re PR libgcj/35979 (JNI method NewStringUTF throws NPE when passed a NULL pointer)
[official-gcc.git] / gcc / basic-block.h
bloba2598df3d34508b23372ac20bcb22bc8dba3d712
1 /* Define control and data flow tables, and regsets.
2 Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_BASIC_BLOCK_H
22 #define GCC_BASIC_BLOCK_H
24 #include "bitmap.h"
25 #include "sbitmap.h"
26 #include "varray.h"
27 #include "partition.h"
28 #include "hard-reg-set.h"
29 #include "predict.h"
30 #include "vec.h"
31 #include "function.h"
33 /* Head of register set linked list. */
34 typedef bitmap_head regset_head;
36 /* A pointer to a regset_head. */
37 typedef bitmap regset;
39 /* Allocate a register set with oballoc. */
40 #define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
42 /* Do any cleanup needed on a regset when it is no longer used. */
43 #define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
45 /* Initialize a new regset. */
46 #define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, &reg_obstack)
48 /* Clear a register set by freeing up the linked list. */
49 #define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
51 /* Copy a register set to another register set. */
52 #define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
54 /* Compare two register sets. */
55 #define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
57 /* `and' a register set with a second register set. */
58 #define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
60 /* `and' the complement of a register set with a register set. */
61 #define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
63 /* Inclusive or a register set with a second register set. */
64 #define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
66 /* Exclusive or a register set with a second register set. */
67 #define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
69 /* Or into TO the register set FROM1 `and'ed with the complement of FROM2. */
70 #define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
71 bitmap_ior_and_compl_into (TO, FROM1, FROM2)
73 /* Clear a single register in a register set. */
74 #define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
76 /* Set a single register in a register set. */
77 #define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
79 /* Return true if a register is set in a register set. */
80 #define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
82 /* Copy the hard registers in a register set to the hard register set. */
83 extern void reg_set_to_hard_reg_set (HARD_REG_SET *, const_bitmap);
84 #define REG_SET_TO_HARD_REG_SET(TO, FROM) \
85 do { \
86 CLEAR_HARD_REG_SET (TO); \
87 reg_set_to_hard_reg_set (&TO, FROM); \
88 } while (0)
90 typedef bitmap_iterator reg_set_iterator;
92 /* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
93 register number and executing CODE for all registers that are set. */
94 #define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI) \
95 EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
97 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
98 REGNUM to the register number and executing CODE for all registers that are
99 set in the first regset and not set in the second. */
100 #define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
101 EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
103 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
104 REGNUM to the register number and executing CODE for all registers that are
105 set in both regsets. */
106 #define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
107 EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI) \
109 /* Type we use to hold basic block counters. Should be at least
110 64bit. Although a counter cannot be negative, we use a signed
111 type, because erroneous negative counts can be generated when the
112 flow graph is manipulated by various optimizations. A signed type
113 makes those easy to detect. */
114 typedef HOST_WIDEST_INT gcov_type;
116 /* Control flow edge information. */
117 struct edge_def GTY(())
119 /* The two blocks at the ends of the edge. */
120 struct basic_block_def *src;
121 struct basic_block_def *dest;
123 /* Instructions queued on the edge. */
124 union edge_def_insns {
125 tree GTY ((tag ("true"))) t;
126 rtx GTY ((tag ("false"))) r;
127 } GTY ((desc ("current_ir_type () == IR_GIMPLE"))) insns;
129 /* Auxiliary info specific to a pass. */
130 PTR GTY ((skip (""))) aux;
132 /* Location of any goto implicit in the edge, during tree-ssa. */
133 location_t goto_locus;
135 /* The index number corresponding to this edge in the edge vector
136 dest->preds. */
137 unsigned int dest_idx;
139 int flags; /* see EDGE_* below */
140 int probability; /* biased by REG_BR_PROB_BASE */
141 gcov_type count; /* Expected number of executions calculated
142 in profile.c */
145 typedef struct edge_def *edge;
146 typedef const struct edge_def *const_edge;
147 DEF_VEC_P(edge);
148 DEF_VEC_ALLOC_P(edge,gc);
149 DEF_VEC_ALLOC_P(edge,heap);
151 #define EDGE_FALLTHRU 1 /* 'Straight line' flow */
152 #define EDGE_ABNORMAL 2 /* Strange flow, like computed
153 label, or eh */
154 #define EDGE_ABNORMAL_CALL 4 /* Call with abnormal exit
155 like an exception, or sibcall */
156 #define EDGE_EH 8 /* Exception throw */
157 #define EDGE_FAKE 16 /* Not a real edge (profile.c) */
158 #define EDGE_DFS_BACK 32 /* A backwards edge */
159 #define EDGE_CAN_FALLTHRU 64 /* Candidate for straight line
160 flow. */
161 #define EDGE_IRREDUCIBLE_LOOP 128 /* Part of irreducible loop. */
162 #define EDGE_SIBCALL 256 /* Edge from sibcall to exit. */
163 #define EDGE_LOOP_EXIT 512 /* Exit of a loop. */
164 #define EDGE_TRUE_VALUE 1024 /* Edge taken when controlling
165 predicate is nonzero. */
166 #define EDGE_FALSE_VALUE 2048 /* Edge taken when controlling
167 predicate is zero. */
168 #define EDGE_EXECUTABLE 4096 /* Edge is executable. Only
169 valid during SSA-CCP. */
170 #define EDGE_CROSSING 8192 /* Edge crosses between hot
171 and cold sections, when we
172 do partitioning. */
173 #define EDGE_ALL_FLAGS 16383
175 #define EDGE_COMPLEX (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
177 /* Counter summary from the last set of coverage counts read by
178 profile.c. */
179 extern const struct gcov_ctr_summary *profile_info;
181 /* Declared in cfgloop.h. */
182 struct loop;
184 /* Declared in tree-flow.h. */
185 struct edge_prediction;
186 struct rtl_bb_info;
188 /* A basic block is a sequence of instructions with only entry and
189 only one exit. If any one of the instructions are executed, they
190 will all be executed, and in sequence from first to last.
192 There may be COND_EXEC instructions in the basic block. The
193 COND_EXEC *instructions* will be executed -- but if the condition
194 is false the conditionally executed *expressions* will of course
195 not be executed. We don't consider the conditionally executed
196 expression (which might have side-effects) to be in a separate
197 basic block because the program counter will always be at the same
198 location after the COND_EXEC instruction, regardless of whether the
199 condition is true or not.
201 Basic blocks need not start with a label nor end with a jump insn.
202 For example, a previous basic block may just "conditionally fall"
203 into the succeeding basic block, and the last basic block need not
204 end with a jump insn. Block 0 is a descendant of the entry block.
206 A basic block beginning with two labels cannot have notes between
207 the labels.
209 Data for jump tables are stored in jump_insns that occur in no
210 basic block even though these insns can follow or precede insns in
211 basic blocks. */
213 /* Basic block information indexed by block number. */
214 struct basic_block_def GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
216 /* The edges into and out of the block. */
217 VEC(edge,gc) *preds;
218 VEC(edge,gc) *succs;
220 /* Auxiliary info specific to a pass. */
221 PTR GTY ((skip (""))) aux;
223 /* Innermost loop containing the block. */
224 struct loop *loop_father;
226 /* The dominance and postdominance information node. */
227 struct et_node * GTY ((skip (""))) dom[2];
229 /* Previous and next blocks in the chain. */
230 struct basic_block_def *prev_bb;
231 struct basic_block_def *next_bb;
233 union basic_block_il_dependent {
234 struct tree_bb_info * GTY ((tag ("0"))) tree;
235 struct rtl_bb_info * GTY ((tag ("1"))) rtl;
236 } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
238 /* Expected number of executions: calculated in profile.c. */
239 gcov_type count;
241 /* The index of this block. */
242 int index;
244 /* The loop depth of this block. */
245 int loop_depth;
247 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
248 int frequency;
250 /* Various flags. See BB_* below. */
251 int flags;
254 struct rtl_bb_info GTY(())
256 /* The first and last insns of the block. */
257 rtx head_;
258 rtx end_;
260 /* In CFGlayout mode points to insn notes/jumptables to be placed just before
261 and after the block. */
262 rtx header;
263 rtx footer;
265 /* This field is used by the bb-reorder and tracer passes. */
266 int visited;
269 struct tree_bb_info GTY(())
271 /* Pointers to the first and last trees of the block. */
272 tree stmt_list;
274 /* Chain of PHI nodes for this block. */
275 tree phi_nodes;
278 typedef struct basic_block_def *basic_block;
279 typedef const struct basic_block_def *const_basic_block;
281 DEF_VEC_P(basic_block);
282 DEF_VEC_ALLOC_P(basic_block,gc);
283 DEF_VEC_ALLOC_P(basic_block,heap);
285 #define BB_FREQ_MAX 10000
287 /* Masks for basic_block.flags.
289 BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
290 the compilation, so they are never cleared.
292 All other flags may be cleared by clear_bb_flags(). It is generally
293 a bad idea to rely on any flags being up-to-date. */
295 enum bb_flags
297 /* Only set on blocks that have just been created by create_bb. */
298 BB_NEW = 1 << 0,
300 /* Set by find_unreachable_blocks. Do not rely on this being set in any
301 pass. */
302 BB_REACHABLE = 1 << 1,
304 /* Set for blocks in an irreducible loop by loop analysis. */
305 BB_IRREDUCIBLE_LOOP = 1 << 2,
307 /* Set on blocks that may actually not be single-entry single-exit block. */
308 BB_SUPERBLOCK = 1 << 3,
310 /* Set on basic blocks that the scheduler should not touch. This is used
311 by SMS to prevent other schedulers from messing with the loop schedule. */
312 BB_DISABLE_SCHEDULE = 1 << 4,
314 /* Set on blocks that should be put in a hot section. */
315 BB_HOT_PARTITION = 1 << 5,
317 /* Set on blocks that should be put in a cold section. */
318 BB_COLD_PARTITION = 1 << 6,
320 /* Set on block that was duplicated. */
321 BB_DUPLICATED = 1 << 7,
323 /* Set if the label at the top of this block is the target of a non-local goto. */
324 BB_NON_LOCAL_GOTO_TARGET = 1 << 8,
326 /* Set on blocks that are in RTL format. */
327 BB_RTL = 1 << 9 ,
329 /* Set on blocks that are forwarder blocks.
330 Only used in cfgcleanup.c. */
331 BB_FORWARDER_BLOCK = 1 << 10,
333 /* Set on blocks that cannot be threaded through.
334 Only used in cfgcleanup.c. */
335 BB_NONTHREADABLE_BLOCK = 1 << 11
338 /* Dummy flag for convenience in the hot/cold partitioning code. */
339 #define BB_UNPARTITIONED 0
341 /* Partitions, to be used when partitioning hot and cold basic blocks into
342 separate sections. */
343 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
344 #define BB_SET_PARTITION(bb, part) do { \
345 basic_block bb_ = (bb); \
346 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
347 | (part)); \
348 } while (0)
350 #define BB_COPY_PARTITION(dstbb, srcbb) \
351 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
353 /* State of dominance information. */
355 enum dom_state
357 DOM_NONE, /* Not computed at all. */
358 DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
359 DOM_OK /* Everything is ok. */
362 /* A structure to group all the per-function control flow graph data.
363 The x_* prefixing is necessary because otherwise references to the
364 fields of this struct are interpreted as the defines for backward
365 source compatibility following the definition of this struct. */
366 struct control_flow_graph GTY(())
368 /* Block pointers for the exit and entry of a function.
369 These are always the head and tail of the basic block list. */
370 basic_block x_entry_block_ptr;
371 basic_block x_exit_block_ptr;
373 /* Index by basic block number, get basic block struct info. */
374 VEC(basic_block,gc) *x_basic_block_info;
376 /* Number of basic blocks in this flow graph. */
377 int x_n_basic_blocks;
379 /* Number of edges in this flow graph. */
380 int x_n_edges;
382 /* The first free basic block number. */
383 int x_last_basic_block;
385 /* Mapping of labels to their associated blocks. At present
386 only used for the tree CFG. */
387 VEC(basic_block,gc) *x_label_to_block_map;
389 enum profile_status {
390 PROFILE_ABSENT,
391 PROFILE_GUESSED,
392 PROFILE_READ
393 } x_profile_status;
395 /* Whether the dominators and the postdominators are available. */
396 enum dom_state x_dom_computed[2];
398 /* Number of basic blocks in the dominance tree. */
399 unsigned x_n_bbs_in_dom_tree[2];
401 /* Maximal number of entities in the single jumptable. Used to estimate
402 final flowgraph size. */
403 int max_jumptable_ents;
405 /* UIDs for LABEL_DECLs. */
406 int last_label_uid;
409 /* Defines for accessing the fields of the CFG structure for function FN. */
410 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_entry_block_ptr)
411 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_exit_block_ptr)
412 #define basic_block_info_for_function(FN) ((FN)->cfg->x_basic_block_info)
413 #define n_basic_blocks_for_function(FN) ((FN)->cfg->x_n_basic_blocks)
414 #define n_edges_for_function(FN) ((FN)->cfg->x_n_edges)
415 #define last_basic_block_for_function(FN) ((FN)->cfg->x_last_basic_block)
416 #define label_to_block_map_for_function(FN) ((FN)->cfg->x_label_to_block_map)
418 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
419 (VEC_index (basic_block, basic_block_info_for_function(FN), (N)))
421 /* Defines for textual backward source compatibility. */
422 #define ENTRY_BLOCK_PTR (cfun->cfg->x_entry_block_ptr)
423 #define EXIT_BLOCK_PTR (cfun->cfg->x_exit_block_ptr)
424 #define basic_block_info (cfun->cfg->x_basic_block_info)
425 #define n_basic_blocks (cfun->cfg->x_n_basic_blocks)
426 #define n_edges (cfun->cfg->x_n_edges)
427 #define last_basic_block (cfun->cfg->x_last_basic_block)
428 #define label_to_block_map (cfun->cfg->x_label_to_block_map)
429 #define profile_status (cfun->cfg->x_profile_status)
431 #define BASIC_BLOCK(N) (VEC_index (basic_block, basic_block_info, (N)))
432 #define SET_BASIC_BLOCK(N,BB) (VEC_replace (basic_block, basic_block_info, (N), (BB)))
434 /* For iterating over basic blocks. */
435 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
436 for (BB = FROM; BB != TO; BB = BB->DIR)
438 #define FOR_EACH_BB_FN(BB, FN) \
439 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
441 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
443 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
444 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
446 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
448 /* For iterating over insns in basic block. */
449 #define FOR_BB_INSNS(BB, INSN) \
450 for ((INSN) = BB_HEAD (BB); \
451 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
452 (INSN) = NEXT_INSN (INSN))
454 /* For iterating over insns in basic block when we might remove the
455 current insn. */
456 #define FOR_BB_INSNS_SAFE(BB, INSN, CURR) \
457 for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL; \
458 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
459 (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
461 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
462 for ((INSN) = BB_END (BB); \
463 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
464 (INSN) = PREV_INSN (INSN))
466 #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR) \
467 for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL; \
468 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
469 (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
471 /* Cycles through _all_ basic blocks, even the fake ones (entry and
472 exit block). */
474 #define FOR_ALL_BB(BB) \
475 for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
477 #define FOR_ALL_BB_FN(BB, FN) \
478 for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
480 extern bitmap_obstack reg_obstack;
483 /* Stuff for recording basic block info. */
485 #define BB_HEAD(B) (B)->il.rtl->head_
486 #define BB_END(B) (B)->il.rtl->end_
488 /* Special block numbers [markers] for entry and exit. */
489 #define ENTRY_BLOCK (0)
490 #define EXIT_BLOCK (1)
492 /* The two blocks that are always in the cfg. */
493 #define NUM_FIXED_BLOCKS (2)
496 #define BLOCK_NUM(INSN) (BLOCK_FOR_INSN (INSN)->index + 0)
497 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
499 extern void compute_bb_for_insn (void);
500 extern unsigned int free_bb_for_insn (void);
501 extern void update_bb_for_insn (basic_block);
503 extern void insert_insn_on_edge (rtx, edge);
504 basic_block split_edge_and_insert (edge, rtx);
506 extern void commit_edge_insertions (void);
508 extern void remove_fake_edges (void);
509 extern void remove_fake_exit_edges (void);
510 extern void add_noreturn_fake_exit_edges (void);
511 extern void connect_infinite_loops_to_exit (void);
512 extern edge unchecked_make_edge (basic_block, basic_block, int);
513 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
514 extern edge make_edge (basic_block, basic_block, int);
515 extern edge make_single_succ_edge (basic_block, basic_block, int);
516 extern void remove_edge_raw (edge);
517 extern void redirect_edge_succ (edge, basic_block);
518 extern edge redirect_edge_succ_nodup (edge, basic_block);
519 extern void redirect_edge_pred (edge, basic_block);
520 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
521 extern void clear_bb_flags (void);
522 extern int post_order_compute (int *, bool, bool);
523 extern int inverted_post_order_compute (int *);
524 extern int pre_and_rev_post_order_compute (int *, int *, bool);
525 extern int dfs_enumerate_from (basic_block, int,
526 bool (*)(const_basic_block, const void *),
527 basic_block *, int, const void *);
528 extern void compute_dominance_frontiers (bitmap *);
529 extern void dump_bb_info (basic_block, bool, bool, int, const char *, FILE *);
530 extern void dump_edge_info (FILE *, edge, int);
531 extern void brief_dump_cfg (FILE *);
532 extern void clear_edges (void);
533 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
534 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
535 gcov_type);
537 /* Structure to group all of the information to process IF-THEN and
538 IF-THEN-ELSE blocks for the conditional execution support. This
539 needs to be in a public file in case the IFCVT macros call
540 functions passing the ce_if_block data structure. */
542 typedef struct ce_if_block
544 basic_block test_bb; /* First test block. */
545 basic_block then_bb; /* THEN block. */
546 basic_block else_bb; /* ELSE block or NULL. */
547 basic_block join_bb; /* Join THEN/ELSE blocks. */
548 basic_block last_test_bb; /* Last bb to hold && or || tests. */
549 int num_multiple_test_blocks; /* # of && and || basic blocks. */
550 int num_and_and_blocks; /* # of && blocks. */
551 int num_or_or_blocks; /* # of || blocks. */
552 int num_multiple_test_insns; /* # of insns in && and || blocks. */
553 int and_and_p; /* Complex test is &&. */
554 int num_then_insns; /* # of insns in THEN block. */
555 int num_else_insns; /* # of insns in ELSE block. */
556 int pass; /* Pass number. */
558 #ifdef IFCVT_EXTRA_FIELDS
559 IFCVT_EXTRA_FIELDS /* Any machine dependent fields. */
560 #endif
562 } ce_if_block_t;
564 /* This structure maintains an edge list vector. */
565 struct edge_list
567 int num_blocks;
568 int num_edges;
569 edge *index_to_edge;
572 /* The base value for branch probability notes and edge probabilities. */
573 #define REG_BR_PROB_BASE 10000
575 /* This is the value which indicates no edge is present. */
576 #define EDGE_INDEX_NO_EDGE -1
578 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
579 if there is no edge between the 2 basic blocks. */
580 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
582 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
583 block which is either the pred or succ end of the indexed edge. */
584 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
585 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
587 /* INDEX_EDGE returns a pointer to the edge. */
588 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
590 /* Number of edges in the compressed edge list. */
591 #define NUM_EDGES(el) ((el)->num_edges)
593 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
594 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
595 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
597 /* BB is assumed to contain conditional jump. Return the branch edge. */
598 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
599 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
601 /* Return expected execution frequency of the edge E. */
602 #define EDGE_FREQUENCY(e) (((e)->src->frequency \
603 * (e)->probability \
604 + REG_BR_PROB_BASE / 2) \
605 / REG_BR_PROB_BASE)
607 /* Return nonzero if edge is critical. */
608 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
609 && EDGE_COUNT ((e)->dest->preds) >= 2)
611 #define EDGE_COUNT(ev) VEC_length (edge, (ev))
612 #define EDGE_I(ev,i) VEC_index (edge, (ev), (i))
613 #define EDGE_PRED(bb,i) VEC_index (edge, (bb)->preds, (i))
614 #define EDGE_SUCC(bb,i) VEC_index (edge, (bb)->succs, (i))
616 /* Returns true if BB has precisely one successor. */
618 static inline bool
619 single_succ_p (const_basic_block bb)
621 return EDGE_COUNT (bb->succs) == 1;
624 /* Returns true if BB has precisely one predecessor. */
626 static inline bool
627 single_pred_p (const_basic_block bb)
629 return EDGE_COUNT (bb->preds) == 1;
632 /* Returns the single successor edge of basic block BB. Aborts if
633 BB does not have exactly one successor. */
635 static inline edge
636 single_succ_edge (const_basic_block bb)
638 gcc_assert (single_succ_p (bb));
639 return EDGE_SUCC (bb, 0);
642 /* Returns the single predecessor edge of basic block BB. Aborts
643 if BB does not have exactly one predecessor. */
645 static inline edge
646 single_pred_edge (const_basic_block bb)
648 gcc_assert (single_pred_p (bb));
649 return EDGE_PRED (bb, 0);
652 /* Returns the single successor block of basic block BB. Aborts
653 if BB does not have exactly one successor. */
655 static inline basic_block
656 single_succ (const_basic_block bb)
658 return single_succ_edge (bb)->dest;
661 /* Returns the single predecessor block of basic block BB. Aborts
662 if BB does not have exactly one predecessor.*/
664 static inline basic_block
665 single_pred (const_basic_block bb)
667 return single_pred_edge (bb)->src;
670 /* Iterator object for edges. */
672 typedef struct {
673 unsigned index;
674 VEC(edge,gc) **container;
675 } edge_iterator;
677 static inline VEC(edge,gc) *
678 ei_container (edge_iterator i)
680 gcc_assert (i.container);
681 return *i.container;
684 #define ei_start(iter) ei_start_1 (&(iter))
685 #define ei_last(iter) ei_last_1 (&(iter))
687 /* Return an iterator pointing to the start of an edge vector. */
688 static inline edge_iterator
689 ei_start_1 (VEC(edge,gc) **ev)
691 edge_iterator i;
693 i.index = 0;
694 i.container = ev;
696 return i;
699 /* Return an iterator pointing to the last element of an edge
700 vector. */
701 static inline edge_iterator
702 ei_last_1 (VEC(edge,gc) **ev)
704 edge_iterator i;
706 i.index = EDGE_COUNT (*ev) - 1;
707 i.container = ev;
709 return i;
712 /* Is the iterator `i' at the end of the sequence? */
713 static inline bool
714 ei_end_p (edge_iterator i)
716 return (i.index == EDGE_COUNT (ei_container (i)));
719 /* Is the iterator `i' at one position before the end of the
720 sequence? */
721 static inline bool
722 ei_one_before_end_p (edge_iterator i)
724 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
727 /* Advance the iterator to the next element. */
728 static inline void
729 ei_next (edge_iterator *i)
731 gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
732 i->index++;
735 /* Move the iterator to the previous element. */
736 static inline void
737 ei_prev (edge_iterator *i)
739 gcc_assert (i->index > 0);
740 i->index--;
743 /* Return the edge pointed to by the iterator `i'. */
744 static inline edge
745 ei_edge (edge_iterator i)
747 return EDGE_I (ei_container (i), i.index);
750 /* Return an edge pointed to by the iterator. Do it safely so that
751 NULL is returned when the iterator is pointing at the end of the
752 sequence. */
753 static inline edge
754 ei_safe_edge (edge_iterator i)
756 return !ei_end_p (i) ? ei_edge (i) : NULL;
759 /* Return 1 if we should continue to iterate. Return 0 otherwise.
760 *Edge P is set to the next edge if we are to continue to iterate
761 and NULL otherwise. */
763 static inline bool
764 ei_cond (edge_iterator ei, edge *p)
766 if (!ei_end_p (ei))
768 *p = ei_edge (ei);
769 return 1;
771 else
773 *p = NULL;
774 return 0;
778 /* This macro serves as a convenient way to iterate each edge in a
779 vector of predecessor or successor edges. It must not be used when
780 an element might be removed during the traversal, otherwise
781 elements will be missed. Instead, use a for-loop like that shown
782 in the following pseudo-code:
784 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
786 IF (e != taken_edge)
787 remove_edge (e);
788 ELSE
789 ei_next (&ei);
793 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
794 for ((ITER) = ei_start ((EDGE_VEC)); \
795 ei_cond ((ITER), &(EDGE)); \
796 ei_next (&(ITER)))
798 struct edge_list * create_edge_list (void);
799 void free_edge_list (struct edge_list *);
800 void print_edge_list (FILE *, struct edge_list *);
801 void verify_edge_list (FILE *, struct edge_list *);
802 int find_edge_index (struct edge_list *, basic_block, basic_block);
803 edge find_edge (basic_block, basic_block);
805 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
806 except for edge forwarding */
807 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
808 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
809 to care REG_DEAD notes. */
810 #define CLEANUP_THREADING 8 /* Do jump threading. */
811 #define CLEANUP_NO_INSN_DEL 16 /* Do not try to delete trivially dead
812 insns. */
813 #define CLEANUP_CFGLAYOUT 32 /* Do cleanup in cfglayout mode. */
815 /* In lcm.c */
816 extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
817 sbitmap *, sbitmap *, sbitmap **,
818 sbitmap **);
819 extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
820 sbitmap *, sbitmap *,
821 sbitmap *, sbitmap **,
822 sbitmap **);
823 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
825 /* In predict.c */
826 extern bool maybe_hot_bb_p (const_basic_block);
827 extern bool probably_cold_bb_p (const_basic_block);
828 extern bool probably_never_executed_bb_p (const_basic_block);
829 extern bool tree_predicted_by_p (const_basic_block, enum br_predictor);
830 extern bool rtl_predicted_by_p (const_basic_block, enum br_predictor);
831 extern void tree_predict_edge (edge, enum br_predictor, int);
832 extern void rtl_predict_edge (edge, enum br_predictor, int);
833 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
834 extern void guess_outgoing_edge_probabilities (basic_block);
835 extern void remove_predictions_associated_with_edge (edge);
836 extern bool edge_probability_reliable_p (const_edge);
837 extern bool br_prob_note_reliable_p (const_rtx);
839 /* In cfg.c */
840 extern void dump_regset (regset, FILE *);
841 extern void debug_regset (regset);
842 extern void init_flow (void);
843 extern void debug_bb (basic_block);
844 extern basic_block debug_bb_n (int);
845 extern void dump_regset (regset, FILE *);
846 extern void debug_regset (regset);
847 extern void expunge_block (basic_block);
848 extern void link_block (basic_block, basic_block);
849 extern void unlink_block (basic_block);
850 extern void compact_blocks (void);
851 extern basic_block alloc_block (void);
852 extern void alloc_aux_for_block (basic_block, int);
853 extern void alloc_aux_for_blocks (int);
854 extern void clear_aux_for_blocks (void);
855 extern void free_aux_for_blocks (void);
856 extern void alloc_aux_for_edge (edge, int);
857 extern void alloc_aux_for_edges (int);
858 extern void clear_aux_for_edges (void);
859 extern void free_aux_for_edges (void);
861 /* In cfganal.c */
862 extern void find_unreachable_blocks (void);
863 extern bool forwarder_block_p (const_basic_block);
864 extern bool can_fallthru (basic_block, basic_block);
865 extern bool could_fall_through (basic_block, basic_block);
866 extern void flow_nodes_print (const char *, const_sbitmap, FILE *);
867 extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
869 /* In cfgrtl.c */
870 extern basic_block force_nonfallthru (edge);
871 extern rtx block_label (basic_block);
872 extern bool purge_all_dead_edges (void);
873 extern bool purge_dead_edges (basic_block);
875 /* In cfgbuild.c. */
876 extern void find_many_sub_basic_blocks (sbitmap);
877 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
878 extern void find_basic_blocks (rtx);
880 /* In cfgcleanup.c. */
881 extern bool cleanup_cfg (int);
882 extern bool delete_unreachable_blocks (void);
884 extern bool mark_dfs_back_edges (void);
885 extern void set_edge_can_fallthru_flag (void);
886 extern void update_br_prob_note (basic_block);
887 extern void fixup_abnormal_edges (void);
888 extern bool inside_basic_block_p (const_rtx);
889 extern bool control_flow_insn_p (const_rtx);
890 extern rtx get_last_bb_insn (basic_block);
892 /* In bb-reorder.c */
893 extern void reorder_basic_blocks (void);
895 /* In dominance.c */
897 enum cdi_direction
899 CDI_DOMINATORS = 1,
900 CDI_POST_DOMINATORS = 2
903 extern enum dom_state dom_info_state (enum cdi_direction);
904 extern void set_dom_info_availability (enum cdi_direction, enum dom_state);
905 extern bool dom_info_available_p (enum cdi_direction);
906 extern void calculate_dominance_info (enum cdi_direction);
907 extern void free_dominance_info (enum cdi_direction);
908 extern basic_block nearest_common_dominator (enum cdi_direction,
909 basic_block, basic_block);
910 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
911 bitmap);
912 extern void set_immediate_dominator (enum cdi_direction, basic_block,
913 basic_block);
914 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
915 extern bool dominated_by_p (enum cdi_direction, const_basic_block, const_basic_block);
916 extern VEC (basic_block, heap) *get_dominated_by (enum cdi_direction, basic_block);
917 extern VEC (basic_block, heap) *get_dominated_by_region (enum cdi_direction,
918 basic_block *,
919 unsigned);
920 extern void add_to_dominance_info (enum cdi_direction, basic_block);
921 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
922 basic_block recompute_dominator (enum cdi_direction, basic_block);
923 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
924 basic_block);
925 extern void iterate_fix_dominators (enum cdi_direction,
926 VEC (basic_block, heap) *, bool);
927 extern void verify_dominators (enum cdi_direction);
928 extern basic_block first_dom_son (enum cdi_direction, basic_block);
929 extern basic_block next_dom_son (enum cdi_direction, basic_block);
930 unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
931 unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
933 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
934 extern void break_superblocks (void);
935 extern void relink_block_chain (bool);
936 extern void check_bb_profile (basic_block, FILE *);
937 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
938 extern void init_rtl_bb_info (basic_block);
940 extern void initialize_original_copy_tables (void);
941 extern void free_original_copy_tables (void);
942 extern void set_bb_original (basic_block, basic_block);
943 extern basic_block get_bb_original (basic_block);
944 extern void set_bb_copy (basic_block, basic_block);
945 extern basic_block get_bb_copy (basic_block);
946 void set_loop_copy (struct loop *, struct loop *);
947 struct loop *get_loop_copy (struct loop *);
950 extern rtx insert_insn_end_bb_new (rtx, basic_block);
952 #include "cfghooks.h"
954 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
955 static inline bool
956 bb_has_eh_pred (basic_block bb)
958 edge e;
959 edge_iterator ei;
961 FOR_EACH_EDGE (e, ei, bb->preds)
963 if (e->flags & EDGE_EH)
964 return true;
966 return false;
969 /* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL. */
970 static inline bool
971 bb_has_abnormal_pred (basic_block bb)
973 edge e;
974 edge_iterator ei;
976 FOR_EACH_EDGE (e, ei, bb->preds)
978 if (e->flags & EDGE_ABNORMAL)
979 return true;
981 return false;
984 /* In cfgloopmanip.c. */
985 extern edge mfb_kj_edge;
986 bool mfb_keep_just (edge);
988 #endif /* GCC_BASIC_BLOCK_H */