2008-12-21 Jerry DeLisle <jvdelisle@gcc.gnu.org>
[official-gcc.git] / gcc / tree-cfg.c
blob89621f0a80ac849d2839077cca62860dd6c5be1e
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "ggc.h"
36 #include "langhooks.h"
37 #include "diagnostic.h"
38 #include "tree-flow.h"
39 #include "timevar.h"
40 #include "tree-dump.h"
41 #include "tree-pass.h"
42 #include "toplev.h"
43 #include "except.h"
44 #include "cfgloop.h"
45 #include "cfglayout.h"
46 #include "tree-ssa-propagate.h"
47 #include "value-prof.h"
48 #include "pointer-set.h"
49 #include "tree-inline.h"
51 /* This file contains functions for building the Control Flow Graph (CFG)
52 for a function tree. */
54 /* Local declarations. */
56 /* Initial capacity for the basic block array. */
57 static const int initial_cfg_capacity = 20;
59 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
60 which use a particular edge. The CASE_LABEL_EXPRs are chained together
61 via their TREE_CHAIN field, which we clear after we're done with the
62 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
64 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
65 update the case vector in response to edge redirections.
67 Right now this table is set up and torn down at key points in the
68 compilation process. It would be nice if we could make the table
69 more persistent. The key is getting notification of changes to
70 the CFG (particularly edge removal, creation and redirection). */
72 static struct pointer_map_t *edge_to_cases;
74 /* CFG statistics. */
75 struct cfg_stats_d
77 long num_merged_labels;
80 static struct cfg_stats_d cfg_stats;
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto;
85 /* Basic blocks and flowgraphs. */
86 static void make_blocks (gimple_seq);
87 static void factor_computed_gotos (void);
89 /* Edges. */
90 static void make_edges (void);
91 static void make_cond_expr_edges (basic_block);
92 static void make_gimple_switch_edges (basic_block);
93 static void make_goto_expr_edges (basic_block);
94 static edge gimple_redirect_edge_and_branch (edge, basic_block);
95 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
96 static unsigned int split_critical_edges (void);
98 /* Various helpers. */
99 static inline bool stmt_starts_bb_p (gimple, gimple);
100 static int gimple_verify_flow_info (void);
101 static void gimple_make_forwarder_block (edge);
102 static void gimple_cfg2vcg (FILE *);
104 /* Flowgraph optimization and cleanup. */
105 static void gimple_merge_blocks (basic_block, basic_block);
106 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
107 static void remove_bb (basic_block);
108 static edge find_taken_edge_computed_goto (basic_block, tree);
109 static edge find_taken_edge_cond_expr (basic_block, tree);
110 static edge find_taken_edge_switch_expr (basic_block, tree);
111 static tree find_case_label_for_value (gimple, tree);
113 void
114 init_empty_tree_cfg_for_function (struct function *fn)
116 /* Initialize the basic block array. */
117 init_flow (fn);
118 profile_status_for_function (fn) = PROFILE_ABSENT;
119 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
120 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
121 basic_block_info_for_function (fn)
122 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
123 VEC_safe_grow_cleared (basic_block, gc,
124 basic_block_info_for_function (fn),
125 initial_cfg_capacity);
127 /* Build a mapping of labels to their associated blocks. */
128 label_to_block_map_for_function (fn)
129 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
130 VEC_safe_grow_cleared (basic_block, gc,
131 label_to_block_map_for_function (fn),
132 initial_cfg_capacity);
134 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
135 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
136 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
137 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
139 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
140 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
141 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
142 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
145 void
146 init_empty_tree_cfg (void)
148 init_empty_tree_cfg_for_function (cfun);
151 /*---------------------------------------------------------------------------
152 Create basic blocks
153 ---------------------------------------------------------------------------*/
155 /* Entry point to the CFG builder for trees. SEQ is the sequence of
156 statements to be added to the flowgraph. */
158 static void
159 build_gimple_cfg (gimple_seq seq)
161 /* Register specific gimple functions. */
162 gimple_register_cfg_hooks ();
164 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
166 init_empty_tree_cfg ();
168 found_computed_goto = 0;
169 make_blocks (seq);
171 /* Computed gotos are hell to deal with, especially if there are
172 lots of them with a large number of destinations. So we factor
173 them to a common computed goto location before we build the
174 edge list. After we convert back to normal form, we will un-factor
175 the computed gotos since factoring introduces an unwanted jump. */
176 if (found_computed_goto)
177 factor_computed_gotos ();
179 /* Make sure there is always at least one block, even if it's empty. */
180 if (n_basic_blocks == NUM_FIXED_BLOCKS)
181 create_empty_bb (ENTRY_BLOCK_PTR);
183 /* Adjust the size of the array. */
184 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
185 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
187 /* To speed up statement iterator walks, we first purge dead labels. */
188 cleanup_dead_labels ();
190 /* Group case nodes to reduce the number of edges.
191 We do this after cleaning up dead labels because otherwise we miss
192 a lot of obvious case merging opportunities. */
193 group_case_labels ();
195 /* Create the edges of the flowgraph. */
196 make_edges ();
197 cleanup_dead_labels ();
199 /* Debugging dumps. */
201 /* Write the flowgraph to a VCG file. */
203 int local_dump_flags;
204 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
205 if (vcg_file)
207 gimple_cfg2vcg (vcg_file);
208 dump_end (TDI_vcg, vcg_file);
212 #ifdef ENABLE_CHECKING
213 verify_stmts ();
214 #endif
217 static unsigned int
218 execute_build_cfg (void)
220 gimple_seq body = gimple_body (current_function_decl);
222 build_gimple_cfg (body);
223 gimple_set_body (current_function_decl, NULL);
224 return 0;
227 struct gimple_opt_pass pass_build_cfg =
230 GIMPLE_PASS,
231 "cfg", /* name */
232 NULL, /* gate */
233 execute_build_cfg, /* execute */
234 NULL, /* sub */
235 NULL, /* next */
236 0, /* static_pass_number */
237 TV_TREE_CFG, /* tv_id */
238 PROP_gimple_leh, /* properties_required */
239 PROP_cfg, /* properties_provided */
240 0, /* properties_destroyed */
241 0, /* todo_flags_start */
242 TODO_verify_stmts | TODO_cleanup_cfg
243 | TODO_dump_func /* todo_flags_finish */
248 /* Return true if T is a computed goto. */
250 static bool
251 computed_goto_p (gimple t)
253 return (gimple_code (t) == GIMPLE_GOTO
254 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
258 /* Search the CFG for any computed gotos. If found, factor them to a
259 common computed goto site. Also record the location of that site so
260 that we can un-factor the gotos after we have converted back to
261 normal form. */
263 static void
264 factor_computed_gotos (void)
266 basic_block bb;
267 tree factored_label_decl = NULL;
268 tree var = NULL;
269 gimple factored_computed_goto_label = NULL;
270 gimple factored_computed_goto = NULL;
272 /* We know there are one or more computed gotos in this function.
273 Examine the last statement in each basic block to see if the block
274 ends with a computed goto. */
276 FOR_EACH_BB (bb)
278 gimple_stmt_iterator gsi = gsi_last_bb (bb);
279 gimple last;
281 if (gsi_end_p (gsi))
282 continue;
284 last = gsi_stmt (gsi);
286 /* Ignore the computed goto we create when we factor the original
287 computed gotos. */
288 if (last == factored_computed_goto)
289 continue;
291 /* If the last statement is a computed goto, factor it. */
292 if (computed_goto_p (last))
294 gimple assignment;
296 /* The first time we find a computed goto we need to create
297 the factored goto block and the variable each original
298 computed goto will use for their goto destination. */
299 if (!factored_computed_goto)
301 basic_block new_bb = create_empty_bb (bb);
302 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
304 /* Create the destination of the factored goto. Each original
305 computed goto will put its desired destination into this
306 variable and jump to the label we create immediately
307 below. */
308 var = create_tmp_var (ptr_type_node, "gotovar");
310 /* Build a label for the new block which will contain the
311 factored computed goto. */
312 factored_label_decl = create_artificial_label ();
313 factored_computed_goto_label
314 = gimple_build_label (factored_label_decl);
315 gsi_insert_after (&new_gsi, factored_computed_goto_label,
316 GSI_NEW_STMT);
318 /* Build our new computed goto. */
319 factored_computed_goto = gimple_build_goto (var);
320 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
323 /* Copy the original computed goto's destination into VAR. */
324 assignment = gimple_build_assign (var, gimple_goto_dest (last));
325 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
327 /* And re-vector the computed goto to the new destination. */
328 gimple_goto_set_dest (last, factored_label_decl);
334 /* Build a flowgraph for the sequence of stmts SEQ. */
336 static void
337 make_blocks (gimple_seq seq)
339 gimple_stmt_iterator i = gsi_start (seq);
340 gimple stmt = NULL;
341 bool start_new_block = true;
342 bool first_stmt_of_seq = true;
343 basic_block bb = ENTRY_BLOCK_PTR;
345 while (!gsi_end_p (i))
347 gimple prev_stmt;
349 prev_stmt = stmt;
350 stmt = gsi_stmt (i);
352 /* If the statement starts a new basic block or if we have determined
353 in a previous pass that we need to create a new block for STMT, do
354 so now. */
355 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
357 if (!first_stmt_of_seq)
358 seq = gsi_split_seq_before (&i);
359 bb = create_basic_block (seq, NULL, bb);
360 start_new_block = false;
363 /* Now add STMT to BB and create the subgraphs for special statement
364 codes. */
365 gimple_set_bb (stmt, bb);
367 if (computed_goto_p (stmt))
368 found_computed_goto = true;
370 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
371 next iteration. */
372 if (stmt_ends_bb_p (stmt))
373 start_new_block = true;
375 gsi_next (&i);
376 first_stmt_of_seq = false;
381 /* Create and return a new empty basic block after bb AFTER. */
383 static basic_block
384 create_bb (void *h, void *e, basic_block after)
386 basic_block bb;
388 gcc_assert (!e);
390 /* Create and initialize a new basic block. Since alloc_block uses
391 ggc_alloc_cleared to allocate a basic block, we do not have to
392 clear the newly allocated basic block here. */
393 bb = alloc_block ();
395 bb->index = last_basic_block;
396 bb->flags = BB_NEW;
397 bb->il.gimple = GGC_CNEW (struct gimple_bb_info);
398 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
400 /* Add the new block to the linked list of blocks. */
401 link_block (bb, after);
403 /* Grow the basic block array if needed. */
404 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
406 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
407 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
410 /* Add the newly created block to the array. */
411 SET_BASIC_BLOCK (last_basic_block, bb);
413 n_basic_blocks++;
414 last_basic_block++;
416 return bb;
420 /*---------------------------------------------------------------------------
421 Edge creation
422 ---------------------------------------------------------------------------*/
424 /* Fold COND_EXPR_COND of each COND_EXPR. */
426 void
427 fold_cond_expr_cond (void)
429 basic_block bb;
431 FOR_EACH_BB (bb)
433 gimple stmt = last_stmt (bb);
435 if (stmt && gimple_code (stmt) == GIMPLE_COND)
437 tree cond;
438 bool zerop, onep;
440 fold_defer_overflow_warnings ();
441 cond = fold_binary (gimple_cond_code (stmt), boolean_type_node,
442 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
443 if (cond)
445 zerop = integer_zerop (cond);
446 onep = integer_onep (cond);
448 else
449 zerop = onep = false;
451 fold_undefer_overflow_warnings (zerop || onep,
452 stmt,
453 WARN_STRICT_OVERFLOW_CONDITIONAL);
454 if (zerop)
455 gimple_cond_make_false (stmt);
456 else if (onep)
457 gimple_cond_make_true (stmt);
462 /* Join all the blocks in the flowgraph. */
464 static void
465 make_edges (void)
467 basic_block bb;
468 struct omp_region *cur_region = NULL;
470 /* Create an edge from entry to the first block with executable
471 statements in it. */
472 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
474 /* Traverse the basic block array placing edges. */
475 FOR_EACH_BB (bb)
477 gimple last = last_stmt (bb);
478 bool fallthru;
480 if (last)
482 enum gimple_code code = gimple_code (last);
483 switch (code)
485 case GIMPLE_GOTO:
486 make_goto_expr_edges (bb);
487 fallthru = false;
488 break;
489 case GIMPLE_RETURN:
490 make_edge (bb, EXIT_BLOCK_PTR, 0);
491 fallthru = false;
492 break;
493 case GIMPLE_COND:
494 make_cond_expr_edges (bb);
495 fallthru = false;
496 break;
497 case GIMPLE_SWITCH:
498 make_gimple_switch_edges (bb);
499 fallthru = false;
500 break;
501 case GIMPLE_RESX:
502 make_eh_edges (last);
503 fallthru = false;
504 break;
506 case GIMPLE_CALL:
507 /* If this function receives a nonlocal goto, then we need to
508 make edges from this call site to all the nonlocal goto
509 handlers. */
510 if (stmt_can_make_abnormal_goto (last))
511 make_abnormal_goto_edges (bb, true);
513 /* If this statement has reachable exception handlers, then
514 create abnormal edges to them. */
515 make_eh_edges (last);
517 /* Some calls are known not to return. */
518 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
519 break;
521 case GIMPLE_ASSIGN:
522 /* A GIMPLE_ASSIGN may throw internally and thus be considered
523 control-altering. */
524 if (is_ctrl_altering_stmt (last))
526 make_eh_edges (last);
528 fallthru = true;
529 break;
531 case GIMPLE_OMP_PARALLEL:
532 case GIMPLE_OMP_TASK:
533 case GIMPLE_OMP_FOR:
534 case GIMPLE_OMP_SINGLE:
535 case GIMPLE_OMP_MASTER:
536 case GIMPLE_OMP_ORDERED:
537 case GIMPLE_OMP_CRITICAL:
538 case GIMPLE_OMP_SECTION:
539 cur_region = new_omp_region (bb, code, cur_region);
540 fallthru = true;
541 break;
543 case GIMPLE_OMP_SECTIONS:
544 cur_region = new_omp_region (bb, code, cur_region);
545 fallthru = true;
546 break;
548 case GIMPLE_OMP_SECTIONS_SWITCH:
549 fallthru = false;
550 break;
553 case GIMPLE_OMP_ATOMIC_LOAD:
554 case GIMPLE_OMP_ATOMIC_STORE:
555 fallthru = true;
556 break;
559 case GIMPLE_OMP_RETURN:
560 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
561 somewhere other than the next block. This will be
562 created later. */
563 cur_region->exit = bb;
564 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
565 cur_region = cur_region->outer;
566 break;
568 case GIMPLE_OMP_CONTINUE:
569 cur_region->cont = bb;
570 switch (cur_region->type)
572 case GIMPLE_OMP_FOR:
573 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
574 succs edges as abnormal to prevent splitting
575 them. */
576 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
577 /* Make the loopback edge. */
578 make_edge (bb, single_succ (cur_region->entry),
579 EDGE_ABNORMAL);
581 /* Create an edge from GIMPLE_OMP_FOR to exit, which
582 corresponds to the case that the body of the loop
583 is not executed at all. */
584 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
585 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
586 fallthru = false;
587 break;
589 case GIMPLE_OMP_SECTIONS:
590 /* Wire up the edges into and out of the nested sections. */
592 basic_block switch_bb = single_succ (cur_region->entry);
594 struct omp_region *i;
595 for (i = cur_region->inner; i ; i = i->next)
597 gcc_assert (i->type == GIMPLE_OMP_SECTION);
598 make_edge (switch_bb, i->entry, 0);
599 make_edge (i->exit, bb, EDGE_FALLTHRU);
602 /* Make the loopback edge to the block with
603 GIMPLE_OMP_SECTIONS_SWITCH. */
604 make_edge (bb, switch_bb, 0);
606 /* Make the edge from the switch to exit. */
607 make_edge (switch_bb, bb->next_bb, 0);
608 fallthru = false;
610 break;
612 default:
613 gcc_unreachable ();
615 break;
617 default:
618 gcc_assert (!stmt_ends_bb_p (last));
619 fallthru = true;
622 else
623 fallthru = true;
625 if (fallthru)
626 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
629 if (root_omp_region)
630 free_omp_regions ();
632 /* Fold COND_EXPR_COND of each COND_EXPR. */
633 fold_cond_expr_cond ();
637 /* Create the edges for a GIMPLE_COND starting at block BB. */
639 static void
640 make_cond_expr_edges (basic_block bb)
642 gimple entry = last_stmt (bb);
643 gimple then_stmt, else_stmt;
644 basic_block then_bb, else_bb;
645 tree then_label, else_label;
646 edge e;
648 gcc_assert (entry);
649 gcc_assert (gimple_code (entry) == GIMPLE_COND);
651 /* Entry basic blocks for each component. */
652 then_label = gimple_cond_true_label (entry);
653 else_label = gimple_cond_false_label (entry);
654 then_bb = label_to_block (then_label);
655 else_bb = label_to_block (else_label);
656 then_stmt = first_stmt (then_bb);
657 else_stmt = first_stmt (else_bb);
659 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
660 e->goto_locus = gimple_location (then_stmt);
661 if (e->goto_locus)
662 e->goto_block = gimple_block (then_stmt);
663 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
664 if (e)
666 e->goto_locus = gimple_location (else_stmt);
667 if (e->goto_locus)
668 e->goto_block = gimple_block (else_stmt);
671 /* We do not need the labels anymore. */
672 gimple_cond_set_true_label (entry, NULL_TREE);
673 gimple_cond_set_false_label (entry, NULL_TREE);
677 /* Called for each element in the hash table (P) as we delete the
678 edge to cases hash table.
680 Clear all the TREE_CHAINs to prevent problems with copying of
681 SWITCH_EXPRs and structure sharing rules, then free the hash table
682 element. */
684 static bool
685 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
686 void *data ATTRIBUTE_UNUSED)
688 tree t, next;
690 for (t = (tree) *value; t; t = next)
692 next = TREE_CHAIN (t);
693 TREE_CHAIN (t) = NULL;
696 *value = NULL;
697 return false;
700 /* Start recording information mapping edges to case labels. */
702 void
703 start_recording_case_labels (void)
705 gcc_assert (edge_to_cases == NULL);
706 edge_to_cases = pointer_map_create ();
709 /* Return nonzero if we are recording information for case labels. */
711 static bool
712 recording_case_labels_p (void)
714 return (edge_to_cases != NULL);
717 /* Stop recording information mapping edges to case labels and
718 remove any information we have recorded. */
719 void
720 end_recording_case_labels (void)
722 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
723 pointer_map_destroy (edge_to_cases);
724 edge_to_cases = NULL;
727 /* If we are inside a {start,end}_recording_cases block, then return
728 a chain of CASE_LABEL_EXPRs from T which reference E.
730 Otherwise return NULL. */
732 static tree
733 get_cases_for_edge (edge e, gimple t)
735 void **slot;
736 size_t i, n;
738 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
739 chains available. Return NULL so the caller can detect this case. */
740 if (!recording_case_labels_p ())
741 return NULL;
743 slot = pointer_map_contains (edge_to_cases, e);
744 if (slot)
745 return (tree) *slot;
747 /* If we did not find E in the hash table, then this must be the first
748 time we have been queried for information about E & T. Add all the
749 elements from T to the hash table then perform the query again. */
751 n = gimple_switch_num_labels (t);
752 for (i = 0; i < n; i++)
754 tree elt = gimple_switch_label (t, i);
755 tree lab = CASE_LABEL (elt);
756 basic_block label_bb = label_to_block (lab);
757 edge this_edge = find_edge (e->src, label_bb);
759 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
760 a new chain. */
761 slot = pointer_map_insert (edge_to_cases, this_edge);
762 TREE_CHAIN (elt) = (tree) *slot;
763 *slot = elt;
766 return (tree) *pointer_map_contains (edge_to_cases, e);
769 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
771 static void
772 make_gimple_switch_edges (basic_block bb)
774 gimple entry = last_stmt (bb);
775 size_t i, n;
777 n = gimple_switch_num_labels (entry);
779 for (i = 0; i < n; ++i)
781 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
782 basic_block label_bb = label_to_block (lab);
783 make_edge (bb, label_bb, 0);
788 /* Return the basic block holding label DEST. */
790 basic_block
791 label_to_block_fn (struct function *ifun, tree dest)
793 int uid = LABEL_DECL_UID (dest);
795 /* We would die hard when faced by an undefined label. Emit a label to
796 the very first basic block. This will hopefully make even the dataflow
797 and undefined variable warnings quite right. */
798 if ((errorcount || sorrycount) && uid < 0)
800 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
801 gimple stmt;
803 stmt = gimple_build_label (dest);
804 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
805 uid = LABEL_DECL_UID (dest);
807 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
808 <= (unsigned int) uid)
809 return NULL;
810 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
813 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
814 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
816 void
817 make_abnormal_goto_edges (basic_block bb, bool for_call)
819 basic_block target_bb;
820 gimple_stmt_iterator gsi;
822 FOR_EACH_BB (target_bb)
823 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
825 gimple label_stmt = gsi_stmt (gsi);
826 tree target;
828 if (gimple_code (label_stmt) != GIMPLE_LABEL)
829 break;
831 target = gimple_label_label (label_stmt);
833 /* Make an edge to every label block that has been marked as a
834 potential target for a computed goto or a non-local goto. */
835 if ((FORCED_LABEL (target) && !for_call)
836 || (DECL_NONLOCAL (target) && for_call))
838 make_edge (bb, target_bb, EDGE_ABNORMAL);
839 break;
844 /* Create edges for a goto statement at block BB. */
846 static void
847 make_goto_expr_edges (basic_block bb)
849 gimple_stmt_iterator last = gsi_last_bb (bb);
850 gimple goto_t = gsi_stmt (last);
852 /* A simple GOTO creates normal edges. */
853 if (simple_goto_p (goto_t))
855 tree dest = gimple_goto_dest (goto_t);
856 edge e = make_edge (bb, label_to_block (dest), EDGE_FALLTHRU);
857 e->goto_locus = gimple_location (goto_t);
858 if (e->goto_locus)
859 e->goto_block = gimple_block (goto_t);
860 gsi_remove (&last, true);
861 return;
864 /* A computed GOTO creates abnormal edges. */
865 make_abnormal_goto_edges (bb, false);
869 /*---------------------------------------------------------------------------
870 Flowgraph analysis
871 ---------------------------------------------------------------------------*/
873 /* Cleanup useless labels in basic blocks. This is something we wish
874 to do early because it allows us to group case labels before creating
875 the edges for the CFG, and it speeds up block statement iterators in
876 all passes later on.
877 We rerun this pass after CFG is created, to get rid of the labels that
878 are no longer referenced. After then we do not run it any more, since
879 (almost) no new labels should be created. */
881 /* A map from basic block index to the leading label of that block. */
882 static struct label_record
884 /* The label. */
885 tree label;
887 /* True if the label is referenced from somewhere. */
888 bool used;
889 } *label_for_bb;
891 /* Callback for for_each_eh_region. Helper for cleanup_dead_labels. */
892 static void
893 update_eh_label (struct eh_region *region)
895 tree old_label = get_eh_region_tree_label (region);
896 if (old_label)
898 tree new_label;
899 basic_block bb = label_to_block (old_label);
901 /* ??? After optimizing, there may be EH regions with labels
902 that have already been removed from the function body, so
903 there is no basic block for them. */
904 if (! bb)
905 return;
907 new_label = label_for_bb[bb->index].label;
908 label_for_bb[bb->index].used = true;
909 set_eh_region_tree_label (region, new_label);
914 /* Given LABEL return the first label in the same basic block. */
916 static tree
917 main_block_label (tree label)
919 basic_block bb = label_to_block (label);
920 tree main_label = label_for_bb[bb->index].label;
922 /* label_to_block possibly inserted undefined label into the chain. */
923 if (!main_label)
925 label_for_bb[bb->index].label = label;
926 main_label = label;
929 label_for_bb[bb->index].used = true;
930 return main_label;
933 /* Cleanup redundant labels. This is a three-step process:
934 1) Find the leading label for each block.
935 2) Redirect all references to labels to the leading labels.
936 3) Cleanup all useless labels. */
938 void
939 cleanup_dead_labels (void)
941 basic_block bb;
942 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
944 /* Find a suitable label for each block. We use the first user-defined
945 label if there is one, or otherwise just the first label we see. */
946 FOR_EACH_BB (bb)
948 gimple_stmt_iterator i;
950 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
952 tree label;
953 gimple stmt = gsi_stmt (i);
955 if (gimple_code (stmt) != GIMPLE_LABEL)
956 break;
958 label = gimple_label_label (stmt);
960 /* If we have not yet seen a label for the current block,
961 remember this one and see if there are more labels. */
962 if (!label_for_bb[bb->index].label)
964 label_for_bb[bb->index].label = label;
965 continue;
968 /* If we did see a label for the current block already, but it
969 is an artificially created label, replace it if the current
970 label is a user defined label. */
971 if (!DECL_ARTIFICIAL (label)
972 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
974 label_for_bb[bb->index].label = label;
975 break;
980 /* Now redirect all jumps/branches to the selected label.
981 First do so for each block ending in a control statement. */
982 FOR_EACH_BB (bb)
984 gimple stmt = last_stmt (bb);
985 if (!stmt)
986 continue;
988 switch (gimple_code (stmt))
990 case GIMPLE_COND:
992 tree true_label = gimple_cond_true_label (stmt);
993 tree false_label = gimple_cond_false_label (stmt);
995 if (true_label)
996 gimple_cond_set_true_label (stmt, main_block_label (true_label));
997 if (false_label)
998 gimple_cond_set_false_label (stmt, main_block_label (false_label));
999 break;
1002 case GIMPLE_SWITCH:
1004 size_t i, n = gimple_switch_num_labels (stmt);
1006 /* Replace all destination labels. */
1007 for (i = 0; i < n; ++i)
1009 tree case_label = gimple_switch_label (stmt, i);
1010 tree label = main_block_label (CASE_LABEL (case_label));
1011 CASE_LABEL (case_label) = label;
1013 break;
1016 /* We have to handle gotos until they're removed, and we don't
1017 remove them until after we've created the CFG edges. */
1018 case GIMPLE_GOTO:
1019 if (!computed_goto_p (stmt))
1021 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1022 gimple_goto_set_dest (stmt, new_dest);
1023 break;
1026 default:
1027 break;
1031 for_each_eh_region (update_eh_label);
1033 /* Finally, purge dead labels. All user-defined labels and labels that
1034 can be the target of non-local gotos and labels which have their
1035 address taken are preserved. */
1036 FOR_EACH_BB (bb)
1038 gimple_stmt_iterator i;
1039 tree label_for_this_bb = label_for_bb[bb->index].label;
1041 if (!label_for_this_bb)
1042 continue;
1044 /* If the main label of the block is unused, we may still remove it. */
1045 if (!label_for_bb[bb->index].used)
1046 label_for_this_bb = NULL;
1048 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1050 tree label;
1051 gimple stmt = gsi_stmt (i);
1053 if (gimple_code (stmt) != GIMPLE_LABEL)
1054 break;
1056 label = gimple_label_label (stmt);
1058 if (label == label_for_this_bb
1059 || !DECL_ARTIFICIAL (label)
1060 || DECL_NONLOCAL (label)
1061 || FORCED_LABEL (label))
1062 gsi_next (&i);
1063 else
1064 gsi_remove (&i, true);
1068 free (label_for_bb);
1071 /* Look for blocks ending in a multiway branch (a SWITCH_EXPR in GIMPLE),
1072 and scan the sorted vector of cases. Combine the ones jumping to the
1073 same label.
1074 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1076 void
1077 group_case_labels (void)
1079 basic_block bb;
1081 FOR_EACH_BB (bb)
1083 gimple stmt = last_stmt (bb);
1084 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1086 int old_size = gimple_switch_num_labels (stmt);
1087 int i, j, new_size = old_size;
1088 tree default_case = NULL_TREE;
1089 tree default_label = NULL_TREE;
1090 bool has_default;
1092 /* The default label is always the first case in a switch
1093 statement after gimplification if it was not optimized
1094 away */
1095 if (!CASE_LOW (gimple_switch_default_label (stmt))
1096 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1098 default_case = gimple_switch_default_label (stmt);
1099 default_label = CASE_LABEL (default_case);
1100 has_default = true;
1102 else
1103 has_default = false;
1105 /* Look for possible opportunities to merge cases. */
1106 if (has_default)
1107 i = 1;
1108 else
1109 i = 0;
1110 while (i < old_size)
1112 tree base_case, base_label, base_high;
1113 base_case = gimple_switch_label (stmt, i);
1115 gcc_assert (base_case);
1116 base_label = CASE_LABEL (base_case);
1118 /* Discard cases that have the same destination as the
1119 default case. */
1120 if (base_label == default_label)
1122 gimple_switch_set_label (stmt, i, NULL_TREE);
1123 i++;
1124 new_size--;
1125 continue;
1128 base_high = CASE_HIGH (base_case)
1129 ? CASE_HIGH (base_case)
1130 : CASE_LOW (base_case);
1131 i++;
1133 /* Try to merge case labels. Break out when we reach the end
1134 of the label vector or when we cannot merge the next case
1135 label with the current one. */
1136 while (i < old_size)
1138 tree merge_case = gimple_switch_label (stmt, i);
1139 tree merge_label = CASE_LABEL (merge_case);
1140 tree t = int_const_binop (PLUS_EXPR, base_high,
1141 integer_one_node, 1);
1143 /* Merge the cases if they jump to the same place,
1144 and their ranges are consecutive. */
1145 if (merge_label == base_label
1146 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1148 base_high = CASE_HIGH (merge_case) ?
1149 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1150 CASE_HIGH (base_case) = base_high;
1151 gimple_switch_set_label (stmt, i, NULL_TREE);
1152 new_size--;
1153 i++;
1155 else
1156 break;
1160 /* Compress the case labels in the label vector, and adjust the
1161 length of the vector. */
1162 for (i = 0, j = 0; i < new_size; i++)
1164 while (! gimple_switch_label (stmt, j))
1165 j++;
1166 gimple_switch_set_label (stmt, i,
1167 gimple_switch_label (stmt, j++));
1170 gcc_assert (new_size <= old_size);
1171 gimple_switch_set_num_labels (stmt, new_size);
1176 /* Checks whether we can merge block B into block A. */
1178 static bool
1179 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1181 gimple stmt;
1182 gimple_stmt_iterator gsi;
1183 gimple_seq phis;
1185 if (!single_succ_p (a))
1186 return false;
1188 if (single_succ_edge (a)->flags & EDGE_ABNORMAL)
1189 return false;
1191 if (single_succ (a) != b)
1192 return false;
1194 if (!single_pred_p (b))
1195 return false;
1197 if (b == EXIT_BLOCK_PTR)
1198 return false;
1200 /* If A ends by a statement causing exceptions or something similar, we
1201 cannot merge the blocks. */
1202 stmt = last_stmt (a);
1203 if (stmt && stmt_ends_bb_p (stmt))
1204 return false;
1206 /* Do not allow a block with only a non-local label to be merged. */
1207 if (stmt
1208 && gimple_code (stmt) == GIMPLE_LABEL
1209 && DECL_NONLOCAL (gimple_label_label (stmt)))
1210 return false;
1212 /* It must be possible to eliminate all phi nodes in B. If ssa form
1213 is not up-to-date, we cannot eliminate any phis; however, if only
1214 some symbols as whole are marked for renaming, this is not a problem,
1215 as phi nodes for those symbols are irrelevant in updating anyway. */
1216 phis = phi_nodes (b);
1217 if (!gimple_seq_empty_p (phis))
1219 gimple_stmt_iterator i;
1221 if (name_mappings_registered_p ())
1222 return false;
1224 for (i = gsi_start (phis); !gsi_end_p (i); gsi_next (&i))
1226 gimple phi = gsi_stmt (i);
1228 if (!is_gimple_reg (gimple_phi_result (phi))
1229 && !may_propagate_copy (gimple_phi_result (phi),
1230 gimple_phi_arg_def (phi, 0)))
1231 return false;
1235 /* Do not remove user labels. */
1236 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1238 stmt = gsi_stmt (gsi);
1239 if (gimple_code (stmt) != GIMPLE_LABEL)
1240 break;
1241 if (!DECL_ARTIFICIAL (gimple_label_label (stmt)))
1242 return false;
1245 /* Protect the loop latches. */
1246 if (current_loops
1247 && b->loop_father->latch == b)
1248 return false;
1250 return true;
1253 /* Replaces all uses of NAME by VAL. */
1255 void
1256 replace_uses_by (tree name, tree val)
1258 imm_use_iterator imm_iter;
1259 use_operand_p use;
1260 gimple stmt;
1261 edge e;
1263 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1265 if (gimple_code (stmt) != GIMPLE_PHI)
1266 push_stmt_changes (&stmt);
1268 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1270 replace_exp (use, val);
1272 if (gimple_code (stmt) == GIMPLE_PHI)
1274 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1275 if (e->flags & EDGE_ABNORMAL)
1277 /* This can only occur for virtual operands, since
1278 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1279 would prevent replacement. */
1280 gcc_assert (!is_gimple_reg (name));
1281 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1286 if (gimple_code (stmt) != GIMPLE_PHI)
1288 size_t i;
1290 fold_stmt_inplace (stmt);
1291 if (cfgcleanup_altered_bbs)
1292 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1294 /* FIXME. This should go in pop_stmt_changes. */
1295 for (i = 0; i < gimple_num_ops (stmt); i++)
1297 tree op = gimple_op (stmt, i);
1298 /* Operands may be empty here. For example, the labels
1299 of a GIMPLE_COND are nulled out following the creation
1300 of the corresponding CFG edges. */
1301 if (op && TREE_CODE (op) == ADDR_EXPR)
1302 recompute_tree_invariant_for_addr_expr (op);
1305 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1307 pop_stmt_changes (&stmt);
1311 gcc_assert (has_zero_uses (name));
1313 /* Also update the trees stored in loop structures. */
1314 if (current_loops)
1316 struct loop *loop;
1317 loop_iterator li;
1319 FOR_EACH_LOOP (li, loop, 0)
1321 substitute_in_loop_info (loop, name, val);
1326 /* Merge block B into block A. */
1328 static void
1329 gimple_merge_blocks (basic_block a, basic_block b)
1331 gimple_stmt_iterator last, gsi, psi;
1332 gimple_seq phis = phi_nodes (b);
1334 if (dump_file)
1335 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1337 /* Remove all single-valued PHI nodes from block B of the form
1338 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1339 gsi = gsi_last_bb (a);
1340 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1342 gimple phi = gsi_stmt (psi);
1343 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1344 gimple copy;
1345 bool may_replace_uses = !is_gimple_reg (def)
1346 || may_propagate_copy (def, use);
1348 /* In case we maintain loop closed ssa form, do not propagate arguments
1349 of loop exit phi nodes. */
1350 if (current_loops
1351 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1352 && is_gimple_reg (def)
1353 && TREE_CODE (use) == SSA_NAME
1354 && a->loop_father != b->loop_father)
1355 may_replace_uses = false;
1357 if (!may_replace_uses)
1359 gcc_assert (is_gimple_reg (def));
1361 /* Note that just emitting the copies is fine -- there is no problem
1362 with ordering of phi nodes. This is because A is the single
1363 predecessor of B, therefore results of the phi nodes cannot
1364 appear as arguments of the phi nodes. */
1365 copy = gimple_build_assign (def, use);
1366 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1367 remove_phi_node (&psi, false);
1369 else
1371 /* If we deal with a PHI for virtual operands, we can simply
1372 propagate these without fussing with folding or updating
1373 the stmt. */
1374 if (!is_gimple_reg (def))
1376 imm_use_iterator iter;
1377 use_operand_p use_p;
1378 gimple stmt;
1380 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1381 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1382 SET_USE (use_p, use);
1384 else
1385 replace_uses_by (def, use);
1387 remove_phi_node (&psi, true);
1391 /* Ensure that B follows A. */
1392 move_block_after (b, a);
1394 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1395 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1397 /* Remove labels from B and set gimple_bb to A for other statements. */
1398 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1400 if (gimple_code (gsi_stmt (gsi)) == GIMPLE_LABEL)
1402 gimple label = gsi_stmt (gsi);
1404 gsi_remove (&gsi, false);
1406 /* Now that we can thread computed gotos, we might have
1407 a situation where we have a forced label in block B
1408 However, the label at the start of block B might still be
1409 used in other ways (think about the runtime checking for
1410 Fortran assigned gotos). So we can not just delete the
1411 label. Instead we move the label to the start of block A. */
1412 if (FORCED_LABEL (gimple_label_label (label)))
1414 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1415 gsi_insert_before (&dest_gsi, label, GSI_NEW_STMT);
1418 else
1420 gimple_set_bb (gsi_stmt (gsi), a);
1421 gsi_next (&gsi);
1425 /* Merge the sequences. */
1426 last = gsi_last_bb (a);
1427 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1428 set_bb_seq (b, NULL);
1430 if (cfgcleanup_altered_bbs)
1431 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1435 /* Return the one of two successors of BB that is not reachable by a
1436 reached by a complex edge, if there is one. Else, return BB. We use
1437 this in optimizations that use post-dominators for their heuristics,
1438 to catch the cases in C++ where function calls are involved. */
1440 basic_block
1441 single_noncomplex_succ (basic_block bb)
1443 edge e0, e1;
1444 if (EDGE_COUNT (bb->succs) != 2)
1445 return bb;
1447 e0 = EDGE_SUCC (bb, 0);
1448 e1 = EDGE_SUCC (bb, 1);
1449 if (e0->flags & EDGE_COMPLEX)
1450 return e1->dest;
1451 if (e1->flags & EDGE_COMPLEX)
1452 return e0->dest;
1454 return bb;
1458 /* Walk the function tree removing unnecessary statements.
1460 * Empty statement nodes are removed
1462 * Unnecessary TRY_FINALLY and TRY_CATCH blocks are removed
1464 * Unnecessary COND_EXPRs are removed
1466 * Some unnecessary BIND_EXPRs are removed
1468 * GOTO_EXPRs immediately preceding destination are removed.
1470 Clearly more work could be done. The trick is doing the analysis
1471 and removal fast enough to be a net improvement in compile times.
1473 Note that when we remove a control structure such as a COND_EXPR
1474 BIND_EXPR, or TRY block, we will need to repeat this optimization pass
1475 to ensure we eliminate all the useless code. */
1477 struct rus_data
1479 bool repeat;
1480 bool may_throw;
1481 bool may_branch;
1482 bool has_label;
1483 bool last_was_goto;
1484 gimple_stmt_iterator last_goto_gsi;
1488 static void remove_useless_stmts_1 (gimple_stmt_iterator *gsi, struct rus_data *);
1490 /* Given a statement sequence, find the first executable statement with
1491 location information, and warn that it is unreachable. When searching,
1492 descend into containers in execution order. */
1494 static bool
1495 remove_useless_stmts_warn_notreached (gimple_seq stmts)
1497 gimple_stmt_iterator gsi;
1499 for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
1501 gimple stmt = gsi_stmt (gsi);
1503 if (gimple_has_location (stmt))
1505 location_t loc = gimple_location (stmt);
1506 if (LOCATION_LINE (loc) > 0)
1508 warning (OPT_Wunreachable_code, "%Hwill never be executed", &loc);
1509 return true;
1513 switch (gimple_code (stmt))
1515 /* Unfortunately, we need the CFG now to detect unreachable
1516 branches in a conditional, so conditionals are not handled here. */
1518 case GIMPLE_TRY:
1519 if (remove_useless_stmts_warn_notreached (gimple_try_eval (stmt)))
1520 return true;
1521 if (remove_useless_stmts_warn_notreached (gimple_try_cleanup (stmt)))
1522 return true;
1523 break;
1525 case GIMPLE_CATCH:
1526 return remove_useless_stmts_warn_notreached (gimple_catch_handler (stmt));
1528 case GIMPLE_EH_FILTER:
1529 return remove_useless_stmts_warn_notreached (gimple_eh_filter_failure (stmt));
1531 case GIMPLE_BIND:
1532 return remove_useless_stmts_warn_notreached (gimple_bind_body (stmt));
1534 default:
1535 break;
1539 return false;
1542 /* Helper for remove_useless_stmts_1. Handle GIMPLE_COND statements. */
1544 static void
1545 remove_useless_stmts_cond (gimple_stmt_iterator *gsi, struct rus_data *data)
1547 gimple stmt = gsi_stmt (*gsi);
1549 /* The folded result must still be a conditional statement. */
1550 fold_stmt_inplace (stmt);
1552 data->may_branch = true;
1554 /* Replace trivial conditionals with gotos. */
1555 if (gimple_cond_true_p (stmt))
1557 /* Goto THEN label. */
1558 tree then_label = gimple_cond_true_label (stmt);
1560 gsi_replace (gsi, gimple_build_goto (then_label), false);
1561 data->last_goto_gsi = *gsi;
1562 data->last_was_goto = true;
1563 data->repeat = true;
1565 else if (gimple_cond_false_p (stmt))
1567 /* Goto ELSE label. */
1568 tree else_label = gimple_cond_false_label (stmt);
1570 gsi_replace (gsi, gimple_build_goto (else_label), false);
1571 data->last_goto_gsi = *gsi;
1572 data->last_was_goto = true;
1573 data->repeat = true;
1575 else
1577 tree then_label = gimple_cond_true_label (stmt);
1578 tree else_label = gimple_cond_false_label (stmt);
1580 if (then_label == else_label)
1582 /* Goto common destination. */
1583 gsi_replace (gsi, gimple_build_goto (then_label), false);
1584 data->last_goto_gsi = *gsi;
1585 data->last_was_goto = true;
1586 data->repeat = true;
1590 gsi_next (gsi);
1592 data->last_was_goto = false;
1595 /* Helper for remove_useless_stmts_1.
1596 Handle the try-finally case for GIMPLE_TRY statements. */
1598 static void
1599 remove_useless_stmts_tf (gimple_stmt_iterator *gsi, struct rus_data *data)
1601 bool save_may_branch, save_may_throw;
1602 bool this_may_branch, this_may_throw;
1604 gimple_seq eval_seq, cleanup_seq;
1605 gimple_stmt_iterator eval_gsi, cleanup_gsi;
1607 gimple stmt = gsi_stmt (*gsi);
1609 /* Collect may_branch and may_throw information for the body only. */
1610 save_may_branch = data->may_branch;
1611 save_may_throw = data->may_throw;
1612 data->may_branch = false;
1613 data->may_throw = false;
1614 data->last_was_goto = false;
1616 eval_seq = gimple_try_eval (stmt);
1617 eval_gsi = gsi_start (eval_seq);
1618 remove_useless_stmts_1 (&eval_gsi, data);
1620 this_may_branch = data->may_branch;
1621 this_may_throw = data->may_throw;
1622 data->may_branch |= save_may_branch;
1623 data->may_throw |= save_may_throw;
1624 data->last_was_goto = false;
1626 cleanup_seq = gimple_try_cleanup (stmt);
1627 cleanup_gsi = gsi_start (cleanup_seq);
1628 remove_useless_stmts_1 (&cleanup_gsi, data);
1630 /* If the body is empty, then we can emit the FINALLY block without
1631 the enclosing TRY_FINALLY_EXPR. */
1632 if (gimple_seq_empty_p (eval_seq))
1634 gsi_insert_seq_before (gsi, cleanup_seq, GSI_SAME_STMT);
1635 gsi_remove (gsi, false);
1636 data->repeat = true;
1639 /* If the handler is empty, then we can emit the TRY block without
1640 the enclosing TRY_FINALLY_EXPR. */
1641 else if (gimple_seq_empty_p (cleanup_seq))
1643 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1644 gsi_remove (gsi, false);
1645 data->repeat = true;
1648 /* If the body neither throws, nor branches, then we can safely
1649 string the TRY and FINALLY blocks together. */
1650 else if (!this_may_branch && !this_may_throw)
1652 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1653 gsi_insert_seq_before (gsi, cleanup_seq, GSI_SAME_STMT);
1654 gsi_remove (gsi, false);
1655 data->repeat = true;
1657 else
1658 gsi_next (gsi);
1661 /* Helper for remove_useless_stmts_1.
1662 Handle the try-catch case for GIMPLE_TRY statements. */
1664 static void
1665 remove_useless_stmts_tc (gimple_stmt_iterator *gsi, struct rus_data *data)
1667 bool save_may_throw, this_may_throw;
1669 gimple_seq eval_seq, cleanup_seq, handler_seq, failure_seq;
1670 gimple_stmt_iterator eval_gsi, cleanup_gsi, handler_gsi, failure_gsi;
1672 gimple stmt = gsi_stmt (*gsi);
1674 /* Collect may_throw information for the body only. */
1675 save_may_throw = data->may_throw;
1676 data->may_throw = false;
1677 data->last_was_goto = false;
1679 eval_seq = gimple_try_eval (stmt);
1680 eval_gsi = gsi_start (eval_seq);
1681 remove_useless_stmts_1 (&eval_gsi, data);
1683 this_may_throw = data->may_throw;
1684 data->may_throw = save_may_throw;
1686 cleanup_seq = gimple_try_cleanup (stmt);
1688 /* If the body cannot throw, then we can drop the entire TRY_CATCH_EXPR. */
1689 if (!this_may_throw)
1691 if (warn_notreached)
1693 remove_useless_stmts_warn_notreached (cleanup_seq);
1695 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1696 gsi_remove (gsi, false);
1697 data->repeat = true;
1698 return;
1701 /* Process the catch clause specially. We may be able to tell that
1702 no exceptions propagate past this point. */
1704 this_may_throw = true;
1705 cleanup_gsi = gsi_start (cleanup_seq);
1706 stmt = gsi_stmt (cleanup_gsi);
1707 data->last_was_goto = false;
1709 switch (gimple_code (stmt))
1711 case GIMPLE_CATCH:
1712 /* If the first element is a catch, they all must be. */
1713 while (!gsi_end_p (cleanup_gsi))
1715 stmt = gsi_stmt (cleanup_gsi);
1716 /* If we catch all exceptions, then the body does not
1717 propagate exceptions past this point. */
1718 if (gimple_catch_types (stmt) == NULL)
1719 this_may_throw = false;
1720 data->last_was_goto = false;
1721 handler_seq = gimple_catch_handler (stmt);
1722 handler_gsi = gsi_start (handler_seq);
1723 remove_useless_stmts_1 (&handler_gsi, data);
1724 gsi_next (&cleanup_gsi);
1726 gsi_next (gsi);
1727 break;
1729 case GIMPLE_EH_FILTER:
1730 /* If the first element is an eh_filter, it should stand alone. */
1731 if (gimple_eh_filter_must_not_throw (stmt))
1732 this_may_throw = false;
1733 else if (gimple_eh_filter_types (stmt) == NULL)
1734 this_may_throw = false;
1735 failure_seq = gimple_eh_filter_failure (stmt);
1736 failure_gsi = gsi_start (failure_seq);
1737 remove_useless_stmts_1 (&failure_gsi, data);
1738 gsi_next (gsi);
1739 break;
1741 default:
1742 /* Otherwise this is a list of cleanup statements. */
1743 remove_useless_stmts_1 (&cleanup_gsi, data);
1745 /* If the cleanup is empty, then we can emit the TRY block without
1746 the enclosing TRY_CATCH_EXPR. */
1747 if (gimple_seq_empty_p (cleanup_seq))
1749 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1750 gsi_remove(gsi, false);
1751 data->repeat = true;
1753 else
1754 gsi_next (gsi);
1755 break;
1758 data->may_throw |= this_may_throw;
1761 /* Helper for remove_useless_stmts_1. Handle GIMPLE_BIND statements. */
1763 static void
1764 remove_useless_stmts_bind (gimple_stmt_iterator *gsi, struct rus_data *data ATTRIBUTE_UNUSED)
1766 tree block;
1767 gimple_seq body_seq, fn_body_seq;
1768 gimple_stmt_iterator body_gsi;
1770 gimple stmt = gsi_stmt (*gsi);
1772 /* First remove anything underneath the BIND_EXPR. */
1774 body_seq = gimple_bind_body (stmt);
1775 body_gsi = gsi_start (body_seq);
1776 remove_useless_stmts_1 (&body_gsi, data);
1778 /* If the GIMPLE_BIND has no variables, then we can pull everything
1779 up one level and remove the GIMPLE_BIND, unless this is the toplevel
1780 GIMPLE_BIND for the current function or an inlined function.
1782 When this situation occurs we will want to apply this
1783 optimization again. */
1784 block = gimple_bind_block (stmt);
1785 fn_body_seq = gimple_body (current_function_decl);
1786 if (gimple_bind_vars (stmt) == NULL_TREE
1787 && (gimple_seq_empty_p (fn_body_seq)
1788 || stmt != gimple_seq_first_stmt (fn_body_seq))
1789 && (! block
1790 || ! BLOCK_ABSTRACT_ORIGIN (block)
1791 || (TREE_CODE (BLOCK_ABSTRACT_ORIGIN (block))
1792 != FUNCTION_DECL)))
1794 gsi_insert_seq_before (gsi, body_seq, GSI_SAME_STMT);
1795 gsi_remove (gsi, false);
1796 data->repeat = true;
1798 else
1799 gsi_next (gsi);
1802 /* Helper for remove_useless_stmts_1. Handle GIMPLE_GOTO statements. */
1804 static void
1805 remove_useless_stmts_goto (gimple_stmt_iterator *gsi, struct rus_data *data)
1807 gimple stmt = gsi_stmt (*gsi);
1809 tree dest = gimple_goto_dest (stmt);
1811 data->may_branch = true;
1812 data->last_was_goto = false;
1814 /* Record iterator for last goto expr, so that we can delete it if unnecessary. */
1815 if (TREE_CODE (dest) == LABEL_DECL)
1817 data->last_goto_gsi = *gsi;
1818 data->last_was_goto = true;
1821 gsi_next(gsi);
1824 /* Helper for remove_useless_stmts_1. Handle GIMPLE_LABEL statements. */
1826 static void
1827 remove_useless_stmts_label (gimple_stmt_iterator *gsi, struct rus_data *data)
1829 gimple stmt = gsi_stmt (*gsi);
1831 tree label = gimple_label_label (stmt);
1833 data->has_label = true;
1835 /* We do want to jump across non-local label receiver code. */
1836 if (DECL_NONLOCAL (label))
1837 data->last_was_goto = false;
1839 else if (data->last_was_goto
1840 && gimple_goto_dest (gsi_stmt (data->last_goto_gsi)) == label)
1842 /* Replace the preceding GIMPLE_GOTO statement with
1843 a GIMPLE_NOP, which will be subsequently removed.
1844 In this way, we avoid invalidating other iterators
1845 active on the statement sequence. */
1846 gsi_replace(&data->last_goto_gsi, gimple_build_nop(), false);
1847 data->last_was_goto = false;
1848 data->repeat = true;
1851 /* ??? Add something here to delete unused labels. */
1853 gsi_next (gsi);
1857 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1859 void
1860 notice_special_calls (gimple call)
1862 int flags = gimple_call_flags (call);
1864 if (flags & ECF_MAY_BE_ALLOCA)
1865 cfun->calls_alloca = true;
1866 if (flags & ECF_RETURNS_TWICE)
1867 cfun->calls_setjmp = true;
1871 /* Clear flags set by notice_special_calls. Used by dead code removal
1872 to update the flags. */
1874 void
1875 clear_special_calls (void)
1877 cfun->calls_alloca = false;
1878 cfun->calls_setjmp = false;
1881 /* Remove useless statements from a statement sequence, and perform
1882 some preliminary simplifications. */
1884 static void
1885 remove_useless_stmts_1 (gimple_stmt_iterator *gsi, struct rus_data *data)
1887 while (!gsi_end_p (*gsi))
1889 gimple stmt = gsi_stmt (*gsi);
1891 switch (gimple_code (stmt))
1893 case GIMPLE_COND:
1894 remove_useless_stmts_cond (gsi, data);
1895 break;
1897 case GIMPLE_GOTO:
1898 remove_useless_stmts_goto (gsi, data);
1899 break;
1901 case GIMPLE_LABEL:
1902 remove_useless_stmts_label (gsi, data);
1903 break;
1905 case GIMPLE_ASSIGN:
1906 fold_stmt (gsi);
1907 stmt = gsi_stmt (*gsi);
1908 data->last_was_goto = false;
1909 if (stmt_could_throw_p (stmt))
1910 data->may_throw = true;
1911 gsi_next (gsi);
1912 break;
1914 case GIMPLE_ASM:
1915 fold_stmt (gsi);
1916 data->last_was_goto = false;
1917 gsi_next (gsi);
1918 break;
1920 case GIMPLE_CALL:
1921 fold_stmt (gsi);
1922 stmt = gsi_stmt (*gsi);
1923 data->last_was_goto = false;
1924 if (is_gimple_call (stmt))
1925 notice_special_calls (stmt);
1927 /* We used to call update_gimple_call_flags here,
1928 which copied side-effects and nothrows status
1929 from the function decl to the call. In the new
1930 tuplified GIMPLE, the accessors for this information
1931 always consult the function decl, so this copying
1932 is no longer necessary. */
1933 if (stmt_could_throw_p (stmt))
1934 data->may_throw = true;
1935 gsi_next (gsi);
1936 break;
1938 case GIMPLE_RETURN:
1939 fold_stmt (gsi);
1940 data->last_was_goto = false;
1941 data->may_branch = true;
1942 gsi_next (gsi);
1943 break;
1945 case GIMPLE_BIND:
1946 remove_useless_stmts_bind (gsi, data);
1947 break;
1949 case GIMPLE_TRY:
1950 if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
1951 remove_useless_stmts_tc (gsi, data);
1952 else if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
1953 remove_useless_stmts_tf (gsi, data);
1954 else
1955 gcc_unreachable ();
1956 break;
1958 case GIMPLE_CATCH:
1959 gcc_unreachable ();
1960 break;
1962 case GIMPLE_NOP:
1963 gsi_remove (gsi, false);
1964 break;
1966 case GIMPLE_OMP_FOR:
1968 gimple_seq pre_body_seq = gimple_omp_for_pre_body (stmt);
1969 gimple_stmt_iterator pre_body_gsi = gsi_start (pre_body_seq);
1971 remove_useless_stmts_1 (&pre_body_gsi, data);
1972 data->last_was_goto = false;
1974 /* FALLTHROUGH */
1975 case GIMPLE_OMP_CRITICAL:
1976 case GIMPLE_OMP_CONTINUE:
1977 case GIMPLE_OMP_MASTER:
1978 case GIMPLE_OMP_ORDERED:
1979 case GIMPLE_OMP_SECTION:
1980 case GIMPLE_OMP_SECTIONS:
1981 case GIMPLE_OMP_SINGLE:
1983 gimple_seq body_seq = gimple_omp_body (stmt);
1984 gimple_stmt_iterator body_gsi = gsi_start (body_seq);
1986 remove_useless_stmts_1 (&body_gsi, data);
1987 data->last_was_goto = false;
1988 gsi_next (gsi);
1990 break;
1992 case GIMPLE_OMP_PARALLEL:
1993 case GIMPLE_OMP_TASK:
1995 /* Make sure the outermost GIMPLE_BIND isn't removed
1996 as useless. */
1997 gimple_seq body_seq = gimple_omp_body (stmt);
1998 gimple bind = gimple_seq_first_stmt (body_seq);
1999 gimple_seq bind_seq = gimple_bind_body (bind);
2000 gimple_stmt_iterator bind_gsi = gsi_start (bind_seq);
2002 remove_useless_stmts_1 (&bind_gsi, data);
2003 data->last_was_goto = false;
2004 gsi_next (gsi);
2006 break;
2008 case GIMPLE_CHANGE_DYNAMIC_TYPE:
2009 /* If we do not optimize remove GIMPLE_CHANGE_DYNAMIC_TYPE as
2010 expansion is confused about them and we only remove them
2011 during alias computation otherwise. */
2012 if (!optimize)
2014 data->last_was_goto = false;
2015 gsi_remove (gsi, false);
2016 break;
2018 /* Fallthru. */
2020 default:
2021 data->last_was_goto = false;
2022 gsi_next (gsi);
2023 break;
2028 /* Walk the function tree, removing useless statements and performing
2029 some preliminary simplifications. */
2031 static unsigned int
2032 remove_useless_stmts (void)
2034 struct rus_data data;
2036 clear_special_calls ();
2040 gimple_stmt_iterator gsi;
2042 gsi = gsi_start (gimple_body (current_function_decl));
2043 memset (&data, 0, sizeof (data));
2044 remove_useless_stmts_1 (&gsi, &data);
2046 while (data.repeat);
2047 return 0;
2051 struct gimple_opt_pass pass_remove_useless_stmts =
2054 GIMPLE_PASS,
2055 "useless", /* name */
2056 NULL, /* gate */
2057 remove_useless_stmts, /* execute */
2058 NULL, /* sub */
2059 NULL, /* next */
2060 0, /* static_pass_number */
2061 0, /* tv_id */
2062 PROP_gimple_any, /* properties_required */
2063 0, /* properties_provided */
2064 0, /* properties_destroyed */
2065 0, /* todo_flags_start */
2066 TODO_dump_func /* todo_flags_finish */
2070 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2072 static void
2073 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2075 /* Since this block is no longer reachable, we can just delete all
2076 of its PHI nodes. */
2077 remove_phi_nodes (bb);
2079 /* Remove edges to BB's successors. */
2080 while (EDGE_COUNT (bb->succs) > 0)
2081 remove_edge (EDGE_SUCC (bb, 0));
2085 /* Remove statements of basic block BB. */
2087 static void
2088 remove_bb (basic_block bb)
2090 gimple_stmt_iterator i;
2091 source_location loc = UNKNOWN_LOCATION;
2093 if (dump_file)
2095 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2096 if (dump_flags & TDF_DETAILS)
2098 dump_bb (bb, dump_file, 0);
2099 fprintf (dump_file, "\n");
2103 if (current_loops)
2105 struct loop *loop = bb->loop_father;
2107 /* If a loop gets removed, clean up the information associated
2108 with it. */
2109 if (loop->latch == bb
2110 || loop->header == bb)
2111 free_numbers_of_iterations_estimates_loop (loop);
2114 /* Remove all the instructions in the block. */
2115 if (bb_seq (bb) != NULL)
2117 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2119 gimple stmt = gsi_stmt (i);
2120 if (gimple_code (stmt) == GIMPLE_LABEL
2121 && (FORCED_LABEL (gimple_label_label (stmt))
2122 || DECL_NONLOCAL (gimple_label_label (stmt))))
2124 basic_block new_bb;
2125 gimple_stmt_iterator new_gsi;
2127 /* A non-reachable non-local label may still be referenced.
2128 But it no longer needs to carry the extra semantics of
2129 non-locality. */
2130 if (DECL_NONLOCAL (gimple_label_label (stmt)))
2132 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
2133 FORCED_LABEL (gimple_label_label (stmt)) = 1;
2136 new_bb = bb->prev_bb;
2137 new_gsi = gsi_start_bb (new_bb);
2138 gsi_remove (&i, false);
2139 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2141 else
2143 /* Release SSA definitions if we are in SSA. Note that we
2144 may be called when not in SSA. For example,
2145 final_cleanup calls this function via
2146 cleanup_tree_cfg. */
2147 if (gimple_in_ssa_p (cfun))
2148 release_defs (stmt);
2150 gsi_remove (&i, true);
2153 /* Don't warn for removed gotos. Gotos are often removed due to
2154 jump threading, thus resulting in bogus warnings. Not great,
2155 since this way we lose warnings for gotos in the original
2156 program that are indeed unreachable. */
2157 if (gimple_code (stmt) != GIMPLE_GOTO
2158 && gimple_has_location (stmt)
2159 && !loc)
2160 loc = gimple_location (stmt);
2164 /* If requested, give a warning that the first statement in the
2165 block is unreachable. We walk statements backwards in the
2166 loop above, so the last statement we process is the first statement
2167 in the block. */
2168 if (loc > BUILTINS_LOCATION && LOCATION_LINE (loc) > 0)
2169 warning (OPT_Wunreachable_code, "%Hwill never be executed", &loc);
2171 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2172 bb->il.gimple = NULL;
2176 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2177 predicate VAL, return the edge that will be taken out of the block.
2178 If VAL does not match a unique edge, NULL is returned. */
2180 edge
2181 find_taken_edge (basic_block bb, tree val)
2183 gimple stmt;
2185 stmt = last_stmt (bb);
2187 gcc_assert (stmt);
2188 gcc_assert (is_ctrl_stmt (stmt));
2190 if (val == NULL)
2191 return NULL;
2193 if (!is_gimple_min_invariant (val))
2194 return NULL;
2196 if (gimple_code (stmt) == GIMPLE_COND)
2197 return find_taken_edge_cond_expr (bb, val);
2199 if (gimple_code (stmt) == GIMPLE_SWITCH)
2200 return find_taken_edge_switch_expr (bb, val);
2202 if (computed_goto_p (stmt))
2204 /* Only optimize if the argument is a label, if the argument is
2205 not a label then we can not construct a proper CFG.
2207 It may be the case that we only need to allow the LABEL_REF to
2208 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2209 appear inside a LABEL_EXPR just to be safe. */
2210 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2211 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2212 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2213 return NULL;
2216 gcc_unreachable ();
2219 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2220 statement, determine which of the outgoing edges will be taken out of the
2221 block. Return NULL if either edge may be taken. */
2223 static edge
2224 find_taken_edge_computed_goto (basic_block bb, tree val)
2226 basic_block dest;
2227 edge e = NULL;
2229 dest = label_to_block (val);
2230 if (dest)
2232 e = find_edge (bb, dest);
2233 gcc_assert (e != NULL);
2236 return e;
2239 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2240 statement, determine which of the two edges will be taken out of the
2241 block. Return NULL if either edge may be taken. */
2243 static edge
2244 find_taken_edge_cond_expr (basic_block bb, tree val)
2246 edge true_edge, false_edge;
2248 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2250 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2251 return (integer_zerop (val) ? false_edge : true_edge);
2254 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2255 statement, determine which edge will be taken out of the block. Return
2256 NULL if any edge may be taken. */
2258 static edge
2259 find_taken_edge_switch_expr (basic_block bb, tree val)
2261 basic_block dest_bb;
2262 edge e;
2263 gimple switch_stmt;
2264 tree taken_case;
2266 switch_stmt = last_stmt (bb);
2267 taken_case = find_case_label_for_value (switch_stmt, val);
2268 dest_bb = label_to_block (CASE_LABEL (taken_case));
2270 e = find_edge (bb, dest_bb);
2271 gcc_assert (e);
2272 return e;
2276 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2277 We can make optimal use here of the fact that the case labels are
2278 sorted: We can do a binary search for a case matching VAL. */
2280 static tree
2281 find_case_label_for_value (gimple switch_stmt, tree val)
2283 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2284 tree default_case = gimple_switch_default_label (switch_stmt);
2286 for (low = 0, high = n; high - low > 1; )
2288 size_t i = (high + low) / 2;
2289 tree t = gimple_switch_label (switch_stmt, i);
2290 int cmp;
2292 /* Cache the result of comparing CASE_LOW and val. */
2293 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2295 if (cmp > 0)
2296 high = i;
2297 else
2298 low = i;
2300 if (CASE_HIGH (t) == NULL)
2302 /* A singe-valued case label. */
2303 if (cmp == 0)
2304 return t;
2306 else
2308 /* A case range. We can only handle integer ranges. */
2309 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2310 return t;
2314 return default_case;
2318 /* Dump a basic block on stderr. */
2320 void
2321 gimple_debug_bb (basic_block bb)
2323 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2327 /* Dump basic block with index N on stderr. */
2329 basic_block
2330 gimple_debug_bb_n (int n)
2332 gimple_debug_bb (BASIC_BLOCK (n));
2333 return BASIC_BLOCK (n);
2337 /* Dump the CFG on stderr.
2339 FLAGS are the same used by the tree dumping functions
2340 (see TDF_* in tree-pass.h). */
2342 void
2343 gimple_debug_cfg (int flags)
2345 gimple_dump_cfg (stderr, flags);
2349 /* Dump the program showing basic block boundaries on the given FILE.
2351 FLAGS are the same used by the tree dumping functions (see TDF_* in
2352 tree.h). */
2354 void
2355 gimple_dump_cfg (FILE *file, int flags)
2357 if (flags & TDF_DETAILS)
2359 const char *funcname
2360 = lang_hooks.decl_printable_name (current_function_decl, 2);
2362 fputc ('\n', file);
2363 fprintf (file, ";; Function %s\n\n", funcname);
2364 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2365 n_basic_blocks, n_edges, last_basic_block);
2367 brief_dump_cfg (file);
2368 fprintf (file, "\n");
2371 if (flags & TDF_STATS)
2372 dump_cfg_stats (file);
2374 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2378 /* Dump CFG statistics on FILE. */
2380 void
2381 dump_cfg_stats (FILE *file)
2383 static long max_num_merged_labels = 0;
2384 unsigned long size, total = 0;
2385 long num_edges;
2386 basic_block bb;
2387 const char * const fmt_str = "%-30s%-13s%12s\n";
2388 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2389 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2390 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2391 const char *funcname
2392 = lang_hooks.decl_printable_name (current_function_decl, 2);
2395 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2397 fprintf (file, "---------------------------------------------------------\n");
2398 fprintf (file, fmt_str, "", " Number of ", "Memory");
2399 fprintf (file, fmt_str, "", " instances ", "used ");
2400 fprintf (file, "---------------------------------------------------------\n");
2402 size = n_basic_blocks * sizeof (struct basic_block_def);
2403 total += size;
2404 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2405 SCALE (size), LABEL (size));
2407 num_edges = 0;
2408 FOR_EACH_BB (bb)
2409 num_edges += EDGE_COUNT (bb->succs);
2410 size = num_edges * sizeof (struct edge_def);
2411 total += size;
2412 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2414 fprintf (file, "---------------------------------------------------------\n");
2415 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2416 LABEL (total));
2417 fprintf (file, "---------------------------------------------------------\n");
2418 fprintf (file, "\n");
2420 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2421 max_num_merged_labels = cfg_stats.num_merged_labels;
2423 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2424 cfg_stats.num_merged_labels, max_num_merged_labels);
2426 fprintf (file, "\n");
2430 /* Dump CFG statistics on stderr. Keep extern so that it's always
2431 linked in the final executable. */
2433 void
2434 debug_cfg_stats (void)
2436 dump_cfg_stats (stderr);
2440 /* Dump the flowgraph to a .vcg FILE. */
2442 static void
2443 gimple_cfg2vcg (FILE *file)
2445 edge e;
2446 edge_iterator ei;
2447 basic_block bb;
2448 const char *funcname
2449 = lang_hooks.decl_printable_name (current_function_decl, 2);
2451 /* Write the file header. */
2452 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2453 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2454 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2456 /* Write blocks and edges. */
2457 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2459 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2460 e->dest->index);
2462 if (e->flags & EDGE_FAKE)
2463 fprintf (file, " linestyle: dotted priority: 10");
2464 else
2465 fprintf (file, " linestyle: solid priority: 100");
2467 fprintf (file, " }\n");
2469 fputc ('\n', file);
2471 FOR_EACH_BB (bb)
2473 enum gimple_code head_code, end_code;
2474 const char *head_name, *end_name;
2475 int head_line = 0;
2476 int end_line = 0;
2477 gimple first = first_stmt (bb);
2478 gimple last = last_stmt (bb);
2480 if (first)
2482 head_code = gimple_code (first);
2483 head_name = gimple_code_name[head_code];
2484 head_line = get_lineno (first);
2486 else
2487 head_name = "no-statement";
2489 if (last)
2491 end_code = gimple_code (last);
2492 end_name = gimple_code_name[end_code];
2493 end_line = get_lineno (last);
2495 else
2496 end_name = "no-statement";
2498 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2499 bb->index, bb->index, head_name, head_line, end_name,
2500 end_line);
2502 FOR_EACH_EDGE (e, ei, bb->succs)
2504 if (e->dest == EXIT_BLOCK_PTR)
2505 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2506 else
2507 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2509 if (e->flags & EDGE_FAKE)
2510 fprintf (file, " priority: 10 linestyle: dotted");
2511 else
2512 fprintf (file, " priority: 100 linestyle: solid");
2514 fprintf (file, " }\n");
2517 if (bb->next_bb != EXIT_BLOCK_PTR)
2518 fputc ('\n', file);
2521 fputs ("}\n\n", file);
2526 /*---------------------------------------------------------------------------
2527 Miscellaneous helpers
2528 ---------------------------------------------------------------------------*/
2530 /* Return true if T represents a stmt that always transfers control. */
2532 bool
2533 is_ctrl_stmt (gimple t)
2535 return gimple_code (t) == GIMPLE_COND
2536 || gimple_code (t) == GIMPLE_SWITCH
2537 || gimple_code (t) == GIMPLE_GOTO
2538 || gimple_code (t) == GIMPLE_RETURN
2539 || gimple_code (t) == GIMPLE_RESX;
2543 /* Return true if T is a statement that may alter the flow of control
2544 (e.g., a call to a non-returning function). */
2546 bool
2547 is_ctrl_altering_stmt (gimple t)
2549 gcc_assert (t);
2551 if (is_gimple_call (t))
2553 int flags = gimple_call_flags (t);
2555 /* A non-pure/const call alters flow control if the current
2556 function has nonlocal labels. */
2557 if (!(flags & (ECF_CONST | ECF_PURE))
2558 && cfun->has_nonlocal_label)
2559 return true;
2561 /* A call also alters control flow if it does not return. */
2562 if (gimple_call_flags (t) & ECF_NORETURN)
2563 return true;
2566 /* OpenMP directives alter control flow. */
2567 if (is_gimple_omp (t))
2568 return true;
2570 /* If a statement can throw, it alters control flow. */
2571 return stmt_can_throw_internal (t);
2575 /* Return true if T is a simple local goto. */
2577 bool
2578 simple_goto_p (gimple t)
2580 return (gimple_code (t) == GIMPLE_GOTO
2581 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2585 /* Return true if T can make an abnormal transfer of control flow.
2586 Transfers of control flow associated with EH are excluded. */
2588 bool
2589 stmt_can_make_abnormal_goto (gimple t)
2591 if (computed_goto_p (t))
2592 return true;
2593 if (is_gimple_call (t))
2594 return gimple_has_side_effects (t) && cfun->has_nonlocal_label;
2595 return false;
2599 /* Return true if STMT should start a new basic block. PREV_STMT is
2600 the statement preceding STMT. It is used when STMT is a label or a
2601 case label. Labels should only start a new basic block if their
2602 previous statement wasn't a label. Otherwise, sequence of labels
2603 would generate unnecessary basic blocks that only contain a single
2604 label. */
2606 static inline bool
2607 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2609 if (stmt == NULL)
2610 return false;
2612 /* Labels start a new basic block only if the preceding statement
2613 wasn't a label of the same type. This prevents the creation of
2614 consecutive blocks that have nothing but a single label. */
2615 if (gimple_code (stmt) == GIMPLE_LABEL)
2617 /* Nonlocal and computed GOTO targets always start a new block. */
2618 if (DECL_NONLOCAL (gimple_label_label (stmt))
2619 || FORCED_LABEL (gimple_label_label (stmt)))
2620 return true;
2622 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2624 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2625 return true;
2627 cfg_stats.num_merged_labels++;
2628 return false;
2630 else
2631 return true;
2634 return false;
2638 /* Return true if T should end a basic block. */
2640 bool
2641 stmt_ends_bb_p (gimple t)
2643 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2646 /* Remove block annotations and other data structures. */
2648 void
2649 delete_tree_cfg_annotations (void)
2651 label_to_block_map = NULL;
2655 /* Return the first statement in basic block BB. */
2657 gimple
2658 first_stmt (basic_block bb)
2660 gimple_stmt_iterator i = gsi_start_bb (bb);
2661 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2664 /* Return the last statement in basic block BB. */
2666 gimple
2667 last_stmt (basic_block bb)
2669 gimple_stmt_iterator b = gsi_last_bb (bb);
2670 return !gsi_end_p (b) ? gsi_stmt (b) : NULL;
2673 /* Return the last statement of an otherwise empty block. Return NULL
2674 if the block is totally empty, or if it contains more than one
2675 statement. */
2677 gimple
2678 last_and_only_stmt (basic_block bb)
2680 gimple_stmt_iterator i = gsi_last_bb (bb);
2681 gimple last, prev;
2683 if (gsi_end_p (i))
2684 return NULL;
2686 last = gsi_stmt (i);
2687 gsi_prev (&i);
2688 if (gsi_end_p (i))
2689 return last;
2691 /* Empty statements should no longer appear in the instruction stream.
2692 Everything that might have appeared before should be deleted by
2693 remove_useless_stmts, and the optimizers should just gsi_remove
2694 instead of smashing with build_empty_stmt.
2696 Thus the only thing that should appear here in a block containing
2697 one executable statement is a label. */
2698 prev = gsi_stmt (i);
2699 if (gimple_code (prev) == GIMPLE_LABEL)
2700 return last;
2701 else
2702 return NULL;
2705 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2707 static void
2708 reinstall_phi_args (edge new_edge, edge old_edge)
2710 edge_var_map_vector v;
2711 edge_var_map *vm;
2712 int i;
2713 gimple_stmt_iterator phis;
2715 v = redirect_edge_var_map_vector (old_edge);
2716 if (!v)
2717 return;
2719 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2720 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2721 i++, gsi_next (&phis))
2723 gimple phi = gsi_stmt (phis);
2724 tree result = redirect_edge_var_map_result (vm);
2725 tree arg = redirect_edge_var_map_def (vm);
2727 gcc_assert (result == gimple_phi_result (phi));
2729 add_phi_arg (phi, arg, new_edge);
2732 redirect_edge_var_map_clear (old_edge);
2735 /* Returns the basic block after which the new basic block created
2736 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2737 near its "logical" location. This is of most help to humans looking
2738 at debugging dumps. */
2740 static basic_block
2741 split_edge_bb_loc (edge edge_in)
2743 basic_block dest = edge_in->dest;
2745 if (dest->prev_bb && find_edge (dest->prev_bb, dest))
2746 return edge_in->src;
2747 else
2748 return dest->prev_bb;
2751 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2752 Abort on abnormal edges. */
2754 static basic_block
2755 gimple_split_edge (edge edge_in)
2757 basic_block new_bb, after_bb, dest;
2758 edge new_edge, e;
2760 /* Abnormal edges cannot be split. */
2761 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2763 dest = edge_in->dest;
2765 after_bb = split_edge_bb_loc (edge_in);
2767 new_bb = create_empty_bb (after_bb);
2768 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2769 new_bb->count = edge_in->count;
2770 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2771 new_edge->probability = REG_BR_PROB_BASE;
2772 new_edge->count = edge_in->count;
2774 e = redirect_edge_and_branch (edge_in, new_bb);
2775 gcc_assert (e == edge_in);
2776 reinstall_phi_args (new_edge, e);
2778 return new_bb;
2781 /* Callback for walk_tree, check that all elements with address taken are
2782 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2783 inside a PHI node. */
2785 static tree
2786 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2788 tree t = *tp, x;
2790 if (TYPE_P (t))
2791 *walk_subtrees = 0;
2793 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2794 #define CHECK_OP(N, MSG) \
2795 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2796 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2798 switch (TREE_CODE (t))
2800 case SSA_NAME:
2801 if (SSA_NAME_IN_FREE_LIST (t))
2803 error ("SSA name in freelist but still referenced");
2804 return *tp;
2806 break;
2808 case ASSERT_EXPR:
2809 x = fold (ASSERT_EXPR_COND (t));
2810 if (x == boolean_false_node)
2812 error ("ASSERT_EXPR with an always-false condition");
2813 return *tp;
2815 break;
2817 case MODIFY_EXPR:
2818 x = TREE_OPERAND (t, 0);
2819 if (TREE_CODE (x) == BIT_FIELD_REF
2820 && is_gimple_reg (TREE_OPERAND (x, 0)))
2822 error ("GIMPLE register modified with BIT_FIELD_REF");
2823 return t;
2825 break;
2827 case ADDR_EXPR:
2829 bool old_constant;
2830 bool old_side_effects;
2831 bool new_constant;
2832 bool new_side_effects;
2834 gcc_assert (is_gimple_address (t));
2836 old_constant = TREE_CONSTANT (t);
2837 old_side_effects = TREE_SIDE_EFFECTS (t);
2839 recompute_tree_invariant_for_addr_expr (t);
2840 new_side_effects = TREE_SIDE_EFFECTS (t);
2841 new_constant = TREE_CONSTANT (t);
2843 if (old_constant != new_constant)
2845 error ("constant not recomputed when ADDR_EXPR changed");
2846 return t;
2848 if (old_side_effects != new_side_effects)
2850 error ("side effects not recomputed when ADDR_EXPR changed");
2851 return t;
2854 /* Skip any references (they will be checked when we recurse down the
2855 tree) and ensure that any variable used as a prefix is marked
2856 addressable. */
2857 for (x = TREE_OPERAND (t, 0);
2858 handled_component_p (x);
2859 x = TREE_OPERAND (x, 0))
2862 if (TREE_CODE (x) != VAR_DECL && TREE_CODE (x) != PARM_DECL)
2863 return NULL;
2864 if (!TREE_ADDRESSABLE (x))
2866 error ("address taken, but ADDRESSABLE bit not set");
2867 return x;
2870 break;
2873 case COND_EXPR:
2874 x = COND_EXPR_COND (t);
2875 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2877 error ("non-integral used in condition");
2878 return x;
2880 if (!is_gimple_condexpr (x))
2882 error ("invalid conditional operand");
2883 return x;
2885 break;
2887 case NON_LVALUE_EXPR:
2888 gcc_unreachable ();
2890 CASE_CONVERT:
2891 case FIX_TRUNC_EXPR:
2892 case FLOAT_EXPR:
2893 case NEGATE_EXPR:
2894 case ABS_EXPR:
2895 case BIT_NOT_EXPR:
2896 case TRUTH_NOT_EXPR:
2897 CHECK_OP (0, "invalid operand to unary operator");
2898 break;
2900 case REALPART_EXPR:
2901 case IMAGPART_EXPR:
2902 case COMPONENT_REF:
2903 case ARRAY_REF:
2904 case ARRAY_RANGE_REF:
2905 case BIT_FIELD_REF:
2906 case VIEW_CONVERT_EXPR:
2907 /* We have a nest of references. Verify that each of the operands
2908 that determine where to reference is either a constant or a variable,
2909 verify that the base is valid, and then show we've already checked
2910 the subtrees. */
2911 while (handled_component_p (t))
2913 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2914 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2915 else if (TREE_CODE (t) == ARRAY_REF
2916 || TREE_CODE (t) == ARRAY_RANGE_REF)
2918 CHECK_OP (1, "invalid array index");
2919 if (TREE_OPERAND (t, 2))
2920 CHECK_OP (2, "invalid array lower bound");
2921 if (TREE_OPERAND (t, 3))
2922 CHECK_OP (3, "invalid array stride");
2924 else if (TREE_CODE (t) == BIT_FIELD_REF)
2926 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2927 || !host_integerp (TREE_OPERAND (t, 2), 1))
2929 error ("invalid position or size operand to BIT_FIELD_REF");
2930 return t;
2932 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2933 && (TYPE_PRECISION (TREE_TYPE (t))
2934 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2936 error ("integral result type precision does not match "
2937 "field size of BIT_FIELD_REF");
2938 return t;
2940 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2941 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2942 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2944 error ("mode precision of non-integral result does not "
2945 "match field size of BIT_FIELD_REF");
2946 return t;
2950 t = TREE_OPERAND (t, 0);
2953 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2955 error ("invalid reference prefix");
2956 return t;
2958 *walk_subtrees = 0;
2959 break;
2960 case PLUS_EXPR:
2961 case MINUS_EXPR:
2962 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2963 POINTER_PLUS_EXPR. */
2964 if (POINTER_TYPE_P (TREE_TYPE (t)))
2966 error ("invalid operand to plus/minus, type is a pointer");
2967 return t;
2969 CHECK_OP (0, "invalid operand to binary operator");
2970 CHECK_OP (1, "invalid operand to binary operator");
2971 break;
2973 case POINTER_PLUS_EXPR:
2974 /* Check to make sure the first operand is a pointer or reference type. */
2975 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2977 error ("invalid operand to pointer plus, first operand is not a pointer");
2978 return t;
2980 /* Check to make sure the second operand is an integer with type of
2981 sizetype. */
2982 if (!useless_type_conversion_p (sizetype,
2983 TREE_TYPE (TREE_OPERAND (t, 1))))
2985 error ("invalid operand to pointer plus, second operand is not an "
2986 "integer with type of sizetype.");
2987 return t;
2989 /* FALLTHROUGH */
2990 case LT_EXPR:
2991 case LE_EXPR:
2992 case GT_EXPR:
2993 case GE_EXPR:
2994 case EQ_EXPR:
2995 case NE_EXPR:
2996 case UNORDERED_EXPR:
2997 case ORDERED_EXPR:
2998 case UNLT_EXPR:
2999 case UNLE_EXPR:
3000 case UNGT_EXPR:
3001 case UNGE_EXPR:
3002 case UNEQ_EXPR:
3003 case LTGT_EXPR:
3004 case MULT_EXPR:
3005 case TRUNC_DIV_EXPR:
3006 case CEIL_DIV_EXPR:
3007 case FLOOR_DIV_EXPR:
3008 case ROUND_DIV_EXPR:
3009 case TRUNC_MOD_EXPR:
3010 case CEIL_MOD_EXPR:
3011 case FLOOR_MOD_EXPR:
3012 case ROUND_MOD_EXPR:
3013 case RDIV_EXPR:
3014 case EXACT_DIV_EXPR:
3015 case MIN_EXPR:
3016 case MAX_EXPR:
3017 case LSHIFT_EXPR:
3018 case RSHIFT_EXPR:
3019 case LROTATE_EXPR:
3020 case RROTATE_EXPR:
3021 case BIT_IOR_EXPR:
3022 case BIT_XOR_EXPR:
3023 case BIT_AND_EXPR:
3024 CHECK_OP (0, "invalid operand to binary operator");
3025 CHECK_OP (1, "invalid operand to binary operator");
3026 break;
3028 case CONSTRUCTOR:
3029 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3030 *walk_subtrees = 0;
3031 break;
3033 default:
3034 break;
3036 return NULL;
3038 #undef CHECK_OP
3042 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3043 Returns true if there is an error, otherwise false. */
3045 static bool
3046 verify_types_in_gimple_min_lval (tree expr)
3048 tree op;
3050 if (is_gimple_id (expr))
3051 return false;
3053 if (!INDIRECT_REF_P (expr)
3054 && TREE_CODE (expr) != TARGET_MEM_REF)
3056 error ("invalid expression for min lvalue");
3057 return true;
3060 /* TARGET_MEM_REFs are strange beasts. */
3061 if (TREE_CODE (expr) == TARGET_MEM_REF)
3062 return false;
3064 op = TREE_OPERAND (expr, 0);
3065 if (!is_gimple_val (op))
3067 error ("invalid operand in indirect reference");
3068 debug_generic_stmt (op);
3069 return true;
3071 if (!useless_type_conversion_p (TREE_TYPE (expr),
3072 TREE_TYPE (TREE_TYPE (op))))
3074 error ("type mismatch in indirect reference");
3075 debug_generic_stmt (TREE_TYPE (expr));
3076 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3077 return true;
3080 return false;
3083 /* Verify if EXPR is a valid GIMPLE reference expression. Returns true
3084 if there is an error, otherwise false. */
3086 static bool
3087 verify_types_in_gimple_reference (tree expr)
3089 while (handled_component_p (expr))
3091 tree op = TREE_OPERAND (expr, 0);
3093 if (TREE_CODE (expr) == ARRAY_REF
3094 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3096 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3097 || (TREE_OPERAND (expr, 2)
3098 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3099 || (TREE_OPERAND (expr, 3)
3100 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3102 error ("invalid operands to array reference");
3103 debug_generic_stmt (expr);
3104 return true;
3108 /* Verify if the reference array element types are compatible. */
3109 if (TREE_CODE (expr) == ARRAY_REF
3110 && !useless_type_conversion_p (TREE_TYPE (expr),
3111 TREE_TYPE (TREE_TYPE (op))))
3113 error ("type mismatch in array reference");
3114 debug_generic_stmt (TREE_TYPE (expr));
3115 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3116 return true;
3118 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3119 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3120 TREE_TYPE (TREE_TYPE (op))))
3122 error ("type mismatch in array range reference");
3123 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3124 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3125 return true;
3128 if ((TREE_CODE (expr) == REALPART_EXPR
3129 || TREE_CODE (expr) == IMAGPART_EXPR)
3130 && !useless_type_conversion_p (TREE_TYPE (expr),
3131 TREE_TYPE (TREE_TYPE (op))))
3133 error ("type mismatch in real/imagpart reference");
3134 debug_generic_stmt (TREE_TYPE (expr));
3135 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3136 return true;
3139 if (TREE_CODE (expr) == COMPONENT_REF
3140 && !useless_type_conversion_p (TREE_TYPE (expr),
3141 TREE_TYPE (TREE_OPERAND (expr, 1))))
3143 error ("type mismatch in component reference");
3144 debug_generic_stmt (TREE_TYPE (expr));
3145 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3146 return true;
3149 /* For VIEW_CONVERT_EXPRs which are allowed here, too, there
3150 is nothing to verify. Gross mismatches at most invoke
3151 undefined behavior. */
3152 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
3153 && !handled_component_p (op))
3154 return false;
3156 expr = op;
3159 return verify_types_in_gimple_min_lval (expr);
3162 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3163 list of pointer-to types that is trivially convertible to DEST. */
3165 static bool
3166 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3168 tree src;
3170 if (!TYPE_POINTER_TO (src_obj))
3171 return true;
3173 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3174 if (useless_type_conversion_p (dest, src))
3175 return true;
3177 return false;
3180 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3181 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3183 static bool
3184 valid_fixed_convert_types_p (tree type1, tree type2)
3186 return (FIXED_POINT_TYPE_P (type1)
3187 && (INTEGRAL_TYPE_P (type2)
3188 || SCALAR_FLOAT_TYPE_P (type2)
3189 || FIXED_POINT_TYPE_P (type2)));
3192 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3193 is a problem, otherwise false. */
3195 static bool
3196 verify_gimple_call (gimple stmt)
3198 tree fn = gimple_call_fn (stmt);
3199 tree fntype;
3201 if (!POINTER_TYPE_P (TREE_TYPE (fn))
3202 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3203 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))
3205 error ("non-function in gimple call");
3206 return true;
3209 if (gimple_call_lhs (stmt)
3210 && !is_gimple_lvalue (gimple_call_lhs (stmt)))
3212 error ("invalid LHS in gimple call");
3213 return true;
3216 fntype = TREE_TYPE (TREE_TYPE (fn));
3217 if (gimple_call_lhs (stmt)
3218 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3219 TREE_TYPE (fntype))
3220 /* ??? At least C++ misses conversions at assignments from
3221 void * call results.
3222 ??? Java is completely off. Especially with functions
3223 returning java.lang.Object.
3224 For now simply allow arbitrary pointer type conversions. */
3225 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3226 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3228 error ("invalid conversion in gimple call");
3229 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3230 debug_generic_stmt (TREE_TYPE (fntype));
3231 return true;
3234 /* ??? The C frontend passes unpromoted arguments in case it
3235 didn't see a function declaration before the call. So for now
3236 leave the call arguments unverified. Once we gimplify
3237 unit-at-a-time we have a chance to fix this. */
3239 return false;
3242 /* Verifies the gimple comparison with the result type TYPE and
3243 the operands OP0 and OP1. */
3245 static bool
3246 verify_gimple_comparison (tree type, tree op0, tree op1)
3248 tree op0_type = TREE_TYPE (op0);
3249 tree op1_type = TREE_TYPE (op1);
3251 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3253 error ("invalid operands in gimple comparison");
3254 return true;
3257 /* For comparisons we do not have the operations type as the
3258 effective type the comparison is carried out in. Instead
3259 we require that either the first operand is trivially
3260 convertible into the second, or the other way around.
3261 The resulting type of a comparison may be any integral type.
3262 Because we special-case pointers to void we allow
3263 comparisons of pointers with the same mode as well. */
3264 if ((!useless_type_conversion_p (op0_type, op1_type)
3265 && !useless_type_conversion_p (op1_type, op0_type)
3266 && (!POINTER_TYPE_P (op0_type)
3267 || !POINTER_TYPE_P (op1_type)
3268 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3269 || !INTEGRAL_TYPE_P (type))
3271 error ("type mismatch in comparison expression");
3272 debug_generic_expr (type);
3273 debug_generic_expr (op0_type);
3274 debug_generic_expr (op1_type);
3275 return true;
3278 return false;
3281 /* Verify a gimple assignment statement STMT with an unary rhs.
3282 Returns true if anything is wrong. */
3284 static bool
3285 verify_gimple_assign_unary (gimple stmt)
3287 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3288 tree lhs = gimple_assign_lhs (stmt);
3289 tree lhs_type = TREE_TYPE (lhs);
3290 tree rhs1 = gimple_assign_rhs1 (stmt);
3291 tree rhs1_type = TREE_TYPE (rhs1);
3293 if (!is_gimple_reg (lhs)
3294 && !(optimize == 0
3295 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3297 error ("non-register as LHS of unary operation");
3298 return true;
3301 if (!is_gimple_val (rhs1))
3303 error ("invalid operand in unary operation");
3304 return true;
3307 /* First handle conversions. */
3308 switch (rhs_code)
3310 CASE_CONVERT:
3312 /* Allow conversions between integral types and pointers only if
3313 there is no sign or zero extension involved.
3314 For targets were the precision of sizetype doesn't match that
3315 of pointers we need to allow arbitrary conversions from and
3316 to sizetype. */
3317 if ((POINTER_TYPE_P (lhs_type)
3318 && INTEGRAL_TYPE_P (rhs1_type)
3319 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3320 || rhs1_type == sizetype))
3321 || (POINTER_TYPE_P (rhs1_type)
3322 && INTEGRAL_TYPE_P (lhs_type)
3323 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3324 || lhs_type == sizetype)))
3325 return false;
3327 /* Allow conversion from integer to offset type and vice versa. */
3328 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3329 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3330 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3331 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3332 return false;
3334 /* Otherwise assert we are converting between types of the
3335 same kind. */
3336 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3338 error ("invalid types in nop conversion");
3339 debug_generic_expr (lhs_type);
3340 debug_generic_expr (rhs1_type);
3341 return true;
3344 return false;
3347 case FIXED_CONVERT_EXPR:
3349 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3350 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3352 error ("invalid types in fixed-point conversion");
3353 debug_generic_expr (lhs_type);
3354 debug_generic_expr (rhs1_type);
3355 return true;
3358 return false;
3361 case FLOAT_EXPR:
3363 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3365 error ("invalid types in conversion to floating point");
3366 debug_generic_expr (lhs_type);
3367 debug_generic_expr (rhs1_type);
3368 return true;
3371 return false;
3374 case FIX_TRUNC_EXPR:
3376 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3378 error ("invalid types in conversion to integer");
3379 debug_generic_expr (lhs_type);
3380 debug_generic_expr (rhs1_type);
3381 return true;
3384 return false;
3387 case TRUTH_NOT_EXPR:
3391 case NEGATE_EXPR:
3392 case ABS_EXPR:
3393 case BIT_NOT_EXPR:
3394 case PAREN_EXPR:
3395 case NON_LVALUE_EXPR:
3396 case CONJ_EXPR:
3397 case REDUC_MAX_EXPR:
3398 case REDUC_MIN_EXPR:
3399 case REDUC_PLUS_EXPR:
3400 case VEC_UNPACK_HI_EXPR:
3401 case VEC_UNPACK_LO_EXPR:
3402 case VEC_UNPACK_FLOAT_HI_EXPR:
3403 case VEC_UNPACK_FLOAT_LO_EXPR:
3404 break;
3406 default:
3407 gcc_unreachable ();
3410 /* For the remaining codes assert there is no conversion involved. */
3411 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3413 error ("non-trivial conversion in unary operation");
3414 debug_generic_expr (lhs_type);
3415 debug_generic_expr (rhs1_type);
3416 return true;
3419 return false;
3422 /* Verify a gimple assignment statement STMT with a binary rhs.
3423 Returns true if anything is wrong. */
3425 static bool
3426 verify_gimple_assign_binary (gimple stmt)
3428 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3429 tree lhs = gimple_assign_lhs (stmt);
3430 tree lhs_type = TREE_TYPE (lhs);
3431 tree rhs1 = gimple_assign_rhs1 (stmt);
3432 tree rhs1_type = TREE_TYPE (rhs1);
3433 tree rhs2 = gimple_assign_rhs2 (stmt);
3434 tree rhs2_type = TREE_TYPE (rhs2);
3436 if (!is_gimple_reg (lhs)
3437 && !(optimize == 0
3438 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3440 error ("non-register as LHS of binary operation");
3441 return true;
3444 if (!is_gimple_val (rhs1)
3445 || !is_gimple_val (rhs2))
3447 error ("invalid operands in binary operation");
3448 return true;
3451 /* First handle operations that involve different types. */
3452 switch (rhs_code)
3454 case COMPLEX_EXPR:
3456 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3457 || !(INTEGRAL_TYPE_P (rhs1_type)
3458 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3459 || !(INTEGRAL_TYPE_P (rhs2_type)
3460 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3462 error ("type mismatch in complex expression");
3463 debug_generic_expr (lhs_type);
3464 debug_generic_expr (rhs1_type);
3465 debug_generic_expr (rhs2_type);
3466 return true;
3469 return false;
3472 case LSHIFT_EXPR:
3473 case RSHIFT_EXPR:
3474 case LROTATE_EXPR:
3475 case RROTATE_EXPR:
3477 if (!INTEGRAL_TYPE_P (rhs1_type)
3478 || !INTEGRAL_TYPE_P (rhs2_type)
3479 || !useless_type_conversion_p (lhs_type, rhs1_type))
3481 error ("type mismatch in shift expression");
3482 debug_generic_expr (lhs_type);
3483 debug_generic_expr (rhs1_type);
3484 debug_generic_expr (rhs2_type);
3485 return true;
3488 return false;
3491 case VEC_LSHIFT_EXPR:
3492 case VEC_RSHIFT_EXPR:
3494 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3495 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3496 || (!INTEGRAL_TYPE_P (rhs2_type)
3497 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3498 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3499 || !useless_type_conversion_p (lhs_type, rhs1_type))
3501 error ("type mismatch in vector shift expression");
3502 debug_generic_expr (lhs_type);
3503 debug_generic_expr (rhs1_type);
3504 debug_generic_expr (rhs2_type);
3505 return true;
3508 return false;
3511 case POINTER_PLUS_EXPR:
3513 if (!POINTER_TYPE_P (rhs1_type)
3514 || !useless_type_conversion_p (lhs_type, rhs1_type)
3515 || !useless_type_conversion_p (sizetype, rhs2_type))
3517 error ("type mismatch in pointer plus expression");
3518 debug_generic_stmt (lhs_type);
3519 debug_generic_stmt (rhs1_type);
3520 debug_generic_stmt (rhs2_type);
3521 return true;
3524 return false;
3527 case TRUTH_ANDIF_EXPR:
3528 case TRUTH_ORIF_EXPR:
3529 gcc_unreachable ();
3531 case TRUTH_AND_EXPR:
3532 case TRUTH_OR_EXPR:
3533 case TRUTH_XOR_EXPR:
3535 /* We allow any kind of integral typed argument and result. */
3536 if (!INTEGRAL_TYPE_P (rhs1_type)
3537 || !INTEGRAL_TYPE_P (rhs2_type)
3538 || !INTEGRAL_TYPE_P (lhs_type))
3540 error ("type mismatch in binary truth expression");
3541 debug_generic_expr (lhs_type);
3542 debug_generic_expr (rhs1_type);
3543 debug_generic_expr (rhs2_type);
3544 return true;
3547 return false;
3550 case LT_EXPR:
3551 case LE_EXPR:
3552 case GT_EXPR:
3553 case GE_EXPR:
3554 case EQ_EXPR:
3555 case NE_EXPR:
3556 case UNORDERED_EXPR:
3557 case ORDERED_EXPR:
3558 case UNLT_EXPR:
3559 case UNLE_EXPR:
3560 case UNGT_EXPR:
3561 case UNGE_EXPR:
3562 case UNEQ_EXPR:
3563 case LTGT_EXPR:
3564 /* Comparisons are also binary, but the result type is not
3565 connected to the operand types. */
3566 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3568 case PLUS_EXPR:
3569 case MINUS_EXPR:
3571 if (POINTER_TYPE_P (lhs_type)
3572 || POINTER_TYPE_P (rhs1_type)
3573 || POINTER_TYPE_P (rhs2_type))
3575 error ("invalid (pointer) operands to plus/minus");
3576 return true;
3579 /* Continue with generic binary expression handling. */
3580 break;
3583 case MULT_EXPR:
3584 case TRUNC_DIV_EXPR:
3585 case CEIL_DIV_EXPR:
3586 case FLOOR_DIV_EXPR:
3587 case ROUND_DIV_EXPR:
3588 case TRUNC_MOD_EXPR:
3589 case CEIL_MOD_EXPR:
3590 case FLOOR_MOD_EXPR:
3591 case ROUND_MOD_EXPR:
3592 case RDIV_EXPR:
3593 case EXACT_DIV_EXPR:
3594 case MIN_EXPR:
3595 case MAX_EXPR:
3596 case BIT_IOR_EXPR:
3597 case BIT_XOR_EXPR:
3598 case BIT_AND_EXPR:
3599 case WIDEN_SUM_EXPR:
3600 case WIDEN_MULT_EXPR:
3601 case VEC_WIDEN_MULT_HI_EXPR:
3602 case VEC_WIDEN_MULT_LO_EXPR:
3603 case VEC_PACK_TRUNC_EXPR:
3604 case VEC_PACK_SAT_EXPR:
3605 case VEC_PACK_FIX_TRUNC_EXPR:
3606 case VEC_EXTRACT_EVEN_EXPR:
3607 case VEC_EXTRACT_ODD_EXPR:
3608 case VEC_INTERLEAVE_HIGH_EXPR:
3609 case VEC_INTERLEAVE_LOW_EXPR:
3610 /* Continue with generic binary expression handling. */
3611 break;
3613 default:
3614 gcc_unreachable ();
3617 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3618 || !useless_type_conversion_p (lhs_type, rhs2_type))
3620 error ("type mismatch in binary expression");
3621 debug_generic_stmt (lhs_type);
3622 debug_generic_stmt (rhs1_type);
3623 debug_generic_stmt (rhs2_type);
3624 return true;
3627 return false;
3630 /* Verify a gimple assignment statement STMT with a single rhs.
3631 Returns true if anything is wrong. */
3633 static bool
3634 verify_gimple_assign_single (gimple stmt)
3636 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3637 tree lhs = gimple_assign_lhs (stmt);
3638 tree lhs_type = TREE_TYPE (lhs);
3639 tree rhs1 = gimple_assign_rhs1 (stmt);
3640 tree rhs1_type = TREE_TYPE (rhs1);
3641 bool res = false;
3643 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3645 error ("non-trivial conversion at assignment");
3646 debug_generic_expr (lhs_type);
3647 debug_generic_expr (rhs1_type);
3648 return true;
3651 if (handled_component_p (lhs))
3652 res |= verify_types_in_gimple_reference (lhs);
3654 /* Special codes we cannot handle via their class. */
3655 switch (rhs_code)
3657 case ADDR_EXPR:
3659 tree op = TREE_OPERAND (rhs1, 0);
3660 if (!is_gimple_addressable (op))
3662 error ("invalid operand in unary expression");
3663 return true;
3666 if (!one_pointer_to_useless_type_conversion_p (lhs_type, TREE_TYPE (op))
3667 /* FIXME: a longstanding wart, &a == &a[0]. */
3668 && (TREE_CODE (TREE_TYPE (op)) != ARRAY_TYPE
3669 || !one_pointer_to_useless_type_conversion_p (lhs_type,
3670 TREE_TYPE (TREE_TYPE (op)))))
3672 error ("type mismatch in address expression");
3673 debug_generic_stmt (lhs_type);
3674 debug_generic_stmt (TYPE_POINTER_TO (TREE_TYPE (op)));
3675 return true;
3678 return verify_types_in_gimple_reference (op);
3681 /* tcc_reference */
3682 case COMPONENT_REF:
3683 case BIT_FIELD_REF:
3684 case INDIRECT_REF:
3685 case ALIGN_INDIRECT_REF:
3686 case MISALIGNED_INDIRECT_REF:
3687 case ARRAY_REF:
3688 case ARRAY_RANGE_REF:
3689 case VIEW_CONVERT_EXPR:
3690 case REALPART_EXPR:
3691 case IMAGPART_EXPR:
3692 case TARGET_MEM_REF:
3693 if (!is_gimple_reg (lhs)
3694 && is_gimple_reg_type (TREE_TYPE (lhs)))
3696 error ("invalid rhs for gimple memory store");
3697 debug_generic_stmt (lhs);
3698 debug_generic_stmt (rhs1);
3699 return true;
3701 return res || verify_types_in_gimple_reference (rhs1);
3703 /* tcc_constant */
3704 case SSA_NAME:
3705 case INTEGER_CST:
3706 case REAL_CST:
3707 case FIXED_CST:
3708 case COMPLEX_CST:
3709 case VECTOR_CST:
3710 case STRING_CST:
3711 return res;
3713 /* tcc_declaration */
3714 case CONST_DECL:
3715 return res;
3716 case VAR_DECL:
3717 case PARM_DECL:
3718 if (!is_gimple_reg (lhs)
3719 && !is_gimple_reg (rhs1)
3720 && is_gimple_reg_type (TREE_TYPE (lhs)))
3722 error ("invalid rhs for gimple memory store");
3723 debug_generic_stmt (lhs);
3724 debug_generic_stmt (rhs1);
3725 return true;
3727 return res;
3729 case COND_EXPR:
3730 case CONSTRUCTOR:
3731 case OBJ_TYPE_REF:
3732 case ASSERT_EXPR:
3733 case WITH_SIZE_EXPR:
3734 case EXC_PTR_EXPR:
3735 case FILTER_EXPR:
3736 case POLYNOMIAL_CHREC:
3737 case DOT_PROD_EXPR:
3738 case VEC_COND_EXPR:
3739 case REALIGN_LOAD_EXPR:
3740 /* FIXME. */
3741 return res;
3743 default:;
3746 return res;
3749 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3750 is a problem, otherwise false. */
3752 static bool
3753 verify_gimple_assign (gimple stmt)
3755 switch (gimple_assign_rhs_class (stmt))
3757 case GIMPLE_SINGLE_RHS:
3758 return verify_gimple_assign_single (stmt);
3760 case GIMPLE_UNARY_RHS:
3761 return verify_gimple_assign_unary (stmt);
3763 case GIMPLE_BINARY_RHS:
3764 return verify_gimple_assign_binary (stmt);
3766 default:
3767 gcc_unreachable ();
3771 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3772 is a problem, otherwise false. */
3774 static bool
3775 verify_gimple_return (gimple stmt)
3777 tree op = gimple_return_retval (stmt);
3778 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3780 /* We cannot test for present return values as we do not fix up missing
3781 return values from the original source. */
3782 if (op == NULL)
3783 return false;
3785 if (!is_gimple_val (op)
3786 && TREE_CODE (op) != RESULT_DECL)
3788 error ("invalid operand in return statement");
3789 debug_generic_stmt (op);
3790 return true;
3793 if (!useless_type_conversion_p (restype, TREE_TYPE (op))
3794 /* ??? With C++ we can have the situation that the result
3795 decl is a reference type while the return type is an aggregate. */
3796 && !(TREE_CODE (op) == RESULT_DECL
3797 && TREE_CODE (TREE_TYPE (op)) == REFERENCE_TYPE
3798 && useless_type_conversion_p (restype, TREE_TYPE (TREE_TYPE (op)))))
3800 error ("invalid conversion in return statement");
3801 debug_generic_stmt (restype);
3802 debug_generic_stmt (TREE_TYPE (op));
3803 return true;
3806 return false;
3810 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3811 is a problem, otherwise false. */
3813 static bool
3814 verify_gimple_goto (gimple stmt)
3816 tree dest = gimple_goto_dest (stmt);
3818 /* ??? We have two canonical forms of direct goto destinations, a
3819 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3820 if (TREE_CODE (dest) != LABEL_DECL
3821 && (!is_gimple_val (dest)
3822 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3824 error ("goto destination is neither a label nor a pointer");
3825 return true;
3828 return false;
3831 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3832 is a problem, otherwise false. */
3834 static bool
3835 verify_gimple_switch (gimple stmt)
3837 if (!is_gimple_val (gimple_switch_index (stmt)))
3839 error ("invalid operand to switch statement");
3840 debug_generic_stmt (gimple_switch_index (stmt));
3841 return true;
3844 return false;
3848 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
3849 and false otherwise. */
3851 static bool
3852 verify_gimple_phi (gimple stmt)
3854 tree type = TREE_TYPE (gimple_phi_result (stmt));
3855 unsigned i;
3857 if (!is_gimple_variable (gimple_phi_result (stmt)))
3859 error ("Invalid PHI result");
3860 return true;
3863 for (i = 0; i < gimple_phi_num_args (stmt); i++)
3865 tree arg = gimple_phi_arg_def (stmt, i);
3866 if ((is_gimple_reg (gimple_phi_result (stmt))
3867 && !is_gimple_val (arg))
3868 || (!is_gimple_reg (gimple_phi_result (stmt))
3869 && !is_gimple_addressable (arg)))
3871 error ("Invalid PHI argument");
3872 debug_generic_stmt (arg);
3873 return true;
3875 if (!useless_type_conversion_p (type, TREE_TYPE (arg)))
3877 error ("Incompatible types in PHI argument");
3878 debug_generic_stmt (type);
3879 debug_generic_stmt (TREE_TYPE (arg));
3880 return true;
3884 return false;
3888 /* Verify the GIMPLE statement STMT. Returns true if there is an
3889 error, otherwise false. */
3891 static bool
3892 verify_types_in_gimple_stmt (gimple stmt)
3894 if (is_gimple_omp (stmt))
3896 /* OpenMP directives are validated by the FE and never operated
3897 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
3898 non-gimple expressions when the main index variable has had
3899 its address taken. This does not affect the loop itself
3900 because the header of an GIMPLE_OMP_FOR is merely used to determine
3901 how to setup the parallel iteration. */
3902 return false;
3905 switch (gimple_code (stmt))
3907 case GIMPLE_ASSIGN:
3908 return verify_gimple_assign (stmt);
3910 case GIMPLE_LABEL:
3911 return TREE_CODE (gimple_label_label (stmt)) != LABEL_DECL;
3913 case GIMPLE_CALL:
3914 return verify_gimple_call (stmt);
3916 case GIMPLE_COND:
3917 return verify_gimple_comparison (boolean_type_node,
3918 gimple_cond_lhs (stmt),
3919 gimple_cond_rhs (stmt));
3921 case GIMPLE_GOTO:
3922 return verify_gimple_goto (stmt);
3924 case GIMPLE_SWITCH:
3925 return verify_gimple_switch (stmt);
3927 case GIMPLE_RETURN:
3928 return verify_gimple_return (stmt);
3930 case GIMPLE_ASM:
3931 return false;
3933 case GIMPLE_CHANGE_DYNAMIC_TYPE:
3934 return (!is_gimple_val (gimple_cdt_location (stmt))
3935 || !POINTER_TYPE_P (TREE_TYPE (gimple_cdt_location (stmt))));
3937 case GIMPLE_PHI:
3938 return verify_gimple_phi (stmt);
3940 /* Tuples that do not have tree operands. */
3941 case GIMPLE_NOP:
3942 case GIMPLE_RESX:
3943 case GIMPLE_PREDICT:
3944 return false;
3946 default:
3947 gcc_unreachable ();
3951 /* Verify the GIMPLE statements inside the sequence STMTS. */
3953 static bool
3954 verify_types_in_gimple_seq_2 (gimple_seq stmts)
3956 gimple_stmt_iterator ittr;
3957 bool err = false;
3959 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
3961 gimple stmt = gsi_stmt (ittr);
3963 switch (gimple_code (stmt))
3965 case GIMPLE_BIND:
3966 err |= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt));
3967 break;
3969 case GIMPLE_TRY:
3970 err |= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt));
3971 err |= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt));
3972 break;
3974 case GIMPLE_EH_FILTER:
3975 err |= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt));
3976 break;
3978 case GIMPLE_CATCH:
3979 err |= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt));
3980 break;
3982 default:
3984 bool err2 = verify_types_in_gimple_stmt (stmt);
3985 if (err2)
3986 debug_gimple_stmt (stmt);
3987 err |= err2;
3992 return err;
3996 /* Verify the GIMPLE statements inside the statement list STMTS. */
3998 void
3999 verify_types_in_gimple_seq (gimple_seq stmts)
4001 if (verify_types_in_gimple_seq_2 (stmts))
4002 internal_error ("verify_gimple failed");
4006 /* Verify STMT, return true if STMT is not in GIMPLE form.
4007 TODO: Implement type checking. */
4009 static bool
4010 verify_stmt (gimple_stmt_iterator *gsi)
4012 tree addr;
4013 struct walk_stmt_info wi;
4014 bool last_in_block = gsi_one_before_end_p (*gsi);
4015 gimple stmt = gsi_stmt (*gsi);
4017 if (is_gimple_omp (stmt))
4019 /* OpenMP directives are validated by the FE and never operated
4020 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4021 non-gimple expressions when the main index variable has had
4022 its address taken. This does not affect the loop itself
4023 because the header of an GIMPLE_OMP_FOR is merely used to determine
4024 how to setup the parallel iteration. */
4025 return false;
4028 /* FIXME. The C frontend passes unpromoted arguments in case it
4029 didn't see a function declaration before the call. */
4030 if (is_gimple_call (stmt))
4032 tree decl;
4034 if (!is_gimple_call_addr (gimple_call_fn (stmt)))
4036 error ("invalid function in call statement");
4037 return true;
4040 decl = gimple_call_fndecl (stmt);
4041 if (decl
4042 && TREE_CODE (decl) == FUNCTION_DECL
4043 && DECL_LOOPING_CONST_OR_PURE_P (decl)
4044 && (!DECL_PURE_P (decl))
4045 && (!TREE_READONLY (decl)))
4047 error ("invalid pure const state for function");
4048 return true;
4052 memset (&wi, 0, sizeof (wi));
4053 addr = walk_gimple_op (gsi_stmt (*gsi), verify_expr, &wi);
4054 if (addr)
4056 debug_generic_expr (addr);
4057 inform (input_location, "in statement");
4058 debug_gimple_stmt (stmt);
4059 return true;
4062 /* If the statement is marked as part of an EH region, then it is
4063 expected that the statement could throw. Verify that when we
4064 have optimizations that simplify statements such that we prove
4065 that they cannot throw, that we update other data structures
4066 to match. */
4067 if (lookup_stmt_eh_region (stmt) >= 0)
4069 if (!stmt_could_throw_p (stmt))
4071 error ("statement marked for throw, but doesn%'t");
4072 goto fail;
4074 if (!last_in_block && stmt_can_throw_internal (stmt))
4076 error ("statement marked for throw in middle of block");
4077 goto fail;
4081 return false;
4083 fail:
4084 debug_gimple_stmt (stmt);
4085 return true;
4089 /* Return true when the T can be shared. */
4091 static bool
4092 tree_node_can_be_shared (tree t)
4094 if (IS_TYPE_OR_DECL_P (t)
4095 || is_gimple_min_invariant (t)
4096 || TREE_CODE (t) == SSA_NAME
4097 || t == error_mark_node
4098 || TREE_CODE (t) == IDENTIFIER_NODE)
4099 return true;
4101 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4102 return true;
4104 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4105 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4106 || TREE_CODE (t) == COMPONENT_REF
4107 || TREE_CODE (t) == REALPART_EXPR
4108 || TREE_CODE (t) == IMAGPART_EXPR)
4109 t = TREE_OPERAND (t, 0);
4111 if (DECL_P (t))
4112 return true;
4114 return false;
4118 /* Called via walk_gimple_stmt. Verify tree sharing. */
4120 static tree
4121 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4123 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4124 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4126 if (tree_node_can_be_shared (*tp))
4128 *walk_subtrees = false;
4129 return NULL;
4132 if (pointer_set_insert (visited, *tp))
4133 return *tp;
4135 return NULL;
4139 static bool eh_error_found;
4140 static int
4141 verify_eh_throw_stmt_node (void **slot, void *data)
4143 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4144 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4146 if (!pointer_set_contains (visited, node->stmt))
4148 error ("Dead STMT in EH table");
4149 debug_gimple_stmt (node->stmt);
4150 eh_error_found = true;
4152 return 0;
4156 /* Verify the GIMPLE statements in every basic block. */
4158 void
4159 verify_stmts (void)
4161 basic_block bb;
4162 gimple_stmt_iterator gsi;
4163 bool err = false;
4164 struct pointer_set_t *visited, *visited_stmts;
4165 tree addr;
4166 struct walk_stmt_info wi;
4168 timevar_push (TV_TREE_STMT_VERIFY);
4169 visited = pointer_set_create ();
4170 visited_stmts = pointer_set_create ();
4172 memset (&wi, 0, sizeof (wi));
4173 wi.info = (void *) visited;
4175 FOR_EACH_BB (bb)
4177 gimple phi;
4178 size_t i;
4180 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4182 phi = gsi_stmt (gsi);
4183 pointer_set_insert (visited_stmts, phi);
4184 if (gimple_bb (phi) != bb)
4186 error ("gimple_bb (phi) is set to a wrong basic block");
4187 err |= true;
4190 for (i = 0; i < gimple_phi_num_args (phi); i++)
4192 tree t = gimple_phi_arg_def (phi, i);
4193 tree addr;
4195 if (!t)
4197 error ("missing PHI def");
4198 debug_gimple_stmt (phi);
4199 err |= true;
4200 continue;
4202 /* Addressable variables do have SSA_NAMEs but they
4203 are not considered gimple values. */
4204 else if (TREE_CODE (t) != SSA_NAME
4205 && TREE_CODE (t) != FUNCTION_DECL
4206 && !is_gimple_min_invariant (t))
4208 error ("PHI argument is not a GIMPLE value");
4209 debug_gimple_stmt (phi);
4210 debug_generic_expr (t);
4211 err |= true;
4214 addr = walk_tree (&t, verify_node_sharing, visited, NULL);
4215 if (addr)
4217 error ("incorrect sharing of tree nodes");
4218 debug_gimple_stmt (phi);
4219 debug_generic_expr (addr);
4220 err |= true;
4225 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
4227 gimple stmt = gsi_stmt (gsi);
4229 if (gimple_code (stmt) == GIMPLE_WITH_CLEANUP_EXPR
4230 || gimple_code (stmt) == GIMPLE_BIND)
4232 error ("invalid GIMPLE statement");
4233 debug_gimple_stmt (stmt);
4234 err |= true;
4237 pointer_set_insert (visited_stmts, stmt);
4239 if (gimple_bb (stmt) != bb)
4241 error ("gimple_bb (stmt) is set to a wrong basic block");
4242 err |= true;
4245 if (gimple_code (stmt) == GIMPLE_LABEL)
4247 tree decl = gimple_label_label (stmt);
4248 int uid = LABEL_DECL_UID (decl);
4250 if (uid == -1
4251 || VEC_index (basic_block, label_to_block_map, uid) != bb)
4253 error ("incorrect entry in label_to_block_map.\n");
4254 err |= true;
4258 err |= verify_stmt (&gsi);
4259 addr = walk_gimple_op (gsi_stmt (gsi), verify_node_sharing, &wi);
4260 if (addr)
4262 error ("incorrect sharing of tree nodes");
4263 debug_gimple_stmt (stmt);
4264 debug_generic_expr (addr);
4265 err |= true;
4267 gsi_next (&gsi);
4271 eh_error_found = false;
4272 if (get_eh_throw_stmt_table (cfun))
4273 htab_traverse (get_eh_throw_stmt_table (cfun),
4274 verify_eh_throw_stmt_node,
4275 visited_stmts);
4277 if (err | eh_error_found)
4278 internal_error ("verify_stmts failed");
4280 pointer_set_destroy (visited);
4281 pointer_set_destroy (visited_stmts);
4282 verify_histograms ();
4283 timevar_pop (TV_TREE_STMT_VERIFY);
4287 /* Verifies that the flow information is OK. */
4289 static int
4290 gimple_verify_flow_info (void)
4292 int err = 0;
4293 basic_block bb;
4294 gimple_stmt_iterator gsi;
4295 gimple stmt;
4296 edge e;
4297 edge_iterator ei;
4299 if (ENTRY_BLOCK_PTR->il.gimple)
4301 error ("ENTRY_BLOCK has IL associated with it");
4302 err = 1;
4305 if (EXIT_BLOCK_PTR->il.gimple)
4307 error ("EXIT_BLOCK has IL associated with it");
4308 err = 1;
4311 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4312 if (e->flags & EDGE_FALLTHRU)
4314 error ("fallthru to exit from bb %d", e->src->index);
4315 err = 1;
4318 FOR_EACH_BB (bb)
4320 bool found_ctrl_stmt = false;
4322 stmt = NULL;
4324 /* Skip labels on the start of basic block. */
4325 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4327 tree label;
4328 gimple prev_stmt = stmt;
4330 stmt = gsi_stmt (gsi);
4332 if (gimple_code (stmt) != GIMPLE_LABEL)
4333 break;
4335 label = gimple_label_label (stmt);
4336 if (prev_stmt && DECL_NONLOCAL (label))
4338 error ("nonlocal label ");
4339 print_generic_expr (stderr, label, 0);
4340 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4341 bb->index);
4342 err = 1;
4345 if (label_to_block (label) != bb)
4347 error ("label ");
4348 print_generic_expr (stderr, label, 0);
4349 fprintf (stderr, " to block does not match in bb %d",
4350 bb->index);
4351 err = 1;
4354 if (decl_function_context (label) != current_function_decl)
4356 error ("label ");
4357 print_generic_expr (stderr, label, 0);
4358 fprintf (stderr, " has incorrect context in bb %d",
4359 bb->index);
4360 err = 1;
4364 /* Verify that body of basic block BB is free of control flow. */
4365 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4367 gimple stmt = gsi_stmt (gsi);
4369 if (found_ctrl_stmt)
4371 error ("control flow in the middle of basic block %d",
4372 bb->index);
4373 err = 1;
4376 if (stmt_ends_bb_p (stmt))
4377 found_ctrl_stmt = true;
4379 if (gimple_code (stmt) == GIMPLE_LABEL)
4381 error ("label ");
4382 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4383 fprintf (stderr, " in the middle of basic block %d", bb->index);
4384 err = 1;
4388 gsi = gsi_last_bb (bb);
4389 if (gsi_end_p (gsi))
4390 continue;
4392 stmt = gsi_stmt (gsi);
4394 err |= verify_eh_edges (stmt);
4396 if (is_ctrl_stmt (stmt))
4398 FOR_EACH_EDGE (e, ei, bb->succs)
4399 if (e->flags & EDGE_FALLTHRU)
4401 error ("fallthru edge after a control statement in bb %d",
4402 bb->index);
4403 err = 1;
4407 if (gimple_code (stmt) != GIMPLE_COND)
4409 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4410 after anything else but if statement. */
4411 FOR_EACH_EDGE (e, ei, bb->succs)
4412 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4414 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4415 bb->index);
4416 err = 1;
4420 switch (gimple_code (stmt))
4422 case GIMPLE_COND:
4424 edge true_edge;
4425 edge false_edge;
4427 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4429 if (!true_edge
4430 || !false_edge
4431 || !(true_edge->flags & EDGE_TRUE_VALUE)
4432 || !(false_edge->flags & EDGE_FALSE_VALUE)
4433 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4434 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4435 || EDGE_COUNT (bb->succs) >= 3)
4437 error ("wrong outgoing edge flags at end of bb %d",
4438 bb->index);
4439 err = 1;
4442 break;
4444 case GIMPLE_GOTO:
4445 if (simple_goto_p (stmt))
4447 error ("explicit goto at end of bb %d", bb->index);
4448 err = 1;
4450 else
4452 /* FIXME. We should double check that the labels in the
4453 destination blocks have their address taken. */
4454 FOR_EACH_EDGE (e, ei, bb->succs)
4455 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4456 | EDGE_FALSE_VALUE))
4457 || !(e->flags & EDGE_ABNORMAL))
4459 error ("wrong outgoing edge flags at end of bb %d",
4460 bb->index);
4461 err = 1;
4464 break;
4466 case GIMPLE_RETURN:
4467 if (!single_succ_p (bb)
4468 || (single_succ_edge (bb)->flags
4469 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4470 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4472 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4473 err = 1;
4475 if (single_succ (bb) != EXIT_BLOCK_PTR)
4477 error ("return edge does not point to exit in bb %d",
4478 bb->index);
4479 err = 1;
4481 break;
4483 case GIMPLE_SWITCH:
4485 tree prev;
4486 edge e;
4487 size_t i, n;
4489 n = gimple_switch_num_labels (stmt);
4491 /* Mark all the destination basic blocks. */
4492 for (i = 0; i < n; ++i)
4494 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4495 basic_block label_bb = label_to_block (lab);
4496 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4497 label_bb->aux = (void *)1;
4500 /* Verify that the case labels are sorted. */
4501 prev = gimple_switch_label (stmt, 0);
4502 for (i = 1; i < n; ++i)
4504 tree c = gimple_switch_label (stmt, i);
4505 if (!CASE_LOW (c))
4507 error ("found default case not at the start of "
4508 "case vector");
4509 err = 1;
4510 continue;
4512 if (CASE_LOW (prev)
4513 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4515 error ("case labels not sorted: ");
4516 print_generic_expr (stderr, prev, 0);
4517 fprintf (stderr," is greater than ");
4518 print_generic_expr (stderr, c, 0);
4519 fprintf (stderr," but comes before it.\n");
4520 err = 1;
4522 prev = c;
4524 /* VRP will remove the default case if it can prove it will
4525 never be executed. So do not verify there always exists
4526 a default case here. */
4528 FOR_EACH_EDGE (e, ei, bb->succs)
4530 if (!e->dest->aux)
4532 error ("extra outgoing edge %d->%d",
4533 bb->index, e->dest->index);
4534 err = 1;
4537 e->dest->aux = (void *)2;
4538 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4539 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4541 error ("wrong outgoing edge flags at end of bb %d",
4542 bb->index);
4543 err = 1;
4547 /* Check that we have all of them. */
4548 for (i = 0; i < n; ++i)
4550 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4551 basic_block label_bb = label_to_block (lab);
4553 if (label_bb->aux != (void *)2)
4555 error ("missing edge %i->%i", bb->index, label_bb->index);
4556 err = 1;
4560 FOR_EACH_EDGE (e, ei, bb->succs)
4561 e->dest->aux = (void *)0;
4564 default: ;
4568 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4569 verify_dominators (CDI_DOMINATORS);
4571 return err;
4575 /* Updates phi nodes after creating a forwarder block joined
4576 by edge FALLTHRU. */
4578 static void
4579 gimple_make_forwarder_block (edge fallthru)
4581 edge e;
4582 edge_iterator ei;
4583 basic_block dummy, bb;
4584 tree var;
4585 gimple_stmt_iterator gsi;
4587 dummy = fallthru->src;
4588 bb = fallthru->dest;
4590 if (single_pred_p (bb))
4591 return;
4593 /* If we redirected a branch we must create new PHI nodes at the
4594 start of BB. */
4595 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4597 gimple phi, new_phi;
4599 phi = gsi_stmt (gsi);
4600 var = gimple_phi_result (phi);
4601 new_phi = create_phi_node (var, bb);
4602 SSA_NAME_DEF_STMT (var) = new_phi;
4603 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4604 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru);
4607 /* Add the arguments we have stored on edges. */
4608 FOR_EACH_EDGE (e, ei, bb->preds)
4610 if (e == fallthru)
4611 continue;
4613 flush_pending_stmts (e);
4618 /* Return a non-special label in the head of basic block BLOCK.
4619 Create one if it doesn't exist. */
4621 tree
4622 gimple_block_label (basic_block bb)
4624 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4625 bool first = true;
4626 tree label;
4627 gimple stmt;
4629 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4631 stmt = gsi_stmt (i);
4632 if (gimple_code (stmt) != GIMPLE_LABEL)
4633 break;
4634 label = gimple_label_label (stmt);
4635 if (!DECL_NONLOCAL (label))
4637 if (!first)
4638 gsi_move_before (&i, &s);
4639 return label;
4643 label = create_artificial_label ();
4644 stmt = gimple_build_label (label);
4645 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4646 return label;
4650 /* Attempt to perform edge redirection by replacing a possibly complex
4651 jump instruction by a goto or by removing the jump completely.
4652 This can apply only if all edges now point to the same block. The
4653 parameters and return values are equivalent to
4654 redirect_edge_and_branch. */
4656 static edge
4657 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4659 basic_block src = e->src;
4660 gimple_stmt_iterator i;
4661 gimple stmt;
4663 /* We can replace or remove a complex jump only when we have exactly
4664 two edges. */
4665 if (EDGE_COUNT (src->succs) != 2
4666 /* Verify that all targets will be TARGET. Specifically, the
4667 edge that is not E must also go to TARGET. */
4668 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4669 return NULL;
4671 i = gsi_last_bb (src);
4672 if (gsi_end_p (i))
4673 return NULL;
4675 stmt = gsi_stmt (i);
4677 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4679 gsi_remove (&i, true);
4680 e = ssa_redirect_edge (e, target);
4681 e->flags = EDGE_FALLTHRU;
4682 return e;
4685 return NULL;
4689 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4690 edge representing the redirected branch. */
4692 static edge
4693 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4695 basic_block bb = e->src;
4696 gimple_stmt_iterator gsi;
4697 edge ret;
4698 gimple stmt;
4700 if (e->flags & EDGE_ABNORMAL)
4701 return NULL;
4703 if (e->src != ENTRY_BLOCK_PTR
4704 && (ret = gimple_try_redirect_by_replacing_jump (e, dest)))
4705 return ret;
4707 if (e->dest == dest)
4708 return NULL;
4710 gsi = gsi_last_bb (bb);
4711 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4713 switch (stmt ? gimple_code (stmt) : ERROR_MARK)
4715 case GIMPLE_COND:
4716 /* For COND_EXPR, we only need to redirect the edge. */
4717 break;
4719 case GIMPLE_GOTO:
4720 /* No non-abnormal edges should lead from a non-simple goto, and
4721 simple ones should be represented implicitly. */
4722 gcc_unreachable ();
4724 case GIMPLE_SWITCH:
4726 tree label = gimple_block_label (dest);
4727 tree cases = get_cases_for_edge (e, stmt);
4729 /* If we have a list of cases associated with E, then use it
4730 as it's a lot faster than walking the entire case vector. */
4731 if (cases)
4733 edge e2 = find_edge (e->src, dest);
4734 tree last, first;
4736 first = cases;
4737 while (cases)
4739 last = cases;
4740 CASE_LABEL (cases) = label;
4741 cases = TREE_CHAIN (cases);
4744 /* If there was already an edge in the CFG, then we need
4745 to move all the cases associated with E to E2. */
4746 if (e2)
4748 tree cases2 = get_cases_for_edge (e2, stmt);
4750 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4751 TREE_CHAIN (cases2) = first;
4754 else
4756 size_t i, n = gimple_switch_num_labels (stmt);
4758 for (i = 0; i < n; i++)
4760 tree elt = gimple_switch_label (stmt, i);
4761 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4762 CASE_LABEL (elt) = label;
4766 break;
4769 case GIMPLE_RETURN:
4770 gsi_remove (&gsi, true);
4771 e->flags |= EDGE_FALLTHRU;
4772 break;
4774 case GIMPLE_OMP_RETURN:
4775 case GIMPLE_OMP_CONTINUE:
4776 case GIMPLE_OMP_SECTIONS_SWITCH:
4777 case GIMPLE_OMP_FOR:
4778 /* The edges from OMP constructs can be simply redirected. */
4779 break;
4781 default:
4782 /* Otherwise it must be a fallthru edge, and we don't need to
4783 do anything besides redirecting it. */
4784 gcc_assert (e->flags & EDGE_FALLTHRU);
4785 break;
4788 /* Update/insert PHI nodes as necessary. */
4790 /* Now update the edges in the CFG. */
4791 e = ssa_redirect_edge (e, dest);
4793 return e;
4796 /* Returns true if it is possible to remove edge E by redirecting
4797 it to the destination of the other edge from E->src. */
4799 static bool
4800 gimple_can_remove_branch_p (const_edge e)
4802 if (e->flags & EDGE_ABNORMAL)
4803 return false;
4805 return true;
4808 /* Simple wrapper, as we can always redirect fallthru edges. */
4810 static basic_block
4811 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4813 e = gimple_redirect_edge_and_branch (e, dest);
4814 gcc_assert (e);
4816 return NULL;
4820 /* Splits basic block BB after statement STMT (but at least after the
4821 labels). If STMT is NULL, BB is split just after the labels. */
4823 static basic_block
4824 gimple_split_block (basic_block bb, void *stmt)
4826 gimple_stmt_iterator gsi;
4827 gimple_stmt_iterator gsi_tgt;
4828 gimple act;
4829 gimple_seq list;
4830 basic_block new_bb;
4831 edge e;
4832 edge_iterator ei;
4834 new_bb = create_empty_bb (bb);
4836 /* Redirect the outgoing edges. */
4837 new_bb->succs = bb->succs;
4838 bb->succs = NULL;
4839 FOR_EACH_EDGE (e, ei, new_bb->succs)
4840 e->src = new_bb;
4842 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
4843 stmt = NULL;
4845 /* Move everything from GSI to the new basic block. */
4846 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4848 act = gsi_stmt (gsi);
4849 if (gimple_code (act) == GIMPLE_LABEL)
4850 continue;
4852 if (!stmt)
4853 break;
4855 if (stmt == act)
4857 gsi_next (&gsi);
4858 break;
4862 if (gsi_end_p (gsi))
4863 return new_bb;
4865 /* Split the statement list - avoid re-creating new containers as this
4866 brings ugly quadratic memory consumption in the inliner.
4867 (We are still quadratic since we need to update stmt BB pointers,
4868 sadly.) */
4869 list = gsi_split_seq_before (&gsi);
4870 set_bb_seq (new_bb, list);
4871 for (gsi_tgt = gsi_start (list);
4872 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
4873 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
4875 return new_bb;
4879 /* Moves basic block BB after block AFTER. */
4881 static bool
4882 gimple_move_block_after (basic_block bb, basic_block after)
4884 if (bb->prev_bb == after)
4885 return true;
4887 unlink_block (bb);
4888 link_block (bb, after);
4890 return true;
4894 /* Return true if basic_block can be duplicated. */
4896 static bool
4897 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
4899 return true;
4902 /* Create a duplicate of the basic block BB. NOTE: This does not
4903 preserve SSA form. */
4905 static basic_block
4906 gimple_duplicate_bb (basic_block bb)
4908 basic_block new_bb;
4909 gimple_stmt_iterator gsi, gsi_tgt;
4910 gimple_seq phis = phi_nodes (bb);
4911 gimple phi, stmt, copy;
4913 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
4915 /* Copy the PHI nodes. We ignore PHI node arguments here because
4916 the incoming edges have not been setup yet. */
4917 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
4919 phi = gsi_stmt (gsi);
4920 copy = create_phi_node (gimple_phi_result (phi), new_bb);
4921 create_new_def_for (gimple_phi_result (copy), copy,
4922 gimple_phi_result_ptr (copy));
4925 gsi_tgt = gsi_start_bb (new_bb);
4926 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4928 def_operand_p def_p;
4929 ssa_op_iter op_iter;
4930 int region;
4932 stmt = gsi_stmt (gsi);
4933 if (gimple_code (stmt) == GIMPLE_LABEL)
4934 continue;
4936 /* Create a new copy of STMT and duplicate STMT's virtual
4937 operands. */
4938 copy = gimple_copy (stmt);
4939 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
4940 copy_virtual_operands (copy, stmt);
4941 region = lookup_stmt_eh_region (stmt);
4942 if (region >= 0)
4943 add_stmt_to_eh_region (copy, region);
4944 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
4946 /* Create new names for all the definitions created by COPY and
4947 add replacement mappings for each new name. */
4948 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
4949 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
4952 return new_bb;
4955 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
4957 static void
4958 add_phi_args_after_copy_edge (edge e_copy)
4960 basic_block bb, bb_copy = e_copy->src, dest;
4961 edge e;
4962 edge_iterator ei;
4963 gimple phi, phi_copy;
4964 tree def;
4965 gimple_stmt_iterator psi, psi_copy;
4967 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
4968 return;
4970 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
4972 if (e_copy->dest->flags & BB_DUPLICATED)
4973 dest = get_bb_original (e_copy->dest);
4974 else
4975 dest = e_copy->dest;
4977 e = find_edge (bb, dest);
4978 if (!e)
4980 /* During loop unrolling the target of the latch edge is copied.
4981 In this case we are not looking for edge to dest, but to
4982 duplicated block whose original was dest. */
4983 FOR_EACH_EDGE (e, ei, bb->succs)
4985 if ((e->dest->flags & BB_DUPLICATED)
4986 && get_bb_original (e->dest) == dest)
4987 break;
4990 gcc_assert (e != NULL);
4993 for (psi = gsi_start_phis (e->dest),
4994 psi_copy = gsi_start_phis (e_copy->dest);
4995 !gsi_end_p (psi);
4996 gsi_next (&psi), gsi_next (&psi_copy))
4998 phi = gsi_stmt (psi);
4999 phi_copy = gsi_stmt (psi_copy);
5000 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5001 add_phi_arg (phi_copy, def, e_copy);
5006 /* Basic block BB_COPY was created by code duplication. Add phi node
5007 arguments for edges going out of BB_COPY. The blocks that were
5008 duplicated have BB_DUPLICATED set. */
5010 void
5011 add_phi_args_after_copy_bb (basic_block bb_copy)
5013 edge e_copy;
5014 edge_iterator ei;
5016 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5018 add_phi_args_after_copy_edge (e_copy);
5022 /* Blocks in REGION_COPY array of length N_REGION were created by
5023 duplication of basic blocks. Add phi node arguments for edges
5024 going from these blocks. If E_COPY is not NULL, also add
5025 phi node arguments for its destination.*/
5027 void
5028 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5029 edge e_copy)
5031 unsigned i;
5033 for (i = 0; i < n_region; i++)
5034 region_copy[i]->flags |= BB_DUPLICATED;
5036 for (i = 0; i < n_region; i++)
5037 add_phi_args_after_copy_bb (region_copy[i]);
5038 if (e_copy)
5039 add_phi_args_after_copy_edge (e_copy);
5041 for (i = 0; i < n_region; i++)
5042 region_copy[i]->flags &= ~BB_DUPLICATED;
5045 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5046 important exit edge EXIT. By important we mean that no SSA name defined
5047 inside region is live over the other exit edges of the region. All entry
5048 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5049 to the duplicate of the region. SSA form, dominance and loop information
5050 is updated. The new basic blocks are stored to REGION_COPY in the same
5051 order as they had in REGION, provided that REGION_COPY is not NULL.
5052 The function returns false if it is unable to copy the region,
5053 true otherwise. */
5055 bool
5056 gimple_duplicate_sese_region (edge entry, edge exit,
5057 basic_block *region, unsigned n_region,
5058 basic_block *region_copy)
5060 unsigned i;
5061 bool free_region_copy = false, copying_header = false;
5062 struct loop *loop = entry->dest->loop_father;
5063 edge exit_copy;
5064 VEC (basic_block, heap) *doms;
5065 edge redirected;
5066 int total_freq = 0, entry_freq = 0;
5067 gcov_type total_count = 0, entry_count = 0;
5069 if (!can_copy_bbs_p (region, n_region))
5070 return false;
5072 /* Some sanity checking. Note that we do not check for all possible
5073 missuses of the functions. I.e. if you ask to copy something weird,
5074 it will work, but the state of structures probably will not be
5075 correct. */
5076 for (i = 0; i < n_region; i++)
5078 /* We do not handle subloops, i.e. all the blocks must belong to the
5079 same loop. */
5080 if (region[i]->loop_father != loop)
5081 return false;
5083 if (region[i] != entry->dest
5084 && region[i] == loop->header)
5085 return false;
5088 set_loop_copy (loop, loop);
5090 /* In case the function is used for loop header copying (which is the primary
5091 use), ensure that EXIT and its copy will be new latch and entry edges. */
5092 if (loop->header == entry->dest)
5094 copying_header = true;
5095 set_loop_copy (loop, loop_outer (loop));
5097 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5098 return false;
5100 for (i = 0; i < n_region; i++)
5101 if (region[i] != exit->src
5102 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5103 return false;
5106 if (!region_copy)
5108 region_copy = XNEWVEC (basic_block, n_region);
5109 free_region_copy = true;
5112 gcc_assert (!need_ssa_update_p ());
5114 /* Record blocks outside the region that are dominated by something
5115 inside. */
5116 doms = NULL;
5117 initialize_original_copy_tables ();
5119 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5121 if (entry->dest->count)
5123 total_count = entry->dest->count;
5124 entry_count = entry->count;
5125 /* Fix up corner cases, to avoid division by zero or creation of negative
5126 frequencies. */
5127 if (entry_count > total_count)
5128 entry_count = total_count;
5130 else
5132 total_freq = entry->dest->frequency;
5133 entry_freq = EDGE_FREQUENCY (entry);
5134 /* Fix up corner cases, to avoid division by zero or creation of negative
5135 frequencies. */
5136 if (total_freq == 0)
5137 total_freq = 1;
5138 else if (entry_freq > total_freq)
5139 entry_freq = total_freq;
5142 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5143 split_edge_bb_loc (entry));
5144 if (total_count)
5146 scale_bbs_frequencies_gcov_type (region, n_region,
5147 total_count - entry_count,
5148 total_count);
5149 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5150 total_count);
5152 else
5154 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5155 total_freq);
5156 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5159 if (copying_header)
5161 loop->header = exit->dest;
5162 loop->latch = exit->src;
5165 /* Redirect the entry and add the phi node arguments. */
5166 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5167 gcc_assert (redirected != NULL);
5168 flush_pending_stmts (entry);
5170 /* Concerning updating of dominators: We must recount dominators
5171 for entry block and its copy. Anything that is outside of the
5172 region, but was dominated by something inside needs recounting as
5173 well. */
5174 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5175 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5176 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5177 VEC_free (basic_block, heap, doms);
5179 /* Add the other PHI node arguments. */
5180 add_phi_args_after_copy (region_copy, n_region, NULL);
5182 /* Update the SSA web. */
5183 update_ssa (TODO_update_ssa);
5185 if (free_region_copy)
5186 free (region_copy);
5188 free_original_copy_tables ();
5189 return true;
5192 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5193 are stored to REGION_COPY in the same order in that they appear
5194 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5195 the region, EXIT an exit from it. The condition guarding EXIT
5196 is moved to ENTRY. Returns true if duplication succeeds, false
5197 otherwise.
5199 For example,
5201 some_code;
5202 if (cond)
5204 else
5207 is transformed to
5209 if (cond)
5211 some_code;
5214 else
5216 some_code;
5221 bool
5222 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5223 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5224 basic_block *region_copy ATTRIBUTE_UNUSED)
5226 unsigned i;
5227 bool free_region_copy = false;
5228 struct loop *loop = exit->dest->loop_father;
5229 struct loop *orig_loop = entry->dest->loop_father;
5230 basic_block switch_bb, entry_bb, nentry_bb;
5231 VEC (basic_block, heap) *doms;
5232 int total_freq = 0, exit_freq = 0;
5233 gcov_type total_count = 0, exit_count = 0;
5234 edge exits[2], nexits[2], e;
5235 gimple_stmt_iterator gsi;
5236 gimple cond_stmt;
5237 edge sorig, snew;
5239 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5240 exits[0] = exit;
5241 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5243 if (!can_copy_bbs_p (region, n_region))
5244 return false;
5246 /* Some sanity checking. Note that we do not check for all possible
5247 missuses of the functions. I.e. if you ask to copy something weird
5248 (e.g., in the example, if there is a jump from inside to the middle
5249 of some_code, or come_code defines some of the values used in cond)
5250 it will work, but the resulting code will not be correct. */
5251 for (i = 0; i < n_region; i++)
5253 /* We do not handle subloops, i.e. all the blocks must belong to the
5254 same loop. */
5255 if (region[i]->loop_father != orig_loop)
5256 return false;
5258 if (region[i] == orig_loop->latch)
5259 return false;
5262 initialize_original_copy_tables ();
5263 set_loop_copy (orig_loop, loop);
5265 if (!region_copy)
5267 region_copy = XNEWVEC (basic_block, n_region);
5268 free_region_copy = true;
5271 gcc_assert (!need_ssa_update_p ());
5273 /* Record blocks outside the region that are dominated by something
5274 inside. */
5275 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5277 if (exit->src->count)
5279 total_count = exit->src->count;
5280 exit_count = exit->count;
5281 /* Fix up corner cases, to avoid division by zero or creation of negative
5282 frequencies. */
5283 if (exit_count > total_count)
5284 exit_count = total_count;
5286 else
5288 total_freq = exit->src->frequency;
5289 exit_freq = EDGE_FREQUENCY (exit);
5290 /* Fix up corner cases, to avoid division by zero or creation of negative
5291 frequencies. */
5292 if (total_freq == 0)
5293 total_freq = 1;
5294 if (exit_freq > total_freq)
5295 exit_freq = total_freq;
5298 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5299 split_edge_bb_loc (exit));
5300 if (total_count)
5302 scale_bbs_frequencies_gcov_type (region, n_region,
5303 total_count - exit_count,
5304 total_count);
5305 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5306 total_count);
5308 else
5310 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5311 total_freq);
5312 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5315 /* Create the switch block, and put the exit condition to it. */
5316 entry_bb = entry->dest;
5317 nentry_bb = get_bb_copy (entry_bb);
5318 if (!last_stmt (entry->src)
5319 || !stmt_ends_bb_p (last_stmt (entry->src)))
5320 switch_bb = entry->src;
5321 else
5322 switch_bb = split_edge (entry);
5323 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5325 gsi = gsi_last_bb (switch_bb);
5326 cond_stmt = last_stmt (exit->src);
5327 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5328 cond_stmt = gimple_copy (cond_stmt);
5329 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5330 gimple_cond_set_rhs (cond_stmt, unshare_expr (gimple_cond_rhs (cond_stmt)));
5331 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5333 sorig = single_succ_edge (switch_bb);
5334 sorig->flags = exits[1]->flags;
5335 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5337 /* Register the new edge from SWITCH_BB in loop exit lists. */
5338 rescan_loop_exit (snew, true, false);
5340 /* Add the PHI node arguments. */
5341 add_phi_args_after_copy (region_copy, n_region, snew);
5343 /* Get rid of now superfluous conditions and associated edges (and phi node
5344 arguments). */
5345 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5346 PENDING_STMT (e) = NULL;
5347 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
5348 PENDING_STMT (e) = NULL;
5350 /* Anything that is outside of the region, but was dominated by something
5351 inside needs to update dominance info. */
5352 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5353 VEC_free (basic_block, heap, doms);
5355 /* Update the SSA web. */
5356 update_ssa (TODO_update_ssa);
5358 if (free_region_copy)
5359 free (region_copy);
5361 free_original_copy_tables ();
5362 return true;
5365 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5366 adding blocks when the dominator traversal reaches EXIT. This
5367 function silently assumes that ENTRY strictly dominates EXIT. */
5369 void
5370 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5371 VEC(basic_block,heap) **bbs_p)
5373 basic_block son;
5375 for (son = first_dom_son (CDI_DOMINATORS, entry);
5376 son;
5377 son = next_dom_son (CDI_DOMINATORS, son))
5379 VEC_safe_push (basic_block, heap, *bbs_p, son);
5380 if (son != exit)
5381 gather_blocks_in_sese_region (son, exit, bbs_p);
5385 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5386 The duplicates are recorded in VARS_MAP. */
5388 static void
5389 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5390 tree to_context)
5392 tree t = *tp, new_t;
5393 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5394 void **loc;
5396 if (DECL_CONTEXT (t) == to_context)
5397 return;
5399 loc = pointer_map_contains (vars_map, t);
5401 if (!loc)
5403 loc = pointer_map_insert (vars_map, t);
5405 if (SSA_VAR_P (t))
5407 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5408 f->local_decls = tree_cons (NULL_TREE, new_t, f->local_decls);
5410 else
5412 gcc_assert (TREE_CODE (t) == CONST_DECL);
5413 new_t = copy_node (t);
5415 DECL_CONTEXT (new_t) = to_context;
5417 *loc = new_t;
5419 else
5420 new_t = (tree) *loc;
5422 *tp = new_t;
5426 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5427 VARS_MAP maps old ssa names and var_decls to the new ones. */
5429 static tree
5430 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5431 tree to_context)
5433 void **loc;
5434 tree new_name, decl = SSA_NAME_VAR (name);
5436 gcc_assert (is_gimple_reg (name));
5438 loc = pointer_map_contains (vars_map, name);
5440 if (!loc)
5442 replace_by_duplicate_decl (&decl, vars_map, to_context);
5444 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5445 if (gimple_in_ssa_p (cfun))
5446 add_referenced_var (decl);
5448 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5449 if (SSA_NAME_IS_DEFAULT_DEF (name))
5450 set_default_def (decl, new_name);
5451 pop_cfun ();
5453 loc = pointer_map_insert (vars_map, name);
5454 *loc = new_name;
5456 else
5457 new_name = (tree) *loc;
5459 return new_name;
5462 struct move_stmt_d
5464 tree orig_block;
5465 tree new_block;
5466 tree from_context;
5467 tree to_context;
5468 struct pointer_map_t *vars_map;
5469 htab_t new_label_map;
5470 bool remap_decls_p;
5473 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5474 contained in *TP if it has been ORIG_BLOCK previously and change the
5475 DECL_CONTEXT of every local variable referenced in *TP. */
5477 static tree
5478 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5480 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5481 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5482 tree t = *tp;
5484 if (EXPR_P (t))
5485 /* We should never have TREE_BLOCK set on non-statements. */
5486 gcc_assert (!TREE_BLOCK (t));
5488 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5490 if (TREE_CODE (t) == SSA_NAME)
5491 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5492 else if (TREE_CODE (t) == LABEL_DECL)
5494 if (p->new_label_map)
5496 struct tree_map in, *out;
5497 in.base.from = t;
5498 out = (struct tree_map *)
5499 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5500 if (out)
5501 *tp = t = out->to;
5504 DECL_CONTEXT (t) = p->to_context;
5506 else if (p->remap_decls_p)
5508 /* Replace T with its duplicate. T should no longer appear in the
5509 parent function, so this looks wasteful; however, it may appear
5510 in referenced_vars, and more importantly, as virtual operands of
5511 statements, and in alias lists of other variables. It would be
5512 quite difficult to expunge it from all those places. ??? It might
5513 suffice to do this for addressable variables. */
5514 if ((TREE_CODE (t) == VAR_DECL
5515 && !is_global_var (t))
5516 || TREE_CODE (t) == CONST_DECL)
5517 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5519 if (SSA_VAR_P (t)
5520 && gimple_in_ssa_p (cfun))
5522 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5523 add_referenced_var (*tp);
5524 pop_cfun ();
5527 *walk_subtrees = 0;
5529 else if (TYPE_P (t))
5530 *walk_subtrees = 0;
5532 return NULL_TREE;
5535 /* Like move_stmt_op, but for gimple statements.
5537 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5538 contained in the current statement in *GSI_P and change the
5539 DECL_CONTEXT of every local variable referenced in the current
5540 statement. */
5542 static tree
5543 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5544 struct walk_stmt_info *wi)
5546 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5547 gimple stmt = gsi_stmt (*gsi_p);
5548 tree block = gimple_block (stmt);
5550 if (p->orig_block == NULL_TREE
5551 || block == p->orig_block
5552 || block == NULL_TREE)
5553 gimple_set_block (stmt, p->new_block);
5554 #ifdef ENABLE_CHECKING
5555 else if (block != p->new_block)
5557 while (block && block != p->orig_block)
5558 block = BLOCK_SUPERCONTEXT (block);
5559 gcc_assert (block);
5561 #endif
5563 if (is_gimple_omp (stmt)
5564 && gimple_code (stmt) != GIMPLE_OMP_RETURN
5565 && gimple_code (stmt) != GIMPLE_OMP_CONTINUE)
5567 /* Do not remap variables inside OMP directives. Variables
5568 referenced in clauses and directive header belong to the
5569 parent function and should not be moved into the child
5570 function. */
5571 bool save_remap_decls_p = p->remap_decls_p;
5572 p->remap_decls_p = false;
5573 *handled_ops_p = true;
5575 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r, move_stmt_op, wi);
5577 p->remap_decls_p = save_remap_decls_p;
5580 return NULL_TREE;
5583 /* Marks virtual operands of all statements in basic blocks BBS for
5584 renaming. */
5586 void
5587 mark_virtual_ops_in_bb (basic_block bb)
5589 gimple_stmt_iterator gsi;
5591 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5592 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
5594 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5595 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
5598 /* Marks virtual operands of all statements in basic blocks BBS for
5599 renaming. */
5601 static void
5602 mark_virtual_ops_in_region (VEC (basic_block,heap) *bbs)
5604 basic_block bb;
5605 unsigned i;
5607 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
5608 mark_virtual_ops_in_bb (bb);
5611 /* Move basic block BB from function CFUN to function DEST_FN. The
5612 block is moved out of the original linked list and placed after
5613 block AFTER in the new list. Also, the block is removed from the
5614 original array of blocks and placed in DEST_FN's array of blocks.
5615 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5616 updated to reflect the moved edges.
5618 The local variables are remapped to new instances, VARS_MAP is used
5619 to record the mapping. */
5621 static void
5622 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5623 basic_block after, bool update_edge_count_p,
5624 struct move_stmt_d *d, int eh_offset)
5626 struct control_flow_graph *cfg;
5627 edge_iterator ei;
5628 edge e;
5629 gimple_stmt_iterator si;
5630 unsigned old_len, new_len;
5632 /* Remove BB from dominance structures. */
5633 delete_from_dominance_info (CDI_DOMINATORS, bb);
5634 if (current_loops)
5635 remove_bb_from_loops (bb);
5637 /* Link BB to the new linked list. */
5638 move_block_after (bb, after);
5640 /* Update the edge count in the corresponding flowgraphs. */
5641 if (update_edge_count_p)
5642 FOR_EACH_EDGE (e, ei, bb->succs)
5644 cfun->cfg->x_n_edges--;
5645 dest_cfun->cfg->x_n_edges++;
5648 /* Remove BB from the original basic block array. */
5649 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5650 cfun->cfg->x_n_basic_blocks--;
5652 /* Grow DEST_CFUN's basic block array if needed. */
5653 cfg = dest_cfun->cfg;
5654 cfg->x_n_basic_blocks++;
5655 if (bb->index >= cfg->x_last_basic_block)
5656 cfg->x_last_basic_block = bb->index + 1;
5658 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5659 if ((unsigned) cfg->x_last_basic_block >= old_len)
5661 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5662 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5663 new_len);
5666 VEC_replace (basic_block, cfg->x_basic_block_info,
5667 bb->index, bb);
5669 /* Remap the variables in phi nodes. */
5670 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5672 gimple phi = gsi_stmt (si);
5673 use_operand_p use;
5674 tree op = PHI_RESULT (phi);
5675 ssa_op_iter oi;
5677 if (!is_gimple_reg (op))
5679 /* Remove the phi nodes for virtual operands (alias analysis will be
5680 run for the new function, anyway). */
5681 remove_phi_node (&si, true);
5682 continue;
5685 SET_PHI_RESULT (phi,
5686 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5687 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5689 op = USE_FROM_PTR (use);
5690 if (TREE_CODE (op) == SSA_NAME)
5691 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5694 gsi_next (&si);
5697 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5699 gimple stmt = gsi_stmt (si);
5700 int region;
5701 struct walk_stmt_info wi;
5703 memset (&wi, 0, sizeof (wi));
5704 wi.info = d;
5705 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5707 if (gimple_code (stmt) == GIMPLE_LABEL)
5709 tree label = gimple_label_label (stmt);
5710 int uid = LABEL_DECL_UID (label);
5712 gcc_assert (uid > -1);
5714 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5715 if (old_len <= (unsigned) uid)
5717 new_len = 3 * uid / 2;
5718 VEC_safe_grow_cleared (basic_block, gc,
5719 cfg->x_label_to_block_map, new_len);
5722 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5723 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5725 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5727 if (uid >= dest_cfun->cfg->last_label_uid)
5728 dest_cfun->cfg->last_label_uid = uid + 1;
5730 else if (gimple_code (stmt) == GIMPLE_RESX && eh_offset != 0)
5731 gimple_resx_set_region (stmt, gimple_resx_region (stmt) + eh_offset);
5733 region = lookup_stmt_eh_region (stmt);
5734 if (region >= 0)
5736 add_stmt_to_eh_region_fn (dest_cfun, stmt, region + eh_offset);
5737 remove_stmt_from_eh_region (stmt);
5738 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5739 gimple_remove_stmt_histograms (cfun, stmt);
5742 /* We cannot leave any operands allocated from the operand caches of
5743 the current function. */
5744 free_stmt_operands (stmt);
5745 push_cfun (dest_cfun);
5746 update_stmt (stmt);
5747 pop_cfun ();
5750 FOR_EACH_EDGE (e, ei, bb->succs)
5751 if (e->goto_locus)
5753 tree block = e->goto_block;
5754 if (d->orig_block == NULL_TREE
5755 || block == d->orig_block)
5756 e->goto_block = d->new_block;
5757 #ifdef ENABLE_CHECKING
5758 else if (block != d->new_block)
5760 while (block && block != d->orig_block)
5761 block = BLOCK_SUPERCONTEXT (block);
5762 gcc_assert (block);
5764 #endif
5768 /* Examine the statements in BB (which is in SRC_CFUN); find and return
5769 the outermost EH region. Use REGION as the incoming base EH region. */
5771 static int
5772 find_outermost_region_in_block (struct function *src_cfun,
5773 basic_block bb, int region)
5775 gimple_stmt_iterator si;
5777 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5779 gimple stmt = gsi_stmt (si);
5780 int stmt_region;
5782 if (gimple_code (stmt) == GIMPLE_RESX)
5783 stmt_region = gimple_resx_region (stmt);
5784 else
5785 stmt_region = lookup_stmt_eh_region_fn (src_cfun, stmt);
5786 if (stmt_region > 0)
5788 if (region < 0)
5789 region = stmt_region;
5790 else if (stmt_region != region)
5792 region = eh_region_outermost (src_cfun, stmt_region, region);
5793 gcc_assert (region != -1);
5798 return region;
5801 static tree
5802 new_label_mapper (tree decl, void *data)
5804 htab_t hash = (htab_t) data;
5805 struct tree_map *m;
5806 void **slot;
5808 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
5810 m = XNEW (struct tree_map);
5811 m->hash = DECL_UID (decl);
5812 m->base.from = decl;
5813 m->to = create_artificial_label ();
5814 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
5815 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
5816 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
5818 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
5819 gcc_assert (*slot == NULL);
5821 *slot = m;
5823 return m->to;
5826 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
5827 subblocks. */
5829 static void
5830 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
5831 tree to_context)
5833 tree *tp, t;
5835 for (tp = &BLOCK_VARS (block); *tp; tp = &TREE_CHAIN (*tp))
5837 t = *tp;
5838 replace_by_duplicate_decl (&t, vars_map, to_context);
5839 if (t != *tp)
5841 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
5843 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
5844 DECL_HAS_VALUE_EXPR_P (t) = 1;
5846 TREE_CHAIN (t) = TREE_CHAIN (*tp);
5847 *tp = t;
5851 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
5852 replace_block_vars_by_duplicates (block, vars_map, to_context);
5855 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
5856 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
5857 single basic block in the original CFG and the new basic block is
5858 returned. DEST_CFUN must not have a CFG yet.
5860 Note that the region need not be a pure SESE region. Blocks inside
5861 the region may contain calls to abort/exit. The only restriction
5862 is that ENTRY_BB should be the only entry point and it must
5863 dominate EXIT_BB.
5865 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
5866 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
5867 to the new function.
5869 All local variables referenced in the region are assumed to be in
5870 the corresponding BLOCK_VARS and unexpanded variable lists
5871 associated with DEST_CFUN. */
5873 basic_block
5874 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
5875 basic_block exit_bb, tree orig_block)
5877 VEC(basic_block,heap) *bbs, *dom_bbs;
5878 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
5879 basic_block after, bb, *entry_pred, *exit_succ, abb;
5880 struct function *saved_cfun = cfun;
5881 int *entry_flag, *exit_flag, eh_offset;
5882 unsigned *entry_prob, *exit_prob;
5883 unsigned i, num_entry_edges, num_exit_edges;
5884 edge e;
5885 edge_iterator ei;
5886 htab_t new_label_map;
5887 struct pointer_map_t *vars_map;
5888 struct loop *loop = entry_bb->loop_father;
5889 struct move_stmt_d d;
5891 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
5892 region. */
5893 gcc_assert (entry_bb != exit_bb
5894 && (!exit_bb
5895 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
5897 /* Collect all the blocks in the region. Manually add ENTRY_BB
5898 because it won't be added by dfs_enumerate_from. */
5899 bbs = NULL;
5900 VEC_safe_push (basic_block, heap, bbs, entry_bb);
5901 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
5903 /* The blocks that used to be dominated by something in BBS will now be
5904 dominated by the new block. */
5905 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
5906 VEC_address (basic_block, bbs),
5907 VEC_length (basic_block, bbs));
5909 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
5910 the predecessor edges to ENTRY_BB and the successor edges to
5911 EXIT_BB so that we can re-attach them to the new basic block that
5912 will replace the region. */
5913 num_entry_edges = EDGE_COUNT (entry_bb->preds);
5914 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
5915 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
5916 entry_prob = XNEWVEC (unsigned, num_entry_edges);
5917 i = 0;
5918 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
5920 entry_prob[i] = e->probability;
5921 entry_flag[i] = e->flags;
5922 entry_pred[i++] = e->src;
5923 remove_edge (e);
5926 if (exit_bb)
5928 num_exit_edges = EDGE_COUNT (exit_bb->succs);
5929 exit_succ = (basic_block *) xcalloc (num_exit_edges,
5930 sizeof (basic_block));
5931 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
5932 exit_prob = XNEWVEC (unsigned, num_exit_edges);
5933 i = 0;
5934 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
5936 exit_prob[i] = e->probability;
5937 exit_flag[i] = e->flags;
5938 exit_succ[i++] = e->dest;
5939 remove_edge (e);
5942 else
5944 num_exit_edges = 0;
5945 exit_succ = NULL;
5946 exit_flag = NULL;
5947 exit_prob = NULL;
5950 /* Switch context to the child function to initialize DEST_FN's CFG. */
5951 gcc_assert (dest_cfun->cfg == NULL);
5952 push_cfun (dest_cfun);
5954 init_empty_tree_cfg ();
5956 /* Initialize EH information for the new function. */
5957 eh_offset = 0;
5958 new_label_map = NULL;
5959 if (saved_cfun->eh)
5961 int region = -1;
5963 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
5964 region = find_outermost_region_in_block (saved_cfun, bb, region);
5966 init_eh_for_function ();
5967 if (region != -1)
5969 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
5970 eh_offset = duplicate_eh_regions (saved_cfun, new_label_mapper,
5971 new_label_map, region, 0);
5975 pop_cfun ();
5977 /* The ssa form for virtual operands in the source function will have to
5978 be repaired. We do not care for the real operands -- the sese region
5979 must be closed with respect to those. */
5980 mark_virtual_ops_in_region (bbs);
5982 /* Move blocks from BBS into DEST_CFUN. */
5983 gcc_assert (VEC_length (basic_block, bbs) >= 2);
5984 after = dest_cfun->cfg->x_entry_block_ptr;
5985 vars_map = pointer_map_create ();
5987 memset (&d, 0, sizeof (d));
5988 d.vars_map = vars_map;
5989 d.from_context = cfun->decl;
5990 d.to_context = dest_cfun->decl;
5991 d.new_label_map = new_label_map;
5992 d.remap_decls_p = true;
5993 d.orig_block = orig_block;
5994 d.new_block = DECL_INITIAL (dest_cfun->decl);
5996 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
5998 /* No need to update edge counts on the last block. It has
5999 already been updated earlier when we detached the region from
6000 the original CFG. */
6001 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d, eh_offset);
6002 after = bb;
6005 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6006 if (orig_block)
6008 tree block;
6009 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6010 == NULL_TREE);
6011 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6012 = BLOCK_SUBBLOCKS (orig_block);
6013 for (block = BLOCK_SUBBLOCKS (orig_block);
6014 block; block = BLOCK_CHAIN (block))
6015 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6016 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6019 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6020 vars_map, dest_cfun->decl);
6022 if (new_label_map)
6023 htab_delete (new_label_map);
6024 pointer_map_destroy (vars_map);
6026 /* Rewire the entry and exit blocks. The successor to the entry
6027 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6028 the child function. Similarly, the predecessor of DEST_FN's
6029 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6030 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6031 various CFG manipulation function get to the right CFG.
6033 FIXME, this is silly. The CFG ought to become a parameter to
6034 these helpers. */
6035 push_cfun (dest_cfun);
6036 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6037 if (exit_bb)
6038 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6039 pop_cfun ();
6041 /* Back in the original function, the SESE region has disappeared,
6042 create a new basic block in its place. */
6043 bb = create_empty_bb (entry_pred[0]);
6044 if (current_loops)
6045 add_bb_to_loop (bb, loop);
6046 for (i = 0; i < num_entry_edges; i++)
6048 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6049 e->probability = entry_prob[i];
6052 for (i = 0; i < num_exit_edges; i++)
6054 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6055 e->probability = exit_prob[i];
6058 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6059 for (i = 0; VEC_iterate (basic_block, dom_bbs, i, abb); i++)
6060 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6061 VEC_free (basic_block, heap, dom_bbs);
6063 if (exit_bb)
6065 free (exit_prob);
6066 free (exit_flag);
6067 free (exit_succ);
6069 free (entry_prob);
6070 free (entry_flag);
6071 free (entry_pred);
6072 VEC_free (basic_block, heap, bbs);
6074 return bb;
6078 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6081 void
6082 dump_function_to_file (tree fn, FILE *file, int flags)
6084 tree arg, vars, var;
6085 struct function *dsf;
6086 bool ignore_topmost_bind = false, any_var = false;
6087 basic_block bb;
6088 tree chain;
6090 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6092 arg = DECL_ARGUMENTS (fn);
6093 while (arg)
6095 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6096 fprintf (file, " ");
6097 print_generic_expr (file, arg, dump_flags);
6098 if (flags & TDF_VERBOSE)
6099 print_node (file, "", arg, 4);
6100 if (TREE_CHAIN (arg))
6101 fprintf (file, ", ");
6102 arg = TREE_CHAIN (arg);
6104 fprintf (file, ")\n");
6106 if (flags & TDF_VERBOSE)
6107 print_node (file, "", fn, 2);
6109 dsf = DECL_STRUCT_FUNCTION (fn);
6110 if (dsf && (flags & TDF_DETAILS))
6111 dump_eh_tree (file, dsf);
6113 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6115 dump_node (fn, TDF_SLIM | flags, file);
6116 return;
6119 /* Switch CFUN to point to FN. */
6120 push_cfun (DECL_STRUCT_FUNCTION (fn));
6122 /* When GIMPLE is lowered, the variables are no longer available in
6123 BIND_EXPRs, so display them separately. */
6124 if (cfun && cfun->decl == fn && cfun->local_decls)
6126 ignore_topmost_bind = true;
6128 fprintf (file, "{\n");
6129 for (vars = cfun->local_decls; vars; vars = TREE_CHAIN (vars))
6131 var = TREE_VALUE (vars);
6133 print_generic_decl (file, var, flags);
6134 if (flags & TDF_VERBOSE)
6135 print_node (file, "", var, 4);
6136 fprintf (file, "\n");
6138 any_var = true;
6142 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6144 /* If the CFG has been built, emit a CFG-based dump. */
6145 check_bb_profile (ENTRY_BLOCK_PTR, file);
6146 if (!ignore_topmost_bind)
6147 fprintf (file, "{\n");
6149 if (any_var && n_basic_blocks)
6150 fprintf (file, "\n");
6152 FOR_EACH_BB (bb)
6153 gimple_dump_bb (bb, file, 2, flags);
6155 fprintf (file, "}\n");
6156 check_bb_profile (EXIT_BLOCK_PTR, file);
6158 else if (DECL_SAVED_TREE (fn) == NULL)
6160 /* The function is now in GIMPLE form but the CFG has not been
6161 built yet. Emit the single sequence of GIMPLE statements
6162 that make up its body. */
6163 gimple_seq body = gimple_body (fn);
6165 if (gimple_seq_first_stmt (body)
6166 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6167 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6168 print_gimple_seq (file, body, 0, flags);
6169 else
6171 if (!ignore_topmost_bind)
6172 fprintf (file, "{\n");
6174 if (any_var)
6175 fprintf (file, "\n");
6177 print_gimple_seq (file, body, 2, flags);
6178 fprintf (file, "}\n");
6181 else
6183 int indent;
6185 /* Make a tree based dump. */
6186 chain = DECL_SAVED_TREE (fn);
6188 if (chain && TREE_CODE (chain) == BIND_EXPR)
6190 if (ignore_topmost_bind)
6192 chain = BIND_EXPR_BODY (chain);
6193 indent = 2;
6195 else
6196 indent = 0;
6198 else
6200 if (!ignore_topmost_bind)
6201 fprintf (file, "{\n");
6202 indent = 2;
6205 if (any_var)
6206 fprintf (file, "\n");
6208 print_generic_stmt_indented (file, chain, flags, indent);
6209 if (ignore_topmost_bind)
6210 fprintf (file, "}\n");
6213 fprintf (file, "\n\n");
6215 /* Restore CFUN. */
6216 pop_cfun ();
6220 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6222 void
6223 debug_function (tree fn, int flags)
6225 dump_function_to_file (fn, stderr, flags);
6229 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6231 static void
6232 print_pred_bbs (FILE *file, basic_block bb)
6234 edge e;
6235 edge_iterator ei;
6237 FOR_EACH_EDGE (e, ei, bb->preds)
6238 fprintf (file, "bb_%d ", e->src->index);
6242 /* Print on FILE the indexes for the successors of basic_block BB. */
6244 static void
6245 print_succ_bbs (FILE *file, basic_block bb)
6247 edge e;
6248 edge_iterator ei;
6250 FOR_EACH_EDGE (e, ei, bb->succs)
6251 fprintf (file, "bb_%d ", e->dest->index);
6254 /* Print to FILE the basic block BB following the VERBOSITY level. */
6256 void
6257 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6259 char *s_indent = (char *) alloca ((size_t) indent + 1);
6260 memset ((void *) s_indent, ' ', (size_t) indent);
6261 s_indent[indent] = '\0';
6263 /* Print basic_block's header. */
6264 if (verbosity >= 2)
6266 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6267 print_pred_bbs (file, bb);
6268 fprintf (file, "}, succs = {");
6269 print_succ_bbs (file, bb);
6270 fprintf (file, "})\n");
6273 /* Print basic_block's body. */
6274 if (verbosity >= 3)
6276 fprintf (file, "%s {\n", s_indent);
6277 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6278 fprintf (file, "%s }\n", s_indent);
6282 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6284 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6285 VERBOSITY level this outputs the contents of the loop, or just its
6286 structure. */
6288 static void
6289 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6291 char *s_indent;
6292 basic_block bb;
6294 if (loop == NULL)
6295 return;
6297 s_indent = (char *) alloca ((size_t) indent + 1);
6298 memset ((void *) s_indent, ' ', (size_t) indent);
6299 s_indent[indent] = '\0';
6301 /* Print loop's header. */
6302 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6303 loop->num, loop->header->index, loop->latch->index);
6304 fprintf (file, ", niter = ");
6305 print_generic_expr (file, loop->nb_iterations, 0);
6307 if (loop->any_upper_bound)
6309 fprintf (file, ", upper_bound = ");
6310 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6313 if (loop->any_estimate)
6315 fprintf (file, ", estimate = ");
6316 dump_double_int (file, loop->nb_iterations_estimate, true);
6318 fprintf (file, ")\n");
6320 /* Print loop's body. */
6321 if (verbosity >= 1)
6323 fprintf (file, "%s{\n", s_indent);
6324 FOR_EACH_BB (bb)
6325 if (bb->loop_father == loop)
6326 print_loops_bb (file, bb, indent, verbosity);
6328 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6329 fprintf (file, "%s}\n", s_indent);
6333 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6334 spaces. Following VERBOSITY level this outputs the contents of the
6335 loop, or just its structure. */
6337 static void
6338 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6340 if (loop == NULL)
6341 return;
6343 print_loop (file, loop, indent, verbosity);
6344 print_loop_and_siblings (file, loop->next, indent, verbosity);
6347 /* Follow a CFG edge from the entry point of the program, and on entry
6348 of a loop, pretty print the loop structure on FILE. */
6350 void
6351 print_loops (FILE *file, int verbosity)
6353 basic_block bb;
6355 bb = ENTRY_BLOCK_PTR;
6356 if (bb && bb->loop_father)
6357 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6361 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6363 void
6364 debug_loops (int verbosity)
6366 print_loops (stderr, verbosity);
6369 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6371 void
6372 debug_loop (struct loop *loop, int verbosity)
6374 print_loop (stderr, loop, 0, verbosity);
6377 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6378 level. */
6380 void
6381 debug_loop_num (unsigned num, int verbosity)
6383 debug_loop (get_loop (num), verbosity);
6386 /* Return true if BB ends with a call, possibly followed by some
6387 instructions that must stay with the call. Return false,
6388 otherwise. */
6390 static bool
6391 gimple_block_ends_with_call_p (basic_block bb)
6393 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6394 return is_gimple_call (gsi_stmt (gsi));
6398 /* Return true if BB ends with a conditional branch. Return false,
6399 otherwise. */
6401 static bool
6402 gimple_block_ends_with_condjump_p (const_basic_block bb)
6404 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6405 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6409 /* Return true if we need to add fake edge to exit at statement T.
6410 Helper function for gimple_flow_call_edges_add. */
6412 static bool
6413 need_fake_edge_p (gimple t)
6415 tree fndecl = NULL_TREE;
6416 int call_flags = 0;
6418 /* NORETURN and LONGJMP calls already have an edge to exit.
6419 CONST and PURE calls do not need one.
6420 We don't currently check for CONST and PURE here, although
6421 it would be a good idea, because those attributes are
6422 figured out from the RTL in mark_constant_function, and
6423 the counter incrementation code from -fprofile-arcs
6424 leads to different results from -fbranch-probabilities. */
6425 if (is_gimple_call (t))
6427 fndecl = gimple_call_fndecl (t);
6428 call_flags = gimple_call_flags (t);
6431 if (is_gimple_call (t)
6432 && fndecl
6433 && DECL_BUILT_IN (fndecl)
6434 && (call_flags & ECF_NOTHROW)
6435 && !(call_flags & ECF_NORETURN)
6436 && !(call_flags & ECF_RETURNS_TWICE))
6437 return false;
6439 if (is_gimple_call (t)
6440 && !(call_flags & ECF_NORETURN))
6441 return true;
6443 if (gimple_code (t) == GIMPLE_ASM
6444 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6445 return true;
6447 return false;
6451 /* Add fake edges to the function exit for any non constant and non
6452 noreturn calls, volatile inline assembly in the bitmap of blocks
6453 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6454 the number of blocks that were split.
6456 The goal is to expose cases in which entering a basic block does
6457 not imply that all subsequent instructions must be executed. */
6459 static int
6460 gimple_flow_call_edges_add (sbitmap blocks)
6462 int i;
6463 int blocks_split = 0;
6464 int last_bb = last_basic_block;
6465 bool check_last_block = false;
6467 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6468 return 0;
6470 if (! blocks)
6471 check_last_block = true;
6472 else
6473 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6475 /* In the last basic block, before epilogue generation, there will be
6476 a fallthru edge to EXIT. Special care is required if the last insn
6477 of the last basic block is a call because make_edge folds duplicate
6478 edges, which would result in the fallthru edge also being marked
6479 fake, which would result in the fallthru edge being removed by
6480 remove_fake_edges, which would result in an invalid CFG.
6482 Moreover, we can't elide the outgoing fake edge, since the block
6483 profiler needs to take this into account in order to solve the minimal
6484 spanning tree in the case that the call doesn't return.
6486 Handle this by adding a dummy instruction in a new last basic block. */
6487 if (check_last_block)
6489 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6490 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6491 gimple t = NULL;
6493 if (!gsi_end_p (gsi))
6494 t = gsi_stmt (gsi);
6496 if (t && need_fake_edge_p (t))
6498 edge e;
6500 e = find_edge (bb, EXIT_BLOCK_PTR);
6501 if (e)
6503 gsi_insert_on_edge (e, gimple_build_nop ());
6504 gsi_commit_edge_inserts ();
6509 /* Now add fake edges to the function exit for any non constant
6510 calls since there is no way that we can determine if they will
6511 return or not... */
6512 for (i = 0; i < last_bb; i++)
6514 basic_block bb = BASIC_BLOCK (i);
6515 gimple_stmt_iterator gsi;
6516 gimple stmt, last_stmt;
6518 if (!bb)
6519 continue;
6521 if (blocks && !TEST_BIT (blocks, i))
6522 continue;
6524 gsi = gsi_last_bb (bb);
6525 if (!gsi_end_p (gsi))
6527 last_stmt = gsi_stmt (gsi);
6530 stmt = gsi_stmt (gsi);
6531 if (need_fake_edge_p (stmt))
6533 edge e;
6535 /* The handling above of the final block before the
6536 epilogue should be enough to verify that there is
6537 no edge to the exit block in CFG already.
6538 Calling make_edge in such case would cause us to
6539 mark that edge as fake and remove it later. */
6540 #ifdef ENABLE_CHECKING
6541 if (stmt == last_stmt)
6543 e = find_edge (bb, EXIT_BLOCK_PTR);
6544 gcc_assert (e == NULL);
6546 #endif
6548 /* Note that the following may create a new basic block
6549 and renumber the existing basic blocks. */
6550 if (stmt != last_stmt)
6552 e = split_block (bb, stmt);
6553 if (e)
6554 blocks_split++;
6556 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6558 gsi_prev (&gsi);
6560 while (!gsi_end_p (gsi));
6564 if (blocks_split)
6565 verify_flow_info ();
6567 return blocks_split;
6570 /* Purge dead abnormal call edges from basic block BB. */
6572 bool
6573 gimple_purge_dead_abnormal_call_edges (basic_block bb)
6575 bool changed = gimple_purge_dead_eh_edges (bb);
6577 if (cfun->has_nonlocal_label)
6579 gimple stmt = last_stmt (bb);
6580 edge_iterator ei;
6581 edge e;
6583 if (!(stmt && stmt_can_make_abnormal_goto (stmt)))
6584 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6586 if (e->flags & EDGE_ABNORMAL)
6588 remove_edge (e);
6589 changed = true;
6591 else
6592 ei_next (&ei);
6595 /* See gimple_purge_dead_eh_edges below. */
6596 if (changed)
6597 free_dominance_info (CDI_DOMINATORS);
6600 return changed;
6603 /* Stores all basic blocks dominated by BB to DOM_BBS. */
6605 static void
6606 get_all_dominated_blocks (basic_block bb, VEC (basic_block, heap) **dom_bbs)
6608 basic_block son;
6610 VEC_safe_push (basic_block, heap, *dom_bbs, bb);
6611 for (son = first_dom_son (CDI_DOMINATORS, bb);
6612 son;
6613 son = next_dom_son (CDI_DOMINATORS, son))
6614 get_all_dominated_blocks (son, dom_bbs);
6617 /* Removes edge E and all the blocks dominated by it, and updates dominance
6618 information. The IL in E->src needs to be updated separately.
6619 If dominance info is not available, only the edge E is removed.*/
6621 void
6622 remove_edge_and_dominated_blocks (edge e)
6624 VEC (basic_block, heap) *bbs_to_remove = NULL;
6625 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6626 bitmap df, df_idom;
6627 edge f;
6628 edge_iterator ei;
6629 bool none_removed = false;
6630 unsigned i;
6631 basic_block bb, dbb;
6632 bitmap_iterator bi;
6634 if (!dom_info_available_p (CDI_DOMINATORS))
6636 remove_edge (e);
6637 return;
6640 /* No updating is needed for edges to exit. */
6641 if (e->dest == EXIT_BLOCK_PTR)
6643 if (cfgcleanup_altered_bbs)
6644 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6645 remove_edge (e);
6646 return;
6649 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6650 that is not dominated by E->dest, then this set is empty. Otherwise,
6651 all the basic blocks dominated by E->dest are removed.
6653 Also, to DF_IDOM we store the immediate dominators of the blocks in
6654 the dominance frontier of E (i.e., of the successors of the
6655 removed blocks, if there are any, and of E->dest otherwise). */
6656 FOR_EACH_EDGE (f, ei, e->dest->preds)
6658 if (f == e)
6659 continue;
6661 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6663 none_removed = true;
6664 break;
6668 df = BITMAP_ALLOC (NULL);
6669 df_idom = BITMAP_ALLOC (NULL);
6671 if (none_removed)
6672 bitmap_set_bit (df_idom,
6673 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6674 else
6676 get_all_dominated_blocks (e->dest, &bbs_to_remove);
6677 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6679 FOR_EACH_EDGE (f, ei, bb->succs)
6681 if (f->dest != EXIT_BLOCK_PTR)
6682 bitmap_set_bit (df, f->dest->index);
6685 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6686 bitmap_clear_bit (df, bb->index);
6688 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6690 bb = BASIC_BLOCK (i);
6691 bitmap_set_bit (df_idom,
6692 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6696 if (cfgcleanup_altered_bbs)
6698 /* Record the set of the altered basic blocks. */
6699 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6700 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6703 /* Remove E and the cancelled blocks. */
6704 if (none_removed)
6705 remove_edge (e);
6706 else
6708 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6709 delete_basic_block (bb);
6712 /* Update the dominance information. The immediate dominator may change only
6713 for blocks whose immediate dominator belongs to DF_IDOM:
6715 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6716 removal. Let Z the arbitrary block such that idom(Z) = Y and
6717 Z dominates X after the removal. Before removal, there exists a path P
6718 from Y to X that avoids Z. Let F be the last edge on P that is
6719 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6720 dominates W, and because of P, Z does not dominate W), and W belongs to
6721 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6722 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6724 bb = BASIC_BLOCK (i);
6725 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6726 dbb;
6727 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6728 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6731 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6733 BITMAP_FREE (df);
6734 BITMAP_FREE (df_idom);
6735 VEC_free (basic_block, heap, bbs_to_remove);
6736 VEC_free (basic_block, heap, bbs_to_fix_dom);
6739 /* Purge dead EH edges from basic block BB. */
6741 bool
6742 gimple_purge_dead_eh_edges (basic_block bb)
6744 bool changed = false;
6745 edge e;
6746 edge_iterator ei;
6747 gimple stmt = last_stmt (bb);
6749 if (stmt && stmt_can_throw_internal (stmt))
6750 return false;
6752 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6754 if (e->flags & EDGE_EH)
6756 remove_edge_and_dominated_blocks (e);
6757 changed = true;
6759 else
6760 ei_next (&ei);
6763 return changed;
6766 bool
6767 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6769 bool changed = false;
6770 unsigned i;
6771 bitmap_iterator bi;
6773 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
6775 basic_block bb = BASIC_BLOCK (i);
6777 /* Earlier gimple_purge_dead_eh_edges could have removed
6778 this basic block already. */
6779 gcc_assert (bb || changed);
6780 if (bb != NULL)
6781 changed |= gimple_purge_dead_eh_edges (bb);
6784 return changed;
6787 /* This function is called whenever a new edge is created or
6788 redirected. */
6790 static void
6791 gimple_execute_on_growing_pred (edge e)
6793 basic_block bb = e->dest;
6795 if (phi_nodes (bb))
6796 reserve_phi_args_for_new_edge (bb);
6799 /* This function is called immediately before edge E is removed from
6800 the edge vector E->dest->preds. */
6802 static void
6803 gimple_execute_on_shrinking_pred (edge e)
6805 if (phi_nodes (e->dest))
6806 remove_phi_args (e);
6809 /*---------------------------------------------------------------------------
6810 Helper functions for Loop versioning
6811 ---------------------------------------------------------------------------*/
6813 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
6814 of 'first'. Both of them are dominated by 'new_head' basic block. When
6815 'new_head' was created by 'second's incoming edge it received phi arguments
6816 on the edge by split_edge(). Later, additional edge 'e' was created to
6817 connect 'new_head' and 'first'. Now this routine adds phi args on this
6818 additional edge 'e' that new_head to second edge received as part of edge
6819 splitting. */
6821 static void
6822 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
6823 basic_block new_head, edge e)
6825 gimple phi1, phi2;
6826 gimple_stmt_iterator psi1, psi2;
6827 tree def;
6828 edge e2 = find_edge (new_head, second);
6830 /* Because NEW_HEAD has been created by splitting SECOND's incoming
6831 edge, we should always have an edge from NEW_HEAD to SECOND. */
6832 gcc_assert (e2 != NULL);
6834 /* Browse all 'second' basic block phi nodes and add phi args to
6835 edge 'e' for 'first' head. PHI args are always in correct order. */
6837 for (psi2 = gsi_start_phis (second),
6838 psi1 = gsi_start_phis (first);
6839 !gsi_end_p (psi2) && !gsi_end_p (psi1);
6840 gsi_next (&psi2), gsi_next (&psi1))
6842 phi1 = gsi_stmt (psi1);
6843 phi2 = gsi_stmt (psi2);
6844 def = PHI_ARG_DEF (phi2, e2->dest_idx);
6845 add_phi_arg (phi1, def, e);
6850 /* Adds a if else statement to COND_BB with condition COND_EXPR.
6851 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
6852 the destination of the ELSE part. */
6854 static void
6855 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
6856 basic_block second_head ATTRIBUTE_UNUSED,
6857 basic_block cond_bb, void *cond_e)
6859 gimple_stmt_iterator gsi;
6860 gimple new_cond_expr;
6861 tree cond_expr = (tree) cond_e;
6862 edge e0;
6864 /* Build new conditional expr */
6865 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
6866 NULL_TREE, NULL_TREE);
6868 /* Add new cond in cond_bb. */
6869 gsi = gsi_last_bb (cond_bb);
6870 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
6872 /* Adjust edges appropriately to connect new head with first head
6873 as well as second head. */
6874 e0 = single_succ_edge (cond_bb);
6875 e0->flags &= ~EDGE_FALLTHRU;
6876 e0->flags |= EDGE_FALSE_VALUE;
6879 struct cfg_hooks gimple_cfg_hooks = {
6880 "gimple",
6881 gimple_verify_flow_info,
6882 gimple_dump_bb, /* dump_bb */
6883 create_bb, /* create_basic_block */
6884 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
6885 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
6886 gimple_can_remove_branch_p, /* can_remove_branch_p */
6887 remove_bb, /* delete_basic_block */
6888 gimple_split_block, /* split_block */
6889 gimple_move_block_after, /* move_block_after */
6890 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
6891 gimple_merge_blocks, /* merge_blocks */
6892 gimple_predict_edge, /* predict_edge */
6893 gimple_predicted_by_p, /* predicted_by_p */
6894 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
6895 gimple_duplicate_bb, /* duplicate_block */
6896 gimple_split_edge, /* split_edge */
6897 gimple_make_forwarder_block, /* make_forward_block */
6898 NULL, /* tidy_fallthru_edge */
6899 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
6900 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
6901 gimple_flow_call_edges_add, /* flow_call_edges_add */
6902 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
6903 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
6904 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
6905 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
6906 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
6907 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
6908 flush_pending_stmts /* flush_pending_stmts */
6912 /* Split all critical edges. */
6914 static unsigned int
6915 split_critical_edges (void)
6917 basic_block bb;
6918 edge e;
6919 edge_iterator ei;
6921 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
6922 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
6923 mappings around the calls to split_edge. */
6924 start_recording_case_labels ();
6925 FOR_ALL_BB (bb)
6927 FOR_EACH_EDGE (e, ei, bb->succs)
6928 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
6930 split_edge (e);
6933 end_recording_case_labels ();
6934 return 0;
6937 struct gimple_opt_pass pass_split_crit_edges =
6940 GIMPLE_PASS,
6941 "crited", /* name */
6942 NULL, /* gate */
6943 split_critical_edges, /* execute */
6944 NULL, /* sub */
6945 NULL, /* next */
6946 0, /* static_pass_number */
6947 TV_TREE_SPLIT_EDGES, /* tv_id */
6948 PROP_cfg, /* properties required */
6949 PROP_no_crit_edges, /* properties_provided */
6950 0, /* properties_destroyed */
6951 0, /* todo_flags_start */
6952 TODO_dump_func /* todo_flags_finish */
6957 /* Build a ternary operation and gimplify it. Emit code before GSI.
6958 Return the gimple_val holding the result. */
6960 tree
6961 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
6962 tree type, tree a, tree b, tree c)
6964 tree ret;
6966 ret = fold_build3 (code, type, a, b, c);
6967 STRIP_NOPS (ret);
6969 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
6970 GSI_SAME_STMT);
6973 /* Build a binary operation and gimplify it. Emit code before GSI.
6974 Return the gimple_val holding the result. */
6976 tree
6977 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
6978 tree type, tree a, tree b)
6980 tree ret;
6982 ret = fold_build2 (code, type, a, b);
6983 STRIP_NOPS (ret);
6985 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
6986 GSI_SAME_STMT);
6989 /* Build a unary operation and gimplify it. Emit code before GSI.
6990 Return the gimple_val holding the result. */
6992 tree
6993 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
6994 tree a)
6996 tree ret;
6998 ret = fold_build1 (code, type, a);
6999 STRIP_NOPS (ret);
7001 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7002 GSI_SAME_STMT);
7007 /* Emit return warnings. */
7009 static unsigned int
7010 execute_warn_function_return (void)
7012 source_location location;
7013 gimple last;
7014 edge e;
7015 edge_iterator ei;
7017 /* If we have a path to EXIT, then we do return. */
7018 if (TREE_THIS_VOLATILE (cfun->decl)
7019 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7021 location = UNKNOWN_LOCATION;
7022 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7024 last = last_stmt (e->src);
7025 if (gimple_code (last) == GIMPLE_RETURN
7026 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7027 break;
7029 if (location == UNKNOWN_LOCATION)
7030 location = cfun->function_end_locus;
7031 warning (0, "%H%<noreturn%> function does return", &location);
7034 /* If we see "return;" in some basic block, then we do reach the end
7035 without returning a value. */
7036 else if (warn_return_type
7037 && !TREE_NO_WARNING (cfun->decl)
7038 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7039 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7041 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7043 gimple last = last_stmt (e->src);
7044 if (gimple_code (last) == GIMPLE_RETURN
7045 && gimple_return_retval (last) == NULL
7046 && !gimple_no_warning_p (last))
7048 location = gimple_location (last);
7049 if (location == UNKNOWN_LOCATION)
7050 location = cfun->function_end_locus;
7051 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7052 TREE_NO_WARNING (cfun->decl) = 1;
7053 break;
7057 return 0;
7061 /* Given a basic block B which ends with a conditional and has
7062 precisely two successors, determine which of the edges is taken if
7063 the conditional is true and which is taken if the conditional is
7064 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7066 void
7067 extract_true_false_edges_from_block (basic_block b,
7068 edge *true_edge,
7069 edge *false_edge)
7071 edge e = EDGE_SUCC (b, 0);
7073 if (e->flags & EDGE_TRUE_VALUE)
7075 *true_edge = e;
7076 *false_edge = EDGE_SUCC (b, 1);
7078 else
7080 *false_edge = e;
7081 *true_edge = EDGE_SUCC (b, 1);
7085 struct gimple_opt_pass pass_warn_function_return =
7088 GIMPLE_PASS,
7089 NULL, /* name */
7090 NULL, /* gate */
7091 execute_warn_function_return, /* execute */
7092 NULL, /* sub */
7093 NULL, /* next */
7094 0, /* static_pass_number */
7095 0, /* tv_id */
7096 PROP_cfg, /* properties_required */
7097 0, /* properties_provided */
7098 0, /* properties_destroyed */
7099 0, /* todo_flags_start */
7100 0 /* todo_flags_finish */
7104 /* Emit noreturn warnings. */
7106 static unsigned int
7107 execute_warn_function_noreturn (void)
7109 if (warn_missing_noreturn
7110 && !TREE_THIS_VOLATILE (cfun->decl)
7111 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0
7112 && !lang_hooks.missing_noreturn_ok_p (cfun->decl))
7113 warning (OPT_Wmissing_noreturn, "%Jfunction might be possible candidate "
7114 "for attribute %<noreturn%>",
7115 cfun->decl);
7116 return 0;
7119 struct gimple_opt_pass pass_warn_function_noreturn =
7122 GIMPLE_PASS,
7123 NULL, /* name */
7124 NULL, /* gate */
7125 execute_warn_function_noreturn, /* execute */
7126 NULL, /* sub */
7127 NULL, /* next */
7128 0, /* static_pass_number */
7129 0, /* tv_id */
7130 PROP_cfg, /* properties_required */
7131 0, /* properties_provided */
7132 0, /* properties_destroyed */
7133 0, /* todo_flags_start */
7134 0 /* todo_flags_finish */