Daily bump.
[official-gcc.git] / gcc / regclass.c
blob74594cbaaab9ca52340a7acdff4ae50224fc7b5d
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
27 #include "config.h"
28 #include "system.h"
29 #include "rtl.h"
30 #include "expr.h"
31 #include "tm_p.h"
32 #include "hard-reg-set.h"
33 #include "flags.h"
34 #include "basic-block.h"
35 #include "regs.h"
36 #include "function.h"
37 #include "insn-config.h"
38 #include "recog.h"
39 #include "reload.h"
40 #include "real.h"
41 #include "toplev.h"
42 #include "output.h"
43 #include "ggc.h"
45 #ifndef REGISTER_MOVE_COST
46 #define REGISTER_MOVE_COST(m, x, y) 2
47 #endif
49 static void init_reg_sets_1 PARAMS ((void));
50 static void init_reg_modes PARAMS ((void));
52 /* If we have auto-increment or auto-decrement and we can have secondary
53 reloads, we are not allowed to use classes requiring secondary
54 reloads for pseudos auto-incremented since reload can't handle it. */
56 #ifdef AUTO_INC_DEC
57 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
58 #define FORBIDDEN_INC_DEC_CLASSES
59 #endif
60 #endif
62 /* Register tables used by many passes. */
64 /* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
67 a pseudo reg for general use. */
69 char fixed_regs[FIRST_PSEUDO_REGISTER];
71 /* Same info as a HARD_REG_SET. */
73 HARD_REG_SET fixed_reg_set;
75 /* Data for initializing the above. */
77 static const char initial_fixed_regs[] = FIXED_REGISTERS;
79 /* Indexed by hard register number, contains 1 for registers
80 that are fixed use or are clobbered by function calls.
81 These are the registers that cannot be used to allocate
82 a pseudo reg whose life crosses calls unless we are able
83 to save/restore them across the calls. */
85 char call_used_regs[FIRST_PSEUDO_REGISTER];
87 /* Same info as a HARD_REG_SET. */
89 HARD_REG_SET call_used_reg_set;
91 /* HARD_REG_SET of registers we want to avoid caller saving. */
92 HARD_REG_SET losing_caller_save_reg_set;
94 /* Data for initializing the above. */
96 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
98 /* This is much like call_used_regs, except it doesn't have to
99 be a superset of FIXED_REGISTERS. This vector indicates
100 what is really call clobbered, and is used when defining
101 regs_invalidated_by_call. */
103 #ifdef CALL_REALLY_USED_REGISTERS
104 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
105 #endif
107 /* Indexed by hard register number, contains 1 for registers that are
108 fixed use or call used registers that cannot hold quantities across
109 calls even if we are willing to save and restore them. call fixed
110 registers are a subset of call used registers. */
112 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
114 /* The same info as a HARD_REG_SET. */
116 HARD_REG_SET call_fixed_reg_set;
118 /* Number of non-fixed registers. */
120 int n_non_fixed_regs;
122 /* Indexed by hard register number, contains 1 for registers
123 that are being used for global register decls.
124 These must be exempt from ordinary flow analysis
125 and are also considered fixed. */
127 char global_regs[FIRST_PSEUDO_REGISTER];
129 /* Contains 1 for registers that are set or clobbered by calls. */
130 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
131 for someone's bright idea to have call_used_regs strictly include
132 fixed_regs. Which leaves us guessing as to the set of fixed_regs
133 that are actually preserved. We know for sure that those associated
134 with the local stack frame are safe, but scant others. */
136 HARD_REG_SET regs_invalidated_by_call;
138 /* Table of register numbers in the order in which to try to use them. */
139 #ifdef REG_ALLOC_ORDER
140 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
142 /* The inverse of reg_alloc_order. */
143 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
144 #endif
146 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
148 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
150 /* The same information, but as an array of unsigned ints. We copy from
151 these unsigned ints to the table above. We do this so the tm.h files
152 do not have to be aware of the wordsize for machines with <= 64 regs.
153 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
155 #define N_REG_INTS \
156 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
158 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
159 = REG_CLASS_CONTENTS;
161 /* For each reg class, number of regs it contains. */
163 unsigned int reg_class_size[N_REG_CLASSES];
165 /* For each reg class, table listing all the containing classes. */
167 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
169 /* For each reg class, table listing all the classes contained in it. */
171 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
173 /* For each pair of reg classes,
174 a largest reg class contained in their union. */
176 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
178 /* For each pair of reg classes,
179 the smallest reg class containing their union. */
181 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
183 /* Array containing all of the register names. Unless
184 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
186 #ifdef DEBUG_REGISTER_NAMES
187 const char * reg_names[] = REGISTER_NAMES;
188 #endif
190 /* For each hard register, the widest mode object that it can contain.
191 This will be a MODE_INT mode if the register can hold integers. Otherwise
192 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
193 register. */
195 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
197 /* 1 if class does contain register of given mode. */
199 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
201 /* Maximum cost of moving from a register in one class to a register in
202 another class. Based on REGISTER_MOVE_COST. */
204 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
206 /* Similar, but here we don't have to move if the first index is a subset
207 of the second so in that case the cost is zero. */
209 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
211 /* Similar, but here we don't have to move if the first index is a superset
212 of the second so in that case the cost is zero. */
214 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
216 #ifdef FORBIDDEN_INC_DEC_CLASSES
218 /* These are the classes that regs which are auto-incremented or decremented
219 cannot be put in. */
221 static int forbidden_inc_dec_class[N_REG_CLASSES];
223 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
224 context. */
226 static char *in_inc_dec;
228 #endif /* FORBIDDEN_INC_DEC_CLASSES */
230 #ifdef CLASS_CANNOT_CHANGE_MODE
232 /* These are the classes containing only registers that can be used in
233 a SUBREG expression that changes the mode of the register in some
234 way that is illegal. */
236 static int class_can_change_mode[N_REG_CLASSES];
238 /* Registers, including pseudos, which change modes in some way that
239 is illegal. */
241 static regset reg_changes_mode;
243 #endif /* CLASS_CANNOT_CHANGE_MODE */
245 #ifdef HAVE_SECONDARY_RELOADS
247 /* Sample MEM values for use by memory_move_secondary_cost. */
249 static rtx top_of_stack[MAX_MACHINE_MODE];
251 #endif /* HAVE_SECONDARY_RELOADS */
253 /* Linked list of reg_info structures allocated for reg_n_info array.
254 Grouping all of the allocated structures together in one lump
255 means only one call to bzero to clear them, rather than n smaller
256 calls. */
257 struct reg_info_data {
258 struct reg_info_data *next; /* next set of reg_info structures */
259 size_t min_index; /* minimum index # */
260 size_t max_index; /* maximum index # */
261 char used_p; /* non-zero if this has been used previously */
262 reg_info data[1]; /* beginning of the reg_info data */
265 static struct reg_info_data *reg_info_head;
267 /* No more global register variables may be declared; true once
268 regclass has been initialized. */
270 static int no_global_reg_vars = 0;
273 /* Function called only once to initialize the above data on reg usage.
274 Once this is done, various switches may override. */
276 void
277 init_reg_sets ()
279 int i, j;
281 /* First copy the register information from the initial int form into
282 the regsets. */
284 for (i = 0; i < N_REG_CLASSES; i++)
286 CLEAR_HARD_REG_SET (reg_class_contents[i]);
288 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
289 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
290 if (int_reg_class_contents[i][j / 32]
291 & ((unsigned) 1 << (j % 32)))
292 SET_HARD_REG_BIT (reg_class_contents[i], j);
295 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
296 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
297 memset (global_regs, 0, sizeof global_regs);
299 /* Do any additional initialization regsets may need */
300 INIT_ONCE_REG_SET ();
302 #ifdef REG_ALLOC_ORDER
303 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
304 inv_reg_alloc_order[reg_alloc_order[i]] = i;
305 #endif
308 /* After switches have been processed, which perhaps alter
309 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
311 static void
312 init_reg_sets_1 ()
314 unsigned int i, j;
315 unsigned int /* enum machine_mode */ m;
316 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
318 /* This macro allows the fixed or call-used registers
319 and the register classes to depend on target flags. */
321 #ifdef CONDITIONAL_REGISTER_USAGE
322 CONDITIONAL_REGISTER_USAGE;
323 #endif
325 /* Compute number of hard regs in each class. */
327 memset ((char *) reg_class_size, 0, sizeof reg_class_size);
328 for (i = 0; i < N_REG_CLASSES; i++)
329 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
330 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
331 reg_class_size[i]++;
333 /* Initialize the table of subunions.
334 reg_class_subunion[I][J] gets the largest-numbered reg-class
335 that is contained in the union of classes I and J. */
337 for (i = 0; i < N_REG_CLASSES; i++)
339 for (j = 0; j < N_REG_CLASSES; j++)
341 #ifdef HARD_REG_SET
342 register /* Declare it register if it's a scalar. */
343 #endif
344 HARD_REG_SET c;
345 int k;
347 COPY_HARD_REG_SET (c, reg_class_contents[i]);
348 IOR_HARD_REG_SET (c, reg_class_contents[j]);
349 for (k = 0; k < N_REG_CLASSES; k++)
351 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
352 subclass1);
353 continue;
355 subclass1:
356 /* keep the largest subclass */ /* SPEE 900308 */
357 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
358 reg_class_contents[(int) reg_class_subunion[i][j]],
359 subclass2);
360 reg_class_subunion[i][j] = (enum reg_class) k;
361 subclass2:
367 /* Initialize the table of superunions.
368 reg_class_superunion[I][J] gets the smallest-numbered reg-class
369 containing the union of classes I and J. */
371 for (i = 0; i < N_REG_CLASSES; i++)
373 for (j = 0; j < N_REG_CLASSES; j++)
375 #ifdef HARD_REG_SET
376 register /* Declare it register if it's a scalar. */
377 #endif
378 HARD_REG_SET c;
379 int k;
381 COPY_HARD_REG_SET (c, reg_class_contents[i]);
382 IOR_HARD_REG_SET (c, reg_class_contents[j]);
383 for (k = 0; k < N_REG_CLASSES; k++)
384 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
386 superclass:
387 reg_class_superunion[i][j] = (enum reg_class) k;
391 /* Initialize the tables of subclasses and superclasses of each reg class.
392 First clear the whole table, then add the elements as they are found. */
394 for (i = 0; i < N_REG_CLASSES; i++)
396 for (j = 0; j < N_REG_CLASSES; j++)
398 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
399 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
403 for (i = 0; i < N_REG_CLASSES; i++)
405 if (i == (int) NO_REGS)
406 continue;
408 for (j = i + 1; j < N_REG_CLASSES; j++)
410 enum reg_class *p;
412 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
413 subclass);
414 continue;
415 subclass:
416 /* Reg class I is a subclass of J.
417 Add J to the table of superclasses of I. */
418 p = &reg_class_superclasses[i][0];
419 while (*p != LIM_REG_CLASSES) p++;
420 *p = (enum reg_class) j;
421 /* Add I to the table of superclasses of J. */
422 p = &reg_class_subclasses[j][0];
423 while (*p != LIM_REG_CLASSES) p++;
424 *p = (enum reg_class) i;
428 /* Initialize "constant" tables. */
430 CLEAR_HARD_REG_SET (fixed_reg_set);
431 CLEAR_HARD_REG_SET (call_used_reg_set);
432 CLEAR_HARD_REG_SET (call_fixed_reg_set);
433 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
435 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
437 n_non_fixed_regs = 0;
439 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
441 if (fixed_regs[i])
442 SET_HARD_REG_BIT (fixed_reg_set, i);
443 else
444 n_non_fixed_regs++;
446 if (call_used_regs[i])
447 SET_HARD_REG_BIT (call_used_reg_set, i);
448 if (call_fixed_regs[i])
449 SET_HARD_REG_BIT (call_fixed_reg_set, i);
450 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
451 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
453 /* There are a couple of fixed registers that we know are safe to
454 exclude from being clobbered by calls:
456 The frame pointer is always preserved across calls. The arg pointer
457 is if it is fixed. The stack pointer usually is, unless
458 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
459 If we are generating PIC code, the PIC offset table register is
460 preserved across calls, though the target can override that. */
462 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
464 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
465 else if (i == HARD_FRAME_POINTER_REGNUM)
467 #endif
468 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
469 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
471 #endif
472 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
473 else if (i == PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
475 #endif
476 else if (0
477 #ifdef CALL_REALLY_USED_REGISTERS
478 || call_really_used_regs[i]
479 #else
480 || call_used_regs[i]
481 #endif
482 || global_regs[i])
483 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
486 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
487 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
488 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
489 for (i = 0; i < N_REG_CLASSES; i++)
490 if (CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
491 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
492 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
493 && HARD_REGNO_MODE_OK (j, m))
495 contains_reg_of_mode [i][m] = 1;
496 allocatable_regs_of_mode [m] = 1;
497 break;
500 /* Initialize the move cost table. Find every subset of each class
501 and take the maximum cost of moving any subset to any other. */
503 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
504 if (allocatable_regs_of_mode [m])
506 for (i = 0; i < N_REG_CLASSES; i++)
507 if (contains_reg_of_mode [i][m])
508 for (j = 0; j < N_REG_CLASSES; j++)
510 int cost;
511 enum reg_class *p1, *p2;
513 if (!contains_reg_of_mode [j][m])
515 move_cost[m][i][j] = 65536;
516 may_move_in_cost[m][i][j] = 65536;
517 may_move_out_cost[m][i][j] = 65536;
519 else
521 cost = REGISTER_MOVE_COST (m, i, j);
523 for (p2 = &reg_class_subclasses[j][0];
524 *p2 != LIM_REG_CLASSES;
525 p2++)
526 if (*p2 != i && contains_reg_of_mode [*p2][m])
527 cost = MAX (cost, move_cost [m][i][*p2]);
529 for (p1 = &reg_class_subclasses[i][0];
530 *p1 != LIM_REG_CLASSES;
531 p1++)
532 if (*p1 != j && contains_reg_of_mode [*p1][m])
533 cost = MAX (cost, move_cost [m][*p1][j]);
535 move_cost[m][i][j] = cost;
537 if (reg_class_subset_p (i, j))
538 may_move_in_cost[m][i][j] = 0;
539 else
540 may_move_in_cost[m][i][j] = cost;
542 if (reg_class_subset_p (j, i))
543 may_move_out_cost[m][i][j] = 0;
544 else
545 may_move_out_cost[m][i][j] = cost;
548 else
549 for (j = 0; j < N_REG_CLASSES; j++)
551 move_cost[m][i][j] = 65536;
552 may_move_in_cost[m][i][j] = 65536;
553 may_move_out_cost[m][i][j] = 65536;
557 #ifdef CLASS_CANNOT_CHANGE_MODE
559 HARD_REG_SET c;
560 COMPL_HARD_REG_SET (c, reg_class_contents[CLASS_CANNOT_CHANGE_MODE]);
562 for (i = 0; i < N_REG_CLASSES; i++)
564 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], c, ok_class);
565 class_can_change_mode [i] = 0;
566 continue;
567 ok_class:
568 class_can_change_mode [i] = 1;
571 #endif /* CLASS_CANNOT_CHANGE_MODE */
574 /* Compute the table of register modes.
575 These values are used to record death information for individual registers
576 (as opposed to a multi-register mode). */
578 static void
579 init_reg_modes ()
581 int i;
583 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
585 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
587 /* If we couldn't find a valid mode, just use the previous mode.
588 ??? One situation in which we need to do this is on the mips where
589 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
590 to use DF mode for the even registers and VOIDmode for the odd
591 (for the cpu models where the odd ones are inaccessible). */
592 if (reg_raw_mode[i] == VOIDmode)
593 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
597 /* Finish initializing the register sets and
598 initialize the register modes. */
600 void
601 init_regs ()
603 /* This finishes what was started by init_reg_sets, but couldn't be done
604 until after register usage was specified. */
605 init_reg_sets_1 ();
607 init_reg_modes ();
609 #ifdef HAVE_SECONDARY_RELOADS
611 /* Make some fake stack-frame MEM references for use in
612 memory_move_secondary_cost. */
613 int i;
615 for (i = 0; i < MAX_MACHINE_MODE; i++)
616 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
617 ggc_add_rtx_root (top_of_stack, MAX_MACHINE_MODE);
619 #endif
622 #ifdef HAVE_SECONDARY_RELOADS
624 /* Compute extra cost of moving registers to/from memory due to reloads.
625 Only needed if secondary reloads are required for memory moves. */
628 memory_move_secondary_cost (mode, class, in)
629 enum machine_mode mode;
630 enum reg_class class;
631 int in;
633 enum reg_class altclass;
634 int partial_cost = 0;
635 /* We need a memory reference to feed to SECONDARY... macros. */
636 /* mem may be unused even if the SECONDARY_ macros are defined. */
637 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
640 if (in)
642 #ifdef SECONDARY_INPUT_RELOAD_CLASS
643 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
644 #else
645 altclass = NO_REGS;
646 #endif
648 else
650 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
651 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
652 #else
653 altclass = NO_REGS;
654 #endif
657 if (altclass == NO_REGS)
658 return 0;
660 if (in)
661 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
662 else
663 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
665 if (class == altclass)
666 /* This isn't simply a copy-to-temporary situation. Can't guess
667 what it is, so MEMORY_MOVE_COST really ought not to be calling
668 here in that case.
670 I'm tempted to put in an abort here, but returning this will
671 probably only give poor estimates, which is what we would've
672 had before this code anyways. */
673 return partial_cost;
675 /* Check if the secondary reload register will also need a
676 secondary reload. */
677 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
679 #endif
681 /* Return a machine mode that is legitimate for hard reg REGNO and large
682 enough to save nregs. If we can't find one, return VOIDmode. */
684 enum machine_mode
685 choose_hard_reg_mode (regno, nregs)
686 unsigned int regno ATTRIBUTE_UNUSED;
687 unsigned int nregs;
689 unsigned int /* enum machine_mode */ m;
690 enum machine_mode found_mode = VOIDmode, mode;
692 /* We first look for the largest integer mode that can be validly
693 held in REGNO. If none, we look for the largest floating-point mode.
694 If we still didn't find a valid mode, try CCmode. */
696 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
697 mode != VOIDmode;
698 mode = GET_MODE_WIDER_MODE (mode))
699 if (HARD_REGNO_NREGS (regno, mode) == nregs
700 && HARD_REGNO_MODE_OK (regno, mode))
701 found_mode = mode;
703 if (found_mode != VOIDmode)
704 return found_mode;
706 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
707 mode != VOIDmode;
708 mode = GET_MODE_WIDER_MODE (mode))
709 if (HARD_REGNO_NREGS (regno, mode) == nregs
710 && HARD_REGNO_MODE_OK (regno, mode))
711 found_mode = mode;
713 if (found_mode != VOIDmode)
714 return found_mode;
716 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
717 mode != VOIDmode;
718 mode = GET_MODE_WIDER_MODE (mode))
719 if (HARD_REGNO_NREGS (regno, mode) == nregs
720 && HARD_REGNO_MODE_OK (regno, mode))
721 found_mode = mode;
723 if (found_mode != VOIDmode)
724 return found_mode;
726 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
727 mode != VOIDmode;
728 mode = GET_MODE_WIDER_MODE (mode))
729 if (HARD_REGNO_NREGS (regno, mode) == nregs
730 && HARD_REGNO_MODE_OK (regno, mode))
731 found_mode = mode;
733 if (found_mode != VOIDmode)
734 return found_mode;
736 /* Iterate over all of the CCmodes. */
737 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
739 mode = (enum machine_mode) m;
740 if (HARD_REGNO_NREGS (regno, mode) == nregs
741 && HARD_REGNO_MODE_OK (regno, mode))
742 return mode;
745 /* We can't find a mode valid for this register. */
746 return VOIDmode;
749 /* Specify the usage characteristics of the register named NAME.
750 It should be a fixed register if FIXED and a
751 call-used register if CALL_USED. */
753 void
754 fix_register (name, fixed, call_used)
755 const char *name;
756 int fixed, call_used;
758 int i;
760 /* Decode the name and update the primary form of
761 the register info. */
763 if ((i = decode_reg_name (name)) >= 0)
765 if ((i == STACK_POINTER_REGNUM
766 #ifdef HARD_FRAME_POINTER_REGNUM
767 || i == HARD_FRAME_POINTER_REGNUM
768 #else
769 || i == FRAME_POINTER_REGNUM
770 #endif
772 && (fixed == 0 || call_used == 0))
774 static const char * const what_option[2][2] = {
775 { "call-saved", "call-used" },
776 { "no-such-option", "fixed" }};
778 error ("can't use '%s' as a %s register", name,
779 what_option[fixed][call_used]);
781 else
783 fixed_regs[i] = fixed;
784 call_used_regs[i] = call_used;
785 #ifdef CALL_REALLY_USED_REGISTERS
786 if (fixed == 0)
787 call_really_used_regs[i] = call_used;
788 #endif
791 else
793 warning ("unknown register name: %s", name);
797 /* Mark register number I as global. */
799 void
800 globalize_reg (i)
801 int i;
803 if (fixed_regs[i] == 0 && no_global_reg_vars)
804 error ("global register variable follows a function definition");
806 if (global_regs[i])
808 warning ("register used for two global register variables");
809 return;
812 if (call_used_regs[i] && ! fixed_regs[i])
813 warning ("call-clobbered register used for global register variable");
815 global_regs[i] = 1;
817 /* If already fixed, nothing else to do. */
818 if (fixed_regs[i])
819 return;
821 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
822 n_non_fixed_regs--;
824 SET_HARD_REG_BIT (fixed_reg_set, i);
825 SET_HARD_REG_BIT (call_used_reg_set, i);
826 SET_HARD_REG_BIT (call_fixed_reg_set, i);
827 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
830 /* Now the data and code for the `regclass' pass, which happens
831 just before local-alloc. */
833 /* The `costs' struct records the cost of using a hard register of each class
834 and of using memory for each pseudo. We use this data to set up
835 register class preferences. */
837 struct costs
839 int cost[N_REG_CLASSES];
840 int mem_cost;
843 /* Structure used to record preferrences of given pseudo. */
844 struct reg_pref
846 /* (enum reg_class) prefclass is the preferred class. */
847 char prefclass;
849 /* altclass is a register class that we should use for allocating
850 pseudo if no register in the preferred class is available.
851 If no register in this class is available, memory is preferred.
853 It might appear to be more general to have a bitmask of classes here,
854 but since it is recommended that there be a class corresponding to the
855 union of most major pair of classes, that generality is not required. */
856 char altclass;
859 /* Record the cost of each class for each pseudo. */
861 static struct costs *costs;
863 /* Initialized once, and used to initialize cost values for each insn. */
865 static struct costs init_cost;
867 /* Record preferrences of each pseudo.
868 This is available after `regclass' is run. */
870 static struct reg_pref *reg_pref;
872 /* Allocated buffers for reg_pref. */
874 static struct reg_pref *reg_pref_buffer;
876 /* Frequency of executions of current insn. */
878 static int frequency;
880 static rtx scan_one_insn PARAMS ((rtx, int));
881 static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
882 static void dump_regclass PARAMS ((FILE *));
883 static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
884 const char **, rtx,
885 struct costs *, struct reg_pref *));
886 static int copy_cost PARAMS ((rtx, enum machine_mode,
887 enum reg_class, int));
888 static void record_address_regs PARAMS ((rtx, enum reg_class, int));
889 #ifdef FORBIDDEN_INC_DEC_CLASSES
890 static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
891 #endif
892 static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
894 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
895 This function is sometimes called before the info has been computed.
896 When that happens, just return GENERAL_REGS, which is innocuous. */
898 enum reg_class
899 reg_preferred_class (regno)
900 int regno;
902 if (reg_pref == 0)
903 return GENERAL_REGS;
904 return (enum reg_class) reg_pref[regno].prefclass;
907 enum reg_class
908 reg_alternate_class (regno)
909 int regno;
911 if (reg_pref == 0)
912 return ALL_REGS;
914 return (enum reg_class) reg_pref[regno].altclass;
917 /* Initialize some global data for this pass. */
919 void
920 regclass_init ()
922 int i;
924 init_cost.mem_cost = 10000;
925 for (i = 0; i < N_REG_CLASSES; i++)
926 init_cost.cost[i] = 10000;
928 /* This prevents dump_flow_info from losing if called
929 before regclass is run. */
930 reg_pref = NULL;
932 /* No more global register variables may be declared. */
933 no_global_reg_vars = 1;
936 /* Dump register costs. */
937 static void
938 dump_regclass (dump)
939 FILE *dump;
941 static const char *const reg_class_names[] = REG_CLASS_NAMES;
942 int i;
943 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
945 int /* enum reg_class */ class;
946 if (REG_N_REFS (i))
948 fprintf (dump, " Register %i costs:", i);
949 for (class = 0; class < (int) N_REG_CLASSES; class++)
950 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
951 #ifdef FORBIDDEN_INC_DEC_CLASSES
952 && (!in_inc_dec[i]
953 || !forbidden_inc_dec_class[(enum reg_class) class])
954 #endif
955 #ifdef CLASS_CANNOT_CHANGE_MODE
956 && (!REGNO_REG_SET_P (reg_changes_mode, i)
957 || class_can_change_mode [(enum reg_class) class])
958 #endif
960 fprintf (dump, " %s:%i", reg_class_names[class],
961 costs[i].cost[(enum reg_class) class]);
962 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
968 /* Calculate the costs of insn operands. */
970 static void
971 record_operand_costs (insn, op_costs, reg_pref)
972 rtx insn;
973 struct costs *op_costs;
974 struct reg_pref *reg_pref;
976 const char *constraints[MAX_RECOG_OPERANDS];
977 enum machine_mode modes[MAX_RECOG_OPERANDS];
978 int i;
980 for (i = 0; i < recog_data.n_operands; i++)
982 constraints[i] = recog_data.constraints[i];
983 modes[i] = recog_data.operand_mode[i];
986 /* If we get here, we are set up to record the costs of all the
987 operands for this insn. Start by initializing the costs.
988 Then handle any address registers. Finally record the desired
989 classes for any pseudos, doing it twice if some pair of
990 operands are commutative. */
992 for (i = 0; i < recog_data.n_operands; i++)
994 op_costs[i] = init_cost;
996 if (GET_CODE (recog_data.operand[i]) == SUBREG)
998 rtx inner = SUBREG_REG (recog_data.operand[i]);
999 #ifdef CLASS_CANNOT_CHANGE_MODE
1000 if (GET_CODE (inner) == REG
1001 && CLASS_CANNOT_CHANGE_MODE_P (modes[i], GET_MODE (inner)))
1002 SET_REGNO_REG_SET (reg_changes_mode, REGNO (inner));
1003 #endif
1004 recog_data.operand[i] = inner;
1007 if (GET_CODE (recog_data.operand[i]) == MEM)
1008 record_address_regs (XEXP (recog_data.operand[i], 0),
1009 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
1010 else if (constraints[i][0] == 'p')
1011 record_address_regs (recog_data.operand[i],
1012 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
1015 /* Check for commutative in a separate loop so everything will
1016 have been initialized. We must do this even if one operand
1017 is a constant--see addsi3 in m68k.md. */
1019 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1020 if (constraints[i][0] == '%')
1022 const char *xconstraints[MAX_RECOG_OPERANDS];
1023 int j;
1025 /* Handle commutative operands by swapping the constraints.
1026 We assume the modes are the same. */
1028 for (j = 0; j < recog_data.n_operands; j++)
1029 xconstraints[j] = constraints[j];
1031 xconstraints[i] = constraints[i+1];
1032 xconstraints[i+1] = constraints[i];
1033 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1034 recog_data.operand, modes,
1035 xconstraints, insn, op_costs, reg_pref);
1038 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1039 recog_data.operand, modes,
1040 constraints, insn, op_costs, reg_pref);
1043 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1044 time it would save code to put a certain register in a certain class.
1045 PASS, when nonzero, inhibits some optimizations which need only be done
1046 once.
1047 Return the last insn processed, so that the scan can be continued from
1048 there. */
1050 static rtx
1051 scan_one_insn (insn, pass)
1052 rtx insn;
1053 int pass;
1055 enum rtx_code code = GET_CODE (insn);
1056 enum rtx_code pat_code;
1057 rtx set, note;
1058 int i, j;
1059 struct costs op_costs[MAX_RECOG_OPERANDS];
1061 if (GET_RTX_CLASS (code) != 'i')
1062 return insn;
1064 pat_code = GET_CODE (PATTERN (insn));
1065 if (pat_code == USE
1066 || pat_code == CLOBBER
1067 || pat_code == ASM_INPUT
1068 || pat_code == ADDR_VEC
1069 || pat_code == ADDR_DIFF_VEC)
1070 return insn;
1072 set = single_set (insn);
1073 extract_insn (insn);
1075 /* If this insn loads a parameter from its stack slot, then
1076 it represents a savings, rather than a cost, if the
1077 parameter is stored in memory. Record this fact. */
1079 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1080 && GET_CODE (SET_SRC (set)) == MEM
1081 && (note = find_reg_note (insn, REG_EQUIV,
1082 NULL_RTX)) != 0
1083 && GET_CODE (XEXP (note, 0)) == MEM)
1085 costs[REGNO (SET_DEST (set))].mem_cost
1086 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1087 GENERAL_REGS, 1)
1088 * frequency);
1089 record_address_regs (XEXP (SET_SRC (set), 0),
1090 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
1091 return insn;
1094 /* Improve handling of two-address insns such as
1095 (set X (ashift CONST Y)) where CONST must be made to
1096 match X. Change it into two insns: (set X CONST)
1097 (set X (ashift X Y)). If we left this for reloading, it
1098 would probably get three insns because X and Y might go
1099 in the same place. This prevents X and Y from receiving
1100 the same hard reg.
1102 We can only do this if the modes of operands 0 and 1
1103 (which might not be the same) are tieable and we only need
1104 do this during our first pass. */
1106 if (pass == 0 && optimize
1107 && recog_data.n_operands >= 3
1108 && recog_data.constraints[1][0] == '0'
1109 && recog_data.constraints[1][1] == 0
1110 && CONSTANT_P (recog_data.operand[1])
1111 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1112 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1113 && GET_CODE (recog_data.operand[0]) == REG
1114 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1115 recog_data.operand_mode[1]))
1117 rtx previnsn = prev_real_insn (insn);
1118 rtx dest
1119 = gen_lowpart (recog_data.operand_mode[1],
1120 recog_data.operand[0]);
1121 rtx newinsn
1122 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1124 /* If this insn was the start of a basic block,
1125 include the new insn in that block.
1126 We need not check for code_label here;
1127 while a basic block can start with a code_label,
1128 INSN could not be at the beginning of that block. */
1129 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
1131 int b;
1132 for (b = 0; b < n_basic_blocks; b++)
1133 if (insn == BLOCK_HEAD (b))
1134 BLOCK_HEAD (b) = newinsn;
1137 /* This makes one more setting of new insns's dest. */
1138 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1139 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1140 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1142 *recog_data.operand_loc[1] = recog_data.operand[0];
1143 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1144 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1145 for (i = recog_data.n_dups - 1; i >= 0; i--)
1146 if (recog_data.dup_num[i] == 1)
1148 *recog_data.dup_loc[i] = recog_data.operand[0];
1149 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1150 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1153 return PREV_INSN (newinsn);
1156 record_operand_costs (insn, op_costs, reg_pref);
1158 /* Now add the cost for each operand to the total costs for
1159 its register. */
1161 for (i = 0; i < recog_data.n_operands; i++)
1162 if (GET_CODE (recog_data.operand[i]) == REG
1163 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1165 int regno = REGNO (recog_data.operand[i]);
1166 struct costs *p = &costs[regno], *q = &op_costs[i];
1168 p->mem_cost += q->mem_cost * frequency;
1169 for (j = 0; j < N_REG_CLASSES; j++)
1170 p->cost[j] += q->cost[j] * frequency;
1173 return insn;
1176 /* This is a pass of the compiler that scans all instructions
1177 and calculates the preferred class for each pseudo-register.
1178 This information can be accessed later by calling `reg_preferred_class'.
1179 This pass comes just before local register allocation. */
1181 void
1182 regclass (f, nregs, dump)
1183 rtx f;
1184 int nregs;
1185 FILE *dump;
1187 rtx insn;
1188 int i;
1189 int pass;
1191 init_recog ();
1193 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
1195 #ifdef CLASS_CANNOT_CHANGE_MODE
1196 reg_changes_mode = BITMAP_XMALLOC ();
1197 #endif
1199 #ifdef FORBIDDEN_INC_DEC_CLASSES
1201 in_inc_dec = (char *) xmalloc (nregs);
1203 /* Initialize information about which register classes can be used for
1204 pseudos that are auto-incremented or auto-decremented. It would
1205 seem better to put this in init_reg_sets, but we need to be able
1206 to allocate rtx, which we can't do that early. */
1208 for (i = 0; i < N_REG_CLASSES; i++)
1210 rtx r = gen_rtx_REG (VOIDmode, 0);
1211 enum machine_mode m;
1212 int j;
1214 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1215 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1217 REGNO (r) = j;
1219 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1220 m = (enum machine_mode) ((int) m + 1))
1221 if (HARD_REGNO_MODE_OK (j, m))
1223 PUT_MODE (r, m);
1225 /* If a register is not directly suitable for an
1226 auto-increment or decrement addressing mode and
1227 requires secondary reloads, disallow its class from
1228 being used in such addresses. */
1230 if ((0
1231 #ifdef SECONDARY_RELOAD_CLASS
1232 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1233 != NO_REGS)
1234 #else
1235 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1236 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1237 != NO_REGS)
1238 #endif
1239 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1240 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1241 != NO_REGS)
1242 #endif
1243 #endif
1245 && ! auto_inc_dec_reg_p (r, m))
1246 forbidden_inc_dec_class[i] = 1;
1250 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1252 /* Normally we scan the insns once and determine the best class to use for
1253 each register. However, if -fexpensive_optimizations are on, we do so
1254 twice, the second time using the tentative best classes to guide the
1255 selection. */
1257 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1259 int index;
1261 if (dump)
1262 fprintf (dump, "\n\nPass %i\n\n",pass);
1263 /* Zero out our accumulation of the cost of each class for each reg. */
1265 memset ((char *) costs, 0, nregs * sizeof (struct costs));
1267 #ifdef FORBIDDEN_INC_DEC_CLASSES
1268 memset (in_inc_dec, 0, nregs);
1269 #endif
1271 /* Scan the instructions and record each time it would
1272 save code to put a certain register in a certain class. */
1274 if (!optimize)
1276 frequency = REG_FREQ_MAX;
1277 for (insn = f; insn; insn = NEXT_INSN (insn))
1278 insn = scan_one_insn (insn, pass);
1280 else
1281 for (index = 0; index < n_basic_blocks; index++)
1283 basic_block bb = BASIC_BLOCK (index);
1285 /* Show that an insn inside a loop is likely to be executed three
1286 times more than insns outside a loop. This is much more
1287 aggressive than the assumptions made elsewhere and is being
1288 tried as an experiment. */
1289 frequency = REG_FREQ_FROM_BB (bb);
1290 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1292 insn = scan_one_insn (insn, pass);
1293 if (insn == bb->end)
1294 break;
1298 /* Now for each register look at how desirable each class is
1299 and find which class is preferred. Store that in
1300 `prefclass'. Record in `altclass' the largest register
1301 class any of whose registers is better than memory. */
1303 if (pass == 0)
1304 reg_pref = reg_pref_buffer;
1306 if (dump)
1308 dump_regclass (dump);
1309 fprintf (dump,"\n");
1311 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1313 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1314 enum reg_class best = ALL_REGS, alt = NO_REGS;
1315 /* This is an enum reg_class, but we call it an int
1316 to save lots of casts. */
1317 int class;
1318 struct costs *p = &costs[i];
1320 /* In non-optimizing compilation REG_N_REFS is not initialized
1321 yet. */
1322 if (optimize && !REG_N_REFS (i))
1323 continue;
1325 for (class = (int) ALL_REGS - 1; class > 0; class--)
1327 /* Ignore classes that are too small for this operand or
1328 invalid for an operand that was auto-incremented. */
1329 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1330 #ifdef FORBIDDEN_INC_DEC_CLASSES
1331 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1332 #endif
1333 #ifdef CLASS_CANNOT_CHANGE_MODE
1334 || (REGNO_REG_SET_P (reg_changes_mode, i)
1335 && ! class_can_change_mode [class])
1336 #endif
1339 else if (p->cost[class] < best_cost)
1341 best_cost = p->cost[class];
1342 best = (enum reg_class) class;
1344 else if (p->cost[class] == best_cost)
1345 best = reg_class_subunion[(int) best][class];
1348 /* Record the alternate register class; i.e., a class for which
1349 every register in it is better than using memory. If adding a
1350 class would make a smaller class (i.e., no union of just those
1351 classes exists), skip that class. The major unions of classes
1352 should be provided as a register class. Don't do this if we
1353 will be doing it again later. */
1355 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1356 for (class = 0; class < N_REG_CLASSES; class++)
1357 if (p->cost[class] < p->mem_cost
1358 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1359 > reg_class_size[(int) alt])
1360 #ifdef FORBIDDEN_INC_DEC_CLASSES
1361 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1362 #endif
1363 #ifdef CLASS_CANNOT_CHANGE_MODE
1364 && ! (REGNO_REG_SET_P (reg_changes_mode, i)
1365 && ! class_can_change_mode [class])
1366 #endif
1368 alt = reg_class_subunion[(int) alt][class];
1370 /* If we don't add any classes, nothing to try. */
1371 if (alt == best)
1372 alt = NO_REGS;
1374 if (dump
1375 && (reg_pref[i].prefclass != (int) best
1376 || reg_pref[i].altclass != (int) alt))
1378 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1379 fprintf (dump, " Register %i", i);
1380 if (alt == ALL_REGS || best == ALL_REGS)
1381 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1382 else if (alt == NO_REGS)
1383 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1384 else
1385 fprintf (dump, " pref %s, else %s\n",
1386 reg_class_names[(int) best],
1387 reg_class_names[(int) alt]);
1390 /* We cast to (int) because (char) hits bugs in some compilers. */
1391 reg_pref[i].prefclass = (int) best;
1392 reg_pref[i].altclass = (int) alt;
1396 #ifdef FORBIDDEN_INC_DEC_CLASSES
1397 free (in_inc_dec);
1398 #endif
1399 #ifdef CLASS_CANNOT_CHANGE_MODE
1400 BITMAP_XFREE (reg_changes_mode);
1401 #endif
1402 free (costs);
1405 /* Record the cost of using memory or registers of various classes for
1406 the operands in INSN.
1408 N_ALTS is the number of alternatives.
1410 N_OPS is the number of operands.
1412 OPS is an array of the operands.
1414 MODES are the modes of the operands, in case any are VOIDmode.
1416 CONSTRAINTS are the constraints to use for the operands. This array
1417 is modified by this procedure.
1419 This procedure works alternative by alternative. For each alternative
1420 we assume that we will be able to allocate all pseudos to their ideal
1421 register class and calculate the cost of using that alternative. Then
1422 we compute for each operand that is a pseudo-register, the cost of
1423 having the pseudo allocated to each register class and using it in that
1424 alternative. To this cost is added the cost of the alternative.
1426 The cost of each class for this insn is its lowest cost among all the
1427 alternatives. */
1429 static void
1430 record_reg_classes (n_alts, n_ops, ops, modes,
1431 constraints, insn, op_costs, reg_pref)
1432 int n_alts;
1433 int n_ops;
1434 rtx *ops;
1435 enum machine_mode *modes;
1436 const char **constraints;
1437 rtx insn;
1438 struct costs *op_costs;
1439 struct reg_pref *reg_pref;
1441 int alt;
1442 int i, j;
1443 rtx set;
1445 /* Process each alternative, each time minimizing an operand's cost with
1446 the cost for each operand in that alternative. */
1448 for (alt = 0; alt < n_alts; alt++)
1450 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1451 int alt_fail = 0;
1452 int alt_cost = 0;
1453 enum reg_class classes[MAX_RECOG_OPERANDS];
1454 int allows_mem[MAX_RECOG_OPERANDS];
1455 int class;
1457 for (i = 0; i < n_ops; i++)
1459 const char *p = constraints[i];
1460 rtx op = ops[i];
1461 enum machine_mode mode = modes[i];
1462 int allows_addr = 0;
1463 int win = 0;
1464 unsigned char c;
1466 /* Initially show we know nothing about the register class. */
1467 classes[i] = NO_REGS;
1468 allows_mem[i] = 0;
1470 /* If this operand has no constraints at all, we can conclude
1471 nothing about it since anything is valid. */
1473 if (*p == 0)
1475 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1476 memset ((char *) &this_op_costs[i], 0, sizeof this_op_costs[i]);
1478 continue;
1481 /* If this alternative is only relevant when this operand
1482 matches a previous operand, we do different things depending
1483 on whether this operand is a pseudo-reg or not. We must process
1484 any modifiers for the operand before we can make this test. */
1486 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1487 p++;
1489 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1491 /* Copy class and whether memory is allowed from the matching
1492 alternative. Then perform any needed cost computations
1493 and/or adjustments. */
1494 j = p[0] - '0';
1495 classes[i] = classes[j];
1496 allows_mem[i] = allows_mem[j];
1498 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1500 /* If this matches the other operand, we have no added
1501 cost and we win. */
1502 if (rtx_equal_p (ops[j], op))
1503 win = 1;
1505 /* If we can put the other operand into a register, add to
1506 the cost of this alternative the cost to copy this
1507 operand to the register used for the other operand. */
1509 else if (classes[j] != NO_REGS)
1510 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1512 else if (GET_CODE (ops[j]) != REG
1513 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1515 /* This op is a pseudo but the one it matches is not. */
1517 /* If we can't put the other operand into a register, this
1518 alternative can't be used. */
1520 if (classes[j] == NO_REGS)
1521 alt_fail = 1;
1523 /* Otherwise, add to the cost of this alternative the cost
1524 to copy the other operand to the register used for this
1525 operand. */
1527 else
1528 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1530 else
1532 /* The costs of this operand are not the same as the other
1533 operand since move costs are not symmetric. Moreover,
1534 if we cannot tie them, this alternative needs to do a
1535 copy, which is one instruction. */
1537 struct costs *pp = &this_op_costs[i];
1539 for (class = 0; class < N_REG_CLASSES; class++)
1540 pp->cost[class]
1541 = ((recog_data.operand_type[i] != OP_OUT
1542 ? may_move_in_cost[mode][class][(int) classes[i]]
1543 : 0)
1544 + (recog_data.operand_type[i] != OP_IN
1545 ? may_move_out_cost[mode][(int) classes[i]][class]
1546 : 0));
1548 /* If the alternative actually allows memory, make things
1549 a bit cheaper since we won't need an extra insn to
1550 load it. */
1552 pp->mem_cost
1553 = ((recog_data.operand_type[i] != OP_IN
1554 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1555 : 0)
1556 + (recog_data.operand_type[i] != OP_OUT
1557 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1558 : 0) - allows_mem[i]);
1560 /* If we have assigned a class to this register in our
1561 first pass, add a cost to this alternative corresponding
1562 to what we would add if this register were not in the
1563 appropriate class. */
1565 if (reg_pref)
1566 alt_cost
1567 += (may_move_in_cost[mode]
1568 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1569 [(int) classes[i]]);
1571 if (REGNO (ops[i]) != REGNO (ops[j])
1572 && ! find_reg_note (insn, REG_DEAD, op))
1573 alt_cost += 2;
1575 /* This is in place of ordinary cost computation
1576 for this operand, so skip to the end of the
1577 alternative (should be just one character). */
1578 while (*p && *p++ != ',')
1581 constraints[i] = p;
1582 continue;
1586 /* Scan all the constraint letters. See if the operand matches
1587 any of the constraints. Collect the valid register classes
1588 and see if this operand accepts memory. */
1590 while (*p && (c = *p++) != ',')
1591 switch (c)
1593 case '*':
1594 /* Ignore the next letter for this pass. */
1595 p++;
1596 break;
1598 case '?':
1599 alt_cost += 2;
1600 case '!': case '#': case '&':
1601 case '0': case '1': case '2': case '3': case '4':
1602 case '5': case '6': case '7': case '8': case '9':
1603 break;
1605 case 'p':
1606 allows_addr = 1;
1607 win = address_operand (op, GET_MODE (op));
1608 /* We know this operand is an address, so we want it to be
1609 allocated to a register that can be the base of an
1610 address, ie BASE_REG_CLASS. */
1611 classes[i]
1612 = reg_class_subunion[(int) classes[i]]
1613 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1614 break;
1616 case 'm': case 'o': case 'V':
1617 /* It doesn't seem worth distinguishing between offsettable
1618 and non-offsettable addresses here. */
1619 allows_mem[i] = 1;
1620 if (GET_CODE (op) == MEM)
1621 win = 1;
1622 break;
1624 case '<':
1625 if (GET_CODE (op) == MEM
1626 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1627 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1628 win = 1;
1629 break;
1631 case '>':
1632 if (GET_CODE (op) == MEM
1633 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1634 || GET_CODE (XEXP (op, 0)) == POST_INC))
1635 win = 1;
1636 break;
1638 case 'E':
1639 #ifndef REAL_ARITHMETIC
1640 /* Match any floating double constant, but only if
1641 we can examine the bits of it reliably. */
1642 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1643 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1644 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1645 break;
1646 #endif
1647 if (GET_CODE (op) == CONST_DOUBLE)
1648 win = 1;
1649 break;
1651 case 'F':
1652 if (GET_CODE (op) == CONST_DOUBLE)
1653 win = 1;
1654 break;
1656 case 'G':
1657 case 'H':
1658 if (GET_CODE (op) == CONST_DOUBLE
1659 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1660 win = 1;
1661 break;
1663 case 's':
1664 if (GET_CODE (op) == CONST_INT
1665 || (GET_CODE (op) == CONST_DOUBLE
1666 && GET_MODE (op) == VOIDmode))
1667 break;
1668 case 'i':
1669 if (CONSTANT_P (op)
1670 #ifdef LEGITIMATE_PIC_OPERAND_P
1671 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1672 #endif
1674 win = 1;
1675 break;
1677 case 'n':
1678 if (GET_CODE (op) == CONST_INT
1679 || (GET_CODE (op) == CONST_DOUBLE
1680 && GET_MODE (op) == VOIDmode))
1681 win = 1;
1682 break;
1684 case 'I':
1685 case 'J':
1686 case 'K':
1687 case 'L':
1688 case 'M':
1689 case 'N':
1690 case 'O':
1691 case 'P':
1692 if (GET_CODE (op) == CONST_INT
1693 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1694 win = 1;
1695 break;
1697 case 'X':
1698 win = 1;
1699 break;
1701 case 'g':
1702 if (GET_CODE (op) == MEM
1703 || (CONSTANT_P (op)
1704 #ifdef LEGITIMATE_PIC_OPERAND_P
1705 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1706 #endif
1708 win = 1;
1709 allows_mem[i] = 1;
1710 case 'r':
1711 classes[i]
1712 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1713 break;
1715 default:
1716 if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
1717 classes[i]
1718 = reg_class_subunion[(int) classes[i]]
1719 [(int) REG_CLASS_FROM_LETTER (c)];
1720 #ifdef EXTRA_CONSTRAINT
1721 else if (EXTRA_CONSTRAINT (op, c))
1722 win = 1;
1723 #endif
1724 break;
1727 constraints[i] = p;
1729 /* How we account for this operand now depends on whether it is a
1730 pseudo register or not. If it is, we first check if any
1731 register classes are valid. If not, we ignore this alternative,
1732 since we want to assume that all pseudos get allocated for
1733 register preferencing. If some register class is valid, compute
1734 the costs of moving the pseudo into that class. */
1736 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1738 if (classes[i] == NO_REGS)
1740 /* We must always fail if the operand is a REG, but
1741 we did not find a suitable class.
1743 Otherwise we may perform an uninitialized read
1744 from this_op_costs after the `continue' statement
1745 below. */
1746 alt_fail = 1;
1748 else
1750 struct costs *pp = &this_op_costs[i];
1752 for (class = 0; class < N_REG_CLASSES; class++)
1753 pp->cost[class]
1754 = ((recog_data.operand_type[i] != OP_OUT
1755 ? may_move_in_cost[mode][class][(int) classes[i]]
1756 : 0)
1757 + (recog_data.operand_type[i] != OP_IN
1758 ? may_move_out_cost[mode][(int) classes[i]][class]
1759 : 0));
1761 /* If the alternative actually allows memory, make things
1762 a bit cheaper since we won't need an extra insn to
1763 load it. */
1765 pp->mem_cost
1766 = ((recog_data.operand_type[i] != OP_IN
1767 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1768 : 0)
1769 + (recog_data.operand_type[i] != OP_OUT
1770 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1771 : 0) - allows_mem[i]);
1773 /* If we have assigned a class to this register in our
1774 first pass, add a cost to this alternative corresponding
1775 to what we would add if this register were not in the
1776 appropriate class. */
1778 if (reg_pref)
1779 alt_cost
1780 += (may_move_in_cost[mode]
1781 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1782 [(int) classes[i]]);
1786 /* Otherwise, if this alternative wins, either because we
1787 have already determined that or if we have a hard register of
1788 the proper class, there is no cost for this alternative. */
1790 else if (win
1791 || (GET_CODE (op) == REG
1792 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1795 /* If registers are valid, the cost of this alternative includes
1796 copying the object to and/or from a register. */
1798 else if (classes[i] != NO_REGS)
1800 if (recog_data.operand_type[i] != OP_OUT)
1801 alt_cost += copy_cost (op, mode, classes[i], 1);
1803 if (recog_data.operand_type[i] != OP_IN)
1804 alt_cost += copy_cost (op, mode, classes[i], 0);
1807 /* The only other way this alternative can be used is if this is a
1808 constant that could be placed into memory. */
1810 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1811 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1812 else
1813 alt_fail = 1;
1816 if (alt_fail)
1817 continue;
1819 /* Finally, update the costs with the information we've calculated
1820 about this alternative. */
1822 for (i = 0; i < n_ops; i++)
1823 if (GET_CODE (ops[i]) == REG
1824 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1826 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1827 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1829 pp->mem_cost = MIN (pp->mem_cost,
1830 (qq->mem_cost + alt_cost) * scale);
1832 for (class = 0; class < N_REG_CLASSES; class++)
1833 pp->cost[class] = MIN (pp->cost[class],
1834 (qq->cost[class] + alt_cost) * scale);
1838 /* If this insn is a single set copying operand 1 to operand 0
1839 and one operand is a pseudo with the other a hard reg or a pseudo
1840 that prefers a register that is in its own register class then
1841 we may want to adjust the cost of that register class to -1.
1843 Avoid the adjustment if the source does not die to avoid stressing of
1844 register allocator by preferrencing two coliding registers into single
1845 class.
1847 Also avoid the adjustment if a copy between registers of the class
1848 is expensive (ten times the cost of a default copy is considered
1849 arbitrarily expensive). This avoids losing when the preferred class
1850 is very expensive as the source of a copy instruction. */
1852 if ((set = single_set (insn)) != 0
1853 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1854 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1855 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1856 for (i = 0; i <= 1; i++)
1857 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1859 unsigned int regno = REGNO (ops[!i]);
1860 enum machine_mode mode = GET_MODE (ops[!i]);
1861 int class;
1862 unsigned int nr;
1864 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1866 enum reg_class pref = reg_pref[regno].prefclass;
1868 if ((reg_class_size[(unsigned char) pref]
1869 == CLASS_MAX_NREGS (pref, mode))
1870 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1871 op_costs[i].cost[(unsigned char) pref] = -1;
1873 else if (regno < FIRST_PSEUDO_REGISTER)
1874 for (class = 0; class < N_REG_CLASSES; class++)
1875 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1876 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1878 if (reg_class_size[class] == 1)
1879 op_costs[i].cost[class] = -1;
1880 else
1882 for (nr = 0; nr < HARD_REGNO_NREGS (regno, mode); nr++)
1884 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1885 regno + nr))
1886 break;
1889 if (nr == HARD_REGNO_NREGS (regno,mode))
1890 op_costs[i].cost[class] = -1;
1896 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1897 TO_P is zero) a register of class CLASS in mode MODE.
1899 X must not be a pseudo. */
1901 static int
1902 copy_cost (x, mode, class, to_p)
1903 rtx x;
1904 enum machine_mode mode ATTRIBUTE_UNUSED;
1905 enum reg_class class;
1906 int to_p ATTRIBUTE_UNUSED;
1908 #ifdef HAVE_SECONDARY_RELOADS
1909 enum reg_class secondary_class = NO_REGS;
1910 #endif
1912 /* If X is a SCRATCH, there is actually nothing to move since we are
1913 assuming optimal allocation. */
1915 if (GET_CODE (x) == SCRATCH)
1916 return 0;
1918 /* Get the class we will actually use for a reload. */
1919 class = PREFERRED_RELOAD_CLASS (x, class);
1921 #ifdef HAVE_SECONDARY_RELOADS
1922 /* If we need a secondary reload (we assume here that we are using
1923 the secondary reload as an intermediate, not a scratch register), the
1924 cost is that to load the input into the intermediate register, then
1925 to copy them. We use a special value of TO_P to avoid recursion. */
1927 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1928 if (to_p == 1)
1929 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1930 #endif
1932 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1933 if (! to_p)
1934 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1935 #endif
1937 if (secondary_class != NO_REGS)
1938 return (move_cost[mode][(int) secondary_class][(int) class]
1939 + copy_cost (x, mode, secondary_class, 2));
1940 #endif /* HAVE_SECONDARY_RELOADS */
1942 /* For memory, use the memory move cost, for (hard) registers, use the
1943 cost to move between the register classes, and use 2 for everything
1944 else (constants). */
1946 if (GET_CODE (x) == MEM || class == NO_REGS)
1947 return MEMORY_MOVE_COST (mode, class, to_p);
1949 else if (GET_CODE (x) == REG)
1950 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1952 else
1953 /* If this is a constant, we may eventually want to call rtx_cost here. */
1954 return COSTS_N_INSNS (1);
1957 /* Record the pseudo registers we must reload into hard registers
1958 in a subexpression of a memory address, X.
1960 CLASS is the class that the register needs to be in and is either
1961 BASE_REG_CLASS or INDEX_REG_CLASS.
1963 SCALE is twice the amount to multiply the cost by (it is twice so we
1964 can represent half-cost adjustments). */
1966 static void
1967 record_address_regs (x, class, scale)
1968 rtx x;
1969 enum reg_class class;
1970 int scale;
1972 enum rtx_code code = GET_CODE (x);
1974 switch (code)
1976 case CONST_INT:
1977 case CONST:
1978 case CC0:
1979 case PC:
1980 case SYMBOL_REF:
1981 case LABEL_REF:
1982 return;
1984 case PLUS:
1985 /* When we have an address that is a sum,
1986 we must determine whether registers are "base" or "index" regs.
1987 If there is a sum of two registers, we must choose one to be
1988 the "base". Luckily, we can use the REG_POINTER to make a good
1989 choice most of the time. We only need to do this on machines
1990 that can have two registers in an address and where the base
1991 and index register classes are different.
1993 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1994 that seems bogus since it should only be set when we are sure
1995 the register is being used as a pointer. */
1998 rtx arg0 = XEXP (x, 0);
1999 rtx arg1 = XEXP (x, 1);
2000 enum rtx_code code0 = GET_CODE (arg0);
2001 enum rtx_code code1 = GET_CODE (arg1);
2003 /* Look inside subregs. */
2004 if (code0 == SUBREG)
2005 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
2006 if (code1 == SUBREG)
2007 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
2009 /* If this machine only allows one register per address, it must
2010 be in the first operand. */
2012 if (MAX_REGS_PER_ADDRESS == 1)
2013 record_address_regs (arg0, class, scale);
2015 /* If index and base registers are the same on this machine, just
2016 record registers in any non-constant operands. We assume here,
2017 as well as in the tests below, that all addresses are in
2018 canonical form. */
2020 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
2022 record_address_regs (arg0, class, scale);
2023 if (! CONSTANT_P (arg1))
2024 record_address_regs (arg1, class, scale);
2027 /* If the second operand is a constant integer, it doesn't change
2028 what class the first operand must be. */
2030 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2031 record_address_regs (arg0, class, scale);
2033 /* If the second operand is a symbolic constant, the first operand
2034 must be an index register. */
2036 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2037 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2039 /* If both operands are registers but one is already a hard register
2040 of index or base class, give the other the class that the hard
2041 register is not. */
2043 #ifdef REG_OK_FOR_BASE_P
2044 else if (code0 == REG && code1 == REG
2045 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2046 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2047 record_address_regs (arg1,
2048 REG_OK_FOR_BASE_P (arg0)
2049 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2050 scale);
2051 else if (code0 == REG && code1 == REG
2052 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2053 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2054 record_address_regs (arg0,
2055 REG_OK_FOR_BASE_P (arg1)
2056 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2057 scale);
2058 #endif
2060 /* If one operand is known to be a pointer, it must be the base
2061 with the other operand the index. Likewise if the other operand
2062 is a MULT. */
2064 else if ((code0 == REG && REG_POINTER (arg0))
2065 || code1 == MULT)
2067 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
2068 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2070 else if ((code1 == REG && REG_POINTER (arg1))
2071 || code0 == MULT)
2073 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2074 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
2077 /* Otherwise, count equal chances that each might be a base
2078 or index register. This case should be rare. */
2080 else
2082 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2083 scale / 2);
2084 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2085 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2086 scale / 2);
2087 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2090 break;
2092 /* Double the importance of a pseudo register that is incremented
2093 or decremented, since it would take two extra insns
2094 if it ends up in the wrong place. */
2095 case POST_MODIFY:
2096 case PRE_MODIFY:
2097 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2098 2 * scale);
2099 if (REG_P (XEXP (XEXP (x, 1), 1)))
2100 record_address_regs (XEXP (XEXP (x, 1), 1),
2101 INDEX_REG_CLASS, 2 * scale);
2102 break;
2104 case POST_INC:
2105 case PRE_INC:
2106 case POST_DEC:
2107 case PRE_DEC:
2108 /* Double the importance of a pseudo register that is incremented
2109 or decremented, since it would take two extra insns
2110 if it ends up in the wrong place. If the operand is a pseudo,
2111 show it is being used in an INC_DEC context. */
2113 #ifdef FORBIDDEN_INC_DEC_CLASSES
2114 if (GET_CODE (XEXP (x, 0)) == REG
2115 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2116 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2117 #endif
2119 record_address_regs (XEXP (x, 0), class, 2 * scale);
2120 break;
2122 case REG:
2124 struct costs *pp = &costs[REGNO (x)];
2125 int i;
2127 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2129 for (i = 0; i < N_REG_CLASSES; i++)
2130 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2132 break;
2134 default:
2136 const char *fmt = GET_RTX_FORMAT (code);
2137 int i;
2138 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2139 if (fmt[i] == 'e')
2140 record_address_regs (XEXP (x, i), class, scale);
2145 #ifdef FORBIDDEN_INC_DEC_CLASSES
2147 /* Return 1 if REG is valid as an auto-increment memory reference
2148 to an object of MODE. */
2150 static int
2151 auto_inc_dec_reg_p (reg, mode)
2152 rtx reg;
2153 enum machine_mode mode;
2155 if (HAVE_POST_INCREMENT
2156 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2157 return 1;
2159 if (HAVE_POST_DECREMENT
2160 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2161 return 1;
2163 if (HAVE_PRE_INCREMENT
2164 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2165 return 1;
2167 if (HAVE_PRE_DECREMENT
2168 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2169 return 1;
2171 return 0;
2173 #endif
2175 static short *renumber;
2176 static size_t regno_allocated;
2177 static unsigned int reg_n_max;
2179 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2180 reg_scan and flow_analysis that are indexed by the register number. If
2181 NEW_P is non zero, initialize all of the registers, otherwise only
2182 initialize the new registers allocated. The same table is kept from
2183 function to function, only reallocating it when we need more room. If
2184 RENUMBER_P is non zero, allocate the reg_renumber array also. */
2186 void
2187 allocate_reg_info (num_regs, new_p, renumber_p)
2188 size_t num_regs;
2189 int new_p;
2190 int renumber_p;
2192 size_t size_info;
2193 size_t size_renumber;
2194 size_t min = (new_p) ? 0 : reg_n_max;
2195 struct reg_info_data *reg_data;
2197 if (num_regs > regno_allocated)
2199 size_t old_allocated = regno_allocated;
2201 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
2202 size_renumber = regno_allocated * sizeof (short);
2204 if (!reg_n_info)
2206 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2207 renumber = (short *) xmalloc (size_renumber);
2208 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2209 * sizeof (struct reg_pref));
2212 else
2214 VARRAY_GROW (reg_n_info, regno_allocated);
2216 if (new_p) /* if we're zapping everything, no need to realloc */
2218 free ((char *) renumber);
2219 free ((char *) reg_pref);
2220 renumber = (short *) xmalloc (size_renumber);
2221 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2222 * sizeof (struct reg_pref));
2225 else
2227 renumber = (short *) xrealloc ((char *) renumber, size_renumber);
2228 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *) reg_pref_buffer,
2229 regno_allocated
2230 * sizeof (struct reg_pref));
2234 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2235 + sizeof (struct reg_info_data) - sizeof (reg_info);
2236 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2237 reg_data->min_index = old_allocated;
2238 reg_data->max_index = regno_allocated - 1;
2239 reg_data->next = reg_info_head;
2240 reg_info_head = reg_data;
2243 reg_n_max = num_regs;
2244 if (min < num_regs)
2246 /* Loop through each of the segments allocated for the actual
2247 reg_info pages, and set up the pointers, zero the pages, etc. */
2248 for (reg_data = reg_info_head;
2249 reg_data && reg_data->max_index >= min;
2250 reg_data = reg_data->next)
2252 size_t min_index = reg_data->min_index;
2253 size_t max_index = reg_data->max_index;
2254 size_t max = MIN (max_index, num_regs);
2255 size_t local_min = min - min_index;
2256 size_t i;
2258 if (reg_data->min_index > num_regs)
2259 continue;
2261 if (min < min_index)
2262 local_min = 0;
2263 if (!reg_data->used_p) /* page just allocated with calloc */
2264 reg_data->used_p = 1; /* no need to zero */
2265 else
2266 memset ((char *) &reg_data->data[local_min], 0,
2267 sizeof (reg_info) * (max - min_index - local_min + 1));
2269 for (i = min_index+local_min; i <= max; i++)
2271 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2272 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2273 renumber[i] = -1;
2274 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2275 reg_pref_buffer[i].altclass = (char) NO_REGS;
2280 /* If {pref,alt}class have already been allocated, update the pointers to
2281 the newly realloced ones. */
2282 if (reg_pref)
2283 reg_pref = reg_pref_buffer;
2285 if (renumber_p)
2286 reg_renumber = renumber;
2288 /* Tell the regset code about the new number of registers */
2289 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2292 /* Free up the space allocated by allocate_reg_info. */
2293 void
2294 free_reg_info ()
2296 if (reg_n_info)
2298 struct reg_info_data *reg_data;
2299 struct reg_info_data *reg_next;
2301 VARRAY_FREE (reg_n_info);
2302 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2304 reg_next = reg_data->next;
2305 free ((char *) reg_data);
2308 free (reg_pref_buffer);
2309 reg_pref_buffer = (struct reg_pref *) 0;
2310 reg_info_head = (struct reg_info_data *) 0;
2311 renumber = (short *) 0;
2313 regno_allocated = 0;
2314 reg_n_max = 0;
2317 /* This is the `regscan' pass of the compiler, run just before cse
2318 and again just before loop.
2320 It finds the first and last use of each pseudo-register
2321 and records them in the vectors regno_first_uid, regno_last_uid
2322 and counts the number of sets in the vector reg_n_sets.
2324 REPEAT is nonzero the second time this is called. */
2326 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2327 Always at least 3, since the combiner could put that many together
2328 and we want this to remain correct for all the remaining passes.
2329 This corresponds to the maximum number of times note_stores will call
2330 a function for any insn. */
2332 int max_parallel;
2334 /* Used as a temporary to record the largest number of registers in
2335 PARALLEL in a SET_DEST. This is added to max_parallel. */
2337 static int max_set_parallel;
2339 void
2340 reg_scan (f, nregs, repeat)
2341 rtx f;
2342 unsigned int nregs;
2343 int repeat ATTRIBUTE_UNUSED;
2345 rtx insn;
2347 allocate_reg_info (nregs, TRUE, FALSE);
2348 max_parallel = 3;
2349 max_set_parallel = 0;
2351 for (insn = f; insn; insn = NEXT_INSN (insn))
2352 if (GET_CODE (insn) == INSN
2353 || GET_CODE (insn) == CALL_INSN
2354 || GET_CODE (insn) == JUMP_INSN)
2356 if (GET_CODE (PATTERN (insn)) == PARALLEL
2357 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2358 max_parallel = XVECLEN (PATTERN (insn), 0);
2359 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2361 if (REG_NOTES (insn))
2362 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2365 max_parallel += max_set_parallel;
2368 /* Update 'regscan' information by looking at the insns
2369 from FIRST to LAST. Some new REGs have been created,
2370 and any REG with number greater than OLD_MAX_REGNO is
2371 such a REG. We only update information for those. */
2373 void
2374 reg_scan_update (first, last, old_max_regno)
2375 rtx first;
2376 rtx last;
2377 unsigned int old_max_regno;
2379 rtx insn;
2381 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2383 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2384 if (GET_CODE (insn) == INSN
2385 || GET_CODE (insn) == CALL_INSN
2386 || GET_CODE (insn) == JUMP_INSN)
2388 if (GET_CODE (PATTERN (insn)) == PARALLEL
2389 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2390 max_parallel = XVECLEN (PATTERN (insn), 0);
2391 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2393 if (REG_NOTES (insn))
2394 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2398 /* X is the expression to scan. INSN is the insn it appears in.
2399 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2400 We should only record information for REGs with numbers
2401 greater than or equal to MIN_REGNO. */
2403 static void
2404 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2405 rtx x;
2406 rtx insn;
2407 int note_flag;
2408 unsigned int min_regno;
2410 enum rtx_code code;
2411 rtx dest;
2412 rtx note;
2414 code = GET_CODE (x);
2415 switch (code)
2417 case CONST:
2418 case CONST_INT:
2419 case CONST_DOUBLE:
2420 case CONST_VECTOR:
2421 case CC0:
2422 case PC:
2423 case SYMBOL_REF:
2424 case LABEL_REF:
2425 case ADDR_VEC:
2426 case ADDR_DIFF_VEC:
2427 return;
2429 case REG:
2431 unsigned int regno = REGNO (x);
2433 if (regno >= min_regno)
2435 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2436 if (!note_flag)
2437 REGNO_LAST_UID (regno) = INSN_UID (insn);
2438 if (REGNO_FIRST_UID (regno) == 0)
2439 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2442 break;
2444 case EXPR_LIST:
2445 if (XEXP (x, 0))
2446 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2447 if (XEXP (x, 1))
2448 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2449 break;
2451 case INSN_LIST:
2452 if (XEXP (x, 1))
2453 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2454 break;
2456 case SET:
2457 /* Count a set of the destination if it is a register. */
2458 for (dest = SET_DEST (x);
2459 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2460 || GET_CODE (dest) == ZERO_EXTEND;
2461 dest = XEXP (dest, 0))
2464 /* For a PARALLEL, record the number of things (less the usual one for a
2465 SET) that are set. */
2466 if (GET_CODE (dest) == PARALLEL)
2467 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2469 if (GET_CODE (dest) == REG
2470 && REGNO (dest) >= min_regno)
2472 REG_N_SETS (REGNO (dest))++;
2473 REG_N_REFS (REGNO (dest))++;
2476 /* If this is setting a pseudo from another pseudo or the sum of a
2477 pseudo and a constant integer and the other pseudo is known to be
2478 a pointer, set the destination to be a pointer as well.
2480 Likewise if it is setting the destination from an address or from a
2481 value equivalent to an address or to the sum of an address and
2482 something else.
2484 But don't do any of this if the pseudo corresponds to a user
2485 variable since it should have already been set as a pointer based
2486 on the type. */
2488 if (GET_CODE (SET_DEST (x)) == REG
2489 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2490 && REGNO (SET_DEST (x)) >= min_regno
2491 /* If the destination pseudo is set more than once, then other
2492 sets might not be to a pointer value (consider access to a
2493 union in two threads of control in the presense of global
2494 optimizations). So only set REG_POINTER on the destination
2495 pseudo if this is the only set of that pseudo. */
2496 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2497 && ! REG_USERVAR_P (SET_DEST (x))
2498 && ! REG_POINTER (SET_DEST (x))
2499 && ((GET_CODE (SET_SRC (x)) == REG
2500 && REG_POINTER (SET_SRC (x)))
2501 || ((GET_CODE (SET_SRC (x)) == PLUS
2502 || GET_CODE (SET_SRC (x)) == LO_SUM)
2503 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2504 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2505 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2506 || GET_CODE (SET_SRC (x)) == CONST
2507 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2508 || GET_CODE (SET_SRC (x)) == LABEL_REF
2509 || (GET_CODE (SET_SRC (x)) == HIGH
2510 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2511 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2512 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2513 || ((GET_CODE (SET_SRC (x)) == PLUS
2514 || GET_CODE (SET_SRC (x)) == LO_SUM)
2515 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2516 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2517 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2518 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2519 && (GET_CODE (XEXP (note, 0)) == CONST
2520 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2521 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2522 REG_POINTER (SET_DEST (x)) = 1;
2524 /* If this is setting a register from a register or from a simple
2525 conversion of a register, propagate REG_DECL. */
2526 if (GET_CODE (dest) == REG)
2528 rtx src = SET_SRC (x);
2530 while (GET_CODE (src) == SIGN_EXTEND
2531 || GET_CODE (src) == ZERO_EXTEND
2532 || GET_CODE (src) == TRUNCATE
2533 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2534 src = XEXP (src, 0);
2536 if (GET_CODE (src) == REG && REGNO_DECL (REGNO (src)) == 0)
2537 REGNO_DECL (REGNO (src)) = REGNO_DECL (REGNO (dest));
2538 else if (GET_CODE (src) == REG && REGNO_DECL (REGNO (dest)) == 0)
2539 REGNO_DECL (REGNO (dest)) = REGNO_DECL (REGNO (src));
2542 /* ... fall through ... */
2544 default:
2546 const char *fmt = GET_RTX_FORMAT (code);
2547 int i;
2548 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2550 if (fmt[i] == 'e')
2551 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2552 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2554 int j;
2555 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2556 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2563 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2564 is also in C2. */
2567 reg_class_subset_p (c1, c2)
2568 enum reg_class c1;
2569 enum reg_class c2;
2571 if (c1 == c2) return 1;
2573 if (c2 == ALL_REGS)
2574 win:
2575 return 1;
2576 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2577 reg_class_contents[(int) c2],
2578 win);
2579 return 0;
2582 /* Return nonzero if there is a register that is in both C1 and C2. */
2585 reg_classes_intersect_p (c1, c2)
2586 enum reg_class c1;
2587 enum reg_class c2;
2589 #ifdef HARD_REG_SET
2590 register
2591 #endif
2592 HARD_REG_SET c;
2594 if (c1 == c2) return 1;
2596 if (c1 == ALL_REGS || c2 == ALL_REGS)
2597 return 1;
2599 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2600 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2602 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2603 return 1;
2605 lose:
2606 return 0;
2609 /* Release any memory allocated by register sets. */
2611 void
2612 regset_release_memory ()
2614 bitmap_release_memory ();