PR c++/3478
[official-gcc.git] / gcc / emit-rtl.c
blob92b86dbca82dca17356e9d550f02397c83584499
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "toplev.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "tm_p.h"
46 #include "flags.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "real.h"
55 #include "bitmap.h"
56 #include "basic-block.h"
57 #include "ggc.h"
58 #include "debug.h"
59 #include "langhooks.h"
61 /* Commonly used modes. */
63 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
64 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
65 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
66 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
69 /* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
72 static GTY(()) int label_num = 1;
74 /* Highest label number in current function.
75 Zero means use the value of label_num instead.
76 This is nonzero only when belatedly compiling an inline function. */
78 static int last_label_num;
80 /* Value label_num had when set_new_last_label_num was called.
81 If label_num has not changed since then, last_label_num is valid. */
83 static int base_label_num;
85 /* Nonzero means do not generate NOTEs for source line numbers. */
87 static int no_line_numbers;
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
94 rtx global_rtl[GR_MAX];
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
108 rtx const_true_rtx;
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconst3;
114 REAL_VALUE_TYPE dconst10;
115 REAL_VALUE_TYPE dconstm1;
116 REAL_VALUE_TYPE dconstm2;
117 REAL_VALUE_TYPE dconsthalf;
118 REAL_VALUE_TYPE dconstthird;
119 REAL_VALUE_TYPE dconstpi;
120 REAL_VALUE_TYPE dconste;
122 /* All references to the following fixed hard registers go through
123 these unique rtl objects. On machines where the frame-pointer and
124 arg-pointer are the same register, they use the same unique object.
126 After register allocation, other rtl objects which used to be pseudo-regs
127 may be clobbered to refer to the frame-pointer register.
128 But references that were originally to the frame-pointer can be
129 distinguished from the others because they contain frame_pointer_rtx.
131 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
132 tricky: until register elimination has taken place hard_frame_pointer_rtx
133 should be used if it is being set, and frame_pointer_rtx otherwise. After
134 register elimination hard_frame_pointer_rtx should always be used.
135 On machines where the two registers are same (most) then these are the
136 same.
138 In an inline procedure, the stack and frame pointer rtxs may not be
139 used for anything else. */
140 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
141 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
142 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
144 /* This is used to implement __builtin_return_address for some machines.
145 See for instance the MIPS port. */
146 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
148 /* We make one copy of (const_int C) where C is in
149 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
150 to save space during the compilation and simplify comparisons of
151 integers. */
153 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
155 /* A hash table storing CONST_INTs whose absolute value is greater
156 than MAX_SAVED_CONST_INT. */
158 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
159 htab_t const_int_htab;
161 /* A hash table storing memory attribute structures. */
162 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
163 htab_t mem_attrs_htab;
165 /* A hash table storing register attribute structures. */
166 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
167 htab_t reg_attrs_htab;
169 /* A hash table storing all CONST_DOUBLEs. */
170 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
171 htab_t const_double_htab;
173 #define first_insn (cfun->emit->x_first_insn)
174 #define last_insn (cfun->emit->x_last_insn)
175 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
176 #define last_location (cfun->emit->x_last_location)
177 #define first_label_num (cfun->emit->x_first_label_num)
179 static rtx make_jump_insn_raw (rtx);
180 static rtx make_call_insn_raw (rtx);
181 static rtx find_line_note (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void unshare_all_decls (tree);
184 static void reset_used_decls (tree);
185 static void mark_label_nuses (rtx);
186 static hashval_t const_int_htab_hash (const void *);
187 static int const_int_htab_eq (const void *, const void *);
188 static hashval_t const_double_htab_hash (const void *);
189 static int const_double_htab_eq (const void *, const void *);
190 static rtx lookup_const_double (rtx);
191 static hashval_t mem_attrs_htab_hash (const void *);
192 static int mem_attrs_htab_eq (const void *, const void *);
193 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
194 enum machine_mode);
195 static hashval_t reg_attrs_htab_hash (const void *);
196 static int reg_attrs_htab_eq (const void *, const void *);
197 static reg_attrs *get_reg_attrs (tree, int);
198 static tree component_ref_for_mem_expr (tree);
199 static rtx gen_const_vector_0 (enum machine_mode);
200 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
201 static void copy_rtx_if_shared_1 (rtx *orig);
203 /* Probability of the conditional branch currently proceeded by try_split.
204 Set to -1 otherwise. */
205 int split_branch_probability = -1;
207 /* Returns a hash code for X (which is a really a CONST_INT). */
209 static hashval_t
210 const_int_htab_hash (const void *x)
212 return (hashval_t) INTVAL ((rtx) x);
215 /* Returns nonzero if the value represented by X (which is really a
216 CONST_INT) is the same as that given by Y (which is really a
217 HOST_WIDE_INT *). */
219 static int
220 const_int_htab_eq (const void *x, const void *y)
222 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
225 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
226 static hashval_t
227 const_double_htab_hash (const void *x)
229 rtx value = (rtx) x;
230 hashval_t h;
232 if (GET_MODE (value) == VOIDmode)
233 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
234 else
236 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
237 /* MODE is used in the comparison, so it should be in the hash. */
238 h ^= GET_MODE (value);
240 return h;
243 /* Returns nonzero if the value represented by X (really a ...)
244 is the same as that represented by Y (really a ...) */
245 static int
246 const_double_htab_eq (const void *x, const void *y)
248 rtx a = (rtx)x, b = (rtx)y;
250 if (GET_MODE (a) != GET_MODE (b))
251 return 0;
252 if (GET_MODE (a) == VOIDmode)
253 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
254 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
255 else
256 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
257 CONST_DOUBLE_REAL_VALUE (b));
260 /* Returns a hash code for X (which is a really a mem_attrs *). */
262 static hashval_t
263 mem_attrs_htab_hash (const void *x)
265 mem_attrs *p = (mem_attrs *) x;
267 return (p->alias ^ (p->align * 1000)
268 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
269 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
270 ^ (size_t) p->expr);
273 /* Returns nonzero if the value represented by X (which is really a
274 mem_attrs *) is the same as that given by Y (which is also really a
275 mem_attrs *). */
277 static int
278 mem_attrs_htab_eq (const void *x, const void *y)
280 mem_attrs *p = (mem_attrs *) x;
281 mem_attrs *q = (mem_attrs *) y;
283 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
284 && p->size == q->size && p->align == q->align);
287 /* Allocate a new mem_attrs structure and insert it into the hash table if
288 one identical to it is not already in the table. We are doing this for
289 MEM of mode MODE. */
291 static mem_attrs *
292 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
293 unsigned int align, enum machine_mode mode)
295 mem_attrs attrs;
296 void **slot;
298 /* If everything is the default, we can just return zero.
299 This must match what the corresponding MEM_* macros return when the
300 field is not present. */
301 if (alias == 0 && expr == 0 && offset == 0
302 && (size == 0
303 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
304 && (STRICT_ALIGNMENT && mode != BLKmode
305 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
306 return 0;
308 attrs.alias = alias;
309 attrs.expr = expr;
310 attrs.offset = offset;
311 attrs.size = size;
312 attrs.align = align;
314 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
315 if (*slot == 0)
317 *slot = ggc_alloc (sizeof (mem_attrs));
318 memcpy (*slot, &attrs, sizeof (mem_attrs));
321 return *slot;
324 /* Returns a hash code for X (which is a really a reg_attrs *). */
326 static hashval_t
327 reg_attrs_htab_hash (const void *x)
329 reg_attrs *p = (reg_attrs *) x;
331 return ((p->offset * 1000) ^ (long) p->decl);
334 /* Returns nonzero if the value represented by X (which is really a
335 reg_attrs *) is the same as that given by Y (which is also really a
336 reg_attrs *). */
338 static int
339 reg_attrs_htab_eq (const void *x, const void *y)
341 reg_attrs *p = (reg_attrs *) x;
342 reg_attrs *q = (reg_attrs *) y;
344 return (p->decl == q->decl && p->offset == q->offset);
346 /* Allocate a new reg_attrs structure and insert it into the hash table if
347 one identical to it is not already in the table. We are doing this for
348 MEM of mode MODE. */
350 static reg_attrs *
351 get_reg_attrs (tree decl, int offset)
353 reg_attrs attrs;
354 void **slot;
356 /* If everything is the default, we can just return zero. */
357 if (decl == 0 && offset == 0)
358 return 0;
360 attrs.decl = decl;
361 attrs.offset = offset;
363 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
364 if (*slot == 0)
366 *slot = ggc_alloc (sizeof (reg_attrs));
367 memcpy (*slot, &attrs, sizeof (reg_attrs));
370 return *slot;
373 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
374 don't attempt to share with the various global pieces of rtl (such as
375 frame_pointer_rtx). */
378 gen_raw_REG (enum machine_mode mode, int regno)
380 rtx x = gen_rtx_raw_REG (mode, regno);
381 ORIGINAL_REGNO (x) = regno;
382 return x;
385 /* There are some RTL codes that require special attention; the generation
386 functions do the raw handling. If you add to this list, modify
387 special_rtx in gengenrtl.c as well. */
390 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
392 void **slot;
394 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
395 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
397 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
398 if (const_true_rtx && arg == STORE_FLAG_VALUE)
399 return const_true_rtx;
400 #endif
402 /* Look up the CONST_INT in the hash table. */
403 slot = htab_find_slot_with_hash (const_int_htab, &arg,
404 (hashval_t) arg, INSERT);
405 if (*slot == 0)
406 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
408 return (rtx) *slot;
412 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
414 return GEN_INT (trunc_int_for_mode (c, mode));
417 /* CONST_DOUBLEs might be created from pairs of integers, or from
418 REAL_VALUE_TYPEs. Also, their length is known only at run time,
419 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
421 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
422 hash table. If so, return its counterpart; otherwise add it
423 to the hash table and return it. */
424 static rtx
425 lookup_const_double (rtx real)
427 void **slot = htab_find_slot (const_double_htab, real, INSERT);
428 if (*slot == 0)
429 *slot = real;
431 return (rtx) *slot;
434 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
435 VALUE in mode MODE. */
437 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
439 rtx real = rtx_alloc (CONST_DOUBLE);
440 PUT_MODE (real, mode);
442 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
444 return lookup_const_double (real);
447 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
448 of ints: I0 is the low-order word and I1 is the high-order word.
449 Do not use this routine for non-integer modes; convert to
450 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
453 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
455 rtx value;
456 unsigned int i;
458 if (mode != VOIDmode)
460 int width;
461 if (GET_MODE_CLASS (mode) != MODE_INT
462 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
463 /* We can get a 0 for an error mark. */
464 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
465 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
466 abort ();
468 /* We clear out all bits that don't belong in MODE, unless they and
469 our sign bit are all one. So we get either a reasonable negative
470 value or a reasonable unsigned value for this mode. */
471 width = GET_MODE_BITSIZE (mode);
472 if (width < HOST_BITS_PER_WIDE_INT
473 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
474 != ((HOST_WIDE_INT) (-1) << (width - 1))))
475 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
476 else if (width == HOST_BITS_PER_WIDE_INT
477 && ! (i1 == ~0 && i0 < 0))
478 i1 = 0;
479 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
480 /* We cannot represent this value as a constant. */
481 abort ();
483 /* If this would be an entire word for the target, but is not for
484 the host, then sign-extend on the host so that the number will
485 look the same way on the host that it would on the target.
487 For example, when building a 64 bit alpha hosted 32 bit sparc
488 targeted compiler, then we want the 32 bit unsigned value -1 to be
489 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
490 The latter confuses the sparc backend. */
492 if (width < HOST_BITS_PER_WIDE_INT
493 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
494 i0 |= ((HOST_WIDE_INT) (-1) << width);
496 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
497 CONST_INT.
499 ??? Strictly speaking, this is wrong if we create a CONST_INT for
500 a large unsigned constant with the size of MODE being
501 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
502 in a wider mode. In that case we will mis-interpret it as a
503 negative number.
505 Unfortunately, the only alternative is to make a CONST_DOUBLE for
506 any constant in any mode if it is an unsigned constant larger
507 than the maximum signed integer in an int on the host. However,
508 doing this will break everyone that always expects to see a
509 CONST_INT for SImode and smaller.
511 We have always been making CONST_INTs in this case, so nothing
512 new is being broken. */
514 if (width <= HOST_BITS_PER_WIDE_INT)
515 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
518 /* If this integer fits in one word, return a CONST_INT. */
519 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
520 return GEN_INT (i0);
522 /* We use VOIDmode for integers. */
523 value = rtx_alloc (CONST_DOUBLE);
524 PUT_MODE (value, VOIDmode);
526 CONST_DOUBLE_LOW (value) = i0;
527 CONST_DOUBLE_HIGH (value) = i1;
529 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
530 XWINT (value, i) = 0;
532 return lookup_const_double (value);
536 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
538 /* In case the MD file explicitly references the frame pointer, have
539 all such references point to the same frame pointer. This is
540 used during frame pointer elimination to distinguish the explicit
541 references to these registers from pseudos that happened to be
542 assigned to them.
544 If we have eliminated the frame pointer or arg pointer, we will
545 be using it as a normal register, for example as a spill
546 register. In such cases, we might be accessing it in a mode that
547 is not Pmode and therefore cannot use the pre-allocated rtx.
549 Also don't do this when we are making new REGs in reload, since
550 we don't want to get confused with the real pointers. */
552 if (mode == Pmode && !reload_in_progress)
554 if (regno == FRAME_POINTER_REGNUM
555 && (!reload_completed || frame_pointer_needed))
556 return frame_pointer_rtx;
557 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
558 if (regno == HARD_FRAME_POINTER_REGNUM
559 && (!reload_completed || frame_pointer_needed))
560 return hard_frame_pointer_rtx;
561 #endif
562 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
563 if (regno == ARG_POINTER_REGNUM)
564 return arg_pointer_rtx;
565 #endif
566 #ifdef RETURN_ADDRESS_POINTER_REGNUM
567 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
568 return return_address_pointer_rtx;
569 #endif
570 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
571 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
572 return pic_offset_table_rtx;
573 if (regno == STACK_POINTER_REGNUM)
574 return stack_pointer_rtx;
577 #if 0
578 /* If the per-function register table has been set up, try to re-use
579 an existing entry in that table to avoid useless generation of RTL.
581 This code is disabled for now until we can fix the various backends
582 which depend on having non-shared hard registers in some cases. Long
583 term we want to re-enable this code as it can significantly cut down
584 on the amount of useless RTL that gets generated.
586 We'll also need to fix some code that runs after reload that wants to
587 set ORIGINAL_REGNO. */
589 if (cfun
590 && cfun->emit
591 && regno_reg_rtx
592 && regno < FIRST_PSEUDO_REGISTER
593 && reg_raw_mode[regno] == mode)
594 return regno_reg_rtx[regno];
595 #endif
597 return gen_raw_REG (mode, regno);
601 gen_rtx_MEM (enum machine_mode mode, rtx addr)
603 rtx rt = gen_rtx_raw_MEM (mode, addr);
605 /* This field is not cleared by the mere allocation of the rtx, so
606 we clear it here. */
607 MEM_ATTRS (rt) = 0;
609 return rt;
613 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
615 /* This is the most common failure type.
616 Catch it early so we can see who does it. */
617 if ((offset % GET_MODE_SIZE (mode)) != 0)
618 abort ();
620 /* This check isn't usable right now because combine will
621 throw arbitrary crap like a CALL into a SUBREG in
622 gen_lowpart_for_combine so we must just eat it. */
623 #if 0
624 /* Check for this too. */
625 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
626 abort ();
627 #endif
628 return gen_rtx_raw_SUBREG (mode, reg, offset);
631 /* Generate a SUBREG representing the least-significant part of REG if MODE
632 is smaller than mode of REG, otherwise paradoxical SUBREG. */
635 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
637 enum machine_mode inmode;
639 inmode = GET_MODE (reg);
640 if (inmode == VOIDmode)
641 inmode = mode;
642 return gen_rtx_SUBREG (mode, reg,
643 subreg_lowpart_offset (mode, inmode));
646 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
648 ** This routine generates an RTX of the size specified by
649 ** <code>, which is an RTX code. The RTX structure is initialized
650 ** from the arguments <element1> through <elementn>, which are
651 ** interpreted according to the specific RTX type's format. The
652 ** special machine mode associated with the rtx (if any) is specified
653 ** in <mode>.
655 ** gen_rtx can be invoked in a way which resembles the lisp-like
656 ** rtx it will generate. For example, the following rtx structure:
658 ** (plus:QI (mem:QI (reg:SI 1))
659 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
661 ** ...would be generated by the following C code:
663 ** gen_rtx (PLUS, QImode,
664 ** gen_rtx (MEM, QImode,
665 ** gen_rtx (REG, SImode, 1)),
666 ** gen_rtx (MEM, QImode,
667 ** gen_rtx (PLUS, SImode,
668 ** gen_rtx (REG, SImode, 2),
669 ** gen_rtx (REG, SImode, 3)))),
672 /*VARARGS2*/
674 gen_rtx (enum rtx_code code, enum machine_mode mode, ...)
676 int i; /* Array indices... */
677 const char *fmt; /* Current rtx's format... */
678 rtx rt_val; /* RTX to return to caller... */
679 va_list p;
681 va_start (p, mode);
683 switch (code)
685 case CONST_INT:
686 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
687 break;
689 case CONST_DOUBLE:
691 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
692 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
694 rt_val = immed_double_const (arg0, arg1, mode);
696 break;
698 case REG:
699 rt_val = gen_rtx_REG (mode, va_arg (p, int));
700 break;
702 case MEM:
703 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
704 break;
706 default:
707 rt_val = rtx_alloc (code); /* Allocate the storage space. */
708 rt_val->mode = mode; /* Store the machine mode... */
710 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
711 for (i = 0; i < GET_RTX_LENGTH (code); i++)
713 switch (*fmt++)
715 case '0': /* Field with unknown use. Zero it. */
716 X0EXP (rt_val, i) = NULL_RTX;
717 break;
719 case 'i': /* An integer? */
720 XINT (rt_val, i) = va_arg (p, int);
721 break;
723 case 'w': /* A wide integer? */
724 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
725 break;
727 case 's': /* A string? */
728 XSTR (rt_val, i) = va_arg (p, char *);
729 break;
731 case 'e': /* An expression? */
732 case 'u': /* An insn? Same except when printing. */
733 XEXP (rt_val, i) = va_arg (p, rtx);
734 break;
736 case 'E': /* An RTX vector? */
737 XVEC (rt_val, i) = va_arg (p, rtvec);
738 break;
740 case 'b': /* A bitmap? */
741 XBITMAP (rt_val, i) = va_arg (p, bitmap);
742 break;
744 case 't': /* A tree? */
745 XTREE (rt_val, i) = va_arg (p, tree);
746 break;
748 default:
749 abort ();
752 break;
755 va_end (p);
756 return rt_val;
759 /* gen_rtvec (n, [rt1, ..., rtn])
761 ** This routine creates an rtvec and stores within it the
762 ** pointers to rtx's which are its arguments.
765 /*VARARGS1*/
766 rtvec
767 gen_rtvec (int n, ...)
769 int i, save_n;
770 rtx *vector;
771 va_list p;
773 va_start (p, n);
775 if (n == 0)
776 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
778 vector = alloca (n * sizeof (rtx));
780 for (i = 0; i < n; i++)
781 vector[i] = va_arg (p, rtx);
783 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
784 save_n = n;
785 va_end (p);
787 return gen_rtvec_v (save_n, vector);
790 rtvec
791 gen_rtvec_v (int n, rtx *argp)
793 int i;
794 rtvec rt_val;
796 if (n == 0)
797 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
799 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
801 for (i = 0; i < n; i++)
802 rt_val->elem[i] = *argp++;
804 return rt_val;
807 /* Generate a REG rtx for a new pseudo register of mode MODE.
808 This pseudo is assigned the next sequential register number. */
811 gen_reg_rtx (enum machine_mode mode)
813 struct function *f = cfun;
814 rtx val;
816 /* Don't let anything called after initial flow analysis create new
817 registers. */
818 if (no_new_pseudos)
819 abort ();
821 if (generating_concat_p
822 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
823 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
825 /* For complex modes, don't make a single pseudo.
826 Instead, make a CONCAT of two pseudos.
827 This allows noncontiguous allocation of the real and imaginary parts,
828 which makes much better code. Besides, allocating DCmode
829 pseudos overstrains reload on some machines like the 386. */
830 rtx realpart, imagpart;
831 enum machine_mode partmode = GET_MODE_INNER (mode);
833 realpart = gen_reg_rtx (partmode);
834 imagpart = gen_reg_rtx (partmode);
835 return gen_rtx_CONCAT (mode, realpart, imagpart);
838 /* Make sure regno_pointer_align, and regno_reg_rtx are large
839 enough to have an element for this pseudo reg number. */
841 if (reg_rtx_no == f->emit->regno_pointer_align_length)
843 int old_size = f->emit->regno_pointer_align_length;
844 char *new;
845 rtx *new1;
847 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
848 memset (new + old_size, 0, old_size);
849 f->emit->regno_pointer_align = (unsigned char *) new;
851 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
852 old_size * 2 * sizeof (rtx));
853 memset (new1 + old_size, 0, old_size * sizeof (rtx));
854 regno_reg_rtx = new1;
856 f->emit->regno_pointer_align_length = old_size * 2;
859 val = gen_raw_REG (mode, reg_rtx_no);
860 regno_reg_rtx[reg_rtx_no++] = val;
861 return val;
864 /* Generate a register with same attributes as REG,
865 but offsetted by OFFSET. */
868 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
870 rtx new = gen_rtx_REG (mode, regno);
871 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
872 REG_OFFSET (reg) + offset);
873 return new;
876 /* Set the decl for MEM to DECL. */
878 void
879 set_reg_attrs_from_mem (rtx reg, rtx mem)
881 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
882 REG_ATTRS (reg)
883 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
886 /* Set the register attributes for registers contained in PARM_RTX.
887 Use needed values from memory attributes of MEM. */
889 void
890 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
892 if (GET_CODE (parm_rtx) == REG)
893 set_reg_attrs_from_mem (parm_rtx, mem);
894 else if (GET_CODE (parm_rtx) == PARALLEL)
896 /* Check for a NULL entry in the first slot, used to indicate that the
897 parameter goes both on the stack and in registers. */
898 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
899 for (; i < XVECLEN (parm_rtx, 0); i++)
901 rtx x = XVECEXP (parm_rtx, 0, i);
902 if (GET_CODE (XEXP (x, 0)) == REG)
903 REG_ATTRS (XEXP (x, 0))
904 = get_reg_attrs (MEM_EXPR (mem),
905 INTVAL (XEXP (x, 1)));
910 /* Assign the RTX X to declaration T. */
911 void
912 set_decl_rtl (tree t, rtx x)
914 DECL_CHECK (t)->decl.rtl = x;
916 if (!x)
917 return;
918 /* For register, we maintain the reverse information too. */
919 if (GET_CODE (x) == REG)
920 REG_ATTRS (x) = get_reg_attrs (t, 0);
921 else if (GET_CODE (x) == SUBREG)
922 REG_ATTRS (SUBREG_REG (x))
923 = get_reg_attrs (t, -SUBREG_BYTE (x));
924 if (GET_CODE (x) == CONCAT)
926 if (REG_P (XEXP (x, 0)))
927 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
928 if (REG_P (XEXP (x, 1)))
929 REG_ATTRS (XEXP (x, 1))
930 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
932 if (GET_CODE (x) == PARALLEL)
934 int i;
935 for (i = 0; i < XVECLEN (x, 0); i++)
937 rtx y = XVECEXP (x, 0, i);
938 if (REG_P (XEXP (y, 0)))
939 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
944 /* Identify REG (which may be a CONCAT) as a user register. */
946 void
947 mark_user_reg (rtx reg)
949 if (GET_CODE (reg) == CONCAT)
951 REG_USERVAR_P (XEXP (reg, 0)) = 1;
952 REG_USERVAR_P (XEXP (reg, 1)) = 1;
954 else if (GET_CODE (reg) == REG)
955 REG_USERVAR_P (reg) = 1;
956 else
957 abort ();
960 /* Identify REG as a probable pointer register and show its alignment
961 as ALIGN, if nonzero. */
963 void
964 mark_reg_pointer (rtx reg, int align)
966 if (! REG_POINTER (reg))
968 REG_POINTER (reg) = 1;
970 if (align)
971 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
973 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
974 /* We can no-longer be sure just how aligned this pointer is. */
975 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
978 /* Return 1 plus largest pseudo reg number used in the current function. */
981 max_reg_num (void)
983 return reg_rtx_no;
986 /* Return 1 + the largest label number used so far in the current function. */
989 max_label_num (void)
991 if (last_label_num && label_num == base_label_num)
992 return last_label_num;
993 return label_num;
996 /* Return first label number used in this function (if any were used). */
999 get_first_label_num (void)
1001 return first_label_num;
1004 /* Return the final regno of X, which is a SUBREG of a hard
1005 register. */
1007 subreg_hard_regno (rtx x, int check_mode)
1009 enum machine_mode mode = GET_MODE (x);
1010 unsigned int byte_offset, base_regno, final_regno;
1011 rtx reg = SUBREG_REG (x);
1013 /* This is where we attempt to catch illegal subregs
1014 created by the compiler. */
1015 if (GET_CODE (x) != SUBREG
1016 || GET_CODE (reg) != REG)
1017 abort ();
1018 base_regno = REGNO (reg);
1019 if (base_regno >= FIRST_PSEUDO_REGISTER)
1020 abort ();
1021 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1022 abort ();
1023 #ifdef ENABLE_CHECKING
1024 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1025 SUBREG_BYTE (x), mode))
1026 abort ();
1027 #endif
1028 /* Catch non-congruent offsets too. */
1029 byte_offset = SUBREG_BYTE (x);
1030 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1031 abort ();
1033 final_regno = subreg_regno (x);
1035 return final_regno;
1038 /* Return a value representing some low-order bits of X, where the number
1039 of low-order bits is given by MODE. Note that no conversion is done
1040 between floating-point and fixed-point values, rather, the bit
1041 representation is returned.
1043 This function handles the cases in common between gen_lowpart, below,
1044 and two variants in cse.c and combine.c. These are the cases that can
1045 be safely handled at all points in the compilation.
1047 If this is not a case we can handle, return 0. */
1050 gen_lowpart_common (enum machine_mode mode, rtx x)
1052 int msize = GET_MODE_SIZE (mode);
1053 int xsize;
1054 int offset = 0;
1055 enum machine_mode innermode;
1057 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1058 so we have to make one up. Yuk. */
1059 innermode = GET_MODE (x);
1060 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1061 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1062 else if (innermode == VOIDmode)
1063 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1065 xsize = GET_MODE_SIZE (innermode);
1067 if (innermode == VOIDmode || innermode == BLKmode)
1068 abort ();
1070 if (innermode == mode)
1071 return x;
1073 /* MODE must occupy no more words than the mode of X. */
1074 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1075 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1076 return 0;
1078 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1079 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1080 return 0;
1082 offset = subreg_lowpart_offset (mode, innermode);
1084 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1085 && (GET_MODE_CLASS (mode) == MODE_INT
1086 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1088 /* If we are getting the low-order part of something that has been
1089 sign- or zero-extended, we can either just use the object being
1090 extended or make a narrower extension. If we want an even smaller
1091 piece than the size of the object being extended, call ourselves
1092 recursively.
1094 This case is used mostly by combine and cse. */
1096 if (GET_MODE (XEXP (x, 0)) == mode)
1097 return XEXP (x, 0);
1098 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1099 return gen_lowpart_common (mode, XEXP (x, 0));
1100 else if (msize < xsize)
1101 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1103 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1104 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1105 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1106 return simplify_gen_subreg (mode, x, innermode, offset);
1108 /* Otherwise, we can't do this. */
1109 return 0;
1112 /* Return the constant real or imaginary part (which has mode MODE)
1113 of a complex value X. The IMAGPART_P argument determines whether
1114 the real or complex component should be returned. This function
1115 returns NULL_RTX if the component isn't a constant. */
1117 static rtx
1118 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1120 tree decl, part;
1122 if (GET_CODE (x) == MEM
1123 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1125 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1126 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1128 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1129 if (TREE_CODE (part) == REAL_CST
1130 || TREE_CODE (part) == INTEGER_CST)
1131 return expand_expr (part, NULL_RTX, mode, 0);
1134 return NULL_RTX;
1137 /* Return the real part (which has mode MODE) of a complex value X.
1138 This always comes at the low address in memory. */
1141 gen_realpart (enum machine_mode mode, rtx x)
1143 rtx part;
1145 /* Handle complex constants. */
1146 part = gen_complex_constant_part (mode, x, 0);
1147 if (part != NULL_RTX)
1148 return part;
1150 if (WORDS_BIG_ENDIAN
1151 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1152 && REG_P (x)
1153 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1154 internal_error
1155 ("can't access real part of complex value in hard register");
1156 else if (WORDS_BIG_ENDIAN)
1157 return gen_highpart (mode, x);
1158 else
1159 return gen_lowpart (mode, x);
1162 /* Return the imaginary part (which has mode MODE) of a complex value X.
1163 This always comes at the high address in memory. */
1166 gen_imagpart (enum machine_mode mode, rtx x)
1168 rtx part;
1170 /* Handle complex constants. */
1171 part = gen_complex_constant_part (mode, x, 1);
1172 if (part != NULL_RTX)
1173 return part;
1175 if (WORDS_BIG_ENDIAN)
1176 return gen_lowpart (mode, x);
1177 else if (! WORDS_BIG_ENDIAN
1178 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1179 && REG_P (x)
1180 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1181 internal_error
1182 ("can't access imaginary part of complex value in hard register");
1183 else
1184 return gen_highpart (mode, x);
1187 /* Return 1 iff X, assumed to be a SUBREG,
1188 refers to the real part of the complex value in its containing reg.
1189 Complex values are always stored with the real part in the first word,
1190 regardless of WORDS_BIG_ENDIAN. */
1193 subreg_realpart_p (rtx x)
1195 if (GET_CODE (x) != SUBREG)
1196 abort ();
1198 return ((unsigned int) SUBREG_BYTE (x)
1199 < (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1202 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1203 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1204 least-significant part of X.
1205 MODE specifies how big a part of X to return;
1206 it usually should not be larger than a word.
1207 If X is a MEM whose address is a QUEUED, the value may be so also. */
1210 gen_lowpart (enum machine_mode mode, rtx x)
1212 rtx result = gen_lowpart_common (mode, x);
1214 if (result)
1215 return result;
1216 else if (GET_CODE (x) == REG)
1218 /* Must be a hard reg that's not valid in MODE. */
1219 result = gen_lowpart_common (mode, copy_to_reg (x));
1220 if (result == 0)
1221 abort ();
1222 return result;
1224 else if (GET_CODE (x) == MEM)
1226 /* The only additional case we can do is MEM. */
1227 int offset = 0;
1229 /* The following exposes the use of "x" to CSE. */
1230 if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
1231 && SCALAR_INT_MODE_P (GET_MODE (x))
1232 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1233 GET_MODE_BITSIZE (GET_MODE (x)))
1234 && ! no_new_pseudos)
1235 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1237 if (WORDS_BIG_ENDIAN)
1238 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1239 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1241 if (BYTES_BIG_ENDIAN)
1242 /* Adjust the address so that the address-after-the-data
1243 is unchanged. */
1244 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1245 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1247 return adjust_address (x, mode, offset);
1249 else if (GET_CODE (x) == ADDRESSOF)
1250 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1251 else
1252 abort ();
1255 /* Like `gen_lowpart', but refer to the most significant part.
1256 This is used to access the imaginary part of a complex number. */
1259 gen_highpart (enum machine_mode mode, rtx x)
1261 unsigned int msize = GET_MODE_SIZE (mode);
1262 rtx result;
1264 /* This case loses if X is a subreg. To catch bugs early,
1265 complain if an invalid MODE is used even in other cases. */
1266 if (msize > UNITS_PER_WORD
1267 && msize != (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)))
1268 abort ();
1270 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1271 subreg_highpart_offset (mode, GET_MODE (x)));
1273 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1274 the target if we have a MEM. gen_highpart must return a valid operand,
1275 emitting code if necessary to do so. */
1276 if (result != NULL_RTX && GET_CODE (result) == MEM)
1277 result = validize_mem (result);
1279 if (!result)
1280 abort ();
1281 return result;
1284 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1285 be VOIDmode constant. */
1287 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1289 if (GET_MODE (exp) != VOIDmode)
1291 if (GET_MODE (exp) != innermode)
1292 abort ();
1293 return gen_highpart (outermode, exp);
1295 return simplify_gen_subreg (outermode, exp, innermode,
1296 subreg_highpart_offset (outermode, innermode));
1299 /* Return offset in bytes to get OUTERMODE low part
1300 of the value in mode INNERMODE stored in memory in target format. */
1302 unsigned int
1303 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1305 unsigned int offset = 0;
1306 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1308 if (difference > 0)
1310 if (WORDS_BIG_ENDIAN)
1311 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1312 if (BYTES_BIG_ENDIAN)
1313 offset += difference % UNITS_PER_WORD;
1316 return offset;
1319 /* Return offset in bytes to get OUTERMODE high part
1320 of the value in mode INNERMODE stored in memory in target format. */
1321 unsigned int
1322 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1324 unsigned int offset = 0;
1325 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1327 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1328 abort ();
1330 if (difference > 0)
1332 if (! WORDS_BIG_ENDIAN)
1333 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1334 if (! BYTES_BIG_ENDIAN)
1335 offset += difference % UNITS_PER_WORD;
1338 return offset;
1341 /* Return 1 iff X, assumed to be a SUBREG,
1342 refers to the least significant part of its containing reg.
1343 If X is not a SUBREG, always return 1 (it is its own low part!). */
1346 subreg_lowpart_p (rtx x)
1348 if (GET_CODE (x) != SUBREG)
1349 return 1;
1350 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1351 return 0;
1353 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1354 == SUBREG_BYTE (x));
1357 /* Return subword OFFSET of operand OP.
1358 The word number, OFFSET, is interpreted as the word number starting
1359 at the low-order address. OFFSET 0 is the low-order word if not
1360 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1362 If we cannot extract the required word, we return zero. Otherwise,
1363 an rtx corresponding to the requested word will be returned.
1365 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1366 reload has completed, a valid address will always be returned. After
1367 reload, if a valid address cannot be returned, we return zero.
1369 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1370 it is the responsibility of the caller.
1372 MODE is the mode of OP in case it is a CONST_INT.
1374 ??? This is still rather broken for some cases. The problem for the
1375 moment is that all callers of this thing provide no 'goal mode' to
1376 tell us to work with. This exists because all callers were written
1377 in a word based SUBREG world.
1378 Now use of this function can be deprecated by simplify_subreg in most
1379 cases.
1383 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1385 if (mode == VOIDmode)
1386 mode = GET_MODE (op);
1388 if (mode == VOIDmode)
1389 abort ();
1391 /* If OP is narrower than a word, fail. */
1392 if (mode != BLKmode
1393 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1394 return 0;
1396 /* If we want a word outside OP, return zero. */
1397 if (mode != BLKmode
1398 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1399 return const0_rtx;
1401 /* Form a new MEM at the requested address. */
1402 if (GET_CODE (op) == MEM)
1404 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1406 if (! validate_address)
1407 return new;
1409 else if (reload_completed)
1411 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1412 return 0;
1414 else
1415 return replace_equiv_address (new, XEXP (new, 0));
1418 /* Rest can be handled by simplify_subreg. */
1419 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1422 /* Similar to `operand_subword', but never return 0. If we can't extract
1423 the required subword, put OP into a register and try again. If that fails,
1424 abort. We always validate the address in this case.
1426 MODE is the mode of OP, in case it is CONST_INT. */
1429 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1431 rtx result = operand_subword (op, offset, 1, mode);
1433 if (result)
1434 return result;
1436 if (mode != BLKmode && mode != VOIDmode)
1438 /* If this is a register which can not be accessed by words, copy it
1439 to a pseudo register. */
1440 if (GET_CODE (op) == REG)
1441 op = copy_to_reg (op);
1442 else
1443 op = force_reg (mode, op);
1446 result = operand_subword (op, offset, 1, mode);
1447 if (result == 0)
1448 abort ();
1450 return result;
1453 /* Given a compare instruction, swap the operands.
1454 A test instruction is changed into a compare of 0 against the operand. */
1456 void
1457 reverse_comparison (rtx insn)
1459 rtx body = PATTERN (insn);
1460 rtx comp;
1462 if (GET_CODE (body) == SET)
1463 comp = SET_SRC (body);
1464 else
1465 comp = SET_SRC (XVECEXP (body, 0, 0));
1467 if (GET_CODE (comp) == COMPARE)
1469 rtx op0 = XEXP (comp, 0);
1470 rtx op1 = XEXP (comp, 1);
1471 XEXP (comp, 0) = op1;
1472 XEXP (comp, 1) = op0;
1474 else
1476 rtx new = gen_rtx_COMPARE (VOIDmode,
1477 CONST0_RTX (GET_MODE (comp)), comp);
1478 if (GET_CODE (body) == SET)
1479 SET_SRC (body) = new;
1480 else
1481 SET_SRC (XVECEXP (body, 0, 0)) = new;
1485 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1486 or (2) a component ref of something variable. Represent the later with
1487 a NULL expression. */
1489 static tree
1490 component_ref_for_mem_expr (tree ref)
1492 tree inner = TREE_OPERAND (ref, 0);
1494 if (TREE_CODE (inner) == COMPONENT_REF)
1495 inner = component_ref_for_mem_expr (inner);
1496 else
1498 tree placeholder_ptr = 0;
1500 /* Now remove any conversions: they don't change what the underlying
1501 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1502 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1503 || TREE_CODE (inner) == NON_LVALUE_EXPR
1504 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1505 || TREE_CODE (inner) == SAVE_EXPR
1506 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1507 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1508 inner = find_placeholder (inner, &placeholder_ptr);
1509 else
1510 inner = TREE_OPERAND (inner, 0);
1512 if (! DECL_P (inner))
1513 inner = NULL_TREE;
1516 if (inner == TREE_OPERAND (ref, 0))
1517 return ref;
1518 else
1519 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1520 TREE_OPERAND (ref, 1));
1523 /* Given REF, a MEM, and T, either the type of X or the expression
1524 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1525 if we are making a new object of this type. BITPOS is nonzero if
1526 there is an offset outstanding on T that will be applied later. */
1528 void
1529 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1530 HOST_WIDE_INT bitpos)
1532 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1533 tree expr = MEM_EXPR (ref);
1534 rtx offset = MEM_OFFSET (ref);
1535 rtx size = MEM_SIZE (ref);
1536 unsigned int align = MEM_ALIGN (ref);
1537 HOST_WIDE_INT apply_bitpos = 0;
1538 tree type;
1540 /* It can happen that type_for_mode was given a mode for which there
1541 is no language-level type. In which case it returns NULL, which
1542 we can see here. */
1543 if (t == NULL_TREE)
1544 return;
1546 type = TYPE_P (t) ? t : TREE_TYPE (t);
1547 if (type == error_mark_node)
1548 return;
1550 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1551 wrong answer, as it assumes that DECL_RTL already has the right alias
1552 info. Callers should not set DECL_RTL until after the call to
1553 set_mem_attributes. */
1554 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1555 abort ();
1557 /* Get the alias set from the expression or type (perhaps using a
1558 front-end routine) and use it. */
1559 alias = get_alias_set (t);
1561 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1562 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1563 RTX_UNCHANGING_P (ref)
1564 |= ((lang_hooks.honor_readonly
1565 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1566 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1568 /* If we are making an object of this type, or if this is a DECL, we know
1569 that it is a scalar if the type is not an aggregate. */
1570 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1571 MEM_SCALAR_P (ref) = 1;
1573 /* We can set the alignment from the type if we are making an object,
1574 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1575 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1576 align = MAX (align, TYPE_ALIGN (type));
1578 /* If the size is known, we can set that. */
1579 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1580 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1582 /* If T is not a type, we may be able to deduce some more information about
1583 the expression. */
1584 if (! TYPE_P (t))
1586 maybe_set_unchanging (ref, t);
1587 if (TREE_THIS_VOLATILE (t))
1588 MEM_VOLATILE_P (ref) = 1;
1590 /* Now remove any conversions: they don't change what the underlying
1591 object is. Likewise for SAVE_EXPR. */
1592 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1593 || TREE_CODE (t) == NON_LVALUE_EXPR
1594 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1595 || TREE_CODE (t) == SAVE_EXPR)
1596 t = TREE_OPERAND (t, 0);
1598 /* If this expression can't be addressed (e.g., it contains a reference
1599 to a non-addressable field), show we don't change its alias set. */
1600 if (! can_address_p (t))
1601 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1603 /* If this is a decl, set the attributes of the MEM from it. */
1604 if (DECL_P (t))
1606 expr = t;
1607 offset = const0_rtx;
1608 apply_bitpos = bitpos;
1609 size = (DECL_SIZE_UNIT (t)
1610 && host_integerp (DECL_SIZE_UNIT (t), 1)
1611 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1612 align = DECL_ALIGN (t);
1615 /* If this is a constant, we know the alignment. */
1616 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1618 align = TYPE_ALIGN (type);
1619 #ifdef CONSTANT_ALIGNMENT
1620 align = CONSTANT_ALIGNMENT (t, align);
1621 #endif
1624 /* If this is a field reference and not a bit-field, record it. */
1625 /* ??? There is some information that can be gleened from bit-fields,
1626 such as the word offset in the structure that might be modified.
1627 But skip it for now. */
1628 else if (TREE_CODE (t) == COMPONENT_REF
1629 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1631 expr = component_ref_for_mem_expr (t);
1632 offset = const0_rtx;
1633 apply_bitpos = bitpos;
1634 /* ??? Any reason the field size would be different than
1635 the size we got from the type? */
1638 /* If this is an array reference, look for an outer field reference. */
1639 else if (TREE_CODE (t) == ARRAY_REF)
1641 tree off_tree = size_zero_node;
1642 /* We can't modify t, because we use it at the end of the
1643 function. */
1644 tree t2 = t;
1648 tree index = TREE_OPERAND (t2, 1);
1649 tree array = TREE_OPERAND (t2, 0);
1650 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1651 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1652 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1654 /* We assume all arrays have sizes that are a multiple of a byte.
1655 First subtract the lower bound, if any, in the type of the
1656 index, then convert to sizetype and multiply by the size of the
1657 array element. */
1658 if (low_bound != 0 && ! integer_zerop (low_bound))
1659 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1660 index, low_bound));
1662 /* If the index has a self-referential type, pass it to a
1663 WITH_RECORD_EXPR; if the component size is, pass our
1664 component to one. */
1665 if (CONTAINS_PLACEHOLDER_P (index))
1666 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t2);
1667 if (CONTAINS_PLACEHOLDER_P (unit_size))
1668 unit_size = build (WITH_RECORD_EXPR, sizetype,
1669 unit_size, array);
1671 off_tree
1672 = fold (build (PLUS_EXPR, sizetype,
1673 fold (build (MULT_EXPR, sizetype,
1674 index,
1675 unit_size)),
1676 off_tree));
1677 t2 = TREE_OPERAND (t2, 0);
1679 while (TREE_CODE (t2) == ARRAY_REF);
1681 if (DECL_P (t2))
1683 expr = t2;
1684 offset = NULL;
1685 if (host_integerp (off_tree, 1))
1687 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1688 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1689 align = DECL_ALIGN (t2);
1690 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1691 align = aoff;
1692 offset = GEN_INT (ioff);
1693 apply_bitpos = bitpos;
1696 else if (TREE_CODE (t2) == COMPONENT_REF)
1698 expr = component_ref_for_mem_expr (t2);
1699 if (host_integerp (off_tree, 1))
1701 offset = GEN_INT (tree_low_cst (off_tree, 1));
1702 apply_bitpos = bitpos;
1704 /* ??? Any reason the field size would be different than
1705 the size we got from the type? */
1707 else if (flag_argument_noalias > 1
1708 && TREE_CODE (t2) == INDIRECT_REF
1709 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1711 expr = t2;
1712 offset = NULL;
1716 /* If this is a Fortran indirect argument reference, record the
1717 parameter decl. */
1718 else if (flag_argument_noalias > 1
1719 && TREE_CODE (t) == INDIRECT_REF
1720 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1722 expr = t;
1723 offset = NULL;
1727 /* If we modified OFFSET based on T, then subtract the outstanding
1728 bit position offset. Similarly, increase the size of the accessed
1729 object to contain the negative offset. */
1730 if (apply_bitpos)
1732 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1733 if (size)
1734 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1737 /* Now set the attributes we computed above. */
1738 MEM_ATTRS (ref)
1739 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1741 /* If this is already known to be a scalar or aggregate, we are done. */
1742 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1743 return;
1745 /* If it is a reference into an aggregate, this is part of an aggregate.
1746 Otherwise we don't know. */
1747 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1748 || TREE_CODE (t) == ARRAY_RANGE_REF
1749 || TREE_CODE (t) == BIT_FIELD_REF)
1750 MEM_IN_STRUCT_P (ref) = 1;
1753 void
1754 set_mem_attributes (rtx ref, tree t, int objectp)
1756 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1759 /* Set the decl for MEM to DECL. */
1761 void
1762 set_mem_attrs_from_reg (rtx mem, rtx reg)
1764 MEM_ATTRS (mem)
1765 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1766 GEN_INT (REG_OFFSET (reg)),
1767 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1770 /* Set the alias set of MEM to SET. */
1772 void
1773 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1775 #ifdef ENABLE_CHECKING
1776 /* If the new and old alias sets don't conflict, something is wrong. */
1777 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1778 abort ();
1779 #endif
1781 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1782 MEM_SIZE (mem), MEM_ALIGN (mem),
1783 GET_MODE (mem));
1786 /* Set the alignment of MEM to ALIGN bits. */
1788 void
1789 set_mem_align (rtx mem, unsigned int align)
1791 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1792 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1793 GET_MODE (mem));
1796 /* Set the expr for MEM to EXPR. */
1798 void
1799 set_mem_expr (rtx mem, tree expr)
1801 MEM_ATTRS (mem)
1802 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1803 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1806 /* Set the offset of MEM to OFFSET. */
1808 void
1809 set_mem_offset (rtx mem, rtx offset)
1811 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1812 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1813 GET_MODE (mem));
1816 /* Set the size of MEM to SIZE. */
1818 void
1819 set_mem_size (rtx mem, rtx size)
1821 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1822 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1823 GET_MODE (mem));
1826 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1827 and its address changed to ADDR. (VOIDmode means don't change the mode.
1828 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1829 returned memory location is required to be valid. The memory
1830 attributes are not changed. */
1832 static rtx
1833 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1835 rtx new;
1837 if (GET_CODE (memref) != MEM)
1838 abort ();
1839 if (mode == VOIDmode)
1840 mode = GET_MODE (memref);
1841 if (addr == 0)
1842 addr = XEXP (memref, 0);
1844 if (validate)
1846 if (reload_in_progress || reload_completed)
1848 if (! memory_address_p (mode, addr))
1849 abort ();
1851 else
1852 addr = memory_address (mode, addr);
1855 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1856 return memref;
1858 new = gen_rtx_MEM (mode, addr);
1859 MEM_COPY_ATTRIBUTES (new, memref);
1860 return new;
1863 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1864 way we are changing MEMREF, so we only preserve the alias set. */
1867 change_address (rtx memref, enum machine_mode mode, rtx addr)
1869 rtx new = change_address_1 (memref, mode, addr, 1);
1870 enum machine_mode mmode = GET_MODE (new);
1872 MEM_ATTRS (new)
1873 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
1874 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
1875 (mmode == BLKmode ? BITS_PER_UNIT
1876 : GET_MODE_ALIGNMENT (mmode)),
1877 mmode);
1879 return new;
1882 /* Return a memory reference like MEMREF, but with its mode changed
1883 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1884 nonzero, the memory address is forced to be valid.
1885 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1886 and caller is responsible for adjusting MEMREF base register. */
1889 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1890 int validate, int adjust)
1892 rtx addr = XEXP (memref, 0);
1893 rtx new;
1894 rtx memoffset = MEM_OFFSET (memref);
1895 rtx size = 0;
1896 unsigned int memalign = MEM_ALIGN (memref);
1898 /* ??? Prefer to create garbage instead of creating shared rtl.
1899 This may happen even if offset is nonzero -- consider
1900 (plus (plus reg reg) const_int) -- so do this always. */
1901 addr = copy_rtx (addr);
1903 if (adjust)
1905 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1906 object, we can merge it into the LO_SUM. */
1907 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1908 && offset >= 0
1909 && (unsigned HOST_WIDE_INT) offset
1910 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1911 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1912 plus_constant (XEXP (addr, 1), offset));
1913 else
1914 addr = plus_constant (addr, offset);
1917 new = change_address_1 (memref, mode, addr, validate);
1919 /* Compute the new values of the memory attributes due to this adjustment.
1920 We add the offsets and update the alignment. */
1921 if (memoffset)
1922 memoffset = GEN_INT (offset + INTVAL (memoffset));
1924 /* Compute the new alignment by taking the MIN of the alignment and the
1925 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1926 if zero. */
1927 if (offset != 0)
1928 memalign
1929 = MIN (memalign,
1930 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1932 /* We can compute the size in a number of ways. */
1933 if (GET_MODE (new) != BLKmode)
1934 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1935 else if (MEM_SIZE (memref))
1936 size = plus_constant (MEM_SIZE (memref), -offset);
1938 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1939 memoffset, size, memalign, GET_MODE (new));
1941 /* At some point, we should validate that this offset is within the object,
1942 if all the appropriate values are known. */
1943 return new;
1946 /* Return a memory reference like MEMREF, but with its mode changed
1947 to MODE and its address changed to ADDR, which is assumed to be
1948 MEMREF offseted by OFFSET bytes. If VALIDATE is
1949 nonzero, the memory address is forced to be valid. */
1952 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1953 HOST_WIDE_INT offset, int validate)
1955 memref = change_address_1 (memref, VOIDmode, addr, validate);
1956 return adjust_address_1 (memref, mode, offset, validate, 0);
1959 /* Return a memory reference like MEMREF, but whose address is changed by
1960 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1961 known to be in OFFSET (possibly 1). */
1964 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1966 rtx new, addr = XEXP (memref, 0);
1968 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1970 /* At this point we don't know _why_ the address is invalid. It
1971 could have secondary memory references, multiplies or anything.
1973 However, if we did go and rearrange things, we can wind up not
1974 being able to recognize the magic around pic_offset_table_rtx.
1975 This stuff is fragile, and is yet another example of why it is
1976 bad to expose PIC machinery too early. */
1977 if (! memory_address_p (GET_MODE (memref), new)
1978 && GET_CODE (addr) == PLUS
1979 && XEXP (addr, 0) == pic_offset_table_rtx)
1981 addr = force_reg (GET_MODE (addr), addr);
1982 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1985 update_temp_slot_address (XEXP (memref, 0), new);
1986 new = change_address_1 (memref, VOIDmode, new, 1);
1988 /* Update the alignment to reflect the offset. Reset the offset, which
1989 we don't know. */
1990 MEM_ATTRS (new)
1991 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1992 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1993 GET_MODE (new));
1994 return new;
1997 /* Return a memory reference like MEMREF, but with its address changed to
1998 ADDR. The caller is asserting that the actual piece of memory pointed
1999 to is the same, just the form of the address is being changed, such as
2000 by putting something into a register. */
2003 replace_equiv_address (rtx memref, rtx addr)
2005 /* change_address_1 copies the memory attribute structure without change
2006 and that's exactly what we want here. */
2007 update_temp_slot_address (XEXP (memref, 0), addr);
2008 return change_address_1 (memref, VOIDmode, addr, 1);
2011 /* Likewise, but the reference is not required to be valid. */
2014 replace_equiv_address_nv (rtx memref, rtx addr)
2016 return change_address_1 (memref, VOIDmode, addr, 0);
2019 /* Return a memory reference like MEMREF, but with its mode widened to
2020 MODE and offset by OFFSET. This would be used by targets that e.g.
2021 cannot issue QImode memory operations and have to use SImode memory
2022 operations plus masking logic. */
2025 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2027 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2028 tree expr = MEM_EXPR (new);
2029 rtx memoffset = MEM_OFFSET (new);
2030 unsigned int size = GET_MODE_SIZE (mode);
2032 /* If we don't know what offset we were at within the expression, then
2033 we can't know if we've overstepped the bounds. */
2034 if (! memoffset)
2035 expr = NULL_TREE;
2037 while (expr)
2039 if (TREE_CODE (expr) == COMPONENT_REF)
2041 tree field = TREE_OPERAND (expr, 1);
2043 if (! DECL_SIZE_UNIT (field))
2045 expr = NULL_TREE;
2046 break;
2049 /* Is the field at least as large as the access? If so, ok,
2050 otherwise strip back to the containing structure. */
2051 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2052 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2053 && INTVAL (memoffset) >= 0)
2054 break;
2056 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2058 expr = NULL_TREE;
2059 break;
2062 expr = TREE_OPERAND (expr, 0);
2063 memoffset = (GEN_INT (INTVAL (memoffset)
2064 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2065 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2066 / BITS_PER_UNIT)));
2068 /* Similarly for the decl. */
2069 else if (DECL_P (expr)
2070 && DECL_SIZE_UNIT (expr)
2071 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2072 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2073 && (! memoffset || INTVAL (memoffset) >= 0))
2074 break;
2075 else
2077 /* The widened memory access overflows the expression, which means
2078 that it could alias another expression. Zap it. */
2079 expr = NULL_TREE;
2080 break;
2084 if (! expr)
2085 memoffset = NULL_RTX;
2087 /* The widened memory may alias other stuff, so zap the alias set. */
2088 /* ??? Maybe use get_alias_set on any remaining expression. */
2090 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2091 MEM_ALIGN (new), mode);
2093 return new;
2096 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2099 gen_label_rtx (void)
2101 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2102 NULL, label_num++, NULL);
2105 /* For procedure integration. */
2107 /* Install new pointers to the first and last insns in the chain.
2108 Also, set cur_insn_uid to one higher than the last in use.
2109 Used for an inline-procedure after copying the insn chain. */
2111 void
2112 set_new_first_and_last_insn (rtx first, rtx last)
2114 rtx insn;
2116 first_insn = first;
2117 last_insn = last;
2118 cur_insn_uid = 0;
2120 for (insn = first; insn; insn = NEXT_INSN (insn))
2121 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2123 cur_insn_uid++;
2126 /* Set the last label number found in the current function.
2127 This is used when belatedly compiling an inline function. */
2129 void
2130 set_new_last_label_num (int last)
2132 base_label_num = label_num;
2133 last_label_num = last;
2136 /* Restore all variables describing the current status from the structure *P.
2137 This is used after a nested function. */
2139 void
2140 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2142 last_label_num = 0;
2145 /* Go through all the RTL insn bodies and copy any invalid shared
2146 structure. This routine should only be called once. */
2148 void
2149 unshare_all_rtl (tree fndecl, rtx insn)
2151 tree decl;
2153 /* Make sure that virtual parameters are not shared. */
2154 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2155 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2157 /* Make sure that virtual stack slots are not shared. */
2158 unshare_all_decls (DECL_INITIAL (fndecl));
2160 /* Unshare just about everything else. */
2161 unshare_all_rtl_in_chain (insn);
2163 /* Make sure the addresses of stack slots found outside the insn chain
2164 (such as, in DECL_RTL of a variable) are not shared
2165 with the insn chain.
2167 This special care is necessary when the stack slot MEM does not
2168 actually appear in the insn chain. If it does appear, its address
2169 is unshared from all else at that point. */
2170 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2173 /* Go through all the RTL insn bodies and copy any invalid shared
2174 structure, again. This is a fairly expensive thing to do so it
2175 should be done sparingly. */
2177 void
2178 unshare_all_rtl_again (rtx insn)
2180 rtx p;
2181 tree decl;
2183 for (p = insn; p; p = NEXT_INSN (p))
2184 if (INSN_P (p))
2186 reset_used_flags (PATTERN (p));
2187 reset_used_flags (REG_NOTES (p));
2188 reset_used_flags (LOG_LINKS (p));
2191 /* Make sure that virtual stack slots are not shared. */
2192 reset_used_decls (DECL_INITIAL (cfun->decl));
2194 /* Make sure that virtual parameters are not shared. */
2195 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2196 reset_used_flags (DECL_RTL (decl));
2198 reset_used_flags (stack_slot_list);
2200 unshare_all_rtl (cfun->decl, insn);
2203 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2204 Recursively does the same for subexpressions. */
2206 static void
2207 verify_rtx_sharing (rtx orig, rtx insn)
2209 rtx x = orig;
2210 int i;
2211 enum rtx_code code;
2212 const char *format_ptr;
2214 if (x == 0)
2215 return;
2217 code = GET_CODE (x);
2219 /* These types may be freely shared. */
2221 switch (code)
2223 case REG:
2224 case QUEUED:
2225 case CONST_INT:
2226 case CONST_DOUBLE:
2227 case CONST_VECTOR:
2228 case SYMBOL_REF:
2229 case LABEL_REF:
2230 case CODE_LABEL:
2231 case PC:
2232 case CC0:
2233 case SCRATCH:
2234 /* SCRATCH must be shared because they represent distinct values. */
2235 return;
2237 case CONST:
2238 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2239 a LABEL_REF, it isn't sharable. */
2240 if (GET_CODE (XEXP (x, 0)) == PLUS
2241 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2242 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2243 return;
2244 break;
2246 case MEM:
2247 /* A MEM is allowed to be shared if its address is constant. */
2248 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2249 || reload_completed || reload_in_progress)
2250 return;
2252 break;
2254 default:
2255 break;
2258 /* This rtx may not be shared. If it has already been seen,
2259 replace it with a copy of itself. */
2261 if (RTX_FLAG (x, used))
2263 error ("Invalid rtl sharing found in the insn");
2264 debug_rtx (insn);
2265 error ("Shared rtx");
2266 debug_rtx (x);
2267 abort ();
2269 RTX_FLAG (x, used) = 1;
2271 /* Now scan the subexpressions recursively. */
2273 format_ptr = GET_RTX_FORMAT (code);
2275 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2277 switch (*format_ptr++)
2279 case 'e':
2280 verify_rtx_sharing (XEXP (x, i), insn);
2281 break;
2283 case 'E':
2284 if (XVEC (x, i) != NULL)
2286 int j;
2287 int len = XVECLEN (x, i);
2289 for (j = 0; j < len; j++)
2291 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2292 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2293 && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2294 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2295 else
2296 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2299 break;
2302 return;
2305 /* Go through all the RTL insn bodies and check that there is no unexpected
2306 sharing in between the subexpressions. */
2308 void
2309 verify_rtl_sharing (void)
2311 rtx p;
2313 for (p = get_insns (); p; p = NEXT_INSN (p))
2314 if (INSN_P (p))
2316 reset_used_flags (PATTERN (p));
2317 reset_used_flags (REG_NOTES (p));
2318 reset_used_flags (LOG_LINKS (p));
2321 for (p = get_insns (); p; p = NEXT_INSN (p))
2322 if (INSN_P (p))
2324 verify_rtx_sharing (PATTERN (p), p);
2325 verify_rtx_sharing (REG_NOTES (p), p);
2326 verify_rtx_sharing (LOG_LINKS (p), p);
2330 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2331 Assumes the mark bits are cleared at entry. */
2333 void
2334 unshare_all_rtl_in_chain (rtx insn)
2336 for (; insn; insn = NEXT_INSN (insn))
2337 if (INSN_P (insn))
2339 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2340 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2341 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2345 /* Go through all virtual stack slots of a function and copy any
2346 shared structure. */
2347 static void
2348 unshare_all_decls (tree blk)
2350 tree t;
2352 /* Copy shared decls. */
2353 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2354 if (DECL_RTL_SET_P (t))
2355 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2357 /* Now process sub-blocks. */
2358 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2359 unshare_all_decls (t);
2362 /* Go through all virtual stack slots of a function and mark them as
2363 not shared. */
2364 static void
2365 reset_used_decls (tree blk)
2367 tree t;
2369 /* Mark decls. */
2370 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2371 if (DECL_RTL_SET_P (t))
2372 reset_used_flags (DECL_RTL (t));
2374 /* Now process sub-blocks. */
2375 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2376 reset_used_decls (t);
2379 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2380 placed in the result directly, rather than being copied. MAY_SHARE is
2381 either a MEM of an EXPR_LIST of MEMs. */
2384 copy_most_rtx (rtx orig, rtx may_share)
2386 rtx copy;
2387 int i, j;
2388 RTX_CODE code;
2389 const char *format_ptr;
2391 if (orig == may_share
2392 || (GET_CODE (may_share) == EXPR_LIST
2393 && in_expr_list_p (may_share, orig)))
2394 return orig;
2396 code = GET_CODE (orig);
2398 switch (code)
2400 case REG:
2401 case QUEUED:
2402 case CONST_INT:
2403 case CONST_DOUBLE:
2404 case CONST_VECTOR:
2405 case SYMBOL_REF:
2406 case CODE_LABEL:
2407 case PC:
2408 case CC0:
2409 return orig;
2410 default:
2411 break;
2414 copy = rtx_alloc (code);
2415 PUT_MODE (copy, GET_MODE (orig));
2416 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2417 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2418 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2419 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2420 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2422 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2424 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2426 switch (*format_ptr++)
2428 case 'e':
2429 XEXP (copy, i) = XEXP (orig, i);
2430 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2431 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2432 break;
2434 case 'u':
2435 XEXP (copy, i) = XEXP (orig, i);
2436 break;
2438 case 'E':
2439 case 'V':
2440 XVEC (copy, i) = XVEC (orig, i);
2441 if (XVEC (orig, i) != NULL)
2443 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2444 for (j = 0; j < XVECLEN (copy, i); j++)
2445 XVECEXP (copy, i, j)
2446 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2448 break;
2450 case 'w':
2451 XWINT (copy, i) = XWINT (orig, i);
2452 break;
2454 case 'n':
2455 case 'i':
2456 XINT (copy, i) = XINT (orig, i);
2457 break;
2459 case 't':
2460 XTREE (copy, i) = XTREE (orig, i);
2461 break;
2463 case 's':
2464 case 'S':
2465 XSTR (copy, i) = XSTR (orig, i);
2466 break;
2468 case '0':
2469 X0ANY (copy, i) = X0ANY (orig, i);
2470 break;
2472 default:
2473 abort ();
2476 return copy;
2479 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2480 Recursively does the same for subexpressions. Uses
2481 copy_rtx_if_shared_1 to reduce stack space. */
2484 copy_rtx_if_shared (rtx orig)
2486 copy_rtx_if_shared_1 (&orig);
2487 return orig;
2490 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2491 use. Recursively does the same for subexpressions. */
2493 static void
2494 copy_rtx_if_shared_1 (rtx *orig1)
2496 rtx x;
2497 int i;
2498 enum rtx_code code;
2499 rtx *last_ptr;
2500 const char *format_ptr;
2501 int copied = 0;
2502 int length;
2504 /* Repeat is used to turn tail-recursion into iteration. */
2505 repeat:
2506 x = *orig1;
2508 if (x == 0)
2509 return;
2511 code = GET_CODE (x);
2513 /* These types may be freely shared. */
2515 switch (code)
2517 case REG:
2518 case QUEUED:
2519 case CONST_INT:
2520 case CONST_DOUBLE:
2521 case CONST_VECTOR:
2522 case SYMBOL_REF:
2523 case LABEL_REF:
2524 case CODE_LABEL:
2525 case PC:
2526 case CC0:
2527 case SCRATCH:
2528 /* SCRATCH must be shared because they represent distinct values. */
2529 return;
2531 case CONST:
2532 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2533 a LABEL_REF, it isn't sharable. */
2534 if (GET_CODE (XEXP (x, 0)) == PLUS
2535 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2536 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2537 return;
2538 break;
2540 case INSN:
2541 case JUMP_INSN:
2542 case CALL_INSN:
2543 case NOTE:
2544 case BARRIER:
2545 /* The chain of insns is not being copied. */
2546 return;
2548 default:
2549 break;
2552 /* This rtx may not be shared. If it has already been seen,
2553 replace it with a copy of itself. */
2555 if (RTX_FLAG (x, used))
2557 rtx copy;
2559 copy = rtx_alloc (code);
2560 memcpy (copy, x, RTX_SIZE (code));
2561 x = copy;
2562 copied = 1;
2564 RTX_FLAG (x, used) = 1;
2566 /* Now scan the subexpressions recursively.
2567 We can store any replaced subexpressions directly into X
2568 since we know X is not shared! Any vectors in X
2569 must be copied if X was copied. */
2571 format_ptr = GET_RTX_FORMAT (code);
2572 length = GET_RTX_LENGTH (code);
2573 last_ptr = NULL;
2575 for (i = 0; i < length; i++)
2577 switch (*format_ptr++)
2579 case 'e':
2580 if (last_ptr)
2581 copy_rtx_if_shared_1 (last_ptr);
2582 last_ptr = &XEXP (x, i);
2583 break;
2585 case 'E':
2586 if (XVEC (x, i) != NULL)
2588 int j;
2589 int len = XVECLEN (x, i);
2591 /* Copy the vector iff I copied the rtx and the length
2592 is nonzero. */
2593 if (copied && len > 0)
2594 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2596 /* Call recursively on all inside the vector. */
2597 for (j = 0; j < len; j++)
2599 if (last_ptr)
2600 copy_rtx_if_shared_1 (last_ptr);
2601 last_ptr = &XVECEXP (x, i, j);
2604 break;
2607 *orig1 = x;
2608 if (last_ptr)
2610 orig1 = last_ptr;
2611 goto repeat;
2613 return;
2616 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2617 to look for shared sub-parts. */
2619 void
2620 reset_used_flags (rtx x)
2622 int i, j;
2623 enum rtx_code code;
2624 const char *format_ptr;
2625 int length;
2627 /* Repeat is used to turn tail-recursion into iteration. */
2628 repeat:
2629 if (x == 0)
2630 return;
2632 code = GET_CODE (x);
2634 /* These types may be freely shared so we needn't do any resetting
2635 for them. */
2637 switch (code)
2639 case REG:
2640 case QUEUED:
2641 case CONST_INT:
2642 case CONST_DOUBLE:
2643 case CONST_VECTOR:
2644 case SYMBOL_REF:
2645 case CODE_LABEL:
2646 case PC:
2647 case CC0:
2648 return;
2650 case INSN:
2651 case JUMP_INSN:
2652 case CALL_INSN:
2653 case NOTE:
2654 case LABEL_REF:
2655 case BARRIER:
2656 /* The chain of insns is not being copied. */
2657 return;
2659 default:
2660 break;
2663 RTX_FLAG (x, used) = 0;
2665 format_ptr = GET_RTX_FORMAT (code);
2666 length = GET_RTX_LENGTH (code);
2668 for (i = 0; i < length; i++)
2670 switch (*format_ptr++)
2672 case 'e':
2673 if (i == length-1)
2675 x = XEXP (x, i);
2676 goto repeat;
2678 reset_used_flags (XEXP (x, i));
2679 break;
2681 case 'E':
2682 for (j = 0; j < XVECLEN (x, i); j++)
2683 reset_used_flags (XVECEXP (x, i, j));
2684 break;
2689 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2690 to look for shared sub-parts. */
2692 void
2693 set_used_flags (rtx x)
2695 int i, j;
2696 enum rtx_code code;
2697 const char *format_ptr;
2699 if (x == 0)
2700 return;
2702 code = GET_CODE (x);
2704 /* These types may be freely shared so we needn't do any resetting
2705 for them. */
2707 switch (code)
2709 case REG:
2710 case QUEUED:
2711 case CONST_INT:
2712 case CONST_DOUBLE:
2713 case CONST_VECTOR:
2714 case SYMBOL_REF:
2715 case CODE_LABEL:
2716 case PC:
2717 case CC0:
2718 return;
2720 case INSN:
2721 case JUMP_INSN:
2722 case CALL_INSN:
2723 case NOTE:
2724 case LABEL_REF:
2725 case BARRIER:
2726 /* The chain of insns is not being copied. */
2727 return;
2729 default:
2730 break;
2733 RTX_FLAG (x, used) = 1;
2735 format_ptr = GET_RTX_FORMAT (code);
2736 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2738 switch (*format_ptr++)
2740 case 'e':
2741 set_used_flags (XEXP (x, i));
2742 break;
2744 case 'E':
2745 for (j = 0; j < XVECLEN (x, i); j++)
2746 set_used_flags (XVECEXP (x, i, j));
2747 break;
2752 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2753 Return X or the rtx for the pseudo reg the value of X was copied into.
2754 OTHER must be valid as a SET_DEST. */
2757 make_safe_from (rtx x, rtx other)
2759 while (1)
2760 switch (GET_CODE (other))
2762 case SUBREG:
2763 other = SUBREG_REG (other);
2764 break;
2765 case STRICT_LOW_PART:
2766 case SIGN_EXTEND:
2767 case ZERO_EXTEND:
2768 other = XEXP (other, 0);
2769 break;
2770 default:
2771 goto done;
2773 done:
2774 if ((GET_CODE (other) == MEM
2775 && ! CONSTANT_P (x)
2776 && GET_CODE (x) != REG
2777 && GET_CODE (x) != SUBREG)
2778 || (GET_CODE (other) == REG
2779 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2780 || reg_mentioned_p (other, x))))
2782 rtx temp = gen_reg_rtx (GET_MODE (x));
2783 emit_move_insn (temp, x);
2784 return temp;
2786 return x;
2789 /* Emission of insns (adding them to the doubly-linked list). */
2791 /* Return the first insn of the current sequence or current function. */
2794 get_insns (void)
2796 return first_insn;
2799 /* Specify a new insn as the first in the chain. */
2801 void
2802 set_first_insn (rtx insn)
2804 if (PREV_INSN (insn) != 0)
2805 abort ();
2806 first_insn = insn;
2809 /* Return the last insn emitted in current sequence or current function. */
2812 get_last_insn (void)
2814 return last_insn;
2817 /* Specify a new insn as the last in the chain. */
2819 void
2820 set_last_insn (rtx insn)
2822 if (NEXT_INSN (insn) != 0)
2823 abort ();
2824 last_insn = insn;
2827 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2830 get_last_insn_anywhere (void)
2832 struct sequence_stack *stack;
2833 if (last_insn)
2834 return last_insn;
2835 for (stack = seq_stack; stack; stack = stack->next)
2836 if (stack->last != 0)
2837 return stack->last;
2838 return 0;
2841 /* Return the first nonnote insn emitted in current sequence or current
2842 function. This routine looks inside SEQUENCEs. */
2845 get_first_nonnote_insn (void)
2847 rtx insn = first_insn;
2849 while (insn)
2851 insn = next_insn (insn);
2852 if (insn == 0 || GET_CODE (insn) != NOTE)
2853 break;
2856 return insn;
2859 /* Return the last nonnote insn emitted in current sequence or current
2860 function. This routine looks inside SEQUENCEs. */
2863 get_last_nonnote_insn (void)
2865 rtx insn = last_insn;
2867 while (insn)
2869 insn = previous_insn (insn);
2870 if (insn == 0 || GET_CODE (insn) != NOTE)
2871 break;
2874 return insn;
2877 /* Return a number larger than any instruction's uid in this function. */
2880 get_max_uid (void)
2882 return cur_insn_uid;
2885 /* Renumber instructions so that no instruction UIDs are wasted. */
2887 void
2888 renumber_insns (FILE *stream)
2890 rtx insn;
2892 /* If we're not supposed to renumber instructions, don't. */
2893 if (!flag_renumber_insns)
2894 return;
2896 /* If there aren't that many instructions, then it's not really
2897 worth renumbering them. */
2898 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2899 return;
2901 cur_insn_uid = 1;
2903 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2905 if (stream)
2906 fprintf (stream, "Renumbering insn %d to %d\n",
2907 INSN_UID (insn), cur_insn_uid);
2908 INSN_UID (insn) = cur_insn_uid++;
2912 /* Return the next insn. If it is a SEQUENCE, return the first insn
2913 of the sequence. */
2916 next_insn (rtx insn)
2918 if (insn)
2920 insn = NEXT_INSN (insn);
2921 if (insn && GET_CODE (insn) == INSN
2922 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2923 insn = XVECEXP (PATTERN (insn), 0, 0);
2926 return insn;
2929 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2930 of the sequence. */
2933 previous_insn (rtx insn)
2935 if (insn)
2937 insn = PREV_INSN (insn);
2938 if (insn && GET_CODE (insn) == INSN
2939 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2940 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2943 return insn;
2946 /* Return the next insn after INSN that is not a NOTE. This routine does not
2947 look inside SEQUENCEs. */
2950 next_nonnote_insn (rtx insn)
2952 while (insn)
2954 insn = NEXT_INSN (insn);
2955 if (insn == 0 || GET_CODE (insn) != NOTE)
2956 break;
2959 return insn;
2962 /* Return the previous insn before INSN that is not a NOTE. This routine does
2963 not look inside SEQUENCEs. */
2966 prev_nonnote_insn (rtx insn)
2968 while (insn)
2970 insn = PREV_INSN (insn);
2971 if (insn == 0 || GET_CODE (insn) != NOTE)
2972 break;
2975 return insn;
2978 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2979 or 0, if there is none. This routine does not look inside
2980 SEQUENCEs. */
2983 next_real_insn (rtx insn)
2985 while (insn)
2987 insn = NEXT_INSN (insn);
2988 if (insn == 0 || GET_CODE (insn) == INSN
2989 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2990 break;
2993 return insn;
2996 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2997 or 0, if there is none. This routine does not look inside
2998 SEQUENCEs. */
3001 prev_real_insn (rtx insn)
3003 while (insn)
3005 insn = PREV_INSN (insn);
3006 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
3007 || GET_CODE (insn) == JUMP_INSN)
3008 break;
3011 return insn;
3014 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3015 This routine does not look inside SEQUENCEs. */
3018 last_call_insn (void)
3020 rtx insn;
3022 for (insn = get_last_insn ();
3023 insn && GET_CODE (insn) != CALL_INSN;
3024 insn = PREV_INSN (insn))
3027 return insn;
3030 /* Find the next insn after INSN that really does something. This routine
3031 does not look inside SEQUENCEs. Until reload has completed, this is the
3032 same as next_real_insn. */
3035 active_insn_p (rtx insn)
3037 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3038 || (GET_CODE (insn) == INSN
3039 && (! reload_completed
3040 || (GET_CODE (PATTERN (insn)) != USE
3041 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3045 next_active_insn (rtx insn)
3047 while (insn)
3049 insn = NEXT_INSN (insn);
3050 if (insn == 0 || active_insn_p (insn))
3051 break;
3054 return insn;
3057 /* Find the last insn before INSN that really does something. This routine
3058 does not look inside SEQUENCEs. Until reload has completed, this is the
3059 same as prev_real_insn. */
3062 prev_active_insn (rtx insn)
3064 while (insn)
3066 insn = PREV_INSN (insn);
3067 if (insn == 0 || active_insn_p (insn))
3068 break;
3071 return insn;
3074 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3077 next_label (rtx insn)
3079 while (insn)
3081 insn = NEXT_INSN (insn);
3082 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3083 break;
3086 return insn;
3089 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3092 prev_label (rtx insn)
3094 while (insn)
3096 insn = PREV_INSN (insn);
3097 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3098 break;
3101 return insn;
3104 #ifdef HAVE_cc0
3105 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3106 and REG_CC_USER notes so we can find it. */
3108 void
3109 link_cc0_insns (rtx insn)
3111 rtx user = next_nonnote_insn (insn);
3113 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3114 user = XVECEXP (PATTERN (user), 0, 0);
3116 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3117 REG_NOTES (user));
3118 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3121 /* Return the next insn that uses CC0 after INSN, which is assumed to
3122 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3123 applied to the result of this function should yield INSN).
3125 Normally, this is simply the next insn. However, if a REG_CC_USER note
3126 is present, it contains the insn that uses CC0.
3128 Return 0 if we can't find the insn. */
3131 next_cc0_user (rtx insn)
3133 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3135 if (note)
3136 return XEXP (note, 0);
3138 insn = next_nonnote_insn (insn);
3139 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3140 insn = XVECEXP (PATTERN (insn), 0, 0);
3142 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3143 return insn;
3145 return 0;
3148 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3149 note, it is the previous insn. */
3152 prev_cc0_setter (rtx insn)
3154 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3156 if (note)
3157 return XEXP (note, 0);
3159 insn = prev_nonnote_insn (insn);
3160 if (! sets_cc0_p (PATTERN (insn)))
3161 abort ();
3163 return insn;
3165 #endif
3167 /* Increment the label uses for all labels present in rtx. */
3169 static void
3170 mark_label_nuses (rtx x)
3172 enum rtx_code code;
3173 int i, j;
3174 const char *fmt;
3176 code = GET_CODE (x);
3177 if (code == LABEL_REF)
3178 LABEL_NUSES (XEXP (x, 0))++;
3180 fmt = GET_RTX_FORMAT (code);
3181 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3183 if (fmt[i] == 'e')
3184 mark_label_nuses (XEXP (x, i));
3185 else if (fmt[i] == 'E')
3186 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3187 mark_label_nuses (XVECEXP (x, i, j));
3192 /* Try splitting insns that can be split for better scheduling.
3193 PAT is the pattern which might split.
3194 TRIAL is the insn providing PAT.
3195 LAST is nonzero if we should return the last insn of the sequence produced.
3197 If this routine succeeds in splitting, it returns the first or last
3198 replacement insn depending on the value of LAST. Otherwise, it
3199 returns TRIAL. If the insn to be returned can be split, it will be. */
3202 try_split (rtx pat, rtx trial, int last)
3204 rtx before = PREV_INSN (trial);
3205 rtx after = NEXT_INSN (trial);
3206 int has_barrier = 0;
3207 rtx tem;
3208 rtx note, seq;
3209 int probability;
3210 rtx insn_last, insn;
3211 int njumps = 0;
3213 if (any_condjump_p (trial)
3214 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3215 split_branch_probability = INTVAL (XEXP (note, 0));
3216 probability = split_branch_probability;
3218 seq = split_insns (pat, trial);
3220 split_branch_probability = -1;
3222 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3223 We may need to handle this specially. */
3224 if (after && GET_CODE (after) == BARRIER)
3226 has_barrier = 1;
3227 after = NEXT_INSN (after);
3230 if (!seq)
3231 return trial;
3233 /* Avoid infinite loop if any insn of the result matches
3234 the original pattern. */
3235 insn_last = seq;
3236 while (1)
3238 if (INSN_P (insn_last)
3239 && rtx_equal_p (PATTERN (insn_last), pat))
3240 return trial;
3241 if (!NEXT_INSN (insn_last))
3242 break;
3243 insn_last = NEXT_INSN (insn_last);
3246 /* Mark labels. */
3247 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3249 if (GET_CODE (insn) == JUMP_INSN)
3251 mark_jump_label (PATTERN (insn), insn, 0);
3252 njumps++;
3253 if (probability != -1
3254 && any_condjump_p (insn)
3255 && !find_reg_note (insn, REG_BR_PROB, 0))
3257 /* We can preserve the REG_BR_PROB notes only if exactly
3258 one jump is created, otherwise the machine description
3259 is responsible for this step using
3260 split_branch_probability variable. */
3261 if (njumps != 1)
3262 abort ();
3263 REG_NOTES (insn)
3264 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3265 GEN_INT (probability),
3266 REG_NOTES (insn));
3271 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3272 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3273 if (GET_CODE (trial) == CALL_INSN)
3275 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3276 if (GET_CODE (insn) == CALL_INSN)
3278 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3279 while (*p)
3280 p = &XEXP (*p, 1);
3281 *p = CALL_INSN_FUNCTION_USAGE (trial);
3282 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3286 /* Copy notes, particularly those related to the CFG. */
3287 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3289 switch (REG_NOTE_KIND (note))
3291 case REG_EH_REGION:
3292 insn = insn_last;
3293 while (insn != NULL_RTX)
3295 if (GET_CODE (insn) == CALL_INSN
3296 || (flag_non_call_exceptions
3297 && may_trap_p (PATTERN (insn))))
3298 REG_NOTES (insn)
3299 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3300 XEXP (note, 0),
3301 REG_NOTES (insn));
3302 insn = PREV_INSN (insn);
3304 break;
3306 case REG_NORETURN:
3307 case REG_SETJMP:
3308 case REG_ALWAYS_RETURN:
3309 insn = insn_last;
3310 while (insn != NULL_RTX)
3312 if (GET_CODE (insn) == CALL_INSN)
3313 REG_NOTES (insn)
3314 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3315 XEXP (note, 0),
3316 REG_NOTES (insn));
3317 insn = PREV_INSN (insn);
3319 break;
3321 case REG_NON_LOCAL_GOTO:
3322 insn = insn_last;
3323 while (insn != NULL_RTX)
3325 if (GET_CODE (insn) == JUMP_INSN)
3326 REG_NOTES (insn)
3327 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3328 XEXP (note, 0),
3329 REG_NOTES (insn));
3330 insn = PREV_INSN (insn);
3332 break;
3334 default:
3335 break;
3339 /* If there are LABELS inside the split insns increment the
3340 usage count so we don't delete the label. */
3341 if (GET_CODE (trial) == INSN)
3343 insn = insn_last;
3344 while (insn != NULL_RTX)
3346 if (GET_CODE (insn) == INSN)
3347 mark_label_nuses (PATTERN (insn));
3349 insn = PREV_INSN (insn);
3353 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3355 delete_insn (trial);
3356 if (has_barrier)
3357 emit_barrier_after (tem);
3359 /* Recursively call try_split for each new insn created; by the
3360 time control returns here that insn will be fully split, so
3361 set LAST and continue from the insn after the one returned.
3362 We can't use next_active_insn here since AFTER may be a note.
3363 Ignore deleted insns, which can be occur if not optimizing. */
3364 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3365 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3366 tem = try_split (PATTERN (tem), tem, 1);
3368 /* Return either the first or the last insn, depending on which was
3369 requested. */
3370 return last
3371 ? (after ? PREV_INSN (after) : last_insn)
3372 : NEXT_INSN (before);
3375 /* Make and return an INSN rtx, initializing all its slots.
3376 Store PATTERN in the pattern slots. */
3379 make_insn_raw (rtx pattern)
3381 rtx insn;
3383 insn = rtx_alloc (INSN);
3385 INSN_UID (insn) = cur_insn_uid++;
3386 PATTERN (insn) = pattern;
3387 INSN_CODE (insn) = -1;
3388 LOG_LINKS (insn) = NULL;
3389 REG_NOTES (insn) = NULL;
3390 INSN_LOCATOR (insn) = 0;
3391 BLOCK_FOR_INSN (insn) = NULL;
3393 #ifdef ENABLE_RTL_CHECKING
3394 if (insn
3395 && INSN_P (insn)
3396 && (returnjump_p (insn)
3397 || (GET_CODE (insn) == SET
3398 && SET_DEST (insn) == pc_rtx)))
3400 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3401 debug_rtx (insn);
3403 #endif
3405 return insn;
3408 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3410 static rtx
3411 make_jump_insn_raw (rtx pattern)
3413 rtx insn;
3415 insn = rtx_alloc (JUMP_INSN);
3416 INSN_UID (insn) = cur_insn_uid++;
3418 PATTERN (insn) = pattern;
3419 INSN_CODE (insn) = -1;
3420 LOG_LINKS (insn) = NULL;
3421 REG_NOTES (insn) = NULL;
3422 JUMP_LABEL (insn) = NULL;
3423 INSN_LOCATOR (insn) = 0;
3424 BLOCK_FOR_INSN (insn) = NULL;
3426 return insn;
3429 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3431 static rtx
3432 make_call_insn_raw (rtx pattern)
3434 rtx insn;
3436 insn = rtx_alloc (CALL_INSN);
3437 INSN_UID (insn) = cur_insn_uid++;
3439 PATTERN (insn) = pattern;
3440 INSN_CODE (insn) = -1;
3441 LOG_LINKS (insn) = NULL;
3442 REG_NOTES (insn) = NULL;
3443 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3444 INSN_LOCATOR (insn) = 0;
3445 BLOCK_FOR_INSN (insn) = NULL;
3447 return insn;
3450 /* Add INSN to the end of the doubly-linked list.
3451 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3453 void
3454 add_insn (rtx insn)
3456 PREV_INSN (insn) = last_insn;
3457 NEXT_INSN (insn) = 0;
3459 if (NULL != last_insn)
3460 NEXT_INSN (last_insn) = insn;
3462 if (NULL == first_insn)
3463 first_insn = insn;
3465 last_insn = insn;
3468 /* Add INSN into the doubly-linked list after insn AFTER. This and
3469 the next should be the only functions called to insert an insn once
3470 delay slots have been filled since only they know how to update a
3471 SEQUENCE. */
3473 void
3474 add_insn_after (rtx insn, rtx after)
3476 rtx next = NEXT_INSN (after);
3477 basic_block bb;
3479 if (optimize && INSN_DELETED_P (after))
3480 abort ();
3482 NEXT_INSN (insn) = next;
3483 PREV_INSN (insn) = after;
3485 if (next)
3487 PREV_INSN (next) = insn;
3488 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3489 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3491 else if (last_insn == after)
3492 last_insn = insn;
3493 else
3495 struct sequence_stack *stack = seq_stack;
3496 /* Scan all pending sequences too. */
3497 for (; stack; stack = stack->next)
3498 if (after == stack->last)
3500 stack->last = insn;
3501 break;
3504 if (stack == 0)
3505 abort ();
3508 if (GET_CODE (after) != BARRIER
3509 && GET_CODE (insn) != BARRIER
3510 && (bb = BLOCK_FOR_INSN (after)))
3512 set_block_for_insn (insn, bb);
3513 if (INSN_P (insn))
3514 bb->flags |= BB_DIRTY;
3515 /* Should not happen as first in the BB is always
3516 either NOTE or LABEL. */
3517 if (BB_END (bb) == after
3518 /* Avoid clobbering of structure when creating new BB. */
3519 && GET_CODE (insn) != BARRIER
3520 && (GET_CODE (insn) != NOTE
3521 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3522 BB_END (bb) = insn;
3525 NEXT_INSN (after) = insn;
3526 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3528 rtx sequence = PATTERN (after);
3529 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3533 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3534 the previous should be the only functions called to insert an insn once
3535 delay slots have been filled since only they know how to update a
3536 SEQUENCE. */
3538 void
3539 add_insn_before (rtx insn, rtx before)
3541 rtx prev = PREV_INSN (before);
3542 basic_block bb;
3544 if (optimize && INSN_DELETED_P (before))
3545 abort ();
3547 PREV_INSN (insn) = prev;
3548 NEXT_INSN (insn) = before;
3550 if (prev)
3552 NEXT_INSN (prev) = insn;
3553 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3555 rtx sequence = PATTERN (prev);
3556 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3559 else if (first_insn == before)
3560 first_insn = insn;
3561 else
3563 struct sequence_stack *stack = seq_stack;
3564 /* Scan all pending sequences too. */
3565 for (; stack; stack = stack->next)
3566 if (before == stack->first)
3568 stack->first = insn;
3569 break;
3572 if (stack == 0)
3573 abort ();
3576 if (GET_CODE (before) != BARRIER
3577 && GET_CODE (insn) != BARRIER
3578 && (bb = BLOCK_FOR_INSN (before)))
3580 set_block_for_insn (insn, bb);
3581 if (INSN_P (insn))
3582 bb->flags |= BB_DIRTY;
3583 /* Should not happen as first in the BB is always
3584 either NOTE or LABEl. */
3585 if (BB_HEAD (bb) == insn
3586 /* Avoid clobbering of structure when creating new BB. */
3587 && GET_CODE (insn) != BARRIER
3588 && (GET_CODE (insn) != NOTE
3589 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3590 abort ();
3593 PREV_INSN (before) = insn;
3594 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3595 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3598 /* Remove an insn from its doubly-linked list. This function knows how
3599 to handle sequences. */
3600 void
3601 remove_insn (rtx insn)
3603 rtx next = NEXT_INSN (insn);
3604 rtx prev = PREV_INSN (insn);
3605 basic_block bb;
3607 if (prev)
3609 NEXT_INSN (prev) = next;
3610 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3612 rtx sequence = PATTERN (prev);
3613 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3616 else if (first_insn == insn)
3617 first_insn = next;
3618 else
3620 struct sequence_stack *stack = seq_stack;
3621 /* Scan all pending sequences too. */
3622 for (; stack; stack = stack->next)
3623 if (insn == stack->first)
3625 stack->first = next;
3626 break;
3629 if (stack == 0)
3630 abort ();
3633 if (next)
3635 PREV_INSN (next) = prev;
3636 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3637 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3639 else if (last_insn == insn)
3640 last_insn = prev;
3641 else
3643 struct sequence_stack *stack = seq_stack;
3644 /* Scan all pending sequences too. */
3645 for (; stack; stack = stack->next)
3646 if (insn == stack->last)
3648 stack->last = prev;
3649 break;
3652 if (stack == 0)
3653 abort ();
3655 if (GET_CODE (insn) != BARRIER
3656 && (bb = BLOCK_FOR_INSN (insn)))
3658 if (INSN_P (insn))
3659 bb->flags |= BB_DIRTY;
3660 if (BB_HEAD (bb) == insn)
3662 /* Never ever delete the basic block note without deleting whole
3663 basic block. */
3664 if (GET_CODE (insn) == NOTE)
3665 abort ();
3666 BB_HEAD (bb) = next;
3668 if (BB_END (bb) == insn)
3669 BB_END (bb) = prev;
3673 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3675 void
3676 add_function_usage_to (rtx call_insn, rtx call_fusage)
3678 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3679 abort ();
3681 /* Put the register usage information on the CALL. If there is already
3682 some usage information, put ours at the end. */
3683 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3685 rtx link;
3687 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3688 link = XEXP (link, 1))
3691 XEXP (link, 1) = call_fusage;
3693 else
3694 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3697 /* Delete all insns made since FROM.
3698 FROM becomes the new last instruction. */
3700 void
3701 delete_insns_since (rtx from)
3703 if (from == 0)
3704 first_insn = 0;
3705 else
3706 NEXT_INSN (from) = 0;
3707 last_insn = from;
3710 /* This function is deprecated, please use sequences instead.
3712 Move a consecutive bunch of insns to a different place in the chain.
3713 The insns to be moved are those between FROM and TO.
3714 They are moved to a new position after the insn AFTER.
3715 AFTER must not be FROM or TO or any insn in between.
3717 This function does not know about SEQUENCEs and hence should not be
3718 called after delay-slot filling has been done. */
3720 void
3721 reorder_insns_nobb (rtx from, rtx to, rtx after)
3723 /* Splice this bunch out of where it is now. */
3724 if (PREV_INSN (from))
3725 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3726 if (NEXT_INSN (to))
3727 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3728 if (last_insn == to)
3729 last_insn = PREV_INSN (from);
3730 if (first_insn == from)
3731 first_insn = NEXT_INSN (to);
3733 /* Make the new neighbors point to it and it to them. */
3734 if (NEXT_INSN (after))
3735 PREV_INSN (NEXT_INSN (after)) = to;
3737 NEXT_INSN (to) = NEXT_INSN (after);
3738 PREV_INSN (from) = after;
3739 NEXT_INSN (after) = from;
3740 if (after == last_insn)
3741 last_insn = to;
3744 /* Same as function above, but take care to update BB boundaries. */
3745 void
3746 reorder_insns (rtx from, rtx to, rtx after)
3748 rtx prev = PREV_INSN (from);
3749 basic_block bb, bb2;
3751 reorder_insns_nobb (from, to, after);
3753 if (GET_CODE (after) != BARRIER
3754 && (bb = BLOCK_FOR_INSN (after)))
3756 rtx x;
3757 bb->flags |= BB_DIRTY;
3759 if (GET_CODE (from) != BARRIER
3760 && (bb2 = BLOCK_FOR_INSN (from)))
3762 if (BB_END (bb2) == to)
3763 BB_END (bb2) = prev;
3764 bb2->flags |= BB_DIRTY;
3767 if (BB_END (bb) == after)
3768 BB_END (bb) = to;
3770 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3771 set_block_for_insn (x, bb);
3775 /* Return the line note insn preceding INSN. */
3777 static rtx
3778 find_line_note (rtx insn)
3780 if (no_line_numbers)
3781 return 0;
3783 for (; insn; insn = PREV_INSN (insn))
3784 if (GET_CODE (insn) == NOTE
3785 && NOTE_LINE_NUMBER (insn) >= 0)
3786 break;
3788 return insn;
3791 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3792 of the moved insns when debugging. This may insert a note between AFTER
3793 and FROM, and another one after TO. */
3795 void
3796 reorder_insns_with_line_notes (rtx from, rtx to, rtx after)
3798 rtx from_line = find_line_note (from);
3799 rtx after_line = find_line_note (after);
3801 reorder_insns (from, to, after);
3803 if (from_line == after_line)
3804 return;
3806 if (from_line)
3807 emit_note_copy_after (from_line, after);
3808 if (after_line)
3809 emit_note_copy_after (after_line, to);
3812 /* Remove unnecessary notes from the instruction stream. */
3814 void
3815 remove_unnecessary_notes (void)
3817 rtx block_stack = NULL_RTX;
3818 rtx eh_stack = NULL_RTX;
3819 rtx insn;
3820 rtx next;
3821 rtx tmp;
3823 /* We must not remove the first instruction in the function because
3824 the compiler depends on the first instruction being a note. */
3825 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3827 /* Remember what's next. */
3828 next = NEXT_INSN (insn);
3830 /* We're only interested in notes. */
3831 if (GET_CODE (insn) != NOTE)
3832 continue;
3834 switch (NOTE_LINE_NUMBER (insn))
3836 case NOTE_INSN_DELETED:
3837 case NOTE_INSN_LOOP_END_TOP_COND:
3838 remove_insn (insn);
3839 break;
3841 case NOTE_INSN_EH_REGION_BEG:
3842 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3843 break;
3845 case NOTE_INSN_EH_REGION_END:
3846 /* Too many end notes. */
3847 if (eh_stack == NULL_RTX)
3848 abort ();
3849 /* Mismatched nesting. */
3850 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3851 abort ();
3852 tmp = eh_stack;
3853 eh_stack = XEXP (eh_stack, 1);
3854 free_INSN_LIST_node (tmp);
3855 break;
3857 case NOTE_INSN_BLOCK_BEG:
3858 /* By now, all notes indicating lexical blocks should have
3859 NOTE_BLOCK filled in. */
3860 if (NOTE_BLOCK (insn) == NULL_TREE)
3861 abort ();
3862 block_stack = alloc_INSN_LIST (insn, block_stack);
3863 break;
3865 case NOTE_INSN_BLOCK_END:
3866 /* Too many end notes. */
3867 if (block_stack == NULL_RTX)
3868 abort ();
3869 /* Mismatched nesting. */
3870 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3871 abort ();
3872 tmp = block_stack;
3873 block_stack = XEXP (block_stack, 1);
3874 free_INSN_LIST_node (tmp);
3876 /* Scan back to see if there are any non-note instructions
3877 between INSN and the beginning of this block. If not,
3878 then there is no PC range in the generated code that will
3879 actually be in this block, so there's no point in
3880 remembering the existence of the block. */
3881 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3883 /* This block contains a real instruction. Note that we
3884 don't include labels; if the only thing in the block
3885 is a label, then there are still no PC values that
3886 lie within the block. */
3887 if (INSN_P (tmp))
3888 break;
3890 /* We're only interested in NOTEs. */
3891 if (GET_CODE (tmp) != NOTE)
3892 continue;
3894 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3896 /* We just verified that this BLOCK matches us with
3897 the block_stack check above. Never delete the
3898 BLOCK for the outermost scope of the function; we
3899 can refer to names from that scope even if the
3900 block notes are messed up. */
3901 if (! is_body_block (NOTE_BLOCK (insn))
3902 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3904 remove_insn (tmp);
3905 remove_insn (insn);
3907 break;
3909 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3910 /* There's a nested block. We need to leave the
3911 current block in place since otherwise the debugger
3912 wouldn't be able to show symbols from our block in
3913 the nested block. */
3914 break;
3919 /* Too many begin notes. */
3920 if (block_stack || eh_stack)
3921 abort ();
3925 /* Emit insn(s) of given code and pattern
3926 at a specified place within the doubly-linked list.
3928 All of the emit_foo global entry points accept an object
3929 X which is either an insn list or a PATTERN of a single
3930 instruction.
3932 There are thus a few canonical ways to generate code and
3933 emit it at a specific place in the instruction stream. For
3934 example, consider the instruction named SPOT and the fact that
3935 we would like to emit some instructions before SPOT. We might
3936 do it like this:
3938 start_sequence ();
3939 ... emit the new instructions ...
3940 insns_head = get_insns ();
3941 end_sequence ();
3943 emit_insn_before (insns_head, SPOT);
3945 It used to be common to generate SEQUENCE rtl instead, but that
3946 is a relic of the past which no longer occurs. The reason is that
3947 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3948 generated would almost certainly die right after it was created. */
3950 /* Make X be output before the instruction BEFORE. */
3953 emit_insn_before (rtx x, rtx before)
3955 rtx last = before;
3956 rtx insn;
3958 #ifdef ENABLE_RTL_CHECKING
3959 if (before == NULL_RTX)
3960 abort ();
3961 #endif
3963 if (x == NULL_RTX)
3964 return last;
3966 switch (GET_CODE (x))
3968 case INSN:
3969 case JUMP_INSN:
3970 case CALL_INSN:
3971 case CODE_LABEL:
3972 case BARRIER:
3973 case NOTE:
3974 insn = x;
3975 while (insn)
3977 rtx next = NEXT_INSN (insn);
3978 add_insn_before (insn, before);
3979 last = insn;
3980 insn = next;
3982 break;
3984 #ifdef ENABLE_RTL_CHECKING
3985 case SEQUENCE:
3986 abort ();
3987 break;
3988 #endif
3990 default:
3991 last = make_insn_raw (x);
3992 add_insn_before (last, before);
3993 break;
3996 return last;
3999 /* Make an instruction with body X and code JUMP_INSN
4000 and output it before the instruction BEFORE. */
4003 emit_jump_insn_before (rtx x, rtx before)
4005 rtx insn, last = NULL_RTX;
4007 #ifdef ENABLE_RTL_CHECKING
4008 if (before == NULL_RTX)
4009 abort ();
4010 #endif
4012 switch (GET_CODE (x))
4014 case INSN:
4015 case JUMP_INSN:
4016 case CALL_INSN:
4017 case CODE_LABEL:
4018 case BARRIER:
4019 case NOTE:
4020 insn = x;
4021 while (insn)
4023 rtx next = NEXT_INSN (insn);
4024 add_insn_before (insn, before);
4025 last = insn;
4026 insn = next;
4028 break;
4030 #ifdef ENABLE_RTL_CHECKING
4031 case SEQUENCE:
4032 abort ();
4033 break;
4034 #endif
4036 default:
4037 last = make_jump_insn_raw (x);
4038 add_insn_before (last, before);
4039 break;
4042 return last;
4045 /* Make an instruction with body X and code CALL_INSN
4046 and output it before the instruction BEFORE. */
4049 emit_call_insn_before (rtx x, rtx before)
4051 rtx last = NULL_RTX, insn;
4053 #ifdef ENABLE_RTL_CHECKING
4054 if (before == NULL_RTX)
4055 abort ();
4056 #endif
4058 switch (GET_CODE (x))
4060 case INSN:
4061 case JUMP_INSN:
4062 case CALL_INSN:
4063 case CODE_LABEL:
4064 case BARRIER:
4065 case NOTE:
4066 insn = x;
4067 while (insn)
4069 rtx next = NEXT_INSN (insn);
4070 add_insn_before (insn, before);
4071 last = insn;
4072 insn = next;
4074 break;
4076 #ifdef ENABLE_RTL_CHECKING
4077 case SEQUENCE:
4078 abort ();
4079 break;
4080 #endif
4082 default:
4083 last = make_call_insn_raw (x);
4084 add_insn_before (last, before);
4085 break;
4088 return last;
4091 /* Make an insn of code BARRIER
4092 and output it before the insn BEFORE. */
4095 emit_barrier_before (rtx before)
4097 rtx insn = rtx_alloc (BARRIER);
4099 INSN_UID (insn) = cur_insn_uid++;
4101 add_insn_before (insn, before);
4102 return insn;
4105 /* Emit the label LABEL before the insn BEFORE. */
4108 emit_label_before (rtx label, rtx before)
4110 /* This can be called twice for the same label as a result of the
4111 confusion that follows a syntax error! So make it harmless. */
4112 if (INSN_UID (label) == 0)
4114 INSN_UID (label) = cur_insn_uid++;
4115 add_insn_before (label, before);
4118 return label;
4121 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4124 emit_note_before (int subtype, rtx before)
4126 rtx note = rtx_alloc (NOTE);
4127 INSN_UID (note) = cur_insn_uid++;
4128 NOTE_SOURCE_FILE (note) = 0;
4129 NOTE_LINE_NUMBER (note) = subtype;
4130 BLOCK_FOR_INSN (note) = NULL;
4132 add_insn_before (note, before);
4133 return note;
4136 /* Helper for emit_insn_after, handles lists of instructions
4137 efficiently. */
4139 static rtx emit_insn_after_1 (rtx, rtx);
4141 static rtx
4142 emit_insn_after_1 (rtx first, rtx after)
4144 rtx last;
4145 rtx after_after;
4146 basic_block bb;
4148 if (GET_CODE (after) != BARRIER
4149 && (bb = BLOCK_FOR_INSN (after)))
4151 bb->flags |= BB_DIRTY;
4152 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4153 if (GET_CODE (last) != BARRIER)
4154 set_block_for_insn (last, bb);
4155 if (GET_CODE (last) != BARRIER)
4156 set_block_for_insn (last, bb);
4157 if (BB_END (bb) == after)
4158 BB_END (bb) = last;
4160 else
4161 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4162 continue;
4164 after_after = NEXT_INSN (after);
4166 NEXT_INSN (after) = first;
4167 PREV_INSN (first) = after;
4168 NEXT_INSN (last) = after_after;
4169 if (after_after)
4170 PREV_INSN (after_after) = last;
4172 if (after == last_insn)
4173 last_insn = last;
4174 return last;
4177 /* Make X be output after the insn AFTER. */
4180 emit_insn_after (rtx x, rtx after)
4182 rtx last = after;
4184 #ifdef ENABLE_RTL_CHECKING
4185 if (after == NULL_RTX)
4186 abort ();
4187 #endif
4189 if (x == NULL_RTX)
4190 return last;
4192 switch (GET_CODE (x))
4194 case INSN:
4195 case JUMP_INSN:
4196 case CALL_INSN:
4197 case CODE_LABEL:
4198 case BARRIER:
4199 case NOTE:
4200 last = emit_insn_after_1 (x, after);
4201 break;
4203 #ifdef ENABLE_RTL_CHECKING
4204 case SEQUENCE:
4205 abort ();
4206 break;
4207 #endif
4209 default:
4210 last = make_insn_raw (x);
4211 add_insn_after (last, after);
4212 break;
4215 return last;
4218 /* Similar to emit_insn_after, except that line notes are to be inserted so
4219 as to act as if this insn were at FROM. */
4221 void
4222 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4224 rtx from_line = find_line_note (from);
4225 rtx after_line = find_line_note (after);
4226 rtx insn = emit_insn_after (x, after);
4228 if (from_line)
4229 emit_note_copy_after (from_line, after);
4231 if (after_line)
4232 emit_note_copy_after (after_line, insn);
4235 /* Make an insn of code JUMP_INSN with body X
4236 and output it after the insn AFTER. */
4239 emit_jump_insn_after (rtx x, rtx after)
4241 rtx last;
4243 #ifdef ENABLE_RTL_CHECKING
4244 if (after == NULL_RTX)
4245 abort ();
4246 #endif
4248 switch (GET_CODE (x))
4250 case INSN:
4251 case JUMP_INSN:
4252 case CALL_INSN:
4253 case CODE_LABEL:
4254 case BARRIER:
4255 case NOTE:
4256 last = emit_insn_after_1 (x, after);
4257 break;
4259 #ifdef ENABLE_RTL_CHECKING
4260 case SEQUENCE:
4261 abort ();
4262 break;
4263 #endif
4265 default:
4266 last = make_jump_insn_raw (x);
4267 add_insn_after (last, after);
4268 break;
4271 return last;
4274 /* Make an instruction with body X and code CALL_INSN
4275 and output it after the instruction AFTER. */
4278 emit_call_insn_after (rtx x, rtx after)
4280 rtx last;
4282 #ifdef ENABLE_RTL_CHECKING
4283 if (after == NULL_RTX)
4284 abort ();
4285 #endif
4287 switch (GET_CODE (x))
4289 case INSN:
4290 case JUMP_INSN:
4291 case CALL_INSN:
4292 case CODE_LABEL:
4293 case BARRIER:
4294 case NOTE:
4295 last = emit_insn_after_1 (x, after);
4296 break;
4298 #ifdef ENABLE_RTL_CHECKING
4299 case SEQUENCE:
4300 abort ();
4301 break;
4302 #endif
4304 default:
4305 last = make_call_insn_raw (x);
4306 add_insn_after (last, after);
4307 break;
4310 return last;
4313 /* Make an insn of code BARRIER
4314 and output it after the insn AFTER. */
4317 emit_barrier_after (rtx after)
4319 rtx insn = rtx_alloc (BARRIER);
4321 INSN_UID (insn) = cur_insn_uid++;
4323 add_insn_after (insn, after);
4324 return insn;
4327 /* Emit the label LABEL after the insn AFTER. */
4330 emit_label_after (rtx label, rtx after)
4332 /* This can be called twice for the same label
4333 as a result of the confusion that follows a syntax error!
4334 So make it harmless. */
4335 if (INSN_UID (label) == 0)
4337 INSN_UID (label) = cur_insn_uid++;
4338 add_insn_after (label, after);
4341 return label;
4344 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4347 emit_note_after (int subtype, rtx after)
4349 rtx note = rtx_alloc (NOTE);
4350 INSN_UID (note) = cur_insn_uid++;
4351 NOTE_SOURCE_FILE (note) = 0;
4352 NOTE_LINE_NUMBER (note) = subtype;
4353 BLOCK_FOR_INSN (note) = NULL;
4354 add_insn_after (note, after);
4355 return note;
4358 /* Emit a copy of note ORIG after the insn AFTER. */
4361 emit_note_copy_after (rtx orig, rtx after)
4363 rtx note;
4365 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4367 cur_insn_uid++;
4368 return 0;
4371 note = rtx_alloc (NOTE);
4372 INSN_UID (note) = cur_insn_uid++;
4373 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4374 NOTE_DATA (note) = NOTE_DATA (orig);
4375 BLOCK_FOR_INSN (note) = NULL;
4376 add_insn_after (note, after);
4377 return note;
4380 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4382 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4384 rtx last = emit_insn_after (pattern, after);
4386 after = NEXT_INSN (after);
4387 while (1)
4389 if (active_insn_p (after))
4390 INSN_LOCATOR (after) = loc;
4391 if (after == last)
4392 break;
4393 after = NEXT_INSN (after);
4395 return last;
4398 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4400 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4402 rtx last = emit_jump_insn_after (pattern, after);
4404 after = NEXT_INSN (after);
4405 while (1)
4407 if (active_insn_p (after))
4408 INSN_LOCATOR (after) = loc;
4409 if (after == last)
4410 break;
4411 after = NEXT_INSN (after);
4413 return last;
4416 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4418 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4420 rtx last = emit_call_insn_after (pattern, after);
4422 after = NEXT_INSN (after);
4423 while (1)
4425 if (active_insn_p (after))
4426 INSN_LOCATOR (after) = loc;
4427 if (after == last)
4428 break;
4429 after = NEXT_INSN (after);
4431 return last;
4434 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4436 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4438 rtx first = PREV_INSN (before);
4439 rtx last = emit_insn_before (pattern, before);
4441 first = NEXT_INSN (first);
4442 while (1)
4444 if (active_insn_p (first))
4445 INSN_LOCATOR (first) = loc;
4446 if (first == last)
4447 break;
4448 first = NEXT_INSN (first);
4450 return last;
4453 /* Take X and emit it at the end of the doubly-linked
4454 INSN list.
4456 Returns the last insn emitted. */
4459 emit_insn (rtx x)
4461 rtx last = last_insn;
4462 rtx insn;
4464 if (x == NULL_RTX)
4465 return last;
4467 switch (GET_CODE (x))
4469 case INSN:
4470 case JUMP_INSN:
4471 case CALL_INSN:
4472 case CODE_LABEL:
4473 case BARRIER:
4474 case NOTE:
4475 insn = x;
4476 while (insn)
4478 rtx next = NEXT_INSN (insn);
4479 add_insn (insn);
4480 last = insn;
4481 insn = next;
4483 break;
4485 #ifdef ENABLE_RTL_CHECKING
4486 case SEQUENCE:
4487 abort ();
4488 break;
4489 #endif
4491 default:
4492 last = make_insn_raw (x);
4493 add_insn (last);
4494 break;
4497 return last;
4500 /* Make an insn of code JUMP_INSN with pattern X
4501 and add it to the end of the doubly-linked list. */
4504 emit_jump_insn (rtx x)
4506 rtx last = NULL_RTX, insn;
4508 switch (GET_CODE (x))
4510 case INSN:
4511 case JUMP_INSN:
4512 case CALL_INSN:
4513 case CODE_LABEL:
4514 case BARRIER:
4515 case NOTE:
4516 insn = x;
4517 while (insn)
4519 rtx next = NEXT_INSN (insn);
4520 add_insn (insn);
4521 last = insn;
4522 insn = next;
4524 break;
4526 #ifdef ENABLE_RTL_CHECKING
4527 case SEQUENCE:
4528 abort ();
4529 break;
4530 #endif
4532 default:
4533 last = make_jump_insn_raw (x);
4534 add_insn (last);
4535 break;
4538 return last;
4541 /* Make an insn of code CALL_INSN with pattern X
4542 and add it to the end of the doubly-linked list. */
4545 emit_call_insn (rtx x)
4547 rtx insn;
4549 switch (GET_CODE (x))
4551 case INSN:
4552 case JUMP_INSN:
4553 case CALL_INSN:
4554 case CODE_LABEL:
4555 case BARRIER:
4556 case NOTE:
4557 insn = emit_insn (x);
4558 break;
4560 #ifdef ENABLE_RTL_CHECKING
4561 case SEQUENCE:
4562 abort ();
4563 break;
4564 #endif
4566 default:
4567 insn = make_call_insn_raw (x);
4568 add_insn (insn);
4569 break;
4572 return insn;
4575 /* Add the label LABEL to the end of the doubly-linked list. */
4578 emit_label (rtx label)
4580 /* This can be called twice for the same label
4581 as a result of the confusion that follows a syntax error!
4582 So make it harmless. */
4583 if (INSN_UID (label) == 0)
4585 INSN_UID (label) = cur_insn_uid++;
4586 add_insn (label);
4588 return label;
4591 /* Make an insn of code BARRIER
4592 and add it to the end of the doubly-linked list. */
4595 emit_barrier (void)
4597 rtx barrier = rtx_alloc (BARRIER);
4598 INSN_UID (barrier) = cur_insn_uid++;
4599 add_insn (barrier);
4600 return barrier;
4603 /* Make line numbering NOTE insn for LOCATION add it to the end
4604 of the doubly-linked list, but only if line-numbers are desired for
4605 debugging info and it doesn't match the previous one. */
4608 emit_line_note (location_t location)
4610 rtx note;
4612 set_file_and_line_for_stmt (location);
4614 if (location.file && last_location.file
4615 && !strcmp (location.file, last_location.file)
4616 && location.line == last_location.line)
4617 return NULL_RTX;
4618 last_location = location;
4620 if (no_line_numbers)
4622 cur_insn_uid++;
4623 return NULL_RTX;
4626 note = emit_note (location.line);
4627 NOTE_SOURCE_FILE (note) = location.file;
4629 return note;
4632 /* Emit a copy of note ORIG. */
4635 emit_note_copy (rtx orig)
4637 rtx note;
4639 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4641 cur_insn_uid++;
4642 return NULL_RTX;
4645 note = rtx_alloc (NOTE);
4647 INSN_UID (note) = cur_insn_uid++;
4648 NOTE_DATA (note) = NOTE_DATA (orig);
4649 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4650 BLOCK_FOR_INSN (note) = NULL;
4651 add_insn (note);
4653 return note;
4656 /* Make an insn of code NOTE or type NOTE_NO
4657 and add it to the end of the doubly-linked list. */
4660 emit_note (int note_no)
4662 rtx note;
4664 note = rtx_alloc (NOTE);
4665 INSN_UID (note) = cur_insn_uid++;
4666 NOTE_LINE_NUMBER (note) = note_no;
4667 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4668 BLOCK_FOR_INSN (note) = NULL;
4669 add_insn (note);
4670 return note;
4673 /* Cause next statement to emit a line note even if the line number
4674 has not changed. */
4676 void
4677 force_next_line_note (void)
4679 last_location.line = -1;
4682 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4683 note of this type already exists, remove it first. */
4686 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4688 rtx note = find_reg_note (insn, kind, NULL_RTX);
4690 switch (kind)
4692 case REG_EQUAL:
4693 case REG_EQUIV:
4694 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4695 has multiple sets (some callers assume single_set
4696 means the insn only has one set, when in fact it
4697 means the insn only has one * useful * set). */
4698 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4700 if (note)
4701 abort ();
4702 return NULL_RTX;
4705 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4706 It serves no useful purpose and breaks eliminate_regs. */
4707 if (GET_CODE (datum) == ASM_OPERANDS)
4708 return NULL_RTX;
4709 break;
4711 default:
4712 break;
4715 if (note)
4717 XEXP (note, 0) = datum;
4718 return note;
4721 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4722 return REG_NOTES (insn);
4725 /* Return an indication of which type of insn should have X as a body.
4726 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4728 enum rtx_code
4729 classify_insn (rtx x)
4731 if (GET_CODE (x) == CODE_LABEL)
4732 return CODE_LABEL;
4733 if (GET_CODE (x) == CALL)
4734 return CALL_INSN;
4735 if (GET_CODE (x) == RETURN)
4736 return JUMP_INSN;
4737 if (GET_CODE (x) == SET)
4739 if (SET_DEST (x) == pc_rtx)
4740 return JUMP_INSN;
4741 else if (GET_CODE (SET_SRC (x)) == CALL)
4742 return CALL_INSN;
4743 else
4744 return INSN;
4746 if (GET_CODE (x) == PARALLEL)
4748 int j;
4749 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4750 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4751 return CALL_INSN;
4752 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4753 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4754 return JUMP_INSN;
4755 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4756 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4757 return CALL_INSN;
4759 return INSN;
4762 /* Emit the rtl pattern X as an appropriate kind of insn.
4763 If X is a label, it is simply added into the insn chain. */
4766 emit (rtx x)
4768 enum rtx_code code = classify_insn (x);
4770 if (code == CODE_LABEL)
4771 return emit_label (x);
4772 else if (code == INSN)
4773 return emit_insn (x);
4774 else if (code == JUMP_INSN)
4776 rtx insn = emit_jump_insn (x);
4777 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4778 return emit_barrier ();
4779 return insn;
4781 else if (code == CALL_INSN)
4782 return emit_call_insn (x);
4783 else
4784 abort ();
4787 /* Space for free sequence stack entries. */
4788 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4790 /* Begin emitting insns to a sequence which can be packaged in an
4791 RTL_EXPR. If this sequence will contain something that might cause
4792 the compiler to pop arguments to function calls (because those
4793 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4794 details), use do_pending_stack_adjust before calling this function.
4795 That will ensure that the deferred pops are not accidentally
4796 emitted in the middle of this sequence. */
4798 void
4799 start_sequence (void)
4801 struct sequence_stack *tem;
4803 if (free_sequence_stack != NULL)
4805 tem = free_sequence_stack;
4806 free_sequence_stack = tem->next;
4808 else
4809 tem = ggc_alloc (sizeof (struct sequence_stack));
4811 tem->next = seq_stack;
4812 tem->first = first_insn;
4813 tem->last = last_insn;
4814 tem->sequence_rtl_expr = seq_rtl_expr;
4816 seq_stack = tem;
4818 first_insn = 0;
4819 last_insn = 0;
4822 /* Similarly, but indicate that this sequence will be placed in T, an
4823 RTL_EXPR. See the documentation for start_sequence for more
4824 information about how to use this function. */
4826 void
4827 start_sequence_for_rtl_expr (tree t)
4829 start_sequence ();
4831 seq_rtl_expr = t;
4834 /* Set up the insn chain starting with FIRST as the current sequence,
4835 saving the previously current one. See the documentation for
4836 start_sequence for more information about how to use this function. */
4838 void
4839 push_to_sequence (rtx first)
4841 rtx last;
4843 start_sequence ();
4845 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4847 first_insn = first;
4848 last_insn = last;
4851 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4853 void
4854 push_to_full_sequence (rtx first, rtx last)
4856 start_sequence ();
4857 first_insn = first;
4858 last_insn = last;
4859 /* We really should have the end of the insn chain here. */
4860 if (last && NEXT_INSN (last))
4861 abort ();
4864 /* Set up the outer-level insn chain
4865 as the current sequence, saving the previously current one. */
4867 void
4868 push_topmost_sequence (void)
4870 struct sequence_stack *stack, *top = NULL;
4872 start_sequence ();
4874 for (stack = seq_stack; stack; stack = stack->next)
4875 top = stack;
4877 first_insn = top->first;
4878 last_insn = top->last;
4879 seq_rtl_expr = top->sequence_rtl_expr;
4882 /* After emitting to the outer-level insn chain, update the outer-level
4883 insn chain, and restore the previous saved state. */
4885 void
4886 pop_topmost_sequence (void)
4888 struct sequence_stack *stack, *top = NULL;
4890 for (stack = seq_stack; stack; stack = stack->next)
4891 top = stack;
4893 top->first = first_insn;
4894 top->last = last_insn;
4895 /* ??? Why don't we save seq_rtl_expr here? */
4897 end_sequence ();
4900 /* After emitting to a sequence, restore previous saved state.
4902 To get the contents of the sequence just made, you must call
4903 `get_insns' *before* calling here.
4905 If the compiler might have deferred popping arguments while
4906 generating this sequence, and this sequence will not be immediately
4907 inserted into the instruction stream, use do_pending_stack_adjust
4908 before calling get_insns. That will ensure that the deferred
4909 pops are inserted into this sequence, and not into some random
4910 location in the instruction stream. See INHIBIT_DEFER_POP for more
4911 information about deferred popping of arguments. */
4913 void
4914 end_sequence (void)
4916 struct sequence_stack *tem = seq_stack;
4918 first_insn = tem->first;
4919 last_insn = tem->last;
4920 seq_rtl_expr = tem->sequence_rtl_expr;
4921 seq_stack = tem->next;
4923 memset (tem, 0, sizeof (*tem));
4924 tem->next = free_sequence_stack;
4925 free_sequence_stack = tem;
4928 /* This works like end_sequence, but records the old sequence in FIRST
4929 and LAST. */
4931 void
4932 end_full_sequence (rtx *first, rtx *last)
4934 *first = first_insn;
4935 *last = last_insn;
4936 end_sequence ();
4939 /* Return 1 if currently emitting into a sequence. */
4942 in_sequence_p (void)
4944 return seq_stack != 0;
4947 /* Put the various virtual registers into REGNO_REG_RTX. */
4949 void
4950 init_virtual_regs (struct emit_status *es)
4952 rtx *ptr = es->x_regno_reg_rtx;
4953 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4954 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4955 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4956 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4957 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4961 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4962 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4963 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4964 static int copy_insn_n_scratches;
4966 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4967 copied an ASM_OPERANDS.
4968 In that case, it is the original input-operand vector. */
4969 static rtvec orig_asm_operands_vector;
4971 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4972 copied an ASM_OPERANDS.
4973 In that case, it is the copied input-operand vector. */
4974 static rtvec copy_asm_operands_vector;
4976 /* Likewise for the constraints vector. */
4977 static rtvec orig_asm_constraints_vector;
4978 static rtvec copy_asm_constraints_vector;
4980 /* Recursively create a new copy of an rtx for copy_insn.
4981 This function differs from copy_rtx in that it handles SCRATCHes and
4982 ASM_OPERANDs properly.
4983 Normally, this function is not used directly; use copy_insn as front end.
4984 However, you could first copy an insn pattern with copy_insn and then use
4985 this function afterwards to properly copy any REG_NOTEs containing
4986 SCRATCHes. */
4989 copy_insn_1 (rtx orig)
4991 rtx copy;
4992 int i, j;
4993 RTX_CODE code;
4994 const char *format_ptr;
4996 code = GET_CODE (orig);
4998 switch (code)
5000 case REG:
5001 case QUEUED:
5002 case CONST_INT:
5003 case CONST_DOUBLE:
5004 case CONST_VECTOR:
5005 case SYMBOL_REF:
5006 case CODE_LABEL:
5007 case PC:
5008 case CC0:
5009 case ADDRESSOF:
5010 return orig;
5012 case SCRATCH:
5013 for (i = 0; i < copy_insn_n_scratches; i++)
5014 if (copy_insn_scratch_in[i] == orig)
5015 return copy_insn_scratch_out[i];
5016 break;
5018 case CONST:
5019 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5020 a LABEL_REF, it isn't sharable. */
5021 if (GET_CODE (XEXP (orig, 0)) == PLUS
5022 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5023 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5024 return orig;
5025 break;
5027 /* A MEM with a constant address is not sharable. The problem is that
5028 the constant address may need to be reloaded. If the mem is shared,
5029 then reloading one copy of this mem will cause all copies to appear
5030 to have been reloaded. */
5032 default:
5033 break;
5036 copy = rtx_alloc (code);
5038 /* Copy the various flags, and other information. We assume that
5039 all fields need copying, and then clear the fields that should
5040 not be copied. That is the sensible default behavior, and forces
5041 us to explicitly document why we are *not* copying a flag. */
5042 memcpy (copy, orig, RTX_HDR_SIZE);
5044 /* We do not copy the USED flag, which is used as a mark bit during
5045 walks over the RTL. */
5046 RTX_FLAG (copy, used) = 0;
5048 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5049 if (GET_RTX_CLASS (code) == 'i')
5051 RTX_FLAG (copy, jump) = 0;
5052 RTX_FLAG (copy, call) = 0;
5053 RTX_FLAG (copy, frame_related) = 0;
5056 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5058 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5060 copy->u.fld[i] = orig->u.fld[i];
5061 switch (*format_ptr++)
5063 case 'e':
5064 if (XEXP (orig, i) != NULL)
5065 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5066 break;
5068 case 'E':
5069 case 'V':
5070 if (XVEC (orig, i) == orig_asm_constraints_vector)
5071 XVEC (copy, i) = copy_asm_constraints_vector;
5072 else if (XVEC (orig, i) == orig_asm_operands_vector)
5073 XVEC (copy, i) = copy_asm_operands_vector;
5074 else if (XVEC (orig, i) != NULL)
5076 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5077 for (j = 0; j < XVECLEN (copy, i); j++)
5078 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5080 break;
5082 case 't':
5083 case 'w':
5084 case 'i':
5085 case 's':
5086 case 'S':
5087 case 'u':
5088 case '0':
5089 /* These are left unchanged. */
5090 break;
5092 default:
5093 abort ();
5097 if (code == SCRATCH)
5099 i = copy_insn_n_scratches++;
5100 if (i >= MAX_RECOG_OPERANDS)
5101 abort ();
5102 copy_insn_scratch_in[i] = orig;
5103 copy_insn_scratch_out[i] = copy;
5105 else if (code == ASM_OPERANDS)
5107 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5108 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5109 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5110 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5113 return copy;
5116 /* Create a new copy of an rtx.
5117 This function differs from copy_rtx in that it handles SCRATCHes and
5118 ASM_OPERANDs properly.
5119 INSN doesn't really have to be a full INSN; it could be just the
5120 pattern. */
5122 copy_insn (rtx insn)
5124 copy_insn_n_scratches = 0;
5125 orig_asm_operands_vector = 0;
5126 orig_asm_constraints_vector = 0;
5127 copy_asm_operands_vector = 0;
5128 copy_asm_constraints_vector = 0;
5129 return copy_insn_1 (insn);
5132 /* Initialize data structures and variables in this file
5133 before generating rtl for each function. */
5135 void
5136 init_emit (void)
5138 struct function *f = cfun;
5140 f->emit = ggc_alloc (sizeof (struct emit_status));
5141 first_insn = NULL;
5142 last_insn = NULL;
5143 seq_rtl_expr = NULL;
5144 cur_insn_uid = 1;
5145 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5146 last_location.line = 0;
5147 last_location.file = 0;
5148 first_label_num = label_num;
5149 last_label_num = 0;
5150 seq_stack = NULL;
5152 /* Init the tables that describe all the pseudo regs. */
5154 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5156 f->emit->regno_pointer_align
5157 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5158 * sizeof (unsigned char));
5160 regno_reg_rtx
5161 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5163 /* Put copies of all the hard registers into regno_reg_rtx. */
5164 memcpy (regno_reg_rtx,
5165 static_regno_reg_rtx,
5166 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5168 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5169 init_virtual_regs (f->emit);
5171 /* Indicate that the virtual registers and stack locations are
5172 all pointers. */
5173 REG_POINTER (stack_pointer_rtx) = 1;
5174 REG_POINTER (frame_pointer_rtx) = 1;
5175 REG_POINTER (hard_frame_pointer_rtx) = 1;
5176 REG_POINTER (arg_pointer_rtx) = 1;
5178 REG_POINTER (virtual_incoming_args_rtx) = 1;
5179 REG_POINTER (virtual_stack_vars_rtx) = 1;
5180 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5181 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5182 REG_POINTER (virtual_cfa_rtx) = 1;
5184 #ifdef STACK_BOUNDARY
5185 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5186 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5187 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5188 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5190 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5191 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5192 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5193 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5194 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5195 #endif
5197 #ifdef INIT_EXPANDERS
5198 INIT_EXPANDERS;
5199 #endif
5202 /* Generate the constant 0. */
5204 static rtx
5205 gen_const_vector_0 (enum machine_mode mode)
5207 rtx tem;
5208 rtvec v;
5209 int units, i;
5210 enum machine_mode inner;
5212 units = GET_MODE_NUNITS (mode);
5213 inner = GET_MODE_INNER (mode);
5215 v = rtvec_alloc (units);
5217 /* We need to call this function after we to set CONST0_RTX first. */
5218 if (!CONST0_RTX (inner))
5219 abort ();
5221 for (i = 0; i < units; ++i)
5222 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5224 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5225 return tem;
5228 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5229 all elements are zero. */
5231 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5233 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5234 int i;
5236 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5237 if (RTVEC_ELT (v, i) != inner_zero)
5238 return gen_rtx_raw_CONST_VECTOR (mode, v);
5239 return CONST0_RTX (mode);
5242 /* Create some permanent unique rtl objects shared between all functions.
5243 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5245 void
5246 init_emit_once (int line_numbers)
5248 int i;
5249 enum machine_mode mode;
5250 enum machine_mode double_mode;
5252 /* We need reg_raw_mode, so initialize the modes now. */
5253 init_reg_modes_once ();
5255 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5256 tables. */
5257 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5258 const_int_htab_eq, NULL);
5260 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5261 const_double_htab_eq, NULL);
5263 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5264 mem_attrs_htab_eq, NULL);
5265 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5266 reg_attrs_htab_eq, NULL);
5268 no_line_numbers = ! line_numbers;
5270 /* Compute the word and byte modes. */
5272 byte_mode = VOIDmode;
5273 word_mode = VOIDmode;
5274 double_mode = VOIDmode;
5276 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5277 mode = GET_MODE_WIDER_MODE (mode))
5279 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5280 && byte_mode == VOIDmode)
5281 byte_mode = mode;
5283 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5284 && word_mode == VOIDmode)
5285 word_mode = mode;
5288 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5289 mode = GET_MODE_WIDER_MODE (mode))
5291 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5292 && double_mode == VOIDmode)
5293 double_mode = mode;
5296 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5298 /* Assign register numbers to the globally defined register rtx.
5299 This must be done at runtime because the register number field
5300 is in a union and some compilers can't initialize unions. */
5302 pc_rtx = gen_rtx (PC, VOIDmode);
5303 cc0_rtx = gen_rtx (CC0, VOIDmode);
5304 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5305 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5306 if (hard_frame_pointer_rtx == 0)
5307 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5308 HARD_FRAME_POINTER_REGNUM);
5309 if (arg_pointer_rtx == 0)
5310 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5311 virtual_incoming_args_rtx =
5312 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5313 virtual_stack_vars_rtx =
5314 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5315 virtual_stack_dynamic_rtx =
5316 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5317 virtual_outgoing_args_rtx =
5318 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5319 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5321 /* Initialize RTL for commonly used hard registers. These are
5322 copied into regno_reg_rtx as we begin to compile each function. */
5323 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5324 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5326 #ifdef INIT_EXPANDERS
5327 /* This is to initialize {init|mark|free}_machine_status before the first
5328 call to push_function_context_to. This is needed by the Chill front
5329 end which calls push_function_context_to before the first call to
5330 init_function_start. */
5331 INIT_EXPANDERS;
5332 #endif
5334 /* Create the unique rtx's for certain rtx codes and operand values. */
5336 /* Don't use gen_rtx here since gen_rtx in this case
5337 tries to use these variables. */
5338 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5339 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5340 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5342 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5343 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5344 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5345 else
5346 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5348 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5349 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5350 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5351 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5352 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5353 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5354 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5356 dconsthalf = dconst1;
5357 dconsthalf.exp--;
5359 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5361 /* Initialize mathematical constants for constant folding builtins.
5362 These constants need to be given to at least 160 bits precision. */
5363 real_from_string (&dconstpi,
5364 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5365 real_from_string (&dconste,
5366 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5368 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5370 REAL_VALUE_TYPE *r =
5371 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5373 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5374 mode = GET_MODE_WIDER_MODE (mode))
5375 const_tiny_rtx[i][(int) mode] =
5376 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5378 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5380 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5381 mode = GET_MODE_WIDER_MODE (mode))
5382 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5384 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5385 mode != VOIDmode;
5386 mode = GET_MODE_WIDER_MODE (mode))
5387 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5390 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5391 mode != VOIDmode;
5392 mode = GET_MODE_WIDER_MODE (mode))
5393 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5395 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5396 mode != VOIDmode;
5397 mode = GET_MODE_WIDER_MODE (mode))
5398 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5400 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5401 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5402 const_tiny_rtx[0][i] = const0_rtx;
5404 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5405 if (STORE_FLAG_VALUE == 1)
5406 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5408 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5409 return_address_pointer_rtx
5410 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5411 #endif
5413 #ifdef STATIC_CHAIN_REGNUM
5414 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5416 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5417 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5418 static_chain_incoming_rtx
5419 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5420 else
5421 #endif
5422 static_chain_incoming_rtx = static_chain_rtx;
5423 #endif
5425 #ifdef STATIC_CHAIN
5426 static_chain_rtx = STATIC_CHAIN;
5428 #ifdef STATIC_CHAIN_INCOMING
5429 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5430 #else
5431 static_chain_incoming_rtx = static_chain_rtx;
5432 #endif
5433 #endif
5435 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5436 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5439 /* Query and clear/ restore no_line_numbers. This is used by the
5440 switch / case handling in stmt.c to give proper line numbers in
5441 warnings about unreachable code. */
5444 force_line_numbers (void)
5446 int old = no_line_numbers;
5448 no_line_numbers = 0;
5449 if (old)
5450 force_next_line_note ();
5451 return old;
5454 void
5455 restore_line_number_status (int old_value)
5457 no_line_numbers = old_value;
5460 /* Produce exact duplicate of insn INSN after AFTER.
5461 Care updating of libcall regions if present. */
5464 emit_copy_of_insn_after (rtx insn, rtx after)
5466 rtx new;
5467 rtx note1, note2, link;
5469 switch (GET_CODE (insn))
5471 case INSN:
5472 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5473 break;
5475 case JUMP_INSN:
5476 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5477 break;
5479 case CALL_INSN:
5480 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5481 if (CALL_INSN_FUNCTION_USAGE (insn))
5482 CALL_INSN_FUNCTION_USAGE (new)
5483 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5484 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5485 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5486 break;
5488 default:
5489 abort ();
5492 /* Update LABEL_NUSES. */
5493 mark_jump_label (PATTERN (new), new, 0);
5495 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5497 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5498 make them. */
5499 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5500 if (REG_NOTE_KIND (link) != REG_LABEL)
5502 if (GET_CODE (link) == EXPR_LIST)
5503 REG_NOTES (new)
5504 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5505 XEXP (link, 0),
5506 REG_NOTES (new)));
5507 else
5508 REG_NOTES (new)
5509 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5510 XEXP (link, 0),
5511 REG_NOTES (new)));
5514 /* Fix the libcall sequences. */
5515 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5517 rtx p = new;
5518 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5519 p = PREV_INSN (p);
5520 XEXP (note1, 0) = p;
5521 XEXP (note2, 0) = new;
5523 INSN_CODE (new) = INSN_CODE (insn);
5524 return new;
5527 #include "gt-emit-rtl.h"