_lowpart_general but for use by combine. In combine it
9323 is not possible to create any new pseudoregs. However, it is
9324 safe to create invalid memory addresses, because combine will
9325 try to recognize them and all they will do is make the combine
9326 attempt fail.
9328 If for some reason this cannot do its job, an rtx
9329 (clobber (const_int 0)) is returned.
9330 An insn containing that will not be recognized. */
9332 static rtx
9333 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9335 enum machine_mode imode = GET_MODE (x);
9336 unsigned int osize = GET_MODE_SIZE (omode);
9337 unsigned int isize = GET_MODE_SIZE (imode);
9338 rtx result;
9340 if (omode == imode)
9341 return x;
9343 /* Return identity if this is a CONST or symbolic reference. */
9344 if (omode == Pmode
9345 && (GET_CODE (x) == CONST
9346 || GET_CODE (x) == SYMBOL_REF
9347 || GET_CODE (x) == LABEL_REF))
9348 return x;
9350 /* We can only support MODE being wider than a word if X is a
9351 constant integer or has a mode the same size. */
9352 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9353 && ! ((imode == VOIDmode
9354 && (GET_CODE (x) == CONST_INT
9355 || GET_CODE (x) == CONST_DOUBLE))
9356 || isize == osize))
9357 goto fail;
9359 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9360 won't know what to do. So we will strip off the SUBREG here and
9361 process normally. */
9362 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9364 x = SUBREG_REG (x);
9366 /* For use in case we fall down into the address adjustments
9367 further below, we need to adjust the known mode and size of
9368 x; imode and isize, since we just adjusted x. */
9369 imode = GET_MODE (x);
9371 if (imode == omode)
9372 return x;
9374 isize = GET_MODE_SIZE (imode);
9377 result = gen_lowpart_common (omode, x);
9379 #ifdef CANNOT_CHANGE_MODE_CLASS
9380 if (result != 0 && GET_CODE (result) == SUBREG)
9381 record_subregs_of_mode (result);
9382 #endif
9384 if (result)
9385 return result;
9387 if (MEM_P (x))
9389 int offset = 0;
9391 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9392 address. */
9393 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9394 goto fail;
9396 /* If we want to refer to something bigger than the original memref,
9397 generate a paradoxical subreg instead. That will force a reload
9398 of the original memref X. */
9399 if (isize < osize)
9400 return gen_rtx_SUBREG (omode, x, 0);
9402 if (WORDS_BIG_ENDIAN)
9403 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9405 /* Adjust the address so that the address-after-the-data is unchanged. */
9406 if (BYTES_BIG_ENDIAN)
9407 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9409 return adjust_address_nv (x, omode, offset);
9412 /* If X is a comparison operator, rewrite it in a new mode. This
9413 probably won't match, but may allow further simplifications. */
9414 else if (COMPARISON_P (x))
9415 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9417 /* If we couldn't simplify X any other way, just enclose it in a
9418 SUBREG. Normally, this SUBREG won't match, but some patterns may
9419 include an explicit SUBREG or we may simplify it further in combine. */
9420 else
9422 int offset = 0;
9423 rtx res;
9425 offset = subreg_lowpart_offset (omode, imode);
9426 if (imode == VOIDmode)
9428 imode = int_mode_for_mode (omode);
9429 x = gen_lowpart_common (imode, x);
9430 if (x == NULL)
9431 goto fail;
9433 res = simplify_gen_subreg (omode, x, imode, offset);
9434 if (res)
9435 return res;
9438 fail:
9439 return gen_rtx_CLOBBER (imode, const0_rtx);
9442 /* These routines make binary and unary operations by first seeing if they
9443 fold; if not, a new expression is allocated. */
9445 static rtx
9446 gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0, rtx op1)
9448 rtx result;
9449 rtx tem;
9451 if (GET_CODE (op0) == CLOBBER)
9452 return op0;
9453 else if (GET_CODE (op1) == CLOBBER)
9454 return op1;
9456 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9457 && swap_commutative_operands_p (op0, op1))
9458 tem = op0, op0 = op1, op1 = tem;
9460 if (GET_RTX_CLASS (code) == RTX_COMPARE
9461 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
9463 enum machine_mode op_mode = GET_MODE (op0);
9465 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9466 just (REL_OP X Y). */
9467 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9469 op1 = XEXP (op0, 1);
9470 op0 = XEXP (op0, 0);
9471 op_mode = GET_MODE (op0);
9474 if (op_mode == VOIDmode)
9475 op_mode = GET_MODE (op1);
9476 result = simplify_relational_operation (code, mode, op_mode, op0, op1);
9478 else
9479 result = simplify_binary_operation (code, mode, op0, op1);
9481 if (result)
9482 return result;
9484 /* Put complex operands first and constants second. */
9485 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9486 && swap_commutative_operands_p (op0, op1))
9487 return gen_rtx_fmt_ee (code, mode, op1, op0);
9489 /* If we are turning off bits already known off in OP0, we need not do
9490 an AND. */
9491 else if (code == AND && GET_CODE (op1) == CONST_INT
9492 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9493 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9494 return op0;
9496 return gen_rtx_fmt_ee (code, mode, op0, op1);
9499 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9500 comparison code that will be tested.
9502 The result is a possibly different comparison code to use. *POP0 and
9503 *POP1 may be updated.
9505 It is possible that we might detect that a comparison is either always
9506 true or always false. However, we do not perform general constant
9507 folding in combine, so this knowledge isn't useful. Such tautologies
9508 should have been detected earlier. Hence we ignore all such cases. */
9510 static enum rtx_code
9511 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9513 rtx op0 = *pop0;
9514 rtx op1 = *pop1;
9515 rtx tem, tem1;
9516 int i;
9517 enum machine_mode mode, tmode;
9519 /* Try a few ways of applying the same transformation to both operands. */
9520 while (1)
9522 #ifndef WORD_REGISTER_OPERATIONS
9523 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9524 so check specially. */
9525 if (code != GTU && code != GEU && code != LTU && code != LEU
9526 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9527 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9528 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9529 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9530 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9531 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9532 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9533 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9534 && XEXP (op0, 1) == XEXP (op1, 1)
9535 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9536 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9537 && (INTVAL (XEXP (op0, 1))
9538 == (GET_MODE_BITSIZE (GET_MODE (op0))
9539 - (GET_MODE_BITSIZE
9540 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9542 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9543 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9545 #endif
9547 /* If both operands are the same constant shift, see if we can ignore the
9548 shift. We can if the shift is a rotate or if the bits shifted out of
9549 this shift are known to be zero for both inputs and if the type of
9550 comparison is compatible with the shift. */
9551 if (GET_CODE (op0) == GET_CODE (op1)
9552 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9553 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9554 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9555 && (code != GT && code != LT && code != GE && code != LE))
9556 || (GET_CODE (op0) == ASHIFTRT
9557 && (code != GTU && code != LTU
9558 && code != GEU && code != LEU)))
9559 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9560 && INTVAL (XEXP (op0, 1)) >= 0
9561 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9562 && XEXP (op0, 1) == XEXP (op1, 1))
9564 enum machine_mode mode = GET_MODE (op0);
9565 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9566 int shift_count = INTVAL (XEXP (op0, 1));
9568 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9569 mask &= (mask >> shift_count) << shift_count;
9570 else if (GET_CODE (op0) == ASHIFT)
9571 mask = (mask & (mask << shift_count)) >> shift_count;
9573 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9574 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9575 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9576 else
9577 break;
9580 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9581 SUBREGs are of the same mode, and, in both cases, the AND would
9582 be redundant if the comparison was done in the narrower mode,
9583 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9584 and the operand's possibly nonzero bits are 0xffffff01; in that case
9585 if we only care about QImode, we don't need the AND). This case
9586 occurs if the output mode of an scc insn is not SImode and
9587 STORE_FLAG_VALUE == 1 (e.g., the 386).
9589 Similarly, check for a case where the AND's are ZERO_EXTEND
9590 operations from some narrower mode even though a SUBREG is not
9591 present. */
9593 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9594 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9595 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9597 rtx inner_op0 = XEXP (op0, 0);
9598 rtx inner_op1 = XEXP (op1, 0);
9599 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9600 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9601 int changed = 0;
9603 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9604 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9605 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9606 && (GET_MODE (SUBREG_REG (inner_op0))
9607 == GET_MODE (SUBREG_REG (inner_op1)))
9608 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9609 <= HOST_BITS_PER_WIDE_INT)
9610 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9611 GET_MODE (SUBREG_REG (inner_op0)))))
9612 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9613 GET_MODE (SUBREG_REG (inner_op1))))))
9615 op0 = SUBREG_REG (inner_op0);
9616 op1 = SUBREG_REG (inner_op1);
9618 /* The resulting comparison is always unsigned since we masked
9619 off the original sign bit. */
9620 code = unsigned_condition (code);
9622 changed = 1;
9625 else if (c0 == c1)
9626 for (tmode = GET_CLASS_NARROWEST_MODE
9627 (GET_MODE_CLASS (GET_MODE (op0)));
9628 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9629 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9631 op0 = gen_lowpart (tmode, inner_op0);
9632 op1 = gen_lowpart (tmode, inner_op1);
9633 code = unsigned_condition (code);
9634 changed = 1;
9635 break;
9638 if (! changed)
9639 break;
9642 /* If both operands are NOT, we can strip off the outer operation
9643 and adjust the comparison code for swapped operands; similarly for
9644 NEG, except that this must be an equality comparison. */
9645 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9646 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9647 && (code == EQ || code == NE)))
9648 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9650 else
9651 break;
9654 /* If the first operand is a constant, swap the operands and adjust the
9655 comparison code appropriately, but don't do this if the second operand
9656 is already a constant integer. */
9657 if (swap_commutative_operands_p (op0, op1))
9659 tem = op0, op0 = op1, op1 = tem;
9660 code = swap_condition (code);
9663 /* We now enter a loop during which we will try to simplify the comparison.
9664 For the most part, we only are concerned with comparisons with zero,
9665 but some things may really be comparisons with zero but not start
9666 out looking that way. */
9668 while (GET_CODE (op1) == CONST_INT)
9670 enum machine_mode mode = GET_MODE (op0);
9671 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9672 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9673 int equality_comparison_p;
9674 int sign_bit_comparison_p;
9675 int unsigned_comparison_p;
9676 HOST_WIDE_INT const_op;
9678 /* We only want to handle integral modes. This catches VOIDmode,
9679 CCmode, and the floating-point modes. An exception is that we
9680 can handle VOIDmode if OP0 is a COMPARE or a comparison
9681 operation. */
9683 if (GET_MODE_CLASS (mode) != MODE_INT
9684 && ! (mode == VOIDmode
9685 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9686 break;
9688 /* Get the constant we are comparing against and turn off all bits
9689 not on in our mode. */
9690 const_op = INTVAL (op1);
9691 if (mode != VOIDmode)
9692 const_op = trunc_int_for_mode (const_op, mode);
9693 op1 = GEN_INT (const_op);
9695 /* If we are comparing against a constant power of two and the value
9696 being compared can only have that single bit nonzero (e.g., it was
9697 `and'ed with that bit), we can replace this with a comparison
9698 with zero. */
9699 if (const_op
9700 && (code == EQ || code == NE || code == GE || code == GEU
9701 || code == LT || code == LTU)
9702 && mode_width <= HOST_BITS_PER_WIDE_INT
9703 && exact_log2 (const_op) >= 0
9704 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9706 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9707 op1 = const0_rtx, const_op = 0;
9710 /* Similarly, if we are comparing a value known to be either -1 or
9711 0 with -1, change it to the opposite comparison against zero. */
9713 if (const_op == -1
9714 && (code == EQ || code == NE || code == GT || code == LE
9715 || code == GEU || code == LTU)
9716 && num_sign_bit_copies (op0, mode) == mode_width)
9718 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9719 op1 = const0_rtx, const_op = 0;
9722 /* Do some canonicalizations based on the comparison code. We prefer
9723 comparisons against zero and then prefer equality comparisons.
9724 If we can reduce the size of a constant, we will do that too. */
9726 switch (code)
9728 case LT:
9729 /* < C is equivalent to <= (C - 1) */
9730 if (const_op > 0)
9732 const_op -= 1;
9733 op1 = GEN_INT (const_op);
9734 code = LE;
9735 /* ... fall through to LE case below. */
9737 else
9738 break;
9740 case LE:
9741 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9742 if (const_op < 0)
9744 const_op += 1;
9745 op1 = GEN_INT (const_op);
9746 code = LT;
9749 /* If we are doing a <= 0 comparison on a value known to have
9750 a zero sign bit, we can replace this with == 0. */
9751 else if (const_op == 0
9752 && mode_width <= HOST_BITS_PER_WIDE_INT
9753 && (nonzero_bits (op0, mode)
9754 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9755 code = EQ;
9756 break;
9758 case GE:
9759 /* >= C is equivalent to > (C - 1). */
9760 if (const_op > 0)
9762 const_op -= 1;
9763 op1 = GEN_INT (const_op);
9764 code = GT;
9765 /* ... fall through to GT below. */
9767 else
9768 break;
9770 case GT:
9771 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9772 if (const_op < 0)
9774 const_op += 1;
9775 op1 = GEN_INT (const_op);
9776 code = GE;
9779 /* If we are doing a > 0 comparison on a value known to have
9780 a zero sign bit, we can replace this with != 0. */
9781 else if (const_op == 0
9782 && mode_width <= HOST_BITS_PER_WIDE_INT
9783 && (nonzero_bits (op0, mode)
9784 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9785 code = NE;
9786 break;
9788 case LTU:
9789 /* < C is equivalent to <= (C - 1). */
9790 if (const_op > 0)
9792 const_op -= 1;
9793 op1 = GEN_INT (const_op);
9794 code = LEU;
9795 /* ... fall through ... */
9798 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9799 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9800 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9802 const_op = 0, op1 = const0_rtx;
9803 code = GE;
9804 break;
9806 else
9807 break;
9809 case LEU:
9810 /* unsigned <= 0 is equivalent to == 0 */
9811 if (const_op == 0)
9812 code = EQ;
9814 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9815 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9816 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9818 const_op = 0, op1 = const0_rtx;
9819 code = GE;
9821 break;
9823 case GEU:
9824 /* >= C is equivalent to > (C - 1). */
9825 if (const_op > 1)
9827 const_op -= 1;
9828 op1 = GEN_INT (const_op);
9829 code = GTU;
9830 /* ... fall through ... */
9833 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9834 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9835 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9837 const_op = 0, op1 = const0_rtx;
9838 code = LT;
9839 break;
9841 else
9842 break;
9844 case GTU:
9845 /* unsigned > 0 is equivalent to != 0 */
9846 if (const_op == 0)
9847 code = NE;
9849 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9850 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9851 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9853 const_op = 0, op1 = const0_rtx;
9854 code = LT;
9856 break;
9858 default:
9859 break;
9862 /* Compute some predicates to simplify code below. */
9864 equality_comparison_p = (code == EQ || code == NE);
9865 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9866 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9867 || code == GEU);
9869 /* If this is a sign bit comparison and we can do arithmetic in
9870 MODE, say that we will only be needing the sign bit of OP0. */
9871 if (sign_bit_comparison_p
9872 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9873 op0 = force_to_mode (op0, mode,
9874 ((HOST_WIDE_INT) 1
9875 << (GET_MODE_BITSIZE (mode) - 1)),
9876 NULL_RTX, 0);
9878 /* Now try cases based on the opcode of OP0. If none of the cases
9879 does a "continue", we exit this loop immediately after the
9880 switch. */
9882 switch (GET_CODE (op0))
9884 case ZERO_EXTRACT:
9885 /* If we are extracting a single bit from a variable position in
9886 a constant that has only a single bit set and are comparing it
9887 with zero, we can convert this into an equality comparison
9888 between the position and the location of the single bit. */
9889 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9890 have already reduced the shift count modulo the word size. */
9891 if (!SHIFT_COUNT_TRUNCATED
9892 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9893 && XEXP (op0, 1) == const1_rtx
9894 && equality_comparison_p && const_op == 0
9895 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9897 if (BITS_BIG_ENDIAN)
9899 enum machine_mode new_mode
9900 = mode_for_extraction (EP_extzv, 1);
9901 if (new_mode == MAX_MACHINE_MODE)
9902 i = BITS_PER_WORD - 1 - i;
9903 else
9905 mode = new_mode;
9906 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9910 op0 = XEXP (op0, 2);
9911 op1 = GEN_INT (i);
9912 const_op = i;
9914 /* Result is nonzero iff shift count is equal to I. */
9915 code = reverse_condition (code);
9916 continue;
9919 /* ... fall through ... */
9921 case SIGN_EXTRACT:
9922 tem = expand_compound_operation (op0);
9923 if (tem != op0)
9925 op0 = tem;
9926 continue;
9928 break;
9930 case NOT:
9931 /* If testing for equality, we can take the NOT of the constant. */
9932 if (equality_comparison_p
9933 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9935 op0 = XEXP (op0, 0);
9936 op1 = tem;
9937 continue;
9940 /* If just looking at the sign bit, reverse the sense of the
9941 comparison. */
9942 if (sign_bit_comparison_p)
9944 op0 = XEXP (op0, 0);
9945 code = (code == GE ? LT : GE);
9946 continue;
9948 break;
9950 case NEG:
9951 /* If testing for equality, we can take the NEG of the constant. */
9952 if (equality_comparison_p
9953 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9955 op0 = XEXP (op0, 0);
9956 op1 = tem;
9957 continue;
9960 /* The remaining cases only apply to comparisons with zero. */
9961 if (const_op != 0)
9962 break;
9964 /* When X is ABS or is known positive,
9965 (neg X) is < 0 if and only if X != 0. */
9967 if (sign_bit_comparison_p
9968 && (GET_CODE (XEXP (op0, 0)) == ABS
9969 || (mode_width <= HOST_BITS_PER_WIDE_INT
9970 && (nonzero_bits (XEXP (op0, 0), mode)
9971 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9973 op0 = XEXP (op0, 0);
9974 code = (code == LT ? NE : EQ);
9975 continue;
9978 /* If we have NEG of something whose two high-order bits are the
9979 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9980 if (num_sign_bit_copies (op0, mode) >= 2)
9982 op0 = XEXP (op0, 0);
9983 code = swap_condition (code);
9984 continue;
9986 break;
9988 case ROTATE:
9989 /* If we are testing equality and our count is a constant, we
9990 can perform the inverse operation on our RHS. */
9991 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9992 && (tem = simplify_binary_operation (ROTATERT, mode,
9993 op1, XEXP (op0, 1))) != 0)
9995 op0 = XEXP (op0, 0);
9996 op1 = tem;
9997 continue;
10000 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10001 a particular bit. Convert it to an AND of a constant of that
10002 bit. This will be converted into a ZERO_EXTRACT. */
10003 if (const_op == 0 && sign_bit_comparison_p
10004 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10005 && mode_width <= HOST_BITS_PER_WIDE_INT)
10007 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10008 ((HOST_WIDE_INT) 1
10009 << (mode_width - 1
10010 - INTVAL (XEXP (op0, 1)))));
10011 code = (code == LT ? NE : EQ);
10012 continue;
10015 /* Fall through. */
10017 case ABS:
10018 /* ABS is ignorable inside an equality comparison with zero. */
10019 if (const_op == 0 && equality_comparison_p)
10021 op0 = XEXP (op0, 0);
10022 continue;
10024 break;
10026 case SIGN_EXTEND:
10027 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10028 to (compare FOO CONST) if CONST fits in FOO's mode and we
10029 are either testing inequality or have an unsigned comparison
10030 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10031 if (! unsigned_comparison_p
10032 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10033 <= HOST_BITS_PER_WIDE_INT)
10034 && ((unsigned HOST_WIDE_INT) const_op
10035 < (((unsigned HOST_WIDE_INT) 1
10036 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10038 op0 = XEXP (op0, 0);
10039 continue;
10041 break;
10043 case SUBREG:
10044 /* Check for the case where we are comparing A - C1 with C2,
10045 both constants are smaller than 1/2 the maximum positive
10046 value in MODE, and the comparison is equality or unsigned.
10047 In that case, if A is either zero-extended to MODE or has
10048 sufficient sign bits so that the high-order bit in MODE
10049 is a copy of the sign in the inner mode, we can prove that it is
10050 safe to do the operation in the wider mode. This simplifies
10051 many range checks. */
10053 if (mode_width <= HOST_BITS_PER_WIDE_INT
10054 && subreg_lowpart_p (op0)
10055 && GET_CODE (SUBREG_REG (op0)) == PLUS
10056 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10057 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10058 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10059 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10060 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10061 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10062 GET_MODE (SUBREG_REG (op0)))
10063 & ~GET_MODE_MASK (mode))
10064 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10065 GET_MODE (SUBREG_REG (op0)))
10066 > (unsigned int)
10067 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10068 - GET_MODE_BITSIZE (mode)))))
10070 op0 = SUBREG_REG (op0);
10071 continue;
10074 /* If the inner mode is narrower and we are extracting the low part,
10075 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10076 if (subreg_lowpart_p (op0)
10077 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10078 /* Fall through */ ;
10079 else
10080 break;
10082 /* ... fall through ... */
10084 case ZERO_EXTEND:
10085 if ((unsigned_comparison_p || equality_comparison_p)
10086 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10087 <= HOST_BITS_PER_WIDE_INT)
10088 && ((unsigned HOST_WIDE_INT) const_op
10089 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10091 op0 = XEXP (op0, 0);
10092 continue;
10094 break;
10096 case PLUS:
10097 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10098 this for equality comparisons due to pathological cases involving
10099 overflows. */
10100 if (equality_comparison_p
10101 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10102 op1, XEXP (op0, 1))))
10104 op0 = XEXP (op0, 0);
10105 op1 = tem;
10106 continue;
10109 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10110 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10111 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10113 op0 = XEXP (XEXP (op0, 0), 0);
10114 code = (code == LT ? EQ : NE);
10115 continue;
10117 break;
10119 case MINUS:
10120 /* We used to optimize signed comparisons against zero, but that
10121 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10122 arrive here as equality comparisons, or (GEU, LTU) are
10123 optimized away. No need to special-case them. */
10125 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10126 (eq B (minus A C)), whichever simplifies. We can only do
10127 this for equality comparisons due to pathological cases involving
10128 overflows. */
10129 if (equality_comparison_p
10130 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10131 XEXP (op0, 1), op1)))
10133 op0 = XEXP (op0, 0);
10134 op1 = tem;
10135 continue;
10138 if (equality_comparison_p
10139 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10140 XEXP (op0, 0), op1)))
10142 op0 = XEXP (op0, 1);
10143 op1 = tem;
10144 continue;
10147 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10148 of bits in X minus 1, is one iff X > 0. */
10149 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10150 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10151 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10152 == mode_width - 1
10153 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10155 op0 = XEXP (op0, 1);
10156 code = (code == GE ? LE : GT);
10157 continue;
10159 break;
10161 case XOR:
10162 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10163 if C is zero or B is a constant. */
10164 if (equality_comparison_p
10165 && 0 != (tem = simplify_binary_operation (XOR, mode,
10166 XEXP (op0, 1), op1)))
10168 op0 = XEXP (op0, 0);
10169 op1 = tem;
10170 continue;
10172 break;
10174 case EQ: case NE:
10175 case UNEQ: case LTGT:
10176 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10177 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10178 case UNORDERED: case ORDERED:
10179 /* We can't do anything if OP0 is a condition code value, rather
10180 than an actual data value. */
10181 if (const_op != 0
10182 || CC0_P (XEXP (op0, 0))
10183 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10184 break;
10186 /* Get the two operands being compared. */
10187 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10188 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10189 else
10190 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10192 /* Check for the cases where we simply want the result of the
10193 earlier test or the opposite of that result. */
10194 if (code == NE || code == EQ
10195 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10196 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10197 && (STORE_FLAG_VALUE
10198 & (((HOST_WIDE_INT) 1
10199 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10200 && (code == LT || code == GE)))
10202 enum rtx_code new_code;
10203 if (code == LT || code == NE)
10204 new_code = GET_CODE (op0);
10205 else
10206 new_code = combine_reversed_comparison_code (op0);
10208 if (new_code != UNKNOWN)
10210 code = new_code;
10211 op0 = tem;
10212 op1 = tem1;
10213 continue;
10216 break;
10218 case IOR:
10219 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10220 iff X <= 0. */
10221 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10222 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10223 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10225 op0 = XEXP (op0, 1);
10226 code = (code == GE ? GT : LE);
10227 continue;
10229 break;
10231 case AND:
10232 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10233 will be converted to a ZERO_EXTRACT later. */
10234 if (const_op == 0 && equality_comparison_p
10235 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10236 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10238 op0 = simplify_and_const_int
10239 (op0, mode, gen_rtx_LSHIFTRT (mode,
10240 XEXP (op0, 1),
10241 XEXP (XEXP (op0, 0), 1)),
10242 (HOST_WIDE_INT) 1);
10243 continue;
10246 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10247 zero and X is a comparison and C1 and C2 describe only bits set
10248 in STORE_FLAG_VALUE, we can compare with X. */
10249 if (const_op == 0 && equality_comparison_p
10250 && mode_width <= HOST_BITS_PER_WIDE_INT
10251 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10252 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10253 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10254 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10255 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10257 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10258 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10259 if ((~STORE_FLAG_VALUE & mask) == 0
10260 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10261 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10262 && COMPARISON_P (tem))))
10264 op0 = XEXP (XEXP (op0, 0), 0);
10265 continue;
10269 /* If we are doing an equality comparison of an AND of a bit equal
10270 to the sign bit, replace this with a LT or GE comparison of
10271 the underlying value. */
10272 if (equality_comparison_p
10273 && const_op == 0
10274 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10275 && mode_width <= HOST_BITS_PER_WIDE_INT
10276 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10277 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10279 op0 = XEXP (op0, 0);
10280 code = (code == EQ ? GE : LT);
10281 continue;
10284 /* If this AND operation is really a ZERO_EXTEND from a narrower
10285 mode, the constant fits within that mode, and this is either an
10286 equality or unsigned comparison, try to do this comparison in
10287 the narrower mode. */
10288 if ((equality_comparison_p || unsigned_comparison_p)
10289 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10290 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10291 & GET_MODE_MASK (mode))
10292 + 1)) >= 0
10293 && const_op >> i == 0
10294 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10296 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10297 continue;
10300 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10301 fits in both M1 and M2 and the SUBREG is either paradoxical
10302 or represents the low part, permute the SUBREG and the AND
10303 and try again. */
10304 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10306 unsigned HOST_WIDE_INT c1;
10307 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10308 /* Require an integral mode, to avoid creating something like
10309 (AND:SF ...). */
10310 if (SCALAR_INT_MODE_P (tmode)
10311 /* It is unsafe to commute the AND into the SUBREG if the
10312 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10313 not defined. As originally written the upper bits
10314 have a defined value due to the AND operation.
10315 However, if we commute the AND inside the SUBREG then
10316 they no longer have defined values and the meaning of
10317 the code has been changed. */
10318 && (0
10319 #ifdef WORD_REGISTER_OPERATIONS
10320 || (mode_width > GET_MODE_BITSIZE (tmode)
10321 && mode_width <= BITS_PER_WORD)
10322 #endif
10323 || (mode_width <= GET_MODE_BITSIZE (tmode)
10324 && subreg_lowpart_p (XEXP (op0, 0))))
10325 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10326 && mode_width <= HOST_BITS_PER_WIDE_INT
10327 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10328 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10329 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10330 && c1 != mask
10331 && c1 != GET_MODE_MASK (tmode))
10333 op0 = gen_binary (AND, tmode,
10334 SUBREG_REG (XEXP (op0, 0)),
10335 gen_int_mode (c1, tmode));
10336 op0 = gen_lowpart (mode, op0);
10337 continue;
10341 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10342 if (const_op == 0 && equality_comparison_p
10343 && XEXP (op0, 1) == const1_rtx
10344 && GET_CODE (XEXP (op0, 0)) == NOT)
10346 op0 = simplify_and_const_int
10347 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10348 code = (code == NE ? EQ : NE);
10349 continue;
10352 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10353 (eq (and (lshiftrt X) 1) 0).
10354 Also handle the case where (not X) is expressed using xor. */
10355 if (const_op == 0 && equality_comparison_p
10356 && XEXP (op0, 1) == const1_rtx
10357 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10359 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10360 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10362 if (GET_CODE (shift_op) == NOT
10363 || (GET_CODE (shift_op) == XOR
10364 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10365 && GET_CODE (shift_count) == CONST_INT
10366 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10367 && (INTVAL (XEXP (shift_op, 1))
10368 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10370 op0 = simplify_and_const_int
10371 (NULL_RTX, mode,
10372 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10373 (HOST_WIDE_INT) 1);
10374 code = (code == NE ? EQ : NE);
10375 continue;
10378 break;
10380 case ASHIFT:
10381 /* If we have (compare (ashift FOO N) (const_int C)) and
10382 the high order N bits of FOO (N+1 if an inequality comparison)
10383 are known to be zero, we can do this by comparing FOO with C
10384 shifted right N bits so long as the low-order N bits of C are
10385 zero. */
10386 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10387 && INTVAL (XEXP (op0, 1)) >= 0
10388 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10389 < HOST_BITS_PER_WIDE_INT)
10390 && ((const_op
10391 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10392 && mode_width <= HOST_BITS_PER_WIDE_INT
10393 && (nonzero_bits (XEXP (op0, 0), mode)
10394 & ~(mask >> (INTVAL (XEXP (op0, 1))
10395 + ! equality_comparison_p))) == 0)
10397 /* We must perform a logical shift, not an arithmetic one,
10398 as we want the top N bits of C to be zero. */
10399 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10401 temp >>= INTVAL (XEXP (op0, 1));
10402 op1 = gen_int_mode (temp, mode);
10403 op0 = XEXP (op0, 0);
10404 continue;
10407 /* If we are doing a sign bit comparison, it means we are testing
10408 a particular bit. Convert it to the appropriate AND. */
10409 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10410 && mode_width <= HOST_BITS_PER_WIDE_INT)
10412 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10413 ((HOST_WIDE_INT) 1
10414 << (mode_width - 1
10415 - INTVAL (XEXP (op0, 1)))));
10416 code = (code == LT ? NE : EQ);
10417 continue;
10420 /* If this an equality comparison with zero and we are shifting
10421 the low bit to the sign bit, we can convert this to an AND of the
10422 low-order bit. */
10423 if (const_op == 0 && equality_comparison_p
10424 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10425 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10426 == mode_width - 1)
10428 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10429 (HOST_WIDE_INT) 1);
10430 continue;
10432 break;
10434 case ASHIFTRT:
10435 /* If this is an equality comparison with zero, we can do this
10436 as a logical shift, which might be much simpler. */
10437 if (equality_comparison_p && const_op == 0
10438 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10440 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10441 XEXP (op0, 0),
10442 INTVAL (XEXP (op0, 1)));
10443 continue;
10446 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10447 do the comparison in a narrower mode. */
10448 if (! unsigned_comparison_p
10449 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10450 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10451 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10452 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10453 MODE_INT, 1)) != BLKmode
10454 && (((unsigned HOST_WIDE_INT) const_op
10455 + (GET_MODE_MASK (tmode) >> 1) + 1)
10456 <= GET_MODE_MASK (tmode)))
10458 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10459 continue;
10462 /* Likewise if OP0 is a PLUS of a sign extension with a
10463 constant, which is usually represented with the PLUS
10464 between the shifts. */
10465 if (! unsigned_comparison_p
10466 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10467 && GET_CODE (XEXP (op0, 0)) == PLUS
10468 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10469 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10470 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10471 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10472 MODE_INT, 1)) != BLKmode
10473 && (((unsigned HOST_WIDE_INT) const_op
10474 + (GET_MODE_MASK (tmode) >> 1) + 1)
10475 <= GET_MODE_MASK (tmode)))
10477 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10478 rtx add_const = XEXP (XEXP (op0, 0), 1);
10479 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10480 XEXP (op0, 1));
10482 op0 = gen_binary (PLUS, tmode,
10483 gen_lowpart (tmode, inner),
10484 new_const);
10485 continue;
10488 /* ... fall through ... */
10489 case LSHIFTRT:
10490 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10491 the low order N bits of FOO are known to be zero, we can do this
10492 by comparing FOO with C shifted left N bits so long as no
10493 overflow occurs. */
10494 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10495 && INTVAL (XEXP (op0, 1)) >= 0
10496 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10497 && mode_width <= HOST_BITS_PER_WIDE_INT
10498 && (nonzero_bits (XEXP (op0, 0), mode)
10499 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10500 && (((unsigned HOST_WIDE_INT) const_op
10501 + (GET_CODE (op0) != LSHIFTRT
10502 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10503 + 1)
10504 : 0))
10505 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10507 /* If the shift was logical, then we must make the condition
10508 unsigned. */
10509 if (GET_CODE (op0) == LSHIFTRT)
10510 code = unsigned_condition (code);
10512 const_op <<= INTVAL (XEXP (op0, 1));
10513 op1 = GEN_INT (const_op);
10514 op0 = XEXP (op0, 0);
10515 continue;
10518 /* If we are using this shift to extract just the sign bit, we
10519 can replace this with an LT or GE comparison. */
10520 if (const_op == 0
10521 && (equality_comparison_p || sign_bit_comparison_p)
10522 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10523 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10524 == mode_width - 1)
10526 op0 = XEXP (op0, 0);
10527 code = (code == NE || code == GT ? LT : GE);
10528 continue;
10530 break;
10532 default:
10533 break;
10536 break;
10539 /* Now make any compound operations involved in this comparison. Then,
10540 check for an outmost SUBREG on OP0 that is not doing anything or is
10541 paradoxical. The latter transformation must only be performed when
10542 it is known that the "extra" bits will be the same in op0 and op1 or
10543 that they don't matter. There are three cases to consider:
10545 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10546 care bits and we can assume they have any convenient value. So
10547 making the transformation is safe.
10549 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10550 In this case the upper bits of op0 are undefined. We should not make
10551 the simplification in that case as we do not know the contents of
10552 those bits.
10554 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10555 UNKNOWN. In that case we know those bits are zeros or ones. We must
10556 also be sure that they are the same as the upper bits of op1.
10558 We can never remove a SUBREG for a non-equality comparison because
10559 the sign bit is in a different place in the underlying object. */
10561 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10562 op1 = make_compound_operation (op1, SET);
10564 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10565 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10566 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10567 && (code == NE || code == EQ))
10569 if (GET_MODE_SIZE (GET_MODE (op0))
10570 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10572 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10573 implemented. */
10574 if (REG_P (SUBREG_REG (op0)))
10576 op0 = SUBREG_REG (op0);
10577 op1 = gen_lowpart (GET_MODE (op0), op1);
10580 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10581 <= HOST_BITS_PER_WIDE_INT)
10582 && (nonzero_bits (SUBREG_REG (op0),
10583 GET_MODE (SUBREG_REG (op0)))
10584 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10586 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10588 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10589 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10590 op0 = SUBREG_REG (op0), op1 = tem;
10594 /* We now do the opposite procedure: Some machines don't have compare
10595 insns in all modes. If OP0's mode is an integer mode smaller than a
10596 word and we can't do a compare in that mode, see if there is a larger
10597 mode for which we can do the compare. There are a number of cases in
10598 which we can use the wider mode. */
10600 mode = GET_MODE (op0);
10601 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10602 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10603 && ! have_insn_for (COMPARE, mode))
10604 for (tmode = GET_MODE_WIDER_MODE (mode);
10605 (tmode != VOIDmode
10606 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10607 tmode = GET_MODE_WIDER_MODE (tmode))
10608 if (have_insn_for (COMPARE, tmode))
10610 int zero_extended;
10612 /* If the only nonzero bits in OP0 and OP1 are those in the
10613 narrower mode and this is an equality or unsigned comparison,
10614 we can use the wider mode. Similarly for sign-extended
10615 values, in which case it is true for all comparisons. */
10616 zero_extended = ((code == EQ || code == NE
10617 || code == GEU || code == GTU
10618 || code == LEU || code == LTU)
10619 && (nonzero_bits (op0, tmode)
10620 & ~GET_MODE_MASK (mode)) == 0
10621 && ((GET_CODE (op1) == CONST_INT
10622 || (nonzero_bits (op1, tmode)
10623 & ~GET_MODE_MASK (mode)) == 0)));
10625 if (zero_extended
10626 || ((num_sign_bit_copies (op0, tmode)
10627 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10628 - GET_MODE_BITSIZE (mode)))
10629 && (num_sign_bit_copies (op1, tmode)
10630 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10631 - GET_MODE_BITSIZE (mode)))))
10633 /* If OP0 is an AND and we don't have an AND in MODE either,
10634 make a new AND in the proper mode. */
10635 if (GET_CODE (op0) == AND
10636 && !have_insn_for (AND, mode))
10637 op0 = gen_binary (AND, tmode,
10638 gen_lowpart (tmode,
10639 XEXP (op0, 0)),
10640 gen_lowpart (tmode,
10641 XEXP (op0, 1)));
10643 op0 = gen_lowpart (tmode, op0);
10644 if (zero_extended && GET_CODE (op1) == CONST_INT)
10645 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10646 op1 = gen_lowpart (tmode, op1);
10647 break;
10650 /* If this is a test for negative, we can make an explicit
10651 test of the sign bit. */
10653 if (op1 == const0_rtx && (code == LT || code == GE)
10654 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10656 op0 = gen_binary (AND, tmode,
10657 gen_lowpart (tmode, op0),
10658 GEN_INT ((HOST_WIDE_INT) 1
10659 << (GET_MODE_BITSIZE (mode) - 1)));
10660 code = (code == LT) ? NE : EQ;
10661 break;
10665 #ifdef CANONICALIZE_COMPARISON
10666 /* If this machine only supports a subset of valid comparisons, see if we
10667 can convert an unsupported one into a supported one. */
10668 CANONICALIZE_COMPARISON (code, op0, op1);
10669 #endif
10671 *pop0 = op0;
10672 *pop1 = op1;
10674 return code;
10677 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
10678 searching backward. */
10679 static enum rtx_code
10680 combine_reversed_comparison_code (rtx exp)
10682 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
10683 rtx x;
10685 if (code1 != UNKNOWN
10686 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
10687 return code1;
10688 /* Otherwise try and find where the condition codes were last set and
10689 use that. */
10690 x = get_last_value (XEXP (exp, 0));
10691 if (!x || GET_CODE (x) != COMPARE)
10692 return UNKNOWN;
10693 return reversed_comparison_code_parts (GET_CODE (exp),
10694 XEXP (x, 0), XEXP (x, 1), NULL);
10697 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
10698 Return NULL_RTX in case we fail to do the reversal. */
10699 static rtx
10700 reversed_comparison (rtx exp, enum machine_mode mode, rtx op0, rtx op1)
10702 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
10703 if (reversed_code == UNKNOWN)
10704 return NULL_RTX;
10705 else
10706 return gen_binary (reversed_code, mode, op0, op1);
10709 /* Utility function for following routine. Called when X is part of a value
10710 being stored into last_set_value. Sets last_set_table_tick
10711 for each register mentioned. Similar to mention_regs in cse.c */
10713 static void
10714 update_table_tick (rtx x)
10716 enum rtx_code code = GET_CODE (x);
10717 const char *fmt = GET_RTX_FORMAT (code);
10718 int i;
10720 if (code == REG)
10722 unsigned int regno = REGNO (x);
10723 unsigned int endregno
10724 = regno + (regno < FIRST_PSEUDO_REGISTER
10725 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10726 unsigned int r;
10728 for (r = regno; r < endregno; r++)
10729 reg_stat[r].last_set_table_tick = label_tick;
10731 return;
10734 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10735 /* Note that we can't have an "E" in values stored; see
10736 get_last_value_validate. */
10737 if (fmt[i] == 'e')
10739 /* Check for identical subexpressions. If x contains
10740 identical subexpression we only have to traverse one of
10741 them. */
10742 if (i == 0 && ARITHMETIC_P (x))
10744 /* Note that at this point x1 has already been
10745 processed. */
10746 rtx x0 = XEXP (x, 0);
10747 rtx x1 = XEXP (x, 1);
10749 /* If x0 and x1 are identical then there is no need to
10750 process x0. */
10751 if (x0 == x1)
10752 break;
10754 /* If x0 is identical to a subexpression of x1 then while
10755 processing x1, x0 has already been processed. Thus we
10756 are done with x. */
10757 if (ARITHMETIC_P (x1)
10758 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10759 break;
10761 /* If x1 is identical to a subexpression of x0 then we
10762 still have to process the rest of x0. */
10763 if (ARITHMETIC_P (x0)
10764 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10766 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10767 break;
10771 update_table_tick (XEXP (x, i));
10775 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10776 are saying that the register is clobbered and we no longer know its
10777 value. If INSN is zero, don't update reg_stat[].last_set; this is
10778 only permitted with VALUE also zero and is used to invalidate the
10779 register. */
10781 static void
10782 record_value_for_reg (rtx reg, rtx insn, rtx value)
10784 unsigned int regno = REGNO (reg);
10785 unsigned int endregno
10786 = regno + (regno < FIRST_PSEUDO_REGISTER
10787 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10788 unsigned int i;
10790 /* If VALUE contains REG and we have a previous value for REG, substitute
10791 the previous value. */
10792 if (value && insn && reg_overlap_mentioned_p (reg, value))
10794 rtx tem;
10796 /* Set things up so get_last_value is allowed to see anything set up to
10797 our insn. */
10798 subst_low_cuid = INSN_CUID (insn);
10799 tem = get_last_value (reg);
10801 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10802 it isn't going to be useful and will take a lot of time to process,
10803 so just use the CLOBBER. */
10805 if (tem)
10807 if (ARITHMETIC_P (tem)
10808 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10809 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10810 tem = XEXP (tem, 0);
10812 value = replace_rtx (copy_rtx (value), reg, tem);
10816 /* For each register modified, show we don't know its value, that
10817 we don't know about its bitwise content, that its value has been
10818 updated, and that we don't know the location of the death of the
10819 register. */
10820 for (i = regno; i < endregno; i++)
10822 if (insn)
10823 reg_stat[i].last_set = insn;
10825 reg_stat[i].last_set_value = 0;
10826 reg_stat[i].last_set_mode = 0;
10827 reg_stat[i].last_set_nonzero_bits = 0;
10828 reg_stat[i].last_set_sign_bit_copies = 0;
10829 reg_stat[i].last_death = 0;
10832 /* Mark registers that are being referenced in this value. */
10833 if (value)
10834 update_table_tick (value);
10836 /* Now update the status of each register being set.
10837 If someone is using this register in this block, set this register
10838 to invalid since we will get confused between the two lives in this
10839 basic block. This makes using this register always invalid. In cse, we
10840 scan the table to invalidate all entries using this register, but this
10841 is too much work for us. */
10843 for (i = regno; i < endregno; i++)
10845 reg_stat[i].last_set_label = label_tick;
10846 if (value && reg_stat[i].last_set_table_tick == label_tick)
10847 reg_stat[i].last_set_invalid = 1;
10848 else
10849 reg_stat[i].last_set_invalid = 0;
10852 /* The value being assigned might refer to X (like in "x++;"). In that
10853 case, we must replace it with (clobber (const_int 0)) to prevent
10854 infinite loops. */
10855 if (value && ! get_last_value_validate (&value, insn,
10856 reg_stat[regno].last_set_label, 0))
10858 value = copy_rtx (value);
10859 if (! get_last_value_validate (&value, insn,
10860 reg_stat[regno].last_set_label, 1))
10861 value = 0;
10864 /* For the main register being modified, update the value, the mode, the
10865 nonzero bits, and the number of sign bit copies. */
10867 reg_stat[regno].last_set_value = value;
10869 if (value)
10871 enum machine_mode mode = GET_MODE (reg);
10872 subst_low_cuid = INSN_CUID (insn);
10873 reg_stat[regno].last_set_mode = mode;
10874 if (GET_MODE_CLASS (mode) == MODE_INT
10875 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10876 mode = nonzero_bits_mode;
10877 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10878 reg_stat[regno].last_set_sign_bit_copies
10879 = num_sign_bit_copies (value, GET_MODE (reg));
10883 /* Called via note_stores from record_dead_and_set_regs to handle one
10884 SET or CLOBBER in an insn. DATA is the instruction in which the
10885 set is occurring. */
10887 static void
10888 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10890 rtx record_dead_insn = (rtx) data;
10892 if (GET_CODE (dest) == SUBREG)
10893 dest = SUBREG_REG (dest);
10895 if (REG_P (dest))
10897 /* If we are setting the whole register, we know its value. Otherwise
10898 show that we don't know the value. We can handle SUBREG in
10899 some cases. */
10900 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10901 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10902 else if (GET_CODE (setter) == SET
10903 && GET_CODE (SET_DEST (setter)) == SUBREG
10904 && SUBREG_REG (SET_DEST (setter)) == dest
10905 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10906 && subreg_lowpart_p (SET_DEST (setter)))
10907 record_value_for_reg (dest, record_dead_insn,
10908 gen_lowpart (GET_MODE (dest),
10909 SET_SRC (setter)));
10910 else
10911 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
10913 else if (MEM_P (dest)
10914 /* Ignore pushes, they clobber nothing. */
10915 && ! push_operand (dest, GET_MODE (dest)))
10916 mem_last_set = INSN_CUID (record_dead_insn);
10919 /* Update the records of when each REG was most recently set or killed
10920 for the things done by INSN. This is the last thing done in processing
10921 INSN in the combiner loop.
10923 We update reg_stat[], in particular fields last_set, last_set_value,
10924 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
10925 last_death, and also the similar information mem_last_set (which insn
10926 most recently modified memory) and last_call_cuid (which insn was the
10927 most recent subroutine call). */
10929 static void
10930 record_dead_and_set_regs (rtx insn)
10932 rtx link;
10933 unsigned int i;
10935 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
10937 if (REG_NOTE_KIND (link) == REG_DEAD
10938 && REG_P (XEXP (link, 0)))
10940 unsigned int regno = REGNO (XEXP (link, 0));
10941 unsigned int endregno
10942 = regno + (regno < FIRST_PSEUDO_REGISTER
10943 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
10944 : 1);
10946 for (i = regno; i < endregno; i++)
10947 reg_stat[i].last_death = insn;
10949 else if (REG_NOTE_KIND (link) == REG_INC)
10950 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
10953 if (CALL_P (insn))
10955 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
10956 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
10958 reg_stat[i].last_set_value = 0;
10959 reg_stat[i].last_set_mode = 0;
10960 reg_stat[i].last_set_nonzero_bits = 0;
10961 reg_stat[i].last_set_sign_bit_copies = 0;
10962 reg_stat[i].last_death = 0;
10965 last_call_cuid = mem_last_set = INSN_CUID (insn);
10967 /* Don't bother recording what this insn does. It might set the
10968 return value register, but we can't combine into a call
10969 pattern anyway, so there's no point trying (and it may cause
10970 a crash, if e.g. we wind up asking for last_set_value of a
10971 SUBREG of the return value register). */
10972 return;
10975 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
10978 /* If a SUBREG has the promoted bit set, it is in fact a property of the
10979 register present in the SUBREG, so for each such SUBREG go back and
10980 adjust nonzero and sign bit information of the registers that are
10981 known to have some zero/sign bits set.
10983 This is needed because when combine blows the SUBREGs away, the
10984 information on zero/sign bits is lost and further combines can be
10985 missed because of that. */
10987 static void
10988 record_promoted_value (rtx insn, rtx subreg)
10990 rtx links, set;
10991 unsigned int regno = REGNO (SUBREG_REG (subreg));
10992 enum machine_mode mode = GET_MODE (subreg);
10994 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
10995 return;
10997 for (links = LOG_LINKS (insn); links;)
10999 insn = XEXP (links, 0);
11000 set = single_set (insn);
11002 if (! set || !REG_P (SET_DEST (set))
11003 || REGNO (SET_DEST (set)) != regno
11004 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11006 links = XEXP (links, 1);
11007 continue;
11010 if (reg_stat[regno].last_set == insn)
11012 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11013 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11016 if (REG_P (SET_SRC (set)))
11018 regno = REGNO (SET_SRC (set));
11019 links = LOG_LINKS (insn);
11021 else
11022 break;
11026 /* Scan X for promoted SUBREGs. For each one found,
11027 note what it implies to the registers used in it. */
11029 static void
11030 check_promoted_subreg (rtx insn, rtx x)
11032 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11033 && REG_P (SUBREG_REG (x)))
11034 record_promoted_value (insn, x);
11035 else
11037 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11038 int i, j;
11040 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11041 switch (format[i])
11043 case 'e':
11044 check_promoted_subreg (insn, XEXP (x, i));
11045 break;
11046 case 'V':
11047 case 'E':
11048 if (XVEC (x, i) != 0)
11049 for (j = 0; j < XVECLEN (x, i); j++)
11050 check_promoted_subreg (insn, XVECEXP (x, i, j));
11051 break;
11056 /* Utility routine for the following function. Verify that all the registers
11057 mentioned in *LOC are valid when *LOC was part of a value set when
11058 label_tick == TICK. Return 0 if some are not.
11060 If REPLACE is nonzero, replace the invalid reference with
11061 (clobber (const_int 0)) and return 1. This replacement is useful because
11062 we often can get useful information about the form of a value (e.g., if
11063 it was produced by a shift that always produces -1 or 0) even though
11064 we don't know exactly what registers it was produced from. */
11066 static int
11067 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11069 rtx x = *loc;
11070 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11071 int len = GET_RTX_LENGTH (GET_CODE (x));
11072 int i;
11074 if (REG_P (x))
11076 unsigned int regno = REGNO (x);
11077 unsigned int endregno
11078 = regno + (regno < FIRST_PSEUDO_REGISTER
11079 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11080 unsigned int j;
11082 for (j = regno; j < endregno; j++)
11083 if (reg_stat[j].last_set_invalid
11084 /* If this is a pseudo-register that was only set once and not
11085 live at the beginning of the function, it is always valid. */
11086 || (! (regno >= FIRST_PSEUDO_REGISTER
11087 && REG_N_SETS (regno) == 1
11088 && (! REGNO_REG_SET_P
11089 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11090 && reg_stat[j].last_set_label > tick))
11092 if (replace)
11093 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11094 return replace;
11097 return 1;
11099 /* If this is a memory reference, make sure that there were
11100 no stores after it that might have clobbered the value. We don't
11101 have alias info, so we assume any store invalidates it. */
11102 else if (MEM_P (x) && !MEM_READONLY_P (x)
11103 && INSN_CUID (insn) <= mem_last_set)
11105 if (replace)
11106 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11107 return replace;
11110 for (i = 0; i < len; i++)
11112 if (fmt[i] == 'e')
11114 /* Check for identical subexpressions. If x contains
11115 identical subexpression we only have to traverse one of
11116 them. */
11117 if (i == 1 && ARITHMETIC_P (x))
11119 /* Note that at this point x0 has already been checked
11120 and found valid. */
11121 rtx x0 = XEXP (x, 0);
11122 rtx x1 = XEXP (x, 1);
11124 /* If x0 and x1 are identical then x is also valid. */
11125 if (x0 == x1)
11126 return 1;
11128 /* If x1 is identical to a subexpression of x0 then
11129 while checking x0, x1 has already been checked. Thus
11130 it is valid and so as x. */
11131 if (ARITHMETIC_P (x0)
11132 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11133 return 1;
11135 /* If x0 is identical to a subexpression of x1 then x is
11136 valid iff the rest of x1 is valid. */
11137 if (ARITHMETIC_P (x1)
11138 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11139 return
11140 get_last_value_validate (&XEXP (x1,
11141 x0 == XEXP (x1, 0) ? 1 : 0),
11142 insn, tick, replace);
11145 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11146 replace) == 0)
11147 return 0;
11149 /* Don't bother with these. They shouldn't occur anyway. */
11150 else if (fmt[i] == 'E')
11151 return 0;
11154 /* If we haven't found a reason for it to be invalid, it is valid. */
11155 return 1;
11158 /* Get the last value assigned to X, if known. Some registers
11159 in the value may be replaced with (clobber (const_int 0)) if their value
11160 is known longer known reliably. */
11162 static rtx
11163 get_last_value (rtx x)
11165 unsigned int regno;
11166 rtx value;
11168 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11169 then convert it to the desired mode. If this is a paradoxical SUBREG,
11170 we cannot predict what values the "extra" bits might have. */
11171 if (GET_CODE (x) == SUBREG
11172 && subreg_lowpart_p (x)
11173 && (GET_MODE_SIZE (GET_MODE (x))
11174 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11175 && (value = get_last_value (SUBREG_REG (x))) != 0)
11176 return gen_lowpart (GET_MODE (x), value);
11178 if (!REG_P (x))
11179 return 0;
11181 regno = REGNO (x);
11182 value = reg_stat[regno].last_set_value;
11184 /* If we don't have a value, or if it isn't for this basic block and
11185 it's either a hard register, set more than once, or it's a live
11186 at the beginning of the function, return 0.
11188 Because if it's not live at the beginning of the function then the reg
11189 is always set before being used (is never used without being set).
11190 And, if it's set only once, and it's always set before use, then all
11191 uses must have the same last value, even if it's not from this basic
11192 block. */
11194 if (value == 0
11195 || (reg_stat[regno].last_set_label != label_tick
11196 && (regno < FIRST_PSEUDO_REGISTER
11197 || REG_N_SETS (regno) != 1
11198 || (REGNO_REG_SET_P
11199 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11200 return 0;
11202 /* If the value was set in a later insn than the ones we are processing,
11203 we can't use it even if the register was only set once. */
11204 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11205 return 0;
11207 /* If the value has all its registers valid, return it. */
11208 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11209 reg_stat[regno].last_set_label, 0))
11210 return value;
11212 /* Otherwise, make a copy and replace any invalid register with
11213 (clobber (const_int 0)). If that fails for some reason, return 0. */
11215 value = copy_rtx (value);
11216 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11217 reg_stat[regno].last_set_label, 1))
11218 return value;
11220 return 0;
11223 /* Return nonzero if expression X refers to a REG or to memory
11224 that is set in an instruction more recent than FROM_CUID. */
11226 static int
11227 use_crosses_set_p (rtx x, int from_cuid)
11229 const char *fmt;
11230 int i;
11231 enum rtx_code code = GET_CODE (x);
11233 if (code == REG)
11235 unsigned int regno = REGNO (x);
11236 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11237 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11239 #ifdef PUSH_ROUNDING
11240 /* Don't allow uses of the stack pointer to be moved,
11241 because we don't know whether the move crosses a push insn. */
11242 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11243 return 1;
11244 #endif
11245 for (; regno < endreg; regno++)
11246 if (reg_stat[regno].last_set
11247 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11248 return 1;
11249 return 0;
11252 if (code == MEM && mem_last_set > from_cuid)
11253 return 1;
11255 fmt = GET_RTX_FORMAT (code);
11257 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11259 if (fmt[i] == 'E')
11261 int j;
11262 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11263 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11264 return 1;
11266 else if (fmt[i] == 'e'
11267 && use_crosses_set_p (XEXP (x, i), from_cuid))
11268 return 1;
11270 return 0;
11273 /* Define three variables used for communication between the following
11274 routines. */
11276 static unsigned int reg_dead_regno, reg_dead_endregno;
11277 static int reg_dead_flag;
11279 /* Function called via note_stores from reg_dead_at_p.
11281 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11282 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11284 static void
11285 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11287 unsigned int regno, endregno;
11289 if (!REG_P (dest))
11290 return;
11292 regno = REGNO (dest);
11293 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11294 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11296 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11297 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11300 /* Return nonzero if REG is known to be dead at INSN.
11302 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11303 referencing REG, it is dead. If we hit a SET referencing REG, it is
11304 live. Otherwise, see if it is live or dead at the start of the basic
11305 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11306 must be assumed to be always live. */
11308 static int
11309 reg_dead_at_p (rtx reg, rtx insn)
11311 basic_block block;
11312 unsigned int i;
11314 /* Set variables for reg_dead_at_p_1. */
11315 reg_dead_regno = REGNO (reg);
11316 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11317 ? hard_regno_nregs[reg_dead_regno]
11318 [GET_MODE (reg)]
11319 : 1);
11321 reg_dead_flag = 0;
11323 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11324 we allow the machine description to decide whether use-and-clobber
11325 patterns are OK. */
11326 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11328 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11329 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11330 return 0;
11333 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11334 beginning of function. */
11335 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11336 insn = prev_nonnote_insn (insn))
11338 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11339 if (reg_dead_flag)
11340 return reg_dead_flag == 1 ? 1 : 0;
11342 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11343 return 1;
11346 /* Get the basic block that we were in. */
11347 if (insn == 0)
11348 block = ENTRY_BLOCK_PTR->next_bb;
11349 else
11351 FOR_EACH_BB (block)
11352 if (insn == BB_HEAD (block))
11353 break;
11355 if (block == EXIT_BLOCK_PTR)
11356 return 0;
11359 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11360 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11361 return 0;
11363 return 1;
11366 /* Note hard registers in X that are used. This code is similar to
11367 that in flow.c, but much simpler since we don't care about pseudos. */
11369 static void
11370 mark_used_regs_combine (rtx x)
11372 RTX_CODE code = GET_CODE (x);
11373 unsigned int regno;
11374 int i;
11376 switch (code)
11378 case LABEL_REF:
11379 case SYMBOL_REF:
11380 case CONST_INT:
11381 case CONST:
11382 case CONST_DOUBLE:
11383 case CONST_VECTOR:
11384 case PC:
11385 case ADDR_VEC:
11386 case ADDR_DIFF_VEC:
11387 case ASM_INPUT:
11388 #ifdef HAVE_cc0
11389 /* CC0 must die in the insn after it is set, so we don't need to take
11390 special note of it here. */
11391 case CC0:
11392 #endif
11393 return;
11395 case CLOBBER:
11396 /* If we are clobbering a MEM, mark any hard registers inside the
11397 address as used. */
11398 if (MEM_P (XEXP (x, 0)))
11399 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11400 return;
11402 case REG:
11403 regno = REGNO (x);
11404 /* A hard reg in a wide mode may really be multiple registers.
11405 If so, mark all of them just like the first. */
11406 if (regno < FIRST_PSEUDO_REGISTER)
11408 unsigned int endregno, r;
11410 /* None of this applies to the stack, frame or arg pointers. */
11411 if (regno == STACK_POINTER_REGNUM
11412 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11413 || regno == HARD_FRAME_POINTER_REGNUM
11414 #endif
11415 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11416 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11417 #endif
11418 || regno == FRAME_POINTER_REGNUM)
11419 return;
11421 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11422 for (r = regno; r < endregno; r++)
11423 SET_HARD_REG_BIT (newpat_used_regs, r);
11425 return;
11427 case SET:
11429 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11430 the address. */
11431 rtx testreg = SET_DEST (x);
11433 while (GET_CODE (testreg) == SUBREG
11434 || GET_CODE (testreg) == ZERO_EXTRACT
11435 || GET_CODE (testreg) == STRICT_LOW_PART)
11436 testreg = XEXP (testreg, 0);
11438 if (MEM_P (testreg))
11439 mark_used_regs_combine (XEXP (testreg, 0));
11441 mark_used_regs_combine (SET_SRC (x));
11443 return;
11445 default:
11446 break;
11449 /* Recursively scan the operands of this expression. */
11452 const char *fmt = GET_RTX_FORMAT (code);
11454 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11456 if (fmt[i] == 'e')
11457 mark_used_regs_combine (XEXP (x, i));
11458 else if (fmt[i] == 'E')
11460 int j;
11462 for (j = 0; j < XVECLEN (x, i); j++)
11463 mark_used_regs_combine (XVECEXP (x, i, j));
11469 /* Remove register number REGNO from the dead registers list of INSN.
11471 Return the note used to record the death, if there was one. */
11474 remove_death (unsigned int regno, rtx insn)
11476 rtx note = find_regno_note (insn, REG_DEAD, regno);
11478 if (note)
11480 REG_N_DEATHS (regno)--;
11481 remove_note (insn, note);
11484 return note;
11487 /* For each register (hardware or pseudo) used within expression X, if its
11488 death is in an instruction with cuid between FROM_CUID (inclusive) and
11489 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11490 list headed by PNOTES.
11492 That said, don't move registers killed by maybe_kill_insn.
11494 This is done when X is being merged by combination into TO_INSN. These
11495 notes will then be distributed as needed. */
11497 static void
11498 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11499 rtx *pnotes)
11501 const char *fmt;
11502 int len, i;
11503 enum rtx_code code = GET_CODE (x);
11505 if (code == REG)
11507 unsigned int regno = REGNO (x);
11508 rtx where_dead = reg_stat[regno].last_death;
11509 rtx before_dead, after_dead;
11511 /* Don't move the register if it gets killed in between from and to. */
11512 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11513 && ! reg_referenced_p (x, maybe_kill_insn))
11514 return;
11516 /* WHERE_DEAD could be a USE insn made by combine, so first we
11517 make sure that we have insns with valid INSN_CUID values. */
11518 before_dead = where_dead;
11519 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11520 before_dead = PREV_INSN (before_dead);
11522 after_dead = where_dead;
11523 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11524 after_dead = NEXT_INSN (after_dead);
11526 if (before_dead && after_dead
11527 && INSN_CUID (before_dead) >= from_cuid
11528 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11529 || (where_dead != after_dead
11530 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11532 rtx note = remove_death (regno, where_dead);
11534 /* It is possible for the call above to return 0. This can occur
11535 when last_death points to I2 or I1 that we combined with.
11536 In that case make a new note.
11538 We must also check for the case where X is a hard register
11539 and NOTE is a death note for a range of hard registers
11540 including X. In that case, we must put REG_DEAD notes for
11541 the remaining registers in place of NOTE. */
11543 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11544 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11545 > GET_MODE_SIZE (GET_MODE (x))))
11547 unsigned int deadregno = REGNO (XEXP (note, 0));
11548 unsigned int deadend
11549 = (deadregno + hard_regno_nregs[deadregno]
11550 [GET_MODE (XEXP (note, 0))]);
11551 unsigned int ourend
11552 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11553 unsigned int i;
11555 for (i = deadregno; i < deadend; i++)
11556 if (i < regno || i >= ourend)
11557 REG_NOTES (where_dead)
11558 = gen_rtx_EXPR_LIST (REG_DEAD,
11559 regno_reg_rtx[i],
11560 REG_NOTES (where_dead));
11563 /* If we didn't find any note, or if we found a REG_DEAD note that
11564 covers only part of the given reg, and we have a multi-reg hard
11565 register, then to be safe we must check for REG_DEAD notes
11566 for each register other than the first. They could have
11567 their own REG_DEAD notes lying around. */
11568 else if ((note == 0
11569 || (note != 0
11570 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11571 < GET_MODE_SIZE (GET_MODE (x)))))
11572 && regno < FIRST_PSEUDO_REGISTER
11573 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11575 unsigned int ourend
11576 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11577 unsigned int i, offset;
11578 rtx oldnotes = 0;
11580 if (note)
11581 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11582 else
11583 offset = 1;
11585 for (i = regno + offset; i < ourend; i++)
11586 move_deaths (regno_reg_rtx[i],
11587 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11590 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11592 XEXP (note, 1) = *pnotes;
11593 *pnotes = note;
11595 else
11596 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11598 REG_N_DEATHS (regno)++;
11601 return;
11604 else if (GET_CODE (x) == SET)
11606 rtx dest = SET_DEST (x);
11608 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11610 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11611 that accesses one word of a multi-word item, some
11612 piece of everything register in the expression is used by
11613 this insn, so remove any old death. */
11614 /* ??? So why do we test for equality of the sizes? */
11616 if (GET_CODE (dest) == ZERO_EXTRACT
11617 || GET_CODE (dest) == STRICT_LOW_PART
11618 || (GET_CODE (dest) == SUBREG
11619 && (((GET_MODE_SIZE (GET_MODE (dest))
11620 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11621 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11622 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11624 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11625 return;
11628 /* If this is some other SUBREG, we know it replaces the entire
11629 value, so use that as the destination. */
11630 if (GET_CODE (dest) == SUBREG)
11631 dest = SUBREG_REG (dest);
11633 /* If this is a MEM, adjust deaths of anything used in the address.
11634 For a REG (the only other possibility), the entire value is
11635 being replaced so the old value is not used in this insn. */
11637 if (MEM_P (dest))
11638 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11639 to_insn, pnotes);
11640 return;
11643 else if (GET_CODE (x) == CLOBBER)
11644 return;
11646 len = GET_RTX_LENGTH (code);
11647 fmt = GET_RTX_FORMAT (code);
11649 for (i = 0; i < len; i++)
11651 if (fmt[i] == 'E')
11653 int j;
11654 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11655 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11656 to_insn, pnotes);
11658 else if (fmt[i] == 'e')
11659 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11663 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11664 pattern of an insn. X must be a REG. */
11666 static int
11667 reg_bitfield_target_p (rtx x, rtx body)
11669 int i;
11671 if (GET_CODE (body) == SET)
11673 rtx dest = SET_DEST (body);
11674 rtx target;
11675 unsigned int regno, tregno, endregno, endtregno;
11677 if (GET_CODE (dest) == ZERO_EXTRACT)
11678 target = XEXP (dest, 0);
11679 else if (GET_CODE (dest) == STRICT_LOW_PART)
11680 target = SUBREG_REG (XEXP (dest, 0));
11681 else
11682 return 0;
11684 if (GET_CODE (target) == SUBREG)
11685 target = SUBREG_REG (target);
11687 if (!REG_P (target))
11688 return 0;
11690 tregno = REGNO (target), regno = REGNO (x);
11691 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11692 return target == x;
11694 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11695 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11697 return endregno > tregno && regno < endtregno;
11700 else if (GET_CODE (body) == PARALLEL)
11701 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11702 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11703 return 1;
11705 return 0;
11708 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11709 as appropriate. I3 and I2 are the insns resulting from the combination
11710 insns including FROM (I2 may be zero).
11712 Each note in the list is either ignored or placed on some insns, depending
11713 on the type of note. */
11715 static void
11716 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
11718 rtx note, next_note;
11719 rtx tem;
11721 for (note = notes; note; note = next_note)
11723 rtx place = 0, place2 = 0;
11725 /* If this NOTE references a pseudo register, ensure it references
11726 the latest copy of that register. */
11727 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11728 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11729 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11731 next_note = XEXP (note, 1);
11732 switch (REG_NOTE_KIND (note))
11734 case REG_BR_PROB:
11735 case REG_BR_PRED:
11736 /* Doesn't matter much where we put this, as long as it's somewhere.
11737 It is preferable to keep these notes on branches, which is most
11738 likely to be i3. */
11739 place = i3;
11740 break;
11742 case REG_VALUE_PROFILE:
11743 /* Just get rid of this note, as it is unused later anyway. */
11744 break;
11746 case REG_NON_LOCAL_GOTO:
11747 if (JUMP_P (i3))
11748 place = i3;
11749 else
11751 gcc_assert (i2 && JUMP_P (i2));
11752 place = i2;
11754 break;
11756 case REG_EH_REGION:
11757 /* These notes must remain with the call or trapping instruction. */
11758 if (CALL_P (i3))
11759 place = i3;
11760 else if (i2 && CALL_P (i2))
11761 place = i2;
11762 else
11764 gcc_assert (flag_non_call_exceptions);
11765 if (may_trap_p (i3))
11766 place = i3;
11767 else if (i2 && may_trap_p (i2))
11768 place = i2;
11769 /* ??? Otherwise assume we've combined things such that we
11770 can now prove that the instructions can't trap. Drop the
11771 note in this case. */
11773 break;
11775 case REG_ALWAYS_RETURN:
11776 case REG_NORETURN:
11777 case REG_SETJMP:
11778 /* These notes must remain with the call. It should not be
11779 possible for both I2 and I3 to be a call. */
11780 if (CALL_P (i3))
11781 place = i3;
11782 else
11784 gcc_assert (i2 && CALL_P (i2));
11785 place = i2;
11787 break;
11789 case REG_UNUSED:
11790 /* Any clobbers for i3 may still exist, and so we must process
11791 REG_UNUSED notes from that insn.
11793 Any clobbers from i2 or i1 can only exist if they were added by
11794 recog_for_combine. In that case, recog_for_combine created the
11795 necessary REG_UNUSED notes. Trying to keep any original
11796 REG_UNUSED notes from these insns can cause incorrect output
11797 if it is for the same register as the original i3 dest.
11798 In that case, we will notice that the register is set in i3,
11799 and then add a REG_UNUSED note for the destination of i3, which
11800 is wrong. However, it is possible to have REG_UNUSED notes from
11801 i2 or i1 for register which were both used and clobbered, so
11802 we keep notes from i2 or i1 if they will turn into REG_DEAD
11803 notes. */
11805 /* If this register is set or clobbered in I3, put the note there
11806 unless there is one already. */
11807 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11809 if (from_insn != i3)
11810 break;
11812 if (! (REG_P (XEXP (note, 0))
11813 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11814 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11815 place = i3;
11817 /* Otherwise, if this register is used by I3, then this register
11818 now dies here, so we must put a REG_DEAD note here unless there
11819 is one already. */
11820 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11821 && ! (REG_P (XEXP (note, 0))
11822 ? find_regno_note (i3, REG_DEAD,
11823 REGNO (XEXP (note, 0)))
11824 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11826 PUT_REG_NOTE_KIND (note, REG_DEAD);
11827 place = i3;
11829 break;
11831 case REG_EQUAL:
11832 case REG_EQUIV:
11833 case REG_NOALIAS:
11834 /* These notes say something about results of an insn. We can
11835 only support them if they used to be on I3 in which case they
11836 remain on I3. Otherwise they are ignored.
11838 If the note refers to an expression that is not a constant, we
11839 must also ignore the note since we cannot tell whether the
11840 equivalence is still true. It might be possible to do
11841 slightly better than this (we only have a problem if I2DEST
11842 or I1DEST is present in the expression), but it doesn't
11843 seem worth the trouble. */
11845 if (from_insn == i3
11846 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11847 place = i3;
11848 break;
11850 case REG_INC:
11851 case REG_NO_CONFLICT:
11852 /* These notes say something about how a register is used. They must
11853 be present on any use of the register in I2 or I3. */
11854 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11855 place = i3;
11857 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11859 if (place)
11860 place2 = i2;
11861 else
11862 place = i2;
11864 break;
11866 case REG_LABEL:
11867 /* This can show up in several ways -- either directly in the
11868 pattern, or hidden off in the constant pool with (or without?)
11869 a REG_EQUAL note. */
11870 /* ??? Ignore the without-reg_equal-note problem for now. */
11871 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11872 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11873 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11874 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11875 place = i3;
11877 if (i2
11878 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
11879 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
11880 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11881 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
11883 if (place)
11884 place2 = i2;
11885 else
11886 place = i2;
11889 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
11890 a JUMP_LABEL instead or decrement LABEL_NUSES. */
11891 if (place && JUMP_P (place))
11893 rtx label = JUMP_LABEL (place);
11895 if (!label)
11896 JUMP_LABEL (place) = XEXP (note, 0);
11897 else
11899 gcc_assert (label == XEXP (note, 0));
11900 if (LABEL_P (label))
11901 LABEL_NUSES (label)--;
11903 place = 0;
11905 if (place2 && JUMP_P (place2))
11907 rtx label = JUMP_LABEL (place2);
11909 if (!label)
11910 JUMP_LABEL (place2) = XEXP (note, 0);
11911 else
11913 gcc_assert (label == XEXP (note, 0));
11914 if (LABEL_P (label))
11915 LABEL_NUSES (label)--;
11917 place2 = 0;
11919 break;
11921 case REG_NONNEG:
11922 /* This note says something about the value of a register prior
11923 to the execution of an insn. It is too much trouble to see
11924 if the note is still correct in all situations. It is better
11925 to simply delete it. */
11926 break;
11928 case REG_RETVAL:
11929 /* If the insn previously containing this note still exists,
11930 put it back where it was. Otherwise move it to the previous
11931 insn. Adjust the corresponding REG_LIBCALL note. */
11932 if (!NOTE_P (from_insn))
11933 place = from_insn;
11934 else
11936 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
11937 place = prev_real_insn (from_insn);
11938 if (tem && place)
11939 XEXP (tem, 0) = place;
11940 /* If we're deleting the last remaining instruction of a
11941 libcall sequence, don't add the notes. */
11942 else if (XEXP (note, 0) == from_insn)
11943 tem = place = 0;
11944 /* Don't add the dangling REG_RETVAL note. */
11945 else if (! tem)
11946 place = 0;
11948 break;
11950 case REG_LIBCALL:
11951 /* This is handled similarly to REG_RETVAL. */
11952 if (!NOTE_P (from_insn))
11953 place = from_insn;
11954 else
11956 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
11957 place = next_real_insn (from_insn);
11958 if (tem && place)
11959 XEXP (tem, 0) = place;
11960 /* If we're deleting the last remaining instruction of a
11961 libcall sequence, don't add the notes. */
11962 else if (XEXP (note, 0) == from_insn)
11963 tem = place = 0;
11964 /* Don't add the dangling REG_LIBCALL note. */
11965 else if (! tem)
11966 place = 0;
11968 break;
11970 case REG_DEAD:
11971 /* If the register is used as an input in I3, it dies there.
11972 Similarly for I2, if it is nonzero and adjacent to I3.
11974 If the register is not used as an input in either I3 or I2
11975 and it is not one of the registers we were supposed to eliminate,
11976 there are two possibilities. We might have a non-adjacent I2
11977 or we might have somehow eliminated an additional register
11978 from a computation. For example, we might have had A & B where
11979 we discover that B will always be zero. In this case we will
11980 eliminate the reference to A.
11982 In both cases, we must search to see if we can find a previous
11983 use of A and put the death note there. */
11985 if (from_insn
11986 && CALL_P (from_insn)
11987 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
11988 place = from_insn;
11989 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
11990 place = i3;
11991 else if (i2 != 0 && next_nonnote_insn (i2) == i3
11992 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
11993 place = i2;
11995 if (place == 0)
11997 basic_block bb = this_basic_block;
11999 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12001 if (! INSN_P (tem))
12003 if (tem == BB_HEAD (bb))
12004 break;
12005 continue;
12008 /* If the register is being set at TEM, see if that is all
12009 TEM is doing. If so, delete TEM. Otherwise, make this
12010 into a REG_UNUSED note instead. Don't delete sets to
12011 global register vars. */
12012 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12013 || !global_regs[REGNO (XEXP (note, 0))])
12014 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12016 rtx set = single_set (tem);
12017 rtx inner_dest = 0;
12018 #ifdef HAVE_cc0
12019 rtx cc0_setter = NULL_RTX;
12020 #endif
12022 if (set != 0)
12023 for (inner_dest = SET_DEST (set);
12024 (GET_CODE (inner_dest) == STRICT_LOW_PART
12025 || GET_CODE (inner_dest) == SUBREG
12026 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12027 inner_dest = XEXP (inner_dest, 0))
12030 /* Verify that it was the set, and not a clobber that
12031 modified the register.
12033 CC0 targets must be careful to maintain setter/user
12034 pairs. If we cannot delete the setter due to side
12035 effects, mark the user with an UNUSED note instead
12036 of deleting it. */
12038 if (set != 0 && ! side_effects_p (SET_SRC (set))
12039 && rtx_equal_p (XEXP (note, 0), inner_dest)
12040 #ifdef HAVE_cc0
12041 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12042 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12043 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12044 #endif
12047 /* Move the notes and links of TEM elsewhere.
12048 This might delete other dead insns recursively.
12049 First set the pattern to something that won't use
12050 any register. */
12051 rtx old_notes = REG_NOTES (tem);
12053 PATTERN (tem) = pc_rtx;
12054 REG_NOTES (tem) = NULL;
12056 distribute_notes (old_notes, tem, tem, NULL_RTX);
12057 distribute_links (LOG_LINKS (tem));
12059 SET_INSN_DELETED (tem);
12061 #ifdef HAVE_cc0
12062 /* Delete the setter too. */
12063 if (cc0_setter)
12065 PATTERN (cc0_setter) = pc_rtx;
12066 old_notes = REG_NOTES (cc0_setter);
12067 REG_NOTES (cc0_setter) = NULL;
12069 distribute_notes (old_notes, cc0_setter,
12070 cc0_setter, NULL_RTX);
12071 distribute_links (LOG_LINKS (cc0_setter));
12073 SET_INSN_DELETED (cc0_setter);
12075 #endif
12077 else
12079 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12081 /* If there isn't already a REG_UNUSED note, put one
12082 here. Do not place a REG_DEAD note, even if
12083 the register is also used here; that would not
12084 match the algorithm used in lifetime analysis
12085 and can cause the consistency check in the
12086 scheduler to fail. */
12087 if (! find_regno_note (tem, REG_UNUSED,
12088 REGNO (XEXP (note, 0))))
12089 place = tem;
12090 break;
12093 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12094 || (CALL_P (tem)
12095 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12097 place = tem;
12099 /* If we are doing a 3->2 combination, and we have a
12100 register which formerly died in i3 and was not used
12101 by i2, which now no longer dies in i3 and is used in
12102 i2 but does not die in i2, and place is between i2
12103 and i3, then we may need to move a link from place to
12104 i2. */
12105 if (i2 && INSN_UID (place) <= max_uid_cuid
12106 && INSN_CUID (place) > INSN_CUID (i2)
12107 && from_insn
12108 && INSN_CUID (from_insn) > INSN_CUID (i2)
12109 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12111 rtx links = LOG_LINKS (place);
12112 LOG_LINKS (place) = 0;
12113 distribute_links (links);
12115 break;
12118 if (tem == BB_HEAD (bb))
12119 break;
12122 /* We haven't found an insn for the death note and it
12123 is still a REG_DEAD note, but we have hit the beginning
12124 of the block. If the existing life info says the reg
12125 was dead, there's nothing left to do. Otherwise, we'll
12126 need to do a global life update after combine. */
12127 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12128 && REGNO_REG_SET_P (bb->global_live_at_start,
12129 REGNO (XEXP (note, 0))))
12130 SET_BIT (refresh_blocks, this_basic_block->index);
12133 /* If the register is set or already dead at PLACE, we needn't do
12134 anything with this note if it is still a REG_DEAD note.
12135 We check here if it is set at all, not if is it totally replaced,
12136 which is what `dead_or_set_p' checks, so also check for it being
12137 set partially. */
12139 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12141 unsigned int regno = REGNO (XEXP (note, 0));
12143 /* Similarly, if the instruction on which we want to place
12144 the note is a noop, we'll need do a global live update
12145 after we remove them in delete_noop_moves. */
12146 if (noop_move_p (place))
12147 SET_BIT (refresh_blocks, this_basic_block->index);
12149 if (dead_or_set_p (place, XEXP (note, 0))
12150 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12152 /* Unless the register previously died in PLACE, clear
12153 last_death. [I no longer understand why this is
12154 being done.] */
12155 if (reg_stat[regno].last_death != place)
12156 reg_stat[regno].last_death = 0;
12157 place = 0;
12159 else
12160 reg_stat[regno].last_death = place;
12162 /* If this is a death note for a hard reg that is occupying
12163 multiple registers, ensure that we are still using all
12164 parts of the object. If we find a piece of the object
12165 that is unused, we must arrange for an appropriate REG_DEAD
12166 note to be added for it. However, we can't just emit a USE
12167 and tag the note to it, since the register might actually
12168 be dead; so we recourse, and the recursive call then finds
12169 the previous insn that used this register. */
12171 if (place && regno < FIRST_PSEUDO_REGISTER
12172 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12174 unsigned int endregno
12175 = regno + hard_regno_nregs[regno]
12176 [GET_MODE (XEXP (note, 0))];
12177 int all_used = 1;
12178 unsigned int i;
12180 for (i = regno; i < endregno; i++)
12181 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12182 && ! find_regno_fusage (place, USE, i))
12183 || dead_or_set_regno_p (place, i))
12184 all_used = 0;
12186 if (! all_used)
12188 /* Put only REG_DEAD notes for pieces that are
12189 not already dead or set. */
12191 for (i = regno; i < endregno;
12192 i += hard_regno_nregs[i][reg_raw_mode[i]])
12194 rtx piece = regno_reg_rtx[i];
12195 basic_block bb = this_basic_block;
12197 if (! dead_or_set_p (place, piece)
12198 && ! reg_bitfield_target_p (piece,
12199 PATTERN (place)))
12201 rtx new_note
12202 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12204 distribute_notes (new_note, place, place,
12205 NULL_RTX);
12207 else if (! refers_to_regno_p (i, i + 1,
12208 PATTERN (place), 0)
12209 && ! find_regno_fusage (place, USE, i))
12210 for (tem = PREV_INSN (place); ;
12211 tem = PREV_INSN (tem))
12213 if (! INSN_P (tem))
12215 if (tem == BB_HEAD (bb))
12217 SET_BIT (refresh_blocks,
12218 this_basic_block->index);
12219 break;
12221 continue;
12223 if (dead_or_set_p (tem, piece)
12224 || reg_bitfield_target_p (piece,
12225 PATTERN (tem)))
12227 REG_NOTES (tem)
12228 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12229 REG_NOTES (tem));
12230 break;
12236 place = 0;
12240 break;
12242 default:
12243 /* Any other notes should not be present at this point in the
12244 compilation. */
12245 gcc_unreachable ();
12248 if (place)
12250 XEXP (note, 1) = REG_NOTES (place);
12251 REG_NOTES (place) = note;
12253 else if ((REG_NOTE_KIND (note) == REG_DEAD
12254 || REG_NOTE_KIND (note) == REG_UNUSED)
12255 && REG_P (XEXP (note, 0)))
12256 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12258 if (place2)
12260 if ((REG_NOTE_KIND (note) == REG_DEAD
12261 || REG_NOTE_KIND (note) == REG_UNUSED)
12262 && REG_P (XEXP (note, 0)))
12263 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12265 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12266 REG_NOTE_KIND (note),
12267 XEXP (note, 0),
12268 REG_NOTES (place2));
12273 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12274 I3, I2, and I1 to new locations. This is also called to add a link
12275 pointing at I3 when I3's destination is changed. */
12277 static void
12278 distribute_links (rtx links)
12280 rtx link, next_link;
12282 for (link = links; link; link = next_link)
12284 rtx place = 0;
12285 rtx insn;
12286 rtx set, reg;
12288 next_link = XEXP (link, 1);
12290 /* If the insn that this link points to is a NOTE or isn't a single
12291 set, ignore it. In the latter case, it isn't clear what we
12292 can do other than ignore the link, since we can't tell which
12293 register it was for. Such links wouldn't be used by combine
12294 anyway.
12296 It is not possible for the destination of the target of the link to
12297 have been changed by combine. The only potential of this is if we
12298 replace I3, I2, and I1 by I3 and I2. But in that case the
12299 destination of I2 also remains unchanged. */
12301 if (NOTE_P (XEXP (link, 0))
12302 || (set = single_set (XEXP (link, 0))) == 0)
12303 continue;
12305 reg = SET_DEST (set);
12306 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12307 || GET_CODE (reg) == STRICT_LOW_PART)
12308 reg = XEXP (reg, 0);
12310 /* A LOG_LINK is defined as being placed on the first insn that uses
12311 a register and points to the insn that sets the register. Start
12312 searching at the next insn after the target of the link and stop
12313 when we reach a set of the register or the end of the basic block.
12315 Note that this correctly handles the link that used to point from
12316 I3 to I2. Also note that not much searching is typically done here
12317 since most links don't point very far away. */
12319 for (insn = NEXT_INSN (XEXP (link, 0));
12320 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12321 || BB_HEAD (this_basic_block->next_bb) != insn));
12322 insn = NEXT_INSN (insn))
12323 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12325 if (reg_referenced_p (reg, PATTERN (insn)))
12326 place = insn;
12327 break;
12329 else if (CALL_P (insn)
12330 && find_reg_fusage (insn, USE, reg))
12332 place = insn;
12333 break;
12335 else if (INSN_P (insn) && reg_set_p (reg, insn))
12336 break;
12338 /* If we found a place to put the link, place it there unless there
12339 is already a link to the same insn as LINK at that point. */
12341 if (place)
12343 rtx link2;
12345 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12346 if (XEXP (link2, 0) == XEXP (link, 0))
12347 break;
12349 if (link2 == 0)
12351 XEXP (link, 1) = LOG_LINKS (place);
12352 LOG_LINKS (place) = link;
12354 /* Set added_links_insn to the earliest insn we added a
12355 link to. */
12356 if (added_links_insn == 0
12357 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12358 added_links_insn = place;
12364 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12365 Check whether the expression pointer to by LOC is a register or
12366 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12367 Otherwise return zero. */
12369 static int
12370 unmentioned_reg_p_1 (rtx *loc, void *expr)
12372 rtx x = *loc;
12374 if (x != NULL_RTX
12375 && (REG_P (x) || MEM_P (x))
12376 && ! reg_mentioned_p (x, (rtx) expr))
12377 return 1;
12378 return 0;
12381 /* Check for any register or memory mentioned in EQUIV that is not
12382 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12383 of EXPR where some registers may have been replaced by constants. */
12385 static bool
12386 unmentioned_reg_p (rtx equiv, rtx expr)
12388 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12391 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12393 static int
12394 insn_cuid (rtx insn)
12396 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12397 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12398 insn = NEXT_INSN (insn);
12400 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12402 return INSN_CUID (insn);
12405 void
12406 dump_combine_stats (FILE *file)
12408 fnotice
12409 (file,
12410 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12411 combine_attempts, combine_merges, combine_extras, combine_successes);
12414 void
12415 dump_combine_total_stats (FILE *file)
12417 fnotice
12418 (file,
12419 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12420 total_attempts, total_merges, total_extras, total_successes);