2008-12-21 Jerry DeLisle <jvdelisle@gcc.gnu.org>
[official-gcc.git] / gcc / cfgloopanal.c
blob88c5e9562648bf36d978be18b763870b66a67d55
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "hard-reg-set.h"
26 #include "obstack.h"
27 #include "basic-block.h"
28 #include "cfgloop.h"
29 #include "expr.h"
30 #include "output.h"
31 #include "graphds.h"
32 #include "params.h"
34 /* Checks whether BB is executed exactly once in each LOOP iteration. */
36 bool
37 just_once_each_iteration_p (const struct loop *loop, const_basic_block bb)
39 /* It must be executed at least once each iteration. */
40 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
41 return false;
43 /* And just once. */
44 if (bb->loop_father != loop)
45 return false;
47 /* But this was not enough. We might have some irreducible loop here. */
48 if (bb->flags & BB_IRREDUCIBLE_LOOP)
49 return false;
51 return true;
54 /* Marks the edge E in graph G irreducible if it connects two vertices in the
55 same scc. */
57 static void
58 check_irred (struct graph *g, struct graph_edge *e)
60 edge real = (edge) e->data;
62 /* All edges should lead from a component with higher number to the
63 one with lower one. */
64 gcc_assert (g->vertices[e->src].component >= g->vertices[e->dest].component);
66 if (g->vertices[e->src].component != g->vertices[e->dest].component)
67 return;
69 real->flags |= EDGE_IRREDUCIBLE_LOOP;
70 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
71 real->src->flags |= BB_IRREDUCIBLE_LOOP;
74 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
75 throw away all latch edges and mark blocks inside any remaining cycle.
76 Everything is a bit complicated due to fact we do not want to do this
77 for parts of cycles that only "pass" through some loop -- i.e. for
78 each cycle, we want to mark blocks that belong directly to innermost
79 loop containing the whole cycle.
81 LOOPS is the loop tree. */
83 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
84 #define BB_REPR(BB) ((BB)->index + 1)
86 void
87 mark_irreducible_loops (void)
89 basic_block act;
90 edge e;
91 edge_iterator ei;
92 int src, dest;
93 unsigned depth;
94 struct graph *g;
95 int num = number_of_loops ();
96 struct loop *cloop;
98 gcc_assert (current_loops != NULL);
100 /* Reset the flags. */
101 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
103 act->flags &= ~BB_IRREDUCIBLE_LOOP;
104 FOR_EACH_EDGE (e, ei, act->succs)
105 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
108 /* Create the edge lists. */
109 g = new_graph (last_basic_block + num);
111 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
112 FOR_EACH_EDGE (e, ei, act->succs)
114 /* Ignore edges to exit. */
115 if (e->dest == EXIT_BLOCK_PTR)
116 continue;
118 src = BB_REPR (act);
119 dest = BB_REPR (e->dest);
121 /* Ignore latch edges. */
122 if (e->dest->loop_father->header == e->dest
123 && e->dest->loop_father->latch == act)
124 continue;
126 /* Edges inside a single loop should be left where they are. Edges
127 to subloop headers should lead to representative of the subloop,
128 but from the same place.
130 Edges exiting loops should lead from representative
131 of the son of nearest common ancestor of the loops in that
132 act lays. */
134 if (e->dest->loop_father->header == e->dest)
135 dest = LOOP_REPR (e->dest->loop_father);
137 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
139 depth = 1 + loop_depth (find_common_loop (act->loop_father,
140 e->dest->loop_father));
141 if (depth == loop_depth (act->loop_father))
142 cloop = act->loop_father;
143 else
144 cloop = VEC_index (loop_p, act->loop_father->superloops, depth);
146 src = LOOP_REPR (cloop);
149 add_edge (g, src, dest)->data = e;
152 /* Find the strongly connected components. */
153 graphds_scc (g, NULL);
155 /* Mark the irreducible loops. */
156 for_each_edge (g, check_irred);
158 free_graph (g);
160 loops_state_set (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
163 /* Counts number of insns inside LOOP. */
165 num_loop_insns (const struct loop *loop)
167 basic_block *bbs, bb;
168 unsigned i, ninsns = 0;
169 rtx insn;
171 bbs = get_loop_body (loop);
172 for (i = 0; i < loop->num_nodes; i++)
174 bb = bbs[i];
175 ninsns++;
176 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
177 if (INSN_P (insn))
178 ninsns++;
180 free(bbs);
182 return ninsns;
185 /* Counts number of insns executed on average per iteration LOOP. */
187 average_num_loop_insns (const struct loop *loop)
189 basic_block *bbs, bb;
190 unsigned i, binsns, ninsns, ratio;
191 rtx insn;
193 ninsns = 0;
194 bbs = get_loop_body (loop);
195 for (i = 0; i < loop->num_nodes; i++)
197 bb = bbs[i];
199 binsns = 1;
200 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
201 if (INSN_P (insn))
202 binsns++;
204 ratio = loop->header->frequency == 0
205 ? BB_FREQ_MAX
206 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
207 ninsns += binsns * ratio;
209 free(bbs);
211 ninsns /= BB_FREQ_MAX;
212 if (!ninsns)
213 ninsns = 1; /* To avoid division by zero. */
215 return ninsns;
218 /* Returns expected number of iterations of LOOP, according to
219 measured or guessed profile. No bounding is done on the
220 value. */
222 gcov_type
223 expected_loop_iterations_unbounded (const struct loop *loop)
225 edge e;
226 edge_iterator ei;
228 if (loop->latch->count || loop->header->count)
230 gcov_type count_in, count_latch, expected;
232 count_in = 0;
233 count_latch = 0;
235 FOR_EACH_EDGE (e, ei, loop->header->preds)
236 if (e->src == loop->latch)
237 count_latch = e->count;
238 else
239 count_in += e->count;
241 if (count_in == 0)
242 expected = count_latch * 2;
243 else
244 expected = (count_latch + count_in - 1) / count_in;
246 return expected;
248 else
250 int freq_in, freq_latch;
252 freq_in = 0;
253 freq_latch = 0;
255 FOR_EACH_EDGE (e, ei, loop->header->preds)
256 if (e->src == loop->latch)
257 freq_latch = EDGE_FREQUENCY (e);
258 else
259 freq_in += EDGE_FREQUENCY (e);
261 if (freq_in == 0)
262 return freq_latch * 2;
264 return (freq_latch + freq_in - 1) / freq_in;
268 /* Returns expected number of LOOP iterations. The returned value is bounded
269 by REG_BR_PROB_BASE. */
271 unsigned
272 expected_loop_iterations (const struct loop *loop)
274 gcov_type expected = expected_loop_iterations_unbounded (loop);
275 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
278 /* Returns the maximum level of nesting of subloops of LOOP. */
280 unsigned
281 get_loop_level (const struct loop *loop)
283 const struct loop *ploop;
284 unsigned mx = 0, l;
286 for (ploop = loop->inner; ploop; ploop = ploop->next)
288 l = get_loop_level (ploop);
289 if (l >= mx)
290 mx = l + 1;
292 return mx;
295 /* Returns estimate on cost of computing SEQ. */
297 static unsigned
298 seq_cost (const_rtx seq, bool speed)
300 unsigned cost = 0;
301 rtx set;
303 for (; seq; seq = NEXT_INSN (seq))
305 set = single_set (seq);
306 if (set)
307 cost += rtx_cost (set, SET, speed);
308 else
309 cost++;
312 return cost;
315 /* The properties of the target. */
317 unsigned target_avail_regs; /* Number of available registers. */
318 unsigned target_res_regs; /* Number of registers reserved for temporary
319 expressions. */
320 unsigned target_reg_cost[2]; /* The cost for register when there still
321 is some reserve, but we are approaching
322 the number of available registers. */
323 unsigned target_spill_cost[2]; /* The cost for register when we need
324 to spill. */
326 /* Initialize the constants for computing set costs. */
328 void
329 init_set_costs (void)
331 int speed;
332 rtx seq;
333 rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
334 rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
335 rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
336 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
337 unsigned i;
339 target_avail_regs = 0;
340 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
341 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
342 && !fixed_regs[i])
343 target_avail_regs++;
345 target_res_regs = 3;
347 for (speed = 0; speed < 2; speed++)
349 crtl->maybe_hot_insn_p = speed;
350 /* Set up the costs for using extra registers:
352 1) If not many free registers remain, we should prefer having an
353 additional move to decreasing the number of available registers.
354 (TARGET_REG_COST).
355 2) If no registers are available, we need to spill, which may require
356 storing the old value to memory and loading it back
357 (TARGET_SPILL_COST). */
359 start_sequence ();
360 emit_move_insn (reg1, reg2);
361 seq = get_insns ();
362 end_sequence ();
363 target_reg_cost [speed] = seq_cost (seq, speed);
365 start_sequence ();
366 emit_move_insn (mem, reg1);
367 emit_move_insn (reg2, mem);
368 seq = get_insns ();
369 end_sequence ();
370 target_spill_cost [speed] = seq_cost (seq, speed);
372 default_rtl_profile ();
375 /* Estimates cost of increased register pressure caused by making N_NEW new
376 registers live around the loop. N_OLD is the number of registers live
377 around the loop. */
379 unsigned
380 estimate_reg_pressure_cost (unsigned n_new, unsigned n_old, bool speed)
382 unsigned cost;
383 unsigned regs_needed = n_new + n_old;
385 /* If we have enough registers, we should use them and not restrict
386 the transformations unnecessarily. */
387 if (regs_needed + target_res_regs <= target_avail_regs)
388 return 0;
390 if (regs_needed <= target_avail_regs)
391 /* If we are close to running out of registers, try to preserve
392 them. */
393 cost = target_reg_cost [speed] * n_new;
394 else
395 /* If we run out of registers, it is very expensive to add another
396 one. */
397 cost = target_spill_cost [speed] * n_new;
399 if (optimize && flag_ira && (flag_ira_region == IRA_REGION_ALL
400 || flag_ira_region == IRA_REGION_MIXED)
401 && number_of_loops () <= (unsigned) IRA_MAX_LOOPS_NUM)
402 /* IRA regional allocation deals with high register pressure
403 better. So decrease the cost (to do more accurate the cost
404 calculation for IRA, we need to know how many registers lives
405 through the loop transparently). */
406 cost /= 2;
408 return cost;
411 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */
413 void
414 mark_loop_exit_edges (void)
416 basic_block bb;
417 edge e;
419 if (number_of_loops () <= 1)
420 return;
422 FOR_EACH_BB (bb)
424 edge_iterator ei;
426 FOR_EACH_EDGE (e, ei, bb->succs)
428 if (loop_outer (bb->loop_father)
429 && loop_exit_edge_p (bb->loop_father, e))
430 e->flags |= EDGE_LOOP_EXIT;
431 else
432 e->flags &= ~EDGE_LOOP_EXIT;