* include/std/future (__location_invariant): Move specializations
[official-gcc.git] / gcc / convert.c
blob3834351aad52811f5c63ae1dd074e2c12de2f1a9
1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* These routines are somewhat language-independent utility function
22 intended to be called by the language-specific convert () functions. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "tree.h"
29 #include "stor-layout.h"
30 #include "flags.h"
31 #include "convert.h"
32 #include "diagnostic-core.h"
33 #include "target.h"
34 #include "langhooks.h"
35 #include "builtins.h"
36 #include "ubsan.h"
38 /* Convert EXPR to some pointer or reference type TYPE.
39 EXPR must be pointer, reference, integer, enumeral, or literal zero;
40 in other cases error is called. */
42 tree
43 convert_to_pointer (tree type, tree expr)
45 location_t loc = EXPR_LOCATION (expr);
46 if (TREE_TYPE (expr) == type)
47 return expr;
49 switch (TREE_CODE (TREE_TYPE (expr)))
51 case POINTER_TYPE:
52 case REFERENCE_TYPE:
54 /* If the pointers point to different address spaces, conversion needs
55 to be done via a ADDR_SPACE_CONVERT_EXPR instead of a NOP_EXPR. */
56 addr_space_t to_as = TYPE_ADDR_SPACE (TREE_TYPE (type));
57 addr_space_t from_as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (expr)));
59 if (to_as == from_as)
60 return fold_build1_loc (loc, NOP_EXPR, type, expr);
61 else
62 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, expr);
65 case INTEGER_TYPE:
66 case ENUMERAL_TYPE:
67 case BOOLEAN_TYPE:
69 /* If the input precision differs from the target pointer type
70 precision, first convert the input expression to an integer type of
71 the target precision. Some targets, e.g. VMS, need several pointer
72 sizes to coexist so the latter isn't necessarily POINTER_SIZE. */
73 unsigned int pprec = TYPE_PRECISION (type);
74 unsigned int eprec = TYPE_PRECISION (TREE_TYPE (expr));
76 if (eprec != pprec)
77 expr = fold_build1_loc (loc, NOP_EXPR,
78 lang_hooks.types.type_for_size (pprec, 0),
79 expr);
82 return fold_build1_loc (loc, CONVERT_EXPR, type, expr);
84 default:
85 error ("cannot convert to a pointer type");
86 return convert_to_pointer (type, integer_zero_node);
91 /* Convert EXPR to some floating-point type TYPE.
93 EXPR must be float, fixed-point, integer, or enumeral;
94 in other cases error is called. */
96 tree
97 convert_to_real (tree type, tree expr)
99 enum built_in_function fcode = builtin_mathfn_code (expr);
100 tree itype = TREE_TYPE (expr);
102 /* Disable until we figure out how to decide whether the functions are
103 present in runtime. */
104 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
105 if (optimize
106 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
107 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
109 switch (fcode)
111 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
112 CASE_MATHFN (COSH)
113 CASE_MATHFN (EXP)
114 CASE_MATHFN (EXP10)
115 CASE_MATHFN (EXP2)
116 CASE_MATHFN (EXPM1)
117 CASE_MATHFN (GAMMA)
118 CASE_MATHFN (J0)
119 CASE_MATHFN (J1)
120 CASE_MATHFN (LGAMMA)
121 CASE_MATHFN (POW10)
122 CASE_MATHFN (SINH)
123 CASE_MATHFN (TGAMMA)
124 CASE_MATHFN (Y0)
125 CASE_MATHFN (Y1)
126 /* The above functions may set errno differently with float
127 input or output so this transformation is not safe with
128 -fmath-errno. */
129 if (flag_errno_math)
130 break;
131 CASE_MATHFN (ACOS)
132 CASE_MATHFN (ACOSH)
133 CASE_MATHFN (ASIN)
134 CASE_MATHFN (ASINH)
135 CASE_MATHFN (ATAN)
136 CASE_MATHFN (ATANH)
137 CASE_MATHFN (CBRT)
138 CASE_MATHFN (COS)
139 CASE_MATHFN (ERF)
140 CASE_MATHFN (ERFC)
141 CASE_MATHFN (LOG)
142 CASE_MATHFN (LOG10)
143 CASE_MATHFN (LOG2)
144 CASE_MATHFN (LOG1P)
145 CASE_MATHFN (SIN)
146 CASE_MATHFN (TAN)
147 CASE_MATHFN (TANH)
148 /* The above functions are not safe to do this conversion. */
149 if (!flag_unsafe_math_optimizations)
150 break;
151 CASE_MATHFN (SQRT)
152 CASE_MATHFN (FABS)
153 CASE_MATHFN (LOGB)
154 #undef CASE_MATHFN
156 tree arg0 = strip_float_extensions (CALL_EXPR_ARG (expr, 0));
157 tree newtype = type;
159 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
160 the both as the safe type for operation. */
161 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
162 newtype = TREE_TYPE (arg0);
164 /* We consider to convert
166 (T1) sqrtT2 ((T2) exprT3)
168 (T1) sqrtT4 ((T4) exprT3)
170 , where T1 is TYPE, T2 is ITYPE, T3 is TREE_TYPE (ARG0),
171 and T4 is NEWTYPE. All those types are of floating point types.
172 T4 (NEWTYPE) should be narrower than T2 (ITYPE). This conversion
173 is safe only if P1 >= P2*2+2, where P1 and P2 are precisions of
174 T2 and T4. See the following URL for a reference:
175 http://stackoverflow.com/questions/9235456/determining-
176 floating-point-square-root
178 if ((fcode == BUILT_IN_SQRT || fcode == BUILT_IN_SQRTL)
179 && !flag_unsafe_math_optimizations)
181 /* The following conversion is unsafe even the precision condition
182 below is satisfied:
184 (float) sqrtl ((long double) double_val) -> (float) sqrt (double_val)
186 if (TYPE_MODE (type) != TYPE_MODE (newtype))
187 break;
189 int p1 = REAL_MODE_FORMAT (TYPE_MODE (itype))->p;
190 int p2 = REAL_MODE_FORMAT (TYPE_MODE (newtype))->p;
191 if (p1 < p2 * 2 + 2)
192 break;
195 /* Be careful about integer to fp conversions.
196 These may overflow still. */
197 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
198 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
199 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
200 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
202 tree fn = mathfn_built_in (newtype, fcode);
204 if (fn)
206 tree arg = fold (convert_to_real (newtype, arg0));
207 expr = build_call_expr (fn, 1, arg);
208 if (newtype == type)
209 return expr;
213 default:
214 break;
217 if (optimize
218 && (((fcode == BUILT_IN_FLOORL
219 || fcode == BUILT_IN_CEILL
220 || fcode == BUILT_IN_ROUNDL
221 || fcode == BUILT_IN_RINTL
222 || fcode == BUILT_IN_TRUNCL
223 || fcode == BUILT_IN_NEARBYINTL)
224 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
225 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
226 || ((fcode == BUILT_IN_FLOOR
227 || fcode == BUILT_IN_CEIL
228 || fcode == BUILT_IN_ROUND
229 || fcode == BUILT_IN_RINT
230 || fcode == BUILT_IN_TRUNC
231 || fcode == BUILT_IN_NEARBYINT)
232 && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
234 tree fn = mathfn_built_in (type, fcode);
236 if (fn)
238 tree arg = strip_float_extensions (CALL_EXPR_ARG (expr, 0));
240 /* Make sure (type)arg0 is an extension, otherwise we could end up
241 changing (float)floor(double d) into floorf((float)d), which is
242 incorrect because (float)d uses round-to-nearest and can round
243 up to the next integer. */
244 if (TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (arg)))
245 return build_call_expr (fn, 1, fold (convert_to_real (type, arg)));
249 /* Propagate the cast into the operation. */
250 if (itype != type && FLOAT_TYPE_P (type))
251 switch (TREE_CODE (expr))
253 /* Convert (float)-x into -(float)x. This is safe for
254 round-to-nearest rounding mode when the inner type is float. */
255 case ABS_EXPR:
256 case NEGATE_EXPR:
257 if (!flag_rounding_math
258 && FLOAT_TYPE_P (itype)
259 && TYPE_PRECISION (type) < TYPE_PRECISION (itype))
260 return build1 (TREE_CODE (expr), type,
261 fold (convert_to_real (type,
262 TREE_OPERAND (expr, 0))));
263 break;
264 /* Convert (outertype)((innertype0)a+(innertype1)b)
265 into ((newtype)a+(newtype)b) where newtype
266 is the widest mode from all of these. */
267 case PLUS_EXPR:
268 case MINUS_EXPR:
269 case MULT_EXPR:
270 case RDIV_EXPR:
272 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
273 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
275 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
276 && FLOAT_TYPE_P (TREE_TYPE (arg1))
277 && DECIMAL_FLOAT_TYPE_P (itype) == DECIMAL_FLOAT_TYPE_P (type))
279 tree newtype = type;
281 if (TYPE_MODE (TREE_TYPE (arg0)) == SDmode
282 || TYPE_MODE (TREE_TYPE (arg1)) == SDmode
283 || TYPE_MODE (type) == SDmode)
284 newtype = dfloat32_type_node;
285 if (TYPE_MODE (TREE_TYPE (arg0)) == DDmode
286 || TYPE_MODE (TREE_TYPE (arg1)) == DDmode
287 || TYPE_MODE (type) == DDmode)
288 newtype = dfloat64_type_node;
289 if (TYPE_MODE (TREE_TYPE (arg0)) == TDmode
290 || TYPE_MODE (TREE_TYPE (arg1)) == TDmode
291 || TYPE_MODE (type) == TDmode)
292 newtype = dfloat128_type_node;
293 if (newtype == dfloat32_type_node
294 || newtype == dfloat64_type_node
295 || newtype == dfloat128_type_node)
297 expr = build2 (TREE_CODE (expr), newtype,
298 fold (convert_to_real (newtype, arg0)),
299 fold (convert_to_real (newtype, arg1)));
300 if (newtype == type)
301 return expr;
302 break;
305 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
306 newtype = TREE_TYPE (arg0);
307 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
308 newtype = TREE_TYPE (arg1);
309 /* Sometimes this transformation is safe (cannot
310 change results through affecting double rounding
311 cases) and sometimes it is not. If NEWTYPE is
312 wider than TYPE, e.g. (float)((long double)double
313 + (long double)double) converted to
314 (float)(double + double), the transformation is
315 unsafe regardless of the details of the types
316 involved; double rounding can arise if the result
317 of NEWTYPE arithmetic is a NEWTYPE value half way
318 between two representable TYPE values but the
319 exact value is sufficiently different (in the
320 right direction) for this difference to be
321 visible in ITYPE arithmetic. If NEWTYPE is the
322 same as TYPE, however, the transformation may be
323 safe depending on the types involved: it is safe
324 if the ITYPE has strictly more than twice as many
325 mantissa bits as TYPE, can represent infinities
326 and NaNs if the TYPE can, and has sufficient
327 exponent range for the product or ratio of two
328 values representable in the TYPE to be within the
329 range of normal values of ITYPE. */
330 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
331 && (flag_unsafe_math_optimizations
332 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
333 && real_can_shorten_arithmetic (TYPE_MODE (itype),
334 TYPE_MODE (type))
335 && !excess_precision_type (newtype))))
337 expr = build2 (TREE_CODE (expr), newtype,
338 fold (convert_to_real (newtype, arg0)),
339 fold (convert_to_real (newtype, arg1)));
340 if (newtype == type)
341 return expr;
345 break;
346 default:
347 break;
350 switch (TREE_CODE (TREE_TYPE (expr)))
352 case REAL_TYPE:
353 /* Ignore the conversion if we don't need to store intermediate
354 results and neither type is a decimal float. */
355 return build1 ((flag_float_store
356 || DECIMAL_FLOAT_TYPE_P (type)
357 || DECIMAL_FLOAT_TYPE_P (itype))
358 ? CONVERT_EXPR : NOP_EXPR, type, expr);
360 case INTEGER_TYPE:
361 case ENUMERAL_TYPE:
362 case BOOLEAN_TYPE:
363 return build1 (FLOAT_EXPR, type, expr);
365 case FIXED_POINT_TYPE:
366 return build1 (FIXED_CONVERT_EXPR, type, expr);
368 case COMPLEX_TYPE:
369 return convert (type,
370 fold_build1 (REALPART_EXPR,
371 TREE_TYPE (TREE_TYPE (expr)), expr));
373 case POINTER_TYPE:
374 case REFERENCE_TYPE:
375 error ("pointer value used where a floating point value was expected");
376 return convert_to_real (type, integer_zero_node);
378 default:
379 error ("aggregate value used where a float was expected");
380 return convert_to_real (type, integer_zero_node);
384 /* Convert EXPR to some integer (or enum) type TYPE.
386 EXPR must be pointer, integer, discrete (enum, char, or bool), float,
387 fixed-point or vector; in other cases error is called.
389 The result of this is always supposed to be a newly created tree node
390 not in use in any existing structure. */
392 tree
393 convert_to_integer (tree type, tree expr)
395 enum tree_code ex_form = TREE_CODE (expr);
396 tree intype = TREE_TYPE (expr);
397 unsigned int inprec = element_precision (intype);
398 unsigned int outprec = element_precision (type);
399 location_t loc = EXPR_LOCATION (expr);
401 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
402 be. Consider `enum E = { a, b = (enum E) 3 };'. */
403 if (!COMPLETE_TYPE_P (type))
405 error ("conversion to incomplete type");
406 return error_mark_node;
409 /* Convert e.g. (long)round(d) -> lround(d). */
410 /* If we're converting to char, we may encounter differing behavior
411 between converting from double->char vs double->long->char.
412 We're in "undefined" territory but we prefer to be conservative,
413 so only proceed in "unsafe" math mode. */
414 if (optimize
415 && (flag_unsafe_math_optimizations
416 || (long_integer_type_node
417 && outprec >= TYPE_PRECISION (long_integer_type_node))))
419 tree s_expr = strip_float_extensions (expr);
420 tree s_intype = TREE_TYPE (s_expr);
421 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
422 tree fn = 0;
424 switch (fcode)
426 CASE_FLT_FN (BUILT_IN_CEIL):
427 /* Only convert in ISO C99 mode. */
428 if (!targetm.libc_has_function (function_c99_misc))
429 break;
430 if (outprec < TYPE_PRECISION (integer_type_node)
431 || (outprec == TYPE_PRECISION (integer_type_node)
432 && !TYPE_UNSIGNED (type)))
433 fn = mathfn_built_in (s_intype, BUILT_IN_ICEIL);
434 else if (outprec == TYPE_PRECISION (long_integer_type_node)
435 && !TYPE_UNSIGNED (type))
436 fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
437 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
438 && !TYPE_UNSIGNED (type))
439 fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
440 break;
442 CASE_FLT_FN (BUILT_IN_FLOOR):
443 /* Only convert in ISO C99 mode. */
444 if (!targetm.libc_has_function (function_c99_misc))
445 break;
446 if (outprec < TYPE_PRECISION (integer_type_node)
447 || (outprec == TYPE_PRECISION (integer_type_node)
448 && !TYPE_UNSIGNED (type)))
449 fn = mathfn_built_in (s_intype, BUILT_IN_IFLOOR);
450 else if (outprec == TYPE_PRECISION (long_integer_type_node)
451 && !TYPE_UNSIGNED (type))
452 fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
453 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
454 && !TYPE_UNSIGNED (type))
455 fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
456 break;
458 CASE_FLT_FN (BUILT_IN_ROUND):
459 /* Only convert in ISO C99 mode and with -fno-math-errno. */
460 if (!targetm.libc_has_function (function_c99_misc) || flag_errno_math)
461 break;
462 if (outprec < TYPE_PRECISION (integer_type_node)
463 || (outprec == TYPE_PRECISION (integer_type_node)
464 && !TYPE_UNSIGNED (type)))
465 fn = mathfn_built_in (s_intype, BUILT_IN_IROUND);
466 else if (outprec == TYPE_PRECISION (long_integer_type_node)
467 && !TYPE_UNSIGNED (type))
468 fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
469 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
470 && !TYPE_UNSIGNED (type))
471 fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
472 break;
474 CASE_FLT_FN (BUILT_IN_NEARBYINT):
475 /* Only convert nearbyint* if we can ignore math exceptions. */
476 if (flag_trapping_math)
477 break;
478 /* ... Fall through ... */
479 CASE_FLT_FN (BUILT_IN_RINT):
480 /* Only convert in ISO C99 mode and with -fno-math-errno. */
481 if (!targetm.libc_has_function (function_c99_misc) || flag_errno_math)
482 break;
483 if (outprec < TYPE_PRECISION (integer_type_node)
484 || (outprec == TYPE_PRECISION (integer_type_node)
485 && !TYPE_UNSIGNED (type)))
486 fn = mathfn_built_in (s_intype, BUILT_IN_IRINT);
487 else if (outprec == TYPE_PRECISION (long_integer_type_node)
488 && !TYPE_UNSIGNED (type))
489 fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
490 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
491 && !TYPE_UNSIGNED (type))
492 fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
493 break;
495 CASE_FLT_FN (BUILT_IN_TRUNC):
496 return convert_to_integer (type, CALL_EXPR_ARG (s_expr, 0));
498 default:
499 break;
502 if (fn)
504 tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0));
505 return convert_to_integer (type, newexpr);
509 /* Convert (int)logb(d) -> ilogb(d). */
510 if (optimize
511 && flag_unsafe_math_optimizations
512 && !flag_trapping_math && !flag_errno_math && flag_finite_math_only
513 && integer_type_node
514 && (outprec > TYPE_PRECISION (integer_type_node)
515 || (outprec == TYPE_PRECISION (integer_type_node)
516 && !TYPE_UNSIGNED (type))))
518 tree s_expr = strip_float_extensions (expr);
519 tree s_intype = TREE_TYPE (s_expr);
520 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
521 tree fn = 0;
523 switch (fcode)
525 CASE_FLT_FN (BUILT_IN_LOGB):
526 fn = mathfn_built_in (s_intype, BUILT_IN_ILOGB);
527 break;
529 default:
530 break;
533 if (fn)
535 tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0));
536 return convert_to_integer (type, newexpr);
540 switch (TREE_CODE (intype))
542 case POINTER_TYPE:
543 case REFERENCE_TYPE:
544 if (integer_zerop (expr))
545 return build_int_cst (type, 0);
547 /* Convert to an unsigned integer of the correct width first, and from
548 there widen/truncate to the required type. Some targets support the
549 coexistence of multiple valid pointer sizes, so fetch the one we need
550 from the type. */
551 expr = fold_build1 (CONVERT_EXPR,
552 lang_hooks.types.type_for_size
553 (TYPE_PRECISION (intype), 0),
554 expr);
555 return fold_convert (type, expr);
557 case INTEGER_TYPE:
558 case ENUMERAL_TYPE:
559 case BOOLEAN_TYPE:
560 case OFFSET_TYPE:
561 /* If this is a logical operation, which just returns 0 or 1, we can
562 change the type of the expression. */
564 if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
566 expr = copy_node (expr);
567 TREE_TYPE (expr) = type;
568 return expr;
571 /* If we are widening the type, put in an explicit conversion.
572 Similarly if we are not changing the width. After this, we know
573 we are truncating EXPR. */
575 else if (outprec >= inprec)
577 enum tree_code code;
579 /* If the precision of the EXPR's type is K bits and the
580 destination mode has more bits, and the sign is changing,
581 it is not safe to use a NOP_EXPR. For example, suppose
582 that EXPR's type is a 3-bit unsigned integer type, the
583 TYPE is a 3-bit signed integer type, and the machine mode
584 for the types is 8-bit QImode. In that case, the
585 conversion necessitates an explicit sign-extension. In
586 the signed-to-unsigned case the high-order bits have to
587 be cleared. */
588 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
589 && (TYPE_PRECISION (TREE_TYPE (expr))
590 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (expr)))))
591 code = CONVERT_EXPR;
592 else
593 code = NOP_EXPR;
595 return fold_build1 (code, type, expr);
598 /* If TYPE is an enumeral type or a type with a precision less
599 than the number of bits in its mode, do the conversion to the
600 type corresponding to its mode, then do a nop conversion
601 to TYPE. */
602 else if (TREE_CODE (type) == ENUMERAL_TYPE
603 || outprec != GET_MODE_PRECISION (TYPE_MODE (type)))
604 return build1 (NOP_EXPR, type,
605 convert (lang_hooks.types.type_for_mode
606 (TYPE_MODE (type), TYPE_UNSIGNED (type)),
607 expr));
609 /* Here detect when we can distribute the truncation down past some
610 arithmetic. For example, if adding two longs and converting to an
611 int, we can equally well convert both to ints and then add.
612 For the operations handled here, such truncation distribution
613 is always safe.
614 It is desirable in these cases:
615 1) when truncating down to full-word from a larger size
616 2) when truncating takes no work.
617 3) when at least one operand of the arithmetic has been extended
618 (as by C's default conversions). In this case we need two conversions
619 if we do the arithmetic as already requested, so we might as well
620 truncate both and then combine. Perhaps that way we need only one.
622 Note that in general we cannot do the arithmetic in a type
623 shorter than the desired result of conversion, even if the operands
624 are both extended from a shorter type, because they might overflow
625 if combined in that type. The exceptions to this--the times when
626 two narrow values can be combined in their narrow type even to
627 make a wider result--are handled by "shorten" in build_binary_op. */
629 switch (ex_form)
631 case RSHIFT_EXPR:
632 /* We can pass truncation down through right shifting
633 when the shift count is a nonpositive constant. */
634 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
635 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0)
636 goto trunc1;
637 break;
639 case LSHIFT_EXPR:
640 /* We can pass truncation down through left shifting
641 when the shift count is a nonnegative constant and
642 the target type is unsigned. */
643 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
644 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
645 && TYPE_UNSIGNED (type)
646 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
648 /* If shift count is less than the width of the truncated type,
649 really shift. */
650 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
651 /* In this case, shifting is like multiplication. */
652 goto trunc1;
653 else
655 /* If it is >= that width, result is zero.
656 Handling this with trunc1 would give the wrong result:
657 (int) ((long long) a << 32) is well defined (as 0)
658 but (int) a << 32 is undefined and would get a
659 warning. */
661 tree t = build_int_cst (type, 0);
663 /* If the original expression had side-effects, we must
664 preserve it. */
665 if (TREE_SIDE_EFFECTS (expr))
666 return build2 (COMPOUND_EXPR, type, expr, t);
667 else
668 return t;
671 break;
673 case TRUNC_DIV_EXPR:
675 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
676 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
678 /* Don't distribute unless the output precision is at least as big
679 as the actual inputs and it has the same signedness. */
680 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
681 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
682 /* If signedness of arg0 and arg1 don't match,
683 we can't necessarily find a type to compare them in. */
684 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
685 == TYPE_UNSIGNED (TREE_TYPE (arg1)))
686 /* Do not change the sign of the division. */
687 && (TYPE_UNSIGNED (TREE_TYPE (expr))
688 == TYPE_UNSIGNED (TREE_TYPE (arg0)))
689 /* Either require unsigned division or a division by
690 a constant that is not -1. */
691 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
692 || (TREE_CODE (arg1) == INTEGER_CST
693 && !integer_all_onesp (arg1))))
694 goto trunc1;
695 break;
698 case MAX_EXPR:
699 case MIN_EXPR:
700 case MULT_EXPR:
702 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
703 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
705 /* Don't distribute unless the output precision is at least as big
706 as the actual inputs. Otherwise, the comparison of the
707 truncated values will be wrong. */
708 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
709 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
710 /* If signedness of arg0 and arg1 don't match,
711 we can't necessarily find a type to compare them in. */
712 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
713 == TYPE_UNSIGNED (TREE_TYPE (arg1))))
714 goto trunc1;
715 break;
718 case PLUS_EXPR:
719 case MINUS_EXPR:
720 case BIT_AND_EXPR:
721 case BIT_IOR_EXPR:
722 case BIT_XOR_EXPR:
723 trunc1:
725 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
726 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
728 /* Do not try to narrow operands of pointer subtraction;
729 that will interfere with other folding. */
730 if (ex_form == MINUS_EXPR
731 && CONVERT_EXPR_P (arg0)
732 && CONVERT_EXPR_P (arg1)
733 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 0)))
734 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1, 0))))
735 break;
737 if (outprec >= BITS_PER_WORD
738 || TRULY_NOOP_TRUNCATION (outprec, inprec)
739 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
740 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
742 /* Do the arithmetic in type TYPEX,
743 then convert result to TYPE. */
744 tree typex = type;
746 /* Can't do arithmetic in enumeral types
747 so use an integer type that will hold the values. */
748 if (TREE_CODE (typex) == ENUMERAL_TYPE)
749 typex = lang_hooks.types.type_for_size
750 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
752 /* But now perhaps TYPEX is as wide as INPREC.
753 In that case, do nothing special here.
754 (Otherwise would recurse infinitely in convert. */
755 if (TYPE_PRECISION (typex) != inprec)
757 /* Don't do unsigned arithmetic where signed was wanted,
758 or vice versa.
759 Exception: if both of the original operands were
760 unsigned then we can safely do the work as unsigned.
761 Exception: shift operations take their type solely
762 from the first argument.
763 Exception: the LSHIFT_EXPR case above requires that
764 we perform this operation unsigned lest we produce
765 signed-overflow undefinedness.
766 And we may need to do it as unsigned
767 if we truncate to the original size. */
768 if (TYPE_UNSIGNED (TREE_TYPE (expr))
769 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
770 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
771 || ex_form == LSHIFT_EXPR
772 || ex_form == RSHIFT_EXPR
773 || ex_form == LROTATE_EXPR
774 || ex_form == RROTATE_EXPR))
775 || ex_form == LSHIFT_EXPR
776 /* If we have !flag_wrapv, and either ARG0 or
777 ARG1 is of a signed type, we have to do
778 PLUS_EXPR, MINUS_EXPR or MULT_EXPR in an unsigned
779 type in case the operation in outprec precision
780 could overflow. Otherwise, we would introduce
781 signed-overflow undefinedness. */
782 || ((!TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
783 || !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
784 && ((TYPE_PRECISION (TREE_TYPE (arg0)) * 2u
785 > outprec)
786 || (TYPE_PRECISION (TREE_TYPE (arg1)) * 2u
787 > outprec))
788 && (ex_form == PLUS_EXPR
789 || ex_form == MINUS_EXPR
790 || ex_form == MULT_EXPR)))
791 typex = unsigned_type_for (typex);
792 else
793 typex = signed_type_for (typex);
794 return convert (type,
795 fold_build2 (ex_form, typex,
796 convert (typex, arg0),
797 convert (typex, arg1)));
801 break;
803 case NEGATE_EXPR:
804 case BIT_NOT_EXPR:
805 /* This is not correct for ABS_EXPR,
806 since we must test the sign before truncation. */
808 tree typex = unsigned_type_for (type);
809 return convert (type,
810 fold_build1 (ex_form, typex,
811 convert (typex,
812 TREE_OPERAND (expr, 0))));
815 case NOP_EXPR:
816 /* Don't introduce a
817 "can't convert between vector values of different size" error. */
818 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
819 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
820 != GET_MODE_SIZE (TYPE_MODE (type))))
821 break;
822 /* If truncating after truncating, might as well do all at once.
823 If truncating after extending, we may get rid of wasted work. */
824 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
826 case COND_EXPR:
827 /* It is sometimes worthwhile to push the narrowing down through
828 the conditional and never loses. A COND_EXPR may have a throw
829 as one operand, which then has void type. Just leave void
830 operands as they are. */
831 return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
832 VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1)))
833 ? TREE_OPERAND (expr, 1)
834 : convert (type, TREE_OPERAND (expr, 1)),
835 VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 2)))
836 ? TREE_OPERAND (expr, 2)
837 : convert (type, TREE_OPERAND (expr, 2)));
839 default:
840 break;
843 /* When parsing long initializers, we might end up with a lot of casts.
844 Shortcut this. */
845 if (TREE_CODE (expr) == INTEGER_CST)
846 return fold_convert (type, expr);
847 return build1 (CONVERT_EXPR, type, expr);
849 case REAL_TYPE:
850 if (flag_sanitize & SANITIZE_FLOAT_CAST
851 && current_function_decl != NULL_TREE
852 && !lookup_attribute ("no_sanitize_undefined",
853 DECL_ATTRIBUTES (current_function_decl)))
855 expr = save_expr (expr);
856 tree check = ubsan_instrument_float_cast (loc, type, expr);
857 expr = build1 (FIX_TRUNC_EXPR, type, expr);
858 if (check == NULL)
859 return expr;
860 return fold_build2 (COMPOUND_EXPR, TREE_TYPE (expr), check, expr);
862 else
863 return build1 (FIX_TRUNC_EXPR, type, expr);
865 case FIXED_POINT_TYPE:
866 return build1 (FIXED_CONVERT_EXPR, type, expr);
868 case COMPLEX_TYPE:
869 return convert (type,
870 fold_build1 (REALPART_EXPR,
871 TREE_TYPE (TREE_TYPE (expr)), expr));
873 case VECTOR_TYPE:
874 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
876 error ("can%'t convert between vector values of different size");
877 return error_mark_node;
879 return build1 (VIEW_CONVERT_EXPR, type, expr);
881 default:
882 error ("aggregate value used where an integer was expected");
883 return convert (type, integer_zero_node);
887 /* Convert EXPR to the complex type TYPE in the usual ways. */
889 tree
890 convert_to_complex (tree type, tree expr)
892 tree subtype = TREE_TYPE (type);
894 switch (TREE_CODE (TREE_TYPE (expr)))
896 case REAL_TYPE:
897 case FIXED_POINT_TYPE:
898 case INTEGER_TYPE:
899 case ENUMERAL_TYPE:
900 case BOOLEAN_TYPE:
901 return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
902 convert (subtype, integer_zero_node));
904 case COMPLEX_TYPE:
906 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
908 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
909 return expr;
910 else if (TREE_CODE (expr) == COMPLEX_EXPR)
911 return fold_build2 (COMPLEX_EXPR, type,
912 convert (subtype, TREE_OPERAND (expr, 0)),
913 convert (subtype, TREE_OPERAND (expr, 1)));
914 else
916 expr = save_expr (expr);
917 return
918 fold_build2 (COMPLEX_EXPR, type,
919 convert (subtype,
920 fold_build1 (REALPART_EXPR,
921 TREE_TYPE (TREE_TYPE (expr)),
922 expr)),
923 convert (subtype,
924 fold_build1 (IMAGPART_EXPR,
925 TREE_TYPE (TREE_TYPE (expr)),
926 expr)));
930 case POINTER_TYPE:
931 case REFERENCE_TYPE:
932 error ("pointer value used where a complex was expected");
933 return convert_to_complex (type, integer_zero_node);
935 default:
936 error ("aggregate value used where a complex was expected");
937 return convert_to_complex (type, integer_zero_node);
941 /* Convert EXPR to the vector type TYPE in the usual ways. */
943 tree
944 convert_to_vector (tree type, tree expr)
946 switch (TREE_CODE (TREE_TYPE (expr)))
948 case INTEGER_TYPE:
949 case VECTOR_TYPE:
950 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
952 error ("can%'t convert between vector values of different size");
953 return error_mark_node;
955 return build1 (VIEW_CONVERT_EXPR, type, expr);
957 default:
958 error ("can%'t convert value to a vector");
959 return error_mark_node;
963 /* Convert EXPR to some fixed-point type TYPE.
965 EXPR must be fixed-point, float, integer, or enumeral;
966 in other cases error is called. */
968 tree
969 convert_to_fixed (tree type, tree expr)
971 if (integer_zerop (expr))
973 tree fixed_zero_node = build_fixed (type, FCONST0 (TYPE_MODE (type)));
974 return fixed_zero_node;
976 else if (integer_onep (expr) && ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)))
978 tree fixed_one_node = build_fixed (type, FCONST1 (TYPE_MODE (type)));
979 return fixed_one_node;
982 switch (TREE_CODE (TREE_TYPE (expr)))
984 case FIXED_POINT_TYPE:
985 case INTEGER_TYPE:
986 case ENUMERAL_TYPE:
987 case BOOLEAN_TYPE:
988 case REAL_TYPE:
989 return build1 (FIXED_CONVERT_EXPR, type, expr);
991 case COMPLEX_TYPE:
992 return convert (type,
993 fold_build1 (REALPART_EXPR,
994 TREE_TYPE (TREE_TYPE (expr)), expr));
996 default:
997 error ("aggregate value used where a fixed-point was expected");
998 return error_mark_node;