* configure: Regenerated.
[official-gcc.git] / gcc / cfgloopmanip.c
blobd84a56de1937864c597db4e20a58b50803528825
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "basic-block.h"
27 #include "cfgloop.h"
28 #include "tree-flow.h"
29 #include "dumpfile.h"
31 static void copy_loops_to (struct loop **, int,
32 struct loop *);
33 static void loop_redirect_edge (edge, basic_block);
34 static void remove_bbs (basic_block *, int);
35 static bool rpe_enum_p (const_basic_block, const void *);
36 static int find_path (edge, basic_block **);
37 static void fix_loop_placements (struct loop *, bool *);
38 static bool fix_bb_placement (basic_block);
39 static void fix_bb_placements (basic_block, bool *);
40 static void unloop (struct loop *, bool *);
42 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
44 /* Checks whether basic block BB is dominated by DATA. */
45 static bool
46 rpe_enum_p (const_basic_block bb, const void *data)
48 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
51 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
53 static void
54 remove_bbs (basic_block *bbs, int nbbs)
56 int i;
58 for (i = 0; i < nbbs; i++)
59 delete_basic_block (bbs[i]);
62 /* Find path -- i.e. the basic blocks dominated by edge E and put them
63 into array BBS, that will be allocated large enough to contain them.
64 E->dest must have exactly one predecessor for this to work (it is
65 easy to achieve and we do not put it here because we do not want to
66 alter anything by this function). The number of basic blocks in the
67 path is returned. */
68 static int
69 find_path (edge e, basic_block **bbs)
71 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
73 /* Find bbs in the path. */
74 *bbs = XNEWVEC (basic_block, n_basic_blocks);
75 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
76 n_basic_blocks, e->dest);
79 /* Fix placement of basic block BB inside loop hierarchy --
80 Let L be a loop to that BB belongs. Then every successor of BB must either
81 1) belong to some superloop of loop L, or
82 2) be a header of loop K such that K->outer is superloop of L
83 Returns true if we had to move BB into other loop to enforce this condition,
84 false if the placement of BB was already correct (provided that placements
85 of its successors are correct). */
86 static bool
87 fix_bb_placement (basic_block bb)
89 edge e;
90 edge_iterator ei;
91 struct loop *loop = current_loops->tree_root, *act;
93 FOR_EACH_EDGE (e, ei, bb->succs)
95 if (e->dest == EXIT_BLOCK_PTR)
96 continue;
98 act = e->dest->loop_father;
99 if (act->header == e->dest)
100 act = loop_outer (act);
102 if (flow_loop_nested_p (loop, act))
103 loop = act;
106 if (loop == bb->loop_father)
107 return false;
109 remove_bb_from_loops (bb);
110 add_bb_to_loop (bb, loop);
112 return true;
115 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
116 of LOOP to that leads at least one exit edge of LOOP, and set it
117 as the immediate superloop of LOOP. Return true if the immediate superloop
118 of LOOP changed. */
120 static bool
121 fix_loop_placement (struct loop *loop)
123 unsigned i;
124 edge e;
125 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
126 struct loop *father = current_loops->tree_root, *act;
127 bool ret = false;
129 FOR_EACH_VEC_ELT (edge, exits, i, e)
131 act = find_common_loop (loop, e->dest->loop_father);
132 if (flow_loop_nested_p (father, act))
133 father = act;
136 if (father != loop_outer (loop))
138 for (act = loop_outer (loop); act != father; act = loop_outer (act))
139 act->num_nodes -= loop->num_nodes;
140 flow_loop_tree_node_remove (loop);
141 flow_loop_tree_node_add (father, loop);
143 /* The exit edges of LOOP no longer exits its original immediate
144 superloops; remove them from the appropriate exit lists. */
145 FOR_EACH_VEC_ELT (edge, exits, i, e)
146 rescan_loop_exit (e, false, false);
148 ret = true;
151 VEC_free (edge, heap, exits);
152 return ret;
155 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
156 enforce condition condition stated in description of fix_bb_placement. We
157 start from basic block FROM that had some of its successors removed, so that
158 his placement no longer has to be correct, and iteratively fix placement of
159 its predecessors that may change if placement of FROM changed. Also fix
160 placement of subloops of FROM->loop_father, that might also be altered due
161 to this change; the condition for them is similar, except that instead of
162 successors we consider edges coming out of the loops.
164 If the changes may invalidate the information about irreducible regions,
165 IRRED_INVALIDATED is set to true. */
167 static void
168 fix_bb_placements (basic_block from,
169 bool *irred_invalidated)
171 sbitmap in_queue;
172 basic_block *queue, *qtop, *qbeg, *qend;
173 struct loop *base_loop, *target_loop;
174 edge e;
176 /* We pass through blocks back-reachable from FROM, testing whether some
177 of their successors moved to outer loop. It may be necessary to
178 iterate several times, but it is finite, as we stop unless we move
179 the basic block up the loop structure. The whole story is a bit
180 more complicated due to presence of subloops, those are moved using
181 fix_loop_placement. */
183 base_loop = from->loop_father;
184 /* If we are already in the outermost loop, the basic blocks cannot be moved
185 outside of it. If FROM is the header of the base loop, it cannot be moved
186 outside of it, either. In both cases, we can end now. */
187 if (base_loop == current_loops->tree_root
188 || from == base_loop->header)
189 return;
191 in_queue = sbitmap_alloc (last_basic_block);
192 sbitmap_zero (in_queue);
193 SET_BIT (in_queue, from->index);
194 /* Prevent us from going out of the base_loop. */
195 SET_BIT (in_queue, base_loop->header->index);
197 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
198 qtop = queue + base_loop->num_nodes + 1;
199 qbeg = queue;
200 qend = queue + 1;
201 *qbeg = from;
203 while (qbeg != qend)
205 edge_iterator ei;
206 from = *qbeg;
207 qbeg++;
208 if (qbeg == qtop)
209 qbeg = queue;
210 RESET_BIT (in_queue, from->index);
212 if (from->loop_father->header == from)
214 /* Subloop header, maybe move the loop upward. */
215 if (!fix_loop_placement (from->loop_father))
216 continue;
217 target_loop = loop_outer (from->loop_father);
219 else
221 /* Ordinary basic block. */
222 if (!fix_bb_placement (from))
223 continue;
224 target_loop = from->loop_father;
227 FOR_EACH_EDGE (e, ei, from->succs)
229 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
230 *irred_invalidated = true;
233 /* Something has changed, insert predecessors into queue. */
234 FOR_EACH_EDGE (e, ei, from->preds)
236 basic_block pred = e->src;
237 struct loop *nca;
239 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
240 *irred_invalidated = true;
242 if (TEST_BIT (in_queue, pred->index))
243 continue;
245 /* If it is subloop, then it either was not moved, or
246 the path up the loop tree from base_loop do not contain
247 it. */
248 nca = find_common_loop (pred->loop_father, base_loop);
249 if (pred->loop_father != base_loop
250 && (nca == base_loop
251 || nca != pred->loop_father))
252 pred = pred->loop_father->header;
253 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
255 /* If PRED is already higher in the loop hierarchy than the
256 TARGET_LOOP to that we moved FROM, the change of the position
257 of FROM does not affect the position of PRED, so there is no
258 point in processing it. */
259 continue;
262 if (TEST_BIT (in_queue, pred->index))
263 continue;
265 /* Schedule the basic block. */
266 *qend = pred;
267 qend++;
268 if (qend == qtop)
269 qend = queue;
270 SET_BIT (in_queue, pred->index);
273 free (in_queue);
274 free (queue);
277 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
278 and update loop structures and dominators. Return true if we were able
279 to remove the path, false otherwise (and nothing is affected then). */
280 bool
281 remove_path (edge e)
283 edge ae;
284 basic_block *rem_bbs, *bord_bbs, from, bb;
285 VEC (basic_block, heap) *dom_bbs;
286 int i, nrem, n_bord_bbs;
287 sbitmap seen;
288 bool irred_invalidated = false;
289 edge_iterator ei;
290 struct loop *l, *f;
292 if (!can_remove_branch_p (e))
293 return false;
295 /* Keep track of whether we need to update information about irreducible
296 regions. This is the case if the removed area is a part of the
297 irreducible region, or if the set of basic blocks that belong to a loop
298 that is inside an irreducible region is changed, or if such a loop is
299 removed. */
300 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
301 irred_invalidated = true;
303 /* We need to check whether basic blocks are dominated by the edge
304 e, but we only have basic block dominators. This is easy to
305 fix -- when e->dest has exactly one predecessor, this corresponds
306 to blocks dominated by e->dest, if not, split the edge. */
307 if (!single_pred_p (e->dest))
308 e = single_pred_edge (split_edge (e));
310 /* It may happen that by removing path we remove one or more loops
311 we belong to. In this case first unloop the loops, then proceed
312 normally. We may assume that e->dest is not a header of any loop,
313 as it now has exactly one predecessor. */
314 for (l = e->src->loop_father; loop_outer (l); l = f)
316 f = loop_outer (l);
317 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
318 unloop (l, &irred_invalidated);
321 /* Identify the path. */
322 nrem = find_path (e, &rem_bbs);
324 n_bord_bbs = 0;
325 bord_bbs = XNEWVEC (basic_block, n_basic_blocks);
326 seen = sbitmap_alloc (last_basic_block);
327 sbitmap_zero (seen);
329 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
330 for (i = 0; i < nrem; i++)
331 SET_BIT (seen, rem_bbs[i]->index);
332 if (!irred_invalidated)
333 FOR_EACH_EDGE (ae, ei, e->src->succs)
334 if (ae != e && ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index)
335 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
336 irred_invalidated = true;
337 for (i = 0; i < nrem; i++)
339 bb = rem_bbs[i];
340 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
341 if (ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index))
343 SET_BIT (seen, ae->dest->index);
344 bord_bbs[n_bord_bbs++] = ae->dest;
346 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
347 irred_invalidated = true;
351 /* Remove the path. */
352 from = e->src;
353 remove_branch (e);
354 dom_bbs = NULL;
356 /* Cancel loops contained in the path. */
357 for (i = 0; i < nrem; i++)
358 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
359 cancel_loop_tree (rem_bbs[i]->loop_father);
361 remove_bbs (rem_bbs, nrem);
362 free (rem_bbs);
364 /* Find blocks whose dominators may be affected. */
365 sbitmap_zero (seen);
366 for (i = 0; i < n_bord_bbs; i++)
368 basic_block ldom;
370 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
371 if (TEST_BIT (seen, bb->index))
372 continue;
373 SET_BIT (seen, bb->index);
375 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
376 ldom;
377 ldom = next_dom_son (CDI_DOMINATORS, ldom))
378 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
379 VEC_safe_push (basic_block, heap, dom_bbs, ldom);
382 free (seen);
384 /* Recount dominators. */
385 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
386 VEC_free (basic_block, heap, dom_bbs);
387 free (bord_bbs);
389 /* Fix placements of basic blocks inside loops and the placement of
390 loops in the loop tree. */
391 fix_bb_placements (from, &irred_invalidated);
392 fix_loop_placements (from->loop_father, &irred_invalidated);
394 if (irred_invalidated
395 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
396 mark_irreducible_loops ();
398 return true;
401 /* Creates place for a new LOOP in loops structure. */
403 static void
404 place_new_loop (struct loop *loop)
406 loop->num = number_of_loops ();
407 VEC_safe_push (loop_p, gc, current_loops->larray, loop);
410 /* Given LOOP structure with filled header and latch, find the body of the
411 corresponding loop and add it to loops tree. Insert the LOOP as a son of
412 outer. */
414 void
415 add_loop (struct loop *loop, struct loop *outer)
417 basic_block *bbs;
418 int i, n;
419 struct loop *subloop;
420 edge e;
421 edge_iterator ei;
423 /* Add it to loop structure. */
424 place_new_loop (loop);
425 flow_loop_tree_node_add (outer, loop);
427 /* Find its nodes. */
428 bbs = XNEWVEC (basic_block, n_basic_blocks);
429 n = get_loop_body_with_size (loop, bbs, n_basic_blocks);
431 for (i = 0; i < n; i++)
433 if (bbs[i]->loop_father == outer)
435 remove_bb_from_loops (bbs[i]);
436 add_bb_to_loop (bbs[i], loop);
437 continue;
440 loop->num_nodes++;
442 /* If we find a direct subloop of OUTER, move it to LOOP. */
443 subloop = bbs[i]->loop_father;
444 if (loop_outer (subloop) == outer
445 && subloop->header == bbs[i])
447 flow_loop_tree_node_remove (subloop);
448 flow_loop_tree_node_add (loop, subloop);
452 /* Update the information about loop exit edges. */
453 for (i = 0; i < n; i++)
455 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
457 rescan_loop_exit (e, false, false);
461 free (bbs);
464 /* Multiply all frequencies in LOOP by NUM/DEN. */
465 void
466 scale_loop_frequencies (struct loop *loop, int num, int den)
468 basic_block *bbs;
470 bbs = get_loop_body (loop);
471 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
472 free (bbs);
475 /* Recompute dominance information for basic blocks outside LOOP. */
477 static void
478 update_dominators_in_loop (struct loop *loop)
480 VEC (basic_block, heap) *dom_bbs = NULL;
481 sbitmap seen;
482 basic_block *body;
483 unsigned i;
485 seen = sbitmap_alloc (last_basic_block);
486 sbitmap_zero (seen);
487 body = get_loop_body (loop);
489 for (i = 0; i < loop->num_nodes; i++)
490 SET_BIT (seen, body[i]->index);
492 for (i = 0; i < loop->num_nodes; i++)
494 basic_block ldom;
496 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
497 ldom;
498 ldom = next_dom_son (CDI_DOMINATORS, ldom))
499 if (!TEST_BIT (seen, ldom->index))
501 SET_BIT (seen, ldom->index);
502 VEC_safe_push (basic_block, heap, dom_bbs, ldom);
506 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
507 free (body);
508 free (seen);
509 VEC_free (basic_block, heap, dom_bbs);
512 /* Creates an if region as shown above. CONDITION is used to create
513 the test for the if.
516 | ------------- -------------
517 | | pred_bb | | pred_bb |
518 | ------------- -------------
519 | | |
520 | | | ENTRY_EDGE
521 | | ENTRY_EDGE V
522 | | ====> -------------
523 | | | cond_bb |
524 | | | CONDITION |
525 | | -------------
526 | V / \
527 | ------------- e_false / \ e_true
528 | | succ_bb | V V
529 | ------------- ----------- -----------
530 | | false_bb | | true_bb |
531 | ----------- -----------
532 | \ /
533 | \ /
534 | V V
535 | -------------
536 | | join_bb |
537 | -------------
538 | | exit_edge (result)
540 | -----------
541 | | succ_bb |
542 | -----------
546 edge
547 create_empty_if_region_on_edge (edge entry_edge, tree condition)
550 basic_block cond_bb, true_bb, false_bb, join_bb;
551 edge e_true, e_false, exit_edge;
552 gimple cond_stmt;
553 tree simple_cond;
554 gimple_stmt_iterator gsi;
556 cond_bb = split_edge (entry_edge);
558 /* Insert condition in cond_bb. */
559 gsi = gsi_last_bb (cond_bb);
560 simple_cond =
561 force_gimple_operand_gsi (&gsi, condition, true, NULL,
562 false, GSI_NEW_STMT);
563 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
564 gsi = gsi_last_bb (cond_bb);
565 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
567 join_bb = split_edge (single_succ_edge (cond_bb));
569 e_true = single_succ_edge (cond_bb);
570 true_bb = split_edge (e_true);
572 e_false = make_edge (cond_bb, join_bb, 0);
573 false_bb = split_edge (e_false);
575 e_true->flags &= ~EDGE_FALLTHRU;
576 e_true->flags |= EDGE_TRUE_VALUE;
577 e_false->flags &= ~EDGE_FALLTHRU;
578 e_false->flags |= EDGE_FALSE_VALUE;
580 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
581 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
582 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
583 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
585 exit_edge = single_succ_edge (join_bb);
587 if (single_pred_p (exit_edge->dest))
588 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
590 return exit_edge;
593 /* create_empty_loop_on_edge
595 | - pred_bb - ------ pred_bb ------
596 | | | | iv0 = initial_value |
597 | -----|----- ---------|-----------
598 | | ______ | entry_edge
599 | | entry_edge / | |
600 | | ====> | -V---V- loop_header -------------
601 | V | | iv_before = phi (iv0, iv_after) |
602 | - succ_bb - | ---|-----------------------------
603 | | | | |
604 | ----------- | ---V--- loop_body ---------------
605 | | | iv_after = iv_before + stride |
606 | | | if (iv_before < upper_bound) |
607 | | ---|--------------\--------------
608 | | | \ exit_e
609 | | V \
610 | | - loop_latch - V- succ_bb -
611 | | | | | |
612 | | /------------- -----------
613 | \ ___ /
615 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
616 that is used before the increment of IV. IV_BEFORE should be used for
617 adding code to the body that uses the IV. OUTER is the outer loop in
618 which the new loop should be inserted.
620 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
621 inserted on the loop entry edge. This implies that this function
622 should be used only when the UPPER_BOUND expression is a loop
623 invariant. */
625 struct loop *
626 create_empty_loop_on_edge (edge entry_edge,
627 tree initial_value,
628 tree stride, tree upper_bound,
629 tree iv,
630 tree *iv_before,
631 tree *iv_after,
632 struct loop *outer)
634 basic_block loop_header, loop_latch, succ_bb, pred_bb;
635 struct loop *loop;
636 gimple_stmt_iterator gsi;
637 gimple_seq stmts;
638 gimple cond_expr;
639 tree exit_test;
640 edge exit_e;
641 int prob;
643 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
645 /* Create header, latch and wire up the loop. */
646 pred_bb = entry_edge->src;
647 loop_header = split_edge (entry_edge);
648 loop_latch = split_edge (single_succ_edge (loop_header));
649 succ_bb = single_succ (loop_latch);
650 make_edge (loop_header, succ_bb, 0);
651 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
653 /* Set immediate dominator information. */
654 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
655 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
656 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
658 /* Initialize a loop structure and put it in a loop hierarchy. */
659 loop = alloc_loop ();
660 loop->header = loop_header;
661 loop->latch = loop_latch;
662 add_loop (loop, outer);
664 /* TODO: Fix frequencies and counts. */
665 prob = REG_BR_PROB_BASE / 2;
667 scale_loop_frequencies (loop, REG_BR_PROB_BASE - prob, REG_BR_PROB_BASE);
669 /* Update dominators. */
670 update_dominators_in_loop (loop);
672 /* Modify edge flags. */
673 exit_e = single_exit (loop);
674 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
675 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
677 /* Construct IV code in loop. */
678 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
679 if (stmts)
681 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
682 gsi_commit_edge_inserts ();
685 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
686 if (stmts)
688 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
689 gsi_commit_edge_inserts ();
692 gsi = gsi_last_bb (loop_header);
693 create_iv (initial_value, stride, iv, loop, &gsi, false,
694 iv_before, iv_after);
696 /* Insert loop exit condition. */
697 cond_expr = gimple_build_cond
698 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
700 exit_test = gimple_cond_lhs (cond_expr);
701 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
702 false, GSI_NEW_STMT);
703 gimple_cond_set_lhs (cond_expr, exit_test);
704 gsi = gsi_last_bb (exit_e->src);
705 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
707 split_block_after_labels (loop_header);
709 return loop;
712 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
713 latch to header and update loop tree and dominators
714 accordingly. Everything between them plus LATCH_EDGE destination must
715 be dominated by HEADER_EDGE destination, and back-reachable from
716 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
717 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
718 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
719 Returns the newly created loop. Frequencies and counts in the new loop
720 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
722 struct loop *
723 loopify (edge latch_edge, edge header_edge,
724 basic_block switch_bb, edge true_edge, edge false_edge,
725 bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
727 basic_block succ_bb = latch_edge->dest;
728 basic_block pred_bb = header_edge->src;
729 struct loop *loop = alloc_loop ();
730 struct loop *outer = loop_outer (succ_bb->loop_father);
731 int freq;
732 gcov_type cnt;
733 edge e;
734 edge_iterator ei;
736 loop->header = header_edge->dest;
737 loop->latch = latch_edge->src;
739 freq = EDGE_FREQUENCY (header_edge);
740 cnt = header_edge->count;
742 /* Redirect edges. */
743 loop_redirect_edge (latch_edge, loop->header);
744 loop_redirect_edge (true_edge, succ_bb);
746 /* During loop versioning, one of the switch_bb edge is already properly
747 set. Do not redirect it again unless redirect_all_edges is true. */
748 if (redirect_all_edges)
750 loop_redirect_edge (header_edge, switch_bb);
751 loop_redirect_edge (false_edge, loop->header);
753 /* Update dominators. */
754 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
755 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
758 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
760 /* Compute new loop. */
761 add_loop (loop, outer);
763 /* Add switch_bb to appropriate loop. */
764 if (switch_bb->loop_father)
765 remove_bb_from_loops (switch_bb);
766 add_bb_to_loop (switch_bb, outer);
768 /* Fix frequencies. */
769 if (redirect_all_edges)
771 switch_bb->frequency = freq;
772 switch_bb->count = cnt;
773 FOR_EACH_EDGE (e, ei, switch_bb->succs)
775 e->count = (switch_bb->count * e->probability) / REG_BR_PROB_BASE;
778 scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
779 scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
780 update_dominators_in_loop (loop);
782 return loop;
785 /* Remove the latch edge of a LOOP and update loops to indicate that
786 the LOOP was removed. After this function, original loop latch will
787 have no successor, which caller is expected to fix somehow.
789 If this may cause the information about irreducible regions to become
790 invalid, IRRED_INVALIDATED is set to true. */
792 static void
793 unloop (struct loop *loop, bool *irred_invalidated)
795 basic_block *body;
796 struct loop *ploop;
797 unsigned i, n;
798 basic_block latch = loop->latch;
799 bool dummy = false;
801 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
802 *irred_invalidated = true;
804 /* This is relatively straightforward. The dominators are unchanged, as
805 loop header dominates loop latch, so the only thing we have to care of
806 is the placement of loops and basic blocks inside the loop tree. We
807 move them all to the loop->outer, and then let fix_bb_placements do
808 its work. */
810 body = get_loop_body (loop);
811 n = loop->num_nodes;
812 for (i = 0; i < n; i++)
813 if (body[i]->loop_father == loop)
815 remove_bb_from_loops (body[i]);
816 add_bb_to_loop (body[i], loop_outer (loop));
818 free(body);
820 while (loop->inner)
822 ploop = loop->inner;
823 flow_loop_tree_node_remove (ploop);
824 flow_loop_tree_node_add (loop_outer (loop), ploop);
827 /* Remove the loop and free its data. */
828 delete_loop (loop);
830 remove_edge (single_succ_edge (latch));
832 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
833 there is an irreducible region inside the cancelled loop, the flags will
834 be still correct. */
835 fix_bb_placements (latch, &dummy);
838 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
839 condition stated in description of fix_loop_placement holds for them.
840 It is used in case when we removed some edges coming out of LOOP, which
841 may cause the right placement of LOOP inside loop tree to change.
843 IRRED_INVALIDATED is set to true if a change in the loop structures might
844 invalidate the information about irreducible regions. */
846 static void
847 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
849 struct loop *outer;
851 while (loop_outer (loop))
853 outer = loop_outer (loop);
854 if (!fix_loop_placement (loop))
855 break;
857 /* Changing the placement of a loop in the loop tree may alter the
858 validity of condition 2) of the description of fix_bb_placement
859 for its preheader, because the successor is the header and belongs
860 to the loop. So call fix_bb_placements to fix up the placement
861 of the preheader and (possibly) of its predecessors. */
862 fix_bb_placements (loop_preheader_edge (loop)->src,
863 irred_invalidated);
864 loop = outer;
868 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
869 created loop into loops structure. */
870 struct loop *
871 duplicate_loop (struct loop *loop, struct loop *target)
873 struct loop *cloop;
874 cloop = alloc_loop ();
875 place_new_loop (cloop);
877 /* Mark the new loop as copy of LOOP. */
878 set_loop_copy (loop, cloop);
880 /* Add it to target. */
881 flow_loop_tree_node_add (target, cloop);
883 return cloop;
886 /* Copies structure of subloops of LOOP into TARGET loop, placing
887 newly created loops into loop tree. */
888 void
889 duplicate_subloops (struct loop *loop, struct loop *target)
891 struct loop *aloop, *cloop;
893 for (aloop = loop->inner; aloop; aloop = aloop->next)
895 cloop = duplicate_loop (aloop, target);
896 duplicate_subloops (aloop, cloop);
900 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
901 into TARGET loop, placing newly created loops into loop tree. */
902 static void
903 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
905 struct loop *aloop;
906 int i;
908 for (i = 0; i < n; i++)
910 aloop = duplicate_loop (copied_loops[i], target);
911 duplicate_subloops (copied_loops[i], aloop);
915 /* Redirects edge E to basic block DEST. */
916 static void
917 loop_redirect_edge (edge e, basic_block dest)
919 if (e->dest == dest)
920 return;
922 redirect_edge_and_branch_force (e, dest);
925 /* Check whether LOOP's body can be duplicated. */
926 bool
927 can_duplicate_loop_p (const struct loop *loop)
929 int ret;
930 basic_block *bbs = get_loop_body (loop);
932 ret = can_copy_bbs_p (bbs, loop->num_nodes);
933 free (bbs);
935 return ret;
938 /* Sets probability and count of edge E to zero. The probability and count
939 is redistributed evenly to the remaining edges coming from E->src. */
941 static void
942 set_zero_probability (edge e)
944 basic_block bb = e->src;
945 edge_iterator ei;
946 edge ae, last = NULL;
947 unsigned n = EDGE_COUNT (bb->succs);
948 gcov_type cnt = e->count, cnt1;
949 unsigned prob = e->probability, prob1;
951 gcc_assert (n > 1);
952 cnt1 = cnt / (n - 1);
953 prob1 = prob / (n - 1);
955 FOR_EACH_EDGE (ae, ei, bb->succs)
957 if (ae == e)
958 continue;
960 ae->probability += prob1;
961 ae->count += cnt1;
962 last = ae;
965 /* Move the rest to one of the edges. */
966 last->probability += prob % (n - 1);
967 last->count += cnt % (n - 1);
969 e->probability = 0;
970 e->count = 0;
973 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
974 loop structure and dominators. E's destination must be LOOP header for
975 this to work, i.e. it must be entry or latch edge of this loop; these are
976 unique, as the loops must have preheaders for this function to work
977 correctly (in case E is latch, the function unrolls the loop, if E is entry
978 edge, it peels the loop). Store edges created by copying ORIG edge from
979 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
980 original LOOP body, the other copies are numbered in order given by control
981 flow through them) into TO_REMOVE array. Returns false if duplication is
982 impossible. */
984 bool
985 duplicate_loop_to_header_edge (struct loop *loop, edge e,
986 unsigned int ndupl, sbitmap wont_exit,
987 edge orig, VEC (edge, heap) **to_remove,
988 int flags)
990 struct loop *target, *aloop;
991 struct loop **orig_loops;
992 unsigned n_orig_loops;
993 basic_block header = loop->header, latch = loop->latch;
994 basic_block *new_bbs, *bbs, *first_active;
995 basic_block new_bb, bb, first_active_latch = NULL;
996 edge ae, latch_edge;
997 edge spec_edges[2], new_spec_edges[2];
998 #define SE_LATCH 0
999 #define SE_ORIG 1
1000 unsigned i, j, n;
1001 int is_latch = (latch == e->src);
1002 int scale_act = 0, *scale_step = NULL, scale_main = 0;
1003 int scale_after_exit = 0;
1004 int p, freq_in, freq_le, freq_out_orig;
1005 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
1006 int add_irreducible_flag;
1007 basic_block place_after;
1008 bitmap bbs_to_scale = NULL;
1009 bitmap_iterator bi;
1011 gcc_assert (e->dest == loop->header);
1012 gcc_assert (ndupl > 0);
1014 if (orig)
1016 /* Orig must be edge out of the loop. */
1017 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1018 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1021 n = loop->num_nodes;
1022 bbs = get_loop_body_in_dom_order (loop);
1023 gcc_assert (bbs[0] == loop->header);
1024 gcc_assert (bbs[n - 1] == loop->latch);
1026 /* Check whether duplication is possible. */
1027 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1029 free (bbs);
1030 return false;
1032 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1034 /* In case we are doing loop peeling and the loop is in the middle of
1035 irreducible region, the peeled copies will be inside it too. */
1036 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1037 gcc_assert (!is_latch || !add_irreducible_flag);
1039 /* Find edge from latch. */
1040 latch_edge = loop_latch_edge (loop);
1042 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1044 /* Calculate coefficients by that we have to scale frequencies
1045 of duplicated loop bodies. */
1046 freq_in = header->frequency;
1047 freq_le = EDGE_FREQUENCY (latch_edge);
1048 if (freq_in == 0)
1049 freq_in = 1;
1050 if (freq_in < freq_le)
1051 freq_in = freq_le;
1052 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
1053 if (freq_out_orig > freq_in - freq_le)
1054 freq_out_orig = freq_in - freq_le;
1055 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
1056 prob_pass_wont_exit =
1057 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
1059 if (orig
1060 && REG_BR_PROB_BASE - orig->probability != 0)
1062 /* The blocks that are dominated by a removed exit edge ORIG have
1063 frequencies scaled by this. */
1064 scale_after_exit = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE,
1065 REG_BR_PROB_BASE - orig->probability);
1066 bbs_to_scale = BITMAP_ALLOC (NULL);
1067 for (i = 0; i < n; i++)
1069 if (bbs[i] != orig->src
1070 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1071 bitmap_set_bit (bbs_to_scale, i);
1075 scale_step = XNEWVEC (int, ndupl);
1077 for (i = 1; i <= ndupl; i++)
1078 scale_step[i - 1] = TEST_BIT (wont_exit, i)
1079 ? prob_pass_wont_exit
1080 : prob_pass_thru;
1082 /* Complete peeling is special as the probability of exit in last
1083 copy becomes 1. */
1084 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1086 int wanted_freq = EDGE_FREQUENCY (e);
1088 if (wanted_freq > freq_in)
1089 wanted_freq = freq_in;
1091 gcc_assert (!is_latch);
1092 /* First copy has frequency of incoming edge. Each subsequent
1093 frequency should be reduced by prob_pass_wont_exit. Caller
1094 should've managed the flags so all except for original loop
1095 has won't exist set. */
1096 scale_act = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
1097 /* Now simulate the duplication adjustments and compute header
1098 frequency of the last copy. */
1099 for (i = 0; i < ndupl; i++)
1100 wanted_freq = RDIV (wanted_freq * scale_step[i], REG_BR_PROB_BASE);
1101 scale_main = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
1103 else if (is_latch)
1105 prob_pass_main = TEST_BIT (wont_exit, 0)
1106 ? prob_pass_wont_exit
1107 : prob_pass_thru;
1108 p = prob_pass_main;
1109 scale_main = REG_BR_PROB_BASE;
1110 for (i = 0; i < ndupl; i++)
1112 scale_main += p;
1113 p = RDIV (p * scale_step[i], REG_BR_PROB_BASE);
1115 scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main);
1116 scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE);
1118 else
1120 scale_main = REG_BR_PROB_BASE;
1121 for (i = 0; i < ndupl; i++)
1122 scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE);
1123 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
1125 for (i = 0; i < ndupl; i++)
1126 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
1127 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
1128 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
1131 /* Loop the new bbs will belong to. */
1132 target = e->src->loop_father;
1134 /* Original loops. */
1135 n_orig_loops = 0;
1136 for (aloop = loop->inner; aloop; aloop = aloop->next)
1137 n_orig_loops++;
1138 orig_loops = XNEWVEC (struct loop *, n_orig_loops);
1139 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1140 orig_loops[i] = aloop;
1142 set_loop_copy (loop, target);
1144 first_active = XNEWVEC (basic_block, n);
1145 if (is_latch)
1147 memcpy (first_active, bbs, n * sizeof (basic_block));
1148 first_active_latch = latch;
1151 spec_edges[SE_ORIG] = orig;
1152 spec_edges[SE_LATCH] = latch_edge;
1154 place_after = e->src;
1155 for (j = 0; j < ndupl; j++)
1157 /* Copy loops. */
1158 copy_loops_to (orig_loops, n_orig_loops, target);
1160 /* Copy bbs. */
1161 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1162 place_after);
1163 place_after = new_spec_edges[SE_LATCH]->src;
1165 if (flags & DLTHE_RECORD_COPY_NUMBER)
1166 for (i = 0; i < n; i++)
1168 gcc_assert (!new_bbs[i]->aux);
1169 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1172 /* Note whether the blocks and edges belong to an irreducible loop. */
1173 if (add_irreducible_flag)
1175 for (i = 0; i < n; i++)
1176 new_bbs[i]->flags |= BB_DUPLICATED;
1177 for (i = 0; i < n; i++)
1179 edge_iterator ei;
1180 new_bb = new_bbs[i];
1181 if (new_bb->loop_father == target)
1182 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1184 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1185 if ((ae->dest->flags & BB_DUPLICATED)
1186 && (ae->src->loop_father == target
1187 || ae->dest->loop_father == target))
1188 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1190 for (i = 0; i < n; i++)
1191 new_bbs[i]->flags &= ~BB_DUPLICATED;
1194 /* Redirect the special edges. */
1195 if (is_latch)
1197 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1198 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1199 loop->header);
1200 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1201 latch = loop->latch = new_bbs[n - 1];
1202 e = latch_edge = new_spec_edges[SE_LATCH];
1204 else
1206 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1207 loop->header);
1208 redirect_edge_and_branch_force (e, new_bbs[0]);
1209 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1210 e = new_spec_edges[SE_LATCH];
1213 /* Record exit edge in this copy. */
1214 if (orig && TEST_BIT (wont_exit, j + 1))
1216 if (to_remove)
1217 VEC_safe_push (edge, heap, *to_remove, new_spec_edges[SE_ORIG]);
1218 set_zero_probability (new_spec_edges[SE_ORIG]);
1220 /* Scale the frequencies of the blocks dominated by the exit. */
1221 if (bbs_to_scale)
1223 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1225 scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
1226 REG_BR_PROB_BASE);
1231 /* Record the first copy in the control flow order if it is not
1232 the original loop (i.e. in case of peeling). */
1233 if (!first_active_latch)
1235 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1236 first_active_latch = new_bbs[n - 1];
1239 /* Set counts and frequencies. */
1240 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1242 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1243 scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE);
1246 free (new_bbs);
1247 free (orig_loops);
1249 /* Record the exit edge in the original loop body, and update the frequencies. */
1250 if (orig && TEST_BIT (wont_exit, 0))
1252 if (to_remove)
1253 VEC_safe_push (edge, heap, *to_remove, orig);
1254 set_zero_probability (orig);
1256 /* Scale the frequencies of the blocks dominated by the exit. */
1257 if (bbs_to_scale)
1259 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1261 scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
1262 REG_BR_PROB_BASE);
1267 /* Update the original loop. */
1268 if (!is_latch)
1269 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1270 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1272 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1273 free (scale_step);
1276 /* Update dominators of outer blocks if affected. */
1277 for (i = 0; i < n; i++)
1279 basic_block dominated, dom_bb;
1280 VEC (basic_block, heap) *dom_bbs;
1281 unsigned j;
1283 bb = bbs[i];
1284 bb->aux = 0;
1286 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1287 FOR_EACH_VEC_ELT (basic_block, dom_bbs, j, dominated)
1289 if (flow_bb_inside_loop_p (loop, dominated))
1290 continue;
1291 dom_bb = nearest_common_dominator (
1292 CDI_DOMINATORS, first_active[i], first_active_latch);
1293 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1295 VEC_free (basic_block, heap, dom_bbs);
1297 free (first_active);
1299 free (bbs);
1300 BITMAP_FREE (bbs_to_scale);
1302 return true;
1305 /* A callback for make_forwarder block, to redirect all edges except for
1306 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1307 whether to redirect it. */
1309 edge mfb_kj_edge;
1310 bool
1311 mfb_keep_just (edge e)
1313 return e != mfb_kj_edge;
1316 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1318 static bool
1319 has_preds_from_loop (basic_block block, struct loop *loop)
1321 edge e;
1322 edge_iterator ei;
1324 FOR_EACH_EDGE (e, ei, block->preds)
1325 if (e->src->loop_father == loop)
1326 return true;
1327 return false;
1330 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1331 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1332 entry; otherwise we also force preheader block to have only one successor.
1333 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1334 to be a fallthru predecessor to the loop header and to have only
1335 predecessors from outside of the loop.
1336 The function also updates dominators. */
1338 basic_block
1339 create_preheader (struct loop *loop, int flags)
1341 edge e, fallthru;
1342 basic_block dummy;
1343 int nentry = 0;
1344 bool irred = false;
1345 bool latch_edge_was_fallthru;
1346 edge one_succ_pred = NULL, single_entry = NULL;
1347 edge_iterator ei;
1349 FOR_EACH_EDGE (e, ei, loop->header->preds)
1351 if (e->src == loop->latch)
1352 continue;
1353 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1354 nentry++;
1355 single_entry = e;
1356 if (single_succ_p (e->src))
1357 one_succ_pred = e;
1359 gcc_assert (nentry);
1360 if (nentry == 1)
1362 bool need_forwarder_block = false;
1364 /* We do not allow entry block to be the loop preheader, since we
1365 cannot emit code there. */
1366 if (single_entry->src == ENTRY_BLOCK_PTR)
1367 need_forwarder_block = true;
1368 else
1370 /* If we want simple preheaders, also force the preheader to have
1371 just a single successor. */
1372 if ((flags & CP_SIMPLE_PREHEADERS)
1373 && !single_succ_p (single_entry->src))
1374 need_forwarder_block = true;
1375 /* If we want fallthru preheaders, also create forwarder block when
1376 preheader ends with a jump or has predecessors from loop. */
1377 else if ((flags & CP_FALLTHRU_PREHEADERS)
1378 && (JUMP_P (BB_END (single_entry->src))
1379 || has_preds_from_loop (single_entry->src, loop)))
1380 need_forwarder_block = true;
1382 if (! need_forwarder_block)
1383 return NULL;
1386 mfb_kj_edge = loop_latch_edge (loop);
1387 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1388 fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1389 dummy = fallthru->src;
1390 loop->header = fallthru->dest;
1392 /* Try to be clever in placing the newly created preheader. The idea is to
1393 avoid breaking any "fallthruness" relationship between blocks.
1395 The preheader was created just before the header and all incoming edges
1396 to the header were redirected to the preheader, except the latch edge.
1397 So the only problematic case is when this latch edge was a fallthru
1398 edge: it is not anymore after the preheader creation so we have broken
1399 the fallthruness. We're therefore going to look for a better place. */
1400 if (latch_edge_was_fallthru)
1402 if (one_succ_pred)
1403 e = one_succ_pred;
1404 else
1405 e = EDGE_PRED (dummy, 0);
1407 move_block_after (dummy, e->src);
1410 if (irred)
1412 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1413 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1416 if (dump_file)
1417 fprintf (dump_file, "Created preheader block for loop %i\n",
1418 loop->num);
1420 if (flags & CP_FALLTHRU_PREHEADERS)
1421 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1422 && !JUMP_P (BB_END (dummy)));
1424 return dummy;
1427 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1429 void
1430 create_preheaders (int flags)
1432 loop_iterator li;
1433 struct loop *loop;
1435 if (!current_loops)
1436 return;
1438 FOR_EACH_LOOP (li, loop, 0)
1439 create_preheader (loop, flags);
1440 loops_state_set (LOOPS_HAVE_PREHEADERS);
1443 /* Forces all loop latches to have only single successor. */
1445 void
1446 force_single_succ_latches (void)
1448 loop_iterator li;
1449 struct loop *loop;
1450 edge e;
1452 FOR_EACH_LOOP (li, loop, 0)
1454 if (loop->latch != loop->header && single_succ_p (loop->latch))
1455 continue;
1457 e = find_edge (loop->latch, loop->header);
1459 split_edge (e);
1461 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1464 /* This function is called from loop_version. It splits the entry edge
1465 of the loop we want to version, adds the versioning condition, and
1466 adjust the edges to the two versions of the loop appropriately.
1467 e is an incoming edge. Returns the basic block containing the
1468 condition.
1470 --- edge e ---- > [second_head]
1472 Split it and insert new conditional expression and adjust edges.
1474 --- edge e ---> [cond expr] ---> [first_head]
1476 +---------> [second_head]
1478 THEN_PROB is the probability of then branch of the condition. */
1480 static basic_block
1481 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1482 edge e, void *cond_expr, unsigned then_prob)
1484 basic_block new_head = NULL;
1485 edge e1;
1487 gcc_assert (e->dest == second_head);
1489 /* Split edge 'e'. This will create a new basic block, where we can
1490 insert conditional expr. */
1491 new_head = split_edge (e);
1493 lv_add_condition_to_bb (first_head, second_head, new_head,
1494 cond_expr);
1496 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1497 e = single_succ_edge (new_head);
1498 e1 = make_edge (new_head, first_head,
1499 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1500 e1->probability = then_prob;
1501 e->probability = REG_BR_PROB_BASE - then_prob;
1502 e1->count = RDIV (e->count * e1->probability, REG_BR_PROB_BASE);
1503 e->count = RDIV (e->count * e->probability, REG_BR_PROB_BASE);
1505 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1506 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1508 /* Adjust loop header phi nodes. */
1509 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1511 return new_head;
1514 /* Main entry point for Loop Versioning transformation.
1516 This transformation given a condition and a loop, creates
1517 -if (condition) { loop_copy1 } else { loop_copy2 },
1518 where loop_copy1 is the loop transformed in one way, and loop_copy2
1519 is the loop transformed in another way (or unchanged). 'condition'
1520 may be a run time test for things that were not resolved by static
1521 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1523 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1524 is the ratio by that the frequencies in the original loop should
1525 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1526 new loop should be scaled.
1528 If PLACE_AFTER is true, we place the new loop after LOOP in the
1529 instruction stream, otherwise it is placed before LOOP. */
1531 struct loop *
1532 loop_version (struct loop *loop,
1533 void *cond_expr, basic_block *condition_bb,
1534 unsigned then_prob, unsigned then_scale, unsigned else_scale,
1535 bool place_after)
1537 basic_block first_head, second_head;
1538 edge entry, latch_edge, true_edge, false_edge;
1539 int irred_flag;
1540 struct loop *nloop;
1541 basic_block cond_bb;
1543 /* Record entry and latch edges for the loop */
1544 entry = loop_preheader_edge (loop);
1545 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1546 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1548 /* Note down head of loop as first_head. */
1549 first_head = entry->dest;
1551 /* Duplicate loop. */
1552 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1553 NULL, NULL, NULL, 0))
1555 entry->flags |= irred_flag;
1556 return NULL;
1559 /* After duplication entry edge now points to new loop head block.
1560 Note down new head as second_head. */
1561 second_head = entry->dest;
1563 /* Split loop entry edge and insert new block with cond expr. */
1564 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1565 entry, cond_expr, then_prob);
1566 if (condition_bb)
1567 *condition_bb = cond_bb;
1569 if (!cond_bb)
1571 entry->flags |= irred_flag;
1572 return NULL;
1575 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1577 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1578 nloop = loopify (latch_edge,
1579 single_pred_edge (get_bb_copy (loop->header)),
1580 cond_bb, true_edge, false_edge,
1581 false /* Do not redirect all edges. */,
1582 then_scale, else_scale);
1584 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1585 lv_flush_pending_stmts (latch_edge);
1587 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1588 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1589 lv_flush_pending_stmts (false_edge);
1590 /* Adjust irreducible flag. */
1591 if (irred_flag)
1593 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1594 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1595 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1596 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1599 if (place_after)
1601 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1602 unsigned i;
1604 after = loop->latch;
1606 for (i = 0; i < nloop->num_nodes; i++)
1608 move_block_after (bbs[i], after);
1609 after = bbs[i];
1611 free (bbs);
1614 /* At this point condition_bb is loop preheader with two successors,
1615 first_head and second_head. Make sure that loop preheader has only
1616 one successor. */
1617 split_edge (loop_preheader_edge (loop));
1618 split_edge (loop_preheader_edge (nloop));
1620 return nloop;
1623 /* The structure of loops might have changed. Some loops might get removed
1624 (and their headers and latches were set to NULL), loop exists might get
1625 removed (thus the loop nesting may be wrong), and some blocks and edges
1626 were changed (so the information about bb --> loop mapping does not have
1627 to be correct). But still for the remaining loops the header dominates
1628 the latch, and loops did not get new subloops (new loops might possibly
1629 get created, but we are not interested in them). Fix up the mess.
1631 If CHANGED_BBS is not NULL, basic blocks whose loop has changed are
1632 marked in it. */
1634 void
1635 fix_loop_structure (bitmap changed_bbs)
1637 basic_block bb;
1638 struct loop *loop, *ploop;
1639 loop_iterator li;
1640 bool record_exits = false;
1641 struct loop **superloop = XNEWVEC (struct loop *, number_of_loops ());
1643 /* We need exact and fast dominance info to be available. */
1644 gcc_assert (dom_info_state (CDI_DOMINATORS) == DOM_OK);
1646 /* Remove the old bb -> loop mapping. Remember the depth of the blocks in
1647 the loop hierarchy, so that we can recognize blocks whose loop nesting
1648 relationship has changed. */
1649 FOR_EACH_BB (bb)
1651 if (changed_bbs)
1652 bb->aux = (void *) (size_t) loop_depth (bb->loop_father);
1653 bb->loop_father = current_loops->tree_root;
1656 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1658 release_recorded_exits ();
1659 record_exits = true;
1662 /* Remove the dead loops from structures. We start from the innermost
1663 loops, so that when we remove the loops, we know that the loops inside
1664 are preserved, and do not waste time relinking loops that will be
1665 removed later. */
1666 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1668 if (loop->header)
1669 continue;
1671 while (loop->inner)
1673 ploop = loop->inner;
1674 flow_loop_tree_node_remove (ploop);
1675 flow_loop_tree_node_add (loop_outer (loop), ploop);
1678 /* Remove the loop and free its data. */
1679 delete_loop (loop);
1682 /* Rescan the bodies of loops, starting from the outermost ones. We assume
1683 that no optimization interchanges the order of the loops, i.e., it cannot
1684 happen that L1 was superloop of L2 before and it is subloop of L2 now
1685 (without explicitly updating loop information). At the same time, we also
1686 determine the new loop structure. */
1687 current_loops->tree_root->num_nodes = n_basic_blocks;
1688 FOR_EACH_LOOP (li, loop, 0)
1690 superloop[loop->num] = loop->header->loop_father;
1691 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
1694 /* Now fix the loop nesting. */
1695 FOR_EACH_LOOP (li, loop, 0)
1697 ploop = superloop[loop->num];
1698 if (ploop != loop_outer (loop))
1700 flow_loop_tree_node_remove (loop);
1701 flow_loop_tree_node_add (ploop, loop);
1704 free (superloop);
1706 /* Mark the blocks whose loop has changed. */
1707 if (changed_bbs)
1709 FOR_EACH_BB (bb)
1711 if ((void *) (size_t) loop_depth (bb->loop_father) != bb->aux)
1712 bitmap_set_bit (changed_bbs, bb->index);
1714 bb->aux = NULL;
1718 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS))
1719 create_preheaders (CP_SIMPLE_PREHEADERS);
1721 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1722 force_single_succ_latches ();
1724 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1725 mark_irreducible_loops ();
1727 if (record_exits)
1728 record_loop_exits ();
1730 loops_state_clear (LOOPS_NEED_FIXUP);
1732 #ifdef ENABLE_CHECKING
1733 verify_loop_structure ();
1734 #endif