Daily bump.
[official-gcc.git] / gcc / cse.c
blob65f4542f02d0b530fb28a91bfc078d54913806ea
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "flags.h"
32 #include "real.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "toplev.h"
38 #include "output.h"
39 #include "ggc.h"
41 /* The basic idea of common subexpression elimination is to go
42 through the code, keeping a record of expressions that would
43 have the same value at the current scan point, and replacing
44 expressions encountered with the cheapest equivalent expression.
46 It is too complicated to keep track of the different possibilities
47 when control paths merge in this code; so, at each label, we forget all
48 that is known and start fresh. This can be described as processing each
49 extended basic block separately. We have a separate pass to perform
50 global CSE.
52 Note CSE can turn a conditional or computed jump into a nop or
53 an unconditional jump. When this occurs we arrange to run the jump
54 optimizer after CSE to delete the unreachable code.
56 We use two data structures to record the equivalent expressions:
57 a hash table for most expressions, and a vector of "quantity
58 numbers" to record equivalent (pseudo) registers.
60 The use of the special data structure for registers is desirable
61 because it is faster. It is possible because registers references
62 contain a fairly small number, the register number, taken from
63 a contiguously allocated series, and two register references are
64 identical if they have the same number. General expressions
65 do not have any such thing, so the only way to retrieve the
66 information recorded on an expression other than a register
67 is to keep it in a hash table.
69 Registers and "quantity numbers":
71 At the start of each basic block, all of the (hardware and pseudo)
72 registers used in the function are given distinct quantity
73 numbers to indicate their contents. During scan, when the code
74 copies one register into another, we copy the quantity number.
75 When a register is loaded in any other way, we allocate a new
76 quantity number to describe the value generated by this operation.
77 `reg_qty' records what quantity a register is currently thought
78 of as containing.
80 All real quantity numbers are greater than or equal to `max_reg'.
81 If register N has not been assigned a quantity, reg_qty[N] will equal N.
83 Quantity numbers below `max_reg' do not exist and none of the `qty_table'
84 entries should be referenced with an index below `max_reg'.
86 We also maintain a bidirectional chain of registers for each
87 quantity number. The `qty_table` members `first_reg' and `last_reg',
88 and `reg_eqv_table' members `next' and `prev' hold these chains.
90 The first register in a chain is the one whose lifespan is least local.
91 Among equals, it is the one that was seen first.
92 We replace any equivalent register with that one.
94 If two registers have the same quantity number, it must be true that
95 REG expressions with qty_table `mode' must be in the hash table for both
96 registers and must be in the same class.
98 The converse is not true. Since hard registers may be referenced in
99 any mode, two REG expressions might be equivalent in the hash table
100 but not have the same quantity number if the quantity number of one
101 of the registers is not the same mode as those expressions.
103 Constants and quantity numbers
105 When a quantity has a known constant value, that value is stored
106 in the appropriate qty_table `const_rtx'. This is in addition to
107 putting the constant in the hash table as is usual for non-regs.
109 Whether a reg or a constant is preferred is determined by the configuration
110 macro CONST_COSTS and will often depend on the constant value. In any
111 event, expressions containing constants can be simplified, by fold_rtx.
113 When a quantity has a known nearly constant value (such as an address
114 of a stack slot), that value is stored in the appropriate qty_table
115 `const_rtx'.
117 Integer constants don't have a machine mode. However, cse
118 determines the intended machine mode from the destination
119 of the instruction that moves the constant. The machine mode
120 is recorded in the hash table along with the actual RTL
121 constant expression so that different modes are kept separate.
123 Other expressions:
125 To record known equivalences among expressions in general
126 we use a hash table called `table'. It has a fixed number of buckets
127 that contain chains of `struct table_elt' elements for expressions.
128 These chains connect the elements whose expressions have the same
129 hash codes.
131 Other chains through the same elements connect the elements which
132 currently have equivalent values.
134 Register references in an expression are canonicalized before hashing
135 the expression. This is done using `reg_qty' and qty_table `first_reg'.
136 The hash code of a register reference is computed using the quantity
137 number, not the register number.
139 When the value of an expression changes, it is necessary to remove from the
140 hash table not just that expression but all expressions whose values
141 could be different as a result.
143 1. If the value changing is in memory, except in special cases
144 ANYTHING referring to memory could be changed. That is because
145 nobody knows where a pointer does not point.
146 The function `invalidate_memory' removes what is necessary.
148 The special cases are when the address is constant or is
149 a constant plus a fixed register such as the frame pointer
150 or a static chain pointer. When such addresses are stored in,
151 we can tell exactly which other such addresses must be invalidated
152 due to overlap. `invalidate' does this.
153 All expressions that refer to non-constant
154 memory addresses are also invalidated. `invalidate_memory' does this.
156 2. If the value changing is a register, all expressions
157 containing references to that register, and only those,
158 must be removed.
160 Because searching the entire hash table for expressions that contain
161 a register is very slow, we try to figure out when it isn't necessary.
162 Precisely, this is necessary only when expressions have been
163 entered in the hash table using this register, and then the value has
164 changed, and then another expression wants to be added to refer to
165 the register's new value. This sequence of circumstances is rare
166 within any one basic block.
168 The vectors `reg_tick' and `reg_in_table' are used to detect this case.
169 reg_tick[i] is incremented whenever a value is stored in register i.
170 reg_in_table[i] holds -1 if no references to register i have been
171 entered in the table; otherwise, it contains the value reg_tick[i] had
172 when the references were entered. If we want to enter a reference
173 and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
174 Until we want to enter a new entry, the mere fact that the two vectors
175 don't match makes the entries be ignored if anyone tries to match them.
177 Registers themselves are entered in the hash table as well as in
178 the equivalent-register chains. However, the vectors `reg_tick'
179 and `reg_in_table' do not apply to expressions which are simple
180 register references. These expressions are removed from the table
181 immediately when they become invalid, and this can be done even if
182 we do not immediately search for all the expressions that refer to
183 the register.
185 A CLOBBER rtx in an instruction invalidates its operand for further
186 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
187 invalidates everything that resides in memory.
189 Related expressions:
191 Constant expressions that differ only by an additive integer
192 are called related. When a constant expression is put in
193 the table, the related expression with no constant term
194 is also entered. These are made to point at each other
195 so that it is possible to find out if there exists any
196 register equivalent to an expression related to a given expression. */
198 /* One plus largest register number used in this function. */
200 static int max_reg;
202 /* One plus largest instruction UID used in this function at time of
203 cse_main call. */
205 static int max_insn_uid;
207 /* Length of qty_table vector. We know in advance we will not need
208 a quantity number this big. */
210 static int max_qty;
212 /* Next quantity number to be allocated.
213 This is 1 + the largest number needed so far. */
215 static int next_qty;
217 /* Per-qty information tracking.
219 `first_reg' and `last_reg' track the head and tail of the
220 chain of registers which currently contain this quantity.
222 `mode' contains the machine mode of this quantity.
224 `const_rtx' holds the rtx of the constant value of this
225 quantity, if known. A summations of the frame/arg pointer
226 and a constant can also be entered here. When this holds
227 a known value, `const_insn' is the insn which stored the
228 constant value.
230 `comparison_{code,const,qty}' are used to track when a
231 comparison between a quantity and some constant or register has
232 been passed. In such a case, we know the results of the comparison
233 in case we see it again. These members record a comparison that
234 is known to be true. `comparison_code' holds the rtx code of such
235 a comparison, else it is set to UNKNOWN and the other two
236 comparison members are undefined. `comparison_const' holds
237 the constant being compared against, or zero if the comparison
238 is not against a constant. `comparison_qty' holds the quantity
239 being compared against when the result is known. If the comparison
240 is not with a register, `comparison_qty' is -1. */
242 struct qty_table_elem
244 rtx const_rtx;
245 rtx const_insn;
246 rtx comparison_const;
247 int comparison_qty;
248 unsigned int first_reg, last_reg;
249 enum machine_mode mode;
250 enum rtx_code comparison_code;
253 /* The table of all qtys, indexed by qty number. */
254 static struct qty_table_elem *qty_table;
256 #ifdef HAVE_cc0
257 /* For machines that have a CC0, we do not record its value in the hash
258 table since its use is guaranteed to be the insn immediately following
259 its definition and any other insn is presumed to invalidate it.
261 Instead, we store below the value last assigned to CC0. If it should
262 happen to be a constant, it is stored in preference to the actual
263 assigned value. In case it is a constant, we store the mode in which
264 the constant should be interpreted. */
266 static rtx prev_insn_cc0;
267 static enum machine_mode prev_insn_cc0_mode;
268 #endif
270 /* Previous actual insn. 0 if at first insn of basic block. */
272 static rtx prev_insn;
274 /* Insn being scanned. */
276 static rtx this_insn;
278 /* Index by register number, gives the number of the next (or
279 previous) register in the chain of registers sharing the same
280 value.
282 Or -1 if this register is at the end of the chain.
284 If reg_qty[N] == N, reg_eqv_table[N].next is undefined. */
286 /* Per-register equivalence chain. */
287 struct reg_eqv_elem
289 int next, prev;
292 /* The table of all register equivalence chains. */
293 static struct reg_eqv_elem *reg_eqv_table;
295 struct cse_reg_info
297 /* Next in hash chain. */
298 struct cse_reg_info *hash_next;
300 /* The next cse_reg_info structure in the free or used list. */
301 struct cse_reg_info *next;
303 /* Search key */
304 unsigned int regno;
306 /* The quantity number of the register's current contents. */
307 int reg_qty;
309 /* The number of times the register has been altered in the current
310 basic block. */
311 int reg_tick;
313 /* The REG_TICK value at which rtx's containing this register are
314 valid in the hash table. If this does not equal the current
315 reg_tick value, such expressions existing in the hash table are
316 invalid. */
317 int reg_in_table;
320 /* A free list of cse_reg_info entries. */
321 static struct cse_reg_info *cse_reg_info_free_list;
323 /* A used list of cse_reg_info entries. */
324 static struct cse_reg_info *cse_reg_info_used_list;
325 static struct cse_reg_info *cse_reg_info_used_list_end;
327 /* A mapping from registers to cse_reg_info data structures. */
328 #define REGHASH_SHIFT 7
329 #define REGHASH_SIZE (1 << REGHASH_SHIFT)
330 #define REGHASH_MASK (REGHASH_SIZE - 1)
331 static struct cse_reg_info *reg_hash[REGHASH_SIZE];
333 #define REGHASH_FN(REGNO) \
334 (((REGNO) ^ ((REGNO) >> REGHASH_SHIFT)) & REGHASH_MASK)
336 /* The last lookup we did into the cse_reg_info_tree. This allows us
337 to cache repeated lookups. */
338 static unsigned int cached_regno;
339 static struct cse_reg_info *cached_cse_reg_info;
341 /* A HARD_REG_SET containing all the hard registers for which there is
342 currently a REG expression in the hash table. Note the difference
343 from the above variables, which indicate if the REG is mentioned in some
344 expression in the table. */
346 static HARD_REG_SET hard_regs_in_table;
348 /* CUID of insn that starts the basic block currently being cse-processed. */
350 static int cse_basic_block_start;
352 /* CUID of insn that ends the basic block currently being cse-processed. */
354 static int cse_basic_block_end;
356 /* Vector mapping INSN_UIDs to cuids.
357 The cuids are like uids but increase monotonically always.
358 We use them to see whether a reg is used outside a given basic block. */
360 static int *uid_cuid;
362 /* Highest UID in UID_CUID. */
363 static int max_uid;
365 /* Get the cuid of an insn. */
367 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
369 /* Nonzero if this pass has made changes, and therefore it's
370 worthwhile to run the garbage collector. */
372 static int cse_altered;
374 /* Nonzero if cse has altered conditional jump insns
375 in such a way that jump optimization should be redone. */
377 static int cse_jumps_altered;
379 /* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
380 REG_LABEL, we have to rerun jump after CSE to put in the note. */
381 static int recorded_label_ref;
383 /* canon_hash stores 1 in do_not_record
384 if it notices a reference to CC0, PC, or some other volatile
385 subexpression. */
387 static int do_not_record;
389 #ifdef LOAD_EXTEND_OP
391 /* Scratch rtl used when looking for load-extended copy of a MEM. */
392 static rtx memory_extend_rtx;
393 #endif
395 /* canon_hash stores 1 in hash_arg_in_memory
396 if it notices a reference to memory within the expression being hashed. */
398 static int hash_arg_in_memory;
400 /* The hash table contains buckets which are chains of `struct table_elt's,
401 each recording one expression's information.
402 That expression is in the `exp' field.
404 The canon_exp field contains a canonical (from the point of view of
405 alias analysis) version of the `exp' field.
407 Those elements with the same hash code are chained in both directions
408 through the `next_same_hash' and `prev_same_hash' fields.
410 Each set of expressions with equivalent values
411 are on a two-way chain through the `next_same_value'
412 and `prev_same_value' fields, and all point with
413 the `first_same_value' field at the first element in
414 that chain. The chain is in order of increasing cost.
415 Each element's cost value is in its `cost' field.
417 The `in_memory' field is nonzero for elements that
418 involve any reference to memory. These elements are removed
419 whenever a write is done to an unidentified location in memory.
420 To be safe, we assume that a memory address is unidentified unless
421 the address is either a symbol constant or a constant plus
422 the frame pointer or argument pointer.
424 The `related_value' field is used to connect related expressions
425 (that differ by adding an integer).
426 The related expressions are chained in a circular fashion.
427 `related_value' is zero for expressions for which this
428 chain is not useful.
430 The `cost' field stores the cost of this element's expression.
431 The `regcost' field stores the value returned by approx_reg_cost for
432 this element's expression.
434 The `is_const' flag is set if the element is a constant (including
435 a fixed address).
437 The `flag' field is used as a temporary during some search routines.
439 The `mode' field is usually the same as GET_MODE (`exp'), but
440 if `exp' is a CONST_INT and has no machine mode then the `mode'
441 field is the mode it was being used as. Each constant is
442 recorded separately for each mode it is used with. */
444 struct table_elt
446 rtx exp;
447 rtx canon_exp;
448 struct table_elt *next_same_hash;
449 struct table_elt *prev_same_hash;
450 struct table_elt *next_same_value;
451 struct table_elt *prev_same_value;
452 struct table_elt *first_same_value;
453 struct table_elt *related_value;
454 int cost;
455 int regcost;
456 enum machine_mode mode;
457 char in_memory;
458 char is_const;
459 char flag;
462 /* We don't want a lot of buckets, because we rarely have very many
463 things stored in the hash table, and a lot of buckets slows
464 down a lot of loops that happen frequently. */
465 #define HASH_SHIFT 5
466 #define HASH_SIZE (1 << HASH_SHIFT)
467 #define HASH_MASK (HASH_SIZE - 1)
469 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
470 register (hard registers may require `do_not_record' to be set). */
472 #define HASH(X, M) \
473 ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER \
474 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
475 : canon_hash (X, M)) & HASH_MASK)
477 /* Determine whether register number N is considered a fixed register for the
478 purpose of approximating register costs.
479 It is desirable to replace other regs with fixed regs, to reduce need for
480 non-fixed hard regs.
481 A reg wins if it is either the frame pointer or designated as fixed. */
482 #define FIXED_REGNO_P(N) \
483 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
484 || fixed_regs[N] || global_regs[N])
486 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
487 hard registers and pointers into the frame are the cheapest with a cost
488 of 0. Next come pseudos with a cost of one and other hard registers with
489 a cost of 2. Aside from these special cases, call `rtx_cost'. */
491 #define CHEAP_REGNO(N) \
492 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
493 || (N) == STACK_POINTER_REGNUM || (N) == ARG_POINTER_REGNUM \
494 || ((N) >= FIRST_VIRTUAL_REGISTER && (N) <= LAST_VIRTUAL_REGISTER) \
495 || ((N) < FIRST_PSEUDO_REGISTER \
496 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
498 #define COST(X) (GET_CODE (X) == REG ? 0 : notreg_cost (X, SET))
499 #define COST_IN(X,OUTER) (GET_CODE (X) == REG ? 0 : notreg_cost (X, OUTER))
501 /* Get the info associated with register N. */
503 #define GET_CSE_REG_INFO(N) \
504 (((N) == cached_regno && cached_cse_reg_info) \
505 ? cached_cse_reg_info : get_cse_reg_info ((N)))
507 /* Get the number of times this register has been updated in this
508 basic block. */
510 #define REG_TICK(N) ((GET_CSE_REG_INFO (N))->reg_tick)
512 /* Get the point at which REG was recorded in the table. */
514 #define REG_IN_TABLE(N) ((GET_CSE_REG_INFO (N))->reg_in_table)
516 /* Get the quantity number for REG. */
518 #define REG_QTY(N) ((GET_CSE_REG_INFO (N))->reg_qty)
520 /* Determine if the quantity number for register X represents a valid index
521 into the qty_table. */
523 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) != (int) (N))
525 static struct table_elt *table[HASH_SIZE];
527 /* Chain of `struct table_elt's made so far for this function
528 but currently removed from the table. */
530 static struct table_elt *free_element_chain;
532 /* Number of `struct table_elt' structures made so far for this function. */
534 static int n_elements_made;
536 /* Maximum value `n_elements_made' has had so far in this compilation
537 for functions previously processed. */
539 static int max_elements_made;
541 /* Surviving equivalence class when two equivalence classes are merged
542 by recording the effects of a jump in the last insn. Zero if the
543 last insn was not a conditional jump. */
545 static struct table_elt *last_jump_equiv_class;
547 /* Set to the cost of a constant pool reference if one was found for a
548 symbolic constant. If this was found, it means we should try to
549 convert constants into constant pool entries if they don't fit in
550 the insn. */
552 static int constant_pool_entries_cost;
554 /* Define maximum length of a branch path. */
556 #define PATHLENGTH 10
558 /* This data describes a block that will be processed by cse_basic_block. */
560 struct cse_basic_block_data
562 /* Lowest CUID value of insns in block. */
563 int low_cuid;
564 /* Highest CUID value of insns in block. */
565 int high_cuid;
566 /* Total number of SETs in block. */
567 int nsets;
568 /* Last insn in the block. */
569 rtx last;
570 /* Size of current branch path, if any. */
571 int path_size;
572 /* Current branch path, indicating which branches will be taken. */
573 struct branch_path
575 /* The branch insn. */
576 rtx branch;
577 /* Whether it should be taken or not. AROUND is the same as taken
578 except that it is used when the destination label is not preceded
579 by a BARRIER. */
580 enum taken {TAKEN, NOT_TAKEN, AROUND} status;
581 } path[PATHLENGTH];
584 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
585 virtual regs here because the simplify_*_operation routines are called
586 by integrate.c, which is called before virtual register instantiation.
588 ?!? FIXED_BASE_PLUS_P and NONZERO_BASE_PLUS_P need to move into
589 a header file so that their definitions can be shared with the
590 simplification routines in simplify-rtx.c. Until then, do not
591 change these macros without also changing the copy in simplify-rtx.c. */
593 #define FIXED_BASE_PLUS_P(X) \
594 ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
595 || ((X) == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])\
596 || (X) == virtual_stack_vars_rtx \
597 || (X) == virtual_incoming_args_rtx \
598 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
599 && (XEXP (X, 0) == frame_pointer_rtx \
600 || XEXP (X, 0) == hard_frame_pointer_rtx \
601 || ((X) == arg_pointer_rtx \
602 && fixed_regs[ARG_POINTER_REGNUM]) \
603 || XEXP (X, 0) == virtual_stack_vars_rtx \
604 || XEXP (X, 0) == virtual_incoming_args_rtx)) \
605 || GET_CODE (X) == ADDRESSOF)
607 /* Similar, but also allows reference to the stack pointer.
609 This used to include FIXED_BASE_PLUS_P, however, we can't assume that
610 arg_pointer_rtx by itself is nonzero, because on at least one machine,
611 the i960, the arg pointer is zero when it is unused. */
613 #define NONZERO_BASE_PLUS_P(X) \
614 ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
615 || (X) == virtual_stack_vars_rtx \
616 || (X) == virtual_incoming_args_rtx \
617 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
618 && (XEXP (X, 0) == frame_pointer_rtx \
619 || XEXP (X, 0) == hard_frame_pointer_rtx \
620 || ((X) == arg_pointer_rtx \
621 && fixed_regs[ARG_POINTER_REGNUM]) \
622 || XEXP (X, 0) == virtual_stack_vars_rtx \
623 || XEXP (X, 0) == virtual_incoming_args_rtx)) \
624 || (X) == stack_pointer_rtx \
625 || (X) == virtual_stack_dynamic_rtx \
626 || (X) == virtual_outgoing_args_rtx \
627 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
628 && (XEXP (X, 0) == stack_pointer_rtx \
629 || XEXP (X, 0) == virtual_stack_dynamic_rtx \
630 || XEXP (X, 0) == virtual_outgoing_args_rtx)) \
631 || GET_CODE (X) == ADDRESSOF)
633 static int notreg_cost PARAMS ((rtx, enum rtx_code));
634 static int approx_reg_cost_1 PARAMS ((rtx *, void *));
635 static int approx_reg_cost PARAMS ((rtx));
636 static int preferrable PARAMS ((int, int, int, int));
637 static void new_basic_block PARAMS ((void));
638 static void make_new_qty PARAMS ((unsigned int, enum machine_mode));
639 static void make_regs_eqv PARAMS ((unsigned int, unsigned int));
640 static void delete_reg_equiv PARAMS ((unsigned int));
641 static int mention_regs PARAMS ((rtx));
642 static int insert_regs PARAMS ((rtx, struct table_elt *, int));
643 static void remove_from_table PARAMS ((struct table_elt *, unsigned));
644 static struct table_elt *lookup PARAMS ((rtx, unsigned, enum machine_mode)),
645 *lookup_for_remove PARAMS ((rtx, unsigned, enum machine_mode));
646 static rtx lookup_as_function PARAMS ((rtx, enum rtx_code));
647 static struct table_elt *insert PARAMS ((rtx, struct table_elt *, unsigned,
648 enum machine_mode));
649 static void merge_equiv_classes PARAMS ((struct table_elt *,
650 struct table_elt *));
651 static void invalidate PARAMS ((rtx, enum machine_mode));
652 static int cse_rtx_varies_p PARAMS ((rtx, int));
653 static void remove_invalid_refs PARAMS ((unsigned int));
654 static void remove_invalid_subreg_refs PARAMS ((unsigned int, unsigned int,
655 enum machine_mode));
656 static void rehash_using_reg PARAMS ((rtx));
657 static void invalidate_memory PARAMS ((void));
658 static void invalidate_for_call PARAMS ((void));
659 static rtx use_related_value PARAMS ((rtx, struct table_elt *));
660 static unsigned canon_hash PARAMS ((rtx, enum machine_mode));
661 static unsigned canon_hash_string PARAMS ((const char *));
662 static unsigned safe_hash PARAMS ((rtx, enum machine_mode));
663 static int exp_equiv_p PARAMS ((rtx, rtx, int, int));
664 static rtx canon_reg PARAMS ((rtx, rtx));
665 static void find_best_addr PARAMS ((rtx, rtx *, enum machine_mode));
666 static enum rtx_code find_comparison_args PARAMS ((enum rtx_code, rtx *, rtx *,
667 enum machine_mode *,
668 enum machine_mode *));
669 static rtx fold_rtx PARAMS ((rtx, rtx));
670 static rtx equiv_constant PARAMS ((rtx));
671 static void record_jump_equiv PARAMS ((rtx, int));
672 static void record_jump_cond PARAMS ((enum rtx_code, enum machine_mode,
673 rtx, rtx, int));
674 static void cse_insn PARAMS ((rtx, rtx));
675 static int addr_affects_sp_p PARAMS ((rtx));
676 static void invalidate_from_clobbers PARAMS ((rtx));
677 static rtx cse_process_notes PARAMS ((rtx, rtx));
678 static void cse_around_loop PARAMS ((rtx));
679 static void invalidate_skipped_set PARAMS ((rtx, rtx, void *));
680 static void invalidate_skipped_block PARAMS ((rtx));
681 static void cse_check_loop_start PARAMS ((rtx, rtx, void *));
682 static void cse_set_around_loop PARAMS ((rtx, rtx, rtx));
683 static rtx cse_basic_block PARAMS ((rtx, rtx, struct branch_path *, int));
684 static void count_reg_usage PARAMS ((rtx, int *, rtx, int));
685 static int check_for_label_ref PARAMS ((rtx *, void *));
686 extern void dump_class PARAMS ((struct table_elt*));
687 static struct cse_reg_info * get_cse_reg_info PARAMS ((unsigned int));
688 static int check_dependence PARAMS ((rtx *, void *));
690 static void flush_hash_table PARAMS ((void));
691 static bool insn_live_p PARAMS ((rtx, int *));
692 static bool set_live_p PARAMS ((rtx, rtx, int *));
693 static bool dead_libcall_p PARAMS ((rtx));
695 /* Dump the expressions in the equivalence class indicated by CLASSP.
696 This function is used only for debugging. */
697 void
698 dump_class (classp)
699 struct table_elt *classp;
701 struct table_elt *elt;
703 fprintf (stderr, "Equivalence chain for ");
704 print_rtl (stderr, classp->exp);
705 fprintf (stderr, ": \n");
707 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
709 print_rtl (stderr, elt->exp);
710 fprintf (stderr, "\n");
714 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
716 static int
717 approx_reg_cost_1 (xp, data)
718 rtx *xp;
719 void *data;
721 rtx x = *xp;
722 regset set = (regset) data;
724 if (x && GET_CODE (x) == REG)
725 SET_REGNO_REG_SET (set, REGNO (x));
726 return 0;
729 /* Return an estimate of the cost of the registers used in an rtx.
730 This is mostly the number of different REG expressions in the rtx;
731 however for some exceptions like fixed registers we use a cost of
732 0. If any other hard register reference occurs, return MAX_COST. */
734 static int
735 approx_reg_cost (x)
736 rtx x;
738 regset_head set;
739 int i;
740 int cost = 0;
741 int hardregs = 0;
743 INIT_REG_SET (&set);
744 for_each_rtx (&x, approx_reg_cost_1, (void *)&set);
746 EXECUTE_IF_SET_IN_REG_SET
747 (&set, 0, i,
749 if (! CHEAP_REGNO (i))
751 if (i < FIRST_PSEUDO_REGISTER)
752 hardregs++;
754 cost += i < FIRST_PSEUDO_REGISTER ? 2 : 1;
758 CLEAR_REG_SET (&set);
759 return hardregs && SMALL_REGISTER_CLASSES ? MAX_COST : cost;
762 /* Return a negative value if an rtx A, whose costs are given by COST_A
763 and REGCOST_A, is more desirable than an rtx B.
764 Return a positive value if A is less desirable, or 0 if the two are
765 equally good. */
766 static int
767 preferrable (cost_a, regcost_a, cost_b, regcost_b)
768 int cost_a, regcost_a, cost_b, regcost_b;
770 /* First, get rid of a cases involving expressions that are entirely
771 unwanted. */
772 if (cost_a != cost_b)
774 if (cost_a == MAX_COST)
775 return 1;
776 if (cost_b == MAX_COST)
777 return -1;
780 /* Avoid extending lifetimes of hardregs. */
781 if (regcost_a != regcost_b)
783 if (regcost_a == MAX_COST)
784 return 1;
785 if (regcost_b == MAX_COST)
786 return -1;
789 /* Normal operation costs take precedence. */
790 if (cost_a != cost_b)
791 return cost_a - cost_b;
792 /* Only if these are identical consider effects on register pressure. */
793 if (regcost_a != regcost_b)
794 return regcost_a - regcost_b;
795 return 0;
798 /* Internal function, to compute cost when X is not a register; called
799 from COST macro to keep it simple. */
801 static int
802 notreg_cost (x, outer)
803 rtx x;
804 enum rtx_code outer;
806 return ((GET_CODE (x) == SUBREG
807 && GET_CODE (SUBREG_REG (x)) == REG
808 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
809 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
810 && (GET_MODE_SIZE (GET_MODE (x))
811 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
812 && subreg_lowpart_p (x)
813 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
814 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
816 : rtx_cost (x, outer) * 2);
819 /* Return an estimate of the cost of computing rtx X.
820 One use is in cse, to decide which expression to keep in the hash table.
821 Another is in rtl generation, to pick the cheapest way to multiply.
822 Other uses like the latter are expected in the future. */
825 rtx_cost (x, outer_code)
826 rtx x;
827 enum rtx_code outer_code ATTRIBUTE_UNUSED;
829 int i, j;
830 enum rtx_code code;
831 const char *fmt;
832 int total;
834 if (x == 0)
835 return 0;
837 /* Compute the default costs of certain things.
838 Note that RTX_COSTS can override the defaults. */
840 code = GET_CODE (x);
841 switch (code)
843 case MULT:
844 /* Count multiplication by 2**n as a shift,
845 because if we are considering it, we would output it as a shift. */
846 if (GET_CODE (XEXP (x, 1)) == CONST_INT
847 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
848 total = 2;
849 else
850 total = COSTS_N_INSNS (5);
851 break;
852 case DIV:
853 case UDIV:
854 case MOD:
855 case UMOD:
856 total = COSTS_N_INSNS (7);
857 break;
858 case USE:
859 /* Used in loop.c and combine.c as a marker. */
860 total = 0;
861 break;
862 default:
863 total = COSTS_N_INSNS (1);
866 switch (code)
868 case REG:
869 return 0;
871 case SUBREG:
872 /* If we can't tie these modes, make this expensive. The larger
873 the mode, the more expensive it is. */
874 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
875 return COSTS_N_INSNS (2
876 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
877 break;
879 #ifdef RTX_COSTS
880 RTX_COSTS (x, code, outer_code);
881 #endif
882 #ifdef CONST_COSTS
883 CONST_COSTS (x, code, outer_code);
884 #endif
886 default:
887 #ifdef DEFAULT_RTX_COSTS
888 DEFAULT_RTX_COSTS (x, code, outer_code);
889 #endif
890 break;
893 /* Sum the costs of the sub-rtx's, plus cost of this operation,
894 which is already in total. */
896 fmt = GET_RTX_FORMAT (code);
897 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
898 if (fmt[i] == 'e')
899 total += rtx_cost (XEXP (x, i), code);
900 else if (fmt[i] == 'E')
901 for (j = 0; j < XVECLEN (x, i); j++)
902 total += rtx_cost (XVECEXP (x, i, j), code);
904 return total;
907 /* Return cost of address expression X.
908 Expect that X is properly formed address reference. */
911 address_cost (x, mode)
912 rtx x;
913 enum machine_mode mode;
915 /* The ADDRESS_COST macro does not deal with ADDRESSOF nodes. But,
916 during CSE, such nodes are present. Using an ADDRESSOF node which
917 refers to the address of a REG is a good thing because we can then
918 turn (MEM (ADDRESSSOF (REG))) into just plain REG. */
920 if (GET_CODE (x) == ADDRESSOF && REG_P (XEXP ((x), 0)))
921 return -1;
923 /* We may be asked for cost of various unusual addresses, such as operands
924 of push instruction. It is not worthwhile to complicate writing
925 of ADDRESS_COST macro by such cases. */
927 if (!memory_address_p (mode, x))
928 return 1000;
929 #ifdef ADDRESS_COST
930 return ADDRESS_COST (x);
931 #else
932 return rtx_cost (x, MEM);
933 #endif
937 static struct cse_reg_info *
938 get_cse_reg_info (regno)
939 unsigned int regno;
941 struct cse_reg_info **hash_head = &reg_hash[REGHASH_FN (regno)];
942 struct cse_reg_info *p;
944 for (p = *hash_head; p != NULL; p = p->hash_next)
945 if (p->regno == regno)
946 break;
948 if (p == NULL)
950 /* Get a new cse_reg_info structure. */
951 if (cse_reg_info_free_list)
953 p = cse_reg_info_free_list;
954 cse_reg_info_free_list = p->next;
956 else
957 p = (struct cse_reg_info *) xmalloc (sizeof (struct cse_reg_info));
959 /* Insert into hash table. */
960 p->hash_next = *hash_head;
961 *hash_head = p;
963 /* Initialize it. */
964 p->reg_tick = 1;
965 p->reg_in_table = -1;
966 p->reg_qty = regno;
967 p->regno = regno;
968 p->next = cse_reg_info_used_list;
969 cse_reg_info_used_list = p;
970 if (!cse_reg_info_used_list_end)
971 cse_reg_info_used_list_end = p;
974 /* Cache this lookup; we tend to be looking up information about the
975 same register several times in a row. */
976 cached_regno = regno;
977 cached_cse_reg_info = p;
979 return p;
982 /* Clear the hash table and initialize each register with its own quantity,
983 for a new basic block. */
985 static void
986 new_basic_block ()
988 int i;
990 next_qty = max_reg;
992 /* Clear out hash table state for this pass. */
994 memset ((char *) reg_hash, 0, sizeof reg_hash);
996 if (cse_reg_info_used_list)
998 cse_reg_info_used_list_end->next = cse_reg_info_free_list;
999 cse_reg_info_free_list = cse_reg_info_used_list;
1000 cse_reg_info_used_list = cse_reg_info_used_list_end = 0;
1002 cached_cse_reg_info = 0;
1004 CLEAR_HARD_REG_SET (hard_regs_in_table);
1006 /* The per-quantity values used to be initialized here, but it is
1007 much faster to initialize each as it is made in `make_new_qty'. */
1009 for (i = 0; i < HASH_SIZE; i++)
1011 struct table_elt *first;
1013 first = table[i];
1014 if (first != NULL)
1016 struct table_elt *last = first;
1018 table[i] = NULL;
1020 while (last->next_same_hash != NULL)
1021 last = last->next_same_hash;
1023 /* Now relink this hash entire chain into
1024 the free element list. */
1026 last->next_same_hash = free_element_chain;
1027 free_element_chain = first;
1031 prev_insn = 0;
1033 #ifdef HAVE_cc0
1034 prev_insn_cc0 = 0;
1035 #endif
1038 /* Say that register REG contains a quantity in mode MODE not in any
1039 register before and initialize that quantity. */
1041 static void
1042 make_new_qty (reg, mode)
1043 unsigned int reg;
1044 enum machine_mode mode;
1046 int q;
1047 struct qty_table_elem *ent;
1048 struct reg_eqv_elem *eqv;
1050 if (next_qty >= max_qty)
1051 abort ();
1053 q = REG_QTY (reg) = next_qty++;
1054 ent = &qty_table[q];
1055 ent->first_reg = reg;
1056 ent->last_reg = reg;
1057 ent->mode = mode;
1058 ent->const_rtx = ent->const_insn = NULL_RTX;
1059 ent->comparison_code = UNKNOWN;
1061 eqv = &reg_eqv_table[reg];
1062 eqv->next = eqv->prev = -1;
1065 /* Make reg NEW equivalent to reg OLD.
1066 OLD is not changing; NEW is. */
1068 static void
1069 make_regs_eqv (new, old)
1070 unsigned int new, old;
1072 unsigned int lastr, firstr;
1073 int q = REG_QTY (old);
1074 struct qty_table_elem *ent;
1076 ent = &qty_table[q];
1078 /* Nothing should become eqv until it has a "non-invalid" qty number. */
1079 if (! REGNO_QTY_VALID_P (old))
1080 abort ();
1082 REG_QTY (new) = q;
1083 firstr = ent->first_reg;
1084 lastr = ent->last_reg;
1086 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
1087 hard regs. Among pseudos, if NEW will live longer than any other reg
1088 of the same qty, and that is beyond the current basic block,
1089 make it the new canonical replacement for this qty. */
1090 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
1091 /* Certain fixed registers might be of the class NO_REGS. This means
1092 that not only can they not be allocated by the compiler, but
1093 they cannot be used in substitutions or canonicalizations
1094 either. */
1095 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
1096 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
1097 || (new >= FIRST_PSEUDO_REGISTER
1098 && (firstr < FIRST_PSEUDO_REGISTER
1099 || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
1100 || (uid_cuid[REGNO_FIRST_UID (new)]
1101 < cse_basic_block_start))
1102 && (uid_cuid[REGNO_LAST_UID (new)]
1103 > uid_cuid[REGNO_LAST_UID (firstr)]))))))
1105 reg_eqv_table[firstr].prev = new;
1106 reg_eqv_table[new].next = firstr;
1107 reg_eqv_table[new].prev = -1;
1108 ent->first_reg = new;
1110 else
1112 /* If NEW is a hard reg (known to be non-fixed), insert at end.
1113 Otherwise, insert before any non-fixed hard regs that are at the
1114 end. Registers of class NO_REGS cannot be used as an
1115 equivalent for anything. */
1116 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
1117 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
1118 && new >= FIRST_PSEUDO_REGISTER)
1119 lastr = reg_eqv_table[lastr].prev;
1120 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
1121 if (reg_eqv_table[lastr].next >= 0)
1122 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
1123 else
1124 qty_table[q].last_reg = new;
1125 reg_eqv_table[lastr].next = new;
1126 reg_eqv_table[new].prev = lastr;
1130 /* Remove REG from its equivalence class. */
1132 static void
1133 delete_reg_equiv (reg)
1134 unsigned int reg;
1136 struct qty_table_elem *ent;
1137 int q = REG_QTY (reg);
1138 int p, n;
1140 /* If invalid, do nothing. */
1141 if (q == (int) reg)
1142 return;
1144 ent = &qty_table[q];
1146 p = reg_eqv_table[reg].prev;
1147 n = reg_eqv_table[reg].next;
1149 if (n != -1)
1150 reg_eqv_table[n].prev = p;
1151 else
1152 ent->last_reg = p;
1153 if (p != -1)
1154 reg_eqv_table[p].next = n;
1155 else
1156 ent->first_reg = n;
1158 REG_QTY (reg) = reg;
1161 /* Remove any invalid expressions from the hash table
1162 that refer to any of the registers contained in expression X.
1164 Make sure that newly inserted references to those registers
1165 as subexpressions will be considered valid.
1167 mention_regs is not called when a register itself
1168 is being stored in the table.
1170 Return 1 if we have done something that may have changed the hash code
1171 of X. */
1173 static int
1174 mention_regs (x)
1175 rtx x;
1177 enum rtx_code code;
1178 int i, j;
1179 const char *fmt;
1180 int changed = 0;
1182 if (x == 0)
1183 return 0;
1185 code = GET_CODE (x);
1186 if (code == REG)
1188 unsigned int regno = REGNO (x);
1189 unsigned int endregno
1190 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
1191 : HARD_REGNO_NREGS (regno, GET_MODE (x)));
1192 unsigned int i;
1194 for (i = regno; i < endregno; i++)
1196 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1197 remove_invalid_refs (i);
1199 REG_IN_TABLE (i) = REG_TICK (i);
1202 return 0;
1205 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1206 pseudo if they don't use overlapping words. We handle only pseudos
1207 here for simplicity. */
1208 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
1209 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1211 unsigned int i = REGNO (SUBREG_REG (x));
1213 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1215 /* If reg_tick has been incremented more than once since
1216 reg_in_table was last set, that means that the entire
1217 register has been set before, so discard anything memorized
1218 for the entire register, including all SUBREG expressions. */
1219 if (REG_IN_TABLE (i) != REG_TICK (i) - 1)
1220 remove_invalid_refs (i);
1221 else
1222 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1225 REG_IN_TABLE (i) = REG_TICK (i);
1226 return 0;
1229 /* If X is a comparison or a COMPARE and either operand is a register
1230 that does not have a quantity, give it one. This is so that a later
1231 call to record_jump_equiv won't cause X to be assigned a different
1232 hash code and not found in the table after that call.
1234 It is not necessary to do this here, since rehash_using_reg can
1235 fix up the table later, but doing this here eliminates the need to
1236 call that expensive function in the most common case where the only
1237 use of the register is in the comparison. */
1239 if (code == COMPARE || GET_RTX_CLASS (code) == '<')
1241 if (GET_CODE (XEXP (x, 0)) == REG
1242 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1243 if (insert_regs (XEXP (x, 0), NULL, 0))
1245 rehash_using_reg (XEXP (x, 0));
1246 changed = 1;
1249 if (GET_CODE (XEXP (x, 1)) == REG
1250 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1251 if (insert_regs (XEXP (x, 1), NULL, 0))
1253 rehash_using_reg (XEXP (x, 1));
1254 changed = 1;
1258 fmt = GET_RTX_FORMAT (code);
1259 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1260 if (fmt[i] == 'e')
1261 changed |= mention_regs (XEXP (x, i));
1262 else if (fmt[i] == 'E')
1263 for (j = 0; j < XVECLEN (x, i); j++)
1264 changed |= mention_regs (XVECEXP (x, i, j));
1266 return changed;
1269 /* Update the register quantities for inserting X into the hash table
1270 with a value equivalent to CLASSP.
1271 (If the class does not contain a REG, it is irrelevant.)
1272 If MODIFIED is nonzero, X is a destination; it is being modified.
1273 Note that delete_reg_equiv should be called on a register
1274 before insert_regs is done on that register with MODIFIED != 0.
1276 Nonzero value means that elements of reg_qty have changed
1277 so X's hash code may be different. */
1279 static int
1280 insert_regs (x, classp, modified)
1281 rtx x;
1282 struct table_elt *classp;
1283 int modified;
1285 if (GET_CODE (x) == REG)
1287 unsigned int regno = REGNO (x);
1288 int qty_valid;
1290 /* If REGNO is in the equivalence table already but is of the
1291 wrong mode for that equivalence, don't do anything here. */
1293 qty_valid = REGNO_QTY_VALID_P (regno);
1294 if (qty_valid)
1296 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1298 if (ent->mode != GET_MODE (x))
1299 return 0;
1302 if (modified || ! qty_valid)
1304 if (classp)
1305 for (classp = classp->first_same_value;
1306 classp != 0;
1307 classp = classp->next_same_value)
1308 if (GET_CODE (classp->exp) == REG
1309 && GET_MODE (classp->exp) == GET_MODE (x))
1311 make_regs_eqv (regno, REGNO (classp->exp));
1312 return 1;
1315 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1316 than REG_IN_TABLE to find out if there was only a single preceding
1317 invalidation - for the SUBREG - or another one, which would be
1318 for the full register. However, if we find here that REG_TICK
1319 indicates that the register is invalid, it means that it has
1320 been invalidated in a separate operation. The SUBREG might be used
1321 now (then this is a recursive call), or we might use the full REG
1322 now and a SUBREG of it later. So bump up REG_TICK so that
1323 mention_regs will do the right thing. */
1324 if (! modified
1325 && REG_IN_TABLE (regno) >= 0
1326 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1327 REG_TICK (regno)++;
1328 make_new_qty (regno, GET_MODE (x));
1329 return 1;
1332 return 0;
1335 /* If X is a SUBREG, we will likely be inserting the inner register in the
1336 table. If that register doesn't have an assigned quantity number at
1337 this point but does later, the insertion that we will be doing now will
1338 not be accessible because its hash code will have changed. So assign
1339 a quantity number now. */
1341 else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
1342 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1344 insert_regs (SUBREG_REG (x), NULL, 0);
1345 mention_regs (x);
1346 return 1;
1348 else
1349 return mention_regs (x);
1352 /* Look in or update the hash table. */
1354 /* Remove table element ELT from use in the table.
1355 HASH is its hash code, made using the HASH macro.
1356 It's an argument because often that is known in advance
1357 and we save much time not recomputing it. */
1359 static void
1360 remove_from_table (elt, hash)
1361 struct table_elt *elt;
1362 unsigned hash;
1364 if (elt == 0)
1365 return;
1367 /* Mark this element as removed. See cse_insn. */
1368 elt->first_same_value = 0;
1370 /* Remove the table element from its equivalence class. */
1373 struct table_elt *prev = elt->prev_same_value;
1374 struct table_elt *next = elt->next_same_value;
1376 if (next)
1377 next->prev_same_value = prev;
1379 if (prev)
1380 prev->next_same_value = next;
1381 else
1383 struct table_elt *newfirst = next;
1384 while (next)
1386 next->first_same_value = newfirst;
1387 next = next->next_same_value;
1392 /* Remove the table element from its hash bucket. */
1395 struct table_elt *prev = elt->prev_same_hash;
1396 struct table_elt *next = elt->next_same_hash;
1398 if (next)
1399 next->prev_same_hash = prev;
1401 if (prev)
1402 prev->next_same_hash = next;
1403 else if (table[hash] == elt)
1404 table[hash] = next;
1405 else
1407 /* This entry is not in the proper hash bucket. This can happen
1408 when two classes were merged by `merge_equiv_classes'. Search
1409 for the hash bucket that it heads. This happens only very
1410 rarely, so the cost is acceptable. */
1411 for (hash = 0; hash < HASH_SIZE; hash++)
1412 if (table[hash] == elt)
1413 table[hash] = next;
1417 /* Remove the table element from its related-value circular chain. */
1419 if (elt->related_value != 0 && elt->related_value != elt)
1421 struct table_elt *p = elt->related_value;
1423 while (p->related_value != elt)
1424 p = p->related_value;
1425 p->related_value = elt->related_value;
1426 if (p->related_value == p)
1427 p->related_value = 0;
1430 /* Now add it to the free element chain. */
1431 elt->next_same_hash = free_element_chain;
1432 free_element_chain = elt;
1435 /* Look up X in the hash table and return its table element,
1436 or 0 if X is not in the table.
1438 MODE is the machine-mode of X, or if X is an integer constant
1439 with VOIDmode then MODE is the mode with which X will be used.
1441 Here we are satisfied to find an expression whose tree structure
1442 looks like X. */
1444 static struct table_elt *
1445 lookup (x, hash, mode)
1446 rtx x;
1447 unsigned hash;
1448 enum machine_mode mode;
1450 struct table_elt *p;
1452 for (p = table[hash]; p; p = p->next_same_hash)
1453 if (mode == p->mode && ((x == p->exp && GET_CODE (x) == REG)
1454 || exp_equiv_p (x, p->exp, GET_CODE (x) != REG, 0)))
1455 return p;
1457 return 0;
1460 /* Like `lookup' but don't care whether the table element uses invalid regs.
1461 Also ignore discrepancies in the machine mode of a register. */
1463 static struct table_elt *
1464 lookup_for_remove (x, hash, mode)
1465 rtx x;
1466 unsigned hash;
1467 enum machine_mode mode;
1469 struct table_elt *p;
1471 if (GET_CODE (x) == REG)
1473 unsigned int regno = REGNO (x);
1475 /* Don't check the machine mode when comparing registers;
1476 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1477 for (p = table[hash]; p; p = p->next_same_hash)
1478 if (GET_CODE (p->exp) == REG
1479 && REGNO (p->exp) == regno)
1480 return p;
1482 else
1484 for (p = table[hash]; p; p = p->next_same_hash)
1485 if (mode == p->mode && (x == p->exp || exp_equiv_p (x, p->exp, 0, 0)))
1486 return p;
1489 return 0;
1492 /* Look for an expression equivalent to X and with code CODE.
1493 If one is found, return that expression. */
1495 static rtx
1496 lookup_as_function (x, code)
1497 rtx x;
1498 enum rtx_code code;
1500 struct table_elt *p
1501 = lookup (x, safe_hash (x, VOIDmode) & HASH_MASK, GET_MODE (x));
1503 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1504 long as we are narrowing. So if we looked in vain for a mode narrower
1505 than word_mode before, look for word_mode now. */
1506 if (p == 0 && code == CONST_INT
1507 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1509 x = copy_rtx (x);
1510 PUT_MODE (x, word_mode);
1511 p = lookup (x, safe_hash (x, VOIDmode) & HASH_MASK, word_mode);
1514 if (p == 0)
1515 return 0;
1517 for (p = p->first_same_value; p; p = p->next_same_value)
1518 if (GET_CODE (p->exp) == code
1519 /* Make sure this is a valid entry in the table. */
1520 && exp_equiv_p (p->exp, p->exp, 1, 0))
1521 return p->exp;
1523 return 0;
1526 /* Insert X in the hash table, assuming HASH is its hash code
1527 and CLASSP is an element of the class it should go in
1528 (or 0 if a new class should be made).
1529 It is inserted at the proper position to keep the class in
1530 the order cheapest first.
1532 MODE is the machine-mode of X, or if X is an integer constant
1533 with VOIDmode then MODE is the mode with which X will be used.
1535 For elements of equal cheapness, the most recent one
1536 goes in front, except that the first element in the list
1537 remains first unless a cheaper element is added. The order of
1538 pseudo-registers does not matter, as canon_reg will be called to
1539 find the cheapest when a register is retrieved from the table.
1541 The in_memory field in the hash table element is set to 0.
1542 The caller must set it nonzero if appropriate.
1544 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1545 and if insert_regs returns a nonzero value
1546 you must then recompute its hash code before calling here.
1548 If necessary, update table showing constant values of quantities. */
1550 #define CHEAPER(X, Y) \
1551 (preferrable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1553 static struct table_elt *
1554 insert (x, classp, hash, mode)
1555 rtx x;
1556 struct table_elt *classp;
1557 unsigned hash;
1558 enum machine_mode mode;
1560 struct table_elt *elt;
1562 /* If X is a register and we haven't made a quantity for it,
1563 something is wrong. */
1564 if (GET_CODE (x) == REG && ! REGNO_QTY_VALID_P (REGNO (x)))
1565 abort ();
1567 /* If X is a hard register, show it is being put in the table. */
1568 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
1570 unsigned int regno = REGNO (x);
1571 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
1572 unsigned int i;
1574 for (i = regno; i < endregno; i++)
1575 SET_HARD_REG_BIT (hard_regs_in_table, i);
1578 /* Put an element for X into the right hash bucket. */
1580 elt = free_element_chain;
1581 if (elt)
1582 free_element_chain = elt->next_same_hash;
1583 else
1585 n_elements_made++;
1586 elt = (struct table_elt *) xmalloc (sizeof (struct table_elt));
1589 elt->exp = x;
1590 elt->canon_exp = NULL_RTX;
1591 elt->cost = COST (x);
1592 elt->regcost = approx_reg_cost (x);
1593 elt->next_same_value = 0;
1594 elt->prev_same_value = 0;
1595 elt->next_same_hash = table[hash];
1596 elt->prev_same_hash = 0;
1597 elt->related_value = 0;
1598 elt->in_memory = 0;
1599 elt->mode = mode;
1600 elt->is_const = (CONSTANT_P (x)
1601 /* GNU C++ takes advantage of this for `this'
1602 (and other const values). */
1603 || (RTX_UNCHANGING_P (x)
1604 && GET_CODE (x) == REG
1605 && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1606 || FIXED_BASE_PLUS_P (x));
1608 if (table[hash])
1609 table[hash]->prev_same_hash = elt;
1610 table[hash] = elt;
1612 /* Put it into the proper value-class. */
1613 if (classp)
1615 classp = classp->first_same_value;
1616 if (CHEAPER (elt, classp))
1617 /* Insert at the head of the class */
1619 struct table_elt *p;
1620 elt->next_same_value = classp;
1621 classp->prev_same_value = elt;
1622 elt->first_same_value = elt;
1624 for (p = classp; p; p = p->next_same_value)
1625 p->first_same_value = elt;
1627 else
1629 /* Insert not at head of the class. */
1630 /* Put it after the last element cheaper than X. */
1631 struct table_elt *p, *next;
1633 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1634 p = next);
1636 /* Put it after P and before NEXT. */
1637 elt->next_same_value = next;
1638 if (next)
1639 next->prev_same_value = elt;
1641 elt->prev_same_value = p;
1642 p->next_same_value = elt;
1643 elt->first_same_value = classp;
1646 else
1647 elt->first_same_value = elt;
1649 /* If this is a constant being set equivalent to a register or a register
1650 being set equivalent to a constant, note the constant equivalence.
1652 If this is a constant, it cannot be equivalent to a different constant,
1653 and a constant is the only thing that can be cheaper than a register. So
1654 we know the register is the head of the class (before the constant was
1655 inserted).
1657 If this is a register that is not already known equivalent to a
1658 constant, we must check the entire class.
1660 If this is a register that is already known equivalent to an insn,
1661 update the qtys `const_insn' to show that `this_insn' is the latest
1662 insn making that quantity equivalent to the constant. */
1664 if (elt->is_const && classp && GET_CODE (classp->exp) == REG
1665 && GET_CODE (x) != REG)
1667 int exp_q = REG_QTY (REGNO (classp->exp));
1668 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1670 exp_ent->const_rtx = gen_lowpart_if_possible (exp_ent->mode, x);
1671 exp_ent->const_insn = this_insn;
1674 else if (GET_CODE (x) == REG
1675 && classp
1676 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1677 && ! elt->is_const)
1679 struct table_elt *p;
1681 for (p = classp; p != 0; p = p->next_same_value)
1683 if (p->is_const && GET_CODE (p->exp) != REG)
1685 int x_q = REG_QTY (REGNO (x));
1686 struct qty_table_elem *x_ent = &qty_table[x_q];
1688 x_ent->const_rtx
1689 = gen_lowpart_if_possible (GET_MODE (x), p->exp);
1690 x_ent->const_insn = this_insn;
1691 break;
1696 else if (GET_CODE (x) == REG
1697 && qty_table[REG_QTY (REGNO (x))].const_rtx
1698 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1699 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1701 /* If this is a constant with symbolic value,
1702 and it has a term with an explicit integer value,
1703 link it up with related expressions. */
1704 if (GET_CODE (x) == CONST)
1706 rtx subexp = get_related_value (x);
1707 unsigned subhash;
1708 struct table_elt *subelt, *subelt_prev;
1710 if (subexp != 0)
1712 /* Get the integer-free subexpression in the hash table. */
1713 subhash = safe_hash (subexp, mode) & HASH_MASK;
1714 subelt = lookup (subexp, subhash, mode);
1715 if (subelt == 0)
1716 subelt = insert (subexp, NULL, subhash, mode);
1717 /* Initialize SUBELT's circular chain if it has none. */
1718 if (subelt->related_value == 0)
1719 subelt->related_value = subelt;
1720 /* Find the element in the circular chain that precedes SUBELT. */
1721 subelt_prev = subelt;
1722 while (subelt_prev->related_value != subelt)
1723 subelt_prev = subelt_prev->related_value;
1724 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1725 This way the element that follows SUBELT is the oldest one. */
1726 elt->related_value = subelt_prev->related_value;
1727 subelt_prev->related_value = elt;
1731 return elt;
1734 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1735 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1736 the two classes equivalent.
1738 CLASS1 will be the surviving class; CLASS2 should not be used after this
1739 call.
1741 Any invalid entries in CLASS2 will not be copied. */
1743 static void
1744 merge_equiv_classes (class1, class2)
1745 struct table_elt *class1, *class2;
1747 struct table_elt *elt, *next, *new;
1749 /* Ensure we start with the head of the classes. */
1750 class1 = class1->first_same_value;
1751 class2 = class2->first_same_value;
1753 /* If they were already equal, forget it. */
1754 if (class1 == class2)
1755 return;
1757 for (elt = class2; elt; elt = next)
1759 unsigned int hash;
1760 rtx exp = elt->exp;
1761 enum machine_mode mode = elt->mode;
1763 next = elt->next_same_value;
1765 /* Remove old entry, make a new one in CLASS1's class.
1766 Don't do this for invalid entries as we cannot find their
1767 hash code (it also isn't necessary). */
1768 if (GET_CODE (exp) == REG || exp_equiv_p (exp, exp, 1, 0))
1770 hash_arg_in_memory = 0;
1771 hash = HASH (exp, mode);
1773 if (GET_CODE (exp) == REG)
1774 delete_reg_equiv (REGNO (exp));
1776 remove_from_table (elt, hash);
1778 if (insert_regs (exp, class1, 0))
1780 rehash_using_reg (exp);
1781 hash = HASH (exp, mode);
1783 new = insert (exp, class1, hash, mode);
1784 new->in_memory = hash_arg_in_memory;
1789 /* Flush the entire hash table. */
1791 static void
1792 flush_hash_table ()
1794 int i;
1795 struct table_elt *p;
1797 for (i = 0; i < HASH_SIZE; i++)
1798 for (p = table[i]; p; p = table[i])
1800 /* Note that invalidate can remove elements
1801 after P in the current hash chain. */
1802 if (GET_CODE (p->exp) == REG)
1803 invalidate (p->exp, p->mode);
1804 else
1805 remove_from_table (p, i);
1809 /* Function called for each rtx to check whether true dependence exist. */
1810 struct check_dependence_data
1812 enum machine_mode mode;
1813 rtx exp;
1816 static int
1817 check_dependence (x, data)
1818 rtx *x;
1819 void *data;
1821 struct check_dependence_data *d = (struct check_dependence_data *) data;
1822 if (*x && GET_CODE (*x) == MEM)
1823 return true_dependence (d->exp, d->mode, *x, cse_rtx_varies_p);
1824 else
1825 return 0;
1828 /* Remove from the hash table, or mark as invalid, all expressions whose
1829 values could be altered by storing in X. X is a register, a subreg, or
1830 a memory reference with nonvarying address (because, when a memory
1831 reference with a varying address is stored in, all memory references are
1832 removed by invalidate_memory so specific invalidation is superfluous).
1833 FULL_MODE, if not VOIDmode, indicates that this much should be
1834 invalidated instead of just the amount indicated by the mode of X. This
1835 is only used for bitfield stores into memory.
1837 A nonvarying address may be just a register or just a symbol reference,
1838 or it may be either of those plus a numeric offset. */
1840 static void
1841 invalidate (x, full_mode)
1842 rtx x;
1843 enum machine_mode full_mode;
1845 int i;
1846 struct table_elt *p;
1848 switch (GET_CODE (x))
1850 case REG:
1852 /* If X is a register, dependencies on its contents are recorded
1853 through the qty number mechanism. Just change the qty number of
1854 the register, mark it as invalid for expressions that refer to it,
1855 and remove it itself. */
1856 unsigned int regno = REGNO (x);
1857 unsigned int hash = HASH (x, GET_MODE (x));
1859 /* Remove REGNO from any quantity list it might be on and indicate
1860 that its value might have changed. If it is a pseudo, remove its
1861 entry from the hash table.
1863 For a hard register, we do the first two actions above for any
1864 additional hard registers corresponding to X. Then, if any of these
1865 registers are in the table, we must remove any REG entries that
1866 overlap these registers. */
1868 delete_reg_equiv (regno);
1869 REG_TICK (regno)++;
1871 if (regno >= FIRST_PSEUDO_REGISTER)
1873 /* Because a register can be referenced in more than one mode,
1874 we might have to remove more than one table entry. */
1875 struct table_elt *elt;
1877 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1878 remove_from_table (elt, hash);
1880 else
1882 HOST_WIDE_INT in_table
1883 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1884 unsigned int endregno
1885 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
1886 unsigned int tregno, tendregno, rn;
1887 struct table_elt *p, *next;
1889 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1891 for (rn = regno + 1; rn < endregno; rn++)
1893 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1894 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1895 delete_reg_equiv (rn);
1896 REG_TICK (rn)++;
1899 if (in_table)
1900 for (hash = 0; hash < HASH_SIZE; hash++)
1901 for (p = table[hash]; p; p = next)
1903 next = p->next_same_hash;
1905 if (GET_CODE (p->exp) != REG
1906 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1907 continue;
1909 tregno = REGNO (p->exp);
1910 tendregno
1911 = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (p->exp));
1912 if (tendregno > regno && tregno < endregno)
1913 remove_from_table (p, hash);
1917 return;
1919 case SUBREG:
1920 invalidate (SUBREG_REG (x), VOIDmode);
1921 return;
1923 case PARALLEL:
1924 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1925 invalidate (XVECEXP (x, 0, i), VOIDmode);
1926 return;
1928 case EXPR_LIST:
1929 /* This is part of a disjoint return value; extract the location in
1930 question ignoring the offset. */
1931 invalidate (XEXP (x, 0), VOIDmode);
1932 return;
1934 case MEM:
1935 /* Calculate the canonical version of X here so that
1936 true_dependence doesn't generate new RTL for X on each call. */
1937 x = canon_rtx (x);
1939 /* Remove all hash table elements that refer to overlapping pieces of
1940 memory. */
1941 if (full_mode == VOIDmode)
1942 full_mode = GET_MODE (x);
1944 for (i = 0; i < HASH_SIZE; i++)
1946 struct table_elt *next;
1948 for (p = table[i]; p; p = next)
1950 next = p->next_same_hash;
1951 if (p->in_memory)
1953 struct check_dependence_data d;
1955 /* Just canonicalize the expression once;
1956 otherwise each time we call invalidate
1957 true_dependence will canonicalize the
1958 expression again. */
1959 if (!p->canon_exp)
1960 p->canon_exp = canon_rtx (p->exp);
1961 d.exp = x;
1962 d.mode = full_mode;
1963 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1964 remove_from_table (p, i);
1968 return;
1970 default:
1971 abort ();
1975 /* Remove all expressions that refer to register REGNO,
1976 since they are already invalid, and we are about to
1977 mark that register valid again and don't want the old
1978 expressions to reappear as valid. */
1980 static void
1981 remove_invalid_refs (regno)
1982 unsigned int regno;
1984 unsigned int i;
1985 struct table_elt *p, *next;
1987 for (i = 0; i < HASH_SIZE; i++)
1988 for (p = table[i]; p; p = next)
1990 next = p->next_same_hash;
1991 if (GET_CODE (p->exp) != REG
1992 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx*) 0))
1993 remove_from_table (p, i);
1997 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1998 and mode MODE. */
1999 static void
2000 remove_invalid_subreg_refs (regno, offset, mode)
2001 unsigned int regno;
2002 unsigned int offset;
2003 enum machine_mode mode;
2005 unsigned int i;
2006 struct table_elt *p, *next;
2007 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2009 for (i = 0; i < HASH_SIZE; i++)
2010 for (p = table[i]; p; p = next)
2012 rtx exp = p->exp;
2013 next = p->next_same_hash;
2015 if (GET_CODE (exp) != REG
2016 && (GET_CODE (exp) != SUBREG
2017 || GET_CODE (SUBREG_REG (exp)) != REG
2018 || REGNO (SUBREG_REG (exp)) != regno
2019 || (((SUBREG_BYTE (exp)
2020 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2021 && SUBREG_BYTE (exp) <= end))
2022 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx*) 0))
2023 remove_from_table (p, i);
2027 /* Recompute the hash codes of any valid entries in the hash table that
2028 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2030 This is called when we make a jump equivalence. */
2032 static void
2033 rehash_using_reg (x)
2034 rtx x;
2036 unsigned int i;
2037 struct table_elt *p, *next;
2038 unsigned hash;
2040 if (GET_CODE (x) == SUBREG)
2041 x = SUBREG_REG (x);
2043 /* If X is not a register or if the register is known not to be in any
2044 valid entries in the table, we have no work to do. */
2046 if (GET_CODE (x) != REG
2047 || REG_IN_TABLE (REGNO (x)) < 0
2048 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2049 return;
2051 /* Scan all hash chains looking for valid entries that mention X.
2052 If we find one and it is in the wrong hash chain, move it. We can skip
2053 objects that are registers, since they are handled specially. */
2055 for (i = 0; i < HASH_SIZE; i++)
2056 for (p = table[i]; p; p = next)
2058 next = p->next_same_hash;
2059 if (GET_CODE (p->exp) != REG && reg_mentioned_p (x, p->exp)
2060 && exp_equiv_p (p->exp, p->exp, 1, 0)
2061 && i != (hash = safe_hash (p->exp, p->mode) & HASH_MASK))
2063 if (p->next_same_hash)
2064 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2066 if (p->prev_same_hash)
2067 p->prev_same_hash->next_same_hash = p->next_same_hash;
2068 else
2069 table[i] = p->next_same_hash;
2071 p->next_same_hash = table[hash];
2072 p->prev_same_hash = 0;
2073 if (table[hash])
2074 table[hash]->prev_same_hash = p;
2075 table[hash] = p;
2080 /* Remove from the hash table any expression that is a call-clobbered
2081 register. Also update their TICK values. */
2083 static void
2084 invalidate_for_call ()
2086 unsigned int regno, endregno;
2087 unsigned int i;
2088 unsigned hash;
2089 struct table_elt *p, *next;
2090 int in_table = 0;
2092 /* Go through all the hard registers. For each that is clobbered in
2093 a CALL_INSN, remove the register from quantity chains and update
2094 reg_tick if defined. Also see if any of these registers is currently
2095 in the table. */
2097 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2098 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2100 delete_reg_equiv (regno);
2101 if (REG_TICK (regno) >= 0)
2102 REG_TICK (regno)++;
2104 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2107 /* In the case where we have no call-clobbered hard registers in the
2108 table, we are done. Otherwise, scan the table and remove any
2109 entry that overlaps a call-clobbered register. */
2111 if (in_table)
2112 for (hash = 0; hash < HASH_SIZE; hash++)
2113 for (p = table[hash]; p; p = next)
2115 next = p->next_same_hash;
2117 if (GET_CODE (p->exp) != REG
2118 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2119 continue;
2121 regno = REGNO (p->exp);
2122 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (p->exp));
2124 for (i = regno; i < endregno; i++)
2125 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2127 remove_from_table (p, hash);
2128 break;
2133 /* Given an expression X of type CONST,
2134 and ELT which is its table entry (or 0 if it
2135 is not in the hash table),
2136 return an alternate expression for X as a register plus integer.
2137 If none can be found, return 0. */
2139 static rtx
2140 use_related_value (x, elt)
2141 rtx x;
2142 struct table_elt *elt;
2144 struct table_elt *relt = 0;
2145 struct table_elt *p, *q;
2146 HOST_WIDE_INT offset;
2148 /* First, is there anything related known?
2149 If we have a table element, we can tell from that.
2150 Otherwise, must look it up. */
2152 if (elt != 0 && elt->related_value != 0)
2153 relt = elt;
2154 else if (elt == 0 && GET_CODE (x) == CONST)
2156 rtx subexp = get_related_value (x);
2157 if (subexp != 0)
2158 relt = lookup (subexp,
2159 safe_hash (subexp, GET_MODE (subexp)) & HASH_MASK,
2160 GET_MODE (subexp));
2163 if (relt == 0)
2164 return 0;
2166 /* Search all related table entries for one that has an
2167 equivalent register. */
2169 p = relt;
2170 while (1)
2172 /* This loop is strange in that it is executed in two different cases.
2173 The first is when X is already in the table. Then it is searching
2174 the RELATED_VALUE list of X's class (RELT). The second case is when
2175 X is not in the table. Then RELT points to a class for the related
2176 value.
2178 Ensure that, whatever case we are in, that we ignore classes that have
2179 the same value as X. */
2181 if (rtx_equal_p (x, p->exp))
2182 q = 0;
2183 else
2184 for (q = p->first_same_value; q; q = q->next_same_value)
2185 if (GET_CODE (q->exp) == REG)
2186 break;
2188 if (q)
2189 break;
2191 p = p->related_value;
2193 /* We went all the way around, so there is nothing to be found.
2194 Alternatively, perhaps RELT was in the table for some other reason
2195 and it has no related values recorded. */
2196 if (p == relt || p == 0)
2197 break;
2200 if (q == 0)
2201 return 0;
2203 offset = (get_integer_term (x) - get_integer_term (p->exp));
2204 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2205 return plus_constant (q->exp, offset);
2208 /* Hash a string. Just add its bytes up. */
2209 static inline unsigned
2210 canon_hash_string (ps)
2211 const char *ps;
2213 unsigned hash = 0;
2214 const unsigned char *p = (const unsigned char *)ps;
2216 if (p)
2217 while (*p)
2218 hash += *p++;
2220 return hash;
2223 /* Hash an rtx. We are careful to make sure the value is never negative.
2224 Equivalent registers hash identically.
2225 MODE is used in hashing for CONST_INTs only;
2226 otherwise the mode of X is used.
2228 Store 1 in do_not_record if any subexpression is volatile.
2230 Store 1 in hash_arg_in_memory if X contains a MEM rtx
2231 which does not have the RTX_UNCHANGING_P bit set.
2233 Note that cse_insn knows that the hash code of a MEM expression
2234 is just (int) MEM plus the hash code of the address. */
2236 static unsigned
2237 canon_hash (x, mode)
2238 rtx x;
2239 enum machine_mode mode;
2241 int i, j;
2242 unsigned hash = 0;
2243 enum rtx_code code;
2244 const char *fmt;
2246 /* repeat is used to turn tail-recursion into iteration. */
2247 repeat:
2248 if (x == 0)
2249 return hash;
2251 code = GET_CODE (x);
2252 switch (code)
2254 case REG:
2256 unsigned int regno = REGNO (x);
2257 bool record;
2259 /* On some machines, we can't record any non-fixed hard register,
2260 because extending its life will cause reload problems. We
2261 consider ap, fp, sp, gp to be fixed for this purpose.
2263 We also consider CCmode registers to be fixed for this purpose;
2264 failure to do so leads to failure to simplify 0<100 type of
2265 conditionals.
2267 On all machines, we can't record any global registers.
2268 Nor should we record any register that is in a small
2269 class, as defined by CLASS_LIKELY_SPILLED_P. */
2271 if (regno >= FIRST_PSEUDO_REGISTER)
2272 record = true;
2273 else if (x == frame_pointer_rtx
2274 || x == hard_frame_pointer_rtx
2275 || x == arg_pointer_rtx
2276 || x == stack_pointer_rtx
2277 || x == pic_offset_table_rtx)
2278 record = true;
2279 else if (global_regs[regno])
2280 record = false;
2281 else if (fixed_regs[regno])
2282 record = true;
2283 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2284 record = true;
2285 else if (SMALL_REGISTER_CLASSES)
2286 record = false;
2287 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2288 record = false;
2289 else
2290 record = true;
2292 if (!record)
2294 do_not_record = 1;
2295 return 0;
2298 hash += ((unsigned) REG << 7) + (unsigned) REG_QTY (regno);
2299 return hash;
2302 /* We handle SUBREG of a REG specially because the underlying
2303 reg changes its hash value with every value change; we don't
2304 want to have to forget unrelated subregs when one subreg changes. */
2305 case SUBREG:
2307 if (GET_CODE (SUBREG_REG (x)) == REG)
2309 hash += (((unsigned) SUBREG << 7)
2310 + REGNO (SUBREG_REG (x))
2311 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2312 return hash;
2314 break;
2317 case CONST_INT:
2319 unsigned HOST_WIDE_INT tem = INTVAL (x);
2320 hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
2321 return hash;
2324 case CONST_DOUBLE:
2325 /* This is like the general case, except that it only counts
2326 the integers representing the constant. */
2327 hash += (unsigned) code + (unsigned) GET_MODE (x);
2328 if (GET_MODE (x) != VOIDmode)
2329 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
2331 unsigned HOST_WIDE_INT tem = XWINT (x, i);
2332 hash += tem;
2334 else
2335 hash += ((unsigned) CONST_DOUBLE_LOW (x)
2336 + (unsigned) CONST_DOUBLE_HIGH (x));
2337 return hash;
2339 case CONST_VECTOR:
2341 int units;
2342 rtx elt;
2344 units = CONST_VECTOR_NUNITS (x);
2346 for (i = 0; i < units; ++i)
2348 elt = CONST_VECTOR_ELT (x, i);
2349 hash += canon_hash (elt, GET_MODE (elt));
2352 return hash;
2355 /* Assume there is only one rtx object for any given label. */
2356 case LABEL_REF:
2357 hash += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
2358 return hash;
2360 case SYMBOL_REF:
2361 hash += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
2362 return hash;
2364 case MEM:
2365 /* We don't record if marked volatile or if BLKmode since we don't
2366 know the size of the move. */
2367 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2369 do_not_record = 1;
2370 return 0;
2372 if (! RTX_UNCHANGING_P (x) || FIXED_BASE_PLUS_P (XEXP (x, 0)))
2374 hash_arg_in_memory = 1;
2376 /* Now that we have already found this special case,
2377 might as well speed it up as much as possible. */
2378 hash += (unsigned) MEM;
2379 x = XEXP (x, 0);
2380 goto repeat;
2382 case USE:
2383 /* A USE that mentions non-volatile memory needs special
2384 handling since the MEM may be BLKmode which normally
2385 prevents an entry from being made. Pure calls are
2386 marked by a USE which mentions BLKmode memory. */
2387 if (GET_CODE (XEXP (x, 0)) == MEM
2388 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2390 hash += (unsigned)USE;
2391 x = XEXP (x, 0);
2393 if (! RTX_UNCHANGING_P (x) || FIXED_BASE_PLUS_P (XEXP (x, 0)))
2394 hash_arg_in_memory = 1;
2396 /* Now that we have already found this special case,
2397 might as well speed it up as much as possible. */
2398 hash += (unsigned) MEM;
2399 x = XEXP (x, 0);
2400 goto repeat;
2402 break;
2404 case PRE_DEC:
2405 case PRE_INC:
2406 case POST_DEC:
2407 case POST_INC:
2408 case PRE_MODIFY:
2409 case POST_MODIFY:
2410 case PC:
2411 case CC0:
2412 case CALL:
2413 case UNSPEC_VOLATILE:
2414 do_not_record = 1;
2415 return 0;
2417 case ASM_OPERANDS:
2418 if (MEM_VOLATILE_P (x))
2420 do_not_record = 1;
2421 return 0;
2423 else
2425 /* We don't want to take the filename and line into account. */
2426 hash += (unsigned) code + (unsigned) GET_MODE (x)
2427 + canon_hash_string (ASM_OPERANDS_TEMPLATE (x))
2428 + canon_hash_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2429 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2431 if (ASM_OPERANDS_INPUT_LENGTH (x))
2433 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2435 hash += (canon_hash (ASM_OPERANDS_INPUT (x, i),
2436 GET_MODE (ASM_OPERANDS_INPUT (x, i)))
2437 + canon_hash_string (ASM_OPERANDS_INPUT_CONSTRAINT
2438 (x, i)));
2441 hash += canon_hash_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2442 x = ASM_OPERANDS_INPUT (x, 0);
2443 mode = GET_MODE (x);
2444 goto repeat;
2447 return hash;
2449 break;
2451 default:
2452 break;
2455 i = GET_RTX_LENGTH (code) - 1;
2456 hash += (unsigned) code + (unsigned) GET_MODE (x);
2457 fmt = GET_RTX_FORMAT (code);
2458 for (; i >= 0; i--)
2460 if (fmt[i] == 'e')
2462 rtx tem = XEXP (x, i);
2464 /* If we are about to do the last recursive call
2465 needed at this level, change it into iteration.
2466 This function is called enough to be worth it. */
2467 if (i == 0)
2469 x = tem;
2470 goto repeat;
2472 hash += canon_hash (tem, 0);
2474 else if (fmt[i] == 'E')
2475 for (j = 0; j < XVECLEN (x, i); j++)
2476 hash += canon_hash (XVECEXP (x, i, j), 0);
2477 else if (fmt[i] == 's')
2478 hash += canon_hash_string (XSTR (x, i));
2479 else if (fmt[i] == 'i')
2481 unsigned tem = XINT (x, i);
2482 hash += tem;
2484 else if (fmt[i] == '0' || fmt[i] == 't')
2485 /* Unused. */
2487 else
2488 abort ();
2490 return hash;
2493 /* Like canon_hash but with no side effects. */
2495 static unsigned
2496 safe_hash (x, mode)
2497 rtx x;
2498 enum machine_mode mode;
2500 int save_do_not_record = do_not_record;
2501 int save_hash_arg_in_memory = hash_arg_in_memory;
2502 unsigned hash = canon_hash (x, mode);
2503 hash_arg_in_memory = save_hash_arg_in_memory;
2504 do_not_record = save_do_not_record;
2505 return hash;
2508 /* Return 1 iff X and Y would canonicalize into the same thing,
2509 without actually constructing the canonicalization of either one.
2510 If VALIDATE is nonzero,
2511 we assume X is an expression being processed from the rtl
2512 and Y was found in the hash table. We check register refs
2513 in Y for being marked as valid.
2515 If EQUAL_VALUES is nonzero, we allow a register to match a constant value
2516 that is known to be in the register. Ordinarily, we don't allow them
2517 to match, because letting them match would cause unpredictable results
2518 in all the places that search a hash table chain for an equivalent
2519 for a given value. A possible equivalent that has different structure
2520 has its hash code computed from different data. Whether the hash code
2521 is the same as that of the given value is pure luck. */
2523 static int
2524 exp_equiv_p (x, y, validate, equal_values)
2525 rtx x, y;
2526 int validate;
2527 int equal_values;
2529 int i, j;
2530 enum rtx_code code;
2531 const char *fmt;
2533 /* Note: it is incorrect to assume an expression is equivalent to itself
2534 if VALIDATE is nonzero. */
2535 if (x == y && !validate)
2536 return 1;
2537 if (x == 0 || y == 0)
2538 return x == y;
2540 code = GET_CODE (x);
2541 if (code != GET_CODE (y))
2543 if (!equal_values)
2544 return 0;
2546 /* If X is a constant and Y is a register or vice versa, they may be
2547 equivalent. We only have to validate if Y is a register. */
2548 if (CONSTANT_P (x) && GET_CODE (y) == REG
2549 && REGNO_QTY_VALID_P (REGNO (y)))
2551 int y_q = REG_QTY (REGNO (y));
2552 struct qty_table_elem *y_ent = &qty_table[y_q];
2554 if (GET_MODE (y) == y_ent->mode
2555 && rtx_equal_p (x, y_ent->const_rtx)
2556 && (! validate || REG_IN_TABLE (REGNO (y)) == REG_TICK (REGNO (y))))
2557 return 1;
2560 if (CONSTANT_P (y) && code == REG
2561 && REGNO_QTY_VALID_P (REGNO (x)))
2563 int x_q = REG_QTY (REGNO (x));
2564 struct qty_table_elem *x_ent = &qty_table[x_q];
2566 if (GET_MODE (x) == x_ent->mode
2567 && rtx_equal_p (y, x_ent->const_rtx))
2568 return 1;
2571 return 0;
2574 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2575 if (GET_MODE (x) != GET_MODE (y))
2576 return 0;
2578 switch (code)
2580 case PC:
2581 case CC0:
2582 case CONST_INT:
2583 return x == y;
2585 case LABEL_REF:
2586 return XEXP (x, 0) == XEXP (y, 0);
2588 case SYMBOL_REF:
2589 return XSTR (x, 0) == XSTR (y, 0);
2591 case REG:
2593 unsigned int regno = REGNO (y);
2594 unsigned int endregno
2595 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2596 : HARD_REGNO_NREGS (regno, GET_MODE (y)));
2597 unsigned int i;
2599 /* If the quantities are not the same, the expressions are not
2600 equivalent. If there are and we are not to validate, they
2601 are equivalent. Otherwise, ensure all regs are up-to-date. */
2603 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2604 return 0;
2606 if (! validate)
2607 return 1;
2609 for (i = regno; i < endregno; i++)
2610 if (REG_IN_TABLE (i) != REG_TICK (i))
2611 return 0;
2613 return 1;
2616 /* For commutative operations, check both orders. */
2617 case PLUS:
2618 case MULT:
2619 case AND:
2620 case IOR:
2621 case XOR:
2622 case NE:
2623 case EQ:
2624 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0), validate, equal_values)
2625 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2626 validate, equal_values))
2627 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2628 validate, equal_values)
2629 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2630 validate, equal_values)));
2632 case ASM_OPERANDS:
2633 /* We don't use the generic code below because we want to
2634 disregard filename and line numbers. */
2636 /* A volatile asm isn't equivalent to any other. */
2637 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2638 return 0;
2640 if (GET_MODE (x) != GET_MODE (y)
2641 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2642 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2643 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2644 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2645 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2646 return 0;
2648 if (ASM_OPERANDS_INPUT_LENGTH (x))
2650 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2651 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2652 ASM_OPERANDS_INPUT (y, i),
2653 validate, equal_values)
2654 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2655 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2656 return 0;
2659 return 1;
2661 default:
2662 break;
2665 /* Compare the elements. If any pair of corresponding elements
2666 fail to match, return 0 for the whole things. */
2668 fmt = GET_RTX_FORMAT (code);
2669 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2671 switch (fmt[i])
2673 case 'e':
2674 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i), validate, equal_values))
2675 return 0;
2676 break;
2678 case 'E':
2679 if (XVECLEN (x, i) != XVECLEN (y, i))
2680 return 0;
2681 for (j = 0; j < XVECLEN (x, i); j++)
2682 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2683 validate, equal_values))
2684 return 0;
2685 break;
2687 case 's':
2688 if (strcmp (XSTR (x, i), XSTR (y, i)))
2689 return 0;
2690 break;
2692 case 'i':
2693 if (XINT (x, i) != XINT (y, i))
2694 return 0;
2695 break;
2697 case 'w':
2698 if (XWINT (x, i) != XWINT (y, i))
2699 return 0;
2700 break;
2702 case '0':
2703 case 't':
2704 break;
2706 default:
2707 abort ();
2711 return 1;
2714 /* Return 1 if X has a value that can vary even between two
2715 executions of the program. 0 means X can be compared reliably
2716 against certain constants or near-constants. */
2718 static int
2719 cse_rtx_varies_p (x, from_alias)
2720 rtx x;
2721 int from_alias;
2723 /* We need not check for X and the equivalence class being of the same
2724 mode because if X is equivalent to a constant in some mode, it
2725 doesn't vary in any mode. */
2727 if (GET_CODE (x) == REG
2728 && REGNO_QTY_VALID_P (REGNO (x)))
2730 int x_q = REG_QTY (REGNO (x));
2731 struct qty_table_elem *x_ent = &qty_table[x_q];
2733 if (GET_MODE (x) == x_ent->mode
2734 && x_ent->const_rtx != NULL_RTX)
2735 return 0;
2738 if (GET_CODE (x) == PLUS
2739 && GET_CODE (XEXP (x, 1)) == CONST_INT
2740 && GET_CODE (XEXP (x, 0)) == REG
2741 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2743 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2744 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2746 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2747 && x0_ent->const_rtx != NULL_RTX)
2748 return 0;
2751 /* This can happen as the result of virtual register instantiation, if
2752 the initial constant is too large to be a valid address. This gives
2753 us a three instruction sequence, load large offset into a register,
2754 load fp minus a constant into a register, then a MEM which is the
2755 sum of the two `constant' registers. */
2756 if (GET_CODE (x) == PLUS
2757 && GET_CODE (XEXP (x, 0)) == REG
2758 && GET_CODE (XEXP (x, 1)) == REG
2759 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2760 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2762 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2763 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2764 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2765 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2767 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2768 && x0_ent->const_rtx != NULL_RTX
2769 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2770 && x1_ent->const_rtx != NULL_RTX)
2771 return 0;
2774 return rtx_varies_p (x, from_alias);
2777 /* Canonicalize an expression:
2778 replace each register reference inside it
2779 with the "oldest" equivalent register.
2781 If INSN is non-zero and we are replacing a pseudo with a hard register
2782 or vice versa, validate_change is used to ensure that INSN remains valid
2783 after we make our substitution. The calls are made with IN_GROUP non-zero
2784 so apply_change_group must be called upon the outermost return from this
2785 function (unless INSN is zero). The result of apply_change_group can
2786 generally be discarded since the changes we are making are optional. */
2788 static rtx
2789 canon_reg (x, insn)
2790 rtx x;
2791 rtx insn;
2793 int i;
2794 enum rtx_code code;
2795 const char *fmt;
2797 if (x == 0)
2798 return x;
2800 code = GET_CODE (x);
2801 switch (code)
2803 case PC:
2804 case CC0:
2805 case CONST:
2806 case CONST_INT:
2807 case CONST_DOUBLE:
2808 case CONST_VECTOR:
2809 case SYMBOL_REF:
2810 case LABEL_REF:
2811 case ADDR_VEC:
2812 case ADDR_DIFF_VEC:
2813 return x;
2815 case REG:
2817 int first;
2818 int q;
2819 struct qty_table_elem *ent;
2821 /* Never replace a hard reg, because hard regs can appear
2822 in more than one machine mode, and we must preserve the mode
2823 of each occurrence. Also, some hard regs appear in
2824 MEMs that are shared and mustn't be altered. Don't try to
2825 replace any reg that maps to a reg of class NO_REGS. */
2826 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2827 || ! REGNO_QTY_VALID_P (REGNO (x)))
2828 return x;
2830 q = REG_QTY (REGNO (x));
2831 ent = &qty_table[q];
2832 first = ent->first_reg;
2833 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2834 : REGNO_REG_CLASS (first) == NO_REGS ? x
2835 : gen_rtx_REG (ent->mode, first));
2838 default:
2839 break;
2842 fmt = GET_RTX_FORMAT (code);
2843 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2845 int j;
2847 if (fmt[i] == 'e')
2849 rtx new = canon_reg (XEXP (x, i), insn);
2850 int insn_code;
2852 /* If replacing pseudo with hard reg or vice versa, ensure the
2853 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2854 if (insn != 0 && new != 0
2855 && GET_CODE (new) == REG && GET_CODE (XEXP (x, i)) == REG
2856 && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
2857 != (REGNO (XEXP (x, i)) < FIRST_PSEUDO_REGISTER))
2858 || (insn_code = recog_memoized (insn)) < 0
2859 || insn_data[insn_code].n_dups > 0))
2860 validate_change (insn, &XEXP (x, i), new, 1);
2861 else
2862 XEXP (x, i) = new;
2864 else if (fmt[i] == 'E')
2865 for (j = 0; j < XVECLEN (x, i); j++)
2866 XVECEXP (x, i, j) = canon_reg (XVECEXP (x, i, j), insn);
2869 return x;
2872 /* LOC is a location within INSN that is an operand address (the contents of
2873 a MEM). Find the best equivalent address to use that is valid for this
2874 insn.
2876 On most CISC machines, complicated address modes are costly, and rtx_cost
2877 is a good approximation for that cost. However, most RISC machines have
2878 only a few (usually only one) memory reference formats. If an address is
2879 valid at all, it is often just as cheap as any other address. Hence, for
2880 RISC machines, we use the configuration macro `ADDRESS_COST' to compare the
2881 costs of various addresses. For two addresses of equal cost, choose the one
2882 with the highest `rtx_cost' value as that has the potential of eliminating
2883 the most insns. For equal costs, we choose the first in the equivalence
2884 class. Note that we ignore the fact that pseudo registers are cheaper
2885 than hard registers here because we would also prefer the pseudo registers.
2888 static void
2889 find_best_addr (insn, loc, mode)
2890 rtx insn;
2891 rtx *loc;
2892 enum machine_mode mode;
2894 struct table_elt *elt;
2895 rtx addr = *loc;
2896 #ifdef ADDRESS_COST
2897 struct table_elt *p;
2898 int found_better = 1;
2899 #endif
2900 int save_do_not_record = do_not_record;
2901 int save_hash_arg_in_memory = hash_arg_in_memory;
2902 int addr_volatile;
2903 int regno;
2904 unsigned hash;
2906 /* Do not try to replace constant addresses or addresses of local and
2907 argument slots. These MEM expressions are made only once and inserted
2908 in many instructions, as well as being used to control symbol table
2909 output. It is not safe to clobber them.
2911 There are some uncommon cases where the address is already in a register
2912 for some reason, but we cannot take advantage of that because we have
2913 no easy way to unshare the MEM. In addition, looking up all stack
2914 addresses is costly. */
2915 if ((GET_CODE (addr) == PLUS
2916 && GET_CODE (XEXP (addr, 0)) == REG
2917 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2918 && (regno = REGNO (XEXP (addr, 0)),
2919 regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
2920 || regno == ARG_POINTER_REGNUM))
2921 || (GET_CODE (addr) == REG
2922 && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
2923 || regno == HARD_FRAME_POINTER_REGNUM
2924 || regno == ARG_POINTER_REGNUM))
2925 || GET_CODE (addr) == ADDRESSOF
2926 || CONSTANT_ADDRESS_P (addr))
2927 return;
2929 /* If this address is not simply a register, try to fold it. This will
2930 sometimes simplify the expression. Many simplifications
2931 will not be valid, but some, usually applying the associative rule, will
2932 be valid and produce better code. */
2933 if (GET_CODE (addr) != REG)
2935 rtx folded = fold_rtx (copy_rtx (addr), NULL_RTX);
2936 int addr_folded_cost = address_cost (folded, mode);
2937 int addr_cost = address_cost (addr, mode);
2939 if ((addr_folded_cost < addr_cost
2940 || (addr_folded_cost == addr_cost
2941 /* ??? The rtx_cost comparison is left over from an older
2942 version of this code. It is probably no longer helpful. */
2943 && (rtx_cost (folded, MEM) > rtx_cost (addr, MEM)
2944 || approx_reg_cost (folded) < approx_reg_cost (addr))))
2945 && validate_change (insn, loc, folded, 0))
2946 addr = folded;
2949 /* If this address is not in the hash table, we can't look for equivalences
2950 of the whole address. Also, ignore if volatile. */
2952 do_not_record = 0;
2953 hash = HASH (addr, Pmode);
2954 addr_volatile = do_not_record;
2955 do_not_record = save_do_not_record;
2956 hash_arg_in_memory = save_hash_arg_in_memory;
2958 if (addr_volatile)
2959 return;
2961 elt = lookup (addr, hash, Pmode);
2963 #ifndef ADDRESS_COST
2964 if (elt)
2966 int our_cost = elt->cost;
2968 /* Find the lowest cost below ours that works. */
2969 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
2970 if (elt->cost < our_cost
2971 && (GET_CODE (elt->exp) == REG
2972 || exp_equiv_p (elt->exp, elt->exp, 1, 0))
2973 && validate_change (insn, loc,
2974 canon_reg (copy_rtx (elt->exp), NULL_RTX), 0))
2975 return;
2977 #else
2979 if (elt)
2981 /* We need to find the best (under the criteria documented above) entry
2982 in the class that is valid. We use the `flag' field to indicate
2983 choices that were invalid and iterate until we can't find a better
2984 one that hasn't already been tried. */
2986 for (p = elt->first_same_value; p; p = p->next_same_value)
2987 p->flag = 0;
2989 while (found_better)
2991 int best_addr_cost = address_cost (*loc, mode);
2992 int best_rtx_cost = (elt->cost + 1) >> 1;
2993 int exp_cost;
2994 struct table_elt *best_elt = elt;
2996 found_better = 0;
2997 for (p = elt->first_same_value; p; p = p->next_same_value)
2998 if (! p->flag)
3000 if ((GET_CODE (p->exp) == REG
3001 || exp_equiv_p (p->exp, p->exp, 1, 0))
3002 && ((exp_cost = address_cost (p->exp, mode)) < best_addr_cost
3003 || (exp_cost == best_addr_cost
3004 && ((p->cost + 1) >> 1) > best_rtx_cost)))
3006 found_better = 1;
3007 best_addr_cost = exp_cost;
3008 best_rtx_cost = (p->cost + 1) >> 1;
3009 best_elt = p;
3013 if (found_better)
3015 if (validate_change (insn, loc,
3016 canon_reg (copy_rtx (best_elt->exp),
3017 NULL_RTX), 0))
3018 return;
3019 else
3020 best_elt->flag = 1;
3025 /* If the address is a binary operation with the first operand a register
3026 and the second a constant, do the same as above, but looking for
3027 equivalences of the register. Then try to simplify before checking for
3028 the best address to use. This catches a few cases: First is when we
3029 have REG+const and the register is another REG+const. We can often merge
3030 the constants and eliminate one insn and one register. It may also be
3031 that a machine has a cheap REG+REG+const. Finally, this improves the
3032 code on the Alpha for unaligned byte stores. */
3034 if (flag_expensive_optimizations
3035 && (GET_RTX_CLASS (GET_CODE (*loc)) == '2'
3036 || GET_RTX_CLASS (GET_CODE (*loc)) == 'c')
3037 && GET_CODE (XEXP (*loc, 0)) == REG
3038 && GET_CODE (XEXP (*loc, 1)) == CONST_INT)
3040 rtx c = XEXP (*loc, 1);
3042 do_not_record = 0;
3043 hash = HASH (XEXP (*loc, 0), Pmode);
3044 do_not_record = save_do_not_record;
3045 hash_arg_in_memory = save_hash_arg_in_memory;
3047 elt = lookup (XEXP (*loc, 0), hash, Pmode);
3048 if (elt == 0)
3049 return;
3051 /* We need to find the best (under the criteria documented above) entry
3052 in the class that is valid. We use the `flag' field to indicate
3053 choices that were invalid and iterate until we can't find a better
3054 one that hasn't already been tried. */
3056 for (p = elt->first_same_value; p; p = p->next_same_value)
3057 p->flag = 0;
3059 while (found_better)
3061 int best_addr_cost = address_cost (*loc, mode);
3062 int best_rtx_cost = (COST (*loc) + 1) >> 1;
3063 struct table_elt *best_elt = elt;
3064 rtx best_rtx = *loc;
3065 int count;
3067 /* This is at worst case an O(n^2) algorithm, so limit our search
3068 to the first 32 elements on the list. This avoids trouble
3069 compiling code with very long basic blocks that can easily
3070 call simplify_gen_binary so many times that we run out of
3071 memory. */
3073 found_better = 0;
3074 for (p = elt->first_same_value, count = 0;
3075 p && count < 32;
3076 p = p->next_same_value, count++)
3077 if (! p->flag
3078 && (GET_CODE (p->exp) == REG
3079 || exp_equiv_p (p->exp, p->exp, 1, 0)))
3081 rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
3082 p->exp, c);
3083 int new_cost;
3084 new_cost = address_cost (new, mode);
3086 if (new_cost < best_addr_cost
3087 || (new_cost == best_addr_cost
3088 && (COST (new) + 1) >> 1 > best_rtx_cost))
3090 found_better = 1;
3091 best_addr_cost = new_cost;
3092 best_rtx_cost = (COST (new) + 1) >> 1;
3093 best_elt = p;
3094 best_rtx = new;
3098 if (found_better)
3100 if (validate_change (insn, loc,
3101 canon_reg (copy_rtx (best_rtx),
3102 NULL_RTX), 0))
3103 return;
3104 else
3105 best_elt->flag = 1;
3109 #endif
3112 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
3113 operation (EQ, NE, GT, etc.), follow it back through the hash table and
3114 what values are being compared.
3116 *PARG1 and *PARG2 are updated to contain the rtx representing the values
3117 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
3118 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
3119 compared to produce cc0.
3121 The return value is the comparison operator and is either the code of
3122 A or the code corresponding to the inverse of the comparison. */
3124 static enum rtx_code
3125 find_comparison_args (code, parg1, parg2, pmode1, pmode2)
3126 enum rtx_code code;
3127 rtx *parg1, *parg2;
3128 enum machine_mode *pmode1, *pmode2;
3130 rtx arg1, arg2;
3132 arg1 = *parg1, arg2 = *parg2;
3134 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
3136 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
3138 /* Set non-zero when we find something of interest. */
3139 rtx x = 0;
3140 int reverse_code = 0;
3141 struct table_elt *p = 0;
3143 /* If arg1 is a COMPARE, extract the comparison arguments from it.
3144 On machines with CC0, this is the only case that can occur, since
3145 fold_rtx will return the COMPARE or item being compared with zero
3146 when given CC0. */
3148 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
3149 x = arg1;
3151 /* If ARG1 is a comparison operator and CODE is testing for
3152 STORE_FLAG_VALUE, get the inner arguments. */
3154 else if (GET_RTX_CLASS (GET_CODE (arg1)) == '<')
3156 if (code == NE
3157 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3158 && code == LT && STORE_FLAG_VALUE == -1)
3159 #ifdef FLOAT_STORE_FLAG_VALUE
3160 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3161 && (REAL_VALUE_NEGATIVE
3162 (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
3163 #endif
3165 x = arg1;
3166 else if (code == EQ
3167 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3168 && code == GE && STORE_FLAG_VALUE == -1)
3169 #ifdef FLOAT_STORE_FLAG_VALUE
3170 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3171 && (REAL_VALUE_NEGATIVE
3172 (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
3173 #endif
3175 x = arg1, reverse_code = 1;
3178 /* ??? We could also check for
3180 (ne (and (eq (...) (const_int 1))) (const_int 0))
3182 and related forms, but let's wait until we see them occurring. */
3184 if (x == 0)
3185 /* Look up ARG1 in the hash table and see if it has an equivalence
3186 that lets us see what is being compared. */
3187 p = lookup (arg1, safe_hash (arg1, GET_MODE (arg1)) & HASH_MASK,
3188 GET_MODE (arg1));
3189 if (p)
3191 p = p->first_same_value;
3193 /* If what we compare is already known to be constant, that is as
3194 good as it gets.
3195 We need to break the loop in this case, because otherwise we
3196 can have an infinite loop when looking at a reg that is known
3197 to be a constant which is the same as a comparison of a reg
3198 against zero which appears later in the insn stream, which in
3199 turn is constant and the same as the comparison of the first reg
3200 against zero... */
3201 if (p->is_const)
3202 break;
3205 for (; p; p = p->next_same_value)
3207 enum machine_mode inner_mode = GET_MODE (p->exp);
3209 /* If the entry isn't valid, skip it. */
3210 if (! exp_equiv_p (p->exp, p->exp, 1, 0))
3211 continue;
3213 if (GET_CODE (p->exp) == COMPARE
3214 /* Another possibility is that this machine has a compare insn
3215 that includes the comparison code. In that case, ARG1 would
3216 be equivalent to a comparison operation that would set ARG1 to
3217 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3218 ORIG_CODE is the actual comparison being done; if it is an EQ,
3219 we must reverse ORIG_CODE. On machine with a negative value
3220 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3221 || ((code == NE
3222 || (code == LT
3223 && GET_MODE_CLASS (inner_mode) == MODE_INT
3224 && (GET_MODE_BITSIZE (inner_mode)
3225 <= HOST_BITS_PER_WIDE_INT)
3226 && (STORE_FLAG_VALUE
3227 & ((HOST_WIDE_INT) 1
3228 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3229 #ifdef FLOAT_STORE_FLAG_VALUE
3230 || (code == LT
3231 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3232 && (REAL_VALUE_NEGATIVE
3233 (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
3234 #endif
3236 && GET_RTX_CLASS (GET_CODE (p->exp)) == '<'))
3238 x = p->exp;
3239 break;
3241 else if ((code == EQ
3242 || (code == GE
3243 && GET_MODE_CLASS (inner_mode) == MODE_INT
3244 && (GET_MODE_BITSIZE (inner_mode)
3245 <= HOST_BITS_PER_WIDE_INT)
3246 && (STORE_FLAG_VALUE
3247 & ((HOST_WIDE_INT) 1
3248 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3249 #ifdef FLOAT_STORE_FLAG_VALUE
3250 || (code == GE
3251 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3252 && (REAL_VALUE_NEGATIVE
3253 (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
3254 #endif
3256 && GET_RTX_CLASS (GET_CODE (p->exp)) == '<')
3258 reverse_code = 1;
3259 x = p->exp;
3260 break;
3263 /* If this is fp + constant, the equivalent is a better operand since
3264 it may let us predict the value of the comparison. */
3265 else if (NONZERO_BASE_PLUS_P (p->exp))
3267 arg1 = p->exp;
3268 continue;
3272 /* If we didn't find a useful equivalence for ARG1, we are done.
3273 Otherwise, set up for the next iteration. */
3274 if (x == 0)
3275 break;
3277 /* If we need to reverse the comparison, make sure that that is
3278 possible -- we can't necessarily infer the value of GE from LT
3279 with floating-point operands. */
3280 if (reverse_code)
3282 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3283 if (reversed == UNKNOWN)
3284 break;
3285 else code = reversed;
3287 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3288 code = GET_CODE (x);
3289 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3292 /* Return our results. Return the modes from before fold_rtx
3293 because fold_rtx might produce const_int, and then it's too late. */
3294 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3295 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3297 return code;
3300 /* If X is a nontrivial arithmetic operation on an argument
3301 for which a constant value can be determined, return
3302 the result of operating on that value, as a constant.
3303 Otherwise, return X, possibly with one or more operands
3304 modified by recursive calls to this function.
3306 If X is a register whose contents are known, we do NOT
3307 return those contents here. equiv_constant is called to
3308 perform that task.
3310 INSN is the insn that we may be modifying. If it is 0, make a copy
3311 of X before modifying it. */
3313 static rtx
3314 fold_rtx (x, insn)
3315 rtx x;
3316 rtx insn;
3318 enum rtx_code code;
3319 enum machine_mode mode;
3320 const char *fmt;
3321 int i;
3322 rtx new = 0;
3323 int copied = 0;
3324 int must_swap = 0;
3326 /* Folded equivalents of first two operands of X. */
3327 rtx folded_arg0;
3328 rtx folded_arg1;
3330 /* Constant equivalents of first three operands of X;
3331 0 when no such equivalent is known. */
3332 rtx const_arg0;
3333 rtx const_arg1;
3334 rtx const_arg2;
3336 /* The mode of the first operand of X. We need this for sign and zero
3337 extends. */
3338 enum machine_mode mode_arg0;
3340 if (x == 0)
3341 return x;
3343 mode = GET_MODE (x);
3344 code = GET_CODE (x);
3345 switch (code)
3347 case CONST:
3348 case CONST_INT:
3349 case CONST_DOUBLE:
3350 case CONST_VECTOR:
3351 case SYMBOL_REF:
3352 case LABEL_REF:
3353 case REG:
3354 /* No use simplifying an EXPR_LIST
3355 since they are used only for lists of args
3356 in a function call's REG_EQUAL note. */
3357 case EXPR_LIST:
3358 /* Changing anything inside an ADDRESSOF is incorrect; we don't
3359 want to (e.g.,) make (addressof (const_int 0)) just because
3360 the location is known to be zero. */
3361 case ADDRESSOF:
3362 return x;
3364 #ifdef HAVE_cc0
3365 case CC0:
3366 return prev_insn_cc0;
3367 #endif
3369 case PC:
3370 /* If the next insn is a CODE_LABEL followed by a jump table,
3371 PC's value is a LABEL_REF pointing to that label. That
3372 lets us fold switch statements on the VAX. */
3373 if (insn && GET_CODE (insn) == JUMP_INSN)
3375 rtx next = next_nonnote_insn (insn);
3377 if (next && GET_CODE (next) == CODE_LABEL
3378 && NEXT_INSN (next) != 0
3379 && GET_CODE (NEXT_INSN (next)) == JUMP_INSN
3380 && (GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_VEC
3381 || GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_DIFF_VEC))
3382 return gen_rtx_LABEL_REF (Pmode, next);
3384 break;
3386 case SUBREG:
3387 /* See if we previously assigned a constant value to this SUBREG. */
3388 if ((new = lookup_as_function (x, CONST_INT)) != 0
3389 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
3390 return new;
3392 /* If this is a paradoxical SUBREG, we have no idea what value the
3393 extra bits would have. However, if the operand is equivalent
3394 to a SUBREG whose operand is the same as our mode, and all the
3395 modes are within a word, we can just use the inner operand
3396 because these SUBREGs just say how to treat the register.
3398 Similarly if we find an integer constant. */
3400 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3402 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3403 struct table_elt *elt;
3405 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
3406 && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
3407 && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
3408 imode)) != 0)
3409 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3411 if (CONSTANT_P (elt->exp)
3412 && GET_MODE (elt->exp) == VOIDmode)
3413 return elt->exp;
3415 if (GET_CODE (elt->exp) == SUBREG
3416 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3417 && exp_equiv_p (elt->exp, elt->exp, 1, 0))
3418 return copy_rtx (SUBREG_REG (elt->exp));
3421 return x;
3424 /* Fold SUBREG_REG. If it changed, see if we can simplify the SUBREG.
3425 We might be able to if the SUBREG is extracting a single word in an
3426 integral mode or extracting the low part. */
3428 folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
3429 const_arg0 = equiv_constant (folded_arg0);
3430 if (const_arg0)
3431 folded_arg0 = const_arg0;
3433 if (folded_arg0 != SUBREG_REG (x))
3435 new = simplify_subreg (mode, folded_arg0,
3436 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3437 if (new)
3438 return new;
3441 /* If this is a narrowing SUBREG and our operand is a REG, see if
3442 we can find an equivalence for REG that is an arithmetic operation
3443 in a wider mode where both operands are paradoxical SUBREGs
3444 from objects of our result mode. In that case, we couldn't report
3445 an equivalent value for that operation, since we don't know what the
3446 extra bits will be. But we can find an equivalence for this SUBREG
3447 by folding that operation is the narrow mode. This allows us to
3448 fold arithmetic in narrow modes when the machine only supports
3449 word-sized arithmetic.
3451 Also look for a case where we have a SUBREG whose operand is the
3452 same as our result. If both modes are smaller than a word, we
3453 are simply interpreting a register in different modes and we
3454 can use the inner value. */
3456 if (GET_CODE (folded_arg0) == REG
3457 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0))
3458 && subreg_lowpart_p (x))
3460 struct table_elt *elt;
3462 /* We can use HASH here since we know that canon_hash won't be
3463 called. */
3464 elt = lookup (folded_arg0,
3465 HASH (folded_arg0, GET_MODE (folded_arg0)),
3466 GET_MODE (folded_arg0));
3468 if (elt)
3469 elt = elt->first_same_value;
3471 for (; elt; elt = elt->next_same_value)
3473 enum rtx_code eltcode = GET_CODE (elt->exp);
3475 /* Just check for unary and binary operations. */
3476 if (GET_RTX_CLASS (GET_CODE (elt->exp)) == '1'
3477 && GET_CODE (elt->exp) != SIGN_EXTEND
3478 && GET_CODE (elt->exp) != ZERO_EXTEND
3479 && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3480 && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode
3481 && (GET_MODE_CLASS (mode)
3482 == GET_MODE_CLASS (GET_MODE (XEXP (elt->exp, 0)))))
3484 rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
3486 if (GET_CODE (op0) != REG && ! CONSTANT_P (op0))
3487 op0 = fold_rtx (op0, NULL_RTX);
3489 op0 = equiv_constant (op0);
3490 if (op0)
3491 new = simplify_unary_operation (GET_CODE (elt->exp), mode,
3492 op0, mode);
3494 else if ((GET_RTX_CLASS (GET_CODE (elt->exp)) == '2'
3495 || GET_RTX_CLASS (GET_CODE (elt->exp)) == 'c')
3496 && eltcode != DIV && eltcode != MOD
3497 && eltcode != UDIV && eltcode != UMOD
3498 && eltcode != ASHIFTRT && eltcode != LSHIFTRT
3499 && eltcode != ROTATE && eltcode != ROTATERT
3500 && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3501 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
3502 == mode))
3503 || CONSTANT_P (XEXP (elt->exp, 0)))
3504 && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
3505 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
3506 == mode))
3507 || CONSTANT_P (XEXP (elt->exp, 1))))
3509 rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
3510 rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
3512 if (op0 && GET_CODE (op0) != REG && ! CONSTANT_P (op0))
3513 op0 = fold_rtx (op0, NULL_RTX);
3515 if (op0)
3516 op0 = equiv_constant (op0);
3518 if (op1 && GET_CODE (op1) != REG && ! CONSTANT_P (op1))
3519 op1 = fold_rtx (op1, NULL_RTX);
3521 if (op1)
3522 op1 = equiv_constant (op1);
3524 /* If we are looking for the low SImode part of
3525 (ashift:DI c (const_int 32)), it doesn't work
3526 to compute that in SImode, because a 32-bit shift
3527 in SImode is unpredictable. We know the value is 0. */
3528 if (op0 && op1
3529 && GET_CODE (elt->exp) == ASHIFT
3530 && GET_CODE (op1) == CONST_INT
3531 && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
3533 if (INTVAL (op1) < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
3535 /* If the count fits in the inner mode's width,
3536 but exceeds the outer mode's width,
3537 the value will get truncated to 0
3538 by the subreg. */
3539 new = const0_rtx;
3540 else
3541 /* If the count exceeds even the inner mode's width,
3542 don't fold this expression. */
3543 new = 0;
3545 else if (op0 && op1)
3546 new = simplify_binary_operation (GET_CODE (elt->exp), mode,
3547 op0, op1);
3550 else if (GET_CODE (elt->exp) == SUBREG
3551 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3552 && (GET_MODE_SIZE (GET_MODE (folded_arg0))
3553 <= UNITS_PER_WORD)
3554 && exp_equiv_p (elt->exp, elt->exp, 1, 0))
3555 new = copy_rtx (SUBREG_REG (elt->exp));
3557 if (new)
3558 return new;
3562 return x;
3564 case NOT:
3565 case NEG:
3566 /* If we have (NOT Y), see if Y is known to be (NOT Z).
3567 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
3568 new = lookup_as_function (XEXP (x, 0), code);
3569 if (new)
3570 return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
3571 break;
3573 case MEM:
3574 /* If we are not actually processing an insn, don't try to find the
3575 best address. Not only don't we care, but we could modify the
3576 MEM in an invalid way since we have no insn to validate against. */
3577 if (insn != 0)
3578 find_best_addr (insn, &XEXP (x, 0), GET_MODE (x));
3581 /* Even if we don't fold in the insn itself,
3582 we can safely do so here, in hopes of getting a constant. */
3583 rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
3584 rtx base = 0;
3585 HOST_WIDE_INT offset = 0;
3587 if (GET_CODE (addr) == REG
3588 && REGNO_QTY_VALID_P (REGNO (addr)))
3590 int addr_q = REG_QTY (REGNO (addr));
3591 struct qty_table_elem *addr_ent = &qty_table[addr_q];
3593 if (GET_MODE (addr) == addr_ent->mode
3594 && addr_ent->const_rtx != NULL_RTX)
3595 addr = addr_ent->const_rtx;
3598 /* If address is constant, split it into a base and integer offset. */
3599 if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
3600 base = addr;
3601 else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
3602 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
3604 base = XEXP (XEXP (addr, 0), 0);
3605 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
3607 else if (GET_CODE (addr) == LO_SUM
3608 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
3609 base = XEXP (addr, 1);
3610 else if (GET_CODE (addr) == ADDRESSOF)
3611 return change_address (x, VOIDmode, addr);
3613 /* If this is a constant pool reference, we can fold it into its
3614 constant to allow better value tracking. */
3615 if (base && GET_CODE (base) == SYMBOL_REF
3616 && CONSTANT_POOL_ADDRESS_P (base))
3618 rtx constant = get_pool_constant (base);
3619 enum machine_mode const_mode = get_pool_mode (base);
3620 rtx new;
3622 if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
3623 constant_pool_entries_cost = COST (constant);
3625 /* If we are loading the full constant, we have an equivalence. */
3626 if (offset == 0 && mode == const_mode)
3627 return constant;
3629 /* If this actually isn't a constant (weird!), we can't do
3630 anything. Otherwise, handle the two most common cases:
3631 extracting a word from a multi-word constant, and extracting
3632 the low-order bits. Other cases don't seem common enough to
3633 worry about. */
3634 if (! CONSTANT_P (constant))
3635 return x;
3637 if (GET_MODE_CLASS (mode) == MODE_INT
3638 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3639 && offset % UNITS_PER_WORD == 0
3640 && (new = operand_subword (constant,
3641 offset / UNITS_PER_WORD,
3642 0, const_mode)) != 0)
3643 return new;
3645 if (((BYTES_BIG_ENDIAN
3646 && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
3647 || (! BYTES_BIG_ENDIAN && offset == 0))
3648 && (new = gen_lowpart_if_possible (mode, constant)) != 0)
3649 return new;
3652 /* If this is a reference to a label at a known position in a jump
3653 table, we also know its value. */
3654 if (base && GET_CODE (base) == LABEL_REF)
3656 rtx label = XEXP (base, 0);
3657 rtx table_insn = NEXT_INSN (label);
3659 if (table_insn && GET_CODE (table_insn) == JUMP_INSN
3660 && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
3662 rtx table = PATTERN (table_insn);
3664 if (offset >= 0
3665 && (offset / GET_MODE_SIZE (GET_MODE (table))
3666 < XVECLEN (table, 0)))
3667 return XVECEXP (table, 0,
3668 offset / GET_MODE_SIZE (GET_MODE (table)));
3670 if (table_insn && GET_CODE (table_insn) == JUMP_INSN
3671 && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
3673 rtx table = PATTERN (table_insn);
3675 if (offset >= 0
3676 && (offset / GET_MODE_SIZE (GET_MODE (table))
3677 < XVECLEN (table, 1)))
3679 offset /= GET_MODE_SIZE (GET_MODE (table));
3680 new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
3681 XEXP (table, 0));
3683 if (GET_MODE (table) != Pmode)
3684 new = gen_rtx_TRUNCATE (GET_MODE (table), new);
3686 /* Indicate this is a constant. This isn't a
3687 valid form of CONST, but it will only be used
3688 to fold the next insns and then discarded, so
3689 it should be safe.
3691 Note this expression must be explicitly discarded,
3692 by cse_insn, else it may end up in a REG_EQUAL note
3693 and "escape" to cause problems elsewhere. */
3694 return gen_rtx_CONST (GET_MODE (new), new);
3699 return x;
3702 #ifdef NO_FUNCTION_CSE
3703 case CALL:
3704 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3705 return x;
3706 break;
3707 #endif
3709 case ASM_OPERANDS:
3710 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3711 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3712 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3713 break;
3715 default:
3716 break;
3719 const_arg0 = 0;
3720 const_arg1 = 0;
3721 const_arg2 = 0;
3722 mode_arg0 = VOIDmode;
3724 /* Try folding our operands.
3725 Then see which ones have constant values known. */
3727 fmt = GET_RTX_FORMAT (code);
3728 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3729 if (fmt[i] == 'e')
3731 rtx arg = XEXP (x, i);
3732 rtx folded_arg = arg, const_arg = 0;
3733 enum machine_mode mode_arg = GET_MODE (arg);
3734 rtx cheap_arg, expensive_arg;
3735 rtx replacements[2];
3736 int j;
3738 /* Most arguments are cheap, so handle them specially. */
3739 switch (GET_CODE (arg))
3741 case REG:
3742 /* This is the same as calling equiv_constant; it is duplicated
3743 here for speed. */
3744 if (REGNO_QTY_VALID_P (REGNO (arg)))
3746 int arg_q = REG_QTY (REGNO (arg));
3747 struct qty_table_elem *arg_ent = &qty_table[arg_q];
3749 if (arg_ent->const_rtx != NULL_RTX
3750 && GET_CODE (arg_ent->const_rtx) != REG
3751 && GET_CODE (arg_ent->const_rtx) != PLUS)
3752 const_arg
3753 = gen_lowpart_if_possible (GET_MODE (arg),
3754 arg_ent->const_rtx);
3756 break;
3758 case CONST:
3759 case CONST_INT:
3760 case SYMBOL_REF:
3761 case LABEL_REF:
3762 case CONST_DOUBLE:
3763 case CONST_VECTOR:
3764 const_arg = arg;
3765 break;
3767 #ifdef HAVE_cc0
3768 case CC0:
3769 folded_arg = prev_insn_cc0;
3770 mode_arg = prev_insn_cc0_mode;
3771 const_arg = equiv_constant (folded_arg);
3772 break;
3773 #endif
3775 default:
3776 folded_arg = fold_rtx (arg, insn);
3777 const_arg = equiv_constant (folded_arg);
3780 /* For the first three operands, see if the operand
3781 is constant or equivalent to a constant. */
3782 switch (i)
3784 case 0:
3785 folded_arg0 = folded_arg;
3786 const_arg0 = const_arg;
3787 mode_arg0 = mode_arg;
3788 break;
3789 case 1:
3790 folded_arg1 = folded_arg;
3791 const_arg1 = const_arg;
3792 break;
3793 case 2:
3794 const_arg2 = const_arg;
3795 break;
3798 /* Pick the least expensive of the folded argument and an
3799 equivalent constant argument. */
3800 if (const_arg == 0 || const_arg == folded_arg
3801 || COST_IN (const_arg, code) > COST_IN (folded_arg, code))
3802 cheap_arg = folded_arg, expensive_arg = const_arg;
3803 else
3804 cheap_arg = const_arg, expensive_arg = folded_arg;
3806 /* Try to replace the operand with the cheapest of the two
3807 possibilities. If it doesn't work and this is either of the first
3808 two operands of a commutative operation, try swapping them.
3809 If THAT fails, try the more expensive, provided it is cheaper
3810 than what is already there. */
3812 if (cheap_arg == XEXP (x, i))
3813 continue;
3815 if (insn == 0 && ! copied)
3817 x = copy_rtx (x);
3818 copied = 1;
3821 /* Order the replacements from cheapest to most expensive. */
3822 replacements[0] = cheap_arg;
3823 replacements[1] = expensive_arg;
3825 for (j = 0; j < 2 && replacements[j]; j++)
3827 int old_cost = COST_IN (XEXP (x, i), code);
3828 int new_cost = COST_IN (replacements[j], code);
3830 /* Stop if what existed before was cheaper. Prefer constants
3831 in the case of a tie. */
3832 if (new_cost > old_cost
3833 || (new_cost == old_cost && CONSTANT_P (XEXP (x, i))))
3834 break;
3836 if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
3837 break;
3839 if (code == NE || code == EQ || GET_RTX_CLASS (code) == 'c'
3840 || code == LTGT || code == UNEQ || code == ORDERED
3841 || code == UNORDERED)
3843 validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
3844 validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
3846 if (apply_change_group ())
3848 /* Swap them back to be invalid so that this loop can
3849 continue and flag them to be swapped back later. */
3850 rtx tem;
3852 tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
3853 XEXP (x, 1) = tem;
3854 must_swap = 1;
3855 break;
3861 else
3863 if (fmt[i] == 'E')
3864 /* Don't try to fold inside of a vector of expressions.
3865 Doing nothing is harmless. */
3869 /* If a commutative operation, place a constant integer as the second
3870 operand unless the first operand is also a constant integer. Otherwise,
3871 place any constant second unless the first operand is also a constant. */
3873 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c'
3874 || code == LTGT || code == UNEQ || code == ORDERED
3875 || code == UNORDERED)
3877 if (must_swap || (const_arg0
3878 && (const_arg1 == 0
3879 || (GET_CODE (const_arg0) == CONST_INT
3880 && GET_CODE (const_arg1) != CONST_INT))))
3882 rtx tem = XEXP (x, 0);
3884 if (insn == 0 && ! copied)
3886 x = copy_rtx (x);
3887 copied = 1;
3890 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
3891 validate_change (insn, &XEXP (x, 1), tem, 1);
3892 if (apply_change_group ())
3894 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3895 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3900 /* If X is an arithmetic operation, see if we can simplify it. */
3902 switch (GET_RTX_CLASS (code))
3904 case '1':
3906 int is_const = 0;
3908 /* We can't simplify extension ops unless we know the
3909 original mode. */
3910 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3911 && mode_arg0 == VOIDmode)
3912 break;
3914 /* If we had a CONST, strip it off and put it back later if we
3915 fold. */
3916 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3917 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3919 new = simplify_unary_operation (code, mode,
3920 const_arg0 ? const_arg0 : folded_arg0,
3921 mode_arg0);
3922 if (new != 0 && is_const)
3923 new = gen_rtx_CONST (mode, new);
3925 break;
3927 case '<':
3928 /* See what items are actually being compared and set FOLDED_ARG[01]
3929 to those values and CODE to the actual comparison code. If any are
3930 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3931 do anything if both operands are already known to be constant. */
3933 if (const_arg0 == 0 || const_arg1 == 0)
3935 struct table_elt *p0, *p1;
3936 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3937 enum machine_mode mode_arg1;
3939 #ifdef FLOAT_STORE_FLAG_VALUE
3940 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3942 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3943 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3944 false_rtx = CONST0_RTX (mode);
3946 #endif
3948 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3949 &mode_arg0, &mode_arg1);
3950 const_arg0 = equiv_constant (folded_arg0);
3951 const_arg1 = equiv_constant (folded_arg1);
3953 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3954 what kinds of things are being compared, so we can't do
3955 anything with this comparison. */
3957 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3958 break;
3960 /* If we do not now have two constants being compared, see
3961 if we can nevertheless deduce some things about the
3962 comparison. */
3963 if (const_arg0 == 0 || const_arg1 == 0)
3965 /* Is FOLDED_ARG0 frame-pointer plus a constant? Or
3966 non-explicit constant? These aren't zero, but we
3967 don't know their sign. */
3968 if (const_arg1 == const0_rtx
3969 && (NONZERO_BASE_PLUS_P (folded_arg0)
3970 #if 0 /* Sad to say, on sysvr4, #pragma weak can make a symbol address
3971 come out as 0. */
3972 || GET_CODE (folded_arg0) == SYMBOL_REF
3973 #endif
3974 || GET_CODE (folded_arg0) == LABEL_REF
3975 || GET_CODE (folded_arg0) == CONST))
3977 if (code == EQ)
3978 return false_rtx;
3979 else if (code == NE)
3980 return true_rtx;
3983 /* See if the two operands are the same. */
3985 if (folded_arg0 == folded_arg1
3986 || (GET_CODE (folded_arg0) == REG
3987 && GET_CODE (folded_arg1) == REG
3988 && (REG_QTY (REGNO (folded_arg0))
3989 == REG_QTY (REGNO (folded_arg1))))
3990 || ((p0 = lookup (folded_arg0,
3991 (safe_hash (folded_arg0, mode_arg0)
3992 & HASH_MASK), mode_arg0))
3993 && (p1 = lookup (folded_arg1,
3994 (safe_hash (folded_arg1, mode_arg0)
3995 & HASH_MASK), mode_arg0))
3996 && p0->first_same_value == p1->first_same_value))
3998 /* Sadly two equal NaNs are not equivalent. */
3999 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4000 || ! FLOAT_MODE_P (mode_arg0)
4001 || flag_unsafe_math_optimizations)
4002 return ((code == EQ || code == LE || code == GE
4003 || code == LEU || code == GEU || code == UNEQ
4004 || code == UNLE || code == UNGE || code == ORDERED)
4005 ? true_rtx : false_rtx);
4006 /* Take care for the FP compares we can resolve. */
4007 if (code == UNEQ || code == UNLE || code == UNGE)
4008 return true_rtx;
4009 if (code == LTGT || code == LT || code == GT)
4010 return false_rtx;
4013 /* If FOLDED_ARG0 is a register, see if the comparison we are
4014 doing now is either the same as we did before or the reverse
4015 (we only check the reverse if not floating-point). */
4016 else if (GET_CODE (folded_arg0) == REG)
4018 int qty = REG_QTY (REGNO (folded_arg0));
4020 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
4022 struct qty_table_elem *ent = &qty_table[qty];
4024 if ((comparison_dominates_p (ent->comparison_code, code)
4025 || (! FLOAT_MODE_P (mode_arg0)
4026 && comparison_dominates_p (ent->comparison_code,
4027 reverse_condition (code))))
4028 && (rtx_equal_p (ent->comparison_const, folded_arg1)
4029 || (const_arg1
4030 && rtx_equal_p (ent->comparison_const,
4031 const_arg1))
4032 || (GET_CODE (folded_arg1) == REG
4033 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
4034 return (comparison_dominates_p (ent->comparison_code, code)
4035 ? true_rtx : false_rtx);
4041 /* If we are comparing against zero, see if the first operand is
4042 equivalent to an IOR with a constant. If so, we may be able to
4043 determine the result of this comparison. */
4045 if (const_arg1 == const0_rtx)
4047 rtx y = lookup_as_function (folded_arg0, IOR);
4048 rtx inner_const;
4050 if (y != 0
4051 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
4052 && GET_CODE (inner_const) == CONST_INT
4053 && INTVAL (inner_const) != 0)
4055 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
4056 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
4057 && (INTVAL (inner_const)
4058 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
4059 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
4061 #ifdef FLOAT_STORE_FLAG_VALUE
4062 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
4064 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
4065 (FLOAT_STORE_FLAG_VALUE (mode), mode));
4066 false_rtx = CONST0_RTX (mode);
4068 #endif
4070 switch (code)
4072 case EQ:
4073 return false_rtx;
4074 case NE:
4075 return true_rtx;
4076 case LT: case LE:
4077 if (has_sign)
4078 return true_rtx;
4079 break;
4080 case GT: case GE:
4081 if (has_sign)
4082 return false_rtx;
4083 break;
4084 default:
4085 break;
4090 new = simplify_relational_operation (code,
4091 (mode_arg0 != VOIDmode
4092 ? mode_arg0
4093 : (GET_MODE (const_arg0
4094 ? const_arg0
4095 : folded_arg0)
4096 != VOIDmode)
4097 ? GET_MODE (const_arg0
4098 ? const_arg0
4099 : folded_arg0)
4100 : GET_MODE (const_arg1
4101 ? const_arg1
4102 : folded_arg1)),
4103 const_arg0 ? const_arg0 : folded_arg0,
4104 const_arg1 ? const_arg1 : folded_arg1);
4105 #ifdef FLOAT_STORE_FLAG_VALUE
4106 if (new != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
4108 if (new == const0_rtx)
4109 new = CONST0_RTX (mode);
4110 else
4111 new = (CONST_DOUBLE_FROM_REAL_VALUE
4112 (FLOAT_STORE_FLAG_VALUE (mode), mode));
4114 #endif
4115 break;
4117 case '2':
4118 case 'c':
4119 switch (code)
4121 case PLUS:
4122 /* If the second operand is a LABEL_REF, see if the first is a MINUS
4123 with that LABEL_REF as its second operand. If so, the result is
4124 the first operand of that MINUS. This handles switches with an
4125 ADDR_DIFF_VEC table. */
4126 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
4128 rtx y
4129 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
4130 : lookup_as_function (folded_arg0, MINUS);
4132 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4133 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
4134 return XEXP (y, 0);
4136 /* Now try for a CONST of a MINUS like the above. */
4137 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
4138 : lookup_as_function (folded_arg0, CONST))) != 0
4139 && GET_CODE (XEXP (y, 0)) == MINUS
4140 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4141 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
4142 return XEXP (XEXP (y, 0), 0);
4145 /* Likewise if the operands are in the other order. */
4146 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
4148 rtx y
4149 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
4150 : lookup_as_function (folded_arg1, MINUS);
4152 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4153 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
4154 return XEXP (y, 0);
4156 /* Now try for a CONST of a MINUS like the above. */
4157 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
4158 : lookup_as_function (folded_arg1, CONST))) != 0
4159 && GET_CODE (XEXP (y, 0)) == MINUS
4160 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4161 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
4162 return XEXP (XEXP (y, 0), 0);
4165 /* If second operand is a register equivalent to a negative
4166 CONST_INT, see if we can find a register equivalent to the
4167 positive constant. Make a MINUS if so. Don't do this for
4168 a non-negative constant since we might then alternate between
4169 choosing positive and negative constants. Having the positive
4170 constant previously-used is the more common case. Be sure
4171 the resulting constant is non-negative; if const_arg1 were
4172 the smallest negative number this would overflow: depending
4173 on the mode, this would either just be the same value (and
4174 hence not save anything) or be incorrect. */
4175 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
4176 && INTVAL (const_arg1) < 0
4177 /* This used to test
4179 -INTVAL (const_arg1) >= 0
4181 But The Sun V5.0 compilers mis-compiled that test. So
4182 instead we test for the problematic value in a more direct
4183 manner and hope the Sun compilers get it correct. */
4184 && INTVAL (const_arg1) !=
4185 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
4186 && GET_CODE (folded_arg1) == REG)
4188 rtx new_const = GEN_INT (-INTVAL (const_arg1));
4189 struct table_elt *p
4190 = lookup (new_const, safe_hash (new_const, mode) & HASH_MASK,
4191 mode);
4193 if (p)
4194 for (p = p->first_same_value; p; p = p->next_same_value)
4195 if (GET_CODE (p->exp) == REG)
4196 return simplify_gen_binary (MINUS, mode, folded_arg0,
4197 canon_reg (p->exp, NULL_RTX));
4199 goto from_plus;
4201 case MINUS:
4202 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
4203 If so, produce (PLUS Z C2-C). */
4204 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
4206 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
4207 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
4208 return fold_rtx (plus_constant (copy_rtx (y),
4209 -INTVAL (const_arg1)),
4210 NULL_RTX);
4213 /* Fall through. */
4215 from_plus:
4216 case SMIN: case SMAX: case UMIN: case UMAX:
4217 case IOR: case AND: case XOR:
4218 case MULT: case DIV: case UDIV:
4219 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
4220 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
4221 is known to be of similar form, we may be able to replace the
4222 operation with a combined operation. This may eliminate the
4223 intermediate operation if every use is simplified in this way.
4224 Note that the similar optimization done by combine.c only works
4225 if the intermediate operation's result has only one reference. */
4227 if (GET_CODE (folded_arg0) == REG
4228 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
4230 int is_shift
4231 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
4232 rtx y = lookup_as_function (folded_arg0, code);
4233 rtx inner_const;
4234 enum rtx_code associate_code;
4235 rtx new_const;
4237 if (y == 0
4238 || 0 == (inner_const
4239 = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
4240 || GET_CODE (inner_const) != CONST_INT
4241 /* If we have compiled a statement like
4242 "if (x == (x & mask1))", and now are looking at
4243 "x & mask2", we will have a case where the first operand
4244 of Y is the same as our first operand. Unless we detect
4245 this case, an infinite loop will result. */
4246 || XEXP (y, 0) == folded_arg0)
4247 break;
4249 /* Don't associate these operations if they are a PLUS with the
4250 same constant and it is a power of two. These might be doable
4251 with a pre- or post-increment. Similarly for two subtracts of
4252 identical powers of two with post decrement. */
4254 if (code == PLUS && INTVAL (const_arg1) == INTVAL (inner_const)
4255 && ((HAVE_PRE_INCREMENT
4256 && exact_log2 (INTVAL (const_arg1)) >= 0)
4257 || (HAVE_POST_INCREMENT
4258 && exact_log2 (INTVAL (const_arg1)) >= 0)
4259 || (HAVE_PRE_DECREMENT
4260 && exact_log2 (- INTVAL (const_arg1)) >= 0)
4261 || (HAVE_POST_DECREMENT
4262 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
4263 break;
4265 /* Compute the code used to compose the constants. For example,
4266 A/C1/C2 is A/(C1 * C2), so if CODE == DIV, we want MULT. */
4268 associate_code
4269 = (code == MULT || code == DIV || code == UDIV ? MULT
4270 : is_shift || code == PLUS || code == MINUS ? PLUS : code);
4272 new_const = simplify_binary_operation (associate_code, mode,
4273 const_arg1, inner_const);
4275 if (new_const == 0)
4276 break;
4278 /* If we are associating shift operations, don't let this
4279 produce a shift of the size of the object or larger.
4280 This could occur when we follow a sign-extend by a right
4281 shift on a machine that does a sign-extend as a pair
4282 of shifts. */
4284 if (is_shift && GET_CODE (new_const) == CONST_INT
4285 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
4287 /* As an exception, we can turn an ASHIFTRT of this
4288 form into a shift of the number of bits - 1. */
4289 if (code == ASHIFTRT)
4290 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
4291 else
4292 break;
4295 y = copy_rtx (XEXP (y, 0));
4297 /* If Y contains our first operand (the most common way this
4298 can happen is if Y is a MEM), we would do into an infinite
4299 loop if we tried to fold it. So don't in that case. */
4301 if (! reg_mentioned_p (folded_arg0, y))
4302 y = fold_rtx (y, insn);
4304 return simplify_gen_binary (code, mode, y, new_const);
4306 break;
4308 default:
4309 break;
4312 new = simplify_binary_operation (code, mode,
4313 const_arg0 ? const_arg0 : folded_arg0,
4314 const_arg1 ? const_arg1 : folded_arg1);
4315 break;
4317 case 'o':
4318 /* (lo_sum (high X) X) is simply X. */
4319 if (code == LO_SUM && const_arg0 != 0
4320 && GET_CODE (const_arg0) == HIGH
4321 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
4322 return const_arg1;
4323 break;
4325 case '3':
4326 case 'b':
4327 new = simplify_ternary_operation (code, mode, mode_arg0,
4328 const_arg0 ? const_arg0 : folded_arg0,
4329 const_arg1 ? const_arg1 : folded_arg1,
4330 const_arg2 ? const_arg2 : XEXP (x, 2));
4331 break;
4333 case 'x':
4334 /* Always eliminate CONSTANT_P_RTX at this stage. */
4335 if (code == CONSTANT_P_RTX)
4336 return (const_arg0 ? const1_rtx : const0_rtx);
4337 break;
4340 return new ? new : x;
4343 /* Return a constant value currently equivalent to X.
4344 Return 0 if we don't know one. */
4346 static rtx
4347 equiv_constant (x)
4348 rtx x;
4350 if (GET_CODE (x) == REG
4351 && REGNO_QTY_VALID_P (REGNO (x)))
4353 int x_q = REG_QTY (REGNO (x));
4354 struct qty_table_elem *x_ent = &qty_table[x_q];
4356 if (x_ent->const_rtx)
4357 x = gen_lowpart_if_possible (GET_MODE (x), x_ent->const_rtx);
4360 if (x == 0 || CONSTANT_P (x))
4361 return x;
4363 /* If X is a MEM, try to fold it outside the context of any insn to see if
4364 it might be equivalent to a constant. That handles the case where it
4365 is a constant-pool reference. Then try to look it up in the hash table
4366 in case it is something whose value we have seen before. */
4368 if (GET_CODE (x) == MEM)
4370 struct table_elt *elt;
4372 x = fold_rtx (x, NULL_RTX);
4373 if (CONSTANT_P (x))
4374 return x;
4376 elt = lookup (x, safe_hash (x, GET_MODE (x)) & HASH_MASK, GET_MODE (x));
4377 if (elt == 0)
4378 return 0;
4380 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
4381 if (elt->is_const && CONSTANT_P (elt->exp))
4382 return elt->exp;
4385 return 0;
4388 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
4389 number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
4390 least-significant part of X.
4391 MODE specifies how big a part of X to return.
4393 If the requested operation cannot be done, 0 is returned.
4395 This is similar to gen_lowpart in emit-rtl.c. */
4398 gen_lowpart_if_possible (mode, x)
4399 enum machine_mode mode;
4400 rtx x;
4402 rtx result = gen_lowpart_common (mode, x);
4404 if (result)
4405 return result;
4406 else if (GET_CODE (x) == MEM)
4408 /* This is the only other case we handle. */
4409 int offset = 0;
4410 rtx new;
4412 if (WORDS_BIG_ENDIAN)
4413 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
4414 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
4415 if (BYTES_BIG_ENDIAN)
4416 /* Adjust the address so that the address-after-the-data is
4417 unchanged. */
4418 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
4419 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
4421 new = adjust_address_nv (x, mode, offset);
4422 if (! memory_address_p (mode, XEXP (new, 0)))
4423 return 0;
4425 return new;
4427 else
4428 return 0;
4431 /* Given INSN, a jump insn, TAKEN indicates if we are following the "taken"
4432 branch. It will be zero if not.
4434 In certain cases, this can cause us to add an equivalence. For example,
4435 if we are following the taken case of
4436 if (i == 2)
4437 we can add the fact that `i' and '2' are now equivalent.
4439 In any case, we can record that this comparison was passed. If the same
4440 comparison is seen later, we will know its value. */
4442 static void
4443 record_jump_equiv (insn, taken)
4444 rtx insn;
4445 int taken;
4447 int cond_known_true;
4448 rtx op0, op1;
4449 rtx set;
4450 enum machine_mode mode, mode0, mode1;
4451 int reversed_nonequality = 0;
4452 enum rtx_code code;
4454 /* Ensure this is the right kind of insn. */
4455 if (! any_condjump_p (insn))
4456 return;
4457 set = pc_set (insn);
4459 /* See if this jump condition is known true or false. */
4460 if (taken)
4461 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
4462 else
4463 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
4465 /* Get the type of comparison being done and the operands being compared.
4466 If we had to reverse a non-equality condition, record that fact so we
4467 know that it isn't valid for floating-point. */
4468 code = GET_CODE (XEXP (SET_SRC (set), 0));
4469 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
4470 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
4472 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
4473 if (! cond_known_true)
4475 code = reversed_comparison_code_parts (code, op0, op1, insn);
4477 /* Don't remember if we can't find the inverse. */
4478 if (code == UNKNOWN)
4479 return;
4482 /* The mode is the mode of the non-constant. */
4483 mode = mode0;
4484 if (mode1 != VOIDmode)
4485 mode = mode1;
4487 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
4490 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
4491 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
4492 Make any useful entries we can with that information. Called from
4493 above function and called recursively. */
4495 static void
4496 record_jump_cond (code, mode, op0, op1, reversed_nonequality)
4497 enum rtx_code code;
4498 enum machine_mode mode;
4499 rtx op0, op1;
4500 int reversed_nonequality;
4502 unsigned op0_hash, op1_hash;
4503 int op0_in_memory, op1_in_memory;
4504 struct table_elt *op0_elt, *op1_elt;
4506 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
4507 we know that they are also equal in the smaller mode (this is also
4508 true for all smaller modes whether or not there is a SUBREG, but
4509 is not worth testing for with no SUBREG). */
4511 /* Note that GET_MODE (op0) may not equal MODE. */
4512 if (code == EQ && GET_CODE (op0) == SUBREG
4513 && (GET_MODE_SIZE (GET_MODE (op0))
4514 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4516 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4517 rtx tem = gen_lowpart_if_possible (inner_mode, op1);
4519 record_jump_cond (code, mode, SUBREG_REG (op0),
4520 tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
4521 reversed_nonequality);
4524 if (code == EQ && GET_CODE (op1) == SUBREG
4525 && (GET_MODE_SIZE (GET_MODE (op1))
4526 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4528 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4529 rtx tem = gen_lowpart_if_possible (inner_mode, op0);
4531 record_jump_cond (code, mode, SUBREG_REG (op1),
4532 tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
4533 reversed_nonequality);
4536 /* Similarly, if this is an NE comparison, and either is a SUBREG
4537 making a smaller mode, we know the whole thing is also NE. */
4539 /* Note that GET_MODE (op0) may not equal MODE;
4540 if we test MODE instead, we can get an infinite recursion
4541 alternating between two modes each wider than MODE. */
4543 if (code == NE && GET_CODE (op0) == SUBREG
4544 && subreg_lowpart_p (op0)
4545 && (GET_MODE_SIZE (GET_MODE (op0))
4546 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4548 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4549 rtx tem = gen_lowpart_if_possible (inner_mode, op1);
4551 record_jump_cond (code, mode, SUBREG_REG (op0),
4552 tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
4553 reversed_nonequality);
4556 if (code == NE && GET_CODE (op1) == SUBREG
4557 && subreg_lowpart_p (op1)
4558 && (GET_MODE_SIZE (GET_MODE (op1))
4559 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4561 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4562 rtx tem = gen_lowpart_if_possible (inner_mode, op0);
4564 record_jump_cond (code, mode, SUBREG_REG (op1),
4565 tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
4566 reversed_nonequality);
4569 /* Hash both operands. */
4571 do_not_record = 0;
4572 hash_arg_in_memory = 0;
4573 op0_hash = HASH (op0, mode);
4574 op0_in_memory = hash_arg_in_memory;
4576 if (do_not_record)
4577 return;
4579 do_not_record = 0;
4580 hash_arg_in_memory = 0;
4581 op1_hash = HASH (op1, mode);
4582 op1_in_memory = hash_arg_in_memory;
4584 if (do_not_record)
4585 return;
4587 /* Look up both operands. */
4588 op0_elt = lookup (op0, op0_hash, mode);
4589 op1_elt = lookup (op1, op1_hash, mode);
4591 /* If both operands are already equivalent or if they are not in the
4592 table but are identical, do nothing. */
4593 if ((op0_elt != 0 && op1_elt != 0
4594 && op0_elt->first_same_value == op1_elt->first_same_value)
4595 || op0 == op1 || rtx_equal_p (op0, op1))
4596 return;
4598 /* If we aren't setting two things equal all we can do is save this
4599 comparison. Similarly if this is floating-point. In the latter
4600 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4601 If we record the equality, we might inadvertently delete code
4602 whose intent was to change -0 to +0. */
4604 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4606 struct qty_table_elem *ent;
4607 int qty;
4609 /* If we reversed a floating-point comparison, if OP0 is not a
4610 register, or if OP1 is neither a register or constant, we can't
4611 do anything. */
4613 if (GET_CODE (op1) != REG)
4614 op1 = equiv_constant (op1);
4616 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4617 || GET_CODE (op0) != REG || op1 == 0)
4618 return;
4620 /* Put OP0 in the hash table if it isn't already. This gives it a
4621 new quantity number. */
4622 if (op0_elt == 0)
4624 if (insert_regs (op0, NULL, 0))
4626 rehash_using_reg (op0);
4627 op0_hash = HASH (op0, mode);
4629 /* If OP0 is contained in OP1, this changes its hash code
4630 as well. Faster to rehash than to check, except
4631 for the simple case of a constant. */
4632 if (! CONSTANT_P (op1))
4633 op1_hash = HASH (op1,mode);
4636 op0_elt = insert (op0, NULL, op0_hash, mode);
4637 op0_elt->in_memory = op0_in_memory;
4640 qty = REG_QTY (REGNO (op0));
4641 ent = &qty_table[qty];
4643 ent->comparison_code = code;
4644 if (GET_CODE (op1) == REG)
4646 /* Look it up again--in case op0 and op1 are the same. */
4647 op1_elt = lookup (op1, op1_hash, mode);
4649 /* Put OP1 in the hash table so it gets a new quantity number. */
4650 if (op1_elt == 0)
4652 if (insert_regs (op1, NULL, 0))
4654 rehash_using_reg (op1);
4655 op1_hash = HASH (op1, mode);
4658 op1_elt = insert (op1, NULL, op1_hash, mode);
4659 op1_elt->in_memory = op1_in_memory;
4662 ent->comparison_const = NULL_RTX;
4663 ent->comparison_qty = REG_QTY (REGNO (op1));
4665 else
4667 ent->comparison_const = op1;
4668 ent->comparison_qty = -1;
4671 return;
4674 /* If either side is still missing an equivalence, make it now,
4675 then merge the equivalences. */
4677 if (op0_elt == 0)
4679 if (insert_regs (op0, NULL, 0))
4681 rehash_using_reg (op0);
4682 op0_hash = HASH (op0, mode);
4685 op0_elt = insert (op0, NULL, op0_hash, mode);
4686 op0_elt->in_memory = op0_in_memory;
4689 if (op1_elt == 0)
4691 if (insert_regs (op1, NULL, 0))
4693 rehash_using_reg (op1);
4694 op1_hash = HASH (op1, mode);
4697 op1_elt = insert (op1, NULL, op1_hash, mode);
4698 op1_elt->in_memory = op1_in_memory;
4701 merge_equiv_classes (op0_elt, op1_elt);
4702 last_jump_equiv_class = op0_elt;
4705 /* CSE processing for one instruction.
4706 First simplify sources and addresses of all assignments
4707 in the instruction, using previously-computed equivalents values.
4708 Then install the new sources and destinations in the table
4709 of available values.
4711 If LIBCALL_INSN is nonzero, don't record any equivalence made in
4712 the insn. It means that INSN is inside libcall block. In this
4713 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
4715 /* Data on one SET contained in the instruction. */
4717 struct set
4719 /* The SET rtx itself. */
4720 rtx rtl;
4721 /* The SET_SRC of the rtx (the original value, if it is changing). */
4722 rtx src;
4723 /* The hash-table element for the SET_SRC of the SET. */
4724 struct table_elt *src_elt;
4725 /* Hash value for the SET_SRC. */
4726 unsigned src_hash;
4727 /* Hash value for the SET_DEST. */
4728 unsigned dest_hash;
4729 /* The SET_DEST, with SUBREG, etc., stripped. */
4730 rtx inner_dest;
4731 /* Nonzero if the SET_SRC is in memory. */
4732 char src_in_memory;
4733 /* Nonzero if the SET_SRC contains something
4734 whose value cannot be predicted and understood. */
4735 char src_volatile;
4736 /* Original machine mode, in case it becomes a CONST_INT. */
4737 enum machine_mode mode;
4738 /* A constant equivalent for SET_SRC, if any. */
4739 rtx src_const;
4740 /* Original SET_SRC value used for libcall notes. */
4741 rtx orig_src;
4742 /* Hash value of constant equivalent for SET_SRC. */
4743 unsigned src_const_hash;
4744 /* Table entry for constant equivalent for SET_SRC, if any. */
4745 struct table_elt *src_const_elt;
4748 static void
4749 cse_insn (insn, libcall_insn)
4750 rtx insn;
4751 rtx libcall_insn;
4753 rtx x = PATTERN (insn);
4754 int i;
4755 rtx tem;
4756 int n_sets = 0;
4758 #ifdef HAVE_cc0
4759 /* Records what this insn does to set CC0. */
4760 rtx this_insn_cc0 = 0;
4761 enum machine_mode this_insn_cc0_mode = VOIDmode;
4762 #endif
4764 rtx src_eqv = 0;
4765 struct table_elt *src_eqv_elt = 0;
4766 int src_eqv_volatile = 0;
4767 int src_eqv_in_memory = 0;
4768 unsigned src_eqv_hash = 0;
4770 struct set *sets = (struct set *) 0;
4772 this_insn = insn;
4774 /* Find all the SETs and CLOBBERs in this instruction.
4775 Record all the SETs in the array `set' and count them.
4776 Also determine whether there is a CLOBBER that invalidates
4777 all memory references, or all references at varying addresses. */
4779 if (GET_CODE (insn) == CALL_INSN)
4781 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4783 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4784 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4785 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4789 if (GET_CODE (x) == SET)
4791 sets = (struct set *) alloca (sizeof (struct set));
4792 sets[0].rtl = x;
4794 /* Ignore SETs that are unconditional jumps.
4795 They never need cse processing, so this does not hurt.
4796 The reason is not efficiency but rather
4797 so that we can test at the end for instructions
4798 that have been simplified to unconditional jumps
4799 and not be misled by unchanged instructions
4800 that were unconditional jumps to begin with. */
4801 if (SET_DEST (x) == pc_rtx
4802 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4805 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4806 The hard function value register is used only once, to copy to
4807 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4808 Ensure we invalidate the destination register. On the 80386 no
4809 other code would invalidate it since it is a fixed_reg.
4810 We need not check the return of apply_change_group; see canon_reg. */
4812 else if (GET_CODE (SET_SRC (x)) == CALL)
4814 canon_reg (SET_SRC (x), insn);
4815 apply_change_group ();
4816 fold_rtx (SET_SRC (x), insn);
4817 invalidate (SET_DEST (x), VOIDmode);
4819 else
4820 n_sets = 1;
4822 else if (GET_CODE (x) == PARALLEL)
4824 int lim = XVECLEN (x, 0);
4826 sets = (struct set *) alloca (lim * sizeof (struct set));
4828 /* Find all regs explicitly clobbered in this insn,
4829 and ensure they are not replaced with any other regs
4830 elsewhere in this insn.
4831 When a reg that is clobbered is also used for input,
4832 we should presume that that is for a reason,
4833 and we should not substitute some other register
4834 which is not supposed to be clobbered.
4835 Therefore, this loop cannot be merged into the one below
4836 because a CALL may precede a CLOBBER and refer to the
4837 value clobbered. We must not let a canonicalization do
4838 anything in that case. */
4839 for (i = 0; i < lim; i++)
4841 rtx y = XVECEXP (x, 0, i);
4842 if (GET_CODE (y) == CLOBBER)
4844 rtx clobbered = XEXP (y, 0);
4846 if (GET_CODE (clobbered) == REG
4847 || GET_CODE (clobbered) == SUBREG)
4848 invalidate (clobbered, VOIDmode);
4849 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4850 || GET_CODE (clobbered) == ZERO_EXTRACT)
4851 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4855 for (i = 0; i < lim; i++)
4857 rtx y = XVECEXP (x, 0, i);
4858 if (GET_CODE (y) == SET)
4860 /* As above, we ignore unconditional jumps and call-insns and
4861 ignore the result of apply_change_group. */
4862 if (GET_CODE (SET_SRC (y)) == CALL)
4864 canon_reg (SET_SRC (y), insn);
4865 apply_change_group ();
4866 fold_rtx (SET_SRC (y), insn);
4867 invalidate (SET_DEST (y), VOIDmode);
4869 else if (SET_DEST (y) == pc_rtx
4870 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4872 else
4873 sets[n_sets++].rtl = y;
4875 else if (GET_CODE (y) == CLOBBER)
4877 /* If we clobber memory, canon the address.
4878 This does nothing when a register is clobbered
4879 because we have already invalidated the reg. */
4880 if (GET_CODE (XEXP (y, 0)) == MEM)
4881 canon_reg (XEXP (y, 0), NULL_RTX);
4883 else if (GET_CODE (y) == USE
4884 && ! (GET_CODE (XEXP (y, 0)) == REG
4885 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4886 canon_reg (y, NULL_RTX);
4887 else if (GET_CODE (y) == CALL)
4889 /* The result of apply_change_group can be ignored; see
4890 canon_reg. */
4891 canon_reg (y, insn);
4892 apply_change_group ();
4893 fold_rtx (y, insn);
4897 else if (GET_CODE (x) == CLOBBER)
4899 if (GET_CODE (XEXP (x, 0)) == MEM)
4900 canon_reg (XEXP (x, 0), NULL_RTX);
4903 /* Canonicalize a USE of a pseudo register or memory location. */
4904 else if (GET_CODE (x) == USE
4905 && ! (GET_CODE (XEXP (x, 0)) == REG
4906 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4907 canon_reg (XEXP (x, 0), NULL_RTX);
4908 else if (GET_CODE (x) == CALL)
4910 /* The result of apply_change_group can be ignored; see canon_reg. */
4911 canon_reg (x, insn);
4912 apply_change_group ();
4913 fold_rtx (x, insn);
4916 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4917 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4918 is handled specially for this case, and if it isn't set, then there will
4919 be no equivalence for the destination. */
4920 if (n_sets == 1 && REG_NOTES (insn) != 0
4921 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4922 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4923 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4925 src_eqv = fold_rtx (canon_reg (XEXP (tem, 0), NULL_RTX), insn);
4926 XEXP (tem, 0) = src_eqv;
4929 /* Canonicalize sources and addresses of destinations.
4930 We do this in a separate pass to avoid problems when a MATCH_DUP is
4931 present in the insn pattern. In that case, we want to ensure that
4932 we don't break the duplicate nature of the pattern. So we will replace
4933 both operands at the same time. Otherwise, we would fail to find an
4934 equivalent substitution in the loop calling validate_change below.
4936 We used to suppress canonicalization of DEST if it appears in SRC,
4937 but we don't do this any more. */
4939 for (i = 0; i < n_sets; i++)
4941 rtx dest = SET_DEST (sets[i].rtl);
4942 rtx src = SET_SRC (sets[i].rtl);
4943 rtx new = canon_reg (src, insn);
4944 int insn_code;
4946 sets[i].orig_src = src;
4947 if ((GET_CODE (new) == REG && GET_CODE (src) == REG
4948 && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
4949 != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
4950 || (insn_code = recog_memoized (insn)) < 0
4951 || insn_data[insn_code].n_dups > 0)
4952 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4953 else
4954 SET_SRC (sets[i].rtl) = new;
4956 if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
4958 validate_change (insn, &XEXP (dest, 1),
4959 canon_reg (XEXP (dest, 1), insn), 1);
4960 validate_change (insn, &XEXP (dest, 2),
4961 canon_reg (XEXP (dest, 2), insn), 1);
4964 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
4965 || GET_CODE (dest) == ZERO_EXTRACT
4966 || GET_CODE (dest) == SIGN_EXTRACT)
4967 dest = XEXP (dest, 0);
4969 if (GET_CODE (dest) == MEM)
4970 canon_reg (dest, insn);
4973 /* Now that we have done all the replacements, we can apply the change
4974 group and see if they all work. Note that this will cause some
4975 canonicalizations that would have worked individually not to be applied
4976 because some other canonicalization didn't work, but this should not
4977 occur often.
4979 The result of apply_change_group can be ignored; see canon_reg. */
4981 apply_change_group ();
4983 /* Set sets[i].src_elt to the class each source belongs to.
4984 Detect assignments from or to volatile things
4985 and set set[i] to zero so they will be ignored
4986 in the rest of this function.
4988 Nothing in this loop changes the hash table or the register chains. */
4990 for (i = 0; i < n_sets; i++)
4992 rtx src, dest;
4993 rtx src_folded;
4994 struct table_elt *elt = 0, *p;
4995 enum machine_mode mode;
4996 rtx src_eqv_here;
4997 rtx src_const = 0;
4998 rtx src_related = 0;
4999 struct table_elt *src_const_elt = 0;
5000 int src_cost = MAX_COST;
5001 int src_eqv_cost = MAX_COST;
5002 int src_folded_cost = MAX_COST;
5003 int src_related_cost = MAX_COST;
5004 int src_elt_cost = MAX_COST;
5005 int src_regcost = MAX_COST;
5006 int src_eqv_regcost = MAX_COST;
5007 int src_folded_regcost = MAX_COST;
5008 int src_related_regcost = MAX_COST;
5009 int src_elt_regcost = MAX_COST;
5010 /* Set non-zero if we need to call force_const_mem on with the
5011 contents of src_folded before using it. */
5012 int src_folded_force_flag = 0;
5014 dest = SET_DEST (sets[i].rtl);
5015 src = SET_SRC (sets[i].rtl);
5017 /* If SRC is a constant that has no machine mode,
5018 hash it with the destination's machine mode.
5019 This way we can keep different modes separate. */
5021 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5022 sets[i].mode = mode;
5024 if (src_eqv)
5026 enum machine_mode eqvmode = mode;
5027 if (GET_CODE (dest) == STRICT_LOW_PART)
5028 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5029 do_not_record = 0;
5030 hash_arg_in_memory = 0;
5031 src_eqv_hash = HASH (src_eqv, eqvmode);
5033 /* Find the equivalence class for the equivalent expression. */
5035 if (!do_not_record)
5036 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
5038 src_eqv_volatile = do_not_record;
5039 src_eqv_in_memory = hash_arg_in_memory;
5042 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
5043 value of the INNER register, not the destination. So it is not
5044 a valid substitution for the source. But save it for later. */
5045 if (GET_CODE (dest) == STRICT_LOW_PART)
5046 src_eqv_here = 0;
5047 else
5048 src_eqv_here = src_eqv;
5050 /* Simplify and foldable subexpressions in SRC. Then get the fully-
5051 simplified result, which may not necessarily be valid. */
5052 src_folded = fold_rtx (src, insn);
5054 #if 0
5055 /* ??? This caused bad code to be generated for the m68k port with -O2.
5056 Suppose src is (CONST_INT -1), and that after truncation src_folded
5057 is (CONST_INT 3). Suppose src_folded is then used for src_const.
5058 At the end we will add src and src_const to the same equivalence
5059 class. We now have 3 and -1 on the same equivalence class. This
5060 causes later instructions to be mis-optimized. */
5061 /* If storing a constant in a bitfield, pre-truncate the constant
5062 so we will be able to record it later. */
5063 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5064 || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
5066 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5068 if (GET_CODE (src) == CONST_INT
5069 && GET_CODE (width) == CONST_INT
5070 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5071 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5072 src_folded
5073 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
5074 << INTVAL (width)) - 1));
5076 #endif
5078 /* Compute SRC's hash code, and also notice if it
5079 should not be recorded at all. In that case,
5080 prevent any further processing of this assignment. */
5081 do_not_record = 0;
5082 hash_arg_in_memory = 0;
5084 sets[i].src = src;
5085 sets[i].src_hash = HASH (src, mode);
5086 sets[i].src_volatile = do_not_record;
5087 sets[i].src_in_memory = hash_arg_in_memory;
5089 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
5090 a pseudo, do not record SRC. Using SRC as a replacement for
5091 anything else will be incorrect in that situation. Note that
5092 this usually occurs only for stack slots, in which case all the
5093 RTL would be referring to SRC, so we don't lose any optimization
5094 opportunities by not having SRC in the hash table. */
5096 if (GET_CODE (src) == MEM
5097 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
5098 && GET_CODE (dest) == REG
5099 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5100 sets[i].src_volatile = 1;
5102 #if 0
5103 /* It is no longer clear why we used to do this, but it doesn't
5104 appear to still be needed. So let's try without it since this
5105 code hurts cse'ing widened ops. */
5106 /* If source is a perverse subreg (such as QI treated as an SI),
5107 treat it as volatile. It may do the work of an SI in one context
5108 where the extra bits are not being used, but cannot replace an SI
5109 in general. */
5110 if (GET_CODE (src) == SUBREG
5111 && (GET_MODE_SIZE (GET_MODE (src))
5112 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
5113 sets[i].src_volatile = 1;
5114 #endif
5116 /* Locate all possible equivalent forms for SRC. Try to replace
5117 SRC in the insn with each cheaper equivalent.
5119 We have the following types of equivalents: SRC itself, a folded
5120 version, a value given in a REG_EQUAL note, or a value related
5121 to a constant.
5123 Each of these equivalents may be part of an additional class
5124 of equivalents (if more than one is in the table, they must be in
5125 the same class; we check for this).
5127 If the source is volatile, we don't do any table lookups.
5129 We note any constant equivalent for possible later use in a
5130 REG_NOTE. */
5132 if (!sets[i].src_volatile)
5133 elt = lookup (src, sets[i].src_hash, mode);
5135 sets[i].src_elt = elt;
5137 if (elt && src_eqv_here && src_eqv_elt)
5139 if (elt->first_same_value != src_eqv_elt->first_same_value)
5141 /* The REG_EQUAL is indicating that two formerly distinct
5142 classes are now equivalent. So merge them. */
5143 merge_equiv_classes (elt, src_eqv_elt);
5144 src_eqv_hash = HASH (src_eqv, elt->mode);
5145 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
5148 src_eqv_here = 0;
5151 else if (src_eqv_elt)
5152 elt = src_eqv_elt;
5154 /* Try to find a constant somewhere and record it in `src_const'.
5155 Record its table element, if any, in `src_const_elt'. Look in
5156 any known equivalences first. (If the constant is not in the
5157 table, also set `sets[i].src_const_hash'). */
5158 if (elt)
5159 for (p = elt->first_same_value; p; p = p->next_same_value)
5160 if (p->is_const)
5162 src_const = p->exp;
5163 src_const_elt = elt;
5164 break;
5167 if (src_const == 0
5168 && (CONSTANT_P (src_folded)
5169 /* Consider (minus (label_ref L1) (label_ref L2)) as
5170 "constant" here so we will record it. This allows us
5171 to fold switch statements when an ADDR_DIFF_VEC is used. */
5172 || (GET_CODE (src_folded) == MINUS
5173 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
5174 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
5175 src_const = src_folded, src_const_elt = elt;
5176 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
5177 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
5179 /* If we don't know if the constant is in the table, get its
5180 hash code and look it up. */
5181 if (src_const && src_const_elt == 0)
5183 sets[i].src_const_hash = HASH (src_const, mode);
5184 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
5187 sets[i].src_const = src_const;
5188 sets[i].src_const_elt = src_const_elt;
5190 /* If the constant and our source are both in the table, mark them as
5191 equivalent. Otherwise, if a constant is in the table but the source
5192 isn't, set ELT to it. */
5193 if (src_const_elt && elt
5194 && src_const_elt->first_same_value != elt->first_same_value)
5195 merge_equiv_classes (elt, src_const_elt);
5196 else if (src_const_elt && elt == 0)
5197 elt = src_const_elt;
5199 /* See if there is a register linearly related to a constant
5200 equivalent of SRC. */
5201 if (src_const
5202 && (GET_CODE (src_const) == CONST
5203 || (src_const_elt && src_const_elt->related_value != 0)))
5205 src_related = use_related_value (src_const, src_const_elt);
5206 if (src_related)
5208 struct table_elt *src_related_elt
5209 = lookup (src_related, HASH (src_related, mode), mode);
5210 if (src_related_elt && elt)
5212 if (elt->first_same_value
5213 != src_related_elt->first_same_value)
5214 /* This can occur when we previously saw a CONST
5215 involving a SYMBOL_REF and then see the SYMBOL_REF
5216 twice. Merge the involved classes. */
5217 merge_equiv_classes (elt, src_related_elt);
5219 src_related = 0;
5220 src_related_elt = 0;
5222 else if (src_related_elt && elt == 0)
5223 elt = src_related_elt;
5227 /* See if we have a CONST_INT that is already in a register in a
5228 wider mode. */
5230 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
5231 && GET_MODE_CLASS (mode) == MODE_INT
5232 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
5234 enum machine_mode wider_mode;
5236 for (wider_mode = GET_MODE_WIDER_MODE (mode);
5237 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
5238 && src_related == 0;
5239 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5241 struct table_elt *const_elt
5242 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
5244 if (const_elt == 0)
5245 continue;
5247 for (const_elt = const_elt->first_same_value;
5248 const_elt; const_elt = const_elt->next_same_value)
5249 if (GET_CODE (const_elt->exp) == REG)
5251 src_related = gen_lowpart_if_possible (mode,
5252 const_elt->exp);
5253 break;
5258 /* Another possibility is that we have an AND with a constant in
5259 a mode narrower than a word. If so, it might have been generated
5260 as part of an "if" which would narrow the AND. If we already
5261 have done the AND in a wider mode, we can use a SUBREG of that
5262 value. */
5264 if (flag_expensive_optimizations && ! src_related
5265 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
5266 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5268 enum machine_mode tmode;
5269 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
5271 for (tmode = GET_MODE_WIDER_MODE (mode);
5272 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5273 tmode = GET_MODE_WIDER_MODE (tmode))
5275 rtx inner = gen_lowpart_if_possible (tmode, XEXP (src, 0));
5276 struct table_elt *larger_elt;
5278 if (inner)
5280 PUT_MODE (new_and, tmode);
5281 XEXP (new_and, 0) = inner;
5282 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
5283 if (larger_elt == 0)
5284 continue;
5286 for (larger_elt = larger_elt->first_same_value;
5287 larger_elt; larger_elt = larger_elt->next_same_value)
5288 if (GET_CODE (larger_elt->exp) == REG)
5290 src_related
5291 = gen_lowpart_if_possible (mode, larger_elt->exp);
5292 break;
5295 if (src_related)
5296 break;
5301 #ifdef LOAD_EXTEND_OP
5302 /* See if a MEM has already been loaded with a widening operation;
5303 if it has, we can use a subreg of that. Many CISC machines
5304 also have such operations, but this is only likely to be
5305 beneficial these machines. */
5307 if (flag_expensive_optimizations && src_related == 0
5308 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5309 && GET_MODE_CLASS (mode) == MODE_INT
5310 && GET_CODE (src) == MEM && ! do_not_record
5311 && LOAD_EXTEND_OP (mode) != NIL)
5313 enum machine_mode tmode;
5315 /* Set what we are trying to extend and the operation it might
5316 have been extended with. */
5317 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
5318 XEXP (memory_extend_rtx, 0) = src;
5320 for (tmode = GET_MODE_WIDER_MODE (mode);
5321 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5322 tmode = GET_MODE_WIDER_MODE (tmode))
5324 struct table_elt *larger_elt;
5326 PUT_MODE (memory_extend_rtx, tmode);
5327 larger_elt = lookup (memory_extend_rtx,
5328 HASH (memory_extend_rtx, tmode), tmode);
5329 if (larger_elt == 0)
5330 continue;
5332 for (larger_elt = larger_elt->first_same_value;
5333 larger_elt; larger_elt = larger_elt->next_same_value)
5334 if (GET_CODE (larger_elt->exp) == REG)
5336 src_related = gen_lowpart_if_possible (mode,
5337 larger_elt->exp);
5338 break;
5341 if (src_related)
5342 break;
5345 #endif /* LOAD_EXTEND_OP */
5347 if (src == src_folded)
5348 src_folded = 0;
5350 /* At this point, ELT, if non-zero, points to a class of expressions
5351 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5352 and SRC_RELATED, if non-zero, each contain additional equivalent
5353 expressions. Prune these latter expressions by deleting expressions
5354 already in the equivalence class.
5356 Check for an equivalent identical to the destination. If found,
5357 this is the preferred equivalent since it will likely lead to
5358 elimination of the insn. Indicate this by placing it in
5359 `src_related'. */
5361 if (elt)
5362 elt = elt->first_same_value;
5363 for (p = elt; p; p = p->next_same_value)
5365 enum rtx_code code = GET_CODE (p->exp);
5367 /* If the expression is not valid, ignore it. Then we do not
5368 have to check for validity below. In most cases, we can use
5369 `rtx_equal_p', since canonicalization has already been done. */
5370 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, 0))
5371 continue;
5373 /* Also skip paradoxical subregs, unless that's what we're
5374 looking for. */
5375 if (code == SUBREG
5376 && (GET_MODE_SIZE (GET_MODE (p->exp))
5377 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
5378 && ! (src != 0
5379 && GET_CODE (src) == SUBREG
5380 && GET_MODE (src) == GET_MODE (p->exp)
5381 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5382 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
5383 continue;
5385 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5386 src = 0;
5387 else if (src_folded && GET_CODE (src_folded) == code
5388 && rtx_equal_p (src_folded, p->exp))
5389 src_folded = 0;
5390 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5391 && rtx_equal_p (src_eqv_here, p->exp))
5392 src_eqv_here = 0;
5393 else if (src_related && GET_CODE (src_related) == code
5394 && rtx_equal_p (src_related, p->exp))
5395 src_related = 0;
5397 /* This is the same as the destination of the insns, we want
5398 to prefer it. Copy it to src_related. The code below will
5399 then give it a negative cost. */
5400 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5401 src_related = dest;
5404 /* Find the cheapest valid equivalent, trying all the available
5405 possibilities. Prefer items not in the hash table to ones
5406 that are when they are equal cost. Note that we can never
5407 worsen an insn as the current contents will also succeed.
5408 If we find an equivalent identical to the destination, use it as best,
5409 since this insn will probably be eliminated in that case. */
5410 if (src)
5412 if (rtx_equal_p (src, dest))
5413 src_cost = src_regcost = -1;
5414 else
5416 src_cost = COST (src);
5417 src_regcost = approx_reg_cost (src);
5421 if (src_eqv_here)
5423 if (rtx_equal_p (src_eqv_here, dest))
5424 src_eqv_cost = src_eqv_regcost = -1;
5425 else
5427 src_eqv_cost = COST (src_eqv_here);
5428 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5432 if (src_folded)
5434 if (rtx_equal_p (src_folded, dest))
5435 src_folded_cost = src_folded_regcost = -1;
5436 else
5438 src_folded_cost = COST (src_folded);
5439 src_folded_regcost = approx_reg_cost (src_folded);
5443 if (src_related)
5445 if (rtx_equal_p (src_related, dest))
5446 src_related_cost = src_related_regcost = -1;
5447 else
5449 src_related_cost = COST (src_related);
5450 src_related_regcost = approx_reg_cost (src_related);
5454 /* If this was an indirect jump insn, a known label will really be
5455 cheaper even though it looks more expensive. */
5456 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5457 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5459 /* Terminate loop when replacement made. This must terminate since
5460 the current contents will be tested and will always be valid. */
5461 while (1)
5463 rtx trial;
5465 /* Skip invalid entries. */
5466 while (elt && GET_CODE (elt->exp) != REG
5467 && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
5468 elt = elt->next_same_value;
5470 /* A paradoxical subreg would be bad here: it'll be the right
5471 size, but later may be adjusted so that the upper bits aren't
5472 what we want. So reject it. */
5473 if (elt != 0
5474 && GET_CODE (elt->exp) == SUBREG
5475 && (GET_MODE_SIZE (GET_MODE (elt->exp))
5476 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
5477 /* It is okay, though, if the rtx we're trying to match
5478 will ignore any of the bits we can't predict. */
5479 && ! (src != 0
5480 && GET_CODE (src) == SUBREG
5481 && GET_MODE (src) == GET_MODE (elt->exp)
5482 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5483 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5485 elt = elt->next_same_value;
5486 continue;
5489 if (elt)
5491 src_elt_cost = elt->cost;
5492 src_elt_regcost = elt->regcost;
5495 /* Find cheapest and skip it for the next time. For items
5496 of equal cost, use this order:
5497 src_folded, src, src_eqv, src_related and hash table entry. */
5498 if (src_folded
5499 && preferrable (src_folded_cost, src_folded_regcost,
5500 src_cost, src_regcost) <= 0
5501 && preferrable (src_folded_cost, src_folded_regcost,
5502 src_eqv_cost, src_eqv_regcost) <= 0
5503 && preferrable (src_folded_cost, src_folded_regcost,
5504 src_related_cost, src_related_regcost) <= 0
5505 && preferrable (src_folded_cost, src_folded_regcost,
5506 src_elt_cost, src_elt_regcost) <= 0)
5508 trial = src_folded, src_folded_cost = MAX_COST;
5509 if (src_folded_force_flag)
5510 trial = force_const_mem (mode, trial);
5512 else if (src
5513 && preferrable (src_cost, src_regcost,
5514 src_eqv_cost, src_eqv_regcost) <= 0
5515 && preferrable (src_cost, src_regcost,
5516 src_related_cost, src_related_regcost) <= 0
5517 && preferrable (src_cost, src_regcost,
5518 src_elt_cost, src_elt_regcost) <= 0)
5519 trial = src, src_cost = MAX_COST;
5520 else if (src_eqv_here
5521 && preferrable (src_eqv_cost, src_eqv_regcost,
5522 src_related_cost, src_related_regcost) <= 0
5523 && preferrable (src_eqv_cost, src_eqv_regcost,
5524 src_elt_cost, src_elt_regcost) <= 0)
5525 trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
5526 else if (src_related
5527 && preferrable (src_related_cost, src_related_regcost,
5528 src_elt_cost, src_elt_regcost) <= 0)
5529 trial = copy_rtx (src_related), src_related_cost = MAX_COST;
5530 else
5532 trial = copy_rtx (elt->exp);
5533 elt = elt->next_same_value;
5534 src_elt_cost = MAX_COST;
5537 /* We don't normally have an insn matching (set (pc) (pc)), so
5538 check for this separately here. We will delete such an
5539 insn below.
5541 For other cases such as a table jump or conditional jump
5542 where we know the ultimate target, go ahead and replace the
5543 operand. While that may not make a valid insn, we will
5544 reemit the jump below (and also insert any necessary
5545 barriers). */
5546 if (n_sets == 1 && dest == pc_rtx
5547 && (trial == pc_rtx
5548 || (GET_CODE (trial) == LABEL_REF
5549 && ! condjump_p (insn))))
5551 SET_SRC (sets[i].rtl) = trial;
5552 cse_jumps_altered = 1;
5553 break;
5556 /* Look for a substitution that makes a valid insn. */
5557 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
5559 /* If we just made a substitution inside a libcall, then we
5560 need to make the same substitution in any notes attached
5561 to the RETVAL insn. */
5562 if (libcall_insn
5563 && (GET_CODE (sets[i].orig_src) == REG
5564 || GET_CODE (sets[i].orig_src) == SUBREG
5565 || GET_CODE (sets[i].orig_src) == MEM))
5566 replace_rtx (REG_NOTES (libcall_insn), sets[i].orig_src,
5567 canon_reg (SET_SRC (sets[i].rtl), insn));
5569 /* The result of apply_change_group can be ignored; see
5570 canon_reg. */
5572 validate_change (insn, &SET_SRC (sets[i].rtl),
5573 canon_reg (SET_SRC (sets[i].rtl), insn),
5575 apply_change_group ();
5576 break;
5579 /* If we previously found constant pool entries for
5580 constants and this is a constant, try making a
5581 pool entry. Put it in src_folded unless we already have done
5582 this since that is where it likely came from. */
5584 else if (constant_pool_entries_cost
5585 && CONSTANT_P (trial)
5586 /* Reject cases that will abort in decode_rtx_const.
5587 On the alpha when simplifying a switch, we get
5588 (const (truncate (minus (label_ref) (label_ref)))). */
5589 && ! (GET_CODE (trial) == CONST
5590 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
5591 /* Likewise on IA-64, except without the truncate. */
5592 && ! (GET_CODE (trial) == CONST
5593 && GET_CODE (XEXP (trial, 0)) == MINUS
5594 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5595 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)
5596 && (src_folded == 0
5597 || (GET_CODE (src_folded) != MEM
5598 && ! src_folded_force_flag))
5599 && GET_MODE_CLASS (mode) != MODE_CC
5600 && mode != VOIDmode)
5602 src_folded_force_flag = 1;
5603 src_folded = trial;
5604 src_folded_cost = constant_pool_entries_cost;
5608 src = SET_SRC (sets[i].rtl);
5610 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5611 However, there is an important exception: If both are registers
5612 that are not the head of their equivalence class, replace SET_SRC
5613 with the head of the class. If we do not do this, we will have
5614 both registers live over a portion of the basic block. This way,
5615 their lifetimes will likely abut instead of overlapping. */
5616 if (GET_CODE (dest) == REG
5617 && REGNO_QTY_VALID_P (REGNO (dest)))
5619 int dest_q = REG_QTY (REGNO (dest));
5620 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5622 if (dest_ent->mode == GET_MODE (dest)
5623 && dest_ent->first_reg != REGNO (dest)
5624 && GET_CODE (src) == REG && REGNO (src) == REGNO (dest)
5625 /* Don't do this if the original insn had a hard reg as
5626 SET_SRC or SET_DEST. */
5627 && (GET_CODE (sets[i].src) != REG
5628 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5629 && (GET_CODE (dest) != REG || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5630 /* We can't call canon_reg here because it won't do anything if
5631 SRC is a hard register. */
5633 int src_q = REG_QTY (REGNO (src));
5634 struct qty_table_elem *src_ent = &qty_table[src_q];
5635 int first = src_ent->first_reg;
5636 rtx new_src
5637 = (first >= FIRST_PSEUDO_REGISTER
5638 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5640 /* We must use validate-change even for this, because this
5641 might be a special no-op instruction, suitable only to
5642 tag notes onto. */
5643 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5645 src = new_src;
5646 /* If we had a constant that is cheaper than what we are now
5647 setting SRC to, use that constant. We ignored it when we
5648 thought we could make this into a no-op. */
5649 if (src_const && COST (src_const) < COST (src)
5650 && validate_change (insn, &SET_SRC (sets[i].rtl),
5651 src_const, 0))
5652 src = src_const;
5657 /* If we made a change, recompute SRC values. */
5658 if (src != sets[i].src)
5660 cse_altered = 1;
5661 do_not_record = 0;
5662 hash_arg_in_memory = 0;
5663 sets[i].src = src;
5664 sets[i].src_hash = HASH (src, mode);
5665 sets[i].src_volatile = do_not_record;
5666 sets[i].src_in_memory = hash_arg_in_memory;
5667 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5670 /* If this is a single SET, we are setting a register, and we have an
5671 equivalent constant, we want to add a REG_NOTE. We don't want
5672 to write a REG_EQUAL note for a constant pseudo since verifying that
5673 that pseudo hasn't been eliminated is a pain. Such a note also
5674 won't help anything.
5676 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5677 which can be created for a reference to a compile time computable
5678 entry in a jump table. */
5680 if (n_sets == 1 && src_const && GET_CODE (dest) == REG
5681 && GET_CODE (src_const) != REG
5682 && ! (GET_CODE (src_const) == CONST
5683 && GET_CODE (XEXP (src_const, 0)) == MINUS
5684 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5685 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
5687 /* Make sure that the rtx is not shared with any other insn. */
5688 src_const = copy_rtx (src_const);
5690 /* Record the actual constant value in a REG_EQUAL note, making
5691 a new one if one does not already exist. */
5692 set_unique_reg_note (insn, REG_EQUAL, src_const);
5694 /* If storing a constant value in a register that
5695 previously held the constant value 0,
5696 record this fact with a REG_WAS_0 note on this insn.
5698 Note that the *register* is required to have previously held 0,
5699 not just any register in the quantity and we must point to the
5700 insn that set that register to zero.
5702 Rather than track each register individually, we just see if
5703 the last set for this quantity was for this register. */
5705 if (REGNO_QTY_VALID_P (REGNO (dest)))
5707 int dest_q = REG_QTY (REGNO (dest));
5708 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5710 if (dest_ent->const_rtx == const0_rtx)
5712 /* See if we previously had a REG_WAS_0 note. */
5713 rtx note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
5714 rtx const_insn = dest_ent->const_insn;
5716 if ((tem = single_set (const_insn)) != 0
5717 && rtx_equal_p (SET_DEST (tem), dest))
5719 if (note)
5720 XEXP (note, 0) = const_insn;
5721 else
5722 REG_NOTES (insn)
5723 = gen_rtx_INSN_LIST (REG_WAS_0, const_insn,
5724 REG_NOTES (insn));
5730 /* Now deal with the destination. */
5731 do_not_record = 0;
5733 /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
5734 to the MEM or REG within it. */
5735 while (GET_CODE (dest) == SIGN_EXTRACT
5736 || GET_CODE (dest) == ZERO_EXTRACT
5737 || GET_CODE (dest) == SUBREG
5738 || GET_CODE (dest) == STRICT_LOW_PART)
5739 dest = XEXP (dest, 0);
5741 sets[i].inner_dest = dest;
5743 if (GET_CODE (dest) == MEM)
5745 #ifdef PUSH_ROUNDING
5746 /* Stack pushes invalidate the stack pointer. */
5747 rtx addr = XEXP (dest, 0);
5748 if (GET_RTX_CLASS (GET_CODE (addr)) == 'a'
5749 && XEXP (addr, 0) == stack_pointer_rtx)
5750 invalidate (stack_pointer_rtx, Pmode);
5751 #endif
5752 dest = fold_rtx (dest, insn);
5755 /* Compute the hash code of the destination now,
5756 before the effects of this instruction are recorded,
5757 since the register values used in the address computation
5758 are those before this instruction. */
5759 sets[i].dest_hash = HASH (dest, mode);
5761 /* Don't enter a bit-field in the hash table
5762 because the value in it after the store
5763 may not equal what was stored, due to truncation. */
5765 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5766 || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
5768 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5770 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5771 && GET_CODE (width) == CONST_INT
5772 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5773 && ! (INTVAL (src_const)
5774 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5775 /* Exception: if the value is constant,
5776 and it won't be truncated, record it. */
5778 else
5780 /* This is chosen so that the destination will be invalidated
5781 but no new value will be recorded.
5782 We must invalidate because sometimes constant
5783 values can be recorded for bitfields. */
5784 sets[i].src_elt = 0;
5785 sets[i].src_volatile = 1;
5786 src_eqv = 0;
5787 src_eqv_elt = 0;
5791 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5792 the insn. */
5793 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5795 /* One less use of the label this insn used to jump to. */
5796 delete_insn (insn);
5797 cse_jumps_altered = 1;
5798 /* No more processing for this set. */
5799 sets[i].rtl = 0;
5802 /* If this SET is now setting PC to a label, we know it used to
5803 be a conditional or computed branch. */
5804 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF)
5806 /* Now emit a BARRIER after the unconditional jump. */
5807 if (NEXT_INSN (insn) == 0
5808 || GET_CODE (NEXT_INSN (insn)) != BARRIER)
5809 emit_barrier_after (insn);
5811 /* We reemit the jump in as many cases as possible just in
5812 case the form of an unconditional jump is significantly
5813 different than a computed jump or conditional jump.
5815 If this insn has multiple sets, then reemitting the
5816 jump is nontrivial. So instead we just force rerecognition
5817 and hope for the best. */
5818 if (n_sets == 1)
5820 rtx new = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5822 JUMP_LABEL (new) = XEXP (src, 0);
5823 LABEL_NUSES (XEXP (src, 0))++;
5824 insn = new;
5826 /* Now emit a BARRIER after the unconditional jump. */
5827 if (NEXT_INSN (insn) == 0
5828 || GET_CODE (NEXT_INSN (insn)) != BARRIER)
5829 emit_barrier_after (insn);
5831 else
5832 INSN_CODE (insn) = -1;
5834 never_reached_warning (insn, NULL);
5836 /* Do not bother deleting any unreachable code,
5837 let jump/flow do that. */
5839 cse_jumps_altered = 1;
5840 sets[i].rtl = 0;
5843 /* If destination is volatile, invalidate it and then do no further
5844 processing for this assignment. */
5846 else if (do_not_record)
5848 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
5849 invalidate (dest, VOIDmode);
5850 else if (GET_CODE (dest) == MEM)
5852 /* Outgoing arguments for a libcall don't
5853 affect any recorded expressions. */
5854 if (! libcall_insn || insn == libcall_insn)
5855 invalidate (dest, VOIDmode);
5857 else if (GET_CODE (dest) == STRICT_LOW_PART
5858 || GET_CODE (dest) == ZERO_EXTRACT)
5859 invalidate (XEXP (dest, 0), GET_MODE (dest));
5860 sets[i].rtl = 0;
5863 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5864 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5866 #ifdef HAVE_cc0
5867 /* If setting CC0, record what it was set to, or a constant, if it
5868 is equivalent to a constant. If it is being set to a floating-point
5869 value, make a COMPARE with the appropriate constant of 0. If we
5870 don't do this, later code can interpret this as a test against
5871 const0_rtx, which can cause problems if we try to put it into an
5872 insn as a floating-point operand. */
5873 if (dest == cc0_rtx)
5875 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5876 this_insn_cc0_mode = mode;
5877 if (FLOAT_MODE_P (mode))
5878 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5879 CONST0_RTX (mode));
5881 #endif
5884 /* Now enter all non-volatile source expressions in the hash table
5885 if they are not already present.
5886 Record their equivalence classes in src_elt.
5887 This way we can insert the corresponding destinations into
5888 the same classes even if the actual sources are no longer in them
5889 (having been invalidated). */
5891 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5892 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5894 struct table_elt *elt;
5895 struct table_elt *classp = sets[0].src_elt;
5896 rtx dest = SET_DEST (sets[0].rtl);
5897 enum machine_mode eqvmode = GET_MODE (dest);
5899 if (GET_CODE (dest) == STRICT_LOW_PART)
5901 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5902 classp = 0;
5904 if (insert_regs (src_eqv, classp, 0))
5906 rehash_using_reg (src_eqv);
5907 src_eqv_hash = HASH (src_eqv, eqvmode);
5909 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5910 elt->in_memory = src_eqv_in_memory;
5911 src_eqv_elt = elt;
5913 /* Check to see if src_eqv_elt is the same as a set source which
5914 does not yet have an elt, and if so set the elt of the set source
5915 to src_eqv_elt. */
5916 for (i = 0; i < n_sets; i++)
5917 if (sets[i].rtl && sets[i].src_elt == 0
5918 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5919 sets[i].src_elt = src_eqv_elt;
5922 for (i = 0; i < n_sets; i++)
5923 if (sets[i].rtl && ! sets[i].src_volatile
5924 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5926 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5928 /* REG_EQUAL in setting a STRICT_LOW_PART
5929 gives an equivalent for the entire destination register,
5930 not just for the subreg being stored in now.
5931 This is a more interesting equivalence, so we arrange later
5932 to treat the entire reg as the destination. */
5933 sets[i].src_elt = src_eqv_elt;
5934 sets[i].src_hash = src_eqv_hash;
5936 else
5938 /* Insert source and constant equivalent into hash table, if not
5939 already present. */
5940 struct table_elt *classp = src_eqv_elt;
5941 rtx src = sets[i].src;
5942 rtx dest = SET_DEST (sets[i].rtl);
5943 enum machine_mode mode
5944 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5946 if (sets[i].src_elt == 0)
5948 /* Don't put a hard register source into the table if this is
5949 the last insn of a libcall. In this case, we only need
5950 to put src_eqv_elt in src_elt. */
5951 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5953 struct table_elt *elt;
5955 /* Note that these insert_regs calls cannot remove
5956 any of the src_elt's, because they would have failed to
5957 match if not still valid. */
5958 if (insert_regs (src, classp, 0))
5960 rehash_using_reg (src);
5961 sets[i].src_hash = HASH (src, mode);
5963 elt = insert (src, classp, sets[i].src_hash, mode);
5964 elt->in_memory = sets[i].src_in_memory;
5965 sets[i].src_elt = classp = elt;
5967 else
5968 sets[i].src_elt = classp;
5970 if (sets[i].src_const && sets[i].src_const_elt == 0
5971 && src != sets[i].src_const
5972 && ! rtx_equal_p (sets[i].src_const, src))
5973 sets[i].src_elt = insert (sets[i].src_const, classp,
5974 sets[i].src_const_hash, mode);
5977 else if (sets[i].src_elt == 0)
5978 /* If we did not insert the source into the hash table (e.g., it was
5979 volatile), note the equivalence class for the REG_EQUAL value, if any,
5980 so that the destination goes into that class. */
5981 sets[i].src_elt = src_eqv_elt;
5983 invalidate_from_clobbers (x);
5985 /* Some registers are invalidated by subroutine calls. Memory is
5986 invalidated by non-constant calls. */
5988 if (GET_CODE (insn) == CALL_INSN)
5990 if (! CONST_OR_PURE_CALL_P (insn))
5991 invalidate_memory ();
5992 invalidate_for_call ();
5995 /* Now invalidate everything set by this instruction.
5996 If a SUBREG or other funny destination is being set,
5997 sets[i].rtl is still nonzero, so here we invalidate the reg
5998 a part of which is being set. */
6000 for (i = 0; i < n_sets; i++)
6001 if (sets[i].rtl)
6003 /* We can't use the inner dest, because the mode associated with
6004 a ZERO_EXTRACT is significant. */
6005 rtx dest = SET_DEST (sets[i].rtl);
6007 /* Needed for registers to remove the register from its
6008 previous quantity's chain.
6009 Needed for memory if this is a nonvarying address, unless
6010 we have just done an invalidate_memory that covers even those. */
6011 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
6012 invalidate (dest, VOIDmode);
6013 else if (GET_CODE (dest) == MEM)
6015 /* Outgoing arguments for a libcall don't
6016 affect any recorded expressions. */
6017 if (! libcall_insn || insn == libcall_insn)
6018 invalidate (dest, VOIDmode);
6020 else if (GET_CODE (dest) == STRICT_LOW_PART
6021 || GET_CODE (dest) == ZERO_EXTRACT)
6022 invalidate (XEXP (dest, 0), GET_MODE (dest));
6025 /* A volatile ASM invalidates everything. */
6026 if (GET_CODE (insn) == INSN
6027 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
6028 && MEM_VOLATILE_P (PATTERN (insn)))
6029 flush_hash_table ();
6031 /* Make sure registers mentioned in destinations
6032 are safe for use in an expression to be inserted.
6033 This removes from the hash table
6034 any invalid entry that refers to one of these registers.
6036 We don't care about the return value from mention_regs because
6037 we are going to hash the SET_DEST values unconditionally. */
6039 for (i = 0; i < n_sets; i++)
6041 if (sets[i].rtl)
6043 rtx x = SET_DEST (sets[i].rtl);
6045 if (GET_CODE (x) != REG)
6046 mention_regs (x);
6047 else
6049 /* We used to rely on all references to a register becoming
6050 inaccessible when a register changes to a new quantity,
6051 since that changes the hash code. However, that is not
6052 safe, since after HASH_SIZE new quantities we get a
6053 hash 'collision' of a register with its own invalid
6054 entries. And since SUBREGs have been changed not to
6055 change their hash code with the hash code of the register,
6056 it wouldn't work any longer at all. So we have to check
6057 for any invalid references lying around now.
6058 This code is similar to the REG case in mention_regs,
6059 but it knows that reg_tick has been incremented, and
6060 it leaves reg_in_table as -1 . */
6061 unsigned int regno = REGNO (x);
6062 unsigned int endregno
6063 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
6064 : HARD_REGNO_NREGS (regno, GET_MODE (x)));
6065 unsigned int i;
6067 for (i = regno; i < endregno; i++)
6069 if (REG_IN_TABLE (i) >= 0)
6071 remove_invalid_refs (i);
6072 REG_IN_TABLE (i) = -1;
6079 /* We may have just removed some of the src_elt's from the hash table.
6080 So replace each one with the current head of the same class. */
6082 for (i = 0; i < n_sets; i++)
6083 if (sets[i].rtl)
6085 if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
6086 /* If elt was removed, find current head of same class,
6087 or 0 if nothing remains of that class. */
6089 struct table_elt *elt = sets[i].src_elt;
6091 while (elt && elt->prev_same_value)
6092 elt = elt->prev_same_value;
6094 while (elt && elt->first_same_value == 0)
6095 elt = elt->next_same_value;
6096 sets[i].src_elt = elt ? elt->first_same_value : 0;
6100 /* Now insert the destinations into their equivalence classes. */
6102 for (i = 0; i < n_sets; i++)
6103 if (sets[i].rtl)
6105 rtx dest = SET_DEST (sets[i].rtl);
6106 rtx inner_dest = sets[i].inner_dest;
6107 struct table_elt *elt;
6109 /* Don't record value if we are not supposed to risk allocating
6110 floating-point values in registers that might be wider than
6111 memory. */
6112 if ((flag_float_store
6113 && GET_CODE (dest) == MEM
6114 && FLOAT_MODE_P (GET_MODE (dest)))
6115 /* Don't record BLKmode values, because we don't know the
6116 size of it, and can't be sure that other BLKmode values
6117 have the same or smaller size. */
6118 || GET_MODE (dest) == BLKmode
6119 /* Don't record values of destinations set inside a libcall block
6120 since we might delete the libcall. Things should have been set
6121 up so we won't want to reuse such a value, but we play it safe
6122 here. */
6123 || libcall_insn
6124 /* If we didn't put a REG_EQUAL value or a source into the hash
6125 table, there is no point is recording DEST. */
6126 || sets[i].src_elt == 0
6127 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
6128 or SIGN_EXTEND, don't record DEST since it can cause
6129 some tracking to be wrong.
6131 ??? Think about this more later. */
6132 || (GET_CODE (dest) == SUBREG
6133 && (GET_MODE_SIZE (GET_MODE (dest))
6134 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6135 && (GET_CODE (sets[i].src) == SIGN_EXTEND
6136 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
6137 continue;
6139 /* STRICT_LOW_PART isn't part of the value BEING set,
6140 and neither is the SUBREG inside it.
6141 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
6142 if (GET_CODE (dest) == STRICT_LOW_PART)
6143 dest = SUBREG_REG (XEXP (dest, 0));
6145 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
6146 /* Registers must also be inserted into chains for quantities. */
6147 if (insert_regs (dest, sets[i].src_elt, 1))
6149 /* If `insert_regs' changes something, the hash code must be
6150 recalculated. */
6151 rehash_using_reg (dest);
6152 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
6155 if (GET_CODE (inner_dest) == MEM
6156 && GET_CODE (XEXP (inner_dest, 0)) == ADDRESSOF)
6157 /* Given (SET (MEM (ADDRESSOF (X))) Y) we don't want to say
6158 that (MEM (ADDRESSOF (X))) is equivalent to Y.
6159 Consider the case in which the address of the MEM is
6160 passed to a function, which alters the MEM. Then, if we
6161 later use Y instead of the MEM we'll miss the update. */
6162 elt = insert (dest, 0, sets[i].dest_hash, GET_MODE (dest));
6163 else
6164 elt = insert (dest, sets[i].src_elt,
6165 sets[i].dest_hash, GET_MODE (dest));
6167 elt->in_memory = (GET_CODE (sets[i].inner_dest) == MEM
6168 && (! RTX_UNCHANGING_P (sets[i].inner_dest)
6169 || FIXED_BASE_PLUS_P (XEXP (sets[i].inner_dest,
6170 0))));
6172 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6173 narrower than M2, and both M1 and M2 are the same number of words,
6174 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6175 make that equivalence as well.
6177 However, BAR may have equivalences for which gen_lowpart_if_possible
6178 will produce a simpler value than gen_lowpart_if_possible applied to
6179 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6180 BAR's equivalences. If we don't get a simplified form, make
6181 the SUBREG. It will not be used in an equivalence, but will
6182 cause two similar assignments to be detected.
6184 Note the loop below will find SUBREG_REG (DEST) since we have
6185 already entered SRC and DEST of the SET in the table. */
6187 if (GET_CODE (dest) == SUBREG
6188 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
6189 / UNITS_PER_WORD)
6190 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
6191 && (GET_MODE_SIZE (GET_MODE (dest))
6192 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6193 && sets[i].src_elt != 0)
6195 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6196 struct table_elt *elt, *classp = 0;
6198 for (elt = sets[i].src_elt->first_same_value; elt;
6199 elt = elt->next_same_value)
6201 rtx new_src = 0;
6202 unsigned src_hash;
6203 struct table_elt *src_elt;
6205 /* Ignore invalid entries. */
6206 if (GET_CODE (elt->exp) != REG
6207 && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
6208 continue;
6210 new_src = gen_lowpart_if_possible (new_mode, elt->exp);
6211 if (new_src == 0)
6212 new_src = gen_rtx_SUBREG (new_mode, elt->exp, 0);
6214 src_hash = HASH (new_src, new_mode);
6215 src_elt = lookup (new_src, src_hash, new_mode);
6217 /* Put the new source in the hash table is if isn't
6218 already. */
6219 if (src_elt == 0)
6221 if (insert_regs (new_src, classp, 0))
6223 rehash_using_reg (new_src);
6224 src_hash = HASH (new_src, new_mode);
6226 src_elt = insert (new_src, classp, src_hash, new_mode);
6227 src_elt->in_memory = elt->in_memory;
6229 else if (classp && classp != src_elt->first_same_value)
6230 /* Show that two things that we've seen before are
6231 actually the same. */
6232 merge_equiv_classes (src_elt, classp);
6234 classp = src_elt->first_same_value;
6235 /* Ignore invalid entries. */
6236 while (classp
6237 && GET_CODE (classp->exp) != REG
6238 && ! exp_equiv_p (classp->exp, classp->exp, 1, 0))
6239 classp = classp->next_same_value;
6244 /* Special handling for (set REG0 REG1) where REG0 is the
6245 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6246 be used in the sequel, so (if easily done) change this insn to
6247 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6248 that computed their value. Then REG1 will become a dead store
6249 and won't cloud the situation for later optimizations.
6251 Do not make this change if REG1 is a hard register, because it will
6252 then be used in the sequel and we may be changing a two-operand insn
6253 into a three-operand insn.
6255 Also do not do this if we are operating on a copy of INSN.
6257 Also don't do this if INSN ends a libcall; this would cause an unrelated
6258 register to be set in the middle of a libcall, and we then get bad code
6259 if the libcall is deleted. */
6261 if (n_sets == 1 && sets[0].rtl && GET_CODE (SET_DEST (sets[0].rtl)) == REG
6262 && NEXT_INSN (PREV_INSN (insn)) == insn
6263 && GET_CODE (SET_SRC (sets[0].rtl)) == REG
6264 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
6265 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
6267 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
6268 struct qty_table_elem *src_ent = &qty_table[src_q];
6270 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
6271 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
6273 rtx prev = prev_nonnote_insn (insn);
6275 /* Do not swap the registers around if the previous instruction
6276 attaches a REG_EQUIV note to REG1.
6278 ??? It's not entirely clear whether we can transfer a REG_EQUIV
6279 from the pseudo that originally shadowed an incoming argument
6280 to another register. Some uses of REG_EQUIV might rely on it
6281 being attached to REG1 rather than REG2.
6283 This section previously turned the REG_EQUIV into a REG_EQUAL
6284 note. We cannot do that because REG_EQUIV may provide an
6285 uninitialised stack slot when REG_PARM_STACK_SPACE is used. */
6287 if (prev != 0 && GET_CODE (prev) == INSN
6288 && GET_CODE (PATTERN (prev)) == SET
6289 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
6290 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
6292 rtx dest = SET_DEST (sets[0].rtl);
6293 rtx src = SET_SRC (sets[0].rtl);
6294 rtx note;
6296 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
6297 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
6298 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
6299 apply_change_group ();
6301 /* If there was a REG_WAS_0 note on PREV, remove it. Move
6302 any REG_WAS_0 note on INSN to PREV. */
6303 note = find_reg_note (prev, REG_WAS_0, NULL_RTX);
6304 if (note)
6305 remove_note (prev, note);
6307 note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
6308 if (note)
6310 remove_note (insn, note);
6311 XEXP (note, 1) = REG_NOTES (prev);
6312 REG_NOTES (prev) = note;
6315 /* If INSN has a REG_EQUAL note, and this note mentions
6316 REG0, then we must delete it, because the value in
6317 REG0 has changed. If the note's value is REG1, we must
6318 also delete it because that is now this insn's dest. */
6319 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6320 if (note != 0
6321 && (reg_mentioned_p (dest, XEXP (note, 0))
6322 || rtx_equal_p (src, XEXP (note, 0))))
6323 remove_note (insn, note);
6328 /* If this is a conditional jump insn, record any known equivalences due to
6329 the condition being tested. */
6331 last_jump_equiv_class = 0;
6332 if (GET_CODE (insn) == JUMP_INSN
6333 && n_sets == 1 && GET_CODE (x) == SET
6334 && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
6335 record_jump_equiv (insn, 0);
6337 #ifdef HAVE_cc0
6338 /* If the previous insn set CC0 and this insn no longer references CC0,
6339 delete the previous insn. Here we use the fact that nothing expects CC0
6340 to be valid over an insn, which is true until the final pass. */
6341 if (prev_insn && GET_CODE (prev_insn) == INSN
6342 && (tem = single_set (prev_insn)) != 0
6343 && SET_DEST (tem) == cc0_rtx
6344 && ! reg_mentioned_p (cc0_rtx, x))
6345 delete_insn (prev_insn);
6347 prev_insn_cc0 = this_insn_cc0;
6348 prev_insn_cc0_mode = this_insn_cc0_mode;
6349 #endif
6351 prev_insn = insn;
6354 /* Remove from the hash table all expressions that reference memory. */
6356 static void
6357 invalidate_memory ()
6359 int i;
6360 struct table_elt *p, *next;
6362 for (i = 0; i < HASH_SIZE; i++)
6363 for (p = table[i]; p; p = next)
6365 next = p->next_same_hash;
6366 if (p->in_memory)
6367 remove_from_table (p, i);
6371 /* If ADDR is an address that implicitly affects the stack pointer, return
6372 1 and update the register tables to show the effect. Else, return 0. */
6374 static int
6375 addr_affects_sp_p (addr)
6376 rtx addr;
6378 if (GET_RTX_CLASS (GET_CODE (addr)) == 'a'
6379 && GET_CODE (XEXP (addr, 0)) == REG
6380 && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
6382 if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
6383 REG_TICK (STACK_POINTER_REGNUM)++;
6385 /* This should be *very* rare. */
6386 if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
6387 invalidate (stack_pointer_rtx, VOIDmode);
6389 return 1;
6392 return 0;
6395 /* Perform invalidation on the basis of everything about an insn
6396 except for invalidating the actual places that are SET in it.
6397 This includes the places CLOBBERed, and anything that might
6398 alias with something that is SET or CLOBBERed.
6400 X is the pattern of the insn. */
6402 static void
6403 invalidate_from_clobbers (x)
6404 rtx x;
6406 if (GET_CODE (x) == CLOBBER)
6408 rtx ref = XEXP (x, 0);
6409 if (ref)
6411 if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
6412 || GET_CODE (ref) == MEM)
6413 invalidate (ref, VOIDmode);
6414 else if (GET_CODE (ref) == STRICT_LOW_PART
6415 || GET_CODE (ref) == ZERO_EXTRACT)
6416 invalidate (XEXP (ref, 0), GET_MODE (ref));
6419 else if (GET_CODE (x) == PARALLEL)
6421 int i;
6422 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6424 rtx y = XVECEXP (x, 0, i);
6425 if (GET_CODE (y) == CLOBBER)
6427 rtx ref = XEXP (y, 0);
6428 if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
6429 || GET_CODE (ref) == MEM)
6430 invalidate (ref, VOIDmode);
6431 else if (GET_CODE (ref) == STRICT_LOW_PART
6432 || GET_CODE (ref) == ZERO_EXTRACT)
6433 invalidate (XEXP (ref, 0), GET_MODE (ref));
6439 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6440 and replace any registers in them with either an equivalent constant
6441 or the canonical form of the register. If we are inside an address,
6442 only do this if the address remains valid.
6444 OBJECT is 0 except when within a MEM in which case it is the MEM.
6446 Return the replacement for X. */
6448 static rtx
6449 cse_process_notes (x, object)
6450 rtx x;
6451 rtx object;
6453 enum rtx_code code = GET_CODE (x);
6454 const char *fmt = GET_RTX_FORMAT (code);
6455 int i;
6457 switch (code)
6459 case CONST_INT:
6460 case CONST:
6461 case SYMBOL_REF:
6462 case LABEL_REF:
6463 case CONST_DOUBLE:
6464 case CONST_VECTOR:
6465 case PC:
6466 case CC0:
6467 case LO_SUM:
6468 return x;
6470 case MEM:
6471 validate_change (x, &XEXP (x, 0),
6472 cse_process_notes (XEXP (x, 0), x), 0);
6473 return x;
6475 case EXPR_LIST:
6476 case INSN_LIST:
6477 if (REG_NOTE_KIND (x) == REG_EQUAL)
6478 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
6479 if (XEXP (x, 1))
6480 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
6481 return x;
6483 case SIGN_EXTEND:
6484 case ZERO_EXTEND:
6485 case SUBREG:
6487 rtx new = cse_process_notes (XEXP (x, 0), object);
6488 /* We don't substitute VOIDmode constants into these rtx,
6489 since they would impede folding. */
6490 if (GET_MODE (new) != VOIDmode)
6491 validate_change (object, &XEXP (x, 0), new, 0);
6492 return x;
6495 case REG:
6496 i = REG_QTY (REGNO (x));
6498 /* Return a constant or a constant register. */
6499 if (REGNO_QTY_VALID_P (REGNO (x)))
6501 struct qty_table_elem *ent = &qty_table[i];
6503 if (ent->const_rtx != NULL_RTX
6504 && (CONSTANT_P (ent->const_rtx)
6505 || GET_CODE (ent->const_rtx) == REG))
6507 rtx new = gen_lowpart_if_possible (GET_MODE (x), ent->const_rtx);
6508 if (new)
6509 return new;
6513 /* Otherwise, canonicalize this register. */
6514 return canon_reg (x, NULL_RTX);
6516 default:
6517 break;
6520 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6521 if (fmt[i] == 'e')
6522 validate_change (object, &XEXP (x, i),
6523 cse_process_notes (XEXP (x, i), object), 0);
6525 return x;
6528 /* Find common subexpressions between the end test of a loop and the beginning
6529 of the loop. LOOP_START is the CODE_LABEL at the start of a loop.
6531 Often we have a loop where an expression in the exit test is used
6532 in the body of the loop. For example "while (*p) *q++ = *p++;".
6533 Because of the way we duplicate the loop exit test in front of the loop,
6534 however, we don't detect that common subexpression. This will be caught
6535 when global cse is implemented, but this is a quite common case.
6537 This function handles the most common cases of these common expressions.
6538 It is called after we have processed the basic block ending with the
6539 NOTE_INSN_LOOP_END note that ends a loop and the previous JUMP_INSN
6540 jumps to a label used only once. */
6542 static void
6543 cse_around_loop (loop_start)
6544 rtx loop_start;
6546 rtx insn;
6547 int i;
6548 struct table_elt *p;
6550 /* If the jump at the end of the loop doesn't go to the start, we don't
6551 do anything. */
6552 for (insn = PREV_INSN (loop_start);
6553 insn && (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0);
6554 insn = PREV_INSN (insn))
6557 if (insn == 0
6558 || GET_CODE (insn) != NOTE
6559 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG)
6560 return;
6562 /* If the last insn of the loop (the end test) was an NE comparison,
6563 we will interpret it as an EQ comparison, since we fell through
6564 the loop. Any equivalences resulting from that comparison are
6565 therefore not valid and must be invalidated. */
6566 if (last_jump_equiv_class)
6567 for (p = last_jump_equiv_class->first_same_value; p;
6568 p = p->next_same_value)
6570 if (GET_CODE (p->exp) == MEM || GET_CODE (p->exp) == REG
6571 || (GET_CODE (p->exp) == SUBREG
6572 && GET_CODE (SUBREG_REG (p->exp)) == REG))
6573 invalidate (p->exp, VOIDmode);
6574 else if (GET_CODE (p->exp) == STRICT_LOW_PART
6575 || GET_CODE (p->exp) == ZERO_EXTRACT)
6576 invalidate (XEXP (p->exp, 0), GET_MODE (p->exp));
6579 /* Process insns starting after LOOP_START until we hit a CALL_INSN or
6580 a CODE_LABEL (we could handle a CALL_INSN, but it isn't worth it).
6582 The only thing we do with SET_DEST is invalidate entries, so we
6583 can safely process each SET in order. It is slightly less efficient
6584 to do so, but we only want to handle the most common cases.
6586 The gen_move_insn call in cse_set_around_loop may create new pseudos.
6587 These pseudos won't have valid entries in any of the tables indexed
6588 by register number, such as reg_qty. We avoid out-of-range array
6589 accesses by not processing any instructions created after cse started. */
6591 for (insn = NEXT_INSN (loop_start);
6592 GET_CODE (insn) != CALL_INSN && GET_CODE (insn) != CODE_LABEL
6593 && INSN_UID (insn) < max_insn_uid
6594 && ! (GET_CODE (insn) == NOTE
6595 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
6596 insn = NEXT_INSN (insn))
6598 if (INSN_P (insn)
6599 && (GET_CODE (PATTERN (insn)) == SET
6600 || GET_CODE (PATTERN (insn)) == CLOBBER))
6601 cse_set_around_loop (PATTERN (insn), insn, loop_start);
6602 else if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == PARALLEL)
6603 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6604 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET
6605 || GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
6606 cse_set_around_loop (XVECEXP (PATTERN (insn), 0, i), insn,
6607 loop_start);
6611 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
6612 since they are done elsewhere. This function is called via note_stores. */
6614 static void
6615 invalidate_skipped_set (dest, set, data)
6616 rtx set;
6617 rtx dest;
6618 void *data ATTRIBUTE_UNUSED;
6620 enum rtx_code code = GET_CODE (dest);
6622 if (code == MEM
6623 && ! addr_affects_sp_p (dest) /* If this is not a stack push ... */
6624 /* There are times when an address can appear varying and be a PLUS
6625 during this scan when it would be a fixed address were we to know
6626 the proper equivalences. So invalidate all memory if there is
6627 a BLKmode or nonscalar memory reference or a reference to a
6628 variable address. */
6629 && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
6630 || cse_rtx_varies_p (XEXP (dest, 0), 0)))
6632 invalidate_memory ();
6633 return;
6636 if (GET_CODE (set) == CLOBBER
6637 #ifdef HAVE_cc0
6638 || dest == cc0_rtx
6639 #endif
6640 || dest == pc_rtx)
6641 return;
6643 if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
6644 invalidate (XEXP (dest, 0), GET_MODE (dest));
6645 else if (code == REG || code == SUBREG || code == MEM)
6646 invalidate (dest, VOIDmode);
6649 /* Invalidate all insns from START up to the end of the function or the
6650 next label. This called when we wish to CSE around a block that is
6651 conditionally executed. */
6653 static void
6654 invalidate_skipped_block (start)
6655 rtx start;
6657 rtx insn;
6659 for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
6660 insn = NEXT_INSN (insn))
6662 if (! INSN_P (insn))
6663 continue;
6665 if (GET_CODE (insn) == CALL_INSN)
6667 if (! CONST_OR_PURE_CALL_P (insn))
6668 invalidate_memory ();
6669 invalidate_for_call ();
6672 invalidate_from_clobbers (PATTERN (insn));
6673 note_stores (PATTERN (insn), invalidate_skipped_set, NULL);
6677 /* If modifying X will modify the value in *DATA (which is really an
6678 `rtx *'), indicate that fact by setting the pointed to value to
6679 NULL_RTX. */
6681 static void
6682 cse_check_loop_start (x, set, data)
6683 rtx x;
6684 rtx set ATTRIBUTE_UNUSED;
6685 void *data;
6687 rtx *cse_check_loop_start_value = (rtx *) data;
6689 if (*cse_check_loop_start_value == NULL_RTX
6690 || GET_CODE (x) == CC0 || GET_CODE (x) == PC)
6691 return;
6693 if ((GET_CODE (x) == MEM && GET_CODE (*cse_check_loop_start_value) == MEM)
6694 || reg_overlap_mentioned_p (x, *cse_check_loop_start_value))
6695 *cse_check_loop_start_value = NULL_RTX;
6698 /* X is a SET or CLOBBER contained in INSN that was found near the start of
6699 a loop that starts with the label at LOOP_START.
6701 If X is a SET, we see if its SET_SRC is currently in our hash table.
6702 If so, we see if it has a value equal to some register used only in the
6703 loop exit code (as marked by jump.c).
6705 If those two conditions are true, we search backwards from the start of
6706 the loop to see if that same value was loaded into a register that still
6707 retains its value at the start of the loop.
6709 If so, we insert an insn after the load to copy the destination of that
6710 load into the equivalent register and (try to) replace our SET_SRC with that
6711 register.
6713 In any event, we invalidate whatever this SET or CLOBBER modifies. */
6715 static void
6716 cse_set_around_loop (x, insn, loop_start)
6717 rtx x;
6718 rtx insn;
6719 rtx loop_start;
6721 struct table_elt *src_elt;
6723 /* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
6724 are setting PC or CC0 or whose SET_SRC is already a register. */
6725 if (GET_CODE (x) == SET
6726 && GET_CODE (SET_DEST (x)) != PC && GET_CODE (SET_DEST (x)) != CC0
6727 && GET_CODE (SET_SRC (x)) != REG)
6729 src_elt = lookup (SET_SRC (x),
6730 HASH (SET_SRC (x), GET_MODE (SET_DEST (x))),
6731 GET_MODE (SET_DEST (x)));
6733 if (src_elt)
6734 for (src_elt = src_elt->first_same_value; src_elt;
6735 src_elt = src_elt->next_same_value)
6736 if (GET_CODE (src_elt->exp) == REG && REG_LOOP_TEST_P (src_elt->exp)
6737 && COST (src_elt->exp) < COST (SET_SRC (x)))
6739 rtx p, set;
6741 /* Look for an insn in front of LOOP_START that sets
6742 something in the desired mode to SET_SRC (x) before we hit
6743 a label or CALL_INSN. */
6745 for (p = prev_nonnote_insn (loop_start);
6746 p && GET_CODE (p) != CALL_INSN
6747 && GET_CODE (p) != CODE_LABEL;
6748 p = prev_nonnote_insn (p))
6749 if ((set = single_set (p)) != 0
6750 && GET_CODE (SET_DEST (set)) == REG
6751 && GET_MODE (SET_DEST (set)) == src_elt->mode
6752 && rtx_equal_p (SET_SRC (set), SET_SRC (x)))
6754 /* We now have to ensure that nothing between P
6755 and LOOP_START modified anything referenced in
6756 SET_SRC (x). We know that nothing within the loop
6757 can modify it, or we would have invalidated it in
6758 the hash table. */
6759 rtx q;
6760 rtx cse_check_loop_start_value = SET_SRC (x);
6761 for (q = p; q != loop_start; q = NEXT_INSN (q))
6762 if (INSN_P (q))
6763 note_stores (PATTERN (q),
6764 cse_check_loop_start,
6765 &cse_check_loop_start_value);
6767 /* If nothing was changed and we can replace our
6768 SET_SRC, add an insn after P to copy its destination
6769 to what we will be replacing SET_SRC with. */
6770 if (cse_check_loop_start_value
6771 && validate_change (insn, &SET_SRC (x),
6772 src_elt->exp, 0))
6774 /* If this creates new pseudos, this is unsafe,
6775 because the regno of new pseudo is unsuitable
6776 to index into reg_qty when cse_insn processes
6777 the new insn. Therefore, if a new pseudo was
6778 created, discard this optimization. */
6779 int nregs = max_reg_num ();
6780 rtx move
6781 = gen_move_insn (src_elt->exp, SET_DEST (set));
6782 if (nregs != max_reg_num ())
6784 if (! validate_change (insn, &SET_SRC (x),
6785 SET_SRC (set), 0))
6786 abort ();
6788 else
6789 emit_insn_after (move, p);
6791 break;
6796 /* Deal with the destination of X affecting the stack pointer. */
6797 addr_affects_sp_p (SET_DEST (x));
6799 /* See comment on similar code in cse_insn for explanation of these
6800 tests. */
6801 if (GET_CODE (SET_DEST (x)) == REG || GET_CODE (SET_DEST (x)) == SUBREG
6802 || GET_CODE (SET_DEST (x)) == MEM)
6803 invalidate (SET_DEST (x), VOIDmode);
6804 else if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6805 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
6806 invalidate (XEXP (SET_DEST (x), 0), GET_MODE (SET_DEST (x)));
6809 /* Find the end of INSN's basic block and return its range,
6810 the total number of SETs in all the insns of the block, the last insn of the
6811 block, and the branch path.
6813 The branch path indicates which branches should be followed. If a non-zero
6814 path size is specified, the block should be rescanned and a different set
6815 of branches will be taken. The branch path is only used if
6816 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is non-zero.
6818 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
6819 used to describe the block. It is filled in with the information about
6820 the current block. The incoming structure's branch path, if any, is used
6821 to construct the output branch path. */
6823 void
6824 cse_end_of_basic_block (insn, data, follow_jumps, after_loop, skip_blocks)
6825 rtx insn;
6826 struct cse_basic_block_data *data;
6827 int follow_jumps;
6828 int after_loop;
6829 int skip_blocks;
6831 rtx p = insn, q;
6832 int nsets = 0;
6833 int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
6834 rtx next = INSN_P (insn) ? insn : next_real_insn (insn);
6835 int path_size = data->path_size;
6836 int path_entry = 0;
6837 int i;
6839 /* Update the previous branch path, if any. If the last branch was
6840 previously TAKEN, mark it NOT_TAKEN. If it was previously NOT_TAKEN,
6841 shorten the path by one and look at the previous branch. We know that
6842 at least one branch must have been taken if PATH_SIZE is non-zero. */
6843 while (path_size > 0)
6845 if (data->path[path_size - 1].status != NOT_TAKEN)
6847 data->path[path_size - 1].status = NOT_TAKEN;
6848 break;
6850 else
6851 path_size--;
6854 /* If the first instruction is marked with QImode, that means we've
6855 already processed this block. Our caller will look at DATA->LAST
6856 to figure out where to go next. We want to return the next block
6857 in the instruction stream, not some branched-to block somewhere
6858 else. We accomplish this by pretending our called forbid us to
6859 follow jumps, or skip blocks. */
6860 if (GET_MODE (insn) == QImode)
6861 follow_jumps = skip_blocks = 0;
6863 /* Scan to end of this basic block. */
6864 while (p && GET_CODE (p) != CODE_LABEL)
6866 /* Don't cse out the end of a loop. This makes a difference
6867 only for the unusual loops that always execute at least once;
6868 all other loops have labels there so we will stop in any case.
6869 Cse'ing out the end of the loop is dangerous because it
6870 might cause an invariant expression inside the loop
6871 to be reused after the end of the loop. This would make it
6872 hard to move the expression out of the loop in loop.c,
6873 especially if it is one of several equivalent expressions
6874 and loop.c would like to eliminate it.
6876 If we are running after loop.c has finished, we can ignore
6877 the NOTE_INSN_LOOP_END. */
6879 if (! after_loop && GET_CODE (p) == NOTE
6880 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
6881 break;
6883 /* Don't cse over a call to setjmp; on some machines (eg VAX)
6884 the regs restored by the longjmp come from
6885 a later time than the setjmp. */
6886 if (PREV_INSN (p) && GET_CODE (PREV_INSN (p)) == CALL_INSN
6887 && find_reg_note (PREV_INSN (p), REG_SETJMP, NULL))
6888 break;
6890 /* A PARALLEL can have lots of SETs in it,
6891 especially if it is really an ASM_OPERANDS. */
6892 if (INSN_P (p) && GET_CODE (PATTERN (p)) == PARALLEL)
6893 nsets += XVECLEN (PATTERN (p), 0);
6894 else if (GET_CODE (p) != NOTE)
6895 nsets += 1;
6897 /* Ignore insns made by CSE; they cannot affect the boundaries of
6898 the basic block. */
6900 if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
6901 high_cuid = INSN_CUID (p);
6902 if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
6903 low_cuid = INSN_CUID (p);
6905 /* See if this insn is in our branch path. If it is and we are to
6906 take it, do so. */
6907 if (path_entry < path_size && data->path[path_entry].branch == p)
6909 if (data->path[path_entry].status != NOT_TAKEN)
6910 p = JUMP_LABEL (p);
6912 /* Point to next entry in path, if any. */
6913 path_entry++;
6916 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
6917 was specified, we haven't reached our maximum path length, there are
6918 insns following the target of the jump, this is the only use of the
6919 jump label, and the target label is preceded by a BARRIER.
6921 Alternatively, we can follow the jump if it branches around a
6922 block of code and there are no other branches into the block.
6923 In this case invalidate_skipped_block will be called to invalidate any
6924 registers set in the block when following the jump. */
6926 else if ((follow_jumps || skip_blocks) && path_size < PATHLENGTH - 1
6927 && GET_CODE (p) == JUMP_INSN
6928 && GET_CODE (PATTERN (p)) == SET
6929 && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
6930 && JUMP_LABEL (p) != 0
6931 && LABEL_NUSES (JUMP_LABEL (p)) == 1
6932 && NEXT_INSN (JUMP_LABEL (p)) != 0)
6934 for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
6935 if ((GET_CODE (q) != NOTE
6936 || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
6937 || (PREV_INSN (q) && GET_CODE (PREV_INSN (q)) == CALL_INSN
6938 && find_reg_note (PREV_INSN (q), REG_SETJMP, NULL)))
6939 && (GET_CODE (q) != CODE_LABEL || LABEL_NUSES (q) != 0))
6940 break;
6942 /* If we ran into a BARRIER, this code is an extension of the
6943 basic block when the branch is taken. */
6944 if (follow_jumps && q != 0 && GET_CODE (q) == BARRIER)
6946 /* Don't allow ourself to keep walking around an
6947 always-executed loop. */
6948 if (next_real_insn (q) == next)
6950 p = NEXT_INSN (p);
6951 continue;
6954 /* Similarly, don't put a branch in our path more than once. */
6955 for (i = 0; i < path_entry; i++)
6956 if (data->path[i].branch == p)
6957 break;
6959 if (i != path_entry)
6960 break;
6962 data->path[path_entry].branch = p;
6963 data->path[path_entry++].status = TAKEN;
6965 /* This branch now ends our path. It was possible that we
6966 didn't see this branch the last time around (when the
6967 insn in front of the target was a JUMP_INSN that was
6968 turned into a no-op). */
6969 path_size = path_entry;
6971 p = JUMP_LABEL (p);
6972 /* Mark block so we won't scan it again later. */
6973 PUT_MODE (NEXT_INSN (p), QImode);
6975 /* Detect a branch around a block of code. */
6976 else if (skip_blocks && q != 0 && GET_CODE (q) != CODE_LABEL)
6978 rtx tmp;
6980 if (next_real_insn (q) == next)
6982 p = NEXT_INSN (p);
6983 continue;
6986 for (i = 0; i < path_entry; i++)
6987 if (data->path[i].branch == p)
6988 break;
6990 if (i != path_entry)
6991 break;
6993 /* This is no_labels_between_p (p, q) with an added check for
6994 reaching the end of a function (in case Q precedes P). */
6995 for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
6996 if (GET_CODE (tmp) == CODE_LABEL)
6997 break;
6999 if (tmp == q)
7001 data->path[path_entry].branch = p;
7002 data->path[path_entry++].status = AROUND;
7004 path_size = path_entry;
7006 p = JUMP_LABEL (p);
7007 /* Mark block so we won't scan it again later. */
7008 PUT_MODE (NEXT_INSN (p), QImode);
7012 p = NEXT_INSN (p);
7015 data->low_cuid = low_cuid;
7016 data->high_cuid = high_cuid;
7017 data->nsets = nsets;
7018 data->last = p;
7020 /* If all jumps in the path are not taken, set our path length to zero
7021 so a rescan won't be done. */
7022 for (i = path_size - 1; i >= 0; i--)
7023 if (data->path[i].status != NOT_TAKEN)
7024 break;
7026 if (i == -1)
7027 data->path_size = 0;
7028 else
7029 data->path_size = path_size;
7031 /* End the current branch path. */
7032 data->path[path_size].branch = 0;
7035 /* Perform cse on the instructions of a function.
7036 F is the first instruction.
7037 NREGS is one plus the highest pseudo-reg number used in the instruction.
7039 AFTER_LOOP is 1 if this is the cse call done after loop optimization
7040 (only if -frerun-cse-after-loop).
7042 Returns 1 if jump_optimize should be redone due to simplifications
7043 in conditional jump instructions. */
7046 cse_main (f, nregs, after_loop, file)
7047 rtx f;
7048 int nregs;
7049 int after_loop;
7050 FILE *file;
7052 struct cse_basic_block_data val;
7053 rtx insn = f;
7054 int i;
7056 cse_jumps_altered = 0;
7057 recorded_label_ref = 0;
7058 constant_pool_entries_cost = 0;
7059 val.path_size = 0;
7061 init_recog ();
7062 init_alias_analysis ();
7064 max_reg = nregs;
7066 max_insn_uid = get_max_uid ();
7068 reg_eqv_table = (struct reg_eqv_elem *)
7069 xmalloc (nregs * sizeof (struct reg_eqv_elem));
7071 #ifdef LOAD_EXTEND_OP
7073 /* Allocate scratch rtl here. cse_insn will fill in the memory reference
7074 and change the code and mode as appropriate. */
7075 memory_extend_rtx = gen_rtx_ZERO_EXTEND (VOIDmode, NULL_RTX);
7076 #endif
7078 /* Reset the counter indicating how many elements have been made
7079 thus far. */
7080 n_elements_made = 0;
7082 /* Find the largest uid. */
7084 max_uid = get_max_uid ();
7085 uid_cuid = (int *) xcalloc (max_uid + 1, sizeof (int));
7087 /* Compute the mapping from uids to cuids.
7088 CUIDs are numbers assigned to insns, like uids,
7089 except that cuids increase monotonically through the code.
7090 Don't assign cuids to line-number NOTEs, so that the distance in cuids
7091 between two insns is not affected by -g. */
7093 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
7095 if (GET_CODE (insn) != NOTE
7096 || NOTE_LINE_NUMBER (insn) < 0)
7097 INSN_CUID (insn) = ++i;
7098 else
7099 /* Give a line number note the same cuid as preceding insn. */
7100 INSN_CUID (insn) = i;
7103 ggc_push_context ();
7105 /* Loop over basic blocks.
7106 Compute the maximum number of qty's needed for each basic block
7107 (which is 2 for each SET). */
7108 insn = f;
7109 while (insn)
7111 cse_altered = 0;
7112 cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps, after_loop,
7113 flag_cse_skip_blocks);
7115 /* If this basic block was already processed or has no sets, skip it. */
7116 if (val.nsets == 0 || GET_MODE (insn) == QImode)
7118 PUT_MODE (insn, VOIDmode);
7119 insn = (val.last ? NEXT_INSN (val.last) : 0);
7120 val.path_size = 0;
7121 continue;
7124 cse_basic_block_start = val.low_cuid;
7125 cse_basic_block_end = val.high_cuid;
7126 max_qty = val.nsets * 2;
7128 if (file)
7129 fnotice (file, ";; Processing block from %d to %d, %d sets.\n",
7130 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
7131 val.nsets);
7133 /* Make MAX_QTY bigger to give us room to optimize
7134 past the end of this basic block, if that should prove useful. */
7135 if (max_qty < 500)
7136 max_qty = 500;
7138 max_qty += max_reg;
7140 /* If this basic block is being extended by following certain jumps,
7141 (see `cse_end_of_basic_block'), we reprocess the code from the start.
7142 Otherwise, we start after this basic block. */
7143 if (val.path_size > 0)
7144 cse_basic_block (insn, val.last, val.path, 0);
7145 else
7147 int old_cse_jumps_altered = cse_jumps_altered;
7148 rtx temp;
7150 /* When cse changes a conditional jump to an unconditional
7151 jump, we want to reprocess the block, since it will give
7152 us a new branch path to investigate. */
7153 cse_jumps_altered = 0;
7154 temp = cse_basic_block (insn, val.last, val.path, ! after_loop);
7155 if (cse_jumps_altered == 0
7156 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
7157 insn = temp;
7159 cse_jumps_altered |= old_cse_jumps_altered;
7162 if (cse_altered)
7163 ggc_collect ();
7165 #ifdef USE_C_ALLOCA
7166 alloca (0);
7167 #endif
7170 ggc_pop_context ();
7172 if (max_elements_made < n_elements_made)
7173 max_elements_made = n_elements_made;
7175 /* Clean up. */
7176 end_alias_analysis ();
7177 free (uid_cuid);
7178 free (reg_eqv_table);
7180 return cse_jumps_altered || recorded_label_ref;
7183 /* Process a single basic block. FROM and TO and the limits of the basic
7184 block. NEXT_BRANCH points to the branch path when following jumps or
7185 a null path when not following jumps.
7187 AROUND_LOOP is non-zero if we are to try to cse around to the start of a
7188 loop. This is true when we are being called for the last time on a
7189 block and this CSE pass is before loop.c. */
7191 static rtx
7192 cse_basic_block (from, to, next_branch, around_loop)
7193 rtx from, to;
7194 struct branch_path *next_branch;
7195 int around_loop;
7197 rtx insn;
7198 int to_usage = 0;
7199 rtx libcall_insn = NULL_RTX;
7200 int num_insns = 0;
7202 /* This array is undefined before max_reg, so only allocate
7203 the space actually needed and adjust the start. */
7205 qty_table
7206 = (struct qty_table_elem *) xmalloc ((max_qty - max_reg)
7207 * sizeof (struct qty_table_elem));
7208 qty_table -= max_reg;
7210 new_basic_block ();
7212 /* TO might be a label. If so, protect it from being deleted. */
7213 if (to != 0 && GET_CODE (to) == CODE_LABEL)
7214 ++LABEL_NUSES (to);
7216 for (insn = from; insn != to; insn = NEXT_INSN (insn))
7218 enum rtx_code code = GET_CODE (insn);
7220 /* If we have processed 1,000 insns, flush the hash table to
7221 avoid extreme quadratic behavior. We must not include NOTEs
7222 in the count since there may be more of them when generating
7223 debugging information. If we clear the table at different
7224 times, code generated with -g -O might be different than code
7225 generated with -O but not -g.
7227 ??? This is a real kludge and needs to be done some other way.
7228 Perhaps for 2.9. */
7229 if (code != NOTE && num_insns++ > 1000)
7231 flush_hash_table ();
7232 num_insns = 0;
7235 /* See if this is a branch that is part of the path. If so, and it is
7236 to be taken, do so. */
7237 if (next_branch->branch == insn)
7239 enum taken status = next_branch++->status;
7240 if (status != NOT_TAKEN)
7242 if (status == TAKEN)
7243 record_jump_equiv (insn, 1);
7244 else
7245 invalidate_skipped_block (NEXT_INSN (insn));
7247 /* Set the last insn as the jump insn; it doesn't affect cc0.
7248 Then follow this branch. */
7249 #ifdef HAVE_cc0
7250 prev_insn_cc0 = 0;
7251 #endif
7252 prev_insn = insn;
7253 insn = JUMP_LABEL (insn);
7254 continue;
7258 if (GET_MODE (insn) == QImode)
7259 PUT_MODE (insn, VOIDmode);
7261 if (GET_RTX_CLASS (code) == 'i')
7263 rtx p;
7265 /* Process notes first so we have all notes in canonical forms when
7266 looking for duplicate operations. */
7268 if (REG_NOTES (insn))
7269 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
7271 /* Track when we are inside in LIBCALL block. Inside such a block,
7272 we do not want to record destinations. The last insn of a
7273 LIBCALL block is not considered to be part of the block, since
7274 its destination is the result of the block and hence should be
7275 recorded. */
7277 if (REG_NOTES (insn) != 0)
7279 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
7280 libcall_insn = XEXP (p, 0);
7281 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7282 libcall_insn = 0;
7285 cse_insn (insn, libcall_insn);
7287 /* If we haven't already found an insn where we added a LABEL_REF,
7288 check this one. */
7289 if (GET_CODE (insn) == INSN && ! recorded_label_ref
7290 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
7291 (void *) insn))
7292 recorded_label_ref = 1;
7295 /* If INSN is now an unconditional jump, skip to the end of our
7296 basic block by pretending that we just did the last insn in the
7297 basic block. If we are jumping to the end of our block, show
7298 that we can have one usage of TO. */
7300 if (any_uncondjump_p (insn))
7302 if (to == 0)
7304 free (qty_table + max_reg);
7305 return 0;
7308 if (JUMP_LABEL (insn) == to)
7309 to_usage = 1;
7311 /* Maybe TO was deleted because the jump is unconditional.
7312 If so, there is nothing left in this basic block. */
7313 /* ??? Perhaps it would be smarter to set TO
7314 to whatever follows this insn,
7315 and pretend the basic block had always ended here. */
7316 if (INSN_DELETED_P (to))
7317 break;
7319 insn = PREV_INSN (to);
7322 /* See if it is ok to keep on going past the label
7323 which used to end our basic block. Remember that we incremented
7324 the count of that label, so we decrement it here. If we made
7325 a jump unconditional, TO_USAGE will be one; in that case, we don't
7326 want to count the use in that jump. */
7328 if (to != 0 && NEXT_INSN (insn) == to
7329 && GET_CODE (to) == CODE_LABEL && --LABEL_NUSES (to) == to_usage)
7331 struct cse_basic_block_data val;
7332 rtx prev;
7334 insn = NEXT_INSN (to);
7336 /* If TO was the last insn in the function, we are done. */
7337 if (insn == 0)
7339 free (qty_table + max_reg);
7340 return 0;
7343 /* If TO was preceded by a BARRIER we are done with this block
7344 because it has no continuation. */
7345 prev = prev_nonnote_insn (to);
7346 if (prev && GET_CODE (prev) == BARRIER)
7348 free (qty_table + max_reg);
7349 return insn;
7352 /* Find the end of the following block. Note that we won't be
7353 following branches in this case. */
7354 to_usage = 0;
7355 val.path_size = 0;
7356 cse_end_of_basic_block (insn, &val, 0, 0, 0);
7358 /* If the tables we allocated have enough space left
7359 to handle all the SETs in the next basic block,
7360 continue through it. Otherwise, return,
7361 and that block will be scanned individually. */
7362 if (val.nsets * 2 + next_qty > max_qty)
7363 break;
7365 cse_basic_block_start = val.low_cuid;
7366 cse_basic_block_end = val.high_cuid;
7367 to = val.last;
7369 /* Prevent TO from being deleted if it is a label. */
7370 if (to != 0 && GET_CODE (to) == CODE_LABEL)
7371 ++LABEL_NUSES (to);
7373 /* Back up so we process the first insn in the extension. */
7374 insn = PREV_INSN (insn);
7378 if (next_qty > max_qty)
7379 abort ();
7381 /* If we are running before loop.c, we stopped on a NOTE_INSN_LOOP_END, and
7382 the previous insn is the only insn that branches to the head of a loop,
7383 we can cse into the loop. Don't do this if we changed the jump
7384 structure of a loop unless we aren't going to be following jumps. */
7386 insn = prev_nonnote_insn(to);
7387 if ((cse_jumps_altered == 0
7388 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
7389 && around_loop && to != 0
7390 && GET_CODE (to) == NOTE && NOTE_LINE_NUMBER (to) == NOTE_INSN_LOOP_END
7391 && GET_CODE (insn) == JUMP_INSN
7392 && JUMP_LABEL (insn) != 0
7393 && LABEL_NUSES (JUMP_LABEL (insn)) == 1)
7394 cse_around_loop (JUMP_LABEL (insn));
7396 free (qty_table + max_reg);
7398 return to ? NEXT_INSN (to) : 0;
7401 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
7402 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
7404 static int
7405 check_for_label_ref (rtl, data)
7406 rtx *rtl;
7407 void *data;
7409 rtx insn = (rtx) data;
7411 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
7412 we must rerun jump since it needs to place the note. If this is a
7413 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
7414 since no REG_LABEL will be added. */
7415 return (GET_CODE (*rtl) == LABEL_REF
7416 && ! LABEL_REF_NONLOCAL_P (*rtl)
7417 && LABEL_P (XEXP (*rtl, 0))
7418 && INSN_UID (XEXP (*rtl, 0)) != 0
7419 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
7422 /* Count the number of times registers are used (not set) in X.
7423 COUNTS is an array in which we accumulate the count, INCR is how much
7424 we count each register usage.
7426 Don't count a usage of DEST, which is the SET_DEST of a SET which
7427 contains X in its SET_SRC. This is because such a SET does not
7428 modify the liveness of DEST. */
7430 static void
7431 count_reg_usage (x, counts, dest, incr)
7432 rtx x;
7433 int *counts;
7434 rtx dest;
7435 int incr;
7437 enum rtx_code code;
7438 const char *fmt;
7439 int i, j;
7441 if (x == 0)
7442 return;
7444 switch (code = GET_CODE (x))
7446 case REG:
7447 if (x != dest)
7448 counts[REGNO (x)] += incr;
7449 return;
7451 case PC:
7452 case CC0:
7453 case CONST:
7454 case CONST_INT:
7455 case CONST_DOUBLE:
7456 case CONST_VECTOR:
7457 case SYMBOL_REF:
7458 case LABEL_REF:
7459 return;
7461 case CLOBBER:
7462 /* If we are clobbering a MEM, mark any registers inside the address
7463 as being used. */
7464 if (GET_CODE (XEXP (x, 0)) == MEM)
7465 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
7466 return;
7468 case SET:
7469 /* Unless we are setting a REG, count everything in SET_DEST. */
7470 if (GET_CODE (SET_DEST (x)) != REG)
7471 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
7473 /* If SRC has side-effects, then we can't delete this insn, so the
7474 usage of SET_DEST inside SRC counts.
7476 ??? Strictly-speaking, we might be preserving this insn
7477 because some other SET has side-effects, but that's hard
7478 to do and can't happen now. */
7479 count_reg_usage (SET_SRC (x), counts,
7480 side_effects_p (SET_SRC (x)) ? NULL_RTX : SET_DEST (x),
7481 incr);
7482 return;
7484 case CALL_INSN:
7485 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, NULL_RTX, incr);
7486 /* Fall through. */
7488 case INSN:
7489 case JUMP_INSN:
7490 count_reg_usage (PATTERN (x), counts, NULL_RTX, incr);
7492 /* Things used in a REG_EQUAL note aren't dead since loop may try to
7493 use them. */
7495 count_reg_usage (REG_NOTES (x), counts, NULL_RTX, incr);
7496 return;
7498 case EXPR_LIST:
7499 case INSN_LIST:
7500 if (REG_NOTE_KIND (x) == REG_EQUAL
7501 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE))
7502 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
7503 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
7504 return;
7506 default:
7507 break;
7510 fmt = GET_RTX_FORMAT (code);
7511 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7513 if (fmt[i] == 'e')
7514 count_reg_usage (XEXP (x, i), counts, dest, incr);
7515 else if (fmt[i] == 'E')
7516 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7517 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
7521 /* Return true if set is live. */
7522 static bool
7523 set_live_p (set, insn, counts)
7524 rtx set;
7525 rtx insn ATTRIBUTE_UNUSED; /* Only used with HAVE_cc0. */
7526 int *counts;
7528 #ifdef HAVE_cc0
7529 rtx tem;
7530 #endif
7532 if (set_noop_p (set))
7535 #ifdef HAVE_cc0
7536 else if (GET_CODE (SET_DEST (set)) == CC0
7537 && !side_effects_p (SET_SRC (set))
7538 && ((tem = next_nonnote_insn (insn)) == 0
7539 || !INSN_P (tem)
7540 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
7541 return false;
7542 #endif
7543 else if (GET_CODE (SET_DEST (set)) != REG
7544 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
7545 || counts[REGNO (SET_DEST (set))] != 0
7546 || side_effects_p (SET_SRC (set))
7547 /* An ADDRESSOF expression can turn into a use of the
7548 internal arg pointer, so always consider the
7549 internal arg pointer live. If it is truly dead,
7550 flow will delete the initializing insn. */
7551 || (SET_DEST (set) == current_function_internal_arg_pointer))
7552 return true;
7553 return false;
7556 /* Return true if insn is live. */
7558 static bool
7559 insn_live_p (insn, counts)
7560 rtx insn;
7561 int *counts;
7563 int i;
7564 if (GET_CODE (PATTERN (insn)) == SET)
7565 return set_live_p (PATTERN (insn), insn, counts);
7566 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7568 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7570 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7572 if (GET_CODE (elt) == SET)
7574 if (set_live_p (elt, insn, counts))
7575 return true;
7577 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
7578 return true;
7580 return false;
7582 else
7583 return true;
7586 /* Return true if libcall is dead as a whole. */
7588 static bool
7589 dead_libcall_p (insn)
7590 rtx insn;
7592 rtx note;
7593 /* See if there's a REG_EQUAL note on this insn and try to
7594 replace the source with the REG_EQUAL expression.
7596 We assume that insns with REG_RETVALs can only be reg->reg
7597 copies at this point. */
7598 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
7599 if (note)
7601 rtx set = single_set (insn);
7602 rtx new = simplify_rtx (XEXP (note, 0));
7604 if (!new)
7605 new = XEXP (note, 0);
7607 if (set && validate_change (insn, &SET_SRC (set), new, 0))
7609 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7610 return true;
7613 return false;
7616 /* Scan all the insns and delete any that are dead; i.e., they store a register
7617 that is never used or they copy a register to itself.
7619 This is used to remove insns made obviously dead by cse, loop or other
7620 optimizations. It improves the heuristics in loop since it won't try to
7621 move dead invariants out of loops or make givs for dead quantities. The
7622 remaining passes of the compilation are also sped up. */
7624 void
7625 delete_trivially_dead_insns (insns, nreg, preserve_basic_blocks)
7626 rtx insns;
7627 int nreg;
7628 int preserve_basic_blocks;
7630 int *counts;
7631 rtx insn, prev;
7632 int i;
7633 int in_libcall = 0, dead_libcall = 0;
7634 basic_block bb;
7636 /* First count the number of times each register is used. */
7637 counts = (int *) xcalloc (nreg, sizeof (int));
7638 for (insn = next_real_insn (insns); insn; insn = next_real_insn (insn))
7639 count_reg_usage (insn, counts, NULL_RTX, 1);
7641 /* Go from the last insn to the first and delete insns that only set unused
7642 registers or copy a register to itself. As we delete an insn, remove
7643 usage counts for registers it uses.
7645 The first jump optimization pass may leave a real insn as the last
7646 insn in the function. We must not skip that insn or we may end
7647 up deleting code that is not really dead. */
7648 insn = get_last_insn ();
7649 if (! INSN_P (insn))
7650 insn = prev_real_insn (insn);
7652 if (!preserve_basic_blocks)
7653 for (; insn; insn = prev)
7655 int live_insn = 0;
7657 prev = prev_real_insn (insn);
7659 /* Don't delete any insns that are part of a libcall block unless
7660 we can delete the whole libcall block.
7662 Flow or loop might get confused if we did that. Remember
7663 that we are scanning backwards. */
7664 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7666 in_libcall = 1;
7667 live_insn = 1;
7668 dead_libcall = dead_libcall_p (insn);
7670 else if (in_libcall)
7671 live_insn = ! dead_libcall;
7672 else
7673 live_insn = insn_live_p (insn, counts);
7675 /* If this is a dead insn, delete it and show registers in it aren't
7676 being used. */
7678 if (! live_insn)
7680 count_reg_usage (insn, counts, NULL_RTX, -1);
7681 delete_related_insns (insn);
7684 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7686 in_libcall = 0;
7687 dead_libcall = 0;
7690 else
7691 for (i = 0; i < n_basic_blocks; i++)
7692 for (bb = BASIC_BLOCK (i), insn = bb->end; insn != bb->head; insn = prev)
7694 int live_insn = 0;
7696 prev = PREV_INSN (insn);
7697 if (!INSN_P (insn))
7698 continue;
7700 /* Don't delete any insns that are part of a libcall block unless
7701 we can delete the whole libcall block.
7703 Flow or loop might get confused if we did that. Remember
7704 that we are scanning backwards. */
7705 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7707 in_libcall = 1;
7708 live_insn = 1;
7709 dead_libcall = dead_libcall_p (insn);
7711 else if (in_libcall)
7712 live_insn = ! dead_libcall;
7713 else
7714 live_insn = insn_live_p (insn, counts);
7716 /* If this is a dead insn, delete it and show registers in it aren't
7717 being used. */
7719 if (! live_insn)
7721 count_reg_usage (insn, counts, NULL_RTX, -1);
7722 delete_insn (insn);
7725 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7727 in_libcall = 0;
7728 dead_libcall = 0;
7732 /* Clean up. */
7733 free (counts);