2011-11-06 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / gcc / emit-rtl.c
blobc2bc56b9758f7fb0104b9f0637e2bb8e1fc3fc4c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 /* Middle-to-low level generation of rtx code and insns.
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
35 use. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "diagnostic-core.h"
42 #include "rtl.h"
43 #include "tree.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "expr.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "hashtab.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58 #include "tree-pass.h"
59 #include "df.h"
60 #include "params.h"
61 #include "target.h"
62 #include "tree-flow.h"
64 struct target_rtl default_target_rtl;
65 #if SWITCHABLE_TARGET
66 struct target_rtl *this_target_rtl = &default_target_rtl;
67 #endif
69 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
71 /* Commonly used modes. */
73 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
74 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
75 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
76 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
78 /* Datastructures maintained for currently processed function in RTL form. */
80 struct rtl_data x_rtl;
82 /* Indexed by pseudo register number, gives the rtx for that pseudo.
83 Allocated in parallel with regno_pointer_align.
84 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
85 with length attribute nested in top level structures. */
87 rtx * regno_reg_rtx;
89 /* This is *not* reset after each function. It gives each CODE_LABEL
90 in the entire compilation a unique label number. */
92 static GTY(()) int label_num = 1;
94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
97 is set only for MODE_INT and MODE_VECTOR_INT modes. */
99 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
101 rtx const_true_rtx;
103 REAL_VALUE_TYPE dconst0;
104 REAL_VALUE_TYPE dconst1;
105 REAL_VALUE_TYPE dconst2;
106 REAL_VALUE_TYPE dconstm1;
107 REAL_VALUE_TYPE dconsthalf;
109 /* Record fixed-point constant 0 and 1. */
110 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
111 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
113 /* We make one copy of (const_int C) where C is in
114 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
115 to save space during the compilation and simplify comparisons of
116 integers. */
118 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
120 /* A hash table storing CONST_INTs whose absolute value is greater
121 than MAX_SAVED_CONST_INT. */
123 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
124 htab_t const_int_htab;
126 /* A hash table storing memory attribute structures. */
127 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
128 htab_t mem_attrs_htab;
130 /* A hash table storing register attribute structures. */
131 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
132 htab_t reg_attrs_htab;
134 /* A hash table storing all CONST_DOUBLEs. */
135 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
136 htab_t const_double_htab;
138 /* A hash table storing all CONST_FIXEDs. */
139 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
140 htab_t const_fixed_htab;
142 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
143 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
144 #define last_location (crtl->emit.x_last_location)
145 #define first_label_num (crtl->emit.x_first_label_num)
147 static rtx make_call_insn_raw (rtx);
148 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
149 static void set_used_decls (tree);
150 static void mark_label_nuses (rtx);
151 static hashval_t const_int_htab_hash (const void *);
152 static int const_int_htab_eq (const void *, const void *);
153 static hashval_t const_double_htab_hash (const void *);
154 static int const_double_htab_eq (const void *, const void *);
155 static rtx lookup_const_double (rtx);
156 static hashval_t const_fixed_htab_hash (const void *);
157 static int const_fixed_htab_eq (const void *, const void *);
158 static rtx lookup_const_fixed (rtx);
159 static hashval_t mem_attrs_htab_hash (const void *);
160 static int mem_attrs_htab_eq (const void *, const void *);
161 static hashval_t reg_attrs_htab_hash (const void *);
162 static int reg_attrs_htab_eq (const void *, const void *);
163 static reg_attrs *get_reg_attrs (tree, int);
164 static rtx gen_const_vector (enum machine_mode, int);
165 static void copy_rtx_if_shared_1 (rtx *orig);
167 /* Probability of the conditional branch currently proceeded by try_split.
168 Set to -1 otherwise. */
169 int split_branch_probability = -1;
171 /* Returns a hash code for X (which is a really a CONST_INT). */
173 static hashval_t
174 const_int_htab_hash (const void *x)
176 return (hashval_t) INTVAL ((const_rtx) x);
179 /* Returns nonzero if the value represented by X (which is really a
180 CONST_INT) is the same as that given by Y (which is really a
181 HOST_WIDE_INT *). */
183 static int
184 const_int_htab_eq (const void *x, const void *y)
186 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
189 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
190 static hashval_t
191 const_double_htab_hash (const void *x)
193 const_rtx const value = (const_rtx) x;
194 hashval_t h;
196 if (GET_MODE (value) == VOIDmode)
197 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
198 else
200 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
201 /* MODE is used in the comparison, so it should be in the hash. */
202 h ^= GET_MODE (value);
204 return h;
207 /* Returns nonzero if the value represented by X (really a ...)
208 is the same as that represented by Y (really a ...) */
209 static int
210 const_double_htab_eq (const void *x, const void *y)
212 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
214 if (GET_MODE (a) != GET_MODE (b))
215 return 0;
216 if (GET_MODE (a) == VOIDmode)
217 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
218 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
219 else
220 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
221 CONST_DOUBLE_REAL_VALUE (b));
224 /* Returns a hash code for X (which is really a CONST_FIXED). */
226 static hashval_t
227 const_fixed_htab_hash (const void *x)
229 const_rtx const value = (const_rtx) x;
230 hashval_t h;
232 h = fixed_hash (CONST_FIXED_VALUE (value));
233 /* MODE is used in the comparison, so it should be in the hash. */
234 h ^= GET_MODE (value);
235 return h;
238 /* Returns nonzero if the value represented by X (really a ...)
239 is the same as that represented by Y (really a ...). */
241 static int
242 const_fixed_htab_eq (const void *x, const void *y)
244 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
246 if (GET_MODE (a) != GET_MODE (b))
247 return 0;
248 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
251 /* Returns a hash code for X (which is a really a mem_attrs *). */
253 static hashval_t
254 mem_attrs_htab_hash (const void *x)
256 const mem_attrs *const p = (const mem_attrs *) x;
258 return (p->alias ^ (p->align * 1000)
259 ^ (p->addrspace * 4000)
260 ^ ((p->offset_known_p ? p->offset : 0) * 50000)
261 ^ ((p->size_known_p ? p->size : 0) * 2500000)
262 ^ (size_t) iterative_hash_expr (p->expr, 0));
265 /* Return true if the given memory attributes are equal. */
267 static bool
268 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
270 return (p->alias == q->alias
271 && p->offset_known_p == q->offset_known_p
272 && (!p->offset_known_p || p->offset == q->offset)
273 && p->size_known_p == q->size_known_p
274 && (!p->size_known_p || p->size == q->size)
275 && p->align == q->align
276 && p->addrspace == q->addrspace
277 && (p->expr == q->expr
278 || (p->expr != NULL_TREE && q->expr != NULL_TREE
279 && operand_equal_p (p->expr, q->expr, 0))));
282 /* Returns nonzero if the value represented by X (which is really a
283 mem_attrs *) is the same as that given by Y (which is also really a
284 mem_attrs *). */
286 static int
287 mem_attrs_htab_eq (const void *x, const void *y)
289 return mem_attrs_eq_p ((const mem_attrs *) x, (const mem_attrs *) y);
292 /* Set MEM's memory attributes so that they are the same as ATTRS. */
294 static void
295 set_mem_attrs (rtx mem, mem_attrs *attrs)
297 void **slot;
299 /* If everything is the default, we can just clear the attributes. */
300 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
302 MEM_ATTRS (mem) = 0;
303 return;
306 slot = htab_find_slot (mem_attrs_htab, attrs, INSERT);
307 if (*slot == 0)
309 *slot = ggc_alloc_mem_attrs ();
310 memcpy (*slot, attrs, sizeof (mem_attrs));
313 MEM_ATTRS (mem) = (mem_attrs *) *slot;
316 /* Returns a hash code for X (which is a really a reg_attrs *). */
318 static hashval_t
319 reg_attrs_htab_hash (const void *x)
321 const reg_attrs *const p = (const reg_attrs *) x;
323 return ((p->offset * 1000) ^ (intptr_t) p->decl);
326 /* Returns nonzero if the value represented by X (which is really a
327 reg_attrs *) is the same as that given by Y (which is also really a
328 reg_attrs *). */
330 static int
331 reg_attrs_htab_eq (const void *x, const void *y)
333 const reg_attrs *const p = (const reg_attrs *) x;
334 const reg_attrs *const q = (const reg_attrs *) y;
336 return (p->decl == q->decl && p->offset == q->offset);
338 /* Allocate a new reg_attrs structure and insert it into the hash table if
339 one identical to it is not already in the table. We are doing this for
340 MEM of mode MODE. */
342 static reg_attrs *
343 get_reg_attrs (tree decl, int offset)
345 reg_attrs attrs;
346 void **slot;
348 /* If everything is the default, we can just return zero. */
349 if (decl == 0 && offset == 0)
350 return 0;
352 attrs.decl = decl;
353 attrs.offset = offset;
355 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
356 if (*slot == 0)
358 *slot = ggc_alloc_reg_attrs ();
359 memcpy (*slot, &attrs, sizeof (reg_attrs));
362 return (reg_attrs *) *slot;
366 #if !HAVE_blockage
367 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
368 across this insn. */
371 gen_blockage (void)
373 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
374 MEM_VOLATILE_P (x) = true;
375 return x;
377 #endif
380 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
381 don't attempt to share with the various global pieces of rtl (such as
382 frame_pointer_rtx). */
385 gen_raw_REG (enum machine_mode mode, int regno)
387 rtx x = gen_rtx_raw_REG (mode, regno);
388 ORIGINAL_REGNO (x) = regno;
389 return x;
392 /* There are some RTL codes that require special attention; the generation
393 functions do the raw handling. If you add to this list, modify
394 special_rtx in gengenrtl.c as well. */
397 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
399 void **slot;
401 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
402 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
404 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
405 if (const_true_rtx && arg == STORE_FLAG_VALUE)
406 return const_true_rtx;
407 #endif
409 /* Look up the CONST_INT in the hash table. */
410 slot = htab_find_slot_with_hash (const_int_htab, &arg,
411 (hashval_t) arg, INSERT);
412 if (*slot == 0)
413 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
415 return (rtx) *slot;
419 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
421 return GEN_INT (trunc_int_for_mode (c, mode));
424 /* CONST_DOUBLEs might be created from pairs of integers, or from
425 REAL_VALUE_TYPEs. Also, their length is known only at run time,
426 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
428 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
429 hash table. If so, return its counterpart; otherwise add it
430 to the hash table and return it. */
431 static rtx
432 lookup_const_double (rtx real)
434 void **slot = htab_find_slot (const_double_htab, real, INSERT);
435 if (*slot == 0)
436 *slot = real;
438 return (rtx) *slot;
441 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
442 VALUE in mode MODE. */
444 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
446 rtx real = rtx_alloc (CONST_DOUBLE);
447 PUT_MODE (real, mode);
449 real->u.rv = value;
451 return lookup_const_double (real);
454 /* Determine whether FIXED, a CONST_FIXED, already exists in the
455 hash table. If so, return its counterpart; otherwise add it
456 to the hash table and return it. */
458 static rtx
459 lookup_const_fixed (rtx fixed)
461 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
462 if (*slot == 0)
463 *slot = fixed;
465 return (rtx) *slot;
468 /* Return a CONST_FIXED rtx for a fixed-point value specified by
469 VALUE in mode MODE. */
472 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
474 rtx fixed = rtx_alloc (CONST_FIXED);
475 PUT_MODE (fixed, mode);
477 fixed->u.fv = value;
479 return lookup_const_fixed (fixed);
482 /* Constructs double_int from rtx CST. */
484 double_int
485 rtx_to_double_int (const_rtx cst)
487 double_int r;
489 if (CONST_INT_P (cst))
490 r = shwi_to_double_int (INTVAL (cst));
491 else if (CONST_DOUBLE_P (cst) && GET_MODE (cst) == VOIDmode)
493 r.low = CONST_DOUBLE_LOW (cst);
494 r.high = CONST_DOUBLE_HIGH (cst);
496 else
497 gcc_unreachable ();
499 return r;
503 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
504 a double_int. */
507 immed_double_int_const (double_int i, enum machine_mode mode)
509 return immed_double_const (i.low, i.high, mode);
512 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
513 of ints: I0 is the low-order word and I1 is the high-order word.
514 Do not use this routine for non-integer modes; convert to
515 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
518 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
520 rtx value;
521 unsigned int i;
523 /* There are the following cases (note that there are no modes with
524 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
526 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
527 gen_int_mode.
528 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
529 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
530 from copies of the sign bit, and sign of i0 and i1 are the same), then
531 we return a CONST_INT for i0.
532 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
533 if (mode != VOIDmode)
535 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
536 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
537 /* We can get a 0 for an error mark. */
538 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
539 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
541 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
542 return gen_int_mode (i0, mode);
544 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
547 /* If this integer fits in one word, return a CONST_INT. */
548 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
549 return GEN_INT (i0);
551 /* We use VOIDmode for integers. */
552 value = rtx_alloc (CONST_DOUBLE);
553 PUT_MODE (value, VOIDmode);
555 CONST_DOUBLE_LOW (value) = i0;
556 CONST_DOUBLE_HIGH (value) = i1;
558 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
559 XWINT (value, i) = 0;
561 return lookup_const_double (value);
565 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
567 /* In case the MD file explicitly references the frame pointer, have
568 all such references point to the same frame pointer. This is
569 used during frame pointer elimination to distinguish the explicit
570 references to these registers from pseudos that happened to be
571 assigned to them.
573 If we have eliminated the frame pointer or arg pointer, we will
574 be using it as a normal register, for example as a spill
575 register. In such cases, we might be accessing it in a mode that
576 is not Pmode and therefore cannot use the pre-allocated rtx.
578 Also don't do this when we are making new REGs in reload, since
579 we don't want to get confused with the real pointers. */
581 if (mode == Pmode && !reload_in_progress)
583 if (regno == FRAME_POINTER_REGNUM
584 && (!reload_completed || frame_pointer_needed))
585 return frame_pointer_rtx;
586 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
587 if (regno == HARD_FRAME_POINTER_REGNUM
588 && (!reload_completed || frame_pointer_needed))
589 return hard_frame_pointer_rtx;
590 #endif
591 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
592 if (regno == ARG_POINTER_REGNUM)
593 return arg_pointer_rtx;
594 #endif
595 #ifdef RETURN_ADDRESS_POINTER_REGNUM
596 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
597 return return_address_pointer_rtx;
598 #endif
599 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
600 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
601 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
602 return pic_offset_table_rtx;
603 if (regno == STACK_POINTER_REGNUM)
604 return stack_pointer_rtx;
607 #if 0
608 /* If the per-function register table has been set up, try to re-use
609 an existing entry in that table to avoid useless generation of RTL.
611 This code is disabled for now until we can fix the various backends
612 which depend on having non-shared hard registers in some cases. Long
613 term we want to re-enable this code as it can significantly cut down
614 on the amount of useless RTL that gets generated.
616 We'll also need to fix some code that runs after reload that wants to
617 set ORIGINAL_REGNO. */
619 if (cfun
620 && cfun->emit
621 && regno_reg_rtx
622 && regno < FIRST_PSEUDO_REGISTER
623 && reg_raw_mode[regno] == mode)
624 return regno_reg_rtx[regno];
625 #endif
627 return gen_raw_REG (mode, regno);
631 gen_rtx_MEM (enum machine_mode mode, rtx addr)
633 rtx rt = gen_rtx_raw_MEM (mode, addr);
635 /* This field is not cleared by the mere allocation of the rtx, so
636 we clear it here. */
637 MEM_ATTRS (rt) = 0;
639 return rt;
642 /* Generate a memory referring to non-trapping constant memory. */
645 gen_const_mem (enum machine_mode mode, rtx addr)
647 rtx mem = gen_rtx_MEM (mode, addr);
648 MEM_READONLY_P (mem) = 1;
649 MEM_NOTRAP_P (mem) = 1;
650 return mem;
653 /* Generate a MEM referring to fixed portions of the frame, e.g., register
654 save areas. */
657 gen_frame_mem (enum machine_mode mode, rtx addr)
659 rtx mem = gen_rtx_MEM (mode, addr);
660 MEM_NOTRAP_P (mem) = 1;
661 set_mem_alias_set (mem, get_frame_alias_set ());
662 return mem;
665 /* Generate a MEM referring to a temporary use of the stack, not part
666 of the fixed stack frame. For example, something which is pushed
667 by a target splitter. */
669 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
671 rtx mem = gen_rtx_MEM (mode, addr);
672 MEM_NOTRAP_P (mem) = 1;
673 if (!cfun->calls_alloca)
674 set_mem_alias_set (mem, get_frame_alias_set ());
675 return mem;
678 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
679 this construct would be valid, and false otherwise. */
681 bool
682 validate_subreg (enum machine_mode omode, enum machine_mode imode,
683 const_rtx reg, unsigned int offset)
685 unsigned int isize = GET_MODE_SIZE (imode);
686 unsigned int osize = GET_MODE_SIZE (omode);
688 /* All subregs must be aligned. */
689 if (offset % osize != 0)
690 return false;
692 /* The subreg offset cannot be outside the inner object. */
693 if (offset >= isize)
694 return false;
696 /* ??? This should not be here. Temporarily continue to allow word_mode
697 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
698 Generally, backends are doing something sketchy but it'll take time to
699 fix them all. */
700 if (omode == word_mode)
702 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
703 is the culprit here, and not the backends. */
704 else if (osize >= UNITS_PER_WORD && isize >= osize)
706 /* Allow component subregs of complex and vector. Though given the below
707 extraction rules, it's not always clear what that means. */
708 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
709 && GET_MODE_INNER (imode) == omode)
711 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
712 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
713 represent this. It's questionable if this ought to be represented at
714 all -- why can't this all be hidden in post-reload splitters that make
715 arbitrarily mode changes to the registers themselves. */
716 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
718 /* Subregs involving floating point modes are not allowed to
719 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
720 (subreg:SI (reg:DF) 0) isn't. */
721 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
723 if (isize != osize)
724 return false;
727 /* Paradoxical subregs must have offset zero. */
728 if (osize > isize)
729 return offset == 0;
731 /* This is a normal subreg. Verify that the offset is representable. */
733 /* For hard registers, we already have most of these rules collected in
734 subreg_offset_representable_p. */
735 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
737 unsigned int regno = REGNO (reg);
739 #ifdef CANNOT_CHANGE_MODE_CLASS
740 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
741 && GET_MODE_INNER (imode) == omode)
743 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
744 return false;
745 #endif
747 return subreg_offset_representable_p (regno, imode, offset, omode);
750 /* For pseudo registers, we want most of the same checks. Namely:
751 If the register no larger than a word, the subreg must be lowpart.
752 If the register is larger than a word, the subreg must be the lowpart
753 of a subword. A subreg does *not* perform arbitrary bit extraction.
754 Given that we've already checked mode/offset alignment, we only have
755 to check subword subregs here. */
756 if (osize < UNITS_PER_WORD)
758 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
759 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
760 if (offset % UNITS_PER_WORD != low_off)
761 return false;
763 return true;
767 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
769 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
770 return gen_rtx_raw_SUBREG (mode, reg, offset);
773 /* Generate a SUBREG representing the least-significant part of REG if MODE
774 is smaller than mode of REG, otherwise paradoxical SUBREG. */
777 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
779 enum machine_mode inmode;
781 inmode = GET_MODE (reg);
782 if (inmode == VOIDmode)
783 inmode = mode;
784 return gen_rtx_SUBREG (mode, reg,
785 subreg_lowpart_offset (mode, inmode));
789 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
791 rtvec
792 gen_rtvec (int n, ...)
794 int i;
795 rtvec rt_val;
796 va_list p;
798 va_start (p, n);
800 /* Don't allocate an empty rtvec... */
801 if (n == 0)
803 va_end (p);
804 return NULL_RTVEC;
807 rt_val = rtvec_alloc (n);
809 for (i = 0; i < n; i++)
810 rt_val->elem[i] = va_arg (p, rtx);
812 va_end (p);
813 return rt_val;
816 rtvec
817 gen_rtvec_v (int n, rtx *argp)
819 int i;
820 rtvec rt_val;
822 /* Don't allocate an empty rtvec... */
823 if (n == 0)
824 return NULL_RTVEC;
826 rt_val = rtvec_alloc (n);
828 for (i = 0; i < n; i++)
829 rt_val->elem[i] = *argp++;
831 return rt_val;
834 /* Return the number of bytes between the start of an OUTER_MODE
835 in-memory value and the start of an INNER_MODE in-memory value,
836 given that the former is a lowpart of the latter. It may be a
837 paradoxical lowpart, in which case the offset will be negative
838 on big-endian targets. */
841 byte_lowpart_offset (enum machine_mode outer_mode,
842 enum machine_mode inner_mode)
844 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
845 return subreg_lowpart_offset (outer_mode, inner_mode);
846 else
847 return -subreg_lowpart_offset (inner_mode, outer_mode);
850 /* Generate a REG rtx for a new pseudo register of mode MODE.
851 This pseudo is assigned the next sequential register number. */
854 gen_reg_rtx (enum machine_mode mode)
856 rtx val;
857 unsigned int align = GET_MODE_ALIGNMENT (mode);
859 gcc_assert (can_create_pseudo_p ());
861 /* If a virtual register with bigger mode alignment is generated,
862 increase stack alignment estimation because it might be spilled
863 to stack later. */
864 if (SUPPORTS_STACK_ALIGNMENT
865 && crtl->stack_alignment_estimated < align
866 && !crtl->stack_realign_processed)
868 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
869 if (crtl->stack_alignment_estimated < min_align)
870 crtl->stack_alignment_estimated = min_align;
873 if (generating_concat_p
874 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
875 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
877 /* For complex modes, don't make a single pseudo.
878 Instead, make a CONCAT of two pseudos.
879 This allows noncontiguous allocation of the real and imaginary parts,
880 which makes much better code. Besides, allocating DCmode
881 pseudos overstrains reload on some machines like the 386. */
882 rtx realpart, imagpart;
883 enum machine_mode partmode = GET_MODE_INNER (mode);
885 realpart = gen_reg_rtx (partmode);
886 imagpart = gen_reg_rtx (partmode);
887 return gen_rtx_CONCAT (mode, realpart, imagpart);
890 /* Make sure regno_pointer_align, and regno_reg_rtx are large
891 enough to have an element for this pseudo reg number. */
893 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
895 int old_size = crtl->emit.regno_pointer_align_length;
896 char *tmp;
897 rtx *new1;
899 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
900 memset (tmp + old_size, 0, old_size);
901 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
903 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
904 memset (new1 + old_size, 0, old_size * sizeof (rtx));
905 regno_reg_rtx = new1;
907 crtl->emit.regno_pointer_align_length = old_size * 2;
910 val = gen_raw_REG (mode, reg_rtx_no);
911 regno_reg_rtx[reg_rtx_no++] = val;
912 return val;
915 /* Update NEW with the same attributes as REG, but with OFFSET added
916 to the REG_OFFSET. */
918 static void
919 update_reg_offset (rtx new_rtx, rtx reg, int offset)
921 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
922 REG_OFFSET (reg) + offset);
925 /* Generate a register with same attributes as REG, but with OFFSET
926 added to the REG_OFFSET. */
929 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
930 int offset)
932 rtx new_rtx = gen_rtx_REG (mode, regno);
934 update_reg_offset (new_rtx, reg, offset);
935 return new_rtx;
938 /* Generate a new pseudo-register with the same attributes as REG, but
939 with OFFSET added to the REG_OFFSET. */
942 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
944 rtx new_rtx = gen_reg_rtx (mode);
946 update_reg_offset (new_rtx, reg, offset);
947 return new_rtx;
950 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
951 new register is a (possibly paradoxical) lowpart of the old one. */
953 void
954 adjust_reg_mode (rtx reg, enum machine_mode mode)
956 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
957 PUT_MODE (reg, mode);
960 /* Copy REG's attributes from X, if X has any attributes. If REG and X
961 have different modes, REG is a (possibly paradoxical) lowpart of X. */
963 void
964 set_reg_attrs_from_value (rtx reg, rtx x)
966 int offset;
968 /* Hard registers can be reused for multiple purposes within the same
969 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
970 on them is wrong. */
971 if (HARD_REGISTER_P (reg))
972 return;
974 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
975 if (MEM_P (x))
977 if (MEM_OFFSET_KNOWN_P (x))
978 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
979 MEM_OFFSET (x) + offset);
980 if (MEM_POINTER (x))
981 mark_reg_pointer (reg, 0);
983 else if (REG_P (x))
985 if (REG_ATTRS (x))
986 update_reg_offset (reg, x, offset);
987 if (REG_POINTER (x))
988 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
992 /* Generate a REG rtx for a new pseudo register, copying the mode
993 and attributes from X. */
996 gen_reg_rtx_and_attrs (rtx x)
998 rtx reg = gen_reg_rtx (GET_MODE (x));
999 set_reg_attrs_from_value (reg, x);
1000 return reg;
1003 /* Set the register attributes for registers contained in PARM_RTX.
1004 Use needed values from memory attributes of MEM. */
1006 void
1007 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1009 if (REG_P (parm_rtx))
1010 set_reg_attrs_from_value (parm_rtx, mem);
1011 else if (GET_CODE (parm_rtx) == PARALLEL)
1013 /* Check for a NULL entry in the first slot, used to indicate that the
1014 parameter goes both on the stack and in registers. */
1015 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1016 for (; i < XVECLEN (parm_rtx, 0); i++)
1018 rtx x = XVECEXP (parm_rtx, 0, i);
1019 if (REG_P (XEXP (x, 0)))
1020 REG_ATTRS (XEXP (x, 0))
1021 = get_reg_attrs (MEM_EXPR (mem),
1022 INTVAL (XEXP (x, 1)));
1027 /* Set the REG_ATTRS for registers in value X, given that X represents
1028 decl T. */
1030 void
1031 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1033 if (GET_CODE (x) == SUBREG)
1035 gcc_assert (subreg_lowpart_p (x));
1036 x = SUBREG_REG (x);
1038 if (REG_P (x))
1039 REG_ATTRS (x)
1040 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1041 DECL_MODE (t)));
1042 if (GET_CODE (x) == CONCAT)
1044 if (REG_P (XEXP (x, 0)))
1045 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1046 if (REG_P (XEXP (x, 1)))
1047 REG_ATTRS (XEXP (x, 1))
1048 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1050 if (GET_CODE (x) == PARALLEL)
1052 int i, start;
1054 /* Check for a NULL entry, used to indicate that the parameter goes
1055 both on the stack and in registers. */
1056 if (XEXP (XVECEXP (x, 0, 0), 0))
1057 start = 0;
1058 else
1059 start = 1;
1061 for (i = start; i < XVECLEN (x, 0); i++)
1063 rtx y = XVECEXP (x, 0, i);
1064 if (REG_P (XEXP (y, 0)))
1065 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1070 /* Assign the RTX X to declaration T. */
1072 void
1073 set_decl_rtl (tree t, rtx x)
1075 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1076 if (x)
1077 set_reg_attrs_for_decl_rtl (t, x);
1080 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1081 if the ABI requires the parameter to be passed by reference. */
1083 void
1084 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1086 DECL_INCOMING_RTL (t) = x;
1087 if (x && !by_reference_p)
1088 set_reg_attrs_for_decl_rtl (t, x);
1091 /* Identify REG (which may be a CONCAT) as a user register. */
1093 void
1094 mark_user_reg (rtx reg)
1096 if (GET_CODE (reg) == CONCAT)
1098 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1099 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1101 else
1103 gcc_assert (REG_P (reg));
1104 REG_USERVAR_P (reg) = 1;
1108 /* Identify REG as a probable pointer register and show its alignment
1109 as ALIGN, if nonzero. */
1111 void
1112 mark_reg_pointer (rtx reg, int align)
1114 if (! REG_POINTER (reg))
1116 REG_POINTER (reg) = 1;
1118 if (align)
1119 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1121 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1122 /* We can no-longer be sure just how aligned this pointer is. */
1123 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1126 /* Return 1 plus largest pseudo reg number used in the current function. */
1129 max_reg_num (void)
1131 return reg_rtx_no;
1134 /* Return 1 + the largest label number used so far in the current function. */
1137 max_label_num (void)
1139 return label_num;
1142 /* Return first label number used in this function (if any were used). */
1145 get_first_label_num (void)
1147 return first_label_num;
1150 /* If the rtx for label was created during the expansion of a nested
1151 function, then first_label_num won't include this label number.
1152 Fix this now so that array indices work later. */
1154 void
1155 maybe_set_first_label_num (rtx x)
1157 if (CODE_LABEL_NUMBER (x) < first_label_num)
1158 first_label_num = CODE_LABEL_NUMBER (x);
1161 /* Return a value representing some low-order bits of X, where the number
1162 of low-order bits is given by MODE. Note that no conversion is done
1163 between floating-point and fixed-point values, rather, the bit
1164 representation is returned.
1166 This function handles the cases in common between gen_lowpart, below,
1167 and two variants in cse.c and combine.c. These are the cases that can
1168 be safely handled at all points in the compilation.
1170 If this is not a case we can handle, return 0. */
1173 gen_lowpart_common (enum machine_mode mode, rtx x)
1175 int msize = GET_MODE_SIZE (mode);
1176 int xsize;
1177 int offset = 0;
1178 enum machine_mode innermode;
1180 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1181 so we have to make one up. Yuk. */
1182 innermode = GET_MODE (x);
1183 if (CONST_INT_P (x)
1184 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1185 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1186 else if (innermode == VOIDmode)
1187 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1189 xsize = GET_MODE_SIZE (innermode);
1191 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1193 if (innermode == mode)
1194 return x;
1196 /* MODE must occupy no more words than the mode of X. */
1197 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1198 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1199 return 0;
1201 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1202 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1203 return 0;
1205 offset = subreg_lowpart_offset (mode, innermode);
1207 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1208 && (GET_MODE_CLASS (mode) == MODE_INT
1209 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1211 /* If we are getting the low-order part of something that has been
1212 sign- or zero-extended, we can either just use the object being
1213 extended or make a narrower extension. If we want an even smaller
1214 piece than the size of the object being extended, call ourselves
1215 recursively.
1217 This case is used mostly by combine and cse. */
1219 if (GET_MODE (XEXP (x, 0)) == mode)
1220 return XEXP (x, 0);
1221 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1222 return gen_lowpart_common (mode, XEXP (x, 0));
1223 else if (msize < xsize)
1224 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1226 else if (GET_CODE (x) == SUBREG || REG_P (x)
1227 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1228 || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
1229 return simplify_gen_subreg (mode, x, innermode, offset);
1231 /* Otherwise, we can't do this. */
1232 return 0;
1236 gen_highpart (enum machine_mode mode, rtx x)
1238 unsigned int msize = GET_MODE_SIZE (mode);
1239 rtx result;
1241 /* This case loses if X is a subreg. To catch bugs early,
1242 complain if an invalid MODE is used even in other cases. */
1243 gcc_assert (msize <= UNITS_PER_WORD
1244 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1246 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1247 subreg_highpart_offset (mode, GET_MODE (x)));
1248 gcc_assert (result);
1250 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1251 the target if we have a MEM. gen_highpart must return a valid operand,
1252 emitting code if necessary to do so. */
1253 if (MEM_P (result))
1255 result = validize_mem (result);
1256 gcc_assert (result);
1259 return result;
1262 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1263 be VOIDmode constant. */
1265 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1267 if (GET_MODE (exp) != VOIDmode)
1269 gcc_assert (GET_MODE (exp) == innermode);
1270 return gen_highpart (outermode, exp);
1272 return simplify_gen_subreg (outermode, exp, innermode,
1273 subreg_highpart_offset (outermode, innermode));
1276 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1278 unsigned int
1279 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1281 unsigned int offset = 0;
1282 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1284 if (difference > 0)
1286 if (WORDS_BIG_ENDIAN)
1287 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1288 if (BYTES_BIG_ENDIAN)
1289 offset += difference % UNITS_PER_WORD;
1292 return offset;
1295 /* Return offset in bytes to get OUTERMODE high part
1296 of the value in mode INNERMODE stored in memory in target format. */
1297 unsigned int
1298 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1300 unsigned int offset = 0;
1301 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1303 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1305 if (difference > 0)
1307 if (! WORDS_BIG_ENDIAN)
1308 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1309 if (! BYTES_BIG_ENDIAN)
1310 offset += difference % UNITS_PER_WORD;
1313 return offset;
1316 /* Return 1 iff X, assumed to be a SUBREG,
1317 refers to the least significant part of its containing reg.
1318 If X is not a SUBREG, always return 1 (it is its own low part!). */
1321 subreg_lowpart_p (const_rtx x)
1323 if (GET_CODE (x) != SUBREG)
1324 return 1;
1325 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1326 return 0;
1328 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1329 == SUBREG_BYTE (x));
1332 /* Return true if X is a paradoxical subreg, false otherwise. */
1333 bool
1334 paradoxical_subreg_p (const_rtx x)
1336 if (GET_CODE (x) != SUBREG)
1337 return false;
1338 return (GET_MODE_PRECISION (GET_MODE (x))
1339 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1342 /* Return subword OFFSET of operand OP.
1343 The word number, OFFSET, is interpreted as the word number starting
1344 at the low-order address. OFFSET 0 is the low-order word if not
1345 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1347 If we cannot extract the required word, we return zero. Otherwise,
1348 an rtx corresponding to the requested word will be returned.
1350 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1351 reload has completed, a valid address will always be returned. After
1352 reload, if a valid address cannot be returned, we return zero.
1354 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1355 it is the responsibility of the caller.
1357 MODE is the mode of OP in case it is a CONST_INT.
1359 ??? This is still rather broken for some cases. The problem for the
1360 moment is that all callers of this thing provide no 'goal mode' to
1361 tell us to work with. This exists because all callers were written
1362 in a word based SUBREG world.
1363 Now use of this function can be deprecated by simplify_subreg in most
1364 cases.
1368 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1370 if (mode == VOIDmode)
1371 mode = GET_MODE (op);
1373 gcc_assert (mode != VOIDmode);
1375 /* If OP is narrower than a word, fail. */
1376 if (mode != BLKmode
1377 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1378 return 0;
1380 /* If we want a word outside OP, return zero. */
1381 if (mode != BLKmode
1382 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1383 return const0_rtx;
1385 /* Form a new MEM at the requested address. */
1386 if (MEM_P (op))
1388 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1390 if (! validate_address)
1391 return new_rtx;
1393 else if (reload_completed)
1395 if (! strict_memory_address_addr_space_p (word_mode,
1396 XEXP (new_rtx, 0),
1397 MEM_ADDR_SPACE (op)))
1398 return 0;
1400 else
1401 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1404 /* Rest can be handled by simplify_subreg. */
1405 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1408 /* Similar to `operand_subword', but never return 0. If we can't
1409 extract the required subword, put OP into a register and try again.
1410 The second attempt must succeed. We always validate the address in
1411 this case.
1413 MODE is the mode of OP, in case it is CONST_INT. */
1416 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1418 rtx result = operand_subword (op, offset, 1, mode);
1420 if (result)
1421 return result;
1423 if (mode != BLKmode && mode != VOIDmode)
1425 /* If this is a register which can not be accessed by words, copy it
1426 to a pseudo register. */
1427 if (REG_P (op))
1428 op = copy_to_reg (op);
1429 else
1430 op = force_reg (mode, op);
1433 result = operand_subword (op, offset, 1, mode);
1434 gcc_assert (result);
1436 return result;
1439 /* Returns 1 if both MEM_EXPR can be considered equal
1440 and 0 otherwise. */
1443 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1445 if (expr1 == expr2)
1446 return 1;
1448 if (! expr1 || ! expr2)
1449 return 0;
1451 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1452 return 0;
1454 return operand_equal_p (expr1, expr2, 0);
1457 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1458 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1459 -1 if not known. */
1462 get_mem_align_offset (rtx mem, unsigned int align)
1464 tree expr;
1465 unsigned HOST_WIDE_INT offset;
1467 /* This function can't use
1468 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1469 || (MAX (MEM_ALIGN (mem),
1470 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1471 < align))
1472 return -1;
1473 else
1474 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1475 for two reasons:
1476 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1477 for <variable>. get_inner_reference doesn't handle it and
1478 even if it did, the alignment in that case needs to be determined
1479 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1480 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1481 isn't sufficiently aligned, the object it is in might be. */
1482 gcc_assert (MEM_P (mem));
1483 expr = MEM_EXPR (mem);
1484 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1485 return -1;
1487 offset = MEM_OFFSET (mem);
1488 if (DECL_P (expr))
1490 if (DECL_ALIGN (expr) < align)
1491 return -1;
1493 else if (INDIRECT_REF_P (expr))
1495 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1496 return -1;
1498 else if (TREE_CODE (expr) == COMPONENT_REF)
1500 while (1)
1502 tree inner = TREE_OPERAND (expr, 0);
1503 tree field = TREE_OPERAND (expr, 1);
1504 tree byte_offset = component_ref_field_offset (expr);
1505 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1507 if (!byte_offset
1508 || !host_integerp (byte_offset, 1)
1509 || !host_integerp (bit_offset, 1))
1510 return -1;
1512 offset += tree_low_cst (byte_offset, 1);
1513 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1515 if (inner == NULL_TREE)
1517 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1518 < (unsigned int) align)
1519 return -1;
1520 break;
1522 else if (DECL_P (inner))
1524 if (DECL_ALIGN (inner) < align)
1525 return -1;
1526 break;
1528 else if (TREE_CODE (inner) != COMPONENT_REF)
1529 return -1;
1530 expr = inner;
1533 else
1534 return -1;
1536 return offset & ((align / BITS_PER_UNIT) - 1);
1539 /* Given REF (a MEM) and T, either the type of X or the expression
1540 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1541 if we are making a new object of this type. BITPOS is nonzero if
1542 there is an offset outstanding on T that will be applied later. */
1544 void
1545 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1546 HOST_WIDE_INT bitpos)
1548 HOST_WIDE_INT apply_bitpos = 0;
1549 tree type;
1550 struct mem_attrs attrs, *defattrs, *refattrs;
1552 /* It can happen that type_for_mode was given a mode for which there
1553 is no language-level type. In which case it returns NULL, which
1554 we can see here. */
1555 if (t == NULL_TREE)
1556 return;
1558 type = TYPE_P (t) ? t : TREE_TYPE (t);
1559 if (type == error_mark_node)
1560 return;
1562 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1563 wrong answer, as it assumes that DECL_RTL already has the right alias
1564 info. Callers should not set DECL_RTL until after the call to
1565 set_mem_attributes. */
1566 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1568 memset (&attrs, 0, sizeof (attrs));
1570 /* Get the alias set from the expression or type (perhaps using a
1571 front-end routine) and use it. */
1572 attrs.alias = get_alias_set (t);
1574 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1575 MEM_IN_STRUCT_P (ref)
1576 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1577 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1579 /* If we are making an object of this type, or if this is a DECL, we know
1580 that it is a scalar if the type is not an aggregate. */
1581 if ((objectp || DECL_P (t))
1582 && ! AGGREGATE_TYPE_P (type)
1583 && TREE_CODE (type) != COMPLEX_TYPE)
1584 MEM_SCALAR_P (ref) = 1;
1586 /* Default values from pre-existing memory attributes if present. */
1587 refattrs = MEM_ATTRS (ref);
1588 if (refattrs)
1590 /* ??? Can this ever happen? Calling this routine on a MEM that
1591 already carries memory attributes should probably be invalid. */
1592 attrs.expr = refattrs->expr;
1593 attrs.offset_known_p = refattrs->offset_known_p;
1594 attrs.offset = refattrs->offset;
1595 attrs.size_known_p = refattrs->size_known_p;
1596 attrs.size = refattrs->size;
1597 attrs.align = refattrs->align;
1600 /* Otherwise, default values from the mode of the MEM reference. */
1601 else
1603 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1604 gcc_assert (!defattrs->expr);
1605 gcc_assert (!defattrs->offset_known_p);
1607 /* Respect mode size. */
1608 attrs.size_known_p = defattrs->size_known_p;
1609 attrs.size = defattrs->size;
1610 /* ??? Is this really necessary? We probably should always get
1611 the size from the type below. */
1613 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1614 if T is an object, always compute the object alignment below. */
1615 if (TYPE_P (t))
1616 attrs.align = defattrs->align;
1617 else
1618 attrs.align = BITS_PER_UNIT;
1619 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1620 e.g. if the type carries an alignment attribute. Should we be
1621 able to simply always use TYPE_ALIGN? */
1624 /* We can set the alignment from the type if we are making an object,
1625 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1626 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1627 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1629 else if (TREE_CODE (t) == MEM_REF)
1631 tree op0 = TREE_OPERAND (t, 0);
1632 if (TREE_CODE (op0) == ADDR_EXPR
1633 && (DECL_P (TREE_OPERAND (op0, 0))
1634 || CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))))
1636 if (DECL_P (TREE_OPERAND (op0, 0)))
1637 attrs.align = DECL_ALIGN (TREE_OPERAND (op0, 0));
1638 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)))
1640 attrs.align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0, 0)));
1641 #ifdef CONSTANT_ALIGNMENT
1642 attrs.align = CONSTANT_ALIGNMENT (TREE_OPERAND (op0, 0),
1643 attrs.align);
1644 #endif
1646 if (TREE_INT_CST_LOW (TREE_OPERAND (t, 1)) != 0)
1648 unsigned HOST_WIDE_INT ioff
1649 = TREE_INT_CST_LOW (TREE_OPERAND (t, 1));
1650 unsigned HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1651 attrs.align = MIN (aoff, attrs.align);
1654 else
1655 /* ??? This isn't fully correct, we can't set the alignment from the
1656 type in all cases. */
1657 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1660 else if (TREE_CODE (t) == TARGET_MEM_REF)
1661 /* ??? This isn't fully correct, we can't set the alignment from the
1662 type in all cases. */
1663 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1665 /* If the size is known, we can set that. */
1666 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1668 attrs.size_known_p = true;
1669 attrs.size = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
1672 /* If T is not a type, we may be able to deduce some more information about
1673 the expression. */
1674 if (! TYPE_P (t))
1676 tree base;
1677 bool align_computed = false;
1679 if (TREE_THIS_VOLATILE (t))
1680 MEM_VOLATILE_P (ref) = 1;
1682 /* Now remove any conversions: they don't change what the underlying
1683 object is. Likewise for SAVE_EXPR. */
1684 while (CONVERT_EXPR_P (t)
1685 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1686 || TREE_CODE (t) == SAVE_EXPR)
1687 t = TREE_OPERAND (t, 0);
1689 /* Note whether this expression can trap. */
1690 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1692 base = get_base_address (t);
1693 if (base && DECL_P (base)
1694 && TREE_READONLY (base)
1695 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1696 && !TREE_THIS_VOLATILE (base))
1697 MEM_READONLY_P (ref) = 1;
1699 /* Mark static const strings readonly as well. */
1700 if (base && TREE_CODE (base) == STRING_CST
1701 && TREE_READONLY (base)
1702 && TREE_STATIC (base))
1703 MEM_READONLY_P (ref) = 1;
1705 /* If this expression uses it's parent's alias set, mark it such
1706 that we won't change it. */
1707 if (component_uses_parent_alias_set (t))
1708 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1710 /* If this is a decl, set the attributes of the MEM from it. */
1711 if (DECL_P (t))
1713 attrs.expr = t;
1714 attrs.offset_known_p = true;
1715 attrs.offset = 0;
1716 apply_bitpos = bitpos;
1717 if (DECL_SIZE_UNIT (t) && host_integerp (DECL_SIZE_UNIT (t), 1))
1719 attrs.size_known_p = true;
1720 attrs.size = tree_low_cst (DECL_SIZE_UNIT (t), 1);
1722 else
1723 attrs.size_known_p = false;
1724 attrs.align = DECL_ALIGN (t);
1725 align_computed = true;
1728 /* If this is a constant, we know the alignment. */
1729 else if (CONSTANT_CLASS_P (t))
1731 attrs.align = TYPE_ALIGN (type);
1732 #ifdef CONSTANT_ALIGNMENT
1733 attrs.align = CONSTANT_ALIGNMENT (t, attrs.align);
1734 #endif
1735 align_computed = true;
1738 /* If this is a field reference and not a bit-field, record it. */
1739 /* ??? There is some information that can be gleaned from bit-fields,
1740 such as the word offset in the structure that might be modified.
1741 But skip it for now. */
1742 else if (TREE_CODE (t) == COMPONENT_REF
1743 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1745 attrs.expr = t;
1746 attrs.offset_known_p = true;
1747 attrs.offset = 0;
1748 apply_bitpos = bitpos;
1749 /* ??? Any reason the field size would be different than
1750 the size we got from the type? */
1753 /* If this is an array reference, look for an outer field reference. */
1754 else if (TREE_CODE (t) == ARRAY_REF)
1756 tree off_tree = size_zero_node;
1757 /* We can't modify t, because we use it at the end of the
1758 function. */
1759 tree t2 = t;
1763 tree index = TREE_OPERAND (t2, 1);
1764 tree low_bound = array_ref_low_bound (t2);
1765 tree unit_size = array_ref_element_size (t2);
1767 /* We assume all arrays have sizes that are a multiple of a byte.
1768 First subtract the lower bound, if any, in the type of the
1769 index, then convert to sizetype and multiply by the size of
1770 the array element. */
1771 if (! integer_zerop (low_bound))
1772 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1773 index, low_bound);
1775 off_tree = size_binop (PLUS_EXPR,
1776 size_binop (MULT_EXPR,
1777 fold_convert (sizetype,
1778 index),
1779 unit_size),
1780 off_tree);
1781 t2 = TREE_OPERAND (t2, 0);
1783 while (TREE_CODE (t2) == ARRAY_REF);
1785 if (DECL_P (t2))
1787 attrs.expr = t2;
1788 attrs.offset_known_p = false;
1789 if (host_integerp (off_tree, 1))
1791 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1792 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1793 attrs.align = DECL_ALIGN (t2);
1794 if (aoff && (unsigned HOST_WIDE_INT) aoff < attrs.align)
1795 attrs.align = aoff;
1796 align_computed = true;
1797 attrs.offset_known_p = true;
1798 attrs.offset = ioff;
1799 apply_bitpos = bitpos;
1802 else if (TREE_CODE (t2) == COMPONENT_REF)
1804 attrs.expr = t2;
1805 attrs.offset_known_p = false;
1806 if (host_integerp (off_tree, 1))
1808 attrs.offset_known_p = true;
1809 attrs.offset = tree_low_cst (off_tree, 1);
1810 apply_bitpos = bitpos;
1812 /* ??? Any reason the field size would be different than
1813 the size we got from the type? */
1816 /* If this is an indirect reference, record it. */
1817 else if (TREE_CODE (t) == MEM_REF)
1819 attrs.expr = t;
1820 attrs.offset_known_p = true;
1821 attrs.offset = 0;
1822 apply_bitpos = bitpos;
1826 /* If this is an indirect reference, record it. */
1827 else if (TREE_CODE (t) == MEM_REF
1828 || TREE_CODE (t) == TARGET_MEM_REF)
1830 attrs.expr = t;
1831 attrs.offset_known_p = true;
1832 attrs.offset = 0;
1833 apply_bitpos = bitpos;
1836 if (!align_computed)
1838 unsigned int obj_align = get_object_alignment (t);
1839 attrs.align = MAX (attrs.align, obj_align);
1843 /* If we modified OFFSET based on T, then subtract the outstanding
1844 bit position offset. Similarly, increase the size of the accessed
1845 object to contain the negative offset. */
1846 if (apply_bitpos)
1848 gcc_assert (attrs.offset_known_p);
1849 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1850 if (attrs.size_known_p)
1851 attrs.size += apply_bitpos / BITS_PER_UNIT;
1854 /* Now set the attributes we computed above. */
1855 attrs.addrspace = TYPE_ADDR_SPACE (type);
1856 set_mem_attrs (ref, &attrs);
1858 /* If this is already known to be a scalar or aggregate, we are done. */
1859 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1860 return;
1862 /* If it is a reference into an aggregate, this is part of an aggregate.
1863 Otherwise we don't know. */
1864 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1865 || TREE_CODE (t) == ARRAY_RANGE_REF
1866 || TREE_CODE (t) == BIT_FIELD_REF)
1867 MEM_IN_STRUCT_P (ref) = 1;
1870 void
1871 set_mem_attributes (rtx ref, tree t, int objectp)
1873 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1876 /* Set the alias set of MEM to SET. */
1878 void
1879 set_mem_alias_set (rtx mem, alias_set_type set)
1881 struct mem_attrs attrs;
1883 /* If the new and old alias sets don't conflict, something is wrong. */
1884 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1885 attrs = *get_mem_attrs (mem);
1886 attrs.alias = set;
1887 set_mem_attrs (mem, &attrs);
1890 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1892 void
1893 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1895 struct mem_attrs attrs;
1897 attrs = *get_mem_attrs (mem);
1898 attrs.addrspace = addrspace;
1899 set_mem_attrs (mem, &attrs);
1902 /* Set the alignment of MEM to ALIGN bits. */
1904 void
1905 set_mem_align (rtx mem, unsigned int align)
1907 struct mem_attrs attrs;
1909 attrs = *get_mem_attrs (mem);
1910 attrs.align = align;
1911 set_mem_attrs (mem, &attrs);
1914 /* Set the expr for MEM to EXPR. */
1916 void
1917 set_mem_expr (rtx mem, tree expr)
1919 struct mem_attrs attrs;
1921 attrs = *get_mem_attrs (mem);
1922 attrs.expr = expr;
1923 set_mem_attrs (mem, &attrs);
1926 /* Set the offset of MEM to OFFSET. */
1928 void
1929 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
1931 struct mem_attrs attrs;
1933 attrs = *get_mem_attrs (mem);
1934 attrs.offset_known_p = true;
1935 attrs.offset = offset;
1936 set_mem_attrs (mem, &attrs);
1939 /* Clear the offset of MEM. */
1941 void
1942 clear_mem_offset (rtx mem)
1944 struct mem_attrs attrs;
1946 attrs = *get_mem_attrs (mem);
1947 attrs.offset_known_p = false;
1948 set_mem_attrs (mem, &attrs);
1951 /* Set the size of MEM to SIZE. */
1953 void
1954 set_mem_size (rtx mem, HOST_WIDE_INT size)
1956 struct mem_attrs attrs;
1958 attrs = *get_mem_attrs (mem);
1959 attrs.size_known_p = true;
1960 attrs.size = size;
1961 set_mem_attrs (mem, &attrs);
1964 /* Clear the size of MEM. */
1966 void
1967 clear_mem_size (rtx mem)
1969 struct mem_attrs attrs;
1971 attrs = *get_mem_attrs (mem);
1972 attrs.size_known_p = false;
1973 set_mem_attrs (mem, &attrs);
1976 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1977 and its address changed to ADDR. (VOIDmode means don't change the mode.
1978 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1979 returned memory location is required to be valid. The memory
1980 attributes are not changed. */
1982 static rtx
1983 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1985 addr_space_t as;
1986 rtx new_rtx;
1988 gcc_assert (MEM_P (memref));
1989 as = MEM_ADDR_SPACE (memref);
1990 if (mode == VOIDmode)
1991 mode = GET_MODE (memref);
1992 if (addr == 0)
1993 addr = XEXP (memref, 0);
1994 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1995 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1996 return memref;
1998 if (validate)
2000 if (reload_in_progress || reload_completed)
2001 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2002 else
2003 addr = memory_address_addr_space (mode, addr, as);
2006 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2007 return memref;
2009 new_rtx = gen_rtx_MEM (mode, addr);
2010 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2011 return new_rtx;
2014 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2015 way we are changing MEMREF, so we only preserve the alias set. */
2018 change_address (rtx memref, enum machine_mode mode, rtx addr)
2020 rtx new_rtx = change_address_1 (memref, mode, addr, 1);
2021 enum machine_mode mmode = GET_MODE (new_rtx);
2022 struct mem_attrs attrs, *defattrs;
2024 attrs = *get_mem_attrs (memref);
2025 defattrs = mode_mem_attrs[(int) mmode];
2026 attrs.expr = NULL_TREE;
2027 attrs.offset_known_p = false;
2028 attrs.size_known_p = defattrs->size_known_p;
2029 attrs.size = defattrs->size;
2030 attrs.align = defattrs->align;
2032 /* If there are no changes, just return the original memory reference. */
2033 if (new_rtx == memref)
2035 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2036 return new_rtx;
2038 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2039 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2042 set_mem_attrs (new_rtx, &attrs);
2043 return new_rtx;
2046 /* Return a memory reference like MEMREF, but with its mode changed
2047 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2048 nonzero, the memory address is forced to be valid.
2049 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2050 and caller is responsible for adjusting MEMREF base register. */
2053 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2054 int validate, int adjust)
2056 rtx addr = XEXP (memref, 0);
2057 rtx new_rtx;
2058 enum machine_mode address_mode;
2059 int pbits;
2060 struct mem_attrs attrs, *defattrs;
2061 unsigned HOST_WIDE_INT max_align;
2063 attrs = *get_mem_attrs (memref);
2065 /* If there are no changes, just return the original memory reference. */
2066 if (mode == GET_MODE (memref) && !offset
2067 && (!validate || memory_address_addr_space_p (mode, addr,
2068 attrs.addrspace)))
2069 return memref;
2071 /* ??? Prefer to create garbage instead of creating shared rtl.
2072 This may happen even if offset is nonzero -- consider
2073 (plus (plus reg reg) const_int) -- so do this always. */
2074 addr = copy_rtx (addr);
2076 /* Convert a possibly large offset to a signed value within the
2077 range of the target address space. */
2078 address_mode = targetm.addr_space.address_mode (attrs.addrspace);
2079 pbits = GET_MODE_BITSIZE (address_mode);
2080 if (HOST_BITS_PER_WIDE_INT > pbits)
2082 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2083 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2084 >> shift);
2087 if (adjust)
2089 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2090 object, we can merge it into the LO_SUM. */
2091 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2092 && offset >= 0
2093 && (unsigned HOST_WIDE_INT) offset
2094 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2095 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2096 plus_constant (XEXP (addr, 1), offset));
2097 else
2098 addr = plus_constant (addr, offset);
2101 new_rtx = change_address_1 (memref, mode, addr, validate);
2103 /* If the address is a REG, change_address_1 rightfully returns memref,
2104 but this would destroy memref's MEM_ATTRS. */
2105 if (new_rtx == memref && offset != 0)
2106 new_rtx = copy_rtx (new_rtx);
2108 /* Compute the new values of the memory attributes due to this adjustment.
2109 We add the offsets and update the alignment. */
2110 if (attrs.offset_known_p)
2111 attrs.offset += offset;
2113 /* Compute the new alignment by taking the MIN of the alignment and the
2114 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2115 if zero. */
2116 if (offset != 0)
2118 max_align = (offset & -offset) * BITS_PER_UNIT;
2119 attrs.align = MIN (attrs.align, max_align);
2122 /* We can compute the size in a number of ways. */
2123 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2124 if (defattrs->size_known_p)
2126 attrs.size_known_p = true;
2127 attrs.size = defattrs->size;
2129 else if (attrs.size_known_p)
2130 attrs.size -= offset;
2132 set_mem_attrs (new_rtx, &attrs);
2134 /* At some point, we should validate that this offset is within the object,
2135 if all the appropriate values are known. */
2136 return new_rtx;
2139 /* Return a memory reference like MEMREF, but with its mode changed
2140 to MODE and its address changed to ADDR, which is assumed to be
2141 MEMREF offset by OFFSET bytes. If VALIDATE is
2142 nonzero, the memory address is forced to be valid. */
2145 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2146 HOST_WIDE_INT offset, int validate)
2148 memref = change_address_1 (memref, VOIDmode, addr, validate);
2149 return adjust_address_1 (memref, mode, offset, validate, 0);
2152 /* Return a memory reference like MEMREF, but whose address is changed by
2153 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2154 known to be in OFFSET (possibly 1). */
2157 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2159 rtx new_rtx, addr = XEXP (memref, 0);
2160 enum machine_mode address_mode;
2161 struct mem_attrs attrs, *defattrs;
2163 attrs = *get_mem_attrs (memref);
2164 address_mode = targetm.addr_space.address_mode (attrs.addrspace);
2165 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2167 /* At this point we don't know _why_ the address is invalid. It
2168 could have secondary memory references, multiplies or anything.
2170 However, if we did go and rearrange things, we can wind up not
2171 being able to recognize the magic around pic_offset_table_rtx.
2172 This stuff is fragile, and is yet another example of why it is
2173 bad to expose PIC machinery too early. */
2174 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2175 attrs.addrspace)
2176 && GET_CODE (addr) == PLUS
2177 && XEXP (addr, 0) == pic_offset_table_rtx)
2179 addr = force_reg (GET_MODE (addr), addr);
2180 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2183 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2184 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2186 /* If there are no changes, just return the original memory reference. */
2187 if (new_rtx == memref)
2188 return new_rtx;
2190 /* Update the alignment to reflect the offset. Reset the offset, which
2191 we don't know. */
2192 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2193 attrs.offset_known_p = false;
2194 attrs.size_known_p = defattrs->size_known_p;
2195 attrs.size = defattrs->size;
2196 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2197 set_mem_attrs (new_rtx, &attrs);
2198 return new_rtx;
2201 /* Return a memory reference like MEMREF, but with its address changed to
2202 ADDR. The caller is asserting that the actual piece of memory pointed
2203 to is the same, just the form of the address is being changed, such as
2204 by putting something into a register. */
2207 replace_equiv_address (rtx memref, rtx addr)
2209 /* change_address_1 copies the memory attribute structure without change
2210 and that's exactly what we want here. */
2211 update_temp_slot_address (XEXP (memref, 0), addr);
2212 return change_address_1 (memref, VOIDmode, addr, 1);
2215 /* Likewise, but the reference is not required to be valid. */
2218 replace_equiv_address_nv (rtx memref, rtx addr)
2220 return change_address_1 (memref, VOIDmode, addr, 0);
2223 /* Return a memory reference like MEMREF, but with its mode widened to
2224 MODE and offset by OFFSET. This would be used by targets that e.g.
2225 cannot issue QImode memory operations and have to use SImode memory
2226 operations plus masking logic. */
2229 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2231 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2232 struct mem_attrs attrs;
2233 unsigned int size = GET_MODE_SIZE (mode);
2235 /* If there are no changes, just return the original memory reference. */
2236 if (new_rtx == memref)
2237 return new_rtx;
2239 attrs = *get_mem_attrs (new_rtx);
2241 /* If we don't know what offset we were at within the expression, then
2242 we can't know if we've overstepped the bounds. */
2243 if (! attrs.offset_known_p)
2244 attrs.expr = NULL_TREE;
2246 while (attrs.expr)
2248 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2250 tree field = TREE_OPERAND (attrs.expr, 1);
2251 tree offset = component_ref_field_offset (attrs.expr);
2253 if (! DECL_SIZE_UNIT (field))
2255 attrs.expr = NULL_TREE;
2256 break;
2259 /* Is the field at least as large as the access? If so, ok,
2260 otherwise strip back to the containing structure. */
2261 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2262 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2263 && attrs.offset >= 0)
2264 break;
2266 if (! host_integerp (offset, 1))
2268 attrs.expr = NULL_TREE;
2269 break;
2272 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2273 attrs.offset += tree_low_cst (offset, 1);
2274 attrs.offset += (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2275 / BITS_PER_UNIT);
2277 /* Similarly for the decl. */
2278 else if (DECL_P (attrs.expr)
2279 && DECL_SIZE_UNIT (attrs.expr)
2280 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2281 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2282 && (! attrs.offset_known_p || attrs.offset >= 0))
2283 break;
2284 else
2286 /* The widened memory access overflows the expression, which means
2287 that it could alias another expression. Zap it. */
2288 attrs.expr = NULL_TREE;
2289 break;
2293 if (! attrs.expr)
2294 attrs.offset_known_p = false;
2296 /* The widened memory may alias other stuff, so zap the alias set. */
2297 /* ??? Maybe use get_alias_set on any remaining expression. */
2298 attrs.alias = 0;
2299 attrs.size_known_p = true;
2300 attrs.size = size;
2301 set_mem_attrs (new_rtx, &attrs);
2302 return new_rtx;
2305 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2306 static GTY(()) tree spill_slot_decl;
2308 tree
2309 get_spill_slot_decl (bool force_build_p)
2311 tree d = spill_slot_decl;
2312 rtx rd;
2313 struct mem_attrs attrs;
2315 if (d || !force_build_p)
2316 return d;
2318 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2319 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2320 DECL_ARTIFICIAL (d) = 1;
2321 DECL_IGNORED_P (d) = 1;
2322 TREE_USED (d) = 1;
2323 spill_slot_decl = d;
2325 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2326 MEM_NOTRAP_P (rd) = 1;
2327 attrs = *mode_mem_attrs[(int) BLKmode];
2328 attrs.alias = new_alias_set ();
2329 attrs.expr = d;
2330 set_mem_attrs (rd, &attrs);
2331 SET_DECL_RTL (d, rd);
2333 return d;
2336 /* Given MEM, a result from assign_stack_local, fill in the memory
2337 attributes as appropriate for a register allocator spill slot.
2338 These slots are not aliasable by other memory. We arrange for
2339 them all to use a single MEM_EXPR, so that the aliasing code can
2340 work properly in the case of shared spill slots. */
2342 void
2343 set_mem_attrs_for_spill (rtx mem)
2345 struct mem_attrs attrs;
2346 rtx addr;
2348 attrs = *get_mem_attrs (mem);
2349 attrs.expr = get_spill_slot_decl (true);
2350 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2351 attrs.addrspace = ADDR_SPACE_GENERIC;
2353 /* We expect the incoming memory to be of the form:
2354 (mem:MODE (plus (reg sfp) (const_int offset)))
2355 with perhaps the plus missing for offset = 0. */
2356 addr = XEXP (mem, 0);
2357 attrs.offset_known_p = true;
2358 attrs.offset = 0;
2359 if (GET_CODE (addr) == PLUS
2360 && CONST_INT_P (XEXP (addr, 1)))
2361 attrs.offset = INTVAL (XEXP (addr, 1));
2363 set_mem_attrs (mem, &attrs);
2364 MEM_NOTRAP_P (mem) = 1;
2367 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2370 gen_label_rtx (void)
2372 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2373 NULL, label_num++, NULL);
2376 /* For procedure integration. */
2378 /* Install new pointers to the first and last insns in the chain.
2379 Also, set cur_insn_uid to one higher than the last in use.
2380 Used for an inline-procedure after copying the insn chain. */
2382 void
2383 set_new_first_and_last_insn (rtx first, rtx last)
2385 rtx insn;
2387 set_first_insn (first);
2388 set_last_insn (last);
2389 cur_insn_uid = 0;
2391 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2393 int debug_count = 0;
2395 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2396 cur_debug_insn_uid = 0;
2398 for (insn = first; insn; insn = NEXT_INSN (insn))
2399 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2400 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2401 else
2403 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2404 if (DEBUG_INSN_P (insn))
2405 debug_count++;
2408 if (debug_count)
2409 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2410 else
2411 cur_debug_insn_uid++;
2413 else
2414 for (insn = first; insn; insn = NEXT_INSN (insn))
2415 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2417 cur_insn_uid++;
2420 /* Go through all the RTL insn bodies and copy any invalid shared
2421 structure. This routine should only be called once. */
2423 static void
2424 unshare_all_rtl_1 (rtx insn)
2426 /* Unshare just about everything else. */
2427 unshare_all_rtl_in_chain (insn);
2429 /* Make sure the addresses of stack slots found outside the insn chain
2430 (such as, in DECL_RTL of a variable) are not shared
2431 with the insn chain.
2433 This special care is necessary when the stack slot MEM does not
2434 actually appear in the insn chain. If it does appear, its address
2435 is unshared from all else at that point. */
2436 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2439 /* Go through all the RTL insn bodies and copy any invalid shared
2440 structure, again. This is a fairly expensive thing to do so it
2441 should be done sparingly. */
2443 void
2444 unshare_all_rtl_again (rtx insn)
2446 rtx p;
2447 tree decl;
2449 for (p = insn; p; p = NEXT_INSN (p))
2450 if (INSN_P (p))
2452 reset_used_flags (PATTERN (p));
2453 reset_used_flags (REG_NOTES (p));
2454 if (CALL_P (p))
2455 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2458 /* Make sure that virtual stack slots are not shared. */
2459 set_used_decls (DECL_INITIAL (cfun->decl));
2461 /* Make sure that virtual parameters are not shared. */
2462 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2463 set_used_flags (DECL_RTL (decl));
2465 reset_used_flags (stack_slot_list);
2467 unshare_all_rtl_1 (insn);
2470 unsigned int
2471 unshare_all_rtl (void)
2473 unshare_all_rtl_1 (get_insns ());
2474 return 0;
2477 struct rtl_opt_pass pass_unshare_all_rtl =
2480 RTL_PASS,
2481 "unshare", /* name */
2482 NULL, /* gate */
2483 unshare_all_rtl, /* execute */
2484 NULL, /* sub */
2485 NULL, /* next */
2486 0, /* static_pass_number */
2487 TV_NONE, /* tv_id */
2488 0, /* properties_required */
2489 0, /* properties_provided */
2490 0, /* properties_destroyed */
2491 0, /* todo_flags_start */
2492 TODO_verify_rtl_sharing /* todo_flags_finish */
2497 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2498 Recursively does the same for subexpressions. */
2500 static void
2501 verify_rtx_sharing (rtx orig, rtx insn)
2503 rtx x = orig;
2504 int i;
2505 enum rtx_code code;
2506 const char *format_ptr;
2508 if (x == 0)
2509 return;
2511 code = GET_CODE (x);
2513 /* These types may be freely shared. */
2515 switch (code)
2517 case REG:
2518 case DEBUG_EXPR:
2519 case VALUE:
2520 case CONST_INT:
2521 case CONST_DOUBLE:
2522 case CONST_FIXED:
2523 case CONST_VECTOR:
2524 case SYMBOL_REF:
2525 case LABEL_REF:
2526 case CODE_LABEL:
2527 case PC:
2528 case CC0:
2529 case RETURN:
2530 case SIMPLE_RETURN:
2531 case SCRATCH:
2532 return;
2533 /* SCRATCH must be shared because they represent distinct values. */
2534 case CLOBBER:
2535 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2536 return;
2537 break;
2539 case CONST:
2540 if (shared_const_p (orig))
2541 return;
2542 break;
2544 case MEM:
2545 /* A MEM is allowed to be shared if its address is constant. */
2546 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2547 || reload_completed || reload_in_progress)
2548 return;
2550 break;
2552 default:
2553 break;
2556 /* This rtx may not be shared. If it has already been seen,
2557 replace it with a copy of itself. */
2558 #ifdef ENABLE_CHECKING
2559 if (RTX_FLAG (x, used))
2561 error ("invalid rtl sharing found in the insn");
2562 debug_rtx (insn);
2563 error ("shared rtx");
2564 debug_rtx (x);
2565 internal_error ("internal consistency failure");
2567 #endif
2568 gcc_assert (!RTX_FLAG (x, used));
2570 RTX_FLAG (x, used) = 1;
2572 /* Now scan the subexpressions recursively. */
2574 format_ptr = GET_RTX_FORMAT (code);
2576 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2578 switch (*format_ptr++)
2580 case 'e':
2581 verify_rtx_sharing (XEXP (x, i), insn);
2582 break;
2584 case 'E':
2585 if (XVEC (x, i) != NULL)
2587 int j;
2588 int len = XVECLEN (x, i);
2590 for (j = 0; j < len; j++)
2592 /* We allow sharing of ASM_OPERANDS inside single
2593 instruction. */
2594 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2595 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2596 == ASM_OPERANDS))
2597 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2598 else
2599 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2602 break;
2605 return;
2608 /* Go through all the RTL insn bodies and check that there is no unexpected
2609 sharing in between the subexpressions. */
2611 DEBUG_FUNCTION void
2612 verify_rtl_sharing (void)
2614 rtx p;
2616 timevar_push (TV_VERIFY_RTL_SHARING);
2618 for (p = get_insns (); p; p = NEXT_INSN (p))
2619 if (INSN_P (p))
2621 reset_used_flags (PATTERN (p));
2622 reset_used_flags (REG_NOTES (p));
2623 if (CALL_P (p))
2624 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2625 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2627 int i;
2628 rtx q, sequence = PATTERN (p);
2630 for (i = 0; i < XVECLEN (sequence, 0); i++)
2632 q = XVECEXP (sequence, 0, i);
2633 gcc_assert (INSN_P (q));
2634 reset_used_flags (PATTERN (q));
2635 reset_used_flags (REG_NOTES (q));
2636 if (CALL_P (q))
2637 reset_used_flags (CALL_INSN_FUNCTION_USAGE (q));
2642 for (p = get_insns (); p; p = NEXT_INSN (p))
2643 if (INSN_P (p))
2645 verify_rtx_sharing (PATTERN (p), p);
2646 verify_rtx_sharing (REG_NOTES (p), p);
2647 if (CALL_P (p))
2648 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (p), p);
2651 timevar_pop (TV_VERIFY_RTL_SHARING);
2654 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2655 Assumes the mark bits are cleared at entry. */
2657 void
2658 unshare_all_rtl_in_chain (rtx insn)
2660 for (; insn; insn = NEXT_INSN (insn))
2661 if (INSN_P (insn))
2663 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2664 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2665 if (CALL_P (insn))
2666 CALL_INSN_FUNCTION_USAGE (insn)
2667 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2671 /* Go through all virtual stack slots of a function and mark them as
2672 shared. We never replace the DECL_RTLs themselves with a copy,
2673 but expressions mentioned into a DECL_RTL cannot be shared with
2674 expressions in the instruction stream.
2676 Note that reload may convert pseudo registers into memories in-place.
2677 Pseudo registers are always shared, but MEMs never are. Thus if we
2678 reset the used flags on MEMs in the instruction stream, we must set
2679 them again on MEMs that appear in DECL_RTLs. */
2681 static void
2682 set_used_decls (tree blk)
2684 tree t;
2686 /* Mark decls. */
2687 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2688 if (DECL_RTL_SET_P (t))
2689 set_used_flags (DECL_RTL (t));
2691 /* Now process sub-blocks. */
2692 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2693 set_used_decls (t);
2696 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2697 Recursively does the same for subexpressions. Uses
2698 copy_rtx_if_shared_1 to reduce stack space. */
2701 copy_rtx_if_shared (rtx orig)
2703 copy_rtx_if_shared_1 (&orig);
2704 return orig;
2707 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2708 use. Recursively does the same for subexpressions. */
2710 static void
2711 copy_rtx_if_shared_1 (rtx *orig1)
2713 rtx x;
2714 int i;
2715 enum rtx_code code;
2716 rtx *last_ptr;
2717 const char *format_ptr;
2718 int copied = 0;
2719 int length;
2721 /* Repeat is used to turn tail-recursion into iteration. */
2722 repeat:
2723 x = *orig1;
2725 if (x == 0)
2726 return;
2728 code = GET_CODE (x);
2730 /* These types may be freely shared. */
2732 switch (code)
2734 case REG:
2735 case DEBUG_EXPR:
2736 case VALUE:
2737 case CONST_INT:
2738 case CONST_DOUBLE:
2739 case CONST_FIXED:
2740 case CONST_VECTOR:
2741 case SYMBOL_REF:
2742 case LABEL_REF:
2743 case CODE_LABEL:
2744 case PC:
2745 case CC0:
2746 case RETURN:
2747 case SIMPLE_RETURN:
2748 case SCRATCH:
2749 /* SCRATCH must be shared because they represent distinct values. */
2750 return;
2751 case CLOBBER:
2752 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2753 return;
2754 break;
2756 case CONST:
2757 if (shared_const_p (x))
2758 return;
2759 break;
2761 case DEBUG_INSN:
2762 case INSN:
2763 case JUMP_INSN:
2764 case CALL_INSN:
2765 case NOTE:
2766 case BARRIER:
2767 /* The chain of insns is not being copied. */
2768 return;
2770 default:
2771 break;
2774 /* This rtx may not be shared. If it has already been seen,
2775 replace it with a copy of itself. */
2777 if (RTX_FLAG (x, used))
2779 x = shallow_copy_rtx (x);
2780 copied = 1;
2782 RTX_FLAG (x, used) = 1;
2784 /* Now scan the subexpressions recursively.
2785 We can store any replaced subexpressions directly into X
2786 since we know X is not shared! Any vectors in X
2787 must be copied if X was copied. */
2789 format_ptr = GET_RTX_FORMAT (code);
2790 length = GET_RTX_LENGTH (code);
2791 last_ptr = NULL;
2793 for (i = 0; i < length; i++)
2795 switch (*format_ptr++)
2797 case 'e':
2798 if (last_ptr)
2799 copy_rtx_if_shared_1 (last_ptr);
2800 last_ptr = &XEXP (x, i);
2801 break;
2803 case 'E':
2804 if (XVEC (x, i) != NULL)
2806 int j;
2807 int len = XVECLEN (x, i);
2809 /* Copy the vector iff I copied the rtx and the length
2810 is nonzero. */
2811 if (copied && len > 0)
2812 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2814 /* Call recursively on all inside the vector. */
2815 for (j = 0; j < len; j++)
2817 if (last_ptr)
2818 copy_rtx_if_shared_1 (last_ptr);
2819 last_ptr = &XVECEXP (x, i, j);
2822 break;
2825 *orig1 = x;
2826 if (last_ptr)
2828 orig1 = last_ptr;
2829 goto repeat;
2831 return;
2834 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2836 static void
2837 mark_used_flags (rtx x, int flag)
2839 int i, j;
2840 enum rtx_code code;
2841 const char *format_ptr;
2842 int length;
2844 /* Repeat is used to turn tail-recursion into iteration. */
2845 repeat:
2846 if (x == 0)
2847 return;
2849 code = GET_CODE (x);
2851 /* These types may be freely shared so we needn't do any resetting
2852 for them. */
2854 switch (code)
2856 case REG:
2857 case DEBUG_EXPR:
2858 case VALUE:
2859 case CONST_INT:
2860 case CONST_DOUBLE:
2861 case CONST_FIXED:
2862 case CONST_VECTOR:
2863 case SYMBOL_REF:
2864 case CODE_LABEL:
2865 case PC:
2866 case CC0:
2867 case RETURN:
2868 case SIMPLE_RETURN:
2869 return;
2871 case DEBUG_INSN:
2872 case INSN:
2873 case JUMP_INSN:
2874 case CALL_INSN:
2875 case NOTE:
2876 case LABEL_REF:
2877 case BARRIER:
2878 /* The chain of insns is not being copied. */
2879 return;
2881 default:
2882 break;
2885 RTX_FLAG (x, used) = flag;
2887 format_ptr = GET_RTX_FORMAT (code);
2888 length = GET_RTX_LENGTH (code);
2890 for (i = 0; i < length; i++)
2892 switch (*format_ptr++)
2894 case 'e':
2895 if (i == length-1)
2897 x = XEXP (x, i);
2898 goto repeat;
2900 mark_used_flags (XEXP (x, i), flag);
2901 break;
2903 case 'E':
2904 for (j = 0; j < XVECLEN (x, i); j++)
2905 mark_used_flags (XVECEXP (x, i, j), flag);
2906 break;
2911 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2912 to look for shared sub-parts. */
2914 void
2915 reset_used_flags (rtx x)
2917 mark_used_flags (x, 0);
2920 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2921 to look for shared sub-parts. */
2923 void
2924 set_used_flags (rtx x)
2926 mark_used_flags (x, 1);
2929 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2930 Return X or the rtx for the pseudo reg the value of X was copied into.
2931 OTHER must be valid as a SET_DEST. */
2934 make_safe_from (rtx x, rtx other)
2936 while (1)
2937 switch (GET_CODE (other))
2939 case SUBREG:
2940 other = SUBREG_REG (other);
2941 break;
2942 case STRICT_LOW_PART:
2943 case SIGN_EXTEND:
2944 case ZERO_EXTEND:
2945 other = XEXP (other, 0);
2946 break;
2947 default:
2948 goto done;
2950 done:
2951 if ((MEM_P (other)
2952 && ! CONSTANT_P (x)
2953 && !REG_P (x)
2954 && GET_CODE (x) != SUBREG)
2955 || (REG_P (other)
2956 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2957 || reg_mentioned_p (other, x))))
2959 rtx temp = gen_reg_rtx (GET_MODE (x));
2960 emit_move_insn (temp, x);
2961 return temp;
2963 return x;
2966 /* Emission of insns (adding them to the doubly-linked list). */
2968 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2971 get_last_insn_anywhere (void)
2973 struct sequence_stack *stack;
2974 if (get_last_insn ())
2975 return get_last_insn ();
2976 for (stack = seq_stack; stack; stack = stack->next)
2977 if (stack->last != 0)
2978 return stack->last;
2979 return 0;
2982 /* Return the first nonnote insn emitted in current sequence or current
2983 function. This routine looks inside SEQUENCEs. */
2986 get_first_nonnote_insn (void)
2988 rtx insn = get_insns ();
2990 if (insn)
2992 if (NOTE_P (insn))
2993 for (insn = next_insn (insn);
2994 insn && NOTE_P (insn);
2995 insn = next_insn (insn))
2996 continue;
2997 else
2999 if (NONJUMP_INSN_P (insn)
3000 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3001 insn = XVECEXP (PATTERN (insn), 0, 0);
3005 return insn;
3008 /* Return the last nonnote insn emitted in current sequence or current
3009 function. This routine looks inside SEQUENCEs. */
3012 get_last_nonnote_insn (void)
3014 rtx insn = get_last_insn ();
3016 if (insn)
3018 if (NOTE_P (insn))
3019 for (insn = previous_insn (insn);
3020 insn && NOTE_P (insn);
3021 insn = previous_insn (insn))
3022 continue;
3023 else
3025 if (NONJUMP_INSN_P (insn)
3026 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3027 insn = XVECEXP (PATTERN (insn), 0,
3028 XVECLEN (PATTERN (insn), 0) - 1);
3032 return insn;
3035 /* Return the number of actual (non-debug) insns emitted in this
3036 function. */
3039 get_max_insn_count (void)
3041 int n = cur_insn_uid;
3043 /* The table size must be stable across -g, to avoid codegen
3044 differences due to debug insns, and not be affected by
3045 -fmin-insn-uid, to avoid excessive table size and to simplify
3046 debugging of -fcompare-debug failures. */
3047 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3048 n -= cur_debug_insn_uid;
3049 else
3050 n -= MIN_NONDEBUG_INSN_UID;
3052 return n;
3056 /* Return the next insn. If it is a SEQUENCE, return the first insn
3057 of the sequence. */
3060 next_insn (rtx insn)
3062 if (insn)
3064 insn = NEXT_INSN (insn);
3065 if (insn && NONJUMP_INSN_P (insn)
3066 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3067 insn = XVECEXP (PATTERN (insn), 0, 0);
3070 return insn;
3073 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3074 of the sequence. */
3077 previous_insn (rtx insn)
3079 if (insn)
3081 insn = PREV_INSN (insn);
3082 if (insn && NONJUMP_INSN_P (insn)
3083 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3084 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3087 return insn;
3090 /* Return the next insn after INSN that is not a NOTE. This routine does not
3091 look inside SEQUENCEs. */
3094 next_nonnote_insn (rtx insn)
3096 while (insn)
3098 insn = NEXT_INSN (insn);
3099 if (insn == 0 || !NOTE_P (insn))
3100 break;
3103 return insn;
3106 /* Return the next insn after INSN that is not a NOTE, but stop the
3107 search before we enter another basic block. This routine does not
3108 look inside SEQUENCEs. */
3111 next_nonnote_insn_bb (rtx insn)
3113 while (insn)
3115 insn = NEXT_INSN (insn);
3116 if (insn == 0 || !NOTE_P (insn))
3117 break;
3118 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3119 return NULL_RTX;
3122 return insn;
3125 /* Return the previous insn before INSN that is not a NOTE. This routine does
3126 not look inside SEQUENCEs. */
3129 prev_nonnote_insn (rtx insn)
3131 while (insn)
3133 insn = PREV_INSN (insn);
3134 if (insn == 0 || !NOTE_P (insn))
3135 break;
3138 return insn;
3141 /* Return the previous insn before INSN that is not a NOTE, but stop
3142 the search before we enter another basic block. This routine does
3143 not look inside SEQUENCEs. */
3146 prev_nonnote_insn_bb (rtx insn)
3148 while (insn)
3150 insn = PREV_INSN (insn);
3151 if (insn == 0 || !NOTE_P (insn))
3152 break;
3153 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3154 return NULL_RTX;
3157 return insn;
3160 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3161 routine does not look inside SEQUENCEs. */
3164 next_nondebug_insn (rtx insn)
3166 while (insn)
3168 insn = NEXT_INSN (insn);
3169 if (insn == 0 || !DEBUG_INSN_P (insn))
3170 break;
3173 return insn;
3176 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3177 This routine does not look inside SEQUENCEs. */
3180 prev_nondebug_insn (rtx insn)
3182 while (insn)
3184 insn = PREV_INSN (insn);
3185 if (insn == 0 || !DEBUG_INSN_P (insn))
3186 break;
3189 return insn;
3192 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3193 This routine does not look inside SEQUENCEs. */
3196 next_nonnote_nondebug_insn (rtx insn)
3198 while (insn)
3200 insn = NEXT_INSN (insn);
3201 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3202 break;
3205 return insn;
3208 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3209 This routine does not look inside SEQUENCEs. */
3212 prev_nonnote_nondebug_insn (rtx insn)
3214 while (insn)
3216 insn = PREV_INSN (insn);
3217 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3218 break;
3221 return insn;
3224 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3225 or 0, if there is none. This routine does not look inside
3226 SEQUENCEs. */
3229 next_real_insn (rtx insn)
3231 while (insn)
3233 insn = NEXT_INSN (insn);
3234 if (insn == 0 || INSN_P (insn))
3235 break;
3238 return insn;
3241 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3242 or 0, if there is none. This routine does not look inside
3243 SEQUENCEs. */
3246 prev_real_insn (rtx insn)
3248 while (insn)
3250 insn = PREV_INSN (insn);
3251 if (insn == 0 || INSN_P (insn))
3252 break;
3255 return insn;
3258 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3259 This routine does not look inside SEQUENCEs. */
3262 last_call_insn (void)
3264 rtx insn;
3266 for (insn = get_last_insn ();
3267 insn && !CALL_P (insn);
3268 insn = PREV_INSN (insn))
3271 return insn;
3274 /* Find the next insn after INSN that really does something. This routine
3275 does not look inside SEQUENCEs. After reload this also skips over
3276 standalone USE and CLOBBER insn. */
3279 active_insn_p (const_rtx insn)
3281 return (CALL_P (insn) || JUMP_P (insn)
3282 || (NONJUMP_INSN_P (insn)
3283 && (! reload_completed
3284 || (GET_CODE (PATTERN (insn)) != USE
3285 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3289 next_active_insn (rtx insn)
3291 while (insn)
3293 insn = NEXT_INSN (insn);
3294 if (insn == 0 || active_insn_p (insn))
3295 break;
3298 return insn;
3301 /* Find the last insn before INSN that really does something. This routine
3302 does not look inside SEQUENCEs. After reload this also skips over
3303 standalone USE and CLOBBER insn. */
3306 prev_active_insn (rtx insn)
3308 while (insn)
3310 insn = PREV_INSN (insn);
3311 if (insn == 0 || active_insn_p (insn))
3312 break;
3315 return insn;
3318 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3321 next_label (rtx insn)
3323 while (insn)
3325 insn = NEXT_INSN (insn);
3326 if (insn == 0 || LABEL_P (insn))
3327 break;
3330 return insn;
3333 /* Return the last label to mark the same position as LABEL. Return LABEL
3334 itself if it is null or any return rtx. */
3337 skip_consecutive_labels (rtx label)
3339 rtx insn;
3341 if (label && ANY_RETURN_P (label))
3342 return label;
3344 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3345 if (LABEL_P (insn))
3346 label = insn;
3348 return label;
3351 #ifdef HAVE_cc0
3352 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3353 and REG_CC_USER notes so we can find it. */
3355 void
3356 link_cc0_insns (rtx insn)
3358 rtx user = next_nonnote_insn (insn);
3360 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3361 user = XVECEXP (PATTERN (user), 0, 0);
3363 add_reg_note (user, REG_CC_SETTER, insn);
3364 add_reg_note (insn, REG_CC_USER, user);
3367 /* Return the next insn that uses CC0 after INSN, which is assumed to
3368 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3369 applied to the result of this function should yield INSN).
3371 Normally, this is simply the next insn. However, if a REG_CC_USER note
3372 is present, it contains the insn that uses CC0.
3374 Return 0 if we can't find the insn. */
3377 next_cc0_user (rtx insn)
3379 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3381 if (note)
3382 return XEXP (note, 0);
3384 insn = next_nonnote_insn (insn);
3385 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3386 insn = XVECEXP (PATTERN (insn), 0, 0);
3388 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3389 return insn;
3391 return 0;
3394 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3395 note, it is the previous insn. */
3398 prev_cc0_setter (rtx insn)
3400 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3402 if (note)
3403 return XEXP (note, 0);
3405 insn = prev_nonnote_insn (insn);
3406 gcc_assert (sets_cc0_p (PATTERN (insn)));
3408 return insn;
3410 #endif
3412 #ifdef AUTO_INC_DEC
3413 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3415 static int
3416 find_auto_inc (rtx *xp, void *data)
3418 rtx x = *xp;
3419 rtx reg = (rtx) data;
3421 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3422 return 0;
3424 switch (GET_CODE (x))
3426 case PRE_DEC:
3427 case PRE_INC:
3428 case POST_DEC:
3429 case POST_INC:
3430 case PRE_MODIFY:
3431 case POST_MODIFY:
3432 if (rtx_equal_p (reg, XEXP (x, 0)))
3433 return 1;
3434 break;
3436 default:
3437 gcc_unreachable ();
3439 return -1;
3441 #endif
3443 /* Increment the label uses for all labels present in rtx. */
3445 static void
3446 mark_label_nuses (rtx x)
3448 enum rtx_code code;
3449 int i, j;
3450 const char *fmt;
3452 code = GET_CODE (x);
3453 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3454 LABEL_NUSES (XEXP (x, 0))++;
3456 fmt = GET_RTX_FORMAT (code);
3457 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3459 if (fmt[i] == 'e')
3460 mark_label_nuses (XEXP (x, i));
3461 else if (fmt[i] == 'E')
3462 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3463 mark_label_nuses (XVECEXP (x, i, j));
3468 /* Try splitting insns that can be split for better scheduling.
3469 PAT is the pattern which might split.
3470 TRIAL is the insn providing PAT.
3471 LAST is nonzero if we should return the last insn of the sequence produced.
3473 If this routine succeeds in splitting, it returns the first or last
3474 replacement insn depending on the value of LAST. Otherwise, it
3475 returns TRIAL. If the insn to be returned can be split, it will be. */
3478 try_split (rtx pat, rtx trial, int last)
3480 rtx before = PREV_INSN (trial);
3481 rtx after = NEXT_INSN (trial);
3482 int has_barrier = 0;
3483 rtx note, seq, tem;
3484 int probability;
3485 rtx insn_last, insn;
3486 int njumps = 0;
3488 /* We're not good at redistributing frame information. */
3489 if (RTX_FRAME_RELATED_P (trial))
3490 return trial;
3492 if (any_condjump_p (trial)
3493 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3494 split_branch_probability = INTVAL (XEXP (note, 0));
3495 probability = split_branch_probability;
3497 seq = split_insns (pat, trial);
3499 split_branch_probability = -1;
3501 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3502 We may need to handle this specially. */
3503 if (after && BARRIER_P (after))
3505 has_barrier = 1;
3506 after = NEXT_INSN (after);
3509 if (!seq)
3510 return trial;
3512 /* Avoid infinite loop if any insn of the result matches
3513 the original pattern. */
3514 insn_last = seq;
3515 while (1)
3517 if (INSN_P (insn_last)
3518 && rtx_equal_p (PATTERN (insn_last), pat))
3519 return trial;
3520 if (!NEXT_INSN (insn_last))
3521 break;
3522 insn_last = NEXT_INSN (insn_last);
3525 /* We will be adding the new sequence to the function. The splitters
3526 may have introduced invalid RTL sharing, so unshare the sequence now. */
3527 unshare_all_rtl_in_chain (seq);
3529 /* Mark labels. */
3530 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3532 if (JUMP_P (insn))
3534 mark_jump_label (PATTERN (insn), insn, 0);
3535 njumps++;
3536 if (probability != -1
3537 && any_condjump_p (insn)
3538 && !find_reg_note (insn, REG_BR_PROB, 0))
3540 /* We can preserve the REG_BR_PROB notes only if exactly
3541 one jump is created, otherwise the machine description
3542 is responsible for this step using
3543 split_branch_probability variable. */
3544 gcc_assert (njumps == 1);
3545 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3550 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3551 in SEQ and copy any additional information across. */
3552 if (CALL_P (trial))
3554 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3555 if (CALL_P (insn))
3557 rtx next, *p;
3559 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3560 target may have explicitly specified. */
3561 p = &CALL_INSN_FUNCTION_USAGE (insn);
3562 while (*p)
3563 p = &XEXP (*p, 1);
3564 *p = CALL_INSN_FUNCTION_USAGE (trial);
3566 /* If the old call was a sibling call, the new one must
3567 be too. */
3568 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3570 /* If the new call is the last instruction in the sequence,
3571 it will effectively replace the old call in-situ. Otherwise
3572 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3573 so that it comes immediately after the new call. */
3574 if (NEXT_INSN (insn))
3575 for (next = NEXT_INSN (trial);
3576 next && NOTE_P (next);
3577 next = NEXT_INSN (next))
3578 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3580 remove_insn (next);
3581 add_insn_after (next, insn, NULL);
3582 break;
3587 /* Copy notes, particularly those related to the CFG. */
3588 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3590 switch (REG_NOTE_KIND (note))
3592 case REG_EH_REGION:
3593 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3594 break;
3596 case REG_NORETURN:
3597 case REG_SETJMP:
3598 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3600 if (CALL_P (insn))
3601 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3603 break;
3605 case REG_NON_LOCAL_GOTO:
3606 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3608 if (JUMP_P (insn))
3609 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3611 break;
3613 #ifdef AUTO_INC_DEC
3614 case REG_INC:
3615 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3617 rtx reg = XEXP (note, 0);
3618 if (!FIND_REG_INC_NOTE (insn, reg)
3619 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3620 add_reg_note (insn, REG_INC, reg);
3622 break;
3623 #endif
3625 case REG_ARGS_SIZE:
3626 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3627 break;
3629 default:
3630 break;
3634 /* If there are LABELS inside the split insns increment the
3635 usage count so we don't delete the label. */
3636 if (INSN_P (trial))
3638 insn = insn_last;
3639 while (insn != NULL_RTX)
3641 /* JUMP_P insns have already been "marked" above. */
3642 if (NONJUMP_INSN_P (insn))
3643 mark_label_nuses (PATTERN (insn));
3645 insn = PREV_INSN (insn);
3649 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3651 delete_insn (trial);
3652 if (has_barrier)
3653 emit_barrier_after (tem);
3655 /* Recursively call try_split for each new insn created; by the
3656 time control returns here that insn will be fully split, so
3657 set LAST and continue from the insn after the one returned.
3658 We can't use next_active_insn here since AFTER may be a note.
3659 Ignore deleted insns, which can be occur if not optimizing. */
3660 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3661 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3662 tem = try_split (PATTERN (tem), tem, 1);
3664 /* Return either the first or the last insn, depending on which was
3665 requested. */
3666 return last
3667 ? (after ? PREV_INSN (after) : get_last_insn ())
3668 : NEXT_INSN (before);
3671 /* Make and return an INSN rtx, initializing all its slots.
3672 Store PATTERN in the pattern slots. */
3675 make_insn_raw (rtx pattern)
3677 rtx insn;
3679 insn = rtx_alloc (INSN);
3681 INSN_UID (insn) = cur_insn_uid++;
3682 PATTERN (insn) = pattern;
3683 INSN_CODE (insn) = -1;
3684 REG_NOTES (insn) = NULL;
3685 INSN_LOCATOR (insn) = curr_insn_locator ();
3686 BLOCK_FOR_INSN (insn) = NULL;
3688 #ifdef ENABLE_RTL_CHECKING
3689 if (insn
3690 && INSN_P (insn)
3691 && (returnjump_p (insn)
3692 || (GET_CODE (insn) == SET
3693 && SET_DEST (insn) == pc_rtx)))
3695 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3696 debug_rtx (insn);
3698 #endif
3700 return insn;
3703 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3706 make_debug_insn_raw (rtx pattern)
3708 rtx insn;
3710 insn = rtx_alloc (DEBUG_INSN);
3711 INSN_UID (insn) = cur_debug_insn_uid++;
3712 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3713 INSN_UID (insn) = cur_insn_uid++;
3715 PATTERN (insn) = pattern;
3716 INSN_CODE (insn) = -1;
3717 REG_NOTES (insn) = NULL;
3718 INSN_LOCATOR (insn) = curr_insn_locator ();
3719 BLOCK_FOR_INSN (insn) = NULL;
3721 return insn;
3724 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3727 make_jump_insn_raw (rtx pattern)
3729 rtx insn;
3731 insn = rtx_alloc (JUMP_INSN);
3732 INSN_UID (insn) = cur_insn_uid++;
3734 PATTERN (insn) = pattern;
3735 INSN_CODE (insn) = -1;
3736 REG_NOTES (insn) = NULL;
3737 JUMP_LABEL (insn) = NULL;
3738 INSN_LOCATOR (insn) = curr_insn_locator ();
3739 BLOCK_FOR_INSN (insn) = NULL;
3741 return insn;
3744 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3746 static rtx
3747 make_call_insn_raw (rtx pattern)
3749 rtx insn;
3751 insn = rtx_alloc (CALL_INSN);
3752 INSN_UID (insn) = cur_insn_uid++;
3754 PATTERN (insn) = pattern;
3755 INSN_CODE (insn) = -1;
3756 REG_NOTES (insn) = NULL;
3757 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3758 INSN_LOCATOR (insn) = curr_insn_locator ();
3759 BLOCK_FOR_INSN (insn) = NULL;
3761 return insn;
3764 /* Add INSN to the end of the doubly-linked list.
3765 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3767 void
3768 add_insn (rtx insn)
3770 PREV_INSN (insn) = get_last_insn();
3771 NEXT_INSN (insn) = 0;
3773 if (NULL != get_last_insn())
3774 NEXT_INSN (get_last_insn ()) = insn;
3776 if (NULL == get_insns ())
3777 set_first_insn (insn);
3779 set_last_insn (insn);
3782 /* Add INSN into the doubly-linked list after insn AFTER. This and
3783 the next should be the only functions called to insert an insn once
3784 delay slots have been filled since only they know how to update a
3785 SEQUENCE. */
3787 void
3788 add_insn_after (rtx insn, rtx after, basic_block bb)
3790 rtx next = NEXT_INSN (after);
3792 gcc_assert (!optimize || !INSN_DELETED_P (after));
3794 NEXT_INSN (insn) = next;
3795 PREV_INSN (insn) = after;
3797 if (next)
3799 PREV_INSN (next) = insn;
3800 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3801 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3803 else if (get_last_insn () == after)
3804 set_last_insn (insn);
3805 else
3807 struct sequence_stack *stack = seq_stack;
3808 /* Scan all pending sequences too. */
3809 for (; stack; stack = stack->next)
3810 if (after == stack->last)
3812 stack->last = insn;
3813 break;
3816 gcc_assert (stack);
3819 if (!BARRIER_P (after)
3820 && !BARRIER_P (insn)
3821 && (bb = BLOCK_FOR_INSN (after)))
3823 set_block_for_insn (insn, bb);
3824 if (INSN_P (insn))
3825 df_insn_rescan (insn);
3826 /* Should not happen as first in the BB is always
3827 either NOTE or LABEL. */
3828 if (BB_END (bb) == after
3829 /* Avoid clobbering of structure when creating new BB. */
3830 && !BARRIER_P (insn)
3831 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3832 BB_END (bb) = insn;
3835 NEXT_INSN (after) = insn;
3836 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3838 rtx sequence = PATTERN (after);
3839 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3843 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3844 the previous should be the only functions called to insert an insn
3845 once delay slots have been filled since only they know how to
3846 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3847 bb from before. */
3849 void
3850 add_insn_before (rtx insn, rtx before, basic_block bb)
3852 rtx prev = PREV_INSN (before);
3854 gcc_assert (!optimize || !INSN_DELETED_P (before));
3856 PREV_INSN (insn) = prev;
3857 NEXT_INSN (insn) = before;
3859 if (prev)
3861 NEXT_INSN (prev) = insn;
3862 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3864 rtx sequence = PATTERN (prev);
3865 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3868 else if (get_insns () == before)
3869 set_first_insn (insn);
3870 else
3872 struct sequence_stack *stack = seq_stack;
3873 /* Scan all pending sequences too. */
3874 for (; stack; stack = stack->next)
3875 if (before == stack->first)
3877 stack->first = insn;
3878 break;
3881 gcc_assert (stack);
3884 if (!bb
3885 && !BARRIER_P (before)
3886 && !BARRIER_P (insn))
3887 bb = BLOCK_FOR_INSN (before);
3889 if (bb)
3891 set_block_for_insn (insn, bb);
3892 if (INSN_P (insn))
3893 df_insn_rescan (insn);
3894 /* Should not happen as first in the BB is always either NOTE or
3895 LABEL. */
3896 gcc_assert (BB_HEAD (bb) != insn
3897 /* Avoid clobbering of structure when creating new BB. */
3898 || BARRIER_P (insn)
3899 || NOTE_INSN_BASIC_BLOCK_P (insn));
3902 PREV_INSN (before) = insn;
3903 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3904 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3908 /* Replace insn with an deleted instruction note. */
3910 void
3911 set_insn_deleted (rtx insn)
3913 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3914 PUT_CODE (insn, NOTE);
3915 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3919 /* Remove an insn from its doubly-linked list. This function knows how
3920 to handle sequences. */
3921 void
3922 remove_insn (rtx insn)
3924 rtx next = NEXT_INSN (insn);
3925 rtx prev = PREV_INSN (insn);
3926 basic_block bb;
3928 /* Later in the code, the block will be marked dirty. */
3929 df_insn_delete (NULL, INSN_UID (insn));
3931 if (prev)
3933 NEXT_INSN (prev) = next;
3934 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3936 rtx sequence = PATTERN (prev);
3937 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3940 else if (get_insns () == insn)
3942 if (next)
3943 PREV_INSN (next) = NULL;
3944 set_first_insn (next);
3946 else
3948 struct sequence_stack *stack = seq_stack;
3949 /* Scan all pending sequences too. */
3950 for (; stack; stack = stack->next)
3951 if (insn == stack->first)
3953 stack->first = next;
3954 break;
3957 gcc_assert (stack);
3960 if (next)
3962 PREV_INSN (next) = prev;
3963 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3964 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3966 else if (get_last_insn () == insn)
3967 set_last_insn (prev);
3968 else
3970 struct sequence_stack *stack = seq_stack;
3971 /* Scan all pending sequences too. */
3972 for (; stack; stack = stack->next)
3973 if (insn == stack->last)
3975 stack->last = prev;
3976 break;
3979 gcc_assert (stack);
3981 if (!BARRIER_P (insn)
3982 && (bb = BLOCK_FOR_INSN (insn)))
3984 if (NONDEBUG_INSN_P (insn))
3985 df_set_bb_dirty (bb);
3986 if (BB_HEAD (bb) == insn)
3988 /* Never ever delete the basic block note without deleting whole
3989 basic block. */
3990 gcc_assert (!NOTE_P (insn));
3991 BB_HEAD (bb) = next;
3993 if (BB_END (bb) == insn)
3994 BB_END (bb) = prev;
3998 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4000 void
4001 add_function_usage_to (rtx call_insn, rtx call_fusage)
4003 gcc_assert (call_insn && CALL_P (call_insn));
4005 /* Put the register usage information on the CALL. If there is already
4006 some usage information, put ours at the end. */
4007 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4009 rtx link;
4011 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4012 link = XEXP (link, 1))
4015 XEXP (link, 1) = call_fusage;
4017 else
4018 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4021 /* Delete all insns made since FROM.
4022 FROM becomes the new last instruction. */
4024 void
4025 delete_insns_since (rtx from)
4027 if (from == 0)
4028 set_first_insn (0);
4029 else
4030 NEXT_INSN (from) = 0;
4031 set_last_insn (from);
4034 /* This function is deprecated, please use sequences instead.
4036 Move a consecutive bunch of insns to a different place in the chain.
4037 The insns to be moved are those between FROM and TO.
4038 They are moved to a new position after the insn AFTER.
4039 AFTER must not be FROM or TO or any insn in between.
4041 This function does not know about SEQUENCEs and hence should not be
4042 called after delay-slot filling has been done. */
4044 void
4045 reorder_insns_nobb (rtx from, rtx to, rtx after)
4047 #ifdef ENABLE_CHECKING
4048 rtx x;
4049 for (x = from; x != to; x = NEXT_INSN (x))
4050 gcc_assert (after != x);
4051 gcc_assert (after != to);
4052 #endif
4054 /* Splice this bunch out of where it is now. */
4055 if (PREV_INSN (from))
4056 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4057 if (NEXT_INSN (to))
4058 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4059 if (get_last_insn () == to)
4060 set_last_insn (PREV_INSN (from));
4061 if (get_insns () == from)
4062 set_first_insn (NEXT_INSN (to));
4064 /* Make the new neighbors point to it and it to them. */
4065 if (NEXT_INSN (after))
4066 PREV_INSN (NEXT_INSN (after)) = to;
4068 NEXT_INSN (to) = NEXT_INSN (after);
4069 PREV_INSN (from) = after;
4070 NEXT_INSN (after) = from;
4071 if (after == get_last_insn())
4072 set_last_insn (to);
4075 /* Same as function above, but take care to update BB boundaries. */
4076 void
4077 reorder_insns (rtx from, rtx to, rtx after)
4079 rtx prev = PREV_INSN (from);
4080 basic_block bb, bb2;
4082 reorder_insns_nobb (from, to, after);
4084 if (!BARRIER_P (after)
4085 && (bb = BLOCK_FOR_INSN (after)))
4087 rtx x;
4088 df_set_bb_dirty (bb);
4090 if (!BARRIER_P (from)
4091 && (bb2 = BLOCK_FOR_INSN (from)))
4093 if (BB_END (bb2) == to)
4094 BB_END (bb2) = prev;
4095 df_set_bb_dirty (bb2);
4098 if (BB_END (bb) == after)
4099 BB_END (bb) = to;
4101 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4102 if (!BARRIER_P (x))
4103 df_insn_change_bb (x, bb);
4108 /* Emit insn(s) of given code and pattern
4109 at a specified place within the doubly-linked list.
4111 All of the emit_foo global entry points accept an object
4112 X which is either an insn list or a PATTERN of a single
4113 instruction.
4115 There are thus a few canonical ways to generate code and
4116 emit it at a specific place in the instruction stream. For
4117 example, consider the instruction named SPOT and the fact that
4118 we would like to emit some instructions before SPOT. We might
4119 do it like this:
4121 start_sequence ();
4122 ... emit the new instructions ...
4123 insns_head = get_insns ();
4124 end_sequence ();
4126 emit_insn_before (insns_head, SPOT);
4128 It used to be common to generate SEQUENCE rtl instead, but that
4129 is a relic of the past which no longer occurs. The reason is that
4130 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4131 generated would almost certainly die right after it was created. */
4133 static rtx
4134 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4135 rtx (*make_raw) (rtx))
4137 rtx insn;
4139 gcc_assert (before);
4141 if (x == NULL_RTX)
4142 return last;
4144 switch (GET_CODE (x))
4146 case DEBUG_INSN:
4147 case INSN:
4148 case JUMP_INSN:
4149 case CALL_INSN:
4150 case CODE_LABEL:
4151 case BARRIER:
4152 case NOTE:
4153 insn = x;
4154 while (insn)
4156 rtx next = NEXT_INSN (insn);
4157 add_insn_before (insn, before, bb);
4158 last = insn;
4159 insn = next;
4161 break;
4163 #ifdef ENABLE_RTL_CHECKING
4164 case SEQUENCE:
4165 gcc_unreachable ();
4166 break;
4167 #endif
4169 default:
4170 last = (*make_raw) (x);
4171 add_insn_before (last, before, bb);
4172 break;
4175 return last;
4178 /* Make X be output before the instruction BEFORE. */
4181 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4183 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4186 /* Make an instruction with body X and code JUMP_INSN
4187 and output it before the instruction BEFORE. */
4190 emit_jump_insn_before_noloc (rtx x, rtx before)
4192 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4193 make_jump_insn_raw);
4196 /* Make an instruction with body X and code CALL_INSN
4197 and output it before the instruction BEFORE. */
4200 emit_call_insn_before_noloc (rtx x, rtx before)
4202 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4203 make_call_insn_raw);
4206 /* Make an instruction with body X and code DEBUG_INSN
4207 and output it before the instruction BEFORE. */
4210 emit_debug_insn_before_noloc (rtx x, rtx before)
4212 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4213 make_debug_insn_raw);
4216 /* Make an insn of code BARRIER
4217 and output it before the insn BEFORE. */
4220 emit_barrier_before (rtx before)
4222 rtx insn = rtx_alloc (BARRIER);
4224 INSN_UID (insn) = cur_insn_uid++;
4226 add_insn_before (insn, before, NULL);
4227 return insn;
4230 /* Emit the label LABEL before the insn BEFORE. */
4233 emit_label_before (rtx label, rtx before)
4235 /* This can be called twice for the same label as a result of the
4236 confusion that follows a syntax error! So make it harmless. */
4237 if (INSN_UID (label) == 0)
4239 INSN_UID (label) = cur_insn_uid++;
4240 add_insn_before (label, before, NULL);
4243 return label;
4246 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4249 emit_note_before (enum insn_note subtype, rtx before)
4251 rtx note = rtx_alloc (NOTE);
4252 INSN_UID (note) = cur_insn_uid++;
4253 NOTE_KIND (note) = subtype;
4254 BLOCK_FOR_INSN (note) = NULL;
4255 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4257 add_insn_before (note, before, NULL);
4258 return note;
4261 /* Helper for emit_insn_after, handles lists of instructions
4262 efficiently. */
4264 static rtx
4265 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4267 rtx last;
4268 rtx after_after;
4269 if (!bb && !BARRIER_P (after))
4270 bb = BLOCK_FOR_INSN (after);
4272 if (bb)
4274 df_set_bb_dirty (bb);
4275 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4276 if (!BARRIER_P (last))
4278 set_block_for_insn (last, bb);
4279 df_insn_rescan (last);
4281 if (!BARRIER_P (last))
4283 set_block_for_insn (last, bb);
4284 df_insn_rescan (last);
4286 if (BB_END (bb) == after)
4287 BB_END (bb) = last;
4289 else
4290 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4291 continue;
4293 after_after = NEXT_INSN (after);
4295 NEXT_INSN (after) = first;
4296 PREV_INSN (first) = after;
4297 NEXT_INSN (last) = after_after;
4298 if (after_after)
4299 PREV_INSN (after_after) = last;
4301 if (after == get_last_insn())
4302 set_last_insn (last);
4304 return last;
4307 static rtx
4308 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4309 rtx (*make_raw)(rtx))
4311 rtx last = after;
4313 gcc_assert (after);
4315 if (x == NULL_RTX)
4316 return last;
4318 switch (GET_CODE (x))
4320 case DEBUG_INSN:
4321 case INSN:
4322 case JUMP_INSN:
4323 case CALL_INSN:
4324 case CODE_LABEL:
4325 case BARRIER:
4326 case NOTE:
4327 last = emit_insn_after_1 (x, after, bb);
4328 break;
4330 #ifdef ENABLE_RTL_CHECKING
4331 case SEQUENCE:
4332 gcc_unreachable ();
4333 break;
4334 #endif
4336 default:
4337 last = (*make_raw) (x);
4338 add_insn_after (last, after, bb);
4339 break;
4342 return last;
4345 /* Make X be output after the insn AFTER and set the BB of insn. If
4346 BB is NULL, an attempt is made to infer the BB from AFTER. */
4349 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4351 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4355 /* Make an insn of code JUMP_INSN with body X
4356 and output it after the insn AFTER. */
4359 emit_jump_insn_after_noloc (rtx x, rtx after)
4361 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4364 /* Make an instruction with body X and code CALL_INSN
4365 and output it after the instruction AFTER. */
4368 emit_call_insn_after_noloc (rtx x, rtx after)
4370 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4373 /* Make an instruction with body X and code CALL_INSN
4374 and output it after the instruction AFTER. */
4377 emit_debug_insn_after_noloc (rtx x, rtx after)
4379 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4382 /* Make an insn of code BARRIER
4383 and output it after the insn AFTER. */
4386 emit_barrier_after (rtx after)
4388 rtx insn = rtx_alloc (BARRIER);
4390 INSN_UID (insn) = cur_insn_uid++;
4392 add_insn_after (insn, after, NULL);
4393 return insn;
4396 /* Emit the label LABEL after the insn AFTER. */
4399 emit_label_after (rtx label, rtx after)
4401 /* This can be called twice for the same label
4402 as a result of the confusion that follows a syntax error!
4403 So make it harmless. */
4404 if (INSN_UID (label) == 0)
4406 INSN_UID (label) = cur_insn_uid++;
4407 add_insn_after (label, after, NULL);
4410 return label;
4413 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4416 emit_note_after (enum insn_note subtype, rtx after)
4418 rtx note = rtx_alloc (NOTE);
4419 INSN_UID (note) = cur_insn_uid++;
4420 NOTE_KIND (note) = subtype;
4421 BLOCK_FOR_INSN (note) = NULL;
4422 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4423 add_insn_after (note, after, NULL);
4424 return note;
4427 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4428 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4430 static rtx
4431 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4432 rtx (*make_raw) (rtx))
4434 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4436 if (pattern == NULL_RTX || !loc)
4437 return last;
4439 after = NEXT_INSN (after);
4440 while (1)
4442 if (active_insn_p (after) && !INSN_LOCATOR (after))
4443 INSN_LOCATOR (after) = loc;
4444 if (after == last)
4445 break;
4446 after = NEXT_INSN (after);
4448 return last;
4451 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4452 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4453 any DEBUG_INSNs. */
4455 static rtx
4456 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4457 rtx (*make_raw) (rtx))
4459 rtx prev = after;
4461 if (skip_debug_insns)
4462 while (DEBUG_INSN_P (prev))
4463 prev = PREV_INSN (prev);
4465 if (INSN_P (prev))
4466 return emit_pattern_after_setloc (pattern, after, INSN_LOCATOR (prev),
4467 make_raw);
4468 else
4469 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4472 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4474 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4476 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4479 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4481 emit_insn_after (rtx pattern, rtx after)
4483 return emit_pattern_after (pattern, after, true, make_insn_raw);
4486 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4488 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4490 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4493 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4495 emit_jump_insn_after (rtx pattern, rtx after)
4497 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4500 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4502 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4504 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4507 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4509 emit_call_insn_after (rtx pattern, rtx after)
4511 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4514 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4516 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4518 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4521 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4523 emit_debug_insn_after (rtx pattern, rtx after)
4525 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4528 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4529 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4530 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4531 CALL_INSN, etc. */
4533 static rtx
4534 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4535 rtx (*make_raw) (rtx))
4537 rtx first = PREV_INSN (before);
4538 rtx last = emit_pattern_before_noloc (pattern, before,
4539 insnp ? before : NULL_RTX,
4540 NULL, make_raw);
4542 if (pattern == NULL_RTX || !loc)
4543 return last;
4545 if (!first)
4546 first = get_insns ();
4547 else
4548 first = NEXT_INSN (first);
4549 while (1)
4551 if (active_insn_p (first) && !INSN_LOCATOR (first))
4552 INSN_LOCATOR (first) = loc;
4553 if (first == last)
4554 break;
4555 first = NEXT_INSN (first);
4557 return last;
4560 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4561 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4562 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4563 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4565 static rtx
4566 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4567 bool insnp, rtx (*make_raw) (rtx))
4569 rtx next = before;
4571 if (skip_debug_insns)
4572 while (DEBUG_INSN_P (next))
4573 next = PREV_INSN (next);
4575 if (INSN_P (next))
4576 return emit_pattern_before_setloc (pattern, before, INSN_LOCATOR (next),
4577 insnp, make_raw);
4578 else
4579 return emit_pattern_before_noloc (pattern, before,
4580 insnp ? before : NULL_RTX,
4581 NULL, make_raw);
4584 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4586 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4588 return emit_pattern_before_setloc (pattern, before, loc, true,
4589 make_insn_raw);
4592 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4594 emit_insn_before (rtx pattern, rtx before)
4596 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4599 /* like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4601 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4603 return emit_pattern_before_setloc (pattern, before, loc, false,
4604 make_jump_insn_raw);
4607 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4609 emit_jump_insn_before (rtx pattern, rtx before)
4611 return emit_pattern_before (pattern, before, true, false,
4612 make_jump_insn_raw);
4615 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4617 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4619 return emit_pattern_before_setloc (pattern, before, loc, false,
4620 make_call_insn_raw);
4623 /* Like emit_call_insn_before_noloc,
4624 but set insn_locator according to BEFORE. */
4626 emit_call_insn_before (rtx pattern, rtx before)
4628 return emit_pattern_before (pattern, before, true, false,
4629 make_call_insn_raw);
4632 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4634 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4636 return emit_pattern_before_setloc (pattern, before, loc, false,
4637 make_debug_insn_raw);
4640 /* Like emit_debug_insn_before_noloc,
4641 but set insn_locator according to BEFORE. */
4643 emit_debug_insn_before (rtx pattern, rtx before)
4645 return emit_pattern_before (pattern, before, false, false,
4646 make_debug_insn_raw);
4649 /* Take X and emit it at the end of the doubly-linked
4650 INSN list.
4652 Returns the last insn emitted. */
4655 emit_insn (rtx x)
4657 rtx last = get_last_insn();
4658 rtx insn;
4660 if (x == NULL_RTX)
4661 return last;
4663 switch (GET_CODE (x))
4665 case DEBUG_INSN:
4666 case INSN:
4667 case JUMP_INSN:
4668 case CALL_INSN:
4669 case CODE_LABEL:
4670 case BARRIER:
4671 case NOTE:
4672 insn = x;
4673 while (insn)
4675 rtx next = NEXT_INSN (insn);
4676 add_insn (insn);
4677 last = insn;
4678 insn = next;
4680 break;
4682 #ifdef ENABLE_RTL_CHECKING
4683 case SEQUENCE:
4684 gcc_unreachable ();
4685 break;
4686 #endif
4688 default:
4689 last = make_insn_raw (x);
4690 add_insn (last);
4691 break;
4694 return last;
4697 /* Make an insn of code DEBUG_INSN with pattern X
4698 and add it to the end of the doubly-linked list. */
4701 emit_debug_insn (rtx x)
4703 rtx last = get_last_insn();
4704 rtx insn;
4706 if (x == NULL_RTX)
4707 return last;
4709 switch (GET_CODE (x))
4711 case DEBUG_INSN:
4712 case INSN:
4713 case JUMP_INSN:
4714 case CALL_INSN:
4715 case CODE_LABEL:
4716 case BARRIER:
4717 case NOTE:
4718 insn = x;
4719 while (insn)
4721 rtx next = NEXT_INSN (insn);
4722 add_insn (insn);
4723 last = insn;
4724 insn = next;
4726 break;
4728 #ifdef ENABLE_RTL_CHECKING
4729 case SEQUENCE:
4730 gcc_unreachable ();
4731 break;
4732 #endif
4734 default:
4735 last = make_debug_insn_raw (x);
4736 add_insn (last);
4737 break;
4740 return last;
4743 /* Make an insn of code JUMP_INSN with pattern X
4744 and add it to the end of the doubly-linked list. */
4747 emit_jump_insn (rtx x)
4749 rtx last = NULL_RTX, insn;
4751 switch (GET_CODE (x))
4753 case DEBUG_INSN:
4754 case INSN:
4755 case JUMP_INSN:
4756 case CALL_INSN:
4757 case CODE_LABEL:
4758 case BARRIER:
4759 case NOTE:
4760 insn = x;
4761 while (insn)
4763 rtx next = NEXT_INSN (insn);
4764 add_insn (insn);
4765 last = insn;
4766 insn = next;
4768 break;
4770 #ifdef ENABLE_RTL_CHECKING
4771 case SEQUENCE:
4772 gcc_unreachable ();
4773 break;
4774 #endif
4776 default:
4777 last = make_jump_insn_raw (x);
4778 add_insn (last);
4779 break;
4782 return last;
4785 /* Make an insn of code CALL_INSN with pattern X
4786 and add it to the end of the doubly-linked list. */
4789 emit_call_insn (rtx x)
4791 rtx insn;
4793 switch (GET_CODE (x))
4795 case DEBUG_INSN:
4796 case INSN:
4797 case JUMP_INSN:
4798 case CALL_INSN:
4799 case CODE_LABEL:
4800 case BARRIER:
4801 case NOTE:
4802 insn = emit_insn (x);
4803 break;
4805 #ifdef ENABLE_RTL_CHECKING
4806 case SEQUENCE:
4807 gcc_unreachable ();
4808 break;
4809 #endif
4811 default:
4812 insn = make_call_insn_raw (x);
4813 add_insn (insn);
4814 break;
4817 return insn;
4820 /* Add the label LABEL to the end of the doubly-linked list. */
4823 emit_label (rtx label)
4825 /* This can be called twice for the same label
4826 as a result of the confusion that follows a syntax error!
4827 So make it harmless. */
4828 if (INSN_UID (label) == 0)
4830 INSN_UID (label) = cur_insn_uid++;
4831 add_insn (label);
4833 return label;
4836 /* Make an insn of code BARRIER
4837 and add it to the end of the doubly-linked list. */
4840 emit_barrier (void)
4842 rtx barrier = rtx_alloc (BARRIER);
4843 INSN_UID (barrier) = cur_insn_uid++;
4844 add_insn (barrier);
4845 return barrier;
4848 /* Emit a copy of note ORIG. */
4851 emit_note_copy (rtx orig)
4853 rtx note;
4855 note = rtx_alloc (NOTE);
4857 INSN_UID (note) = cur_insn_uid++;
4858 NOTE_DATA (note) = NOTE_DATA (orig);
4859 NOTE_KIND (note) = NOTE_KIND (orig);
4860 BLOCK_FOR_INSN (note) = NULL;
4861 add_insn (note);
4863 return note;
4866 /* Make an insn of code NOTE or type NOTE_NO
4867 and add it to the end of the doubly-linked list. */
4870 emit_note (enum insn_note kind)
4872 rtx note;
4874 note = rtx_alloc (NOTE);
4875 INSN_UID (note) = cur_insn_uid++;
4876 NOTE_KIND (note) = kind;
4877 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4878 BLOCK_FOR_INSN (note) = NULL;
4879 add_insn (note);
4880 return note;
4883 /* Emit a clobber of lvalue X. */
4886 emit_clobber (rtx x)
4888 /* CONCATs should not appear in the insn stream. */
4889 if (GET_CODE (x) == CONCAT)
4891 emit_clobber (XEXP (x, 0));
4892 return emit_clobber (XEXP (x, 1));
4894 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4897 /* Return a sequence of insns to clobber lvalue X. */
4900 gen_clobber (rtx x)
4902 rtx seq;
4904 start_sequence ();
4905 emit_clobber (x);
4906 seq = get_insns ();
4907 end_sequence ();
4908 return seq;
4911 /* Emit a use of rvalue X. */
4914 emit_use (rtx x)
4916 /* CONCATs should not appear in the insn stream. */
4917 if (GET_CODE (x) == CONCAT)
4919 emit_use (XEXP (x, 0));
4920 return emit_use (XEXP (x, 1));
4922 return emit_insn (gen_rtx_USE (VOIDmode, x));
4925 /* Return a sequence of insns to use rvalue X. */
4928 gen_use (rtx x)
4930 rtx seq;
4932 start_sequence ();
4933 emit_use (x);
4934 seq = get_insns ();
4935 end_sequence ();
4936 return seq;
4939 /* Cause next statement to emit a line note even if the line number
4940 has not changed. */
4942 void
4943 force_next_line_note (void)
4945 last_location = -1;
4948 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4949 note of this type already exists, remove it first. */
4952 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4954 rtx note = find_reg_note (insn, kind, NULL_RTX);
4956 switch (kind)
4958 case REG_EQUAL:
4959 case REG_EQUIV:
4960 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4961 has multiple sets (some callers assume single_set
4962 means the insn only has one set, when in fact it
4963 means the insn only has one * useful * set). */
4964 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4966 gcc_assert (!note);
4967 return NULL_RTX;
4970 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4971 It serves no useful purpose and breaks eliminate_regs. */
4972 if (GET_CODE (datum) == ASM_OPERANDS)
4973 return NULL_RTX;
4975 if (note)
4977 XEXP (note, 0) = datum;
4978 df_notes_rescan (insn);
4979 return note;
4981 break;
4983 default:
4984 if (note)
4986 XEXP (note, 0) = datum;
4987 return note;
4989 break;
4992 add_reg_note (insn, kind, datum);
4994 switch (kind)
4996 case REG_EQUAL:
4997 case REG_EQUIV:
4998 df_notes_rescan (insn);
4999 break;
5000 default:
5001 break;
5004 return REG_NOTES (insn);
5007 /* Return an indication of which type of insn should have X as a body.
5008 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5010 static enum rtx_code
5011 classify_insn (rtx x)
5013 if (LABEL_P (x))
5014 return CODE_LABEL;
5015 if (GET_CODE (x) == CALL)
5016 return CALL_INSN;
5017 if (ANY_RETURN_P (x))
5018 return JUMP_INSN;
5019 if (GET_CODE (x) == SET)
5021 if (SET_DEST (x) == pc_rtx)
5022 return JUMP_INSN;
5023 else if (GET_CODE (SET_SRC (x)) == CALL)
5024 return CALL_INSN;
5025 else
5026 return INSN;
5028 if (GET_CODE (x) == PARALLEL)
5030 int j;
5031 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5032 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5033 return CALL_INSN;
5034 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5035 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5036 return JUMP_INSN;
5037 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5038 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5039 return CALL_INSN;
5041 return INSN;
5044 /* Emit the rtl pattern X as an appropriate kind of insn.
5045 If X is a label, it is simply added into the insn chain. */
5048 emit (rtx x)
5050 enum rtx_code code = classify_insn (x);
5052 switch (code)
5054 case CODE_LABEL:
5055 return emit_label (x);
5056 case INSN:
5057 return emit_insn (x);
5058 case JUMP_INSN:
5060 rtx insn = emit_jump_insn (x);
5061 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5062 return emit_barrier ();
5063 return insn;
5065 case CALL_INSN:
5066 return emit_call_insn (x);
5067 case DEBUG_INSN:
5068 return emit_debug_insn (x);
5069 default:
5070 gcc_unreachable ();
5074 /* Space for free sequence stack entries. */
5075 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5077 /* Begin emitting insns to a sequence. If this sequence will contain
5078 something that might cause the compiler to pop arguments to function
5079 calls (because those pops have previously been deferred; see
5080 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5081 before calling this function. That will ensure that the deferred
5082 pops are not accidentally emitted in the middle of this sequence. */
5084 void
5085 start_sequence (void)
5087 struct sequence_stack *tem;
5089 if (free_sequence_stack != NULL)
5091 tem = free_sequence_stack;
5092 free_sequence_stack = tem->next;
5094 else
5095 tem = ggc_alloc_sequence_stack ();
5097 tem->next = seq_stack;
5098 tem->first = get_insns ();
5099 tem->last = get_last_insn ();
5101 seq_stack = tem;
5103 set_first_insn (0);
5104 set_last_insn (0);
5107 /* Set up the insn chain starting with FIRST as the current sequence,
5108 saving the previously current one. See the documentation for
5109 start_sequence for more information about how to use this function. */
5111 void
5112 push_to_sequence (rtx first)
5114 rtx last;
5116 start_sequence ();
5118 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5121 set_first_insn (first);
5122 set_last_insn (last);
5125 /* Like push_to_sequence, but take the last insn as an argument to avoid
5126 looping through the list. */
5128 void
5129 push_to_sequence2 (rtx first, rtx last)
5131 start_sequence ();
5133 set_first_insn (first);
5134 set_last_insn (last);
5137 /* Set up the outer-level insn chain
5138 as the current sequence, saving the previously current one. */
5140 void
5141 push_topmost_sequence (void)
5143 struct sequence_stack *stack, *top = NULL;
5145 start_sequence ();
5147 for (stack = seq_stack; stack; stack = stack->next)
5148 top = stack;
5150 set_first_insn (top->first);
5151 set_last_insn (top->last);
5154 /* After emitting to the outer-level insn chain, update the outer-level
5155 insn chain, and restore the previous saved state. */
5157 void
5158 pop_topmost_sequence (void)
5160 struct sequence_stack *stack, *top = NULL;
5162 for (stack = seq_stack; stack; stack = stack->next)
5163 top = stack;
5165 top->first = get_insns ();
5166 top->last = get_last_insn ();
5168 end_sequence ();
5171 /* After emitting to a sequence, restore previous saved state.
5173 To get the contents of the sequence just made, you must call
5174 `get_insns' *before* calling here.
5176 If the compiler might have deferred popping arguments while
5177 generating this sequence, and this sequence will not be immediately
5178 inserted into the instruction stream, use do_pending_stack_adjust
5179 before calling get_insns. That will ensure that the deferred
5180 pops are inserted into this sequence, and not into some random
5181 location in the instruction stream. See INHIBIT_DEFER_POP for more
5182 information about deferred popping of arguments. */
5184 void
5185 end_sequence (void)
5187 struct sequence_stack *tem = seq_stack;
5189 set_first_insn (tem->first);
5190 set_last_insn (tem->last);
5191 seq_stack = tem->next;
5193 memset (tem, 0, sizeof (*tem));
5194 tem->next = free_sequence_stack;
5195 free_sequence_stack = tem;
5198 /* Return 1 if currently emitting into a sequence. */
5201 in_sequence_p (void)
5203 return seq_stack != 0;
5206 /* Put the various virtual registers into REGNO_REG_RTX. */
5208 static void
5209 init_virtual_regs (void)
5211 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5212 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5213 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5214 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5215 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5216 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5217 = virtual_preferred_stack_boundary_rtx;
5221 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5222 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5223 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5224 static int copy_insn_n_scratches;
5226 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5227 copied an ASM_OPERANDS.
5228 In that case, it is the original input-operand vector. */
5229 static rtvec orig_asm_operands_vector;
5231 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5232 copied an ASM_OPERANDS.
5233 In that case, it is the copied input-operand vector. */
5234 static rtvec copy_asm_operands_vector;
5236 /* Likewise for the constraints vector. */
5237 static rtvec orig_asm_constraints_vector;
5238 static rtvec copy_asm_constraints_vector;
5240 /* Recursively create a new copy of an rtx for copy_insn.
5241 This function differs from copy_rtx in that it handles SCRATCHes and
5242 ASM_OPERANDs properly.
5243 Normally, this function is not used directly; use copy_insn as front end.
5244 However, you could first copy an insn pattern with copy_insn and then use
5245 this function afterwards to properly copy any REG_NOTEs containing
5246 SCRATCHes. */
5249 copy_insn_1 (rtx orig)
5251 rtx copy;
5252 int i, j;
5253 RTX_CODE code;
5254 const char *format_ptr;
5256 if (orig == NULL)
5257 return NULL;
5259 code = GET_CODE (orig);
5261 switch (code)
5263 case REG:
5264 case DEBUG_EXPR:
5265 case CONST_INT:
5266 case CONST_DOUBLE:
5267 case CONST_FIXED:
5268 case CONST_VECTOR:
5269 case SYMBOL_REF:
5270 case CODE_LABEL:
5271 case PC:
5272 case CC0:
5273 case RETURN:
5274 case SIMPLE_RETURN:
5275 return orig;
5276 case CLOBBER:
5277 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5278 return orig;
5279 break;
5281 case SCRATCH:
5282 for (i = 0; i < copy_insn_n_scratches; i++)
5283 if (copy_insn_scratch_in[i] == orig)
5284 return copy_insn_scratch_out[i];
5285 break;
5287 case CONST:
5288 if (shared_const_p (orig))
5289 return orig;
5290 break;
5292 /* A MEM with a constant address is not sharable. The problem is that
5293 the constant address may need to be reloaded. If the mem is shared,
5294 then reloading one copy of this mem will cause all copies to appear
5295 to have been reloaded. */
5297 default:
5298 break;
5301 /* Copy the various flags, fields, and other information. We assume
5302 that all fields need copying, and then clear the fields that should
5303 not be copied. That is the sensible default behavior, and forces
5304 us to explicitly document why we are *not* copying a flag. */
5305 copy = shallow_copy_rtx (orig);
5307 /* We do not copy the USED flag, which is used as a mark bit during
5308 walks over the RTL. */
5309 RTX_FLAG (copy, used) = 0;
5311 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5312 if (INSN_P (orig))
5314 RTX_FLAG (copy, jump) = 0;
5315 RTX_FLAG (copy, call) = 0;
5316 RTX_FLAG (copy, frame_related) = 0;
5319 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5321 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5322 switch (*format_ptr++)
5324 case 'e':
5325 if (XEXP (orig, i) != NULL)
5326 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5327 break;
5329 case 'E':
5330 case 'V':
5331 if (XVEC (orig, i) == orig_asm_constraints_vector)
5332 XVEC (copy, i) = copy_asm_constraints_vector;
5333 else if (XVEC (orig, i) == orig_asm_operands_vector)
5334 XVEC (copy, i) = copy_asm_operands_vector;
5335 else if (XVEC (orig, i) != NULL)
5337 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5338 for (j = 0; j < XVECLEN (copy, i); j++)
5339 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5341 break;
5343 case 't':
5344 case 'w':
5345 case 'i':
5346 case 's':
5347 case 'S':
5348 case 'u':
5349 case '0':
5350 /* These are left unchanged. */
5351 break;
5353 default:
5354 gcc_unreachable ();
5357 if (code == SCRATCH)
5359 i = copy_insn_n_scratches++;
5360 gcc_assert (i < MAX_RECOG_OPERANDS);
5361 copy_insn_scratch_in[i] = orig;
5362 copy_insn_scratch_out[i] = copy;
5364 else if (code == ASM_OPERANDS)
5366 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5367 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5368 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5369 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5372 return copy;
5375 /* Create a new copy of an rtx.
5376 This function differs from copy_rtx in that it handles SCRATCHes and
5377 ASM_OPERANDs properly.
5378 INSN doesn't really have to be a full INSN; it could be just the
5379 pattern. */
5381 copy_insn (rtx insn)
5383 copy_insn_n_scratches = 0;
5384 orig_asm_operands_vector = 0;
5385 orig_asm_constraints_vector = 0;
5386 copy_asm_operands_vector = 0;
5387 copy_asm_constraints_vector = 0;
5388 return copy_insn_1 (insn);
5391 /* Initialize data structures and variables in this file
5392 before generating rtl for each function. */
5394 void
5395 init_emit (void)
5397 set_first_insn (NULL);
5398 set_last_insn (NULL);
5399 if (MIN_NONDEBUG_INSN_UID)
5400 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5401 else
5402 cur_insn_uid = 1;
5403 cur_debug_insn_uid = 1;
5404 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5405 last_location = UNKNOWN_LOCATION;
5406 first_label_num = label_num;
5407 seq_stack = NULL;
5409 /* Init the tables that describe all the pseudo regs. */
5411 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5413 crtl->emit.regno_pointer_align
5414 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5416 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5418 /* Put copies of all the hard registers into regno_reg_rtx. */
5419 memcpy (regno_reg_rtx,
5420 initial_regno_reg_rtx,
5421 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5423 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5424 init_virtual_regs ();
5426 /* Indicate that the virtual registers and stack locations are
5427 all pointers. */
5428 REG_POINTER (stack_pointer_rtx) = 1;
5429 REG_POINTER (frame_pointer_rtx) = 1;
5430 REG_POINTER (hard_frame_pointer_rtx) = 1;
5431 REG_POINTER (arg_pointer_rtx) = 1;
5433 REG_POINTER (virtual_incoming_args_rtx) = 1;
5434 REG_POINTER (virtual_stack_vars_rtx) = 1;
5435 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5436 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5437 REG_POINTER (virtual_cfa_rtx) = 1;
5439 #ifdef STACK_BOUNDARY
5440 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5441 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5442 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5443 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5445 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5446 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5447 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5448 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5449 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5450 #endif
5452 #ifdef INIT_EXPANDERS
5453 INIT_EXPANDERS;
5454 #endif
5457 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5459 static rtx
5460 gen_const_vector (enum machine_mode mode, int constant)
5462 rtx tem;
5463 rtvec v;
5464 int units, i;
5465 enum machine_mode inner;
5467 units = GET_MODE_NUNITS (mode);
5468 inner = GET_MODE_INNER (mode);
5470 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5472 v = rtvec_alloc (units);
5474 /* We need to call this function after we set the scalar const_tiny_rtx
5475 entries. */
5476 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5478 for (i = 0; i < units; ++i)
5479 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5481 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5482 return tem;
5485 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5486 all elements are zero, and the one vector when all elements are one. */
5488 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5490 enum machine_mode inner = GET_MODE_INNER (mode);
5491 int nunits = GET_MODE_NUNITS (mode);
5492 rtx x;
5493 int i;
5495 /* Check to see if all of the elements have the same value. */
5496 x = RTVEC_ELT (v, nunits - 1);
5497 for (i = nunits - 2; i >= 0; i--)
5498 if (RTVEC_ELT (v, i) != x)
5499 break;
5501 /* If the values are all the same, check to see if we can use one of the
5502 standard constant vectors. */
5503 if (i == -1)
5505 if (x == CONST0_RTX (inner))
5506 return CONST0_RTX (mode);
5507 else if (x == CONST1_RTX (inner))
5508 return CONST1_RTX (mode);
5509 else if (x == CONSTM1_RTX (inner))
5510 return CONSTM1_RTX (mode);
5513 return gen_rtx_raw_CONST_VECTOR (mode, v);
5516 /* Initialise global register information required by all functions. */
5518 void
5519 init_emit_regs (void)
5521 int i;
5522 enum machine_mode mode;
5523 mem_attrs *attrs;
5525 /* Reset register attributes */
5526 htab_empty (reg_attrs_htab);
5528 /* We need reg_raw_mode, so initialize the modes now. */
5529 init_reg_modes_target ();
5531 /* Assign register numbers to the globally defined register rtx. */
5532 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
5533 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
5534 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
5535 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
5536 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5537 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5538 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5539 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5540 virtual_incoming_args_rtx =
5541 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5542 virtual_stack_vars_rtx =
5543 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5544 virtual_stack_dynamic_rtx =
5545 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5546 virtual_outgoing_args_rtx =
5547 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5548 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5549 virtual_preferred_stack_boundary_rtx =
5550 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5552 /* Initialize RTL for commonly used hard registers. These are
5553 copied into regno_reg_rtx as we begin to compile each function. */
5554 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5555 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5557 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5558 return_address_pointer_rtx
5559 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5560 #endif
5562 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5563 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5564 else
5565 pic_offset_table_rtx = NULL_RTX;
5567 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5569 mode = (enum machine_mode) i;
5570 attrs = ggc_alloc_cleared_mem_attrs ();
5571 attrs->align = BITS_PER_UNIT;
5572 attrs->addrspace = ADDR_SPACE_GENERIC;
5573 if (mode != BLKmode)
5575 attrs->size_known_p = true;
5576 attrs->size = GET_MODE_SIZE (mode);
5577 if (STRICT_ALIGNMENT)
5578 attrs->align = GET_MODE_ALIGNMENT (mode);
5580 mode_mem_attrs[i] = attrs;
5584 /* Create some permanent unique rtl objects shared between all functions. */
5586 void
5587 init_emit_once (void)
5589 int i;
5590 enum machine_mode mode;
5591 enum machine_mode double_mode;
5593 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5594 hash tables. */
5595 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5596 const_int_htab_eq, NULL);
5598 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5599 const_double_htab_eq, NULL);
5601 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5602 const_fixed_htab_eq, NULL);
5604 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5605 mem_attrs_htab_eq, NULL);
5606 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5607 reg_attrs_htab_eq, NULL);
5609 /* Compute the word and byte modes. */
5611 byte_mode = VOIDmode;
5612 word_mode = VOIDmode;
5613 double_mode = VOIDmode;
5615 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5616 mode != VOIDmode;
5617 mode = GET_MODE_WIDER_MODE (mode))
5619 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5620 && byte_mode == VOIDmode)
5621 byte_mode = mode;
5623 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5624 && word_mode == VOIDmode)
5625 word_mode = mode;
5628 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5629 mode != VOIDmode;
5630 mode = GET_MODE_WIDER_MODE (mode))
5632 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5633 && double_mode == VOIDmode)
5634 double_mode = mode;
5637 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5639 #ifdef INIT_EXPANDERS
5640 /* This is to initialize {init|mark|free}_machine_status before the first
5641 call to push_function_context_to. This is needed by the Chill front
5642 end which calls push_function_context_to before the first call to
5643 init_function_start. */
5644 INIT_EXPANDERS;
5645 #endif
5647 /* Create the unique rtx's for certain rtx codes and operand values. */
5649 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5650 tries to use these variables. */
5651 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5652 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5653 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5655 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5656 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5657 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5658 else
5659 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5661 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5662 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5663 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5665 dconstm1 = dconst1;
5666 dconstm1.sign = 1;
5668 dconsthalf = dconst1;
5669 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5671 for (i = 0; i < 3; i++)
5673 const REAL_VALUE_TYPE *const r =
5674 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5676 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5677 mode != VOIDmode;
5678 mode = GET_MODE_WIDER_MODE (mode))
5679 const_tiny_rtx[i][(int) mode] =
5680 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5682 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5683 mode != VOIDmode;
5684 mode = GET_MODE_WIDER_MODE (mode))
5685 const_tiny_rtx[i][(int) mode] =
5686 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5688 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5690 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5691 mode != VOIDmode;
5692 mode = GET_MODE_WIDER_MODE (mode))
5693 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5695 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5696 mode != VOIDmode;
5697 mode = GET_MODE_WIDER_MODE (mode))
5698 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5701 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5703 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5704 mode != VOIDmode;
5705 mode = GET_MODE_WIDER_MODE (mode))
5706 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5708 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5709 mode != VOIDmode;
5710 mode = GET_MODE_WIDER_MODE (mode))
5712 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5713 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5716 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5717 mode != VOIDmode;
5718 mode = GET_MODE_WIDER_MODE (mode))
5720 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5721 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5724 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5725 mode != VOIDmode;
5726 mode = GET_MODE_WIDER_MODE (mode))
5728 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5729 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5730 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5733 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5734 mode != VOIDmode;
5735 mode = GET_MODE_WIDER_MODE (mode))
5737 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5738 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5741 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5742 mode != VOIDmode;
5743 mode = GET_MODE_WIDER_MODE (mode))
5745 FCONST0(mode).data.high = 0;
5746 FCONST0(mode).data.low = 0;
5747 FCONST0(mode).mode = mode;
5748 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5749 FCONST0 (mode), mode);
5752 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5753 mode != VOIDmode;
5754 mode = GET_MODE_WIDER_MODE (mode))
5756 FCONST0(mode).data.high = 0;
5757 FCONST0(mode).data.low = 0;
5758 FCONST0(mode).mode = mode;
5759 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5760 FCONST0 (mode), mode);
5763 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5764 mode != VOIDmode;
5765 mode = GET_MODE_WIDER_MODE (mode))
5767 FCONST0(mode).data.high = 0;
5768 FCONST0(mode).data.low = 0;
5769 FCONST0(mode).mode = mode;
5770 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5771 FCONST0 (mode), mode);
5773 /* We store the value 1. */
5774 FCONST1(mode).data.high = 0;
5775 FCONST1(mode).data.low = 0;
5776 FCONST1(mode).mode = mode;
5777 lshift_double (1, 0, GET_MODE_FBIT (mode),
5778 2 * HOST_BITS_PER_WIDE_INT,
5779 &FCONST1(mode).data.low,
5780 &FCONST1(mode).data.high,
5781 SIGNED_FIXED_POINT_MODE_P (mode));
5782 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5783 FCONST1 (mode), mode);
5786 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5787 mode != VOIDmode;
5788 mode = GET_MODE_WIDER_MODE (mode))
5790 FCONST0(mode).data.high = 0;
5791 FCONST0(mode).data.low = 0;
5792 FCONST0(mode).mode = mode;
5793 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5794 FCONST0 (mode), mode);
5796 /* We store the value 1. */
5797 FCONST1(mode).data.high = 0;
5798 FCONST1(mode).data.low = 0;
5799 FCONST1(mode).mode = mode;
5800 lshift_double (1, 0, GET_MODE_FBIT (mode),
5801 2 * HOST_BITS_PER_WIDE_INT,
5802 &FCONST1(mode).data.low,
5803 &FCONST1(mode).data.high,
5804 SIGNED_FIXED_POINT_MODE_P (mode));
5805 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5806 FCONST1 (mode), mode);
5809 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5810 mode != VOIDmode;
5811 mode = GET_MODE_WIDER_MODE (mode))
5813 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5816 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5817 mode != VOIDmode;
5818 mode = GET_MODE_WIDER_MODE (mode))
5820 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5823 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5824 mode != VOIDmode;
5825 mode = GET_MODE_WIDER_MODE (mode))
5827 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5828 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5831 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5832 mode != VOIDmode;
5833 mode = GET_MODE_WIDER_MODE (mode))
5835 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5836 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5839 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5840 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5841 const_tiny_rtx[0][i] = const0_rtx;
5843 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5844 if (STORE_FLAG_VALUE == 1)
5845 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5848 /* Produce exact duplicate of insn INSN after AFTER.
5849 Care updating of libcall regions if present. */
5852 emit_copy_of_insn_after (rtx insn, rtx after)
5854 rtx new_rtx, link;
5856 switch (GET_CODE (insn))
5858 case INSN:
5859 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5860 break;
5862 case JUMP_INSN:
5863 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5864 break;
5866 case DEBUG_INSN:
5867 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5868 break;
5870 case CALL_INSN:
5871 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5872 if (CALL_INSN_FUNCTION_USAGE (insn))
5873 CALL_INSN_FUNCTION_USAGE (new_rtx)
5874 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5875 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5876 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5877 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5878 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5879 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5880 break;
5882 default:
5883 gcc_unreachable ();
5886 /* Update LABEL_NUSES. */
5887 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5889 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
5891 /* If the old insn is frame related, then so is the new one. This is
5892 primarily needed for IA-64 unwind info which marks epilogue insns,
5893 which may be duplicated by the basic block reordering code. */
5894 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5896 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5897 will make them. REG_LABEL_TARGETs are created there too, but are
5898 supposed to be sticky, so we copy them. */
5899 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5900 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5902 if (GET_CODE (link) == EXPR_LIST)
5903 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5904 copy_insn_1 (XEXP (link, 0)));
5905 else
5906 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5909 INSN_CODE (new_rtx) = INSN_CODE (insn);
5910 return new_rtx;
5913 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5915 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5917 if (hard_reg_clobbers[mode][regno])
5918 return hard_reg_clobbers[mode][regno];
5919 else
5920 return (hard_reg_clobbers[mode][regno] =
5921 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5924 #include "gt-emit-rtl.h"