1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file contains the variable tracking pass. It computes where
22 variables are located (which registers or where in memory) at each position
23 in instruction stream and emits notes describing the locations.
24 Debug information (DWARF2 location lists) is finally generated from
26 With this debug information, it is possible to show variables
27 even when debugging optimized code.
29 How does the variable tracking pass work?
31 First, it scans RTL code for uses, stores and clobbers (register/memory
32 references in instructions), for call insns and for stack adjustments
33 separately for each basic block and saves them to an array of micro
35 The micro operations of one instruction are ordered so that
36 pre-modifying stack adjustment < use < use with no var < call insn <
37 < set < clobber < post-modifying stack adjustment
39 Then, a forward dataflow analysis is performed to find out how locations
40 of variables change through code and to propagate the variable locations
41 along control flow graph.
42 The IN set for basic block BB is computed as a union of OUT sets of BB's
43 predecessors, the OUT set for BB is copied from the IN set for BB and
44 is changed according to micro operations in BB.
46 The IN and OUT sets for basic blocks consist of a current stack adjustment
47 (used for adjusting offset of variables addressed using stack pointer),
48 the table of structures describing the locations of parts of a variable
49 and for each physical register a linked list for each physical register.
50 The linked list is a list of variable parts stored in the register,
51 i.e. it is a list of triplets (reg, decl, offset) where decl is
52 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
53 effective deleting appropriate variable parts when we set or clobber the
56 There may be more than one variable part in a register. The linked lists
57 should be pretty short so it is a good data structure here.
58 For example in the following code, register allocator may assign same
59 register to variables A and B, and both of them are stored in the same
72 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
73 are emitted to appropriate positions in RTL code. Each such a note describes
74 the location of one variable at the point in instruction stream where the
75 note is. There is no need to emit a note for each variable before each
76 instruction, we only emit these notes where the location of variable changes
77 (this means that we also emit notes for changes between the OUT set of the
78 previous block and the IN set of the current block).
80 The notes consist of two parts:
81 1. the declaration (from REG_EXPR or MEM_EXPR)
82 2. the location of a variable - it is either a simple register/memory
83 reference (for simple variables, for example int),
84 or a parallel of register/memory references (for a large variables
85 which consist of several parts, for example long long).
91 #include "coretypes.h"
95 #include "hard-reg-set.h"
96 #include "basic-block.h"
99 #include "insn-config.h"
102 #include "alloc-pool.h"
108 #include "tree-pass.h"
109 #include "tree-flow.h"
114 #include "diagnostic.h"
115 #include "tree-pretty-print.h"
116 #include "pointer-set.h"
119 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
120 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
121 Currently the value is the same as IDENTIFIER_NODE, which has such
122 a property. If this compile time assertion ever fails, make sure that
123 the new tree code that equals (int) VALUE has the same property. */
124 extern char check_value_val
[(int) VALUE
== (int) IDENTIFIER_NODE
? 1 : -1];
126 /* Type of micro operation. */
127 enum micro_operation_type
129 MO_USE
, /* Use location (REG or MEM). */
130 MO_USE_NO_VAR
,/* Use location which is not associated with a variable
131 or the variable is not trackable. */
132 MO_VAL_USE
, /* Use location which is associated with a value. */
133 MO_VAL_LOC
, /* Use location which appears in a debug insn. */
134 MO_VAL_SET
, /* Set location associated with a value. */
135 MO_SET
, /* Set location. */
136 MO_COPY
, /* Copy the same portion of a variable from one
137 location to another. */
138 MO_CLOBBER
, /* Clobber location. */
139 MO_CALL
, /* Call insn. */
140 MO_ADJUST
/* Adjust stack pointer. */
144 static const char * const ATTRIBUTE_UNUSED
145 micro_operation_type_name
[] = {
158 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
159 Notes emitted as AFTER_CALL are to take effect during the call,
160 rather than after the call. */
163 EMIT_NOTE_BEFORE_INSN
,
164 EMIT_NOTE_AFTER_INSN
,
165 EMIT_NOTE_AFTER_CALL_INSN
168 /* Structure holding information about micro operation. */
169 typedef struct micro_operation_def
171 /* Type of micro operation. */
172 enum micro_operation_type type
;
174 /* The instruction which the micro operation is in, for MO_USE,
175 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
176 instruction or note in the original flow (before any var-tracking
177 notes are inserted, to simplify emission of notes), for MO_SET
182 /* Location. For MO_SET and MO_COPY, this is the SET that
183 performs the assignment, if known, otherwise it is the target
184 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
185 CONCAT of the VALUE and the LOC associated with it. For
186 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
187 associated with it. */
190 /* Stack adjustment. */
191 HOST_WIDE_INT adjust
;
195 DEF_VEC_O(micro_operation
);
196 DEF_VEC_ALLOC_O(micro_operation
,heap
);
198 /* A declaration of a variable, or an RTL value being handled like a
200 typedef void *decl_or_value
;
202 /* Structure for passing some other parameters to function
203 emit_note_insn_var_location. */
204 typedef struct emit_note_data_def
206 /* The instruction which the note will be emitted before/after. */
209 /* Where the note will be emitted (before/after insn)? */
210 enum emit_note_where where
;
212 /* The variables and values active at this point. */
216 /* Description of location of a part of a variable. The content of a physical
217 register is described by a chain of these structures.
218 The chains are pretty short (usually 1 or 2 elements) and thus
219 chain is the best data structure. */
220 typedef struct attrs_def
222 /* Pointer to next member of the list. */
223 struct attrs_def
*next
;
225 /* The rtx of register. */
228 /* The declaration corresponding to LOC. */
231 /* Offset from start of DECL. */
232 HOST_WIDE_INT offset
;
235 /* Structure holding a refcounted hash table. If refcount > 1,
236 it must be first unshared before modified. */
237 typedef struct shared_hash_def
239 /* Reference count. */
242 /* Actual hash table. */
246 /* Structure holding the IN or OUT set for a basic block. */
247 typedef struct dataflow_set_def
249 /* Adjustment of stack offset. */
250 HOST_WIDE_INT stack_adjust
;
252 /* Attributes for registers (lists of attrs). */
253 attrs regs
[FIRST_PSEUDO_REGISTER
];
255 /* Variable locations. */
258 /* Vars that is being traversed. */
259 shared_hash traversed_vars
;
262 /* The structure (one for each basic block) containing the information
263 needed for variable tracking. */
264 typedef struct variable_tracking_info_def
266 /* The vector of micro operations. */
267 VEC(micro_operation
, heap
) *mos
;
269 /* The IN and OUT set for dataflow analysis. */
273 /* The permanent-in dataflow set for this block. This is used to
274 hold values for which we had to compute entry values. ??? This
275 should probably be dynamically allocated, to avoid using more
276 memory in non-debug builds. */
279 /* Has the block been visited in DFS? */
282 /* Has the block been flooded in VTA? */
285 } *variable_tracking_info
;
287 /* Structure for chaining the locations. */
288 typedef struct location_chain_def
290 /* Next element in the chain. */
291 struct location_chain_def
*next
;
293 /* The location (REG, MEM or VALUE). */
296 /* The "value" stored in this location. */
300 enum var_init_status init
;
303 /* Structure describing one part of variable. */
304 typedef struct variable_part_def
306 /* Chain of locations of the part. */
307 location_chain loc_chain
;
309 /* Location which was last emitted to location list. */
312 /* The offset in the variable. */
313 HOST_WIDE_INT offset
;
316 /* Maximum number of location parts. */
317 #define MAX_VAR_PARTS 16
319 /* Structure describing where the variable is located. */
320 typedef struct variable_def
322 /* The declaration of the variable, or an RTL value being handled
323 like a declaration. */
326 /* Reference count. */
329 /* Number of variable parts. */
332 /* True if this variable changed (any of its) cur_loc fields
333 during the current emit_notes_for_changes resp.
334 emit_notes_for_differences call. */
335 bool cur_loc_changed
;
337 /* True if this variable_def struct is currently in the
338 changed_variables hash table. */
339 bool in_changed_variables
;
341 /* The variable parts. */
342 variable_part var_part
[1];
344 typedef const struct variable_def
*const_variable
;
346 /* Structure for chaining backlinks from referenced VALUEs to
347 DVs that are referencing them. */
348 typedef struct value_chain_def
350 /* Next value_chain entry. */
351 struct value_chain_def
*next
;
353 /* The declaration of the variable, or an RTL value
354 being handled like a declaration, whose var_parts[0].loc_chain
355 references the VALUE owning this value_chain. */
358 /* Reference count. */
361 typedef const struct value_chain_def
*const_value_chain
;
363 /* Pointer to the BB's information specific to variable tracking pass. */
364 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
366 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
367 #define INT_MEM_OFFSET(mem) (MEM_OFFSET (mem) ? INTVAL (MEM_OFFSET (mem)) : 0)
369 /* Alloc pool for struct attrs_def. */
370 static alloc_pool attrs_pool
;
372 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
373 static alloc_pool var_pool
;
375 /* Alloc pool for struct variable_def with a single var_part entry. */
376 static alloc_pool valvar_pool
;
378 /* Alloc pool for struct location_chain_def. */
379 static alloc_pool loc_chain_pool
;
381 /* Alloc pool for struct shared_hash_def. */
382 static alloc_pool shared_hash_pool
;
384 /* Alloc pool for struct value_chain_def. */
385 static alloc_pool value_chain_pool
;
387 /* Changed variables, notes will be emitted for them. */
388 static htab_t changed_variables
;
390 /* Links from VALUEs to DVs referencing them in their current loc_chains. */
391 static htab_t value_chains
;
393 /* Shall notes be emitted? */
394 static bool emit_notes
;
396 /* Empty shared hashtable. */
397 static shared_hash empty_shared_hash
;
399 /* Scratch register bitmap used by cselib_expand_value_rtx. */
400 static bitmap scratch_regs
= NULL
;
402 /* Variable used to tell whether cselib_process_insn called our hook. */
403 static bool cselib_hook_called
;
405 /* Local function prototypes. */
406 static void stack_adjust_offset_pre_post (rtx
, HOST_WIDE_INT
*,
408 static void insn_stack_adjust_offset_pre_post (rtx
, HOST_WIDE_INT
*,
410 static bool vt_stack_adjustments (void);
411 static hashval_t
variable_htab_hash (const void *);
412 static int variable_htab_eq (const void *, const void *);
413 static void variable_htab_free (void *);
415 static void init_attrs_list_set (attrs
*);
416 static void attrs_list_clear (attrs
*);
417 static attrs
attrs_list_member (attrs
, decl_or_value
, HOST_WIDE_INT
);
418 static void attrs_list_insert (attrs
*, decl_or_value
, HOST_WIDE_INT
, rtx
);
419 static void attrs_list_copy (attrs
*, attrs
);
420 static void attrs_list_union (attrs
*, attrs
);
422 static void **unshare_variable (dataflow_set
*set
, void **slot
, variable var
,
423 enum var_init_status
);
424 static void vars_copy (htab_t
, htab_t
);
425 static tree
var_debug_decl (tree
);
426 static void var_reg_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
427 static void var_reg_delete_and_set (dataflow_set
*, rtx
, bool,
428 enum var_init_status
, rtx
);
429 static void var_reg_delete (dataflow_set
*, rtx
, bool);
430 static void var_regno_delete (dataflow_set
*, int);
431 static void var_mem_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
432 static void var_mem_delete_and_set (dataflow_set
*, rtx
, bool,
433 enum var_init_status
, rtx
);
434 static void var_mem_delete (dataflow_set
*, rtx
, bool);
436 static void dataflow_set_init (dataflow_set
*);
437 static void dataflow_set_clear (dataflow_set
*);
438 static void dataflow_set_copy (dataflow_set
*, dataflow_set
*);
439 static int variable_union_info_cmp_pos (const void *, const void *);
440 static void dataflow_set_union (dataflow_set
*, dataflow_set
*);
441 static location_chain
find_loc_in_1pdv (rtx
, variable
, htab_t
);
442 static bool canon_value_cmp (rtx
, rtx
);
443 static int loc_cmp (rtx
, rtx
);
444 static bool variable_part_different_p (variable_part
*, variable_part
*);
445 static bool onepart_variable_different_p (variable
, variable
);
446 static bool variable_different_p (variable
, variable
);
447 static bool dataflow_set_different (dataflow_set
*, dataflow_set
*);
448 static void dataflow_set_destroy (dataflow_set
*);
450 static bool contains_symbol_ref (rtx
);
451 static bool track_expr_p (tree
, bool);
452 static bool same_variable_part_p (rtx
, tree
, HOST_WIDE_INT
);
453 static int add_uses (rtx
*, void *);
454 static void add_uses_1 (rtx
*, void *);
455 static void add_stores (rtx
, const_rtx
, void *);
456 static bool compute_bb_dataflow (basic_block
);
457 static bool vt_find_locations (void);
459 static void dump_attrs_list (attrs
);
460 static int dump_var_slot (void **, void *);
461 static void dump_var (variable
);
462 static void dump_vars (htab_t
);
463 static void dump_dataflow_set (dataflow_set
*);
464 static void dump_dataflow_sets (void);
466 static void variable_was_changed (variable
, dataflow_set
*);
467 static void **set_slot_part (dataflow_set
*, rtx
, void **,
468 decl_or_value
, HOST_WIDE_INT
,
469 enum var_init_status
, rtx
);
470 static void set_variable_part (dataflow_set
*, rtx
,
471 decl_or_value
, HOST_WIDE_INT
,
472 enum var_init_status
, rtx
, enum insert_option
);
473 static void **clobber_slot_part (dataflow_set
*, rtx
,
474 void **, HOST_WIDE_INT
, rtx
);
475 static void clobber_variable_part (dataflow_set
*, rtx
,
476 decl_or_value
, HOST_WIDE_INT
, rtx
);
477 static void **delete_slot_part (dataflow_set
*, rtx
, void **, HOST_WIDE_INT
);
478 static void delete_variable_part (dataflow_set
*, rtx
,
479 decl_or_value
, HOST_WIDE_INT
);
480 static int emit_note_insn_var_location (void **, void *);
481 static void emit_notes_for_changes (rtx
, enum emit_note_where
, shared_hash
);
482 static int emit_notes_for_differences_1 (void **, void *);
483 static int emit_notes_for_differences_2 (void **, void *);
484 static void emit_notes_for_differences (rtx
, dataflow_set
*, dataflow_set
*);
485 static void emit_notes_in_bb (basic_block
, dataflow_set
*);
486 static void vt_emit_notes (void);
488 static bool vt_get_decl_and_offset (rtx
, tree
*, HOST_WIDE_INT
*);
489 static void vt_add_function_parameters (void);
490 static bool vt_initialize (void);
491 static void vt_finalize (void);
493 /* Given a SET, calculate the amount of stack adjustment it contains
494 PRE- and POST-modifying stack pointer.
495 This function is similar to stack_adjust_offset. */
498 stack_adjust_offset_pre_post (rtx pattern
, HOST_WIDE_INT
*pre
,
501 rtx src
= SET_SRC (pattern
);
502 rtx dest
= SET_DEST (pattern
);
505 if (dest
== stack_pointer_rtx
)
507 /* (set (reg sp) (plus (reg sp) (const_int))) */
508 code
= GET_CODE (src
);
509 if (! (code
== PLUS
|| code
== MINUS
)
510 || XEXP (src
, 0) != stack_pointer_rtx
511 || !CONST_INT_P (XEXP (src
, 1)))
515 *post
+= INTVAL (XEXP (src
, 1));
517 *post
-= INTVAL (XEXP (src
, 1));
519 else if (MEM_P (dest
))
521 /* (set (mem (pre_dec (reg sp))) (foo)) */
522 src
= XEXP (dest
, 0);
523 code
= GET_CODE (src
);
529 if (XEXP (src
, 0) == stack_pointer_rtx
)
531 rtx val
= XEXP (XEXP (src
, 1), 1);
532 /* We handle only adjustments by constant amount. */
533 gcc_assert (GET_CODE (XEXP (src
, 1)) == PLUS
&&
536 if (code
== PRE_MODIFY
)
537 *pre
-= INTVAL (val
);
539 *post
-= INTVAL (val
);
545 if (XEXP (src
, 0) == stack_pointer_rtx
)
547 *pre
+= GET_MODE_SIZE (GET_MODE (dest
));
553 if (XEXP (src
, 0) == stack_pointer_rtx
)
555 *post
+= GET_MODE_SIZE (GET_MODE (dest
));
561 if (XEXP (src
, 0) == stack_pointer_rtx
)
563 *pre
-= GET_MODE_SIZE (GET_MODE (dest
));
569 if (XEXP (src
, 0) == stack_pointer_rtx
)
571 *post
-= GET_MODE_SIZE (GET_MODE (dest
));
582 /* Given an INSN, calculate the amount of stack adjustment it contains
583 PRE- and POST-modifying stack pointer. */
586 insn_stack_adjust_offset_pre_post (rtx insn
, HOST_WIDE_INT
*pre
,
594 pattern
= PATTERN (insn
);
595 if (RTX_FRAME_RELATED_P (insn
))
597 rtx expr
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
599 pattern
= XEXP (expr
, 0);
602 if (GET_CODE (pattern
) == SET
)
603 stack_adjust_offset_pre_post (pattern
, pre
, post
);
604 else if (GET_CODE (pattern
) == PARALLEL
605 || GET_CODE (pattern
) == SEQUENCE
)
609 /* There may be stack adjustments inside compound insns. Search
611 for ( i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
612 if (GET_CODE (XVECEXP (pattern
, 0, i
)) == SET
)
613 stack_adjust_offset_pre_post (XVECEXP (pattern
, 0, i
), pre
, post
);
617 /* Compute stack adjustments for all blocks by traversing DFS tree.
618 Return true when the adjustments on all incoming edges are consistent.
619 Heavily borrowed from pre_and_rev_post_order_compute. */
622 vt_stack_adjustments (void)
624 edge_iterator
*stack
;
627 /* Initialize entry block. */
628 VTI (ENTRY_BLOCK_PTR
)->visited
= true;
629 VTI (ENTRY_BLOCK_PTR
)->in
.stack_adjust
= INCOMING_FRAME_SP_OFFSET
;
630 VTI (ENTRY_BLOCK_PTR
)->out
.stack_adjust
= INCOMING_FRAME_SP_OFFSET
;
632 /* Allocate stack for back-tracking up CFG. */
633 stack
= XNEWVEC (edge_iterator
, n_basic_blocks
+ 1);
636 /* Push the first edge on to the stack. */
637 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR
->succs
);
645 /* Look at the edge on the top of the stack. */
647 src
= ei_edge (ei
)->src
;
648 dest
= ei_edge (ei
)->dest
;
650 /* Check if the edge destination has been visited yet. */
651 if (!VTI (dest
)->visited
)
654 HOST_WIDE_INT pre
, post
, offset
;
655 VTI (dest
)->visited
= true;
656 VTI (dest
)->in
.stack_adjust
= offset
= VTI (src
)->out
.stack_adjust
;
658 if (dest
!= EXIT_BLOCK_PTR
)
659 for (insn
= BB_HEAD (dest
);
660 insn
!= NEXT_INSN (BB_END (dest
));
661 insn
= NEXT_INSN (insn
))
664 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
665 offset
+= pre
+ post
;
668 VTI (dest
)->out
.stack_adjust
= offset
;
670 if (EDGE_COUNT (dest
->succs
) > 0)
671 /* Since the DEST node has been visited for the first
672 time, check its successors. */
673 stack
[sp
++] = ei_start (dest
->succs
);
677 /* Check whether the adjustments on the edges are the same. */
678 if (VTI (dest
)->in
.stack_adjust
!= VTI (src
)->out
.stack_adjust
)
684 if (! ei_one_before_end_p (ei
))
685 /* Go to the next edge. */
686 ei_next (&stack
[sp
- 1]);
688 /* Return to previous level if there are no more edges. */
697 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
698 hard_frame_pointer_rtx is being mapped to it and offset for it. */
699 static rtx cfa_base_rtx
;
700 static HOST_WIDE_INT cfa_base_offset
;
702 /* Compute a CFA-based value for the stack pointer. */
705 compute_cfa_pointer (HOST_WIDE_INT adjustment
)
707 return plus_constant (cfa_base_rtx
, adjustment
+ cfa_base_offset
);
710 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
711 or -1 if the replacement shouldn't be done. */
712 static HOST_WIDE_INT hard_frame_pointer_adjustment
= -1;
714 /* Data for adjust_mems callback. */
716 struct adjust_mem_data
719 enum machine_mode mem_mode
;
720 HOST_WIDE_INT stack_adjust
;
724 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
725 transformation of wider mode arithmetics to narrower mode,
726 -1 if it is suitable and subexpressions shouldn't be
727 traversed and 0 if it is suitable and subexpressions should
728 be traversed. Called through for_each_rtx. */
731 use_narrower_mode_test (rtx
*loc
, void *data
)
733 rtx subreg
= (rtx
) data
;
735 if (CONSTANT_P (*loc
))
737 switch (GET_CODE (*loc
))
740 if (cselib_lookup (*loc
, GET_MODE (SUBREG_REG (subreg
)), 0))
748 if (for_each_rtx (&XEXP (*loc
, 0), use_narrower_mode_test
, data
))
757 /* Transform X into narrower mode MODE from wider mode WMODE. */
760 use_narrower_mode (rtx x
, enum machine_mode mode
, enum machine_mode wmode
)
764 return lowpart_subreg (mode
, x
, wmode
);
765 switch (GET_CODE (x
))
768 return lowpart_subreg (mode
, x
, wmode
);
772 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
773 op1
= use_narrower_mode (XEXP (x
, 1), mode
, wmode
);
774 return simplify_gen_binary (GET_CODE (x
), mode
, op0
, op1
);
776 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
777 return simplify_gen_binary (ASHIFT
, mode
, op0
, XEXP (x
, 1));
783 /* Helper function for adjusting used MEMs. */
786 adjust_mems (rtx loc
, const_rtx old_rtx
, void *data
)
788 struct adjust_mem_data
*amd
= (struct adjust_mem_data
*) data
;
789 rtx mem
, addr
= loc
, tem
;
790 enum machine_mode mem_mode_save
;
792 switch (GET_CODE (loc
))
795 /* Don't do any sp or fp replacements outside of MEM addresses
797 if (amd
->mem_mode
== VOIDmode
&& amd
->store
)
799 if (loc
== stack_pointer_rtx
800 && !frame_pointer_needed
802 return compute_cfa_pointer (amd
->stack_adjust
);
803 else if (loc
== hard_frame_pointer_rtx
804 && frame_pointer_needed
805 && hard_frame_pointer_adjustment
!= -1
807 return compute_cfa_pointer (hard_frame_pointer_adjustment
);
813 mem
= targetm
.delegitimize_address (mem
);
814 if (mem
!= loc
&& !MEM_P (mem
))
815 return simplify_replace_fn_rtx (mem
, old_rtx
, adjust_mems
, data
);
818 addr
= XEXP (mem
, 0);
819 mem_mode_save
= amd
->mem_mode
;
820 amd
->mem_mode
= GET_MODE (mem
);
821 store_save
= amd
->store
;
823 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
824 amd
->store
= store_save
;
825 amd
->mem_mode
= mem_mode_save
;
827 addr
= targetm
.delegitimize_address (addr
);
828 if (addr
!= XEXP (mem
, 0))
829 mem
= replace_equiv_address_nv (mem
, addr
);
831 mem
= avoid_constant_pool_reference (mem
);
835 addr
= gen_rtx_PLUS (GET_MODE (loc
), XEXP (loc
, 0),
836 GEN_INT (GET_CODE (loc
) == PRE_INC
837 ? GET_MODE_SIZE (amd
->mem_mode
)
838 : -GET_MODE_SIZE (amd
->mem_mode
)));
842 addr
= XEXP (loc
, 0);
843 gcc_assert (amd
->mem_mode
!= VOIDmode
&& amd
->mem_mode
!= BLKmode
);
844 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
845 tem
= gen_rtx_PLUS (GET_MODE (loc
), XEXP (loc
, 0),
846 GEN_INT ((GET_CODE (loc
) == PRE_INC
847 || GET_CODE (loc
) == POST_INC
)
848 ? GET_MODE_SIZE (amd
->mem_mode
)
849 : -GET_MODE_SIZE (amd
->mem_mode
)));
850 amd
->side_effects
= alloc_EXPR_LIST (0,
851 gen_rtx_SET (VOIDmode
,
857 addr
= XEXP (loc
, 1);
860 addr
= XEXP (loc
, 0);
861 gcc_assert (amd
->mem_mode
!= VOIDmode
);
862 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
863 amd
->side_effects
= alloc_EXPR_LIST (0,
864 gen_rtx_SET (VOIDmode
,
870 /* First try without delegitimization of whole MEMs and
871 avoid_constant_pool_reference, which is more likely to succeed. */
872 store_save
= amd
->store
;
874 addr
= simplify_replace_fn_rtx (SUBREG_REG (loc
), old_rtx
, adjust_mems
,
876 amd
->store
= store_save
;
877 mem
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
878 if (mem
== SUBREG_REG (loc
))
883 tem
= simplify_gen_subreg (GET_MODE (loc
), mem
,
884 GET_MODE (SUBREG_REG (loc
)),
888 tem
= simplify_gen_subreg (GET_MODE (loc
), addr
,
889 GET_MODE (SUBREG_REG (loc
)),
892 tem
= gen_rtx_raw_SUBREG (GET_MODE (loc
), addr
, SUBREG_BYTE (loc
));
894 if (MAY_HAVE_DEBUG_INSNS
895 && GET_CODE (tem
) == SUBREG
896 && (GET_CODE (SUBREG_REG (tem
)) == PLUS
897 || GET_CODE (SUBREG_REG (tem
)) == MINUS
898 || GET_CODE (SUBREG_REG (tem
)) == MULT
899 || GET_CODE (SUBREG_REG (tem
)) == ASHIFT
)
900 && GET_MODE_CLASS (GET_MODE (tem
)) == MODE_INT
901 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem
))) == MODE_INT
902 && GET_MODE_SIZE (GET_MODE (tem
))
903 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem
)))
904 && subreg_lowpart_p (tem
)
905 && !for_each_rtx (&SUBREG_REG (tem
), use_narrower_mode_test
, tem
))
906 return use_narrower_mode (SUBREG_REG (tem
), GET_MODE (tem
),
907 GET_MODE (SUBREG_REG (tem
)));
910 /* Don't do any replacements in second and following
911 ASM_OPERANDS of inline-asm with multiple sets.
912 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
913 and ASM_OPERANDS_LABEL_VEC need to be equal between
914 all the ASM_OPERANDs in the insn and adjust_insn will
916 if (ASM_OPERANDS_OUTPUT_IDX (loc
) != 0)
925 /* Helper function for replacement of uses. */
928 adjust_mem_uses (rtx
*x
, void *data
)
930 rtx new_x
= simplify_replace_fn_rtx (*x
, NULL_RTX
, adjust_mems
, data
);
932 validate_change (NULL_RTX
, x
, new_x
, true);
935 /* Helper function for replacement of stores. */
938 adjust_mem_stores (rtx loc
, const_rtx expr
, void *data
)
942 rtx new_dest
= simplify_replace_fn_rtx (SET_DEST (expr
), NULL_RTX
,
944 if (new_dest
!= SET_DEST (expr
))
946 rtx xexpr
= CONST_CAST_RTX (expr
);
947 validate_change (NULL_RTX
, &SET_DEST (xexpr
), new_dest
, true);
952 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
953 replace them with their value in the insn and add the side-effects
954 as other sets to the insn. */
957 adjust_insn (basic_block bb
, rtx insn
)
959 struct adjust_mem_data amd
;
961 amd
.mem_mode
= VOIDmode
;
962 amd
.stack_adjust
= -VTI (bb
)->out
.stack_adjust
;
963 amd
.side_effects
= NULL_RTX
;
966 note_stores (PATTERN (insn
), adjust_mem_stores
, &amd
);
969 if (GET_CODE (PATTERN (insn
)) == PARALLEL
970 && asm_noperands (PATTERN (insn
)) > 0
971 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
976 /* inline-asm with multiple sets is tiny bit more complicated,
977 because the 3 vectors in ASM_OPERANDS need to be shared between
978 all ASM_OPERANDS in the instruction. adjust_mems will
979 not touch ASM_OPERANDS other than the first one, asm_noperands
980 test above needs to be called before that (otherwise it would fail)
981 and afterwards this code fixes it up. */
982 note_uses (&PATTERN (insn
), adjust_mem_uses
, &amd
);
983 body
= PATTERN (insn
);
984 set0
= XVECEXP (body
, 0, 0);
985 gcc_checking_assert (GET_CODE (set0
) == SET
986 && GET_CODE (SET_SRC (set0
)) == ASM_OPERANDS
987 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0
)) == 0);
988 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
989 if (GET_CODE (XVECEXP (body
, 0, i
)) != SET
)
993 set
= XVECEXP (body
, 0, i
);
994 gcc_checking_assert (GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
995 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set
))
997 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set
))
998 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0
))
999 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set
))
1000 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0
))
1001 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set
))
1002 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0
)))
1004 rtx newsrc
= shallow_copy_rtx (SET_SRC (set
));
1005 ASM_OPERANDS_INPUT_VEC (newsrc
)
1006 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0
));
1007 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc
)
1008 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0
));
1009 ASM_OPERANDS_LABEL_VEC (newsrc
)
1010 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0
));
1011 validate_change (NULL_RTX
, &SET_SRC (set
), newsrc
, true);
1016 note_uses (&PATTERN (insn
), adjust_mem_uses
, &amd
);
1018 /* For read-only MEMs containing some constant, prefer those
1020 set
= single_set (insn
);
1021 if (set
&& MEM_P (SET_SRC (set
)) && MEM_READONLY_P (SET_SRC (set
)))
1023 rtx note
= find_reg_equal_equiv_note (insn
);
1025 if (note
&& CONSTANT_P (XEXP (note
, 0)))
1026 validate_change (NULL_RTX
, &SET_SRC (set
), XEXP (note
, 0), true);
1029 if (amd
.side_effects
)
1031 rtx
*pat
, new_pat
, s
;
1034 pat
= &PATTERN (insn
);
1035 if (GET_CODE (*pat
) == COND_EXEC
)
1036 pat
= &COND_EXEC_CODE (*pat
);
1037 if (GET_CODE (*pat
) == PARALLEL
)
1038 oldn
= XVECLEN (*pat
, 0);
1041 for (s
= amd
.side_effects
, newn
= 0; s
; newn
++)
1043 new_pat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (oldn
+ newn
));
1044 if (GET_CODE (*pat
) == PARALLEL
)
1045 for (i
= 0; i
< oldn
; i
++)
1046 XVECEXP (new_pat
, 0, i
) = XVECEXP (*pat
, 0, i
);
1048 XVECEXP (new_pat
, 0, 0) = *pat
;
1049 for (s
= amd
.side_effects
, i
= oldn
; i
< oldn
+ newn
; i
++, s
= XEXP (s
, 1))
1050 XVECEXP (new_pat
, 0, i
) = XEXP (s
, 0);
1051 free_EXPR_LIST_list (&amd
.side_effects
);
1052 validate_change (NULL_RTX
, pat
, new_pat
, true);
1056 /* Return true if a decl_or_value DV is a DECL or NULL. */
1058 dv_is_decl_p (decl_or_value dv
)
1060 return !dv
|| (int) TREE_CODE ((tree
) dv
) != (int) VALUE
;
1063 /* Return true if a decl_or_value is a VALUE rtl. */
1065 dv_is_value_p (decl_or_value dv
)
1067 return dv
&& !dv_is_decl_p (dv
);
1070 /* Return the decl in the decl_or_value. */
1072 dv_as_decl (decl_or_value dv
)
1074 gcc_checking_assert (dv_is_decl_p (dv
));
1078 /* Return the value in the decl_or_value. */
1080 dv_as_value (decl_or_value dv
)
1082 gcc_checking_assert (dv_is_value_p (dv
));
1086 /* Return the opaque pointer in the decl_or_value. */
1087 static inline void *
1088 dv_as_opaque (decl_or_value dv
)
1093 /* Return true if a decl_or_value must not have more than one variable
1096 dv_onepart_p (decl_or_value dv
)
1100 if (!MAY_HAVE_DEBUG_INSNS
)
1103 if (dv_is_value_p (dv
))
1106 decl
= dv_as_decl (dv
);
1111 if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
1114 return (target_for_debug_bind (decl
) != NULL_TREE
);
1117 /* Return the variable pool to be used for dv, depending on whether it
1118 can have multiple parts or not. */
1119 static inline alloc_pool
1120 dv_pool (decl_or_value dv
)
1122 return dv_onepart_p (dv
) ? valvar_pool
: var_pool
;
1125 /* Build a decl_or_value out of a decl. */
1126 static inline decl_or_value
1127 dv_from_decl (tree decl
)
1131 gcc_checking_assert (dv_is_decl_p (dv
));
1135 /* Build a decl_or_value out of a value. */
1136 static inline decl_or_value
1137 dv_from_value (rtx value
)
1141 gcc_checking_assert (dv_is_value_p (dv
));
1145 extern void debug_dv (decl_or_value dv
);
1148 debug_dv (decl_or_value dv
)
1150 if (dv_is_value_p (dv
))
1151 debug_rtx (dv_as_value (dv
));
1153 debug_generic_stmt (dv_as_decl (dv
));
1156 typedef unsigned int dvuid
;
1158 /* Return the uid of DV. */
1161 dv_uid (decl_or_value dv
)
1163 if (dv_is_value_p (dv
))
1164 return CSELIB_VAL_PTR (dv_as_value (dv
))->uid
;
1166 return DECL_UID (dv_as_decl (dv
));
1169 /* Compute the hash from the uid. */
1171 static inline hashval_t
1172 dv_uid2hash (dvuid uid
)
1177 /* The hash function for a mask table in a shared_htab chain. */
1179 static inline hashval_t
1180 dv_htab_hash (decl_or_value dv
)
1182 return dv_uid2hash (dv_uid (dv
));
1185 /* The hash function for variable_htab, computes the hash value
1186 from the declaration of variable X. */
1189 variable_htab_hash (const void *x
)
1191 const_variable
const v
= (const_variable
) x
;
1193 return dv_htab_hash (v
->dv
);
1196 /* Compare the declaration of variable X with declaration Y. */
1199 variable_htab_eq (const void *x
, const void *y
)
1201 const_variable
const v
= (const_variable
) x
;
1202 decl_or_value dv
= CONST_CAST2 (decl_or_value
, const void *, y
);
1204 return (dv_as_opaque (v
->dv
) == dv_as_opaque (dv
));
1207 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1210 variable_htab_free (void *elem
)
1213 variable var
= (variable
) elem
;
1214 location_chain node
, next
;
1216 gcc_checking_assert (var
->refcount
> 0);
1219 if (var
->refcount
> 0)
1222 for (i
= 0; i
< var
->n_var_parts
; i
++)
1224 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= next
)
1227 pool_free (loc_chain_pool
, node
);
1229 var
->var_part
[i
].loc_chain
= NULL
;
1231 pool_free (dv_pool (var
->dv
), var
);
1234 /* The hash function for value_chains htab, computes the hash value
1238 value_chain_htab_hash (const void *x
)
1240 const_value_chain
const v
= (const_value_chain
) x
;
1242 return dv_htab_hash (v
->dv
);
1245 /* Compare the VALUE X with VALUE Y. */
1248 value_chain_htab_eq (const void *x
, const void *y
)
1250 const_value_chain
const v
= (const_value_chain
) x
;
1251 decl_or_value dv
= CONST_CAST2 (decl_or_value
, const void *, y
);
1253 return dv_as_opaque (v
->dv
) == dv_as_opaque (dv
);
1256 /* Initialize the set (array) SET of attrs to empty lists. */
1259 init_attrs_list_set (attrs
*set
)
1263 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1267 /* Make the list *LISTP empty. */
1270 attrs_list_clear (attrs
*listp
)
1274 for (list
= *listp
; list
; list
= next
)
1277 pool_free (attrs_pool
, list
);
1282 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1285 attrs_list_member (attrs list
, decl_or_value dv
, HOST_WIDE_INT offset
)
1287 for (; list
; list
= list
->next
)
1288 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
) && list
->offset
== offset
)
1293 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1296 attrs_list_insert (attrs
*listp
, decl_or_value dv
,
1297 HOST_WIDE_INT offset
, rtx loc
)
1301 list
= (attrs
) pool_alloc (attrs_pool
);
1304 list
->offset
= offset
;
1305 list
->next
= *listp
;
1309 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1312 attrs_list_copy (attrs
*dstp
, attrs src
)
1316 attrs_list_clear (dstp
);
1317 for (; src
; src
= src
->next
)
1319 n
= (attrs
) pool_alloc (attrs_pool
);
1322 n
->offset
= src
->offset
;
1328 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1331 attrs_list_union (attrs
*dstp
, attrs src
)
1333 for (; src
; src
= src
->next
)
1335 if (!attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1336 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1340 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1344 attrs_list_mpdv_union (attrs
*dstp
, attrs src
, attrs src2
)
1346 gcc_assert (!*dstp
);
1347 for (; src
; src
= src
->next
)
1349 if (!dv_onepart_p (src
->dv
))
1350 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1352 for (src
= src2
; src
; src
= src
->next
)
1354 if (!dv_onepart_p (src
->dv
)
1355 && !attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1356 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1360 /* Shared hashtable support. */
1362 /* Return true if VARS is shared. */
1365 shared_hash_shared (shared_hash vars
)
1367 return vars
->refcount
> 1;
1370 /* Return the hash table for VARS. */
1372 static inline htab_t
1373 shared_hash_htab (shared_hash vars
)
1378 /* Return true if VAR is shared, or maybe because VARS is shared. */
1381 shared_var_p (variable var
, shared_hash vars
)
1383 /* Don't count an entry in the changed_variables table as a duplicate. */
1384 return ((var
->refcount
> 1 + (int) var
->in_changed_variables
)
1385 || shared_hash_shared (vars
));
1388 /* Copy variables into a new hash table. */
1391 shared_hash_unshare (shared_hash vars
)
1393 shared_hash new_vars
= (shared_hash
) pool_alloc (shared_hash_pool
);
1394 gcc_assert (vars
->refcount
> 1);
1395 new_vars
->refcount
= 1;
1397 = htab_create (htab_elements (vars
->htab
) + 3, variable_htab_hash
,
1398 variable_htab_eq
, variable_htab_free
);
1399 vars_copy (new_vars
->htab
, vars
->htab
);
1404 /* Increment reference counter on VARS and return it. */
1406 static inline shared_hash
1407 shared_hash_copy (shared_hash vars
)
1413 /* Decrement reference counter and destroy hash table if not shared
1417 shared_hash_destroy (shared_hash vars
)
1419 gcc_checking_assert (vars
->refcount
> 0);
1420 if (--vars
->refcount
== 0)
1422 htab_delete (vars
->htab
);
1423 pool_free (shared_hash_pool
, vars
);
1427 /* Unshare *PVARS if shared and return slot for DV. If INS is
1428 INSERT, insert it if not already present. */
1430 static inline void **
1431 shared_hash_find_slot_unshare_1 (shared_hash
*pvars
, decl_or_value dv
,
1432 hashval_t dvhash
, enum insert_option ins
)
1434 if (shared_hash_shared (*pvars
))
1435 *pvars
= shared_hash_unshare (*pvars
);
1436 return htab_find_slot_with_hash (shared_hash_htab (*pvars
), dv
, dvhash
, ins
);
1439 static inline void **
1440 shared_hash_find_slot_unshare (shared_hash
*pvars
, decl_or_value dv
,
1441 enum insert_option ins
)
1443 return shared_hash_find_slot_unshare_1 (pvars
, dv
, dv_htab_hash (dv
), ins
);
1446 /* Return slot for DV, if it is already present in the hash table.
1447 If it is not present, insert it only VARS is not shared, otherwise
1450 static inline void **
1451 shared_hash_find_slot_1 (shared_hash vars
, decl_or_value dv
, hashval_t dvhash
)
1453 return htab_find_slot_with_hash (shared_hash_htab (vars
), dv
, dvhash
,
1454 shared_hash_shared (vars
)
1455 ? NO_INSERT
: INSERT
);
1458 static inline void **
1459 shared_hash_find_slot (shared_hash vars
, decl_or_value dv
)
1461 return shared_hash_find_slot_1 (vars
, dv
, dv_htab_hash (dv
));
1464 /* Return slot for DV only if it is already present in the hash table. */
1466 static inline void **
1467 shared_hash_find_slot_noinsert_1 (shared_hash vars
, decl_or_value dv
,
1470 return htab_find_slot_with_hash (shared_hash_htab (vars
), dv
, dvhash
,
1474 static inline void **
1475 shared_hash_find_slot_noinsert (shared_hash vars
, decl_or_value dv
)
1477 return shared_hash_find_slot_noinsert_1 (vars
, dv
, dv_htab_hash (dv
));
1480 /* Return variable for DV or NULL if not already present in the hash
1483 static inline variable
1484 shared_hash_find_1 (shared_hash vars
, decl_or_value dv
, hashval_t dvhash
)
1486 return (variable
) htab_find_with_hash (shared_hash_htab (vars
), dv
, dvhash
);
1489 static inline variable
1490 shared_hash_find (shared_hash vars
, decl_or_value dv
)
1492 return shared_hash_find_1 (vars
, dv
, dv_htab_hash (dv
));
1495 /* Return true if TVAL is better than CVAL as a canonival value. We
1496 choose lowest-numbered VALUEs, using the RTX address as a
1497 tie-breaker. The idea is to arrange them into a star topology,
1498 such that all of them are at most one step away from the canonical
1499 value, and the canonical value has backlinks to all of them, in
1500 addition to all the actual locations. We don't enforce this
1501 topology throughout the entire dataflow analysis, though.
1505 canon_value_cmp (rtx tval
, rtx cval
)
1508 || CSELIB_VAL_PTR (tval
)->uid
< CSELIB_VAL_PTR (cval
)->uid
;
1511 static bool dst_can_be_shared
;
1513 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1516 unshare_variable (dataflow_set
*set
, void **slot
, variable var
,
1517 enum var_init_status initialized
)
1522 new_var
= (variable
) pool_alloc (dv_pool (var
->dv
));
1523 new_var
->dv
= var
->dv
;
1524 new_var
->refcount
= 1;
1526 new_var
->n_var_parts
= var
->n_var_parts
;
1527 new_var
->cur_loc_changed
= var
->cur_loc_changed
;
1528 var
->cur_loc_changed
= false;
1529 new_var
->in_changed_variables
= false;
1531 if (! flag_var_tracking_uninit
)
1532 initialized
= VAR_INIT_STATUS_INITIALIZED
;
1534 for (i
= 0; i
< var
->n_var_parts
; i
++)
1536 location_chain node
;
1537 location_chain
*nextp
;
1539 new_var
->var_part
[i
].offset
= var
->var_part
[i
].offset
;
1540 nextp
= &new_var
->var_part
[i
].loc_chain
;
1541 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
1543 location_chain new_lc
;
1545 new_lc
= (location_chain
) pool_alloc (loc_chain_pool
);
1546 new_lc
->next
= NULL
;
1547 if (node
->init
> initialized
)
1548 new_lc
->init
= node
->init
;
1550 new_lc
->init
= initialized
;
1551 if (node
->set_src
&& !(MEM_P (node
->set_src
)))
1552 new_lc
->set_src
= node
->set_src
;
1554 new_lc
->set_src
= NULL
;
1555 new_lc
->loc
= node
->loc
;
1558 nextp
= &new_lc
->next
;
1561 new_var
->var_part
[i
].cur_loc
= var
->var_part
[i
].cur_loc
;
1564 dst_can_be_shared
= false;
1565 if (shared_hash_shared (set
->vars
))
1566 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
, NO_INSERT
);
1567 else if (set
->traversed_vars
&& set
->vars
!= set
->traversed_vars
)
1568 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
1570 if (var
->in_changed_variables
)
1573 = htab_find_slot_with_hash (changed_variables
, var
->dv
,
1574 dv_htab_hash (var
->dv
), NO_INSERT
);
1575 gcc_assert (*cslot
== (void *) var
);
1576 var
->in_changed_variables
= false;
1577 variable_htab_free (var
);
1579 new_var
->in_changed_variables
= true;
1584 /* Copy all variables from hash table SRC to hash table DST. */
1587 vars_copy (htab_t dst
, htab_t src
)
1592 FOR_EACH_HTAB_ELEMENT (src
, var
, variable
, hi
)
1596 dstp
= htab_find_slot_with_hash (dst
, var
->dv
,
1597 dv_htab_hash (var
->dv
),
1603 /* Map a decl to its main debug decl. */
1606 var_debug_decl (tree decl
)
1608 if (decl
&& DECL_P (decl
)
1609 && DECL_DEBUG_EXPR_IS_FROM (decl
))
1611 tree debugdecl
= DECL_DEBUG_EXPR (decl
);
1612 if (debugdecl
&& DECL_P (debugdecl
))
1619 /* Set the register LOC to contain DV, OFFSET. */
1622 var_reg_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1623 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
1624 enum insert_option iopt
)
1627 bool decl_p
= dv_is_decl_p (dv
);
1630 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
1632 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
1633 if (dv_as_opaque (node
->dv
) == dv_as_opaque (dv
)
1634 && node
->offset
== offset
)
1637 attrs_list_insert (&set
->regs
[REGNO (loc
)], dv
, offset
, loc
);
1638 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
1641 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1644 var_reg_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1647 tree decl
= REG_EXPR (loc
);
1648 HOST_WIDE_INT offset
= REG_OFFSET (loc
);
1650 var_reg_decl_set (set
, loc
, initialized
,
1651 dv_from_decl (decl
), offset
, set_src
, INSERT
);
1654 static enum var_init_status
1655 get_init_value (dataflow_set
*set
, rtx loc
, decl_or_value dv
)
1659 enum var_init_status ret_val
= VAR_INIT_STATUS_UNKNOWN
;
1661 if (! flag_var_tracking_uninit
)
1662 return VAR_INIT_STATUS_INITIALIZED
;
1664 var
= shared_hash_find (set
->vars
, dv
);
1667 for (i
= 0; i
< var
->n_var_parts
&& ret_val
== VAR_INIT_STATUS_UNKNOWN
; i
++)
1669 location_chain nextp
;
1670 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
; nextp
= nextp
->next
)
1671 if (rtx_equal_p (nextp
->loc
, loc
))
1673 ret_val
= nextp
->init
;
1682 /* Delete current content of register LOC in dataflow set SET and set
1683 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1684 MODIFY is true, any other live copies of the same variable part are
1685 also deleted from the dataflow set, otherwise the variable part is
1686 assumed to be copied from another location holding the same
1690 var_reg_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
1691 enum var_init_status initialized
, rtx set_src
)
1693 tree decl
= REG_EXPR (loc
);
1694 HOST_WIDE_INT offset
= REG_OFFSET (loc
);
1698 decl
= var_debug_decl (decl
);
1700 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
1701 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
1703 nextp
= &set
->regs
[REGNO (loc
)];
1704 for (node
= *nextp
; node
; node
= next
)
1707 if (dv_as_opaque (node
->dv
) != decl
|| node
->offset
!= offset
)
1709 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1710 pool_free (attrs_pool
, node
);
1716 nextp
= &node
->next
;
1720 clobber_variable_part (set
, loc
, dv_from_decl (decl
), offset
, set_src
);
1721 var_reg_set (set
, loc
, initialized
, set_src
);
1724 /* Delete the association of register LOC in dataflow set SET with any
1725 variables that aren't onepart. If CLOBBER is true, also delete any
1726 other live copies of the same variable part, and delete the
1727 association with onepart dvs too. */
1730 var_reg_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
1732 attrs
*nextp
= &set
->regs
[REGNO (loc
)];
1737 tree decl
= REG_EXPR (loc
);
1738 HOST_WIDE_INT offset
= REG_OFFSET (loc
);
1740 decl
= var_debug_decl (decl
);
1742 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
1745 for (node
= *nextp
; node
; node
= next
)
1748 if (clobber
|| !dv_onepart_p (node
->dv
))
1750 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1751 pool_free (attrs_pool
, node
);
1755 nextp
= &node
->next
;
1759 /* Delete content of register with number REGNO in dataflow set SET. */
1762 var_regno_delete (dataflow_set
*set
, int regno
)
1764 attrs
*reg
= &set
->regs
[regno
];
1767 for (node
= *reg
; node
; node
= next
)
1770 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1771 pool_free (attrs_pool
, node
);
1776 /* Set the location of DV, OFFSET as the MEM LOC. */
1779 var_mem_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1780 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
1781 enum insert_option iopt
)
1783 if (dv_is_decl_p (dv
))
1784 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
1786 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
1789 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
1791 Adjust the address first if it is stack pointer based. */
1794 var_mem_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1797 tree decl
= MEM_EXPR (loc
);
1798 HOST_WIDE_INT offset
= INT_MEM_OFFSET (loc
);
1800 var_mem_decl_set (set
, loc
, initialized
,
1801 dv_from_decl (decl
), offset
, set_src
, INSERT
);
1804 /* Delete and set the location part of variable MEM_EXPR (LOC) in
1805 dataflow set SET to LOC. If MODIFY is true, any other live copies
1806 of the same variable part are also deleted from the dataflow set,
1807 otherwise the variable part is assumed to be copied from another
1808 location holding the same part.
1809 Adjust the address first if it is stack pointer based. */
1812 var_mem_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
1813 enum var_init_status initialized
, rtx set_src
)
1815 tree decl
= MEM_EXPR (loc
);
1816 HOST_WIDE_INT offset
= INT_MEM_OFFSET (loc
);
1818 decl
= var_debug_decl (decl
);
1820 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
1821 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
1824 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, set_src
);
1825 var_mem_set (set
, loc
, initialized
, set_src
);
1828 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
1829 true, also delete any other live copies of the same variable part.
1830 Adjust the address first if it is stack pointer based. */
1833 var_mem_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
1835 tree decl
= MEM_EXPR (loc
);
1836 HOST_WIDE_INT offset
= INT_MEM_OFFSET (loc
);
1838 decl
= var_debug_decl (decl
);
1840 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
1841 delete_variable_part (set
, loc
, dv_from_decl (decl
), offset
);
1844 /* Bind a value to a location it was just stored in. If MODIFIED
1845 holds, assume the location was modified, detaching it from any
1846 values bound to it. */
1849 val_store (dataflow_set
*set
, rtx val
, rtx loc
, rtx insn
, bool modified
)
1851 cselib_val
*v
= CSELIB_VAL_PTR (val
);
1853 gcc_assert (cselib_preserved_value_p (v
));
1857 fprintf (dump_file
, "%i: ", INSN_UID (insn
));
1858 print_inline_rtx (dump_file
, val
, 0);
1859 fprintf (dump_file
, " stored in ");
1860 print_inline_rtx (dump_file
, loc
, 0);
1863 struct elt_loc_list
*l
;
1864 for (l
= v
->locs
; l
; l
= l
->next
)
1866 fprintf (dump_file
, "\n%i: ", INSN_UID (l
->setting_insn
));
1867 print_inline_rtx (dump_file
, l
->loc
, 0);
1870 fprintf (dump_file
, "\n");
1876 var_regno_delete (set
, REGNO (loc
));
1877 var_reg_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
1878 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
1880 else if (MEM_P (loc
))
1881 var_mem_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
1882 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
1884 set_variable_part (set
, loc
, dv_from_value (val
), 0,
1885 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
1888 /* Reset this node, detaching all its equivalences. Return the slot
1889 in the variable hash table that holds dv, if there is one. */
1892 val_reset (dataflow_set
*set
, decl_or_value dv
)
1894 variable var
= shared_hash_find (set
->vars
, dv
) ;
1895 location_chain node
;
1898 if (!var
|| !var
->n_var_parts
)
1901 gcc_assert (var
->n_var_parts
== 1);
1904 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
1905 if (GET_CODE (node
->loc
) == VALUE
1906 && canon_value_cmp (node
->loc
, cval
))
1909 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
1910 if (GET_CODE (node
->loc
) == VALUE
&& cval
!= node
->loc
)
1912 /* Redirect the equivalence link to the new canonical
1913 value, or simply remove it if it would point at
1916 set_variable_part (set
, cval
, dv_from_value (node
->loc
),
1917 0, node
->init
, node
->set_src
, NO_INSERT
);
1918 delete_variable_part (set
, dv_as_value (dv
),
1919 dv_from_value (node
->loc
), 0);
1924 decl_or_value cdv
= dv_from_value (cval
);
1926 /* Keep the remaining values connected, accummulating links
1927 in the canonical value. */
1928 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
1930 if (node
->loc
== cval
)
1932 else if (GET_CODE (node
->loc
) == REG
)
1933 var_reg_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
1934 node
->set_src
, NO_INSERT
);
1935 else if (GET_CODE (node
->loc
) == MEM
)
1936 var_mem_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
1937 node
->set_src
, NO_INSERT
);
1939 set_variable_part (set
, node
->loc
, cdv
, 0,
1940 node
->init
, node
->set_src
, NO_INSERT
);
1944 /* We remove this last, to make sure that the canonical value is not
1945 removed to the point of requiring reinsertion. */
1947 delete_variable_part (set
, dv_as_value (dv
), dv_from_value (cval
), 0);
1949 clobber_variable_part (set
, NULL
, dv
, 0, NULL
);
1951 /* ??? Should we make sure there aren't other available values or
1952 variables whose values involve this one other than by
1953 equivalence? E.g., at the very least we should reset MEMs, those
1954 shouldn't be too hard to find cselib-looking up the value as an
1955 address, then locating the resulting value in our own hash
1959 /* Find the values in a given location and map the val to another
1960 value, if it is unique, or add the location as one holding the
1964 val_resolve (dataflow_set
*set
, rtx val
, rtx loc
, rtx insn
)
1966 decl_or_value dv
= dv_from_value (val
);
1968 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1971 fprintf (dump_file
, "%i: ", INSN_UID (insn
));
1973 fprintf (dump_file
, "head: ");
1974 print_inline_rtx (dump_file
, val
, 0);
1975 fputs (" is at ", dump_file
);
1976 print_inline_rtx (dump_file
, loc
, 0);
1977 fputc ('\n', dump_file
);
1980 val_reset (set
, dv
);
1984 attrs node
, found
= NULL
;
1986 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
1987 if (dv_is_value_p (node
->dv
)
1988 && GET_MODE (dv_as_value (node
->dv
)) == GET_MODE (loc
))
1992 /* Map incoming equivalences. ??? Wouldn't it be nice if
1993 we just started sharing the location lists? Maybe a
1994 circular list ending at the value itself or some
1996 set_variable_part (set
, dv_as_value (node
->dv
),
1997 dv_from_value (val
), node
->offset
,
1998 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
1999 set_variable_part (set
, val
, node
->dv
, node
->offset
,
2000 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2003 /* If we didn't find any equivalence, we need to remember that
2004 this value is held in the named register. */
2006 var_reg_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
2007 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
2009 else if (MEM_P (loc
))
2010 /* ??? Merge equivalent MEMs. */
2011 var_mem_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
2012 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
2014 /* ??? Merge equivalent expressions. */
2015 set_variable_part (set
, loc
, dv_from_value (val
), 0,
2016 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2019 /* Initialize dataflow set SET to be empty.
2020 VARS_SIZE is the initial size of hash table VARS. */
2023 dataflow_set_init (dataflow_set
*set
)
2025 init_attrs_list_set (set
->regs
);
2026 set
->vars
= shared_hash_copy (empty_shared_hash
);
2027 set
->stack_adjust
= 0;
2028 set
->traversed_vars
= NULL
;
2031 /* Delete the contents of dataflow set SET. */
2034 dataflow_set_clear (dataflow_set
*set
)
2038 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2039 attrs_list_clear (&set
->regs
[i
]);
2041 shared_hash_destroy (set
->vars
);
2042 set
->vars
= shared_hash_copy (empty_shared_hash
);
2045 /* Copy the contents of dataflow set SRC to DST. */
2048 dataflow_set_copy (dataflow_set
*dst
, dataflow_set
*src
)
2052 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2053 attrs_list_copy (&dst
->regs
[i
], src
->regs
[i
]);
2055 shared_hash_destroy (dst
->vars
);
2056 dst
->vars
= shared_hash_copy (src
->vars
);
2057 dst
->stack_adjust
= src
->stack_adjust
;
2060 /* Information for merging lists of locations for a given offset of variable.
2062 struct variable_union_info
2064 /* Node of the location chain. */
2067 /* The sum of positions in the input chains. */
2070 /* The position in the chain of DST dataflow set. */
2074 /* Buffer for location list sorting and its allocated size. */
2075 static struct variable_union_info
*vui_vec
;
2076 static int vui_allocated
;
2078 /* Compare function for qsort, order the structures by POS element. */
2081 variable_union_info_cmp_pos (const void *n1
, const void *n2
)
2083 const struct variable_union_info
*const i1
=
2084 (const struct variable_union_info
*) n1
;
2085 const struct variable_union_info
*const i2
=
2086 ( const struct variable_union_info
*) n2
;
2088 if (i1
->pos
!= i2
->pos
)
2089 return i1
->pos
- i2
->pos
;
2091 return (i1
->pos_dst
- i2
->pos_dst
);
2094 /* Compute union of location parts of variable *SLOT and the same variable
2095 from hash table DATA. Compute "sorted" union of the location chains
2096 for common offsets, i.e. the locations of a variable part are sorted by
2097 a priority where the priority is the sum of the positions in the 2 chains
2098 (if a location is only in one list the position in the second list is
2099 defined to be larger than the length of the chains).
2100 When we are updating the location parts the newest location is in the
2101 beginning of the chain, so when we do the described "sorted" union
2102 we keep the newest locations in the beginning. */
2105 variable_union (variable src
, dataflow_set
*set
)
2111 dstp
= shared_hash_find_slot (set
->vars
, src
->dv
);
2112 if (!dstp
|| !*dstp
)
2116 dst_can_be_shared
= false;
2118 dstp
= shared_hash_find_slot_unshare (&set
->vars
, src
->dv
, INSERT
);
2122 /* Continue traversing the hash table. */
2126 dst
= (variable
) *dstp
;
2128 gcc_assert (src
->n_var_parts
);
2130 /* We can combine one-part variables very efficiently, because their
2131 entries are in canonical order. */
2132 if (dv_onepart_p (src
->dv
))
2134 location_chain
*nodep
, dnode
, snode
;
2136 gcc_assert (src
->n_var_parts
== 1
2137 && dst
->n_var_parts
== 1);
2139 snode
= src
->var_part
[0].loc_chain
;
2142 restart_onepart_unshared
:
2143 nodep
= &dst
->var_part
[0].loc_chain
;
2149 int r
= dnode
? loc_cmp (dnode
->loc
, snode
->loc
) : 1;
2153 location_chain nnode
;
2155 if (shared_var_p (dst
, set
->vars
))
2157 dstp
= unshare_variable (set
, dstp
, dst
,
2158 VAR_INIT_STATUS_INITIALIZED
);
2159 dst
= (variable
)*dstp
;
2160 goto restart_onepart_unshared
;
2163 *nodep
= nnode
= (location_chain
) pool_alloc (loc_chain_pool
);
2164 nnode
->loc
= snode
->loc
;
2165 nnode
->init
= snode
->init
;
2166 if (!snode
->set_src
|| MEM_P (snode
->set_src
))
2167 nnode
->set_src
= NULL
;
2169 nnode
->set_src
= snode
->set_src
;
2170 nnode
->next
= dnode
;
2174 gcc_checking_assert (rtx_equal_p (dnode
->loc
, snode
->loc
));
2177 snode
= snode
->next
;
2179 nodep
= &dnode
->next
;
2186 /* Count the number of location parts, result is K. */
2187 for (i
= 0, j
= 0, k
= 0;
2188 i
< src
->n_var_parts
&& j
< dst
->n_var_parts
; k
++)
2190 if (src
->var_part
[i
].offset
== dst
->var_part
[j
].offset
)
2195 else if (src
->var_part
[i
].offset
< dst
->var_part
[j
].offset
)
2200 k
+= src
->n_var_parts
- i
;
2201 k
+= dst
->n_var_parts
- j
;
2203 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2204 thus there are at most MAX_VAR_PARTS different offsets. */
2205 gcc_assert (dv_onepart_p (dst
->dv
) ? k
== 1 : k
<= MAX_VAR_PARTS
);
2207 if (dst
->n_var_parts
!= k
&& shared_var_p (dst
, set
->vars
))
2209 dstp
= unshare_variable (set
, dstp
, dst
, VAR_INIT_STATUS_UNKNOWN
);
2210 dst
= (variable
)*dstp
;
2213 i
= src
->n_var_parts
- 1;
2214 j
= dst
->n_var_parts
- 1;
2215 dst
->n_var_parts
= k
;
2217 for (k
--; k
>= 0; k
--)
2219 location_chain node
, node2
;
2221 if (i
>= 0 && j
>= 0
2222 && src
->var_part
[i
].offset
== dst
->var_part
[j
].offset
)
2224 /* Compute the "sorted" union of the chains, i.e. the locations which
2225 are in both chains go first, they are sorted by the sum of
2226 positions in the chains. */
2229 struct variable_union_info
*vui
;
2231 /* If DST is shared compare the location chains.
2232 If they are different we will modify the chain in DST with
2233 high probability so make a copy of DST. */
2234 if (shared_var_p (dst
, set
->vars
))
2236 for (node
= src
->var_part
[i
].loc_chain
,
2237 node2
= dst
->var_part
[j
].loc_chain
; node
&& node2
;
2238 node
= node
->next
, node2
= node2
->next
)
2240 if (!((REG_P (node2
->loc
)
2241 && REG_P (node
->loc
)
2242 && REGNO (node2
->loc
) == REGNO (node
->loc
))
2243 || rtx_equal_p (node2
->loc
, node
->loc
)))
2245 if (node2
->init
< node
->init
)
2246 node2
->init
= node
->init
;
2252 dstp
= unshare_variable (set
, dstp
, dst
,
2253 VAR_INIT_STATUS_UNKNOWN
);
2254 dst
= (variable
)*dstp
;
2259 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2262 for (node
= dst
->var_part
[j
].loc_chain
; node
; node
= node
->next
)
2267 /* The most common case, much simpler, no qsort is needed. */
2268 location_chain dstnode
= dst
->var_part
[j
].loc_chain
;
2269 dst
->var_part
[k
].loc_chain
= dstnode
;
2270 dst
->var_part
[k
].offset
= dst
->var_part
[j
].offset
;
2272 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2273 if (!((REG_P (dstnode
->loc
)
2274 && REG_P (node
->loc
)
2275 && REGNO (dstnode
->loc
) == REGNO (node
->loc
))
2276 || rtx_equal_p (dstnode
->loc
, node
->loc
)))
2278 location_chain new_node
;
2280 /* Copy the location from SRC. */
2281 new_node
= (location_chain
) pool_alloc (loc_chain_pool
);
2282 new_node
->loc
= node
->loc
;
2283 new_node
->init
= node
->init
;
2284 if (!node
->set_src
|| MEM_P (node
->set_src
))
2285 new_node
->set_src
= NULL
;
2287 new_node
->set_src
= node
->set_src
;
2288 node2
->next
= new_node
;
2295 if (src_l
+ dst_l
> vui_allocated
)
2297 vui_allocated
= MAX (vui_allocated
* 2, src_l
+ dst_l
);
2298 vui_vec
= XRESIZEVEC (struct variable_union_info
, vui_vec
,
2303 /* Fill in the locations from DST. */
2304 for (node
= dst
->var_part
[j
].loc_chain
, jj
= 0; node
;
2305 node
= node
->next
, jj
++)
2308 vui
[jj
].pos_dst
= jj
;
2310 /* Pos plus value larger than a sum of 2 valid positions. */
2311 vui
[jj
].pos
= jj
+ src_l
+ dst_l
;
2314 /* Fill in the locations from SRC. */
2316 for (node
= src
->var_part
[i
].loc_chain
, ii
= 0; node
;
2317 node
= node
->next
, ii
++)
2319 /* Find location from NODE. */
2320 for (jj
= 0; jj
< dst_l
; jj
++)
2322 if ((REG_P (vui
[jj
].lc
->loc
)
2323 && REG_P (node
->loc
)
2324 && REGNO (vui
[jj
].lc
->loc
) == REGNO (node
->loc
))
2325 || rtx_equal_p (vui
[jj
].lc
->loc
, node
->loc
))
2327 vui
[jj
].pos
= jj
+ ii
;
2331 if (jj
>= dst_l
) /* The location has not been found. */
2333 location_chain new_node
;
2335 /* Copy the location from SRC. */
2336 new_node
= (location_chain
) pool_alloc (loc_chain_pool
);
2337 new_node
->loc
= node
->loc
;
2338 new_node
->init
= node
->init
;
2339 if (!node
->set_src
|| MEM_P (node
->set_src
))
2340 new_node
->set_src
= NULL
;
2342 new_node
->set_src
= node
->set_src
;
2343 vui
[n
].lc
= new_node
;
2344 vui
[n
].pos_dst
= src_l
+ dst_l
;
2345 vui
[n
].pos
= ii
+ src_l
+ dst_l
;
2352 /* Special case still very common case. For dst_l == 2
2353 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2354 vui[i].pos == i + src_l + dst_l. */
2355 if (vui
[0].pos
> vui
[1].pos
)
2357 /* Order should be 1, 0, 2... */
2358 dst
->var_part
[k
].loc_chain
= vui
[1].lc
;
2359 vui
[1].lc
->next
= vui
[0].lc
;
2362 vui
[0].lc
->next
= vui
[2].lc
;
2363 vui
[n
- 1].lc
->next
= NULL
;
2366 vui
[0].lc
->next
= NULL
;
2371 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
2372 if (n
>= 3 && vui
[2].pos
< vui
[1].pos
)
2374 /* Order should be 0, 2, 1, 3... */
2375 vui
[0].lc
->next
= vui
[2].lc
;
2376 vui
[2].lc
->next
= vui
[1].lc
;
2379 vui
[1].lc
->next
= vui
[3].lc
;
2380 vui
[n
- 1].lc
->next
= NULL
;
2383 vui
[1].lc
->next
= NULL
;
2388 /* Order should be 0, 1, 2... */
2390 vui
[n
- 1].lc
->next
= NULL
;
2393 for (; ii
< n
; ii
++)
2394 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
2398 qsort (vui
, n
, sizeof (struct variable_union_info
),
2399 variable_union_info_cmp_pos
);
2401 /* Reconnect the nodes in sorted order. */
2402 for (ii
= 1; ii
< n
; ii
++)
2403 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
2404 vui
[n
- 1].lc
->next
= NULL
;
2405 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
2408 dst
->var_part
[k
].offset
= dst
->var_part
[j
].offset
;
2413 else if ((i
>= 0 && j
>= 0
2414 && src
->var_part
[i
].offset
< dst
->var_part
[j
].offset
)
2417 dst
->var_part
[k
] = dst
->var_part
[j
];
2420 else if ((i
>= 0 && j
>= 0
2421 && src
->var_part
[i
].offset
> dst
->var_part
[j
].offset
)
2424 location_chain
*nextp
;
2426 /* Copy the chain from SRC. */
2427 nextp
= &dst
->var_part
[k
].loc_chain
;
2428 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2430 location_chain new_lc
;
2432 new_lc
= (location_chain
) pool_alloc (loc_chain_pool
);
2433 new_lc
->next
= NULL
;
2434 new_lc
->init
= node
->init
;
2435 if (!node
->set_src
|| MEM_P (node
->set_src
))
2436 new_lc
->set_src
= NULL
;
2438 new_lc
->set_src
= node
->set_src
;
2439 new_lc
->loc
= node
->loc
;
2442 nextp
= &new_lc
->next
;
2445 dst
->var_part
[k
].offset
= src
->var_part
[i
].offset
;
2448 dst
->var_part
[k
].cur_loc
= NULL
;
2451 if (flag_var_tracking_uninit
)
2452 for (i
= 0; i
< src
->n_var_parts
&& i
< dst
->n_var_parts
; i
++)
2454 location_chain node
, node2
;
2455 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2456 for (node2
= dst
->var_part
[i
].loc_chain
; node2
; node2
= node2
->next
)
2457 if (rtx_equal_p (node
->loc
, node2
->loc
))
2459 if (node
->init
> node2
->init
)
2460 node2
->init
= node
->init
;
2464 /* Continue traversing the hash table. */
2468 /* Compute union of dataflow sets SRC and DST and store it to DST. */
2471 dataflow_set_union (dataflow_set
*dst
, dataflow_set
*src
)
2475 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2476 attrs_list_union (&dst
->regs
[i
], src
->regs
[i
]);
2478 if (dst
->vars
== empty_shared_hash
)
2480 shared_hash_destroy (dst
->vars
);
2481 dst
->vars
= shared_hash_copy (src
->vars
);
2488 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (src
->vars
), var
, variable
, hi
)
2489 variable_union (var
, dst
);
2493 /* Whether the value is currently being expanded. */
2494 #define VALUE_RECURSED_INTO(x) \
2495 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
2496 /* Whether the value is in changed_variables hash table. */
2497 #define VALUE_CHANGED(x) \
2498 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
2499 /* Whether the decl is in changed_variables hash table. */
2500 #define DECL_CHANGED(x) TREE_VISITED (x)
2502 /* Record that DV has been added into resp. removed from changed_variables
2506 set_dv_changed (decl_or_value dv
, bool newv
)
2508 if (dv_is_value_p (dv
))
2509 VALUE_CHANGED (dv_as_value (dv
)) = newv
;
2511 DECL_CHANGED (dv_as_decl (dv
)) = newv
;
2514 /* Return true if DV is present in changed_variables hash table. */
2517 dv_changed_p (decl_or_value dv
)
2519 return (dv_is_value_p (dv
)
2520 ? VALUE_CHANGED (dv_as_value (dv
))
2521 : DECL_CHANGED (dv_as_decl (dv
)));
2524 /* Return a location list node whose loc is rtx_equal to LOC, in the
2525 location list of a one-part variable or value VAR, or in that of
2526 any values recursively mentioned in the location lists. VARS must
2527 be in star-canonical form. */
2529 static location_chain
2530 find_loc_in_1pdv (rtx loc
, variable var
, htab_t vars
)
2532 location_chain node
;
2533 enum rtx_code loc_code
;
2538 gcc_checking_assert (dv_onepart_p (var
->dv
));
2540 if (!var
->n_var_parts
)
2543 gcc_checking_assert (var
->var_part
[0].offset
== 0);
2544 gcc_checking_assert (loc
!= dv_as_opaque (var
->dv
));
2546 loc_code
= GET_CODE (loc
);
2547 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2552 if (GET_CODE (node
->loc
) != loc_code
)
2554 if (GET_CODE (node
->loc
) != VALUE
)
2557 else if (loc
== node
->loc
)
2559 else if (loc_code
!= VALUE
)
2561 if (rtx_equal_p (loc
, node
->loc
))
2566 /* Since we're in star-canonical form, we don't need to visit
2567 non-canonical nodes: one-part variables and non-canonical
2568 values would only point back to the canonical node. */
2569 if (dv_is_value_p (var
->dv
)
2570 && !canon_value_cmp (node
->loc
, dv_as_value (var
->dv
)))
2572 /* Skip all subsequent VALUEs. */
2573 while (node
->next
&& GET_CODE (node
->next
->loc
) == VALUE
)
2576 gcc_checking_assert (!canon_value_cmp (node
->loc
,
2577 dv_as_value (var
->dv
)));
2578 if (loc
== node
->loc
)
2584 gcc_checking_assert (node
== var
->var_part
[0].loc_chain
);
2585 gcc_checking_assert (!node
->next
);
2587 dv
= dv_from_value (node
->loc
);
2588 rvar
= (variable
) htab_find_with_hash (vars
, dv
, dv_htab_hash (dv
));
2589 return find_loc_in_1pdv (loc
, rvar
, vars
);
2595 /* Hash table iteration argument passed to variable_merge. */
2598 /* The set in which the merge is to be inserted. */
2600 /* The set that we're iterating in. */
2602 /* The set that may contain the other dv we are to merge with. */
2604 /* Number of onepart dvs in src. */
2605 int src_onepart_cnt
;
2608 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
2609 loc_cmp order, and it is maintained as such. */
2612 insert_into_intersection (location_chain
*nodep
, rtx loc
,
2613 enum var_init_status status
)
2615 location_chain node
;
2618 for (node
= *nodep
; node
; nodep
= &node
->next
, node
= *nodep
)
2619 if ((r
= loc_cmp (node
->loc
, loc
)) == 0)
2621 node
->init
= MIN (node
->init
, status
);
2627 node
= (location_chain
) pool_alloc (loc_chain_pool
);
2630 node
->set_src
= NULL
;
2631 node
->init
= status
;
2632 node
->next
= *nodep
;
2636 /* Insert in DEST the intersection the locations present in both
2637 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
2638 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
2642 intersect_loc_chains (rtx val
, location_chain
*dest
, struct dfset_merge
*dsm
,
2643 location_chain s1node
, variable s2var
)
2645 dataflow_set
*s1set
= dsm
->cur
;
2646 dataflow_set
*s2set
= dsm
->src
;
2647 location_chain found
;
2651 location_chain s2node
;
2653 gcc_checking_assert (dv_onepart_p (s2var
->dv
));
2655 if (s2var
->n_var_parts
)
2657 gcc_checking_assert (s2var
->var_part
[0].offset
== 0);
2658 s2node
= s2var
->var_part
[0].loc_chain
;
2660 for (; s1node
&& s2node
;
2661 s1node
= s1node
->next
, s2node
= s2node
->next
)
2662 if (s1node
->loc
!= s2node
->loc
)
2664 else if (s1node
->loc
== val
)
2667 insert_into_intersection (dest
, s1node
->loc
,
2668 MIN (s1node
->init
, s2node
->init
));
2672 for (; s1node
; s1node
= s1node
->next
)
2674 if (s1node
->loc
== val
)
2677 if ((found
= find_loc_in_1pdv (s1node
->loc
, s2var
,
2678 shared_hash_htab (s2set
->vars
))))
2680 insert_into_intersection (dest
, s1node
->loc
,
2681 MIN (s1node
->init
, found
->init
));
2685 if (GET_CODE (s1node
->loc
) == VALUE
2686 && !VALUE_RECURSED_INTO (s1node
->loc
))
2688 decl_or_value dv
= dv_from_value (s1node
->loc
);
2689 variable svar
= shared_hash_find (s1set
->vars
, dv
);
2692 if (svar
->n_var_parts
== 1)
2694 VALUE_RECURSED_INTO (s1node
->loc
) = true;
2695 intersect_loc_chains (val
, dest
, dsm
,
2696 svar
->var_part
[0].loc_chain
,
2698 VALUE_RECURSED_INTO (s1node
->loc
) = false;
2703 /* ??? if the location is equivalent to any location in src,
2704 searched recursively
2706 add to dst the values needed to represent the equivalence
2708 telling whether locations S is equivalent to another dv's
2711 for each location D in the list
2713 if S and D satisfy rtx_equal_p, then it is present
2715 else if D is a value, recurse without cycles
2717 else if S and D have the same CODE and MODE
2719 for each operand oS and the corresponding oD
2721 if oS and oD are not equivalent, then S an D are not equivalent
2723 else if they are RTX vectors
2725 if any vector oS element is not equivalent to its respective oD,
2726 then S and D are not equivalent
2734 /* Return -1 if X should be before Y in a location list for a 1-part
2735 variable, 1 if Y should be before X, and 0 if they're equivalent
2736 and should not appear in the list. */
2739 loc_cmp (rtx x
, rtx y
)
2742 RTX_CODE code
= GET_CODE (x
);
2752 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
2753 if (REGNO (x
) == REGNO (y
))
2755 else if (REGNO (x
) < REGNO (y
))
2768 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
2769 return loc_cmp (XEXP (x
, 0), XEXP (y
, 0));
2775 if (GET_CODE (x
) == VALUE
)
2777 if (GET_CODE (y
) != VALUE
)
2779 /* Don't assert the modes are the same, that is true only
2780 when not recursing. (subreg:QI (value:SI 1:1) 0)
2781 and (subreg:QI (value:DI 2:2) 0) can be compared,
2782 even when the modes are different. */
2783 if (canon_value_cmp (x
, y
))
2789 if (GET_CODE (y
) == VALUE
)
2792 if (GET_CODE (x
) == GET_CODE (y
))
2793 /* Compare operands below. */;
2794 else if (GET_CODE (x
) < GET_CODE (y
))
2799 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
2801 if (GET_CODE (x
) == DEBUG_EXPR
)
2803 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
2804 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)))
2806 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
2807 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)));
2811 fmt
= GET_RTX_FORMAT (code
);
2812 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2816 if (XWINT (x
, i
) == XWINT (y
, i
))
2818 else if (XWINT (x
, i
) < XWINT (y
, i
))
2825 if (XINT (x
, i
) == XINT (y
, i
))
2827 else if (XINT (x
, i
) < XINT (y
, i
))
2834 /* Compare the vector length first. */
2835 if (XVECLEN (x
, i
) == XVECLEN (y
, i
))
2836 /* Compare the vectors elements. */;
2837 else if (XVECLEN (x
, i
) < XVECLEN (y
, i
))
2842 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2843 if ((r
= loc_cmp (XVECEXP (x
, i
, j
),
2844 XVECEXP (y
, i
, j
))))
2849 if ((r
= loc_cmp (XEXP (x
, i
), XEXP (y
, i
))))
2855 if (XSTR (x
, i
) == XSTR (y
, i
))
2861 if ((r
= strcmp (XSTR (x
, i
), XSTR (y
, i
))) == 0)
2869 /* These are just backpointers, so they don't matter. */
2876 /* It is believed that rtx's at this level will never
2877 contain anything but integers and other rtx's,
2878 except for within LABEL_REFs and SYMBOL_REFs. */
2886 /* If decl or value DVP refers to VALUE from *LOC, add backlinks
2887 from VALUE to DVP. */
2890 add_value_chain (rtx
*loc
, void *dvp
)
2892 decl_or_value dv
, ldv
;
2893 value_chain vc
, nvc
;
2896 if (GET_CODE (*loc
) == VALUE
)
2897 ldv
= dv_from_value (*loc
);
2898 else if (GET_CODE (*loc
) == DEBUG_EXPR
)
2899 ldv
= dv_from_decl (DEBUG_EXPR_TREE_DECL (*loc
));
2903 if (dv_as_opaque (ldv
) == dvp
)
2906 dv
= (decl_or_value
) dvp
;
2907 slot
= htab_find_slot_with_hash (value_chains
, ldv
, dv_htab_hash (ldv
),
2911 vc
= (value_chain
) pool_alloc (value_chain_pool
);
2915 *slot
= (void *) vc
;
2919 for (vc
= ((value_chain
) *slot
)->next
; vc
; vc
= vc
->next
)
2920 if (dv_as_opaque (vc
->dv
) == dv_as_opaque (dv
))
2928 vc
= (value_chain
) *slot
;
2929 nvc
= (value_chain
) pool_alloc (value_chain_pool
);
2931 nvc
->next
= vc
->next
;
2937 /* If decl or value DVP refers to VALUEs from within LOC, add backlinks
2938 from those VALUEs to DVP. */
2941 add_value_chains (decl_or_value dv
, rtx loc
)
2943 if (GET_CODE (loc
) == VALUE
|| GET_CODE (loc
) == DEBUG_EXPR
)
2945 add_value_chain (&loc
, dv_as_opaque (dv
));
2951 loc
= XEXP (loc
, 0);
2952 for_each_rtx (&loc
, add_value_chain
, dv_as_opaque (dv
));
2955 /* If CSELIB_VAL_PTR of value DV refer to VALUEs, add backlinks from those
2956 VALUEs to DV. Add the same time get rid of ASM_OPERANDS from locs list,
2957 that is something we never can express in .debug_info and can prevent
2958 reverse ops from being used. */
2961 add_cselib_value_chains (decl_or_value dv
)
2963 struct elt_loc_list
**l
;
2965 for (l
= &CSELIB_VAL_PTR (dv_as_value (dv
))->locs
; *l
;)
2966 if (GET_CODE ((*l
)->loc
) == ASM_OPERANDS
)
2970 for_each_rtx (&(*l
)->loc
, add_value_chain
, dv_as_opaque (dv
));
2975 /* If decl or value DVP refers to VALUE from *LOC, remove backlinks
2976 from VALUE to DVP. */
2979 remove_value_chain (rtx
*loc
, void *dvp
)
2981 decl_or_value dv
, ldv
;
2985 if (GET_CODE (*loc
) == VALUE
)
2986 ldv
= dv_from_value (*loc
);
2987 else if (GET_CODE (*loc
) == DEBUG_EXPR
)
2988 ldv
= dv_from_decl (DEBUG_EXPR_TREE_DECL (*loc
));
2992 if (dv_as_opaque (ldv
) == dvp
)
2995 dv
= (decl_or_value
) dvp
;
2996 slot
= htab_find_slot_with_hash (value_chains
, ldv
, dv_htab_hash (ldv
),
2998 for (vc
= (value_chain
) *slot
; vc
->next
; vc
= vc
->next
)
2999 if (dv_as_opaque (vc
->next
->dv
) == dv_as_opaque (dv
))
3001 value_chain dvc
= vc
->next
;
3002 gcc_assert (dvc
->refcount
> 0);
3003 if (--dvc
->refcount
== 0)
3005 vc
->next
= dvc
->next
;
3006 pool_free (value_chain_pool
, dvc
);
3007 if (vc
->next
== NULL
&& vc
== (value_chain
) *slot
)
3009 pool_free (value_chain_pool
, vc
);
3010 htab_clear_slot (value_chains
, slot
);
3018 /* If decl or value DVP refers to VALUEs from within LOC, remove backlinks
3019 from those VALUEs to DVP. */
3022 remove_value_chains (decl_or_value dv
, rtx loc
)
3024 if (GET_CODE (loc
) == VALUE
|| GET_CODE (loc
) == DEBUG_EXPR
)
3026 remove_value_chain (&loc
, dv_as_opaque (dv
));
3032 loc
= XEXP (loc
, 0);
3033 for_each_rtx (&loc
, remove_value_chain
, dv_as_opaque (dv
));
3037 /* If CSELIB_VAL_PTR of value DV refer to VALUEs, remove backlinks from those
3041 remove_cselib_value_chains (decl_or_value dv
)
3043 struct elt_loc_list
*l
;
3045 for (l
= CSELIB_VAL_PTR (dv_as_value (dv
))->locs
; l
; l
= l
->next
)
3046 for_each_rtx (&l
->loc
, remove_value_chain
, dv_as_opaque (dv
));
3049 /* Check the order of entries in one-part variables. */
3052 canonicalize_loc_order_check (void **slot
, void *data ATTRIBUTE_UNUSED
)
3054 variable var
= (variable
) *slot
;
3055 decl_or_value dv
= var
->dv
;
3056 location_chain node
, next
;
3058 #ifdef ENABLE_RTL_CHECKING
3060 for (i
= 0; i
< var
->n_var_parts
; i
++)
3061 gcc_assert (var
->var_part
[0].cur_loc
== NULL
);
3062 gcc_assert (!var
->cur_loc_changed
&& !var
->in_changed_variables
);
3065 if (!dv_onepart_p (dv
))
3068 gcc_assert (var
->n_var_parts
== 1);
3069 node
= var
->var_part
[0].loc_chain
;
3072 while ((next
= node
->next
))
3074 gcc_assert (loc_cmp (node
->loc
, next
->loc
) < 0);
3082 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3083 more likely to be chosen as canonical for an equivalence set.
3084 Ensure less likely values can reach more likely neighbors, making
3085 the connections bidirectional. */
3088 canonicalize_values_mark (void **slot
, void *data
)
3090 dataflow_set
*set
= (dataflow_set
*)data
;
3091 variable var
= (variable
) *slot
;
3092 decl_or_value dv
= var
->dv
;
3094 location_chain node
;
3096 if (!dv_is_value_p (dv
))
3099 gcc_checking_assert (var
->n_var_parts
== 1);
3101 val
= dv_as_value (dv
);
3103 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3104 if (GET_CODE (node
->loc
) == VALUE
)
3106 if (canon_value_cmp (node
->loc
, val
))
3107 VALUE_RECURSED_INTO (val
) = true;
3110 decl_or_value odv
= dv_from_value (node
->loc
);
3111 void **oslot
= shared_hash_find_slot_noinsert (set
->vars
, odv
);
3113 oslot
= set_slot_part (set
, val
, oslot
, odv
, 0,
3114 node
->init
, NULL_RTX
);
3116 VALUE_RECURSED_INTO (node
->loc
) = true;
3123 /* Remove redundant entries from equivalence lists in onepart
3124 variables, canonicalizing equivalence sets into star shapes. */
3127 canonicalize_values_star (void **slot
, void *data
)
3129 dataflow_set
*set
= (dataflow_set
*)data
;
3130 variable var
= (variable
) *slot
;
3131 decl_or_value dv
= var
->dv
;
3132 location_chain node
;
3139 if (!dv_onepart_p (dv
))
3142 gcc_checking_assert (var
->n_var_parts
== 1);
3144 if (dv_is_value_p (dv
))
3146 cval
= dv_as_value (dv
);
3147 if (!VALUE_RECURSED_INTO (cval
))
3149 VALUE_RECURSED_INTO (cval
) = false;
3159 gcc_assert (var
->n_var_parts
== 1);
3161 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3162 if (GET_CODE (node
->loc
) == VALUE
)
3165 if (VALUE_RECURSED_INTO (node
->loc
))
3167 if (canon_value_cmp (node
->loc
, cval
))
3176 if (!has_marks
|| dv_is_decl_p (dv
))
3179 /* Keep it marked so that we revisit it, either after visiting a
3180 child node, or after visiting a new parent that might be
3182 VALUE_RECURSED_INTO (val
) = true;
3184 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3185 if (GET_CODE (node
->loc
) == VALUE
3186 && VALUE_RECURSED_INTO (node
->loc
))
3190 VALUE_RECURSED_INTO (cval
) = false;
3191 dv
= dv_from_value (cval
);
3192 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
3195 gcc_assert (dv_is_decl_p (var
->dv
));
3196 /* The canonical value was reset and dropped.
3198 clobber_variable_part (set
, NULL
, var
->dv
, 0, NULL
);
3201 var
= (variable
)*slot
;
3202 gcc_assert (dv_is_value_p (var
->dv
));
3203 if (var
->n_var_parts
== 0)
3205 gcc_assert (var
->n_var_parts
== 1);
3209 VALUE_RECURSED_INTO (val
) = false;
3214 /* Push values to the canonical one. */
3215 cdv
= dv_from_value (cval
);
3216 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3218 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3219 if (node
->loc
!= cval
)
3221 cslot
= set_slot_part (set
, node
->loc
, cslot
, cdv
, 0,
3222 node
->init
, NULL_RTX
);
3223 if (GET_CODE (node
->loc
) == VALUE
)
3225 decl_or_value ndv
= dv_from_value (node
->loc
);
3227 set_variable_part (set
, cval
, ndv
, 0, node
->init
, NULL_RTX
,
3230 if (canon_value_cmp (node
->loc
, val
))
3232 /* If it could have been a local minimum, it's not any more,
3233 since it's now neighbor to cval, so it may have to push
3234 to it. Conversely, if it wouldn't have prevailed over
3235 val, then whatever mark it has is fine: if it was to
3236 push, it will now push to a more canonical node, but if
3237 it wasn't, then it has already pushed any values it might
3239 VALUE_RECURSED_INTO (node
->loc
) = true;
3240 /* Make sure we visit node->loc by ensuring we cval is
3242 VALUE_RECURSED_INTO (cval
) = true;
3244 else if (!VALUE_RECURSED_INTO (node
->loc
))
3245 /* If we have no need to "recurse" into this node, it's
3246 already "canonicalized", so drop the link to the old
3248 clobber_variable_part (set
, cval
, ndv
, 0, NULL
);
3250 else if (GET_CODE (node
->loc
) == REG
)
3252 attrs list
= set
->regs
[REGNO (node
->loc
)], *listp
;
3254 /* Change an existing attribute referring to dv so that it
3255 refers to cdv, removing any duplicate this might
3256 introduce, and checking that no previous duplicates
3257 existed, all in a single pass. */
3261 if (list
->offset
== 0
3262 && (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
)
3263 || dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
)))
3270 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
))
3273 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3278 if (dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
))
3280 *listp
= list
->next
;
3281 pool_free (attrs_pool
, list
);
3286 gcc_assert (dv_as_opaque (list
->dv
) != dv_as_opaque (dv
));
3289 else if (dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
))
3291 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3296 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
))
3298 *listp
= list
->next
;
3299 pool_free (attrs_pool
, list
);
3304 gcc_assert (dv_as_opaque (list
->dv
) != dv_as_opaque (cdv
));
3313 if (list
->offset
== 0
3314 && (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
)
3315 || dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
)))
3325 cslot
= set_slot_part (set
, val
, cslot
, cdv
, 0,
3326 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
);
3328 slot
= clobber_slot_part (set
, cval
, slot
, 0, NULL
);
3330 /* Variable may have been unshared. */
3331 var
= (variable
)*slot
;
3332 gcc_checking_assert (var
->n_var_parts
&& var
->var_part
[0].loc_chain
->loc
== cval
3333 && var
->var_part
[0].loc_chain
->next
== NULL
);
3335 if (VALUE_RECURSED_INTO (cval
))
3336 goto restart_with_cval
;
3341 /* Bind one-part variables to the canonical value in an equivalence
3342 set. Not doing this causes dataflow convergence failure in rare
3343 circumstances, see PR42873. Unfortunately we can't do this
3344 efficiently as part of canonicalize_values_star, since we may not
3345 have determined or even seen the canonical value of a set when we
3346 get to a variable that references another member of the set. */
3349 canonicalize_vars_star (void **slot
, void *data
)
3351 dataflow_set
*set
= (dataflow_set
*)data
;
3352 variable var
= (variable
) *slot
;
3353 decl_or_value dv
= var
->dv
;
3354 location_chain node
;
3359 location_chain cnode
;
3361 if (!dv_onepart_p (dv
) || dv_is_value_p (dv
))
3364 gcc_assert (var
->n_var_parts
== 1);
3366 node
= var
->var_part
[0].loc_chain
;
3368 if (GET_CODE (node
->loc
) != VALUE
)
3371 gcc_assert (!node
->next
);
3374 /* Push values to the canonical one. */
3375 cdv
= dv_from_value (cval
);
3376 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3379 cvar
= (variable
)*cslot
;
3380 gcc_assert (cvar
->n_var_parts
== 1);
3382 cnode
= cvar
->var_part
[0].loc_chain
;
3384 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3385 that are not “more canonical” than it. */
3386 if (GET_CODE (cnode
->loc
) != VALUE
3387 || !canon_value_cmp (cnode
->loc
, cval
))
3390 /* CVAL was found to be non-canonical. Change the variable to point
3391 to the canonical VALUE. */
3392 gcc_assert (!cnode
->next
);
3395 slot
= set_slot_part (set
, cval
, slot
, dv
, 0,
3396 node
->init
, node
->set_src
);
3397 slot
= clobber_slot_part (set
, cval
, slot
, 0, node
->set_src
);
3402 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3403 corresponding entry in DSM->src. Multi-part variables are combined
3404 with variable_union, whereas onepart dvs are combined with
3408 variable_merge_over_cur (variable s1var
, struct dfset_merge
*dsm
)
3410 dataflow_set
*dst
= dsm
->dst
;
3412 variable s2var
, dvar
= NULL
;
3413 decl_or_value dv
= s1var
->dv
;
3414 bool onepart
= dv_onepart_p (dv
);
3417 location_chain node
, *nodep
;
3419 /* If the incoming onepart variable has an empty location list, then
3420 the intersection will be just as empty. For other variables,
3421 it's always union. */
3422 gcc_checking_assert (s1var
->n_var_parts
3423 && s1var
->var_part
[0].loc_chain
);
3426 return variable_union (s1var
, dst
);
3428 gcc_checking_assert (s1var
->n_var_parts
== 1
3429 && s1var
->var_part
[0].offset
== 0);
3431 dvhash
= dv_htab_hash (dv
);
3432 if (dv_is_value_p (dv
))
3433 val
= dv_as_value (dv
);
3437 s2var
= shared_hash_find_1 (dsm
->src
->vars
, dv
, dvhash
);
3440 dst_can_be_shared
= false;
3444 dsm
->src_onepart_cnt
--;
3445 gcc_assert (s2var
->var_part
[0].loc_chain
3446 && s2var
->n_var_parts
== 1
3447 && s2var
->var_part
[0].offset
== 0);
3449 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
3452 dvar
= (variable
)*dstslot
;
3453 gcc_assert (dvar
->refcount
== 1
3454 && dvar
->n_var_parts
== 1
3455 && dvar
->var_part
[0].offset
== 0);
3456 nodep
= &dvar
->var_part
[0].loc_chain
;
3464 if (!dstslot
&& !onepart_variable_different_p (s1var
, s2var
))
3466 dstslot
= shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
,
3468 *dstslot
= dvar
= s2var
;
3473 dst_can_be_shared
= false;
3475 intersect_loc_chains (val
, nodep
, dsm
,
3476 s1var
->var_part
[0].loc_chain
, s2var
);
3482 dvar
= (variable
) pool_alloc (dv_pool (dv
));
3485 dvar
->n_var_parts
= 1;
3486 dvar
->cur_loc_changed
= false;
3487 dvar
->in_changed_variables
= false;
3488 dvar
->var_part
[0].offset
= 0;
3489 dvar
->var_part
[0].loc_chain
= node
;
3490 dvar
->var_part
[0].cur_loc
= NULL
;
3493 = shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
, dvhash
,
3495 gcc_assert (!*dstslot
);
3503 nodep
= &dvar
->var_part
[0].loc_chain
;
3504 while ((node
= *nodep
))
3506 location_chain
*nextp
= &node
->next
;
3508 if (GET_CODE (node
->loc
) == REG
)
3512 for (list
= dst
->regs
[REGNO (node
->loc
)]; list
; list
= list
->next
)
3513 if (GET_MODE (node
->loc
) == GET_MODE (list
->loc
)
3514 && dv_is_value_p (list
->dv
))
3518 attrs_list_insert (&dst
->regs
[REGNO (node
->loc
)],
3520 /* If this value became canonical for another value that had
3521 this register, we want to leave it alone. */
3522 else if (dv_as_value (list
->dv
) != val
)
3524 dstslot
= set_slot_part (dst
, dv_as_value (list
->dv
),
3526 node
->init
, NULL_RTX
);
3527 dstslot
= delete_slot_part (dst
, node
->loc
, dstslot
, 0);
3529 /* Since nextp points into the removed node, we can't
3530 use it. The pointer to the next node moved to nodep.
3531 However, if the variable we're walking is unshared
3532 during our walk, we'll keep walking the location list
3533 of the previously-shared variable, in which case the
3534 node won't have been removed, and we'll want to skip
3535 it. That's why we test *nodep here. */
3541 /* Canonicalization puts registers first, so we don't have to
3547 if (dvar
!= (variable
)*dstslot
)
3548 dvar
= (variable
)*dstslot
;
3549 nodep
= &dvar
->var_part
[0].loc_chain
;
3553 /* Mark all referenced nodes for canonicalization, and make sure
3554 we have mutual equivalence links. */
3555 VALUE_RECURSED_INTO (val
) = true;
3556 for (node
= *nodep
; node
; node
= node
->next
)
3557 if (GET_CODE (node
->loc
) == VALUE
)
3559 VALUE_RECURSED_INTO (node
->loc
) = true;
3560 set_variable_part (dst
, val
, dv_from_value (node
->loc
), 0,
3561 node
->init
, NULL
, INSERT
);
3564 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
3565 gcc_assert (*dstslot
== dvar
);
3566 canonicalize_values_star (dstslot
, dst
);
3567 gcc_checking_assert (dstslot
3568 == shared_hash_find_slot_noinsert_1 (dst
->vars
,
3570 dvar
= (variable
)*dstslot
;
3574 bool has_value
= false, has_other
= false;
3576 /* If we have one value and anything else, we're going to
3577 canonicalize this, so make sure all values have an entry in
3578 the table and are marked for canonicalization. */
3579 for (node
= *nodep
; node
; node
= node
->next
)
3581 if (GET_CODE (node
->loc
) == VALUE
)
3583 /* If this was marked during register canonicalization,
3584 we know we have to canonicalize values. */
3599 if (has_value
&& has_other
)
3601 for (node
= *nodep
; node
; node
= node
->next
)
3603 if (GET_CODE (node
->loc
) == VALUE
)
3605 decl_or_value dv
= dv_from_value (node
->loc
);
3608 if (shared_hash_shared (dst
->vars
))
3609 slot
= shared_hash_find_slot_noinsert (dst
->vars
, dv
);
3611 slot
= shared_hash_find_slot_unshare (&dst
->vars
, dv
,
3615 variable var
= (variable
) pool_alloc (dv_pool (dv
));
3618 var
->n_var_parts
= 1;
3619 var
->cur_loc_changed
= false;
3620 var
->in_changed_variables
= false;
3621 var
->var_part
[0].offset
= 0;
3622 var
->var_part
[0].loc_chain
= NULL
;
3623 var
->var_part
[0].cur_loc
= NULL
;
3627 VALUE_RECURSED_INTO (node
->loc
) = true;
3631 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
3632 gcc_assert (*dstslot
== dvar
);
3633 canonicalize_values_star (dstslot
, dst
);
3634 gcc_checking_assert (dstslot
3635 == shared_hash_find_slot_noinsert_1 (dst
->vars
,
3637 dvar
= (variable
)*dstslot
;
3641 if (!onepart_variable_different_p (dvar
, s2var
))
3643 variable_htab_free (dvar
);
3644 *dstslot
= dvar
= s2var
;
3647 else if (s2var
!= s1var
&& !onepart_variable_different_p (dvar
, s1var
))
3649 variable_htab_free (dvar
);
3650 *dstslot
= dvar
= s1var
;
3652 dst_can_be_shared
= false;
3655 dst_can_be_shared
= false;
3660 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
3661 multi-part variable. Unions of multi-part variables and
3662 intersections of one-part ones will be handled in
3663 variable_merge_over_cur(). */
3666 variable_merge_over_src (variable s2var
, struct dfset_merge
*dsm
)
3668 dataflow_set
*dst
= dsm
->dst
;
3669 decl_or_value dv
= s2var
->dv
;
3670 bool onepart
= dv_onepart_p (dv
);
3674 void **dstp
= shared_hash_find_slot (dst
->vars
, dv
);
3680 dsm
->src_onepart_cnt
++;
3684 /* Combine dataflow set information from SRC2 into DST, using PDST
3685 to carry over information across passes. */
3688 dataflow_set_merge (dataflow_set
*dst
, dataflow_set
*src2
)
3690 dataflow_set cur
= *dst
;
3691 dataflow_set
*src1
= &cur
;
3692 struct dfset_merge dsm
;
3694 size_t src1_elems
, src2_elems
;
3698 src1_elems
= htab_elements (shared_hash_htab (src1
->vars
));
3699 src2_elems
= htab_elements (shared_hash_htab (src2
->vars
));
3700 dataflow_set_init (dst
);
3701 dst
->stack_adjust
= cur
.stack_adjust
;
3702 shared_hash_destroy (dst
->vars
);
3703 dst
->vars
= (shared_hash
) pool_alloc (shared_hash_pool
);
3704 dst
->vars
->refcount
= 1;
3706 = htab_create (MAX (src1_elems
, src2_elems
), variable_htab_hash
,
3707 variable_htab_eq
, variable_htab_free
);
3709 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3710 attrs_list_mpdv_union (&dst
->regs
[i
], src1
->regs
[i
], src2
->regs
[i
]);
3715 dsm
.src_onepart_cnt
= 0;
3717 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (dsm
.src
->vars
), var
, variable
, hi
)
3718 variable_merge_over_src (var
, &dsm
);
3719 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (dsm
.cur
->vars
), var
, variable
, hi
)
3720 variable_merge_over_cur (var
, &dsm
);
3722 if (dsm
.src_onepart_cnt
)
3723 dst_can_be_shared
= false;
3725 dataflow_set_destroy (src1
);
3728 /* Mark register equivalences. */
3731 dataflow_set_equiv_regs (dataflow_set
*set
)
3736 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3738 rtx canon
[NUM_MACHINE_MODES
];
3740 /* If the list is empty or one entry, no need to canonicalize
3742 if (set
->regs
[i
] == NULL
|| set
->regs
[i
]->next
== NULL
)
3745 memset (canon
, 0, sizeof (canon
));
3747 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
3748 if (list
->offset
== 0 && dv_is_value_p (list
->dv
))
3750 rtx val
= dv_as_value (list
->dv
);
3751 rtx
*cvalp
= &canon
[(int)GET_MODE (val
)];
3754 if (canon_value_cmp (val
, cval
))
3758 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
3759 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
3761 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
3766 if (dv_is_value_p (list
->dv
))
3768 rtx val
= dv_as_value (list
->dv
);
3773 VALUE_RECURSED_INTO (val
) = true;
3774 set_variable_part (set
, val
, dv_from_value (cval
), 0,
3775 VAR_INIT_STATUS_INITIALIZED
,
3779 VALUE_RECURSED_INTO (cval
) = true;
3780 set_variable_part (set
, cval
, list
->dv
, 0,
3781 VAR_INIT_STATUS_INITIALIZED
, NULL
, NO_INSERT
);
3784 for (listp
= &set
->regs
[i
]; (list
= *listp
);
3785 listp
= list
? &list
->next
: listp
)
3786 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
3788 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
3794 if (dv_is_value_p (list
->dv
))
3796 rtx val
= dv_as_value (list
->dv
);
3797 if (!VALUE_RECURSED_INTO (val
))
3801 slot
= shared_hash_find_slot_noinsert (set
->vars
, list
->dv
);
3802 canonicalize_values_star (slot
, set
);
3809 /* Remove any redundant values in the location list of VAR, which must
3810 be unshared and 1-part. */
3813 remove_duplicate_values (variable var
)
3815 location_chain node
, *nodep
;
3817 gcc_assert (dv_onepart_p (var
->dv
));
3818 gcc_assert (var
->n_var_parts
== 1);
3819 gcc_assert (var
->refcount
== 1);
3821 for (nodep
= &var
->var_part
[0].loc_chain
; (node
= *nodep
); )
3823 if (GET_CODE (node
->loc
) == VALUE
)
3825 if (VALUE_RECURSED_INTO (node
->loc
))
3827 /* Remove duplicate value node. */
3828 *nodep
= node
->next
;
3829 pool_free (loc_chain_pool
, node
);
3833 VALUE_RECURSED_INTO (node
->loc
) = true;
3835 nodep
= &node
->next
;
3838 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3839 if (GET_CODE (node
->loc
) == VALUE
)
3841 gcc_assert (VALUE_RECURSED_INTO (node
->loc
));
3842 VALUE_RECURSED_INTO (node
->loc
) = false;
3847 /* Hash table iteration argument passed to variable_post_merge. */
3848 struct dfset_post_merge
3850 /* The new input set for the current block. */
3852 /* Pointer to the permanent input set for the current block, or
3854 dataflow_set
**permp
;
3857 /* Create values for incoming expressions associated with one-part
3858 variables that don't have value numbers for them. */
3861 variable_post_merge_new_vals (void **slot
, void *info
)
3863 struct dfset_post_merge
*dfpm
= (struct dfset_post_merge
*)info
;
3864 dataflow_set
*set
= dfpm
->set
;
3865 variable var
= (variable
)*slot
;
3866 location_chain node
;
3868 if (!dv_onepart_p (var
->dv
) || !var
->n_var_parts
)
3871 gcc_assert (var
->n_var_parts
== 1);
3873 if (dv_is_decl_p (var
->dv
))
3875 bool check_dupes
= false;
3878 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3880 if (GET_CODE (node
->loc
) == VALUE
)
3881 gcc_assert (!VALUE_RECURSED_INTO (node
->loc
));
3882 else if (GET_CODE (node
->loc
) == REG
)
3884 attrs att
, *attp
, *curp
= NULL
;
3886 if (var
->refcount
!= 1)
3888 slot
= unshare_variable (set
, slot
, var
,
3889 VAR_INIT_STATUS_INITIALIZED
);
3890 var
= (variable
)*slot
;
3894 for (attp
= &set
->regs
[REGNO (node
->loc
)]; (att
= *attp
);
3896 if (att
->offset
== 0
3897 && GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
3899 if (dv_is_value_p (att
->dv
))
3901 rtx cval
= dv_as_value (att
->dv
);
3906 else if (dv_as_opaque (att
->dv
) == dv_as_opaque (var
->dv
))
3914 if ((*curp
)->offset
== 0
3915 && GET_MODE ((*curp
)->loc
) == GET_MODE (node
->loc
)
3916 && dv_as_opaque ((*curp
)->dv
) == dv_as_opaque (var
->dv
))
3919 curp
= &(*curp
)->next
;
3930 *dfpm
->permp
= XNEW (dataflow_set
);
3931 dataflow_set_init (*dfpm
->permp
);
3934 for (att
= (*dfpm
->permp
)->regs
[REGNO (node
->loc
)];
3935 att
; att
= att
->next
)
3936 if (GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
3938 gcc_assert (att
->offset
== 0
3939 && dv_is_value_p (att
->dv
));
3940 val_reset (set
, att
->dv
);
3947 cval
= dv_as_value (cdv
);
3951 /* Create a unique value to hold this register,
3952 that ought to be found and reused in
3953 subsequent rounds. */
3955 gcc_assert (!cselib_lookup (node
->loc
,
3956 GET_MODE (node
->loc
), 0));
3957 v
= cselib_lookup (node
->loc
, GET_MODE (node
->loc
), 1);
3958 cselib_preserve_value (v
);
3959 cselib_invalidate_rtx (node
->loc
);
3961 cdv
= dv_from_value (cval
);
3964 "Created new value %u:%u for reg %i\n",
3965 v
->uid
, v
->hash
, REGNO (node
->loc
));
3968 var_reg_decl_set (*dfpm
->permp
, node
->loc
,
3969 VAR_INIT_STATUS_INITIALIZED
,
3970 cdv
, 0, NULL
, INSERT
);
3976 /* Remove attribute referring to the decl, which now
3977 uses the value for the register, already existing or
3978 to be added when we bring perm in. */
3981 pool_free (attrs_pool
, att
);
3986 remove_duplicate_values (var
);
3992 /* Reset values in the permanent set that are not associated with the
3993 chosen expression. */
3996 variable_post_merge_perm_vals (void **pslot
, void *info
)
3998 struct dfset_post_merge
*dfpm
= (struct dfset_post_merge
*)info
;
3999 dataflow_set
*set
= dfpm
->set
;
4000 variable pvar
= (variable
)*pslot
, var
;
4001 location_chain pnode
;
4005 gcc_assert (dv_is_value_p (pvar
->dv
)
4006 && pvar
->n_var_parts
== 1);
4007 pnode
= pvar
->var_part
[0].loc_chain
;
4010 && REG_P (pnode
->loc
));
4014 var
= shared_hash_find (set
->vars
, dv
);
4017 /* Although variable_post_merge_new_vals may have made decls
4018 non-star-canonical, values that pre-existed in canonical form
4019 remain canonical, and newly-created values reference a single
4020 REG, so they are canonical as well. Since VAR has the
4021 location list for a VALUE, using find_loc_in_1pdv for it is
4022 fine, since VALUEs don't map back to DECLs. */
4023 if (find_loc_in_1pdv (pnode
->loc
, var
, shared_hash_htab (set
->vars
)))
4025 val_reset (set
, dv
);
4028 for (att
= set
->regs
[REGNO (pnode
->loc
)]; att
; att
= att
->next
)
4029 if (att
->offset
== 0
4030 && GET_MODE (att
->loc
) == GET_MODE (pnode
->loc
)
4031 && dv_is_value_p (att
->dv
))
4034 /* If there is a value associated with this register already, create
4036 if (att
&& dv_as_value (att
->dv
) != dv_as_value (dv
))
4038 rtx cval
= dv_as_value (att
->dv
);
4039 set_variable_part (set
, cval
, dv
, 0, pnode
->init
, NULL
, INSERT
);
4040 set_variable_part (set
, dv_as_value (dv
), att
->dv
, 0, pnode
->init
,
4045 attrs_list_insert (&set
->regs
[REGNO (pnode
->loc
)],
4047 variable_union (pvar
, set
);
4053 /* Just checking stuff and registering register attributes for
4057 dataflow_post_merge_adjust (dataflow_set
*set
, dataflow_set
**permp
)
4059 struct dfset_post_merge dfpm
;
4064 htab_traverse (shared_hash_htab (set
->vars
), variable_post_merge_new_vals
,
4067 htab_traverse (shared_hash_htab ((*permp
)->vars
),
4068 variable_post_merge_perm_vals
, &dfpm
);
4069 htab_traverse (shared_hash_htab (set
->vars
), canonicalize_values_star
, set
);
4070 htab_traverse (shared_hash_htab (set
->vars
), canonicalize_vars_star
, set
);
4073 /* Return a node whose loc is a MEM that refers to EXPR in the
4074 location list of a one-part variable or value VAR, or in that of
4075 any values recursively mentioned in the location lists. */
4077 static location_chain
4078 find_mem_expr_in_1pdv (tree expr
, rtx val
, htab_t vars
)
4080 location_chain node
;
4083 location_chain where
= NULL
;
4088 gcc_assert (GET_CODE (val
) == VALUE
4089 && !VALUE_RECURSED_INTO (val
));
4091 dv
= dv_from_value (val
);
4092 var
= (variable
) htab_find_with_hash (vars
, dv
, dv_htab_hash (dv
));
4097 gcc_assert (dv_onepart_p (var
->dv
));
4099 if (!var
->n_var_parts
)
4102 gcc_assert (var
->var_part
[0].offset
== 0);
4104 VALUE_RECURSED_INTO (val
) = true;
4106 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4107 if (MEM_P (node
->loc
) && MEM_EXPR (node
->loc
) == expr
4108 && MEM_OFFSET (node
->loc
) == 0)
4113 else if (GET_CODE (node
->loc
) == VALUE
4114 && !VALUE_RECURSED_INTO (node
->loc
)
4115 && (where
= find_mem_expr_in_1pdv (expr
, node
->loc
, vars
)))
4118 VALUE_RECURSED_INTO (val
) = false;
4123 /* Return TRUE if the value of MEM may vary across a call. */
4126 mem_dies_at_call (rtx mem
)
4128 tree expr
= MEM_EXPR (mem
);
4134 decl
= get_base_address (expr
);
4142 return (may_be_aliased (decl
)
4143 || (!TREE_READONLY (decl
) && is_global_var (decl
)));
4146 /* Remove all MEMs from the location list of a hash table entry for a
4147 one-part variable, except those whose MEM attributes map back to
4148 the variable itself, directly or within a VALUE. */
4151 dataflow_set_preserve_mem_locs (void **slot
, void *data
)
4153 dataflow_set
*set
= (dataflow_set
*) data
;
4154 variable var
= (variable
) *slot
;
4156 if (dv_is_decl_p (var
->dv
) && dv_onepart_p (var
->dv
))
4158 tree decl
= dv_as_decl (var
->dv
);
4159 location_chain loc
, *locp
;
4160 bool changed
= false;
4162 if (!var
->n_var_parts
)
4165 gcc_assert (var
->n_var_parts
== 1);
4167 if (shared_var_p (var
, set
->vars
))
4169 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4171 /* We want to remove dying MEMs that doesn't refer to
4173 if (GET_CODE (loc
->loc
) == MEM
4174 && (MEM_EXPR (loc
->loc
) != decl
4175 || MEM_OFFSET (loc
->loc
))
4176 && !mem_dies_at_call (loc
->loc
))
4178 /* We want to move here MEMs that do refer to DECL. */
4179 else if (GET_CODE (loc
->loc
) == VALUE
4180 && find_mem_expr_in_1pdv (decl
, loc
->loc
,
4181 shared_hash_htab (set
->vars
)))
4188 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4189 var
= (variable
)*slot
;
4190 gcc_assert (var
->n_var_parts
== 1);
4193 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4196 rtx old_loc
= loc
->loc
;
4197 if (GET_CODE (old_loc
) == VALUE
)
4199 location_chain mem_node
4200 = find_mem_expr_in_1pdv (decl
, loc
->loc
,
4201 shared_hash_htab (set
->vars
));
4203 /* ??? This picks up only one out of multiple MEMs that
4204 refer to the same variable. Do we ever need to be
4205 concerned about dealing with more than one, or, given
4206 that they should all map to the same variable
4207 location, their addresses will have been merged and
4208 they will be regarded as equivalent? */
4211 loc
->loc
= mem_node
->loc
;
4212 loc
->set_src
= mem_node
->set_src
;
4213 loc
->init
= MIN (loc
->init
, mem_node
->init
);
4217 if (GET_CODE (loc
->loc
) != MEM
4218 || (MEM_EXPR (loc
->loc
) == decl
4219 && MEM_OFFSET (loc
->loc
) == 0)
4220 || !mem_dies_at_call (loc
->loc
))
4222 if (old_loc
!= loc
->loc
&& emit_notes
)
4224 if (old_loc
== var
->var_part
[0].cur_loc
)
4227 var
->var_part
[0].cur_loc
= NULL
;
4228 var
->cur_loc_changed
= true;
4230 add_value_chains (var
->dv
, loc
->loc
);
4231 remove_value_chains (var
->dv
, old_loc
);
4239 remove_value_chains (var
->dv
, old_loc
);
4240 if (old_loc
== var
->var_part
[0].cur_loc
)
4243 var
->var_part
[0].cur_loc
= NULL
;
4244 var
->cur_loc_changed
= true;
4248 pool_free (loc_chain_pool
, loc
);
4251 if (!var
->var_part
[0].loc_chain
)
4257 variable_was_changed (var
, set
);
4263 /* Remove all MEMs from the location list of a hash table entry for a
4267 dataflow_set_remove_mem_locs (void **slot
, void *data
)
4269 dataflow_set
*set
= (dataflow_set
*) data
;
4270 variable var
= (variable
) *slot
;
4272 if (dv_is_value_p (var
->dv
))
4274 location_chain loc
, *locp
;
4275 bool changed
= false;
4277 gcc_assert (var
->n_var_parts
== 1);
4279 if (shared_var_p (var
, set
->vars
))
4281 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4282 if (GET_CODE (loc
->loc
) == MEM
4283 && mem_dies_at_call (loc
->loc
))
4289 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4290 var
= (variable
)*slot
;
4291 gcc_assert (var
->n_var_parts
== 1);
4294 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4297 if (GET_CODE (loc
->loc
) != MEM
4298 || !mem_dies_at_call (loc
->loc
))
4305 remove_value_chains (var
->dv
, loc
->loc
);
4307 /* If we have deleted the location which was last emitted
4308 we have to emit new location so add the variable to set
4309 of changed variables. */
4310 if (var
->var_part
[0].cur_loc
== loc
->loc
)
4313 var
->var_part
[0].cur_loc
= NULL
;
4314 var
->cur_loc_changed
= true;
4316 pool_free (loc_chain_pool
, loc
);
4319 if (!var
->var_part
[0].loc_chain
)
4325 variable_was_changed (var
, set
);
4331 /* Remove all variable-location information about call-clobbered
4332 registers, as well as associations between MEMs and VALUEs. */
4335 dataflow_set_clear_at_call (dataflow_set
*set
)
4339 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
4340 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, r
))
4341 var_regno_delete (set
, r
);
4343 if (MAY_HAVE_DEBUG_INSNS
)
4345 set
->traversed_vars
= set
->vars
;
4346 htab_traverse (shared_hash_htab (set
->vars
),
4347 dataflow_set_preserve_mem_locs
, set
);
4348 set
->traversed_vars
= set
->vars
;
4349 htab_traverse (shared_hash_htab (set
->vars
), dataflow_set_remove_mem_locs
,
4351 set
->traversed_vars
= NULL
;
4356 variable_part_different_p (variable_part
*vp1
, variable_part
*vp2
)
4358 location_chain lc1
, lc2
;
4360 for (lc1
= vp1
->loc_chain
; lc1
; lc1
= lc1
->next
)
4362 for (lc2
= vp2
->loc_chain
; lc2
; lc2
= lc2
->next
)
4364 if (REG_P (lc1
->loc
) && REG_P (lc2
->loc
))
4366 if (REGNO (lc1
->loc
) == REGNO (lc2
->loc
))
4369 if (rtx_equal_p (lc1
->loc
, lc2
->loc
))
4378 /* Return true if one-part variables VAR1 and VAR2 are different.
4379 They must be in canonical order. */
4382 onepart_variable_different_p (variable var1
, variable var2
)
4384 location_chain lc1
, lc2
;
4389 gcc_assert (var1
->n_var_parts
== 1
4390 && var2
->n_var_parts
== 1);
4392 lc1
= var1
->var_part
[0].loc_chain
;
4393 lc2
= var2
->var_part
[0].loc_chain
;
4395 gcc_assert (lc1
&& lc2
);
4399 if (loc_cmp (lc1
->loc
, lc2
->loc
))
4408 /* Return true if variables VAR1 and VAR2 are different. */
4411 variable_different_p (variable var1
, variable var2
)
4418 if (var1
->n_var_parts
!= var2
->n_var_parts
)
4421 for (i
= 0; i
< var1
->n_var_parts
; i
++)
4423 if (var1
->var_part
[i
].offset
!= var2
->var_part
[i
].offset
)
4425 /* One-part values have locations in a canonical order. */
4426 if (i
== 0 && var1
->var_part
[i
].offset
== 0 && dv_onepart_p (var1
->dv
))
4428 gcc_assert (var1
->n_var_parts
== 1
4429 && dv_as_opaque (var1
->dv
) == dv_as_opaque (var2
->dv
));
4430 return onepart_variable_different_p (var1
, var2
);
4432 if (variable_part_different_p (&var1
->var_part
[i
], &var2
->var_part
[i
]))
4434 if (variable_part_different_p (&var2
->var_part
[i
], &var1
->var_part
[i
]))
4440 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4443 dataflow_set_different (dataflow_set
*old_set
, dataflow_set
*new_set
)
4448 if (old_set
->vars
== new_set
->vars
)
4451 if (htab_elements (shared_hash_htab (old_set
->vars
))
4452 != htab_elements (shared_hash_htab (new_set
->vars
)))
4455 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (old_set
->vars
), var1
, variable
, hi
)
4457 htab_t htab
= shared_hash_htab (new_set
->vars
);
4458 variable var2
= (variable
) htab_find_with_hash (htab
, var1
->dv
,
4459 dv_htab_hash (var1
->dv
));
4462 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4464 fprintf (dump_file
, "dataflow difference found: removal of:\n");
4470 if (variable_different_p (var1
, var2
))
4472 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4474 fprintf (dump_file
, "dataflow difference found: "
4475 "old and new follow:\n");
4483 /* No need to traverse the second hashtab, if both have the same number
4484 of elements and the second one had all entries found in the first one,
4485 then it can't have any extra entries. */
4489 /* Free the contents of dataflow set SET. */
4492 dataflow_set_destroy (dataflow_set
*set
)
4496 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4497 attrs_list_clear (&set
->regs
[i
]);
4499 shared_hash_destroy (set
->vars
);
4503 /* Return true if RTL X contains a SYMBOL_REF. */
4506 contains_symbol_ref (rtx x
)
4515 code
= GET_CODE (x
);
4516 if (code
== SYMBOL_REF
)
4519 fmt
= GET_RTX_FORMAT (code
);
4520 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4524 if (contains_symbol_ref (XEXP (x
, i
)))
4527 else if (fmt
[i
] == 'E')
4530 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
4531 if (contains_symbol_ref (XVECEXP (x
, i
, j
)))
4539 /* Shall EXPR be tracked? */
4542 track_expr_p (tree expr
, bool need_rtl
)
4547 if (TREE_CODE (expr
) == DEBUG_EXPR_DECL
)
4548 return DECL_RTL_SET_P (expr
);
4550 /* If EXPR is not a parameter or a variable do not track it. */
4551 if (TREE_CODE (expr
) != VAR_DECL
&& TREE_CODE (expr
) != PARM_DECL
)
4554 /* It also must have a name... */
4555 if (!DECL_NAME (expr
) && need_rtl
)
4558 /* ... and a RTL assigned to it. */
4559 decl_rtl
= DECL_RTL_IF_SET (expr
);
4560 if (!decl_rtl
&& need_rtl
)
4563 /* If this expression is really a debug alias of some other declaration, we
4564 don't need to track this expression if the ultimate declaration is
4567 if (DECL_DEBUG_EXPR_IS_FROM (realdecl
))
4569 realdecl
= DECL_DEBUG_EXPR (realdecl
);
4570 if (realdecl
== NULL_TREE
)
4572 else if (!DECL_P (realdecl
))
4574 if (handled_component_p (realdecl
))
4576 HOST_WIDE_INT bitsize
, bitpos
, maxsize
;
4578 = get_ref_base_and_extent (realdecl
, &bitpos
, &bitsize
,
4580 if (!DECL_P (innerdecl
)
4581 || DECL_IGNORED_P (innerdecl
)
4582 || TREE_STATIC (innerdecl
)
4584 || bitpos
+ bitsize
> 256
4585 || bitsize
!= maxsize
)
4595 /* Do not track EXPR if REALDECL it should be ignored for debugging
4597 if (DECL_IGNORED_P (realdecl
))
4600 /* Do not track global variables until we are able to emit correct location
4602 if (TREE_STATIC (realdecl
))
4605 /* When the EXPR is a DECL for alias of some variable (see example)
4606 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
4607 DECL_RTL contains SYMBOL_REF.
4610 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
4613 if (decl_rtl
&& MEM_P (decl_rtl
)
4614 && contains_symbol_ref (XEXP (decl_rtl
, 0)))
4617 /* If RTX is a memory it should not be very large (because it would be
4618 an array or struct). */
4619 if (decl_rtl
&& MEM_P (decl_rtl
))
4621 /* Do not track structures and arrays. */
4622 if (GET_MODE (decl_rtl
) == BLKmode
4623 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl
)))
4625 if (MEM_SIZE (decl_rtl
)
4626 && INTVAL (MEM_SIZE (decl_rtl
)) > MAX_VAR_PARTS
)
4630 DECL_CHANGED (expr
) = 0;
4631 DECL_CHANGED (realdecl
) = 0;
4635 /* Determine whether a given LOC refers to the same variable part as
4639 same_variable_part_p (rtx loc
, tree expr
, HOST_WIDE_INT offset
)
4642 HOST_WIDE_INT offset2
;
4644 if (! DECL_P (expr
))
4649 expr2
= REG_EXPR (loc
);
4650 offset2
= REG_OFFSET (loc
);
4652 else if (MEM_P (loc
))
4654 expr2
= MEM_EXPR (loc
);
4655 offset2
= INT_MEM_OFFSET (loc
);
4660 if (! expr2
|| ! DECL_P (expr2
))
4663 expr
= var_debug_decl (expr
);
4664 expr2
= var_debug_decl (expr2
);
4666 return (expr
== expr2
&& offset
== offset2
);
4669 /* LOC is a REG or MEM that we would like to track if possible.
4670 If EXPR is null, we don't know what expression LOC refers to,
4671 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
4672 LOC is an lvalue register.
4674 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
4675 is something we can track. When returning true, store the mode of
4676 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
4677 from EXPR in *OFFSET_OUT (if nonnull). */
4680 track_loc_p (rtx loc
, tree expr
, HOST_WIDE_INT offset
, bool store_reg_p
,
4681 enum machine_mode
*mode_out
, HOST_WIDE_INT
*offset_out
)
4683 enum machine_mode mode
;
4685 if (expr
== NULL
|| !track_expr_p (expr
, true))
4688 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
4689 whole subreg, but only the old inner part is really relevant. */
4690 mode
= GET_MODE (loc
);
4691 if (REG_P (loc
) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc
)))
4693 enum machine_mode pseudo_mode
;
4695 pseudo_mode
= PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc
));
4696 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (pseudo_mode
))
4698 offset
+= byte_lowpart_offset (pseudo_mode
, mode
);
4703 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
4704 Do the same if we are storing to a register and EXPR occupies
4705 the whole of register LOC; in that case, the whole of EXPR is
4706 being changed. We exclude complex modes from the second case
4707 because the real and imaginary parts are represented as separate
4708 pseudo registers, even if the whole complex value fits into one
4710 if ((GET_MODE_SIZE (mode
) > GET_MODE_SIZE (DECL_MODE (expr
))
4712 && !COMPLEX_MODE_P (DECL_MODE (expr
))
4713 && hard_regno_nregs
[REGNO (loc
)][DECL_MODE (expr
)] == 1))
4714 && offset
+ byte_lowpart_offset (DECL_MODE (expr
), mode
) == 0)
4716 mode
= DECL_MODE (expr
);
4720 if (offset
< 0 || offset
>= MAX_VAR_PARTS
)
4726 *offset_out
= offset
;
4730 /* Return the MODE lowpart of LOC, or null if LOC is not something we
4731 want to track. When returning nonnull, make sure that the attributes
4732 on the returned value are updated. */
4735 var_lowpart (enum machine_mode mode
, rtx loc
)
4737 unsigned int offset
, reg_offset
, regno
;
4739 if (!REG_P (loc
) && !MEM_P (loc
))
4742 if (GET_MODE (loc
) == mode
)
4745 offset
= byte_lowpart_offset (mode
, GET_MODE (loc
));
4748 return adjust_address_nv (loc
, mode
, offset
);
4750 reg_offset
= subreg_lowpart_offset (mode
, GET_MODE (loc
));
4751 regno
= REGNO (loc
) + subreg_regno_offset (REGNO (loc
), GET_MODE (loc
),
4753 return gen_rtx_REG_offset (loc
, mode
, regno
, offset
);
4756 /* Carry information about uses and stores while walking rtx. */
4758 struct count_use_info
4760 /* The insn where the RTX is. */
4763 /* The basic block where insn is. */
4766 /* The array of n_sets sets in the insn, as determined by cselib. */
4767 struct cselib_set
*sets
;
4770 /* True if we're counting stores, false otherwise. */
4774 /* Find a VALUE corresponding to X. */
4776 static inline cselib_val
*
4777 find_use_val (rtx x
, enum machine_mode mode
, struct count_use_info
*cui
)
4783 /* This is called after uses are set up and before stores are
4784 processed bycselib, so it's safe to look up srcs, but not
4785 dsts. So we look up expressions that appear in srcs or in
4786 dest expressions, but we search the sets array for dests of
4790 for (i
= 0; i
< cui
->n_sets
; i
++)
4791 if (cui
->sets
[i
].dest
== x
)
4792 return cui
->sets
[i
].src_elt
;
4795 return cselib_lookup (x
, mode
, 0);
4801 /* Helper function to get mode of MEM's address. */
4803 static inline enum machine_mode
4804 get_address_mode (rtx mem
)
4806 enum machine_mode mode
= GET_MODE (XEXP (mem
, 0));
4807 if (mode
!= VOIDmode
)
4809 return targetm
.addr_space
.address_mode (MEM_ADDR_SPACE (mem
));
4812 /* Replace all registers and addresses in an expression with VALUE
4813 expressions that map back to them, unless the expression is a
4814 register. If no mapping is or can be performed, returns NULL. */
4817 replace_expr_with_values (rtx loc
)
4821 else if (MEM_P (loc
))
4823 cselib_val
*addr
= cselib_lookup (XEXP (loc
, 0),
4824 get_address_mode (loc
), 0);
4826 return replace_equiv_address_nv (loc
, addr
->val_rtx
);
4831 return cselib_subst_to_values (loc
);
4834 /* Determine what kind of micro operation to choose for a USE. Return
4835 MO_CLOBBER if no micro operation is to be generated. */
4837 static enum micro_operation_type
4838 use_type (rtx loc
, struct count_use_info
*cui
, enum machine_mode
*modep
)
4842 if (cui
&& cui
->sets
)
4844 if (GET_CODE (loc
) == VAR_LOCATION
)
4846 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc
), false))
4848 rtx ploc
= PAT_VAR_LOCATION_LOC (loc
);
4849 if (! VAR_LOC_UNKNOWN_P (ploc
))
4851 cselib_val
*val
= cselib_lookup (ploc
, GET_MODE (loc
), 1);
4853 /* ??? flag_float_store and volatile mems are never
4854 given values, but we could in theory use them for
4856 gcc_assert (val
|| 1);
4864 if (REG_P (loc
) || MEM_P (loc
))
4867 *modep
= GET_MODE (loc
);
4871 || (find_use_val (loc
, GET_MODE (loc
), cui
)
4872 && cselib_lookup (XEXP (loc
, 0),
4873 get_address_mode (loc
), 0)))
4878 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
4880 if (val
&& !cselib_preserved_value_p (val
))
4888 gcc_assert (REGNO (loc
) < FIRST_PSEUDO_REGISTER
);
4890 if (loc
== cfa_base_rtx
)
4892 expr
= REG_EXPR (loc
);
4895 return MO_USE_NO_VAR
;
4896 else if (target_for_debug_bind (var_debug_decl (expr
)))
4898 else if (track_loc_p (loc
, expr
, REG_OFFSET (loc
),
4899 false, modep
, NULL
))
4902 return MO_USE_NO_VAR
;
4904 else if (MEM_P (loc
))
4906 expr
= MEM_EXPR (loc
);
4910 else if (target_for_debug_bind (var_debug_decl (expr
)))
4912 else if (track_loc_p (loc
, expr
, INT_MEM_OFFSET (loc
),
4913 false, modep
, NULL
))
4922 /* Log to OUT information about micro-operation MOPT involving X in
4926 log_op_type (rtx x
, basic_block bb
, rtx insn
,
4927 enum micro_operation_type mopt
, FILE *out
)
4929 fprintf (out
, "bb %i op %i insn %i %s ",
4930 bb
->index
, VEC_length (micro_operation
, VTI (bb
)->mos
),
4931 INSN_UID (insn
), micro_operation_type_name
[mopt
]);
4932 print_inline_rtx (out
, x
, 2);
4936 /* Tell whether the CONCAT used to holds a VALUE and its location
4937 needs value resolution, i.e., an attempt of mapping the location
4938 back to other incoming values. */
4939 #define VAL_NEEDS_RESOLUTION(x) \
4940 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
4941 /* Whether the location in the CONCAT is a tracked expression, that
4942 should also be handled like a MO_USE. */
4943 #define VAL_HOLDS_TRACK_EXPR(x) \
4944 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
4945 /* Whether the location in the CONCAT should be handled like a MO_COPY
4947 #define VAL_EXPR_IS_COPIED(x) \
4948 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
4949 /* Whether the location in the CONCAT should be handled like a
4950 MO_CLOBBER as well. */
4951 #define VAL_EXPR_IS_CLOBBERED(x) \
4952 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
4953 /* Whether the location is a CONCAT of the MO_VAL_SET expression and
4954 a reverse operation that should be handled afterwards. */
4955 #define VAL_EXPR_HAS_REVERSE(x) \
4956 (RTL_FLAG_CHECK1 ("VAL_EXPR_HAS_REVERSE", (x), CONCAT)->return_val)
4958 /* All preserved VALUEs. */
4959 static VEC (rtx
, heap
) *preserved_values
;
4961 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
4964 preserve_value (cselib_val
*val
)
4966 cselib_preserve_value (val
);
4967 VEC_safe_push (rtx
, heap
, preserved_values
, val
->val_rtx
);
4970 /* Helper function for MO_VAL_LOC handling. Return non-zero if
4971 any rtxes not suitable for CONST use not replaced by VALUEs
4975 non_suitable_const (rtx
*x
, void *data ATTRIBUTE_UNUSED
)
4980 switch (GET_CODE (*x
))
4991 return !MEM_READONLY_P (*x
);
4997 /* Add uses (register and memory references) LOC which will be tracked
4998 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5001 add_uses (rtx
*ploc
, void *data
)
5004 enum machine_mode mode
= VOIDmode
;
5005 struct count_use_info
*cui
= (struct count_use_info
*)data
;
5006 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
5008 if (type
!= MO_CLOBBER
)
5010 basic_block bb
= cui
->bb
;
5014 mo
.u
.loc
= type
== MO_USE
? var_lowpart (mode
, loc
) : loc
;
5015 mo
.insn
= cui
->insn
;
5017 if (type
== MO_VAL_LOC
)
5020 rtx vloc
= PAT_VAR_LOCATION_LOC (oloc
);
5023 gcc_assert (cui
->sets
);
5026 && !REG_P (XEXP (vloc
, 0))
5027 && !MEM_P (XEXP (vloc
, 0))
5028 && (GET_CODE (XEXP (vloc
, 0)) != PLUS
5029 || XEXP (XEXP (vloc
, 0), 0) != cfa_base_rtx
5030 || !CONST_INT_P (XEXP (XEXP (vloc
, 0), 1))))
5033 enum machine_mode address_mode
= get_address_mode (mloc
);
5035 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0);
5037 if (val
&& !cselib_preserved_value_p (val
))
5039 micro_operation moa
;
5040 preserve_value (val
);
5041 mloc
= cselib_subst_to_values (XEXP (mloc
, 0));
5042 moa
.type
= MO_VAL_USE
;
5043 moa
.insn
= cui
->insn
;
5044 moa
.u
.loc
= gen_rtx_CONCAT (address_mode
,
5045 val
->val_rtx
, mloc
);
5046 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5047 log_op_type (moa
.u
.loc
, cui
->bb
, cui
->insn
,
5048 moa
.type
, dump_file
);
5049 VEC_safe_push (micro_operation
, heap
, VTI (bb
)->mos
, &moa
);
5053 if (CONSTANT_P (vloc
)
5054 && (GET_CODE (vloc
) != CONST
5055 || for_each_rtx (&vloc
, non_suitable_const
, NULL
)))
5056 /* For constants don't look up any value. */;
5057 else if (!VAR_LOC_UNKNOWN_P (vloc
)
5058 && (val
= find_use_val (vloc
, GET_MODE (oloc
), cui
)))
5060 enum machine_mode mode2
;
5061 enum micro_operation_type type2
;
5062 rtx nloc
= replace_expr_with_values (vloc
);
5066 oloc
= shallow_copy_rtx (oloc
);
5067 PAT_VAR_LOCATION_LOC (oloc
) = nloc
;
5070 oloc
= gen_rtx_CONCAT (mode
, val
->val_rtx
, oloc
);
5072 type2
= use_type (vloc
, 0, &mode2
);
5074 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
5075 || type2
== MO_CLOBBER
);
5077 if (type2
== MO_CLOBBER
5078 && !cselib_preserved_value_p (val
))
5080 VAL_NEEDS_RESOLUTION (oloc
) = 1;
5081 preserve_value (val
);
5084 else if (!VAR_LOC_UNKNOWN_P (vloc
))
5086 oloc
= shallow_copy_rtx (oloc
);
5087 PAT_VAR_LOCATION_LOC (oloc
) = gen_rtx_UNKNOWN_VAR_LOC ();
5092 else if (type
== MO_VAL_USE
)
5094 enum machine_mode mode2
= VOIDmode
;
5095 enum micro_operation_type type2
;
5096 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
5097 rtx vloc
, oloc
= loc
, nloc
;
5099 gcc_assert (cui
->sets
);
5102 && !REG_P (XEXP (oloc
, 0))
5103 && !MEM_P (XEXP (oloc
, 0))
5104 && (GET_CODE (XEXP (oloc
, 0)) != PLUS
5105 || XEXP (XEXP (oloc
, 0), 0) != cfa_base_rtx
5106 || !CONST_INT_P (XEXP (XEXP (oloc
, 0), 1))))
5109 enum machine_mode address_mode
= get_address_mode (mloc
);
5111 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0);
5113 if (val
&& !cselib_preserved_value_p (val
))
5115 micro_operation moa
;
5116 preserve_value (val
);
5117 mloc
= cselib_subst_to_values (XEXP (mloc
, 0));
5118 moa
.type
= MO_VAL_USE
;
5119 moa
.insn
= cui
->insn
;
5120 moa
.u
.loc
= gen_rtx_CONCAT (address_mode
,
5121 val
->val_rtx
, mloc
);
5122 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5123 log_op_type (moa
.u
.loc
, cui
->bb
, cui
->insn
,
5124 moa
.type
, dump_file
);
5125 VEC_safe_push (micro_operation
, heap
, VTI (bb
)->mos
, &moa
);
5129 type2
= use_type (loc
, 0, &mode2
);
5131 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
5132 || type2
== MO_CLOBBER
);
5134 if (type2
== MO_USE
)
5135 vloc
= var_lowpart (mode2
, loc
);
5139 /* The loc of a MO_VAL_USE may have two forms:
5141 (concat val src): val is at src, a value-based
5144 (concat (concat val use) src): same as above, with use as
5145 the MO_USE tracked value, if it differs from src.
5149 nloc
= replace_expr_with_values (loc
);
5154 oloc
= gen_rtx_CONCAT (mode2
, val
->val_rtx
, vloc
);
5156 oloc
= val
->val_rtx
;
5158 mo
.u
.loc
= gen_rtx_CONCAT (mode
, oloc
, nloc
);
5160 if (type2
== MO_USE
)
5161 VAL_HOLDS_TRACK_EXPR (mo
.u
.loc
) = 1;
5162 if (!cselib_preserved_value_p (val
))
5164 VAL_NEEDS_RESOLUTION (mo
.u
.loc
) = 1;
5165 preserve_value (val
);
5169 gcc_assert (type
== MO_USE
|| type
== MO_USE_NO_VAR
);
5171 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5172 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
5173 VEC_safe_push (micro_operation
, heap
, VTI (bb
)->mos
, &mo
);
5179 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5182 add_uses_1 (rtx
*x
, void *cui
)
5184 for_each_rtx (x
, add_uses
, cui
);
5187 /* Attempt to reverse the EXPR operation in the debug info. Say for
5188 reg1 = reg2 + 6 even when reg2 is no longer live we
5189 can express its value as VAL - 6. */
5192 reverse_op (rtx val
, const_rtx expr
)
5198 if (GET_CODE (expr
) != SET
)
5201 if (!REG_P (SET_DEST (expr
)) || GET_MODE (val
) != GET_MODE (SET_DEST (expr
)))
5204 src
= SET_SRC (expr
);
5205 switch (GET_CODE (src
))
5212 if (!REG_P (XEXP (src
, 0)))
5217 if (!REG_P (XEXP (src
, 0)) && !MEM_P (XEXP (src
, 0)))
5224 if (!SCALAR_INT_MODE_P (GET_MODE (src
)) || XEXP (src
, 0) == cfa_base_rtx
)
5227 v
= cselib_lookup (XEXP (src
, 0), GET_MODE (XEXP (src
, 0)), 0);
5228 if (!v
|| !cselib_preserved_value_p (v
))
5231 switch (GET_CODE (src
))
5235 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5237 ret
= gen_rtx_fmt_e (GET_CODE (src
), GET_MODE (val
), val
);
5241 ret
= gen_lowpart_SUBREG (GET_MODE (v
->val_rtx
), val
);
5253 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5255 arg
= XEXP (src
, 1);
5256 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5258 arg
= cselib_expand_value_rtx (arg
, scratch_regs
, 5);
5259 if (arg
== NULL_RTX
)
5261 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5264 ret
= simplify_gen_binary (code
, GET_MODE (val
), val
, arg
);
5266 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5267 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5268 breaks a lot of routines during var-tracking. */
5269 ret
= gen_rtx_fmt_ee (PLUS
, GET_MODE (val
), val
, const0_rtx
);
5275 return gen_rtx_CONCAT (GET_MODE (v
->val_rtx
), v
->val_rtx
, ret
);
5278 /* Add stores (register and memory references) LOC which will be tracked
5279 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5280 CUIP->insn is instruction which the LOC is part of. */
5283 add_stores (rtx loc
, const_rtx expr
, void *cuip
)
5285 enum machine_mode mode
= VOIDmode
, mode2
;
5286 struct count_use_info
*cui
= (struct count_use_info
*)cuip
;
5287 basic_block bb
= cui
->bb
;
5289 rtx oloc
= loc
, nloc
, src
= NULL
;
5290 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
5291 bool track_p
= false;
5293 bool resolve
, preserve
;
5296 if (type
== MO_CLOBBER
)
5303 gcc_assert (loc
!= cfa_base_rtx
);
5304 if ((GET_CODE (expr
) == CLOBBER
&& type
!= MO_VAL_SET
)
5305 || !(track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
5306 || GET_CODE (expr
) == CLOBBER
)
5308 mo
.type
= MO_CLOBBER
;
5313 if (GET_CODE (expr
) == SET
&& SET_DEST (expr
) == loc
)
5314 src
= var_lowpart (mode2
, SET_SRC (expr
));
5315 loc
= var_lowpart (mode2
, loc
);
5324 rtx xexpr
= gen_rtx_SET (VOIDmode
, loc
, src
);
5325 if (same_variable_part_p (src
, REG_EXPR (loc
), REG_OFFSET (loc
)))
5332 mo
.insn
= cui
->insn
;
5334 else if (MEM_P (loc
)
5335 && ((track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
5338 if (MEM_P (loc
) && type
== MO_VAL_SET
5339 && !REG_P (XEXP (loc
, 0))
5340 && !MEM_P (XEXP (loc
, 0))
5341 && (GET_CODE (XEXP (loc
, 0)) != PLUS
5342 || XEXP (XEXP (loc
, 0), 0) != cfa_base_rtx
5343 || !CONST_INT_P (XEXP (XEXP (loc
, 0), 1))))
5346 enum machine_mode address_mode
= get_address_mode (mloc
);
5347 cselib_val
*val
= cselib_lookup (XEXP (mloc
, 0),
5350 if (val
&& !cselib_preserved_value_p (val
))
5352 preserve_value (val
);
5353 mo
.type
= MO_VAL_USE
;
5354 mloc
= cselib_subst_to_values (XEXP (mloc
, 0));
5355 mo
.u
.loc
= gen_rtx_CONCAT (address_mode
, val
->val_rtx
, mloc
);
5356 mo
.insn
= cui
->insn
;
5357 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5358 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
,
5359 mo
.type
, dump_file
);
5360 VEC_safe_push (micro_operation
, heap
, VTI (bb
)->mos
, &mo
);
5364 if (GET_CODE (expr
) == CLOBBER
|| !track_p
)
5366 mo
.type
= MO_CLOBBER
;
5367 mo
.u
.loc
= track_p
? var_lowpart (mode2
, loc
) : loc
;
5371 if (GET_CODE (expr
) == SET
&& SET_DEST (expr
) == loc
)
5372 src
= var_lowpart (mode2
, SET_SRC (expr
));
5373 loc
= var_lowpart (mode2
, loc
);
5382 rtx xexpr
= gen_rtx_SET (VOIDmode
, loc
, src
);
5383 if (same_variable_part_p (SET_SRC (xexpr
),
5385 INT_MEM_OFFSET (loc
)))
5392 mo
.insn
= cui
->insn
;
5397 if (type
!= MO_VAL_SET
)
5398 goto log_and_return
;
5400 v
= find_use_val (oloc
, mode
, cui
);
5403 goto log_and_return
;
5405 resolve
= preserve
= !cselib_preserved_value_p (v
);
5407 nloc
= replace_expr_with_values (oloc
);
5411 if (GET_CODE (PATTERN (cui
->insn
)) == COND_EXEC
)
5413 cselib_val
*oval
= cselib_lookup (oloc
, GET_MODE (oloc
), 0);
5415 gcc_assert (oval
!= v
);
5416 gcc_assert (REG_P (oloc
) || MEM_P (oloc
));
5418 if (!cselib_preserved_value_p (oval
))
5420 micro_operation moa
;
5422 preserve_value (oval
);
5424 moa
.type
= MO_VAL_USE
;
5425 moa
.u
.loc
= gen_rtx_CONCAT (mode
, oval
->val_rtx
, oloc
);
5426 VAL_NEEDS_RESOLUTION (moa
.u
.loc
) = 1;
5427 moa
.insn
= cui
->insn
;
5429 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5430 log_op_type (moa
.u
.loc
, cui
->bb
, cui
->insn
,
5431 moa
.type
, dump_file
);
5432 VEC_safe_push (micro_operation
, heap
, VTI (bb
)->mos
, &moa
);
5437 else if (resolve
&& GET_CODE (mo
.u
.loc
) == SET
)
5439 nloc
= replace_expr_with_values (SET_SRC (expr
));
5441 /* Avoid the mode mismatch between oexpr and expr. */
5442 if (!nloc
&& mode
!= mode2
)
5444 nloc
= SET_SRC (expr
);
5445 gcc_assert (oloc
== SET_DEST (expr
));
5449 oloc
= gen_rtx_SET (GET_MODE (mo
.u
.loc
), oloc
, nloc
);
5452 if (oloc
== SET_DEST (mo
.u
.loc
))
5453 /* No point in duplicating. */
5455 if (!REG_P (SET_SRC (mo
.u
.loc
)))
5461 if (GET_CODE (mo
.u
.loc
) == SET
5462 && oloc
== SET_DEST (mo
.u
.loc
))
5463 /* No point in duplicating. */
5469 loc
= gen_rtx_CONCAT (mode
, v
->val_rtx
, oloc
);
5471 if (mo
.u
.loc
!= oloc
)
5472 loc
= gen_rtx_CONCAT (GET_MODE (mo
.u
.loc
), loc
, mo
.u
.loc
);
5474 /* The loc of a MO_VAL_SET may have various forms:
5476 (concat val dst): dst now holds val
5478 (concat val (set dst src)): dst now holds val, copied from src
5480 (concat (concat val dstv) dst): dst now holds val; dstv is dst
5481 after replacing mems and non-top-level regs with values.
5483 (concat (concat val dstv) (set dst src)): dst now holds val,
5484 copied from src. dstv is a value-based representation of dst, if
5485 it differs from dst. If resolution is needed, src is a REG, and
5486 its mode is the same as that of val.
5488 (concat (concat val (set dstv srcv)) (set dst src)): src
5489 copied to dst, holding val. dstv and srcv are value-based
5490 representations of dst and src, respectively.
5494 if (GET_CODE (PATTERN (cui
->insn
)) != COND_EXEC
)
5496 reverse
= reverse_op (v
->val_rtx
, expr
);
5499 loc
= gen_rtx_CONCAT (GET_MODE (mo
.u
.loc
), loc
, reverse
);
5500 VAL_EXPR_HAS_REVERSE (loc
) = 1;
5507 VAL_HOLDS_TRACK_EXPR (loc
) = 1;
5510 VAL_NEEDS_RESOLUTION (loc
) = resolve
;
5513 if (mo
.type
== MO_CLOBBER
)
5514 VAL_EXPR_IS_CLOBBERED (loc
) = 1;
5515 if (mo
.type
== MO_COPY
)
5516 VAL_EXPR_IS_COPIED (loc
) = 1;
5518 mo
.type
= MO_VAL_SET
;
5521 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5522 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
5523 VEC_safe_push (micro_operation
, heap
, VTI (bb
)->mos
, &mo
);
5526 /* Callback for cselib_record_sets_hook, that records as micro
5527 operations uses and stores in an insn after cselib_record_sets has
5528 analyzed the sets in an insn, but before it modifies the stored
5529 values in the internal tables, unless cselib_record_sets doesn't
5530 call it directly (perhaps because we're not doing cselib in the
5531 first place, in which case sets and n_sets will be 0). */
5534 add_with_sets (rtx insn
, struct cselib_set
*sets
, int n_sets
)
5536 basic_block bb
= BLOCK_FOR_INSN (insn
);
5538 struct count_use_info cui
;
5539 micro_operation
*mos
;
5541 cselib_hook_called
= true;
5546 cui
.n_sets
= n_sets
;
5548 n1
= VEC_length (micro_operation
, VTI (bb
)->mos
);
5549 cui
.store_p
= false;
5550 note_uses (&PATTERN (insn
), add_uses_1
, &cui
);
5551 n2
= VEC_length (micro_operation
, VTI (bb
)->mos
) - 1;
5552 mos
= VEC_address (micro_operation
, VTI (bb
)->mos
);
5554 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
5558 while (n1
< n2
&& mos
[n1
].type
== MO_USE
)
5560 while (n1
< n2
&& mos
[n2
].type
!= MO_USE
)
5572 n2
= VEC_length (micro_operation
, VTI (bb
)->mos
) - 1;
5575 while (n1
< n2
&& mos
[n1
].type
!= MO_VAL_LOC
)
5577 while (n1
< n2
&& mos
[n2
].type
== MO_VAL_LOC
)
5595 mo
.u
.loc
= NULL_RTX
;
5597 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5598 log_op_type (PATTERN (insn
), bb
, insn
, mo
.type
, dump_file
);
5599 VEC_safe_push (micro_operation
, heap
, VTI (bb
)->mos
, &mo
);
5602 n1
= VEC_length (micro_operation
, VTI (bb
)->mos
);
5603 /* This will record NEXT_INSN (insn), such that we can
5604 insert notes before it without worrying about any
5605 notes that MO_USEs might emit after the insn. */
5607 note_stores (PATTERN (insn
), add_stores
, &cui
);
5608 n2
= VEC_length (micro_operation
, VTI (bb
)->mos
) - 1;
5609 mos
= VEC_address (micro_operation
, VTI (bb
)->mos
);
5611 /* Order the MO_VAL_USEs first (note_stores does nothing
5612 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
5613 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
5616 while (n1
< n2
&& mos
[n1
].type
== MO_VAL_USE
)
5618 while (n1
< n2
&& mos
[n2
].type
!= MO_VAL_USE
)
5630 n2
= VEC_length (micro_operation
, VTI (bb
)->mos
) - 1;
5633 while (n1
< n2
&& mos
[n1
].type
== MO_CLOBBER
)
5635 while (n1
< n2
&& mos
[n2
].type
!= MO_CLOBBER
)
5648 static enum var_init_status
5649 find_src_status (dataflow_set
*in
, rtx src
)
5651 tree decl
= NULL_TREE
;
5652 enum var_init_status status
= VAR_INIT_STATUS_UNINITIALIZED
;
5654 if (! flag_var_tracking_uninit
)
5655 status
= VAR_INIT_STATUS_INITIALIZED
;
5657 if (src
&& REG_P (src
))
5658 decl
= var_debug_decl (REG_EXPR (src
));
5659 else if (src
&& MEM_P (src
))
5660 decl
= var_debug_decl (MEM_EXPR (src
));
5663 status
= get_init_value (in
, src
, dv_from_decl (decl
));
5668 /* SRC is the source of an assignment. Use SET to try to find what
5669 was ultimately assigned to SRC. Return that value if known,
5670 otherwise return SRC itself. */
5673 find_src_set_src (dataflow_set
*set
, rtx src
)
5675 tree decl
= NULL_TREE
; /* The variable being copied around. */
5676 rtx set_src
= NULL_RTX
; /* The value for "decl" stored in "src". */
5678 location_chain nextp
;
5682 if (src
&& REG_P (src
))
5683 decl
= var_debug_decl (REG_EXPR (src
));
5684 else if (src
&& MEM_P (src
))
5685 decl
= var_debug_decl (MEM_EXPR (src
));
5689 decl_or_value dv
= dv_from_decl (decl
);
5691 var
= shared_hash_find (set
->vars
, dv
);
5695 for (i
= 0; i
< var
->n_var_parts
&& !found
; i
++)
5696 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
&& !found
;
5697 nextp
= nextp
->next
)
5698 if (rtx_equal_p (nextp
->loc
, src
))
5700 set_src
= nextp
->set_src
;
5710 /* Compute the changes of variable locations in the basic block BB. */
5713 compute_bb_dataflow (basic_block bb
)
5716 micro_operation
*mo
;
5718 dataflow_set old_out
;
5719 dataflow_set
*in
= &VTI (bb
)->in
;
5720 dataflow_set
*out
= &VTI (bb
)->out
;
5722 dataflow_set_init (&old_out
);
5723 dataflow_set_copy (&old_out
, out
);
5724 dataflow_set_copy (out
, in
);
5726 FOR_EACH_VEC_ELT (micro_operation
, VTI (bb
)->mos
, i
, mo
)
5728 rtx insn
= mo
->insn
;
5733 dataflow_set_clear_at_call (out
);
5738 rtx loc
= mo
->u
.loc
;
5741 var_reg_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
5742 else if (MEM_P (loc
))
5743 var_mem_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
5749 rtx loc
= mo
->u
.loc
;
5753 if (GET_CODE (loc
) == CONCAT
)
5755 val
= XEXP (loc
, 0);
5756 vloc
= XEXP (loc
, 1);
5764 var
= PAT_VAR_LOCATION_DECL (vloc
);
5766 clobber_variable_part (out
, NULL_RTX
,
5767 dv_from_decl (var
), 0, NULL_RTX
);
5770 if (VAL_NEEDS_RESOLUTION (loc
))
5771 val_resolve (out
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
5772 set_variable_part (out
, val
, dv_from_decl (var
), 0,
5773 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
5776 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
5777 set_variable_part (out
, PAT_VAR_LOCATION_LOC (vloc
),
5778 dv_from_decl (var
), 0,
5779 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
5786 rtx loc
= mo
->u
.loc
;
5787 rtx val
, vloc
, uloc
;
5789 vloc
= uloc
= XEXP (loc
, 1);
5790 val
= XEXP (loc
, 0);
5792 if (GET_CODE (val
) == CONCAT
)
5794 uloc
= XEXP (val
, 1);
5795 val
= XEXP (val
, 0);
5798 if (VAL_NEEDS_RESOLUTION (loc
))
5799 val_resolve (out
, val
, vloc
, insn
);
5801 val_store (out
, val
, uloc
, insn
, false);
5803 if (VAL_HOLDS_TRACK_EXPR (loc
))
5805 if (GET_CODE (uloc
) == REG
)
5806 var_reg_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
5808 else if (GET_CODE (uloc
) == MEM
)
5809 var_mem_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
5817 rtx loc
= mo
->u
.loc
;
5818 rtx val
, vloc
, uloc
, reverse
= NULL_RTX
;
5821 if (VAL_EXPR_HAS_REVERSE (loc
))
5823 reverse
= XEXP (loc
, 1);
5824 vloc
= XEXP (loc
, 0);
5826 uloc
= XEXP (vloc
, 1);
5827 val
= XEXP (vloc
, 0);
5830 if (GET_CODE (val
) == CONCAT
)
5832 vloc
= XEXP (val
, 1);
5833 val
= XEXP (val
, 0);
5836 if (GET_CODE (vloc
) == SET
)
5838 rtx vsrc
= SET_SRC (vloc
);
5840 gcc_assert (val
!= vsrc
);
5841 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
5843 vloc
= SET_DEST (vloc
);
5845 if (VAL_NEEDS_RESOLUTION (loc
))
5846 val_resolve (out
, val
, vsrc
, insn
);
5848 else if (VAL_NEEDS_RESOLUTION (loc
))
5850 gcc_assert (GET_CODE (uloc
) == SET
5851 && GET_CODE (SET_SRC (uloc
)) == REG
);
5852 val_resolve (out
, val
, SET_SRC (uloc
), insn
);
5855 if (VAL_HOLDS_TRACK_EXPR (loc
))
5857 if (VAL_EXPR_IS_CLOBBERED (loc
))
5860 var_reg_delete (out
, uloc
, true);
5861 else if (MEM_P (uloc
))
5862 var_mem_delete (out
, uloc
, true);
5866 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
5868 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
5870 if (GET_CODE (uloc
) == SET
)
5872 set_src
= SET_SRC (uloc
);
5873 uloc
= SET_DEST (uloc
);
5878 if (flag_var_tracking_uninit
)
5880 status
= find_src_status (in
, set_src
);
5882 if (status
== VAR_INIT_STATUS_UNKNOWN
)
5883 status
= find_src_status (out
, set_src
);
5886 set_src
= find_src_set_src (in
, set_src
);
5890 var_reg_delete_and_set (out
, uloc
, !copied_p
,
5892 else if (MEM_P (uloc
))
5893 var_mem_delete_and_set (out
, uloc
, !copied_p
,
5897 else if (REG_P (uloc
))
5898 var_regno_delete (out
, REGNO (uloc
));
5900 val_store (out
, val
, vloc
, insn
, true);
5903 val_store (out
, XEXP (reverse
, 0), XEXP (reverse
, 1),
5910 rtx loc
= mo
->u
.loc
;
5913 if (GET_CODE (loc
) == SET
)
5915 set_src
= SET_SRC (loc
);
5916 loc
= SET_DEST (loc
);
5920 var_reg_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
5922 else if (MEM_P (loc
))
5923 var_mem_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
5930 rtx loc
= mo
->u
.loc
;
5931 enum var_init_status src_status
;
5934 if (GET_CODE (loc
) == SET
)
5936 set_src
= SET_SRC (loc
);
5937 loc
= SET_DEST (loc
);
5940 if (! flag_var_tracking_uninit
)
5941 src_status
= VAR_INIT_STATUS_INITIALIZED
;
5944 src_status
= find_src_status (in
, set_src
);
5946 if (src_status
== VAR_INIT_STATUS_UNKNOWN
)
5947 src_status
= find_src_status (out
, set_src
);
5950 set_src
= find_src_set_src (in
, set_src
);
5953 var_reg_delete_and_set (out
, loc
, false, src_status
, set_src
);
5954 else if (MEM_P (loc
))
5955 var_mem_delete_and_set (out
, loc
, false, src_status
, set_src
);
5961 rtx loc
= mo
->u
.loc
;
5964 var_reg_delete (out
, loc
, false);
5965 else if (MEM_P (loc
))
5966 var_mem_delete (out
, loc
, false);
5972 rtx loc
= mo
->u
.loc
;
5975 var_reg_delete (out
, loc
, true);
5976 else if (MEM_P (loc
))
5977 var_mem_delete (out
, loc
, true);
5982 out
->stack_adjust
+= mo
->u
.adjust
;
5987 if (MAY_HAVE_DEBUG_INSNS
)
5989 dataflow_set_equiv_regs (out
);
5990 htab_traverse (shared_hash_htab (out
->vars
), canonicalize_values_mark
,
5992 htab_traverse (shared_hash_htab (out
->vars
), canonicalize_values_star
,
5995 htab_traverse (shared_hash_htab (out
->vars
),
5996 canonicalize_loc_order_check
, out
);
5999 changed
= dataflow_set_different (&old_out
, out
);
6000 dataflow_set_destroy (&old_out
);
6004 /* Find the locations of variables in the whole function. */
6007 vt_find_locations (void)
6009 fibheap_t worklist
, pending
, fibheap_swap
;
6010 sbitmap visited
, in_worklist
, in_pending
, sbitmap_swap
;
6017 int htabmax
= PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE
);
6018 bool success
= true;
6020 timevar_push (TV_VAR_TRACKING_DATAFLOW
);
6021 /* Compute reverse completion order of depth first search of the CFG
6022 so that the data-flow runs faster. */
6023 rc_order
= XNEWVEC (int, n_basic_blocks
- NUM_FIXED_BLOCKS
);
6024 bb_order
= XNEWVEC (int, last_basic_block
);
6025 pre_and_rev_post_order_compute (NULL
, rc_order
, false);
6026 for (i
= 0; i
< n_basic_blocks
- NUM_FIXED_BLOCKS
; i
++)
6027 bb_order
[rc_order
[i
]] = i
;
6030 worklist
= fibheap_new ();
6031 pending
= fibheap_new ();
6032 visited
= sbitmap_alloc (last_basic_block
);
6033 in_worklist
= sbitmap_alloc (last_basic_block
);
6034 in_pending
= sbitmap_alloc (last_basic_block
);
6035 sbitmap_zero (in_worklist
);
6038 fibheap_insert (pending
, bb_order
[bb
->index
], bb
);
6039 sbitmap_ones (in_pending
);
6041 while (success
&& !fibheap_empty (pending
))
6043 fibheap_swap
= pending
;
6045 worklist
= fibheap_swap
;
6046 sbitmap_swap
= in_pending
;
6047 in_pending
= in_worklist
;
6048 in_worklist
= sbitmap_swap
;
6050 sbitmap_zero (visited
);
6052 while (!fibheap_empty (worklist
))
6054 bb
= (basic_block
) fibheap_extract_min (worklist
);
6055 RESET_BIT (in_worklist
, bb
->index
);
6056 gcc_assert (!TEST_BIT (visited
, bb
->index
));
6057 if (!TEST_BIT (visited
, bb
->index
))
6061 int oldinsz
, oldoutsz
;
6063 SET_BIT (visited
, bb
->index
);
6065 if (VTI (bb
)->in
.vars
)
6068 -= (htab_size (shared_hash_htab (VTI (bb
)->in
.vars
))
6069 + htab_size (shared_hash_htab (VTI (bb
)->out
.vars
)));
6071 = htab_elements (shared_hash_htab (VTI (bb
)->in
.vars
));
6073 = htab_elements (shared_hash_htab (VTI (bb
)->out
.vars
));
6076 oldinsz
= oldoutsz
= 0;
6078 if (MAY_HAVE_DEBUG_INSNS
)
6080 dataflow_set
*in
= &VTI (bb
)->in
, *first_out
= NULL
;
6081 bool first
= true, adjust
= false;
6083 /* Calculate the IN set as the intersection of
6084 predecessor OUT sets. */
6086 dataflow_set_clear (in
);
6087 dst_can_be_shared
= true;
6089 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6090 if (!VTI (e
->src
)->flooded
)
6091 gcc_assert (bb_order
[bb
->index
]
6092 <= bb_order
[e
->src
->index
]);
6095 dataflow_set_copy (in
, &VTI (e
->src
)->out
);
6096 first_out
= &VTI (e
->src
)->out
;
6101 dataflow_set_merge (in
, &VTI (e
->src
)->out
);
6107 dataflow_post_merge_adjust (in
, &VTI (bb
)->permp
);
6109 /* Merge and merge_adjust should keep entries in
6111 htab_traverse (shared_hash_htab (in
->vars
),
6112 canonicalize_loc_order_check
,
6115 if (dst_can_be_shared
)
6117 shared_hash_destroy (in
->vars
);
6118 in
->vars
= shared_hash_copy (first_out
->vars
);
6122 VTI (bb
)->flooded
= true;
6126 /* Calculate the IN set as union of predecessor OUT sets. */
6127 dataflow_set_clear (&VTI (bb
)->in
);
6128 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6129 dataflow_set_union (&VTI (bb
)->in
, &VTI (e
->src
)->out
);
6132 changed
= compute_bb_dataflow (bb
);
6133 htabsz
+= (htab_size (shared_hash_htab (VTI (bb
)->in
.vars
))
6134 + htab_size (shared_hash_htab (VTI (bb
)->out
.vars
)));
6136 if (htabmax
&& htabsz
> htabmax
)
6138 if (MAY_HAVE_DEBUG_INSNS
)
6139 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
6140 "variable tracking size limit exceeded with "
6141 "-fvar-tracking-assignments, retrying without");
6143 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
6144 "variable tracking size limit exceeded");
6151 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6153 if (e
->dest
== EXIT_BLOCK_PTR
)
6156 if (TEST_BIT (visited
, e
->dest
->index
))
6158 if (!TEST_BIT (in_pending
, e
->dest
->index
))
6160 /* Send E->DEST to next round. */
6161 SET_BIT (in_pending
, e
->dest
->index
);
6162 fibheap_insert (pending
,
6163 bb_order
[e
->dest
->index
],
6167 else if (!TEST_BIT (in_worklist
, e
->dest
->index
))
6169 /* Add E->DEST to current round. */
6170 SET_BIT (in_worklist
, e
->dest
->index
);
6171 fibheap_insert (worklist
, bb_order
[e
->dest
->index
],
6179 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
6181 (int)htab_elements (shared_hash_htab (VTI (bb
)->in
.vars
)),
6183 (int)htab_elements (shared_hash_htab (VTI (bb
)->out
.vars
)),
6185 (int)worklist
->nodes
, (int)pending
->nodes
, htabsz
);
6187 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6189 fprintf (dump_file
, "BB %i IN:\n", bb
->index
);
6190 dump_dataflow_set (&VTI (bb
)->in
);
6191 fprintf (dump_file
, "BB %i OUT:\n", bb
->index
);
6192 dump_dataflow_set (&VTI (bb
)->out
);
6198 if (success
&& MAY_HAVE_DEBUG_INSNS
)
6200 gcc_assert (VTI (bb
)->flooded
);
6203 fibheap_delete (worklist
);
6204 fibheap_delete (pending
);
6205 sbitmap_free (visited
);
6206 sbitmap_free (in_worklist
);
6207 sbitmap_free (in_pending
);
6209 timevar_pop (TV_VAR_TRACKING_DATAFLOW
);
6213 /* Print the content of the LIST to dump file. */
6216 dump_attrs_list (attrs list
)
6218 for (; list
; list
= list
->next
)
6220 if (dv_is_decl_p (list
->dv
))
6221 print_mem_expr (dump_file
, dv_as_decl (list
->dv
));
6223 print_rtl_single (dump_file
, dv_as_value (list
->dv
));
6224 fprintf (dump_file
, "+" HOST_WIDE_INT_PRINT_DEC
, list
->offset
);
6226 fprintf (dump_file
, "\n");
6229 /* Print the information about variable *SLOT to dump file. */
6232 dump_var_slot (void **slot
, void *data ATTRIBUTE_UNUSED
)
6234 variable var
= (variable
) *slot
;
6238 /* Continue traversing the hash table. */
6242 /* Print the information about variable VAR to dump file. */
6245 dump_var (variable var
)
6248 location_chain node
;
6250 if (dv_is_decl_p (var
->dv
))
6252 const_tree decl
= dv_as_decl (var
->dv
);
6254 if (DECL_NAME (decl
))
6256 fprintf (dump_file
, " name: %s",
6257 IDENTIFIER_POINTER (DECL_NAME (decl
)));
6258 if (dump_flags
& TDF_UID
)
6259 fprintf (dump_file
, "D.%u", DECL_UID (decl
));
6261 else if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
6262 fprintf (dump_file
, " name: D#%u", DEBUG_TEMP_UID (decl
));
6264 fprintf (dump_file
, " name: D.%u", DECL_UID (decl
));
6265 fprintf (dump_file
, "\n");
6269 fputc (' ', dump_file
);
6270 print_rtl_single (dump_file
, dv_as_value (var
->dv
));
6273 for (i
= 0; i
< var
->n_var_parts
; i
++)
6275 fprintf (dump_file
, " offset %ld\n",
6276 (long) var
->var_part
[i
].offset
);
6277 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
6279 fprintf (dump_file
, " ");
6280 if (node
->init
== VAR_INIT_STATUS_UNINITIALIZED
)
6281 fprintf (dump_file
, "[uninit]");
6282 print_rtl_single (dump_file
, node
->loc
);
6287 /* Print the information about variables from hash table VARS to dump file. */
6290 dump_vars (htab_t vars
)
6292 if (htab_elements (vars
) > 0)
6294 fprintf (dump_file
, "Variables:\n");
6295 htab_traverse (vars
, dump_var_slot
, NULL
);
6299 /* Print the dataflow set SET to dump file. */
6302 dump_dataflow_set (dataflow_set
*set
)
6306 fprintf (dump_file
, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC
"\n",
6308 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
6312 fprintf (dump_file
, "Reg %d:", i
);
6313 dump_attrs_list (set
->regs
[i
]);
6316 dump_vars (shared_hash_htab (set
->vars
));
6317 fprintf (dump_file
, "\n");
6320 /* Print the IN and OUT sets for each basic block to dump file. */
6323 dump_dataflow_sets (void)
6329 fprintf (dump_file
, "\nBasic block %d:\n", bb
->index
);
6330 fprintf (dump_file
, "IN:\n");
6331 dump_dataflow_set (&VTI (bb
)->in
);
6332 fprintf (dump_file
, "OUT:\n");
6333 dump_dataflow_set (&VTI (bb
)->out
);
6337 /* Add variable VAR to the hash table of changed variables and
6338 if it has no locations delete it from SET's hash table. */
6341 variable_was_changed (variable var
, dataflow_set
*set
)
6343 hashval_t hash
= dv_htab_hash (var
->dv
);
6348 bool old_cur_loc_changed
= false;
6350 /* Remember this decl or VALUE has been added to changed_variables. */
6351 set_dv_changed (var
->dv
, true);
6353 slot
= htab_find_slot_with_hash (changed_variables
,
6359 variable old_var
= (variable
) *slot
;
6360 gcc_assert (old_var
->in_changed_variables
);
6361 old_var
->in_changed_variables
= false;
6362 old_cur_loc_changed
= old_var
->cur_loc_changed
;
6363 variable_htab_free (*slot
);
6365 if (set
&& var
->n_var_parts
== 0)
6369 empty_var
= (variable
) pool_alloc (dv_pool (var
->dv
));
6370 empty_var
->dv
= var
->dv
;
6371 empty_var
->refcount
= 1;
6372 empty_var
->n_var_parts
= 0;
6373 empty_var
->cur_loc_changed
= true;
6374 empty_var
->in_changed_variables
= true;
6381 var
->in_changed_variables
= true;
6382 /* If within processing one uop a variable is deleted
6383 and then readded, we need to assume it has changed. */
6384 if (old_cur_loc_changed
)
6385 var
->cur_loc_changed
= true;
6392 if (var
->n_var_parts
== 0)
6397 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
6400 if (shared_hash_shared (set
->vars
))
6401 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
,
6403 htab_clear_slot (shared_hash_htab (set
->vars
), slot
);
6409 /* Look for the index in VAR->var_part corresponding to OFFSET.
6410 Return -1 if not found. If INSERTION_POINT is non-NULL, the
6411 referenced int will be set to the index that the part has or should
6412 have, if it should be inserted. */
6415 find_variable_location_part (variable var
, HOST_WIDE_INT offset
,
6416 int *insertion_point
)
6420 /* Find the location part. */
6422 high
= var
->n_var_parts
;
6425 pos
= (low
+ high
) / 2;
6426 if (var
->var_part
[pos
].offset
< offset
)
6433 if (insertion_point
)
6434 *insertion_point
= pos
;
6436 if (pos
< var
->n_var_parts
&& var
->var_part
[pos
].offset
== offset
)
6443 set_slot_part (dataflow_set
*set
, rtx loc
, void **slot
,
6444 decl_or_value dv
, HOST_WIDE_INT offset
,
6445 enum var_init_status initialized
, rtx set_src
)
6448 location_chain node
, next
;
6449 location_chain
*nextp
;
6451 bool onepart
= dv_onepart_p (dv
);
6453 gcc_assert (offset
== 0 || !onepart
);
6454 gcc_assert (loc
!= dv_as_opaque (dv
));
6456 var
= (variable
) *slot
;
6458 if (! flag_var_tracking_uninit
)
6459 initialized
= VAR_INIT_STATUS_INITIALIZED
;
6463 /* Create new variable information. */
6464 var
= (variable
) pool_alloc (dv_pool (dv
));
6467 var
->n_var_parts
= 1;
6468 var
->cur_loc_changed
= false;
6469 var
->in_changed_variables
= false;
6470 var
->var_part
[0].offset
= offset
;
6471 var
->var_part
[0].loc_chain
= NULL
;
6472 var
->var_part
[0].cur_loc
= NULL
;
6475 nextp
= &var
->var_part
[0].loc_chain
;
6481 gcc_assert (dv_as_opaque (var
->dv
) == dv_as_opaque (dv
));
6485 if (GET_CODE (loc
) == VALUE
)
6487 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
6488 nextp
= &node
->next
)
6489 if (GET_CODE (node
->loc
) == VALUE
)
6491 if (node
->loc
== loc
)
6496 if (canon_value_cmp (node
->loc
, loc
))
6504 else if (REG_P (node
->loc
) || MEM_P (node
->loc
))
6512 else if (REG_P (loc
))
6514 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
6515 nextp
= &node
->next
)
6516 if (REG_P (node
->loc
))
6518 if (REGNO (node
->loc
) < REGNO (loc
))
6522 if (REGNO (node
->loc
) == REGNO (loc
))
6535 else if (MEM_P (loc
))
6537 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
6538 nextp
= &node
->next
)
6539 if (REG_P (node
->loc
))
6541 else if (MEM_P (node
->loc
))
6543 if ((r
= loc_cmp (XEXP (node
->loc
, 0), XEXP (loc
, 0))) >= 0)
6555 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
6556 nextp
= &node
->next
)
6557 if ((r
= loc_cmp (node
->loc
, loc
)) >= 0)
6565 if (shared_var_p (var
, set
->vars
))
6567 slot
= unshare_variable (set
, slot
, var
, initialized
);
6568 var
= (variable
)*slot
;
6569 for (nextp
= &var
->var_part
[0].loc_chain
; c
;
6570 nextp
= &(*nextp
)->next
)
6572 gcc_assert ((!node
&& !*nextp
) || node
->loc
== (*nextp
)->loc
);
6579 gcc_assert (dv_as_decl (var
->dv
) == dv_as_decl (dv
));
6581 pos
= find_variable_location_part (var
, offset
, &inspos
);
6585 node
= var
->var_part
[pos
].loc_chain
;
6588 && ((REG_P (node
->loc
) && REG_P (loc
)
6589 && REGNO (node
->loc
) == REGNO (loc
))
6590 || rtx_equal_p (node
->loc
, loc
)))
6592 /* LOC is in the beginning of the chain so we have nothing
6594 if (node
->init
< initialized
)
6595 node
->init
= initialized
;
6596 if (set_src
!= NULL
)
6597 node
->set_src
= set_src
;
6603 /* We have to make a copy of a shared variable. */
6604 if (shared_var_p (var
, set
->vars
))
6606 slot
= unshare_variable (set
, slot
, var
, initialized
);
6607 var
= (variable
)*slot
;
6613 /* We have not found the location part, new one will be created. */
6615 /* We have to make a copy of the shared variable. */
6616 if (shared_var_p (var
, set
->vars
))
6618 slot
= unshare_variable (set
, slot
, var
, initialized
);
6619 var
= (variable
)*slot
;
6622 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
6623 thus there are at most MAX_VAR_PARTS different offsets. */
6624 gcc_assert (var
->n_var_parts
< MAX_VAR_PARTS
6625 && (!var
->n_var_parts
|| !dv_onepart_p (var
->dv
)));
6627 /* We have to move the elements of array starting at index
6628 inspos to the next position. */
6629 for (pos
= var
->n_var_parts
; pos
> inspos
; pos
--)
6630 var
->var_part
[pos
] = var
->var_part
[pos
- 1];
6633 var
->var_part
[pos
].offset
= offset
;
6634 var
->var_part
[pos
].loc_chain
= NULL
;
6635 var
->var_part
[pos
].cur_loc
= NULL
;
6638 /* Delete the location from the list. */
6639 nextp
= &var
->var_part
[pos
].loc_chain
;
6640 for (node
= var
->var_part
[pos
].loc_chain
; node
; node
= next
)
6643 if ((REG_P (node
->loc
) && REG_P (loc
)
6644 && REGNO (node
->loc
) == REGNO (loc
))
6645 || rtx_equal_p (node
->loc
, loc
))
6647 /* Save these values, to assign to the new node, before
6648 deleting this one. */
6649 if (node
->init
> initialized
)
6650 initialized
= node
->init
;
6651 if (node
->set_src
!= NULL
&& set_src
== NULL
)
6652 set_src
= node
->set_src
;
6653 if (var
->var_part
[pos
].cur_loc
== node
->loc
)
6655 var
->var_part
[pos
].cur_loc
= NULL
;
6656 var
->cur_loc_changed
= true;
6658 pool_free (loc_chain_pool
, node
);
6663 nextp
= &node
->next
;
6666 nextp
= &var
->var_part
[pos
].loc_chain
;
6669 /* Add the location to the beginning. */
6670 node
= (location_chain
) pool_alloc (loc_chain_pool
);
6672 node
->init
= initialized
;
6673 node
->set_src
= set_src
;
6674 node
->next
= *nextp
;
6677 if (onepart
&& emit_notes
)
6678 add_value_chains (var
->dv
, loc
);
6680 /* If no location was emitted do so. */
6681 if (var
->var_part
[pos
].cur_loc
== NULL
)
6682 variable_was_changed (var
, set
);
6687 /* Set the part of variable's location in the dataflow set SET. The
6688 variable part is specified by variable's declaration in DV and
6689 offset OFFSET and the part's location by LOC. IOPT should be
6690 NO_INSERT if the variable is known to be in SET already and the
6691 variable hash table must not be resized, and INSERT otherwise. */
6694 set_variable_part (dataflow_set
*set
, rtx loc
,
6695 decl_or_value dv
, HOST_WIDE_INT offset
,
6696 enum var_init_status initialized
, rtx set_src
,
6697 enum insert_option iopt
)
6701 if (iopt
== NO_INSERT
)
6702 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
6705 slot
= shared_hash_find_slot (set
->vars
, dv
);
6707 slot
= shared_hash_find_slot_unshare (&set
->vars
, dv
, iopt
);
6709 slot
= set_slot_part (set
, loc
, slot
, dv
, offset
, initialized
, set_src
);
6712 /* Remove all recorded register locations for the given variable part
6713 from dataflow set SET, except for those that are identical to loc.
6714 The variable part is specified by variable's declaration or value
6715 DV and offset OFFSET. */
6718 clobber_slot_part (dataflow_set
*set
, rtx loc
, void **slot
,
6719 HOST_WIDE_INT offset
, rtx set_src
)
6721 variable var
= (variable
) *slot
;
6722 int pos
= find_variable_location_part (var
, offset
, NULL
);
6726 location_chain node
, next
;
6728 /* Remove the register locations from the dataflow set. */
6729 next
= var
->var_part
[pos
].loc_chain
;
6730 for (node
= next
; node
; node
= next
)
6733 if (node
->loc
!= loc
6734 && (!flag_var_tracking_uninit
6737 || !rtx_equal_p (set_src
, node
->set_src
)))
6739 if (REG_P (node
->loc
))
6744 /* Remove the variable part from the register's
6745 list, but preserve any other variable parts
6746 that might be regarded as live in that same
6748 anextp
= &set
->regs
[REGNO (node
->loc
)];
6749 for (anode
= *anextp
; anode
; anode
= anext
)
6751 anext
= anode
->next
;
6752 if (dv_as_opaque (anode
->dv
) == dv_as_opaque (var
->dv
)
6753 && anode
->offset
== offset
)
6755 pool_free (attrs_pool
, anode
);
6759 anextp
= &anode
->next
;
6763 slot
= delete_slot_part (set
, node
->loc
, slot
, offset
);
6771 /* Remove all recorded register locations for the given variable part
6772 from dataflow set SET, except for those that are identical to loc.
6773 The variable part is specified by variable's declaration or value
6774 DV and offset OFFSET. */
6777 clobber_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
6778 HOST_WIDE_INT offset
, rtx set_src
)
6782 if (!dv_as_opaque (dv
)
6783 || (!dv_is_value_p (dv
) && ! DECL_P (dv_as_decl (dv
))))
6786 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
6790 slot
= clobber_slot_part (set
, loc
, slot
, offset
, set_src
);
6793 /* Delete the part of variable's location from dataflow set SET. The
6794 variable part is specified by its SET->vars slot SLOT and offset
6795 OFFSET and the part's location by LOC. */
6798 delete_slot_part (dataflow_set
*set
, rtx loc
, void **slot
,
6799 HOST_WIDE_INT offset
)
6801 variable var
= (variable
) *slot
;
6802 int pos
= find_variable_location_part (var
, offset
, NULL
);
6806 location_chain node
, next
;
6807 location_chain
*nextp
;
6810 if (shared_var_p (var
, set
->vars
))
6812 /* If the variable contains the location part we have to
6813 make a copy of the variable. */
6814 for (node
= var
->var_part
[pos
].loc_chain
; node
;
6817 if ((REG_P (node
->loc
) && REG_P (loc
)
6818 && REGNO (node
->loc
) == REGNO (loc
))
6819 || rtx_equal_p (node
->loc
, loc
))
6821 slot
= unshare_variable (set
, slot
, var
,
6822 VAR_INIT_STATUS_UNKNOWN
);
6823 var
= (variable
)*slot
;
6829 /* Delete the location part. */
6831 nextp
= &var
->var_part
[pos
].loc_chain
;
6832 for (node
= *nextp
; node
; node
= next
)
6835 if ((REG_P (node
->loc
) && REG_P (loc
)
6836 && REGNO (node
->loc
) == REGNO (loc
))
6837 || rtx_equal_p (node
->loc
, loc
))
6839 if (emit_notes
&& pos
== 0 && dv_onepart_p (var
->dv
))
6840 remove_value_chains (var
->dv
, node
->loc
);
6841 /* If we have deleted the location which was last emitted
6842 we have to emit new location so add the variable to set
6843 of changed variables. */
6844 if (var
->var_part
[pos
].cur_loc
== node
->loc
)
6847 var
->var_part
[pos
].cur_loc
= NULL
;
6848 var
->cur_loc_changed
= true;
6850 pool_free (loc_chain_pool
, node
);
6855 nextp
= &node
->next
;
6858 if (var
->var_part
[pos
].loc_chain
== NULL
)
6863 var
->cur_loc_changed
= true;
6864 while (pos
< var
->n_var_parts
)
6866 var
->var_part
[pos
] = var
->var_part
[pos
+ 1];
6871 variable_was_changed (var
, set
);
6877 /* Delete the part of variable's location from dataflow set SET. The
6878 variable part is specified by variable's declaration or value DV
6879 and offset OFFSET and the part's location by LOC. */
6882 delete_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
6883 HOST_WIDE_INT offset
)
6885 void **slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
6889 slot
= delete_slot_part (set
, loc
, slot
, offset
);
6892 /* Structure for passing some other parameters to function
6893 vt_expand_loc_callback. */
6894 struct expand_loc_callback_data
6896 /* The variables and values active at this point. */
6899 /* True in vt_expand_loc_dummy calls, no rtl should be allocated.
6900 Non-NULL should be returned if vt_expand_loc would return
6901 non-NULL in that case, NULL otherwise. cur_loc_changed should be
6902 computed and cur_loc recomputed when possible (but just once
6903 per emit_notes_for_changes call). */
6906 /* True if expansion of subexpressions had to recompute some
6907 VALUE/DEBUG_EXPR_DECL's cur_loc or used a VALUE/DEBUG_EXPR_DECL
6908 whose cur_loc has been already recomputed during current
6909 emit_notes_for_changes call. */
6910 bool cur_loc_changed
;
6913 /* Callback for cselib_expand_value, that looks for expressions
6914 holding the value in the var-tracking hash tables. Return X for
6915 standard processing, anything else is to be used as-is. */
6918 vt_expand_loc_callback (rtx x
, bitmap regs
, int max_depth
, void *data
)
6920 struct expand_loc_callback_data
*elcd
6921 = (struct expand_loc_callback_data
*) data
;
6922 bool dummy
= elcd
->dummy
;
6923 bool cur_loc_changed
= elcd
->cur_loc_changed
;
6927 rtx result
, subreg
, xret
;
6929 switch (GET_CODE (x
))
6934 if (cselib_dummy_expand_value_rtx_cb (SUBREG_REG (x
), regs
,
6936 vt_expand_loc_callback
, data
))
6942 subreg
= cselib_expand_value_rtx_cb (SUBREG_REG (x
), regs
,
6944 vt_expand_loc_callback
, data
);
6949 result
= simplify_gen_subreg (GET_MODE (x
), subreg
,
6950 GET_MODE (SUBREG_REG (x
)),
6953 /* Invalid SUBREGs are ok in debug info. ??? We could try
6954 alternate expansions for the VALUE as well. */
6956 result
= gen_rtx_raw_SUBREG (GET_MODE (x
), subreg
, SUBREG_BYTE (x
));
6961 dv
= dv_from_decl (DEBUG_EXPR_TREE_DECL (x
));
6966 dv
= dv_from_value (x
);
6974 if (VALUE_RECURSED_INTO (x
))
6977 var
= (variable
) htab_find_with_hash (elcd
->vars
, dv
, dv_htab_hash (dv
));
6981 if (dummy
&& dv_changed_p (dv
))
6982 elcd
->cur_loc_changed
= true;
6986 if (var
->n_var_parts
== 0)
6989 elcd
->cur_loc_changed
= true;
6993 gcc_assert (var
->n_var_parts
== 1);
6995 VALUE_RECURSED_INTO (x
) = true;
6998 if (var
->var_part
[0].cur_loc
)
7002 if (cselib_dummy_expand_value_rtx_cb (var
->var_part
[0].cur_loc
, regs
,
7004 vt_expand_loc_callback
, data
))
7008 result
= cselib_expand_value_rtx_cb (var
->var_part
[0].cur_loc
, regs
,
7010 vt_expand_loc_callback
, data
);
7012 set_dv_changed (dv
, false);
7014 if (!result
&& dv_changed_p (dv
))
7016 set_dv_changed (dv
, false);
7017 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
7018 if (loc
->loc
== var
->var_part
[0].cur_loc
)
7022 elcd
->cur_loc_changed
= cur_loc_changed
;
7023 if (cselib_dummy_expand_value_rtx_cb (loc
->loc
, regs
, max_depth
,
7024 vt_expand_loc_callback
,
7033 result
= cselib_expand_value_rtx_cb (loc
->loc
, regs
, max_depth
,
7034 vt_expand_loc_callback
, data
);
7038 if (dummy
&& (result
|| var
->var_part
[0].cur_loc
))
7039 var
->cur_loc_changed
= true;
7040 var
->var_part
[0].cur_loc
= loc
? loc
->loc
: NULL_RTX
;
7044 if (var
->cur_loc_changed
)
7045 elcd
->cur_loc_changed
= true;
7046 else if (!result
&& var
->var_part
[0].cur_loc
== NULL_RTX
)
7047 elcd
->cur_loc_changed
= cur_loc_changed
;
7050 VALUE_RECURSED_INTO (x
) = false;
7057 /* Expand VALUEs in LOC, using VARS as well as cselib's equivalence
7061 vt_expand_loc (rtx loc
, htab_t vars
)
7063 struct expand_loc_callback_data data
;
7065 if (!MAY_HAVE_DEBUG_INSNS
)
7070 data
.cur_loc_changed
= false;
7071 loc
= cselib_expand_value_rtx_cb (loc
, scratch_regs
, 8,
7072 vt_expand_loc_callback
, &data
);
7074 if (loc
&& MEM_P (loc
))
7075 loc
= targetm
.delegitimize_address (loc
);
7079 /* Like vt_expand_loc, but only return true/false (whether vt_expand_loc
7080 would succeed or not, without actually allocating new rtxes. */
7083 vt_expand_loc_dummy (rtx loc
, htab_t vars
, bool *pcur_loc_changed
)
7085 struct expand_loc_callback_data data
;
7088 gcc_assert (MAY_HAVE_DEBUG_INSNS
);
7091 data
.cur_loc_changed
= false;
7092 ret
= cselib_dummy_expand_value_rtx_cb (loc
, scratch_regs
, 8,
7093 vt_expand_loc_callback
, &data
);
7094 *pcur_loc_changed
= data
.cur_loc_changed
;
7098 #ifdef ENABLE_RTL_CHECKING
7099 /* Used to verify that cur_loc_changed updating is safe. */
7100 static struct pointer_map_t
*emitted_notes
;
7102 /* Strip REG_POINTER from REGs and MEM_POINTER from MEMs in order to
7103 avoid differences in commutative operand simplification. */
7105 strip_pointer_flags (rtx x
, const_rtx old_rtx ATTRIBUTE_UNUSED
,
7106 void *data ATTRIBUTE_UNUSED
)
7108 if (REG_P (x
) && REG_POINTER (x
))
7109 return gen_rtx_REG (GET_MODE (x
), REGNO (x
));
7110 if (MEM_P (x
) && MEM_POINTER (x
))
7111 return gen_rtx_MEM (GET_MODE (x
), XEXP (x
, 0));
7116 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
7117 additional parameters: WHERE specifies whether the note shall be emitted
7118 before or after instruction INSN. */
7121 emit_note_insn_var_location (void **varp
, void *data
)
7123 variable var
= (variable
) *varp
;
7124 rtx insn
= ((emit_note_data
*)data
)->insn
;
7125 enum emit_note_where where
= ((emit_note_data
*)data
)->where
;
7126 htab_t vars
= ((emit_note_data
*)data
)->vars
;
7128 int i
, j
, n_var_parts
;
7130 enum var_init_status initialized
= VAR_INIT_STATUS_UNINITIALIZED
;
7131 HOST_WIDE_INT last_limit
;
7132 tree type_size_unit
;
7133 HOST_WIDE_INT offsets
[MAX_VAR_PARTS
];
7134 rtx loc
[MAX_VAR_PARTS
];
7138 if (dv_is_value_p (var
->dv
))
7139 goto value_or_debug_decl
;
7141 decl
= dv_as_decl (var
->dv
);
7143 if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
7144 goto value_or_debug_decl
;
7149 if (!MAY_HAVE_DEBUG_INSNS
)
7151 for (i
= 0; i
< var
->n_var_parts
; i
++)
7152 if (var
->var_part
[i
].cur_loc
== NULL
&& var
->var_part
[i
].loc_chain
)
7154 var
->var_part
[i
].cur_loc
= var
->var_part
[i
].loc_chain
->loc
;
7155 var
->cur_loc_changed
= true;
7157 if (var
->n_var_parts
== 0)
7158 var
->cur_loc_changed
= true;
7160 #ifndef ENABLE_RTL_CHECKING
7161 if (!var
->cur_loc_changed
)
7164 for (i
= 0; i
< var
->n_var_parts
; i
++)
7166 enum machine_mode mode
, wider_mode
;
7169 if (last_limit
< var
->var_part
[i
].offset
)
7174 else if (last_limit
> var
->var_part
[i
].offset
)
7176 offsets
[n_var_parts
] = var
->var_part
[i
].offset
;
7177 if (!var
->var_part
[i
].cur_loc
)
7182 loc2
= vt_expand_loc (var
->var_part
[i
].cur_loc
, vars
);
7188 loc
[n_var_parts
] = loc2
;
7189 mode
= GET_MODE (var
->var_part
[i
].cur_loc
);
7190 if (mode
== VOIDmode
&& dv_onepart_p (var
->dv
))
7191 mode
= DECL_MODE (decl
);
7192 for (lc
= var
->var_part
[i
].loc_chain
; lc
; lc
= lc
->next
)
7193 if (var
->var_part
[i
].cur_loc
== lc
->loc
)
7195 initialized
= lc
->init
;
7199 last_limit
= offsets
[n_var_parts
] + GET_MODE_SIZE (mode
);
7201 /* Attempt to merge adjacent registers or memory. */
7202 wider_mode
= GET_MODE_WIDER_MODE (mode
);
7203 for (j
= i
+ 1; j
< var
->n_var_parts
; j
++)
7204 if (last_limit
<= var
->var_part
[j
].offset
)
7206 if (j
< var
->n_var_parts
7207 && wider_mode
!= VOIDmode
7208 && var
->var_part
[j
].cur_loc
7209 && mode
== GET_MODE (var
->var_part
[j
].cur_loc
)
7210 && (REG_P (loc
[n_var_parts
]) || MEM_P (loc
[n_var_parts
]))
7211 && last_limit
== var
->var_part
[j
].offset
7212 && (loc2
= vt_expand_loc (var
->var_part
[j
].cur_loc
, vars
))
7213 && GET_CODE (loc
[n_var_parts
]) == GET_CODE (loc2
))
7217 if (REG_P (loc
[n_var_parts
])
7218 && hard_regno_nregs
[REGNO (loc
[n_var_parts
])][mode
] * 2
7219 == hard_regno_nregs
[REGNO (loc
[n_var_parts
])][wider_mode
]
7220 && end_hard_regno (mode
, REGNO (loc
[n_var_parts
]))
7223 if (! WORDS_BIG_ENDIAN
&& ! BYTES_BIG_ENDIAN
)
7224 new_loc
= simplify_subreg (wider_mode
, loc
[n_var_parts
],
7226 else if (WORDS_BIG_ENDIAN
&& BYTES_BIG_ENDIAN
)
7227 new_loc
= simplify_subreg (wider_mode
, loc2
, mode
, 0);
7230 if (!REG_P (new_loc
)
7231 || REGNO (new_loc
) != REGNO (loc
[n_var_parts
]))
7234 REG_ATTRS (new_loc
) = REG_ATTRS (loc
[n_var_parts
]);
7237 else if (MEM_P (loc
[n_var_parts
])
7238 && GET_CODE (XEXP (loc2
, 0)) == PLUS
7239 && REG_P (XEXP (XEXP (loc2
, 0), 0))
7240 && CONST_INT_P (XEXP (XEXP (loc2
, 0), 1)))
7242 if ((REG_P (XEXP (loc
[n_var_parts
], 0))
7243 && rtx_equal_p (XEXP (loc
[n_var_parts
], 0),
7244 XEXP (XEXP (loc2
, 0), 0))
7245 && INTVAL (XEXP (XEXP (loc2
, 0), 1))
7246 == GET_MODE_SIZE (mode
))
7247 || (GET_CODE (XEXP (loc
[n_var_parts
], 0)) == PLUS
7248 && CONST_INT_P (XEXP (XEXP (loc
[n_var_parts
], 0), 1))
7249 && rtx_equal_p (XEXP (XEXP (loc
[n_var_parts
], 0), 0),
7250 XEXP (XEXP (loc2
, 0), 0))
7251 && INTVAL (XEXP (XEXP (loc
[n_var_parts
], 0), 1))
7252 + GET_MODE_SIZE (mode
)
7253 == INTVAL (XEXP (XEXP (loc2
, 0), 1))))
7254 new_loc
= adjust_address_nv (loc
[n_var_parts
],
7260 loc
[n_var_parts
] = new_loc
;
7262 last_limit
= offsets
[n_var_parts
] + GET_MODE_SIZE (mode
);
7268 type_size_unit
= TYPE_SIZE_UNIT (TREE_TYPE (decl
));
7269 if ((unsigned HOST_WIDE_INT
) last_limit
< TREE_INT_CST_LOW (type_size_unit
))
7272 if (! flag_var_tracking_uninit
)
7273 initialized
= VAR_INIT_STATUS_INITIALIZED
;
7277 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, NULL_RTX
,
7279 else if (n_var_parts
== 1)
7283 if (offsets
[0] || GET_CODE (loc
[0]) == PARALLEL
)
7284 expr_list
= gen_rtx_EXPR_LIST (VOIDmode
, loc
[0], GEN_INT (offsets
[0]));
7288 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, expr_list
,
7291 else if (n_var_parts
)
7295 for (i
= 0; i
< n_var_parts
; i
++)
7297 = gen_rtx_EXPR_LIST (VOIDmode
, loc
[i
], GEN_INT (offsets
[i
]));
7299 parallel
= gen_rtx_PARALLEL (VOIDmode
,
7300 gen_rtvec_v (n_var_parts
, loc
));
7301 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
,
7302 parallel
, (int) initialized
);
7305 #ifdef ENABLE_RTL_CHECKING
7308 void **note_slot
= pointer_map_insert (emitted_notes
, decl
);
7309 rtx pnote
= (rtx
) *note_slot
;
7310 if (!var
->cur_loc_changed
&& (pnote
|| PAT_VAR_LOCATION_LOC (note_vl
)))
7314 old_vl
= PAT_VAR_LOCATION_LOC (pnote
);
7315 new_vl
= PAT_VAR_LOCATION_LOC (note_vl
);
7316 if (!rtx_equal_p (old_vl
, new_vl
))
7318 /* There might be differences caused by REG_POINTER
7319 differences. REG_POINTER affects
7320 swap_commutative_operands_p. */
7321 old_vl
= simplify_replace_fn_rtx (old_vl
, NULL_RTX
,
7322 strip_pointer_flags
, NULL
);
7323 new_vl
= simplify_replace_fn_rtx (new_vl
, NULL_RTX
,
7324 strip_pointer_flags
, NULL
);
7325 gcc_assert (rtx_equal_p (old_vl
, new_vl
));
7326 PAT_VAR_LOCATION_LOC (note_vl
) = new_vl
;
7329 *note_slot
= (void *) note_vl
;
7331 if (!var
->cur_loc_changed
)
7335 if (where
!= EMIT_NOTE_BEFORE_INSN
)
7337 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
7338 if (where
== EMIT_NOTE_AFTER_CALL_INSN
)
7339 NOTE_DURING_CALL_P (note
) = true;
7343 /* Make sure that the call related notes come first. */
7344 while (NEXT_INSN (insn
)
7346 && NOTE_DURING_CALL_P (insn
))
7347 insn
= NEXT_INSN (insn
);
7348 if (NOTE_P (insn
) && NOTE_DURING_CALL_P (insn
))
7349 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
7351 note
= emit_note_before (NOTE_INSN_VAR_LOCATION
, insn
);
7353 NOTE_VAR_LOCATION (note
) = note_vl
;
7356 set_dv_changed (var
->dv
, false);
7357 var
->cur_loc_changed
= false;
7358 gcc_assert (var
->in_changed_variables
);
7359 var
->in_changed_variables
= false;
7360 htab_clear_slot (changed_variables
, varp
);
7362 /* Continue traversing the hash table. */
7365 value_or_debug_decl
:
7366 if (dv_changed_p (var
->dv
) && var
->n_var_parts
)
7369 bool cur_loc_changed
;
7371 if (var
->var_part
[0].cur_loc
7372 && vt_expand_loc_dummy (var
->var_part
[0].cur_loc
, vars
,
7375 for (lc
= var
->var_part
[0].loc_chain
; lc
; lc
= lc
->next
)
7376 if (lc
->loc
!= var
->var_part
[0].cur_loc
7377 && vt_expand_loc_dummy (lc
->loc
, vars
, &cur_loc_changed
))
7379 var
->var_part
[0].cur_loc
= lc
? lc
->loc
: NULL_RTX
;
7384 DEF_VEC_P (variable
);
7385 DEF_VEC_ALLOC_P (variable
, heap
);
7387 /* Stack of variable_def pointers that need processing with
7388 check_changed_vars_2. */
7390 static VEC (variable
, heap
) *changed_variables_stack
;
7392 /* VALUEs with no variables that need set_dv_changed (val, false)
7393 called before check_changed_vars_3. */
7395 static VEC (rtx
, heap
) *changed_values_stack
;
7397 /* Helper function for check_changed_vars_1 and check_changed_vars_2. */
7400 check_changed_vars_0 (decl_or_value dv
, htab_t htab
)
7403 = (value_chain
) htab_find_with_hash (value_chains
, dv
, dv_htab_hash (dv
));
7407 for (vc
= vc
->next
; vc
; vc
= vc
->next
)
7408 if (!dv_changed_p (vc
->dv
))
7411 = (variable
) htab_find_with_hash (htab
, vc
->dv
,
7412 dv_htab_hash (vc
->dv
));
7415 set_dv_changed (vc
->dv
, true);
7416 VEC_safe_push (variable
, heap
, changed_variables_stack
, vcvar
);
7418 else if (dv_is_value_p (vc
->dv
))
7420 set_dv_changed (vc
->dv
, true);
7421 VEC_safe_push (rtx
, heap
, changed_values_stack
,
7422 dv_as_value (vc
->dv
));
7423 check_changed_vars_0 (vc
->dv
, htab
);
7428 /* Populate changed_variables_stack with variable_def pointers
7429 that need variable_was_changed called on them. */
7432 check_changed_vars_1 (void **slot
, void *data
)
7434 variable var
= (variable
) *slot
;
7435 htab_t htab
= (htab_t
) data
;
7437 if (dv_is_value_p (var
->dv
)
7438 || TREE_CODE (dv_as_decl (var
->dv
)) == DEBUG_EXPR_DECL
)
7439 check_changed_vars_0 (var
->dv
, htab
);
7443 /* Add VAR to changed_variables and also for VALUEs add recursively
7444 all DVs that aren't in changed_variables yet but reference the
7445 VALUE from its loc_chain. */
7448 check_changed_vars_2 (variable var
, htab_t htab
)
7450 variable_was_changed (var
, NULL
);
7451 if (dv_is_value_p (var
->dv
)
7452 || TREE_CODE (dv_as_decl (var
->dv
)) == DEBUG_EXPR_DECL
)
7453 check_changed_vars_0 (var
->dv
, htab
);
7456 /* For each changed decl (except DEBUG_EXPR_DECLs) recompute
7457 cur_loc if needed (and cur_loc of all VALUEs and DEBUG_EXPR_DECLs
7458 it needs and are also in changed variables) and track whether
7459 cur_loc (or anything it uses to compute location) had to change
7460 during the current emit_notes_for_changes call. */
7463 check_changed_vars_3 (void **slot
, void *data
)
7465 variable var
= (variable
) *slot
;
7466 htab_t vars
= (htab_t
) data
;
7469 bool cur_loc_changed
;
7471 if (dv_is_value_p (var
->dv
)
7472 || TREE_CODE (dv_as_decl (var
->dv
)) == DEBUG_EXPR_DECL
)
7475 for (i
= 0; i
< var
->n_var_parts
; i
++)
7477 if (var
->var_part
[i
].cur_loc
7478 && vt_expand_loc_dummy (var
->var_part
[i
].cur_loc
, vars
,
7481 if (cur_loc_changed
)
7482 var
->cur_loc_changed
= true;
7485 for (lc
= var
->var_part
[i
].loc_chain
; lc
; lc
= lc
->next
)
7486 if (lc
->loc
!= var
->var_part
[i
].cur_loc
7487 && vt_expand_loc_dummy (lc
->loc
, vars
, &cur_loc_changed
))
7489 if (lc
|| var
->var_part
[i
].cur_loc
)
7490 var
->cur_loc_changed
= true;
7491 var
->var_part
[i
].cur_loc
= lc
? lc
->loc
: NULL_RTX
;
7493 if (var
->n_var_parts
== 0)
7494 var
->cur_loc_changed
= true;
7498 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
7499 CHANGED_VARIABLES and delete this chain. WHERE specifies whether the notes
7500 shall be emitted before of after instruction INSN. */
7503 emit_notes_for_changes (rtx insn
, enum emit_note_where where
,
7506 emit_note_data data
;
7507 htab_t htab
= shared_hash_htab (vars
);
7509 if (!htab_elements (changed_variables
))
7512 if (MAY_HAVE_DEBUG_INSNS
)
7514 /* Unfortunately this has to be done in two steps, because
7515 we can't traverse a hashtab into which we are inserting
7516 through variable_was_changed. */
7517 htab_traverse (changed_variables
, check_changed_vars_1
, htab
);
7518 while (VEC_length (variable
, changed_variables_stack
) > 0)
7519 check_changed_vars_2 (VEC_pop (variable
, changed_variables_stack
),
7521 while (VEC_length (rtx
, changed_values_stack
) > 0)
7522 set_dv_changed (dv_from_value (VEC_pop (rtx
, changed_values_stack
)),
7524 htab_traverse (changed_variables
, check_changed_vars_3
, htab
);
7531 htab_traverse (changed_variables
, emit_note_insn_var_location
, &data
);
7534 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
7535 same variable in hash table DATA or is not there at all. */
7538 emit_notes_for_differences_1 (void **slot
, void *data
)
7540 htab_t new_vars
= (htab_t
) data
;
7541 variable old_var
, new_var
;
7543 old_var
= (variable
) *slot
;
7544 new_var
= (variable
) htab_find_with_hash (new_vars
, old_var
->dv
,
7545 dv_htab_hash (old_var
->dv
));
7549 /* Variable has disappeared. */
7552 empty_var
= (variable
) pool_alloc (dv_pool (old_var
->dv
));
7553 empty_var
->dv
= old_var
->dv
;
7554 empty_var
->refcount
= 0;
7555 empty_var
->n_var_parts
= 0;
7556 empty_var
->cur_loc_changed
= false;
7557 empty_var
->in_changed_variables
= false;
7558 if (dv_onepart_p (old_var
->dv
))
7562 gcc_assert (old_var
->n_var_parts
== 1);
7563 for (lc
= old_var
->var_part
[0].loc_chain
; lc
; lc
= lc
->next
)
7564 remove_value_chains (old_var
->dv
, lc
->loc
);
7566 variable_was_changed (empty_var
, NULL
);
7567 /* Continue traversing the hash table. */
7570 if (variable_different_p (old_var
, new_var
))
7572 if (dv_onepart_p (old_var
->dv
))
7574 location_chain lc1
, lc2
;
7576 gcc_assert (old_var
->n_var_parts
== 1
7577 && new_var
->n_var_parts
== 1);
7578 lc1
= old_var
->var_part
[0].loc_chain
;
7579 lc2
= new_var
->var_part
[0].loc_chain
;
7582 && ((REG_P (lc1
->loc
) && REG_P (lc2
->loc
))
7583 || rtx_equal_p (lc1
->loc
, lc2
->loc
)))
7588 for (; lc2
; lc2
= lc2
->next
)
7589 add_value_chains (old_var
->dv
, lc2
->loc
);
7590 for (; lc1
; lc1
= lc1
->next
)
7591 remove_value_chains (old_var
->dv
, lc1
->loc
);
7593 variable_was_changed (new_var
, NULL
);
7595 /* Update cur_loc. */
7596 if (old_var
!= new_var
)
7599 for (i
= 0; i
< new_var
->n_var_parts
; i
++)
7601 new_var
->var_part
[i
].cur_loc
= NULL
;
7602 if (old_var
->n_var_parts
!= new_var
->n_var_parts
7603 || old_var
->var_part
[i
].offset
!= new_var
->var_part
[i
].offset
)
7604 new_var
->cur_loc_changed
= true;
7605 else if (old_var
->var_part
[i
].cur_loc
!= NULL
)
7608 rtx cur_loc
= old_var
->var_part
[i
].cur_loc
;
7610 for (lc
= new_var
->var_part
[i
].loc_chain
; lc
; lc
= lc
->next
)
7611 if (lc
->loc
== cur_loc
7612 || rtx_equal_p (cur_loc
, lc
->loc
))
7614 new_var
->var_part
[i
].cur_loc
= lc
->loc
;
7618 new_var
->cur_loc_changed
= true;
7623 /* Continue traversing the hash table. */
7627 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
7631 emit_notes_for_differences_2 (void **slot
, void *data
)
7633 htab_t old_vars
= (htab_t
) data
;
7634 variable old_var
, new_var
;
7636 new_var
= (variable
) *slot
;
7637 old_var
= (variable
) htab_find_with_hash (old_vars
, new_var
->dv
,
7638 dv_htab_hash (new_var
->dv
));
7642 /* Variable has appeared. */
7643 if (dv_onepart_p (new_var
->dv
))
7647 gcc_assert (new_var
->n_var_parts
== 1);
7648 for (lc
= new_var
->var_part
[0].loc_chain
; lc
; lc
= lc
->next
)
7649 add_value_chains (new_var
->dv
, lc
->loc
);
7651 for (i
= 0; i
< new_var
->n_var_parts
; i
++)
7652 new_var
->var_part
[i
].cur_loc
= NULL
;
7653 variable_was_changed (new_var
, NULL
);
7656 /* Continue traversing the hash table. */
7660 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
7664 emit_notes_for_differences (rtx insn
, dataflow_set
*old_set
,
7665 dataflow_set
*new_set
)
7667 htab_traverse (shared_hash_htab (old_set
->vars
),
7668 emit_notes_for_differences_1
,
7669 shared_hash_htab (new_set
->vars
));
7670 htab_traverse (shared_hash_htab (new_set
->vars
),
7671 emit_notes_for_differences_2
,
7672 shared_hash_htab (old_set
->vars
));
7673 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, new_set
->vars
);
7676 /* Emit the notes for changes of location parts in the basic block BB. */
7679 emit_notes_in_bb (basic_block bb
, dataflow_set
*set
)
7682 micro_operation
*mo
;
7684 dataflow_set_clear (set
);
7685 dataflow_set_copy (set
, &VTI (bb
)->in
);
7687 FOR_EACH_VEC_ELT (micro_operation
, VTI (bb
)->mos
, i
, mo
)
7689 rtx insn
= mo
->insn
;
7694 dataflow_set_clear_at_call (set
);
7695 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_CALL_INSN
, set
->vars
);
7700 rtx loc
= mo
->u
.loc
;
7703 var_reg_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
7705 var_mem_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
7707 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
7713 rtx loc
= mo
->u
.loc
;
7717 if (GET_CODE (loc
) == CONCAT
)
7719 val
= XEXP (loc
, 0);
7720 vloc
= XEXP (loc
, 1);
7728 var
= PAT_VAR_LOCATION_DECL (vloc
);
7730 clobber_variable_part (set
, NULL_RTX
,
7731 dv_from_decl (var
), 0, NULL_RTX
);
7734 if (VAL_NEEDS_RESOLUTION (loc
))
7735 val_resolve (set
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
7736 set_variable_part (set
, val
, dv_from_decl (var
), 0,
7737 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
7740 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
7741 set_variable_part (set
, PAT_VAR_LOCATION_LOC (vloc
),
7742 dv_from_decl (var
), 0,
7743 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
7746 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
7752 rtx loc
= mo
->u
.loc
;
7753 rtx val
, vloc
, uloc
;
7755 vloc
= uloc
= XEXP (loc
, 1);
7756 val
= XEXP (loc
, 0);
7758 if (GET_CODE (val
) == CONCAT
)
7760 uloc
= XEXP (val
, 1);
7761 val
= XEXP (val
, 0);
7764 if (VAL_NEEDS_RESOLUTION (loc
))
7765 val_resolve (set
, val
, vloc
, insn
);
7767 val_store (set
, val
, uloc
, insn
, false);
7769 if (VAL_HOLDS_TRACK_EXPR (loc
))
7771 if (GET_CODE (uloc
) == REG
)
7772 var_reg_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
7774 else if (GET_CODE (uloc
) == MEM
)
7775 var_mem_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
7779 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, set
->vars
);
7785 rtx loc
= mo
->u
.loc
;
7786 rtx val
, vloc
, uloc
, reverse
= NULL_RTX
;
7789 if (VAL_EXPR_HAS_REVERSE (loc
))
7791 reverse
= XEXP (loc
, 1);
7792 vloc
= XEXP (loc
, 0);
7794 uloc
= XEXP (vloc
, 1);
7795 val
= XEXP (vloc
, 0);
7798 if (GET_CODE (val
) == CONCAT
)
7800 vloc
= XEXP (val
, 1);
7801 val
= XEXP (val
, 0);
7804 if (GET_CODE (vloc
) == SET
)
7806 rtx vsrc
= SET_SRC (vloc
);
7808 gcc_assert (val
!= vsrc
);
7809 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
7811 vloc
= SET_DEST (vloc
);
7813 if (VAL_NEEDS_RESOLUTION (loc
))
7814 val_resolve (set
, val
, vsrc
, insn
);
7816 else if (VAL_NEEDS_RESOLUTION (loc
))
7818 gcc_assert (GET_CODE (uloc
) == SET
7819 && GET_CODE (SET_SRC (uloc
)) == REG
);
7820 val_resolve (set
, val
, SET_SRC (uloc
), insn
);
7823 if (VAL_HOLDS_TRACK_EXPR (loc
))
7825 if (VAL_EXPR_IS_CLOBBERED (loc
))
7828 var_reg_delete (set
, uloc
, true);
7829 else if (MEM_P (uloc
))
7830 var_mem_delete (set
, uloc
, true);
7834 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
7836 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
7838 if (GET_CODE (uloc
) == SET
)
7840 set_src
= SET_SRC (uloc
);
7841 uloc
= SET_DEST (uloc
);
7846 status
= find_src_status (set
, set_src
);
7848 set_src
= find_src_set_src (set
, set_src
);
7852 var_reg_delete_and_set (set
, uloc
, !copied_p
,
7854 else if (MEM_P (uloc
))
7855 var_mem_delete_and_set (set
, uloc
, !copied_p
,
7859 else if (REG_P (uloc
))
7860 var_regno_delete (set
, REGNO (uloc
));
7862 val_store (set
, val
, vloc
, insn
, true);
7865 val_store (set
, XEXP (reverse
, 0), XEXP (reverse
, 1),
7868 emit_notes_for_changes (NEXT_INSN (insn
), EMIT_NOTE_BEFORE_INSN
,
7875 rtx loc
= mo
->u
.loc
;
7878 if (GET_CODE (loc
) == SET
)
7880 set_src
= SET_SRC (loc
);
7881 loc
= SET_DEST (loc
);
7885 var_reg_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
7888 var_mem_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
7891 emit_notes_for_changes (NEXT_INSN (insn
), EMIT_NOTE_BEFORE_INSN
,
7898 rtx loc
= mo
->u
.loc
;
7899 enum var_init_status src_status
;
7902 if (GET_CODE (loc
) == SET
)
7904 set_src
= SET_SRC (loc
);
7905 loc
= SET_DEST (loc
);
7908 src_status
= find_src_status (set
, set_src
);
7909 set_src
= find_src_set_src (set
, set_src
);
7912 var_reg_delete_and_set (set
, loc
, false, src_status
, set_src
);
7914 var_mem_delete_and_set (set
, loc
, false, src_status
, set_src
);
7916 emit_notes_for_changes (NEXT_INSN (insn
), EMIT_NOTE_BEFORE_INSN
,
7923 rtx loc
= mo
->u
.loc
;
7926 var_reg_delete (set
, loc
, false);
7928 var_mem_delete (set
, loc
, false);
7930 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
7936 rtx loc
= mo
->u
.loc
;
7939 var_reg_delete (set
, loc
, true);
7941 var_mem_delete (set
, loc
, true);
7943 emit_notes_for_changes (NEXT_INSN (insn
), EMIT_NOTE_BEFORE_INSN
,
7949 set
->stack_adjust
+= mo
->u
.adjust
;
7955 /* Emit notes for the whole function. */
7958 vt_emit_notes (void)
7963 #ifdef ENABLE_RTL_CHECKING
7964 emitted_notes
= pointer_map_create ();
7966 gcc_assert (!htab_elements (changed_variables
));
7968 /* Free memory occupied by the out hash tables, as they aren't used
7971 dataflow_set_clear (&VTI (bb
)->out
);
7973 /* Enable emitting notes by functions (mainly by set_variable_part and
7974 delete_variable_part). */
7977 if (MAY_HAVE_DEBUG_INSNS
)
7982 FOR_EACH_VEC_ELT (rtx
, preserved_values
, i
, val
)
7983 add_cselib_value_chains (dv_from_value (val
));
7984 changed_variables_stack
= VEC_alloc (variable
, heap
, 40);
7985 changed_values_stack
= VEC_alloc (rtx
, heap
, 40);
7988 dataflow_set_init (&cur
);
7992 /* Emit the notes for changes of variable locations between two
7993 subsequent basic blocks. */
7994 emit_notes_for_differences (BB_HEAD (bb
), &cur
, &VTI (bb
)->in
);
7996 /* Emit the notes for the changes in the basic block itself. */
7997 emit_notes_in_bb (bb
, &cur
);
7999 /* Free memory occupied by the in hash table, we won't need it
8001 dataflow_set_clear (&VTI (bb
)->in
);
8003 #ifdef ENABLE_CHECKING
8004 htab_traverse (shared_hash_htab (cur
.vars
),
8005 emit_notes_for_differences_1
,
8006 shared_hash_htab (empty_shared_hash
));
8007 if (MAY_HAVE_DEBUG_INSNS
)
8012 FOR_EACH_VEC_ELT (rtx
, preserved_values
, i
, val
)
8013 remove_cselib_value_chains (dv_from_value (val
));
8014 gcc_assert (htab_elements (value_chains
) == 0);
8017 dataflow_set_destroy (&cur
);
8019 if (MAY_HAVE_DEBUG_INSNS
)
8021 VEC_free (variable
, heap
, changed_variables_stack
);
8022 VEC_free (rtx
, heap
, changed_values_stack
);
8025 #ifdef ENABLE_RTL_CHECKING
8026 pointer_map_destroy (emitted_notes
);
8031 /* If there is a declaration and offset associated with register/memory RTL
8032 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
8035 vt_get_decl_and_offset (rtx rtl
, tree
*declp
, HOST_WIDE_INT
*offsetp
)
8039 if (REG_ATTRS (rtl
))
8041 *declp
= REG_EXPR (rtl
);
8042 *offsetp
= REG_OFFSET (rtl
);
8046 else if (MEM_P (rtl
))
8048 if (MEM_ATTRS (rtl
))
8050 *declp
= MEM_EXPR (rtl
);
8051 *offsetp
= INT_MEM_OFFSET (rtl
);
8058 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
8061 vt_add_function_parameters (void)
8065 for (parm
= DECL_ARGUMENTS (current_function_decl
);
8066 parm
; parm
= DECL_CHAIN (parm
))
8068 rtx decl_rtl
= DECL_RTL_IF_SET (parm
);
8069 rtx incoming
= DECL_INCOMING_RTL (parm
);
8071 enum machine_mode mode
;
8072 HOST_WIDE_INT offset
;
8076 if (TREE_CODE (parm
) != PARM_DECL
)
8079 if (!DECL_NAME (parm
))
8082 if (!decl_rtl
|| !incoming
)
8085 if (GET_MODE (decl_rtl
) == BLKmode
|| GET_MODE (incoming
) == BLKmode
)
8088 if (!vt_get_decl_and_offset (incoming
, &decl
, &offset
))
8090 if (REG_P (incoming
) || MEM_P (incoming
))
8092 /* This means argument is passed by invisible reference. */
8095 incoming
= gen_rtx_MEM (GET_MODE (decl_rtl
), incoming
);
8099 if (!vt_get_decl_and_offset (decl_rtl
, &decl
, &offset
))
8101 offset
+= byte_lowpart_offset (GET_MODE (incoming
),
8102 GET_MODE (decl_rtl
));
8111 /* Assume that DECL_RTL was a pseudo that got spilled to
8112 memory. The spill slot sharing code will force the
8113 memory to reference spill_slot_decl (%sfp), so we don't
8114 match above. That's ok, the pseudo must have referenced
8115 the entire parameter, so just reset OFFSET. */
8116 gcc_assert (decl
== get_spill_slot_decl (false));
8120 if (!track_loc_p (incoming
, parm
, offset
, false, &mode
, &offset
))
8123 out
= &VTI (ENTRY_BLOCK_PTR
)->out
;
8125 dv
= dv_from_decl (parm
);
8127 if (target_for_debug_bind (parm
)
8128 /* We can't deal with these right now, because this kind of
8129 variable is single-part. ??? We could handle parallels
8130 that describe multiple locations for the same single
8131 value, but ATM we don't. */
8132 && GET_CODE (incoming
) != PARALLEL
)
8136 /* ??? We shouldn't ever hit this, but it may happen because
8137 arguments passed by invisible reference aren't dealt with
8138 above: incoming-rtl will have Pmode rather than the
8139 expected mode for the type. */
8143 val
= cselib_lookup (var_lowpart (mode
, incoming
), mode
, true);
8145 /* ??? Float-typed values in memory are not handled by
8149 preserve_value (val
);
8150 set_variable_part (out
, val
->val_rtx
, dv
, offset
,
8151 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
8152 dv
= dv_from_value (val
->val_rtx
);
8156 if (REG_P (incoming
))
8158 incoming
= var_lowpart (mode
, incoming
);
8159 gcc_assert (REGNO (incoming
) < FIRST_PSEUDO_REGISTER
);
8160 attrs_list_insert (&out
->regs
[REGNO (incoming
)], dv
, offset
,
8162 set_variable_part (out
, incoming
, dv
, offset
,
8163 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
8165 else if (MEM_P (incoming
))
8167 incoming
= var_lowpart (mode
, incoming
);
8168 set_variable_part (out
, incoming
, dv
, offset
,
8169 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
8173 if (MAY_HAVE_DEBUG_INSNS
)
8175 cselib_preserve_only_values ();
8176 cselib_reset_table (cselib_get_next_uid ());
8181 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
8184 fp_setter (rtx insn
)
8186 rtx pat
= PATTERN (insn
);
8187 if (RTX_FRAME_RELATED_P (insn
))
8189 rtx expr
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
8191 pat
= XEXP (expr
, 0);
8193 if (GET_CODE (pat
) == SET
)
8194 return SET_DEST (pat
) == hard_frame_pointer_rtx
;
8195 else if (GET_CODE (pat
) == PARALLEL
)
8198 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
8199 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
8200 && SET_DEST (XVECEXP (pat
, 0, i
)) == hard_frame_pointer_rtx
)
8206 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
8207 ensure it isn't flushed during cselib_reset_table.
8208 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
8209 has been eliminated. */
8212 vt_init_cfa_base (void)
8216 #ifdef FRAME_POINTER_CFA_OFFSET
8217 cfa_base_rtx
= frame_pointer_rtx
;
8218 cfa_base_offset
= -FRAME_POINTER_CFA_OFFSET (current_function_decl
);
8220 cfa_base_rtx
= arg_pointer_rtx
;
8221 cfa_base_offset
= -ARG_POINTER_CFA_OFFSET (current_function_decl
);
8223 if (cfa_base_rtx
== hard_frame_pointer_rtx
8224 || !fixed_regs
[REGNO (cfa_base_rtx
)])
8226 cfa_base_rtx
= NULL_RTX
;
8229 if (!MAY_HAVE_DEBUG_INSNS
)
8232 val
= cselib_lookup_from_insn (cfa_base_rtx
, GET_MODE (cfa_base_rtx
), 1,
8234 preserve_value (val
);
8235 cselib_preserve_cfa_base_value (val
, REGNO (cfa_base_rtx
));
8236 var_reg_decl_set (&VTI (ENTRY_BLOCK_PTR
)->out
, cfa_base_rtx
,
8237 VAR_INIT_STATUS_INITIALIZED
, dv_from_value (val
->val_rtx
),
8238 0, NULL_RTX
, INSERT
);
8241 /* Allocate and initialize the data structures for variable tracking
8242 and parse the RTL to get the micro operations. */
8245 vt_initialize (void)
8247 basic_block bb
, prologue_bb
= NULL
;
8248 HOST_WIDE_INT fp_cfa_offset
= -1;
8250 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def
));
8252 attrs_pool
= create_alloc_pool ("attrs_def pool",
8253 sizeof (struct attrs_def
), 1024);
8254 var_pool
= create_alloc_pool ("variable_def pool",
8255 sizeof (struct variable_def
)
8256 + (MAX_VAR_PARTS
- 1)
8257 * sizeof (((variable
)NULL
)->var_part
[0]), 64);
8258 loc_chain_pool
= create_alloc_pool ("location_chain_def pool",
8259 sizeof (struct location_chain_def
),
8261 shared_hash_pool
= create_alloc_pool ("shared_hash_def pool",
8262 sizeof (struct shared_hash_def
), 256);
8263 empty_shared_hash
= (shared_hash
) pool_alloc (shared_hash_pool
);
8264 empty_shared_hash
->refcount
= 1;
8265 empty_shared_hash
->htab
8266 = htab_create (1, variable_htab_hash
, variable_htab_eq
,
8267 variable_htab_free
);
8268 changed_variables
= htab_create (10, variable_htab_hash
, variable_htab_eq
,
8269 variable_htab_free
);
8270 if (MAY_HAVE_DEBUG_INSNS
)
8272 value_chain_pool
= create_alloc_pool ("value_chain_def pool",
8273 sizeof (struct value_chain_def
),
8275 value_chains
= htab_create (32, value_chain_htab_hash
,
8276 value_chain_htab_eq
, NULL
);
8279 /* Init the IN and OUT sets. */
8282 VTI (bb
)->visited
= false;
8283 VTI (bb
)->flooded
= false;
8284 dataflow_set_init (&VTI (bb
)->in
);
8285 dataflow_set_init (&VTI (bb
)->out
);
8286 VTI (bb
)->permp
= NULL
;
8289 if (MAY_HAVE_DEBUG_INSNS
)
8291 cselib_init (CSELIB_RECORD_MEMORY
| CSELIB_PRESERVE_CONSTANTS
);
8292 scratch_regs
= BITMAP_ALLOC (NULL
);
8293 valvar_pool
= create_alloc_pool ("small variable_def pool",
8294 sizeof (struct variable_def
), 256);
8295 preserved_values
= VEC_alloc (rtx
, heap
, 256);
8299 scratch_regs
= NULL
;
8303 if (!frame_pointer_needed
)
8307 if (!vt_stack_adjustments ())
8310 #ifdef FRAME_POINTER_CFA_OFFSET
8311 reg
= frame_pointer_rtx
;
8313 reg
= arg_pointer_rtx
;
8315 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
8318 if (GET_CODE (elim
) == PLUS
)
8319 elim
= XEXP (elim
, 0);
8320 if (elim
== stack_pointer_rtx
)
8321 vt_init_cfa_base ();
8324 else if (!crtl
->stack_realign_tried
)
8328 #ifdef FRAME_POINTER_CFA_OFFSET
8329 reg
= frame_pointer_rtx
;
8330 fp_cfa_offset
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
8332 reg
= arg_pointer_rtx
;
8333 fp_cfa_offset
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
8335 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
8338 if (GET_CODE (elim
) == PLUS
)
8340 fp_cfa_offset
-= INTVAL (XEXP (elim
, 1));
8341 elim
= XEXP (elim
, 0);
8343 if (elim
!= hard_frame_pointer_rtx
)
8346 prologue_bb
= single_succ (ENTRY_BLOCK_PTR
);
8350 hard_frame_pointer_adjustment
= -1;
8355 HOST_WIDE_INT pre
, post
= 0;
8356 basic_block first_bb
, last_bb
;
8358 if (MAY_HAVE_DEBUG_INSNS
)
8360 cselib_record_sets_hook
= add_with_sets
;
8361 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8362 fprintf (dump_file
, "first value: %i\n",
8363 cselib_get_next_uid ());
8370 if (bb
->next_bb
== EXIT_BLOCK_PTR
8371 || ! single_pred_p (bb
->next_bb
))
8373 e
= find_edge (bb
, bb
->next_bb
);
8374 if (! e
|| (e
->flags
& EDGE_FALLTHRU
) == 0)
8380 /* Add the micro-operations to the vector. */
8381 FOR_BB_BETWEEN (bb
, first_bb
, last_bb
->next_bb
, next_bb
)
8383 HOST_WIDE_INT offset
= VTI (bb
)->out
.stack_adjust
;
8384 VTI (bb
)->out
.stack_adjust
= VTI (bb
)->in
.stack_adjust
;
8385 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
));
8386 insn
= NEXT_INSN (insn
))
8390 if (!frame_pointer_needed
)
8392 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
8396 mo
.type
= MO_ADJUST
;
8399 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8400 log_op_type (PATTERN (insn
), bb
, insn
,
8401 MO_ADJUST
, dump_file
);
8402 VEC_safe_push (micro_operation
, heap
, VTI (bb
)->mos
,
8404 VTI (bb
)->out
.stack_adjust
+= pre
;
8408 cselib_hook_called
= false;
8409 adjust_insn (bb
, insn
);
8410 if (MAY_HAVE_DEBUG_INSNS
)
8412 cselib_process_insn (insn
);
8413 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8415 print_rtl_single (dump_file
, insn
);
8416 dump_cselib_table (dump_file
);
8419 if (!cselib_hook_called
)
8420 add_with_sets (insn
, 0, 0);
8423 if (!frame_pointer_needed
&& post
)
8426 mo
.type
= MO_ADJUST
;
8429 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8430 log_op_type (PATTERN (insn
), bb
, insn
,
8431 MO_ADJUST
, dump_file
);
8432 VEC_safe_push (micro_operation
, heap
, VTI (bb
)->mos
,
8434 VTI (bb
)->out
.stack_adjust
+= post
;
8437 if (bb
== prologue_bb
8438 && hard_frame_pointer_adjustment
== -1
8439 && RTX_FRAME_RELATED_P (insn
)
8440 && fp_setter (insn
))
8442 vt_init_cfa_base ();
8443 hard_frame_pointer_adjustment
= fp_cfa_offset
;
8447 gcc_assert (offset
== VTI (bb
)->out
.stack_adjust
);
8452 if (MAY_HAVE_DEBUG_INSNS
)
8454 cselib_preserve_only_values ();
8455 cselib_reset_table (cselib_get_next_uid ());
8456 cselib_record_sets_hook
= NULL
;
8460 hard_frame_pointer_adjustment
= -1;
8461 VTI (ENTRY_BLOCK_PTR
)->flooded
= true;
8462 vt_add_function_parameters ();
8463 cfa_base_rtx
= NULL_RTX
;
8467 /* Get rid of all debug insns from the insn stream. */
8470 delete_debug_insns (void)
8475 if (!MAY_HAVE_DEBUG_INSNS
)
8480 FOR_BB_INSNS_SAFE (bb
, insn
, next
)
8481 if (DEBUG_INSN_P (insn
))
8486 /* Run a fast, BB-local only version of var tracking, to take care of
8487 information that we don't do global analysis on, such that not all
8488 information is lost. If SKIPPED holds, we're skipping the global
8489 pass entirely, so we should try to use information it would have
8490 handled as well.. */
8493 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED
)
8495 /* ??? Just skip it all for now. */
8496 delete_debug_insns ();
8499 /* Free the data structures needed for variable tracking. */
8508 VEC_free (micro_operation
, heap
, VTI (bb
)->mos
);
8513 dataflow_set_destroy (&VTI (bb
)->in
);
8514 dataflow_set_destroy (&VTI (bb
)->out
);
8515 if (VTI (bb
)->permp
)
8517 dataflow_set_destroy (VTI (bb
)->permp
);
8518 XDELETE (VTI (bb
)->permp
);
8521 free_aux_for_blocks ();
8522 htab_delete (empty_shared_hash
->htab
);
8523 htab_delete (changed_variables
);
8524 free_alloc_pool (attrs_pool
);
8525 free_alloc_pool (var_pool
);
8526 free_alloc_pool (loc_chain_pool
);
8527 free_alloc_pool (shared_hash_pool
);
8529 if (MAY_HAVE_DEBUG_INSNS
)
8531 htab_delete (value_chains
);
8532 free_alloc_pool (value_chain_pool
);
8533 free_alloc_pool (valvar_pool
);
8534 VEC_free (rtx
, heap
, preserved_values
);
8536 BITMAP_FREE (scratch_regs
);
8537 scratch_regs
= NULL
;
8541 XDELETEVEC (vui_vec
);
8546 /* The entry point to variable tracking pass. */
8548 static inline unsigned int
8549 variable_tracking_main_1 (void)
8553 if (flag_var_tracking_assignments
< 0)
8555 delete_debug_insns ();
8559 if (n_basic_blocks
> 500 && n_edges
/ n_basic_blocks
>= 20)
8561 vt_debug_insns_local (true);
8565 mark_dfs_back_edges ();
8566 if (!vt_initialize ())
8569 vt_debug_insns_local (true);
8573 success
= vt_find_locations ();
8575 if (!success
&& flag_var_tracking_assignments
> 0)
8579 delete_debug_insns ();
8581 /* This is later restored by our caller. */
8582 flag_var_tracking_assignments
= 0;
8584 success
= vt_initialize ();
8585 gcc_assert (success
);
8587 success
= vt_find_locations ();
8593 vt_debug_insns_local (false);
8597 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8599 dump_dataflow_sets ();
8600 dump_flow_info (dump_file
, dump_flags
);
8603 timevar_push (TV_VAR_TRACKING_EMIT
);
8605 timevar_pop (TV_VAR_TRACKING_EMIT
);
8608 vt_debug_insns_local (false);
8613 variable_tracking_main (void)
8616 int save
= flag_var_tracking_assignments
;
8618 ret
= variable_tracking_main_1 ();
8620 flag_var_tracking_assignments
= save
;
8626 gate_handle_var_tracking (void)
8628 return (flag_var_tracking
);
8633 struct rtl_opt_pass pass_variable_tracking
=
8637 "vartrack", /* name */
8638 gate_handle_var_tracking
, /* gate */
8639 variable_tracking_main
, /* execute */
8642 0, /* static_pass_number */
8643 TV_VAR_TRACKING
, /* tv_id */
8644 0, /* properties_required */
8645 0, /* properties_provided */
8646 0, /* properties_destroyed */
8647 0, /* todo_flags_start */
8648 TODO_dump_func
| TODO_verify_rtl_sharing
/* todo_flags_finish */