* include/std/future (__location_invariant): Move specializations
[official-gcc.git] / gcc / cfgloopmanip.c
blob83a0d517f00dbadd8449558f48b067867844a846
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "basic-block.h"
26 #include "cfgloop.h"
27 #include "tree.h"
28 #include "tree-ssa-alias.h"
29 #include "internal-fn.h"
30 #include "gimple-expr.h"
31 #include "is-a.h"
32 #include "gimple.h"
33 #include "gimple-iterator.h"
34 #include "gimplify-me.h"
35 #include "tree-ssa-loop-manip.h"
36 #include "dumpfile.h"
38 static void copy_loops_to (struct loop **, int,
39 struct loop *);
40 static void loop_redirect_edge (edge, basic_block);
41 static void remove_bbs (basic_block *, int);
42 static bool rpe_enum_p (const_basic_block, const void *);
43 static int find_path (edge, basic_block **);
44 static void fix_loop_placements (struct loop *, bool *);
45 static bool fix_bb_placement (basic_block);
46 static void fix_bb_placements (basic_block, bool *, bitmap);
48 /* Checks whether basic block BB is dominated by DATA. */
49 static bool
50 rpe_enum_p (const_basic_block bb, const void *data)
52 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
55 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
57 static void
58 remove_bbs (basic_block *bbs, int nbbs)
60 int i;
62 for (i = 0; i < nbbs; i++)
63 delete_basic_block (bbs[i]);
66 /* Find path -- i.e. the basic blocks dominated by edge E and put them
67 into array BBS, that will be allocated large enough to contain them.
68 E->dest must have exactly one predecessor for this to work (it is
69 easy to achieve and we do not put it here because we do not want to
70 alter anything by this function). The number of basic blocks in the
71 path is returned. */
72 static int
73 find_path (edge e, basic_block **bbs)
75 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
77 /* Find bbs in the path. */
78 *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
79 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
80 n_basic_blocks_for_fn (cfun), e->dest);
83 /* Fix placement of basic block BB inside loop hierarchy --
84 Let L be a loop to that BB belongs. Then every successor of BB must either
85 1) belong to some superloop of loop L, or
86 2) be a header of loop K such that K->outer is superloop of L
87 Returns true if we had to move BB into other loop to enforce this condition,
88 false if the placement of BB was already correct (provided that placements
89 of its successors are correct). */
90 static bool
91 fix_bb_placement (basic_block bb)
93 edge e;
94 edge_iterator ei;
95 struct loop *loop = current_loops->tree_root, *act;
97 FOR_EACH_EDGE (e, ei, bb->succs)
99 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
100 continue;
102 act = e->dest->loop_father;
103 if (act->header == e->dest)
104 act = loop_outer (act);
106 if (flow_loop_nested_p (loop, act))
107 loop = act;
110 if (loop == bb->loop_father)
111 return false;
113 remove_bb_from_loops (bb);
114 add_bb_to_loop (bb, loop);
116 return true;
119 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
120 of LOOP to that leads at least one exit edge of LOOP, and set it
121 as the immediate superloop of LOOP. Return true if the immediate superloop
122 of LOOP changed.
124 IRRED_INVALIDATED is set to true if a change in the loop structures might
125 invalidate the information about irreducible regions. */
127 static bool
128 fix_loop_placement (struct loop *loop, bool *irred_invalidated)
130 unsigned i;
131 edge e;
132 vec<edge> exits = get_loop_exit_edges (loop);
133 struct loop *father = current_loops->tree_root, *act;
134 bool ret = false;
136 FOR_EACH_VEC_ELT (exits, i, e)
138 act = find_common_loop (loop, e->dest->loop_father);
139 if (flow_loop_nested_p (father, act))
140 father = act;
143 if (father != loop_outer (loop))
145 for (act = loop_outer (loop); act != father; act = loop_outer (act))
146 act->num_nodes -= loop->num_nodes;
147 flow_loop_tree_node_remove (loop);
148 flow_loop_tree_node_add (father, loop);
150 /* The exit edges of LOOP no longer exits its original immediate
151 superloops; remove them from the appropriate exit lists. */
152 FOR_EACH_VEC_ELT (exits, i, e)
154 /* We may need to recompute irreducible loops. */
155 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
156 *irred_invalidated = true;
157 rescan_loop_exit (e, false, false);
160 ret = true;
163 exits.release ();
164 return ret;
167 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
168 enforce condition condition stated in description of fix_bb_placement. We
169 start from basic block FROM that had some of its successors removed, so that
170 his placement no longer has to be correct, and iteratively fix placement of
171 its predecessors that may change if placement of FROM changed. Also fix
172 placement of subloops of FROM->loop_father, that might also be altered due
173 to this change; the condition for them is similar, except that instead of
174 successors we consider edges coming out of the loops.
176 If the changes may invalidate the information about irreducible regions,
177 IRRED_INVALIDATED is set to true.
179 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
180 changed loop_father are collected there. */
182 static void
183 fix_bb_placements (basic_block from,
184 bool *irred_invalidated,
185 bitmap loop_closed_ssa_invalidated)
187 sbitmap in_queue;
188 basic_block *queue, *qtop, *qbeg, *qend;
189 struct loop *base_loop, *target_loop;
190 edge e;
192 /* We pass through blocks back-reachable from FROM, testing whether some
193 of their successors moved to outer loop. It may be necessary to
194 iterate several times, but it is finite, as we stop unless we move
195 the basic block up the loop structure. The whole story is a bit
196 more complicated due to presence of subloops, those are moved using
197 fix_loop_placement. */
199 base_loop = from->loop_father;
200 /* If we are already in the outermost loop, the basic blocks cannot be moved
201 outside of it. If FROM is the header of the base loop, it cannot be moved
202 outside of it, either. In both cases, we can end now. */
203 if (base_loop == current_loops->tree_root
204 || from == base_loop->header)
205 return;
207 in_queue = sbitmap_alloc (last_basic_block_for_fn (cfun));
208 bitmap_clear (in_queue);
209 bitmap_set_bit (in_queue, from->index);
210 /* Prevent us from going out of the base_loop. */
211 bitmap_set_bit (in_queue, base_loop->header->index);
213 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
214 qtop = queue + base_loop->num_nodes + 1;
215 qbeg = queue;
216 qend = queue + 1;
217 *qbeg = from;
219 while (qbeg != qend)
221 edge_iterator ei;
222 from = *qbeg;
223 qbeg++;
224 if (qbeg == qtop)
225 qbeg = queue;
226 bitmap_clear_bit (in_queue, from->index);
228 if (from->loop_father->header == from)
230 /* Subloop header, maybe move the loop upward. */
231 if (!fix_loop_placement (from->loop_father, irred_invalidated))
232 continue;
233 target_loop = loop_outer (from->loop_father);
234 if (loop_closed_ssa_invalidated)
236 basic_block *bbs = get_loop_body (from->loop_father);
237 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
238 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
239 free (bbs);
242 else
244 /* Ordinary basic block. */
245 if (!fix_bb_placement (from))
246 continue;
247 target_loop = from->loop_father;
248 if (loop_closed_ssa_invalidated)
249 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
252 FOR_EACH_EDGE (e, ei, from->succs)
254 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
255 *irred_invalidated = true;
258 /* Something has changed, insert predecessors into queue. */
259 FOR_EACH_EDGE (e, ei, from->preds)
261 basic_block pred = e->src;
262 struct loop *nca;
264 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
265 *irred_invalidated = true;
267 if (bitmap_bit_p (in_queue, pred->index))
268 continue;
270 /* If it is subloop, then it either was not moved, or
271 the path up the loop tree from base_loop do not contain
272 it. */
273 nca = find_common_loop (pred->loop_father, base_loop);
274 if (pred->loop_father != base_loop
275 && (nca == base_loop
276 || nca != pred->loop_father))
277 pred = pred->loop_father->header;
278 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
280 /* If PRED is already higher in the loop hierarchy than the
281 TARGET_LOOP to that we moved FROM, the change of the position
282 of FROM does not affect the position of PRED, so there is no
283 point in processing it. */
284 continue;
287 if (bitmap_bit_p (in_queue, pred->index))
288 continue;
290 /* Schedule the basic block. */
291 *qend = pred;
292 qend++;
293 if (qend == qtop)
294 qend = queue;
295 bitmap_set_bit (in_queue, pred->index);
298 free (in_queue);
299 free (queue);
302 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
303 and update loop structures and dominators. Return true if we were able
304 to remove the path, false otherwise (and nothing is affected then). */
305 bool
306 remove_path (edge e)
308 edge ae;
309 basic_block *rem_bbs, *bord_bbs, from, bb;
310 vec<basic_block> dom_bbs;
311 int i, nrem, n_bord_bbs;
312 sbitmap seen;
313 bool irred_invalidated = false;
314 edge_iterator ei;
315 struct loop *l, *f;
317 if (!can_remove_branch_p (e))
318 return false;
320 /* Keep track of whether we need to update information about irreducible
321 regions. This is the case if the removed area is a part of the
322 irreducible region, or if the set of basic blocks that belong to a loop
323 that is inside an irreducible region is changed, or if such a loop is
324 removed. */
325 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
326 irred_invalidated = true;
328 /* We need to check whether basic blocks are dominated by the edge
329 e, but we only have basic block dominators. This is easy to
330 fix -- when e->dest has exactly one predecessor, this corresponds
331 to blocks dominated by e->dest, if not, split the edge. */
332 if (!single_pred_p (e->dest))
333 e = single_pred_edge (split_edge (e));
335 /* It may happen that by removing path we remove one or more loops
336 we belong to. In this case first unloop the loops, then proceed
337 normally. We may assume that e->dest is not a header of any loop,
338 as it now has exactly one predecessor. */
339 for (l = e->src->loop_father; loop_outer (l); l = f)
341 f = loop_outer (l);
342 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
343 unloop (l, &irred_invalidated, NULL);
346 /* Identify the path. */
347 nrem = find_path (e, &rem_bbs);
349 n_bord_bbs = 0;
350 bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
351 seen = sbitmap_alloc (last_basic_block_for_fn (cfun));
352 bitmap_clear (seen);
354 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
355 for (i = 0; i < nrem; i++)
356 bitmap_set_bit (seen, rem_bbs[i]->index);
357 if (!irred_invalidated)
358 FOR_EACH_EDGE (ae, ei, e->src->succs)
359 if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
360 && !bitmap_bit_p (seen, ae->dest->index)
361 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
363 irred_invalidated = true;
364 break;
367 for (i = 0; i < nrem; i++)
369 bb = rem_bbs[i];
370 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
371 if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
372 && !bitmap_bit_p (seen, ae->dest->index))
374 bitmap_set_bit (seen, ae->dest->index);
375 bord_bbs[n_bord_bbs++] = ae->dest;
377 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
378 irred_invalidated = true;
382 /* Remove the path. */
383 from = e->src;
384 remove_branch (e);
385 dom_bbs.create (0);
387 /* Cancel loops contained in the path. */
388 for (i = 0; i < nrem; i++)
389 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
390 cancel_loop_tree (rem_bbs[i]->loop_father);
392 remove_bbs (rem_bbs, nrem);
393 free (rem_bbs);
395 /* Find blocks whose dominators may be affected. */
396 bitmap_clear (seen);
397 for (i = 0; i < n_bord_bbs; i++)
399 basic_block ldom;
401 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
402 if (bitmap_bit_p (seen, bb->index))
403 continue;
404 bitmap_set_bit (seen, bb->index);
406 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
407 ldom;
408 ldom = next_dom_son (CDI_DOMINATORS, ldom))
409 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
410 dom_bbs.safe_push (ldom);
413 free (seen);
415 /* Recount dominators. */
416 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
417 dom_bbs.release ();
418 free (bord_bbs);
420 /* Fix placements of basic blocks inside loops and the placement of
421 loops in the loop tree. */
422 fix_bb_placements (from, &irred_invalidated, NULL);
423 fix_loop_placements (from->loop_father, &irred_invalidated);
425 if (irred_invalidated
426 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
427 mark_irreducible_loops ();
429 return true;
432 /* Creates place for a new LOOP in loops structure of FN. */
434 void
435 place_new_loop (struct function *fn, struct loop *loop)
437 loop->num = number_of_loops (fn);
438 vec_safe_push (loops_for_fn (fn)->larray, loop);
441 /* Given LOOP structure with filled header and latch, find the body of the
442 corresponding loop and add it to loops tree. Insert the LOOP as a son of
443 outer. */
445 void
446 add_loop (struct loop *loop, struct loop *outer)
448 basic_block *bbs;
449 int i, n;
450 struct loop *subloop;
451 edge e;
452 edge_iterator ei;
454 /* Add it to loop structure. */
455 place_new_loop (cfun, loop);
456 flow_loop_tree_node_add (outer, loop);
458 /* Find its nodes. */
459 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
460 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
462 for (i = 0; i < n; i++)
464 if (bbs[i]->loop_father == outer)
466 remove_bb_from_loops (bbs[i]);
467 add_bb_to_loop (bbs[i], loop);
468 continue;
471 loop->num_nodes++;
473 /* If we find a direct subloop of OUTER, move it to LOOP. */
474 subloop = bbs[i]->loop_father;
475 if (loop_outer (subloop) == outer
476 && subloop->header == bbs[i])
478 flow_loop_tree_node_remove (subloop);
479 flow_loop_tree_node_add (loop, subloop);
483 /* Update the information about loop exit edges. */
484 for (i = 0; i < n; i++)
486 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
488 rescan_loop_exit (e, false, false);
492 free (bbs);
495 /* Multiply all frequencies in LOOP by NUM/DEN. */
497 void
498 scale_loop_frequencies (struct loop *loop, int num, int den)
500 basic_block *bbs;
502 bbs = get_loop_body (loop);
503 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
504 free (bbs);
507 /* Multiply all frequencies in LOOP by SCALE/REG_BR_PROB_BASE.
508 If ITERATION_BOUND is non-zero, scale even further if loop is predicted
509 to iterate too many times. */
511 void
512 scale_loop_profile (struct loop *loop, int scale, gcov_type iteration_bound)
514 gcov_type iterations = expected_loop_iterations_unbounded (loop);
515 edge e;
516 edge_iterator ei;
518 if (dump_file && (dump_flags & TDF_DETAILS))
519 fprintf (dump_file, ";; Scaling loop %i with scale %f, "
520 "bounding iterations to %i from guessed %i\n",
521 loop->num, (double)scale / REG_BR_PROB_BASE,
522 (int)iteration_bound, (int)iterations);
524 /* See if loop is predicted to iterate too many times. */
525 if (iteration_bound && iterations > 0
526 && apply_probability (iterations, scale) > iteration_bound)
528 /* Fixing loop profile for different trip count is not trivial; the exit
529 probabilities has to be updated to match and frequencies propagated down
530 to the loop body.
532 We fully update only the simple case of loop with single exit that is
533 either from the latch or BB just before latch and leads from BB with
534 simple conditional jump. This is OK for use in vectorizer. */
535 e = single_exit (loop);
536 if (e)
538 edge other_e;
539 int freq_delta;
540 gcov_type count_delta;
542 FOR_EACH_EDGE (other_e, ei, e->src->succs)
543 if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
544 && e != other_e)
545 break;
547 /* Probability of exit must be 1/iterations. */
548 freq_delta = EDGE_FREQUENCY (e);
549 e->probability = REG_BR_PROB_BASE / iteration_bound;
550 other_e->probability = inverse_probability (e->probability);
551 freq_delta -= EDGE_FREQUENCY (e);
553 /* Adjust counts accordingly. */
554 count_delta = e->count;
555 e->count = apply_probability (e->src->count, e->probability);
556 other_e->count = apply_probability (e->src->count, other_e->probability);
557 count_delta -= e->count;
559 /* If latch exists, change its frequency and count, since we changed
560 probability of exit. Theoretically we should update everything from
561 source of exit edge to latch, but for vectorizer this is enough. */
562 if (loop->latch
563 && loop->latch != e->src)
565 loop->latch->frequency += freq_delta;
566 if (loop->latch->frequency < 0)
567 loop->latch->frequency = 0;
568 loop->latch->count += count_delta;
569 if (loop->latch->count < 0)
570 loop->latch->count = 0;
574 /* Roughly speaking we want to reduce the loop body profile by the
575 the difference of loop iterations. We however can do better if
576 we look at the actual profile, if it is available. */
577 scale = RDIV (iteration_bound * scale, iterations);
578 if (loop->header->count)
580 gcov_type count_in = 0;
582 FOR_EACH_EDGE (e, ei, loop->header->preds)
583 if (e->src != loop->latch)
584 count_in += e->count;
586 if (count_in != 0)
587 scale = GCOV_COMPUTE_SCALE (count_in * iteration_bound,
588 loop->header->count);
590 else if (loop->header->frequency)
592 int freq_in = 0;
594 FOR_EACH_EDGE (e, ei, loop->header->preds)
595 if (e->src != loop->latch)
596 freq_in += EDGE_FREQUENCY (e);
598 if (freq_in != 0)
599 scale = GCOV_COMPUTE_SCALE (freq_in * iteration_bound,
600 loop->header->frequency);
602 if (!scale)
603 scale = 1;
606 if (scale == REG_BR_PROB_BASE)
607 return;
609 /* Scale the actual probabilities. */
610 scale_loop_frequencies (loop, scale, REG_BR_PROB_BASE);
611 if (dump_file && (dump_flags & TDF_DETAILS))
612 fprintf (dump_file, ";; guessed iterations are now %i\n",
613 (int)expected_loop_iterations_unbounded (loop));
616 /* Recompute dominance information for basic blocks outside LOOP. */
618 static void
619 update_dominators_in_loop (struct loop *loop)
621 vec<basic_block> dom_bbs = vNULL;
622 sbitmap seen;
623 basic_block *body;
624 unsigned i;
626 seen = sbitmap_alloc (last_basic_block_for_fn (cfun));
627 bitmap_clear (seen);
628 body = get_loop_body (loop);
630 for (i = 0; i < loop->num_nodes; i++)
631 bitmap_set_bit (seen, body[i]->index);
633 for (i = 0; i < loop->num_nodes; i++)
635 basic_block ldom;
637 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
638 ldom;
639 ldom = next_dom_son (CDI_DOMINATORS, ldom))
640 if (!bitmap_bit_p (seen, ldom->index))
642 bitmap_set_bit (seen, ldom->index);
643 dom_bbs.safe_push (ldom);
647 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
648 free (body);
649 free (seen);
650 dom_bbs.release ();
653 /* Creates an if region as shown above. CONDITION is used to create
654 the test for the if.
657 | ------------- -------------
658 | | pred_bb | | pred_bb |
659 | ------------- -------------
660 | | |
661 | | | ENTRY_EDGE
662 | | ENTRY_EDGE V
663 | | ====> -------------
664 | | | cond_bb |
665 | | | CONDITION |
666 | | -------------
667 | V / \
668 | ------------- e_false / \ e_true
669 | | succ_bb | V V
670 | ------------- ----------- -----------
671 | | false_bb | | true_bb |
672 | ----------- -----------
673 | \ /
674 | \ /
675 | V V
676 | -------------
677 | | join_bb |
678 | -------------
679 | | exit_edge (result)
681 | -----------
682 | | succ_bb |
683 | -----------
687 edge
688 create_empty_if_region_on_edge (edge entry_edge, tree condition)
691 basic_block cond_bb, true_bb, false_bb, join_bb;
692 edge e_true, e_false, exit_edge;
693 gimple cond_stmt;
694 tree simple_cond;
695 gimple_stmt_iterator gsi;
697 cond_bb = split_edge (entry_edge);
699 /* Insert condition in cond_bb. */
700 gsi = gsi_last_bb (cond_bb);
701 simple_cond =
702 force_gimple_operand_gsi (&gsi, condition, true, NULL,
703 false, GSI_NEW_STMT);
704 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
705 gsi = gsi_last_bb (cond_bb);
706 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
708 join_bb = split_edge (single_succ_edge (cond_bb));
710 e_true = single_succ_edge (cond_bb);
711 true_bb = split_edge (e_true);
713 e_false = make_edge (cond_bb, join_bb, 0);
714 false_bb = split_edge (e_false);
716 e_true->flags &= ~EDGE_FALLTHRU;
717 e_true->flags |= EDGE_TRUE_VALUE;
718 e_false->flags &= ~EDGE_FALLTHRU;
719 e_false->flags |= EDGE_FALSE_VALUE;
721 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
722 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
723 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
724 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
726 exit_edge = single_succ_edge (join_bb);
728 if (single_pred_p (exit_edge->dest))
729 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
731 return exit_edge;
734 /* create_empty_loop_on_edge
736 | - pred_bb - ------ pred_bb ------
737 | | | | iv0 = initial_value |
738 | -----|----- ---------|-----------
739 | | ______ | entry_edge
740 | | entry_edge / | |
741 | | ====> | -V---V- loop_header -------------
742 | V | | iv_before = phi (iv0, iv_after) |
743 | - succ_bb - | ---|-----------------------------
744 | | | | |
745 | ----------- | ---V--- loop_body ---------------
746 | | | iv_after = iv_before + stride |
747 | | | if (iv_before < upper_bound) |
748 | | ---|--------------\--------------
749 | | | \ exit_e
750 | | V \
751 | | - loop_latch - V- succ_bb -
752 | | | | | |
753 | | /------------- -----------
754 | \ ___ /
756 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
757 that is used before the increment of IV. IV_BEFORE should be used for
758 adding code to the body that uses the IV. OUTER is the outer loop in
759 which the new loop should be inserted.
761 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
762 inserted on the loop entry edge. This implies that this function
763 should be used only when the UPPER_BOUND expression is a loop
764 invariant. */
766 struct loop *
767 create_empty_loop_on_edge (edge entry_edge,
768 tree initial_value,
769 tree stride, tree upper_bound,
770 tree iv,
771 tree *iv_before,
772 tree *iv_after,
773 struct loop *outer)
775 basic_block loop_header, loop_latch, succ_bb, pred_bb;
776 struct loop *loop;
777 gimple_stmt_iterator gsi;
778 gimple_seq stmts;
779 gimple cond_expr;
780 tree exit_test;
781 edge exit_e;
782 int prob;
784 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
786 /* Create header, latch and wire up the loop. */
787 pred_bb = entry_edge->src;
788 loop_header = split_edge (entry_edge);
789 loop_latch = split_edge (single_succ_edge (loop_header));
790 succ_bb = single_succ (loop_latch);
791 make_edge (loop_header, succ_bb, 0);
792 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
794 /* Set immediate dominator information. */
795 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
796 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
797 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
799 /* Initialize a loop structure and put it in a loop hierarchy. */
800 loop = alloc_loop ();
801 loop->header = loop_header;
802 loop->latch = loop_latch;
803 add_loop (loop, outer);
805 /* TODO: Fix frequencies and counts. */
806 prob = REG_BR_PROB_BASE / 2;
808 scale_loop_frequencies (loop, REG_BR_PROB_BASE - prob, REG_BR_PROB_BASE);
810 /* Update dominators. */
811 update_dominators_in_loop (loop);
813 /* Modify edge flags. */
814 exit_e = single_exit (loop);
815 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
816 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
818 /* Construct IV code in loop. */
819 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
820 if (stmts)
822 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
823 gsi_commit_edge_inserts ();
826 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
827 if (stmts)
829 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
830 gsi_commit_edge_inserts ();
833 gsi = gsi_last_bb (loop_header);
834 create_iv (initial_value, stride, iv, loop, &gsi, false,
835 iv_before, iv_after);
837 /* Insert loop exit condition. */
838 cond_expr = gimple_build_cond
839 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
841 exit_test = gimple_cond_lhs (cond_expr);
842 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
843 false, GSI_NEW_STMT);
844 gimple_cond_set_lhs (cond_expr, exit_test);
845 gsi = gsi_last_bb (exit_e->src);
846 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
848 split_block_after_labels (loop_header);
850 return loop;
853 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
854 latch to header and update loop tree and dominators
855 accordingly. Everything between them plus LATCH_EDGE destination must
856 be dominated by HEADER_EDGE destination, and back-reachable from
857 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
858 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
859 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
860 Returns the newly created loop. Frequencies and counts in the new loop
861 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
863 struct loop *
864 loopify (edge latch_edge, edge header_edge,
865 basic_block switch_bb, edge true_edge, edge false_edge,
866 bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
868 basic_block succ_bb = latch_edge->dest;
869 basic_block pred_bb = header_edge->src;
870 struct loop *loop = alloc_loop ();
871 struct loop *outer = loop_outer (succ_bb->loop_father);
872 int freq;
873 gcov_type cnt;
874 edge e;
875 edge_iterator ei;
877 loop->header = header_edge->dest;
878 loop->latch = latch_edge->src;
880 freq = EDGE_FREQUENCY (header_edge);
881 cnt = header_edge->count;
883 /* Redirect edges. */
884 loop_redirect_edge (latch_edge, loop->header);
885 loop_redirect_edge (true_edge, succ_bb);
887 /* During loop versioning, one of the switch_bb edge is already properly
888 set. Do not redirect it again unless redirect_all_edges is true. */
889 if (redirect_all_edges)
891 loop_redirect_edge (header_edge, switch_bb);
892 loop_redirect_edge (false_edge, loop->header);
894 /* Update dominators. */
895 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
896 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
899 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
901 /* Compute new loop. */
902 add_loop (loop, outer);
904 /* Add switch_bb to appropriate loop. */
905 if (switch_bb->loop_father)
906 remove_bb_from_loops (switch_bb);
907 add_bb_to_loop (switch_bb, outer);
909 /* Fix frequencies. */
910 if (redirect_all_edges)
912 switch_bb->frequency = freq;
913 switch_bb->count = cnt;
914 FOR_EACH_EDGE (e, ei, switch_bb->succs)
916 e->count = apply_probability (switch_bb->count, e->probability);
919 scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
920 scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
921 update_dominators_in_loop (loop);
923 return loop;
926 /* Remove the latch edge of a LOOP and update loops to indicate that
927 the LOOP was removed. After this function, original loop latch will
928 have no successor, which caller is expected to fix somehow.
930 If this may cause the information about irreducible regions to become
931 invalid, IRRED_INVALIDATED is set to true.
933 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
934 basic blocks that had non-trivial update on their loop_father.*/
936 void
937 unloop (struct loop *loop, bool *irred_invalidated,
938 bitmap loop_closed_ssa_invalidated)
940 basic_block *body;
941 struct loop *ploop;
942 unsigned i, n;
943 basic_block latch = loop->latch;
944 bool dummy = false;
946 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
947 *irred_invalidated = true;
949 /* This is relatively straightforward. The dominators are unchanged, as
950 loop header dominates loop latch, so the only thing we have to care of
951 is the placement of loops and basic blocks inside the loop tree. We
952 move them all to the loop->outer, and then let fix_bb_placements do
953 its work. */
955 body = get_loop_body (loop);
956 n = loop->num_nodes;
957 for (i = 0; i < n; i++)
958 if (body[i]->loop_father == loop)
960 remove_bb_from_loops (body[i]);
961 add_bb_to_loop (body[i], loop_outer (loop));
963 free (body);
965 while (loop->inner)
967 ploop = loop->inner;
968 flow_loop_tree_node_remove (ploop);
969 flow_loop_tree_node_add (loop_outer (loop), ploop);
972 /* Remove the loop and free its data. */
973 delete_loop (loop);
975 remove_edge (single_succ_edge (latch));
977 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
978 there is an irreducible region inside the cancelled loop, the flags will
979 be still correct. */
980 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
983 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
984 condition stated in description of fix_loop_placement holds for them.
985 It is used in case when we removed some edges coming out of LOOP, which
986 may cause the right placement of LOOP inside loop tree to change.
988 IRRED_INVALIDATED is set to true if a change in the loop structures might
989 invalidate the information about irreducible regions. */
991 static void
992 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
994 struct loop *outer;
996 while (loop_outer (loop))
998 outer = loop_outer (loop);
999 if (!fix_loop_placement (loop, irred_invalidated))
1000 break;
1002 /* Changing the placement of a loop in the loop tree may alter the
1003 validity of condition 2) of the description of fix_bb_placement
1004 for its preheader, because the successor is the header and belongs
1005 to the loop. So call fix_bb_placements to fix up the placement
1006 of the preheader and (possibly) of its predecessors. */
1007 fix_bb_placements (loop_preheader_edge (loop)->src,
1008 irred_invalidated, NULL);
1009 loop = outer;
1013 /* Duplicate loop bounds and other information we store about
1014 the loop into its duplicate. */
1016 void
1017 copy_loop_info (struct loop *loop, struct loop *target)
1019 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
1020 target->any_upper_bound = loop->any_upper_bound;
1021 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
1022 target->any_estimate = loop->any_estimate;
1023 target->nb_iterations_estimate = loop->nb_iterations_estimate;
1024 target->estimate_state = loop->estimate_state;
1025 target->warned_aggressive_loop_optimizations
1026 |= loop->warned_aggressive_loop_optimizations;
1029 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
1030 created loop into loops structure. */
1031 struct loop *
1032 duplicate_loop (struct loop *loop, struct loop *target)
1034 struct loop *cloop;
1035 cloop = alloc_loop ();
1036 place_new_loop (cfun, cloop);
1038 copy_loop_info (loop, cloop);
1040 /* Mark the new loop as copy of LOOP. */
1041 set_loop_copy (loop, cloop);
1043 /* Add it to target. */
1044 flow_loop_tree_node_add (target, cloop);
1046 return cloop;
1049 /* Copies structure of subloops of LOOP into TARGET loop, placing
1050 newly created loops into loop tree. */
1051 void
1052 duplicate_subloops (struct loop *loop, struct loop *target)
1054 struct loop *aloop, *cloop;
1056 for (aloop = loop->inner; aloop; aloop = aloop->next)
1058 cloop = duplicate_loop (aloop, target);
1059 duplicate_subloops (aloop, cloop);
1063 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1064 into TARGET loop, placing newly created loops into loop tree. */
1065 static void
1066 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
1068 struct loop *aloop;
1069 int i;
1071 for (i = 0; i < n; i++)
1073 aloop = duplicate_loop (copied_loops[i], target);
1074 duplicate_subloops (copied_loops[i], aloop);
1078 /* Redirects edge E to basic block DEST. */
1079 static void
1080 loop_redirect_edge (edge e, basic_block dest)
1082 if (e->dest == dest)
1083 return;
1085 redirect_edge_and_branch_force (e, dest);
1088 /* Check whether LOOP's body can be duplicated. */
1089 bool
1090 can_duplicate_loop_p (const struct loop *loop)
1092 int ret;
1093 basic_block *bbs = get_loop_body (loop);
1095 ret = can_copy_bbs_p (bbs, loop->num_nodes);
1096 free (bbs);
1098 return ret;
1101 /* Sets probability and count of edge E to zero. The probability and count
1102 is redistributed evenly to the remaining edges coming from E->src. */
1104 static void
1105 set_zero_probability (edge e)
1107 basic_block bb = e->src;
1108 edge_iterator ei;
1109 edge ae, last = NULL;
1110 unsigned n = EDGE_COUNT (bb->succs);
1111 gcov_type cnt = e->count, cnt1;
1112 unsigned prob = e->probability, prob1;
1114 gcc_assert (n > 1);
1115 cnt1 = cnt / (n - 1);
1116 prob1 = prob / (n - 1);
1118 FOR_EACH_EDGE (ae, ei, bb->succs)
1120 if (ae == e)
1121 continue;
1123 ae->probability += prob1;
1124 ae->count += cnt1;
1125 last = ae;
1128 /* Move the rest to one of the edges. */
1129 last->probability += prob % (n - 1);
1130 last->count += cnt % (n - 1);
1132 e->probability = 0;
1133 e->count = 0;
1136 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1137 loop structure and dominators. E's destination must be LOOP header for
1138 this to work, i.e. it must be entry or latch edge of this loop; these are
1139 unique, as the loops must have preheaders for this function to work
1140 correctly (in case E is latch, the function unrolls the loop, if E is entry
1141 edge, it peels the loop). Store edges created by copying ORIG edge from
1142 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
1143 original LOOP body, the other copies are numbered in order given by control
1144 flow through them) into TO_REMOVE array. Returns false if duplication is
1145 impossible. */
1147 bool
1148 duplicate_loop_to_header_edge (struct loop *loop, edge e,
1149 unsigned int ndupl, sbitmap wont_exit,
1150 edge orig, vec<edge> *to_remove,
1151 int flags)
1153 struct loop *target, *aloop;
1154 struct loop **orig_loops;
1155 unsigned n_orig_loops;
1156 basic_block header = loop->header, latch = loop->latch;
1157 basic_block *new_bbs, *bbs, *first_active;
1158 basic_block new_bb, bb, first_active_latch = NULL;
1159 edge ae, latch_edge;
1160 edge spec_edges[2], new_spec_edges[2];
1161 #define SE_LATCH 0
1162 #define SE_ORIG 1
1163 unsigned i, j, n;
1164 int is_latch = (latch == e->src);
1165 int scale_act = 0, *scale_step = NULL, scale_main = 0;
1166 int scale_after_exit = 0;
1167 int p, freq_in, freq_le, freq_out_orig;
1168 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
1169 int add_irreducible_flag;
1170 basic_block place_after;
1171 bitmap bbs_to_scale = NULL;
1172 bitmap_iterator bi;
1174 gcc_assert (e->dest == loop->header);
1175 gcc_assert (ndupl > 0);
1177 if (orig)
1179 /* Orig must be edge out of the loop. */
1180 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1181 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1184 n = loop->num_nodes;
1185 bbs = get_loop_body_in_dom_order (loop);
1186 gcc_assert (bbs[0] == loop->header);
1187 gcc_assert (bbs[n - 1] == loop->latch);
1189 /* Check whether duplication is possible. */
1190 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1192 free (bbs);
1193 return false;
1195 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1197 /* In case we are doing loop peeling and the loop is in the middle of
1198 irreducible region, the peeled copies will be inside it too. */
1199 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1200 gcc_assert (!is_latch || !add_irreducible_flag);
1202 /* Find edge from latch. */
1203 latch_edge = loop_latch_edge (loop);
1205 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1207 /* Calculate coefficients by that we have to scale frequencies
1208 of duplicated loop bodies. */
1209 freq_in = header->frequency;
1210 freq_le = EDGE_FREQUENCY (latch_edge);
1211 if (freq_in == 0)
1212 freq_in = 1;
1213 if (freq_in < freq_le)
1214 freq_in = freq_le;
1215 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
1216 if (freq_out_orig > freq_in - freq_le)
1217 freq_out_orig = freq_in - freq_le;
1218 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
1219 prob_pass_wont_exit =
1220 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
1222 if (orig
1223 && REG_BR_PROB_BASE - orig->probability != 0)
1225 /* The blocks that are dominated by a removed exit edge ORIG have
1226 frequencies scaled by this. */
1227 scale_after_exit
1228 = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE,
1229 REG_BR_PROB_BASE - orig->probability);
1230 bbs_to_scale = BITMAP_ALLOC (NULL);
1231 for (i = 0; i < n; i++)
1233 if (bbs[i] != orig->src
1234 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1235 bitmap_set_bit (bbs_to_scale, i);
1239 scale_step = XNEWVEC (int, ndupl);
1241 for (i = 1; i <= ndupl; i++)
1242 scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1243 ? prob_pass_wont_exit
1244 : prob_pass_thru;
1246 /* Complete peeling is special as the probability of exit in last
1247 copy becomes 1. */
1248 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1250 int wanted_freq = EDGE_FREQUENCY (e);
1252 if (wanted_freq > freq_in)
1253 wanted_freq = freq_in;
1255 gcc_assert (!is_latch);
1256 /* First copy has frequency of incoming edge. Each subsequent
1257 frequency should be reduced by prob_pass_wont_exit. Caller
1258 should've managed the flags so all except for original loop
1259 has won't exist set. */
1260 scale_act = GCOV_COMPUTE_SCALE (wanted_freq, freq_in);
1261 /* Now simulate the duplication adjustments and compute header
1262 frequency of the last copy. */
1263 for (i = 0; i < ndupl; i++)
1264 wanted_freq = combine_probabilities (wanted_freq, scale_step[i]);
1265 scale_main = GCOV_COMPUTE_SCALE (wanted_freq, freq_in);
1267 else if (is_latch)
1269 prob_pass_main = bitmap_bit_p (wont_exit, 0)
1270 ? prob_pass_wont_exit
1271 : prob_pass_thru;
1272 p = prob_pass_main;
1273 scale_main = REG_BR_PROB_BASE;
1274 for (i = 0; i < ndupl; i++)
1276 scale_main += p;
1277 p = combine_probabilities (p, scale_step[i]);
1279 scale_main = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE, scale_main);
1280 scale_act = combine_probabilities (scale_main, prob_pass_main);
1282 else
1284 scale_main = REG_BR_PROB_BASE;
1285 for (i = 0; i < ndupl; i++)
1286 scale_main = combine_probabilities (scale_main, scale_step[i]);
1287 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
1289 for (i = 0; i < ndupl; i++)
1290 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
1291 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
1292 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
1295 /* Loop the new bbs will belong to. */
1296 target = e->src->loop_father;
1298 /* Original loops. */
1299 n_orig_loops = 0;
1300 for (aloop = loop->inner; aloop; aloop = aloop->next)
1301 n_orig_loops++;
1302 orig_loops = XNEWVEC (struct loop *, n_orig_loops);
1303 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1304 orig_loops[i] = aloop;
1306 set_loop_copy (loop, target);
1308 first_active = XNEWVEC (basic_block, n);
1309 if (is_latch)
1311 memcpy (first_active, bbs, n * sizeof (basic_block));
1312 first_active_latch = latch;
1315 spec_edges[SE_ORIG] = orig;
1316 spec_edges[SE_LATCH] = latch_edge;
1318 place_after = e->src;
1319 for (j = 0; j < ndupl; j++)
1321 /* Copy loops. */
1322 copy_loops_to (orig_loops, n_orig_loops, target);
1324 /* Copy bbs. */
1325 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1326 place_after, true);
1327 place_after = new_spec_edges[SE_LATCH]->src;
1329 if (flags & DLTHE_RECORD_COPY_NUMBER)
1330 for (i = 0; i < n; i++)
1332 gcc_assert (!new_bbs[i]->aux);
1333 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1336 /* Note whether the blocks and edges belong to an irreducible loop. */
1337 if (add_irreducible_flag)
1339 for (i = 0; i < n; i++)
1340 new_bbs[i]->flags |= BB_DUPLICATED;
1341 for (i = 0; i < n; i++)
1343 edge_iterator ei;
1344 new_bb = new_bbs[i];
1345 if (new_bb->loop_father == target)
1346 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1348 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1349 if ((ae->dest->flags & BB_DUPLICATED)
1350 && (ae->src->loop_father == target
1351 || ae->dest->loop_father == target))
1352 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1354 for (i = 0; i < n; i++)
1355 new_bbs[i]->flags &= ~BB_DUPLICATED;
1358 /* Redirect the special edges. */
1359 if (is_latch)
1361 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1362 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1363 loop->header);
1364 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1365 latch = loop->latch = new_bbs[n - 1];
1366 e = latch_edge = new_spec_edges[SE_LATCH];
1368 else
1370 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1371 loop->header);
1372 redirect_edge_and_branch_force (e, new_bbs[0]);
1373 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1374 e = new_spec_edges[SE_LATCH];
1377 /* Record exit edge in this copy. */
1378 if (orig && bitmap_bit_p (wont_exit, j + 1))
1380 if (to_remove)
1381 to_remove->safe_push (new_spec_edges[SE_ORIG]);
1382 set_zero_probability (new_spec_edges[SE_ORIG]);
1384 /* Scale the frequencies of the blocks dominated by the exit. */
1385 if (bbs_to_scale)
1387 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1389 scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
1390 REG_BR_PROB_BASE);
1395 /* Record the first copy in the control flow order if it is not
1396 the original loop (i.e. in case of peeling). */
1397 if (!first_active_latch)
1399 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1400 first_active_latch = new_bbs[n - 1];
1403 /* Set counts and frequencies. */
1404 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1406 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1407 scale_act = combine_probabilities (scale_act, scale_step[j]);
1410 free (new_bbs);
1411 free (orig_loops);
1413 /* Record the exit edge in the original loop body, and update the frequencies. */
1414 if (orig && bitmap_bit_p (wont_exit, 0))
1416 if (to_remove)
1417 to_remove->safe_push (orig);
1418 set_zero_probability (orig);
1420 /* Scale the frequencies of the blocks dominated by the exit. */
1421 if (bbs_to_scale)
1423 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1425 scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
1426 REG_BR_PROB_BASE);
1431 /* Update the original loop. */
1432 if (!is_latch)
1433 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1434 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1436 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1437 free (scale_step);
1440 /* Update dominators of outer blocks if affected. */
1441 for (i = 0; i < n; i++)
1443 basic_block dominated, dom_bb;
1444 vec<basic_block> dom_bbs;
1445 unsigned j;
1447 bb = bbs[i];
1448 bb->aux = 0;
1450 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1451 FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1453 if (flow_bb_inside_loop_p (loop, dominated))
1454 continue;
1455 dom_bb = nearest_common_dominator (
1456 CDI_DOMINATORS, first_active[i], first_active_latch);
1457 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1459 dom_bbs.release ();
1461 free (first_active);
1463 free (bbs);
1464 BITMAP_FREE (bbs_to_scale);
1466 return true;
1469 /* A callback for make_forwarder block, to redirect all edges except for
1470 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1471 whether to redirect it. */
1473 edge mfb_kj_edge;
1474 bool
1475 mfb_keep_just (edge e)
1477 return e != mfb_kj_edge;
1480 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1482 static bool
1483 has_preds_from_loop (basic_block block, struct loop *loop)
1485 edge e;
1486 edge_iterator ei;
1488 FOR_EACH_EDGE (e, ei, block->preds)
1489 if (e->src->loop_father == loop)
1490 return true;
1491 return false;
1494 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1495 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1496 entry; otherwise we also force preheader block to have only one successor.
1497 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1498 to be a fallthru predecessor to the loop header and to have only
1499 predecessors from outside of the loop.
1500 The function also updates dominators. */
1502 basic_block
1503 create_preheader (struct loop *loop, int flags)
1505 edge e, fallthru;
1506 basic_block dummy;
1507 int nentry = 0;
1508 bool irred = false;
1509 bool latch_edge_was_fallthru;
1510 edge one_succ_pred = NULL, single_entry = NULL;
1511 edge_iterator ei;
1513 FOR_EACH_EDGE (e, ei, loop->header->preds)
1515 if (e->src == loop->latch)
1516 continue;
1517 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1518 nentry++;
1519 single_entry = e;
1520 if (single_succ_p (e->src))
1521 one_succ_pred = e;
1523 gcc_assert (nentry);
1524 if (nentry == 1)
1526 bool need_forwarder_block = false;
1528 /* We do not allow entry block to be the loop preheader, since we
1529 cannot emit code there. */
1530 if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1531 need_forwarder_block = true;
1532 else
1534 /* If we want simple preheaders, also force the preheader to have
1535 just a single successor. */
1536 if ((flags & CP_SIMPLE_PREHEADERS)
1537 && !single_succ_p (single_entry->src))
1538 need_forwarder_block = true;
1539 /* If we want fallthru preheaders, also create forwarder block when
1540 preheader ends with a jump or has predecessors from loop. */
1541 else if ((flags & CP_FALLTHRU_PREHEADERS)
1542 && (JUMP_P (BB_END (single_entry->src))
1543 || has_preds_from_loop (single_entry->src, loop)))
1544 need_forwarder_block = true;
1546 if (! need_forwarder_block)
1547 return NULL;
1550 mfb_kj_edge = loop_latch_edge (loop);
1551 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1552 fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1553 dummy = fallthru->src;
1554 loop->header = fallthru->dest;
1556 /* Try to be clever in placing the newly created preheader. The idea is to
1557 avoid breaking any "fallthruness" relationship between blocks.
1559 The preheader was created just before the header and all incoming edges
1560 to the header were redirected to the preheader, except the latch edge.
1561 So the only problematic case is when this latch edge was a fallthru
1562 edge: it is not anymore after the preheader creation so we have broken
1563 the fallthruness. We're therefore going to look for a better place. */
1564 if (latch_edge_was_fallthru)
1566 if (one_succ_pred)
1567 e = one_succ_pred;
1568 else
1569 e = EDGE_PRED (dummy, 0);
1571 move_block_after (dummy, e->src);
1574 if (irred)
1576 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1577 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1580 if (dump_file)
1581 fprintf (dump_file, "Created preheader block for loop %i\n",
1582 loop->num);
1584 if (flags & CP_FALLTHRU_PREHEADERS)
1585 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1586 && !JUMP_P (BB_END (dummy)));
1588 return dummy;
1591 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1593 void
1594 create_preheaders (int flags)
1596 struct loop *loop;
1598 if (!current_loops)
1599 return;
1601 FOR_EACH_LOOP (loop, 0)
1602 create_preheader (loop, flags);
1603 loops_state_set (LOOPS_HAVE_PREHEADERS);
1606 /* Forces all loop latches to have only single successor. */
1608 void
1609 force_single_succ_latches (void)
1611 struct loop *loop;
1612 edge e;
1614 FOR_EACH_LOOP (loop, 0)
1616 if (loop->latch != loop->header && single_succ_p (loop->latch))
1617 continue;
1619 e = find_edge (loop->latch, loop->header);
1620 gcc_checking_assert (e != NULL);
1622 split_edge (e);
1624 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1627 /* This function is called from loop_version. It splits the entry edge
1628 of the loop we want to version, adds the versioning condition, and
1629 adjust the edges to the two versions of the loop appropriately.
1630 e is an incoming edge. Returns the basic block containing the
1631 condition.
1633 --- edge e ---- > [second_head]
1635 Split it and insert new conditional expression and adjust edges.
1637 --- edge e ---> [cond expr] ---> [first_head]
1639 +---------> [second_head]
1641 THEN_PROB is the probability of then branch of the condition. */
1643 static basic_block
1644 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1645 edge e, void *cond_expr, unsigned then_prob)
1647 basic_block new_head = NULL;
1648 edge e1;
1650 gcc_assert (e->dest == second_head);
1652 /* Split edge 'e'. This will create a new basic block, where we can
1653 insert conditional expr. */
1654 new_head = split_edge (e);
1656 lv_add_condition_to_bb (first_head, second_head, new_head,
1657 cond_expr);
1659 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1660 e = single_succ_edge (new_head);
1661 e1 = make_edge (new_head, first_head,
1662 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1663 e1->probability = then_prob;
1664 e->probability = REG_BR_PROB_BASE - then_prob;
1665 e1->count = apply_probability (e->count, e1->probability);
1666 e->count = apply_probability (e->count, e->probability);
1668 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1669 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1671 /* Adjust loop header phi nodes. */
1672 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1674 return new_head;
1677 /* Main entry point for Loop Versioning transformation.
1679 This transformation given a condition and a loop, creates
1680 -if (condition) { loop_copy1 } else { loop_copy2 },
1681 where loop_copy1 is the loop transformed in one way, and loop_copy2
1682 is the loop transformed in another way (or unchanged). 'condition'
1683 may be a run time test for things that were not resolved by static
1684 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1686 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1687 is the ratio by that the frequencies in the original loop should
1688 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1689 new loop should be scaled.
1691 If PLACE_AFTER is true, we place the new loop after LOOP in the
1692 instruction stream, otherwise it is placed before LOOP. */
1694 struct loop *
1695 loop_version (struct loop *loop,
1696 void *cond_expr, basic_block *condition_bb,
1697 unsigned then_prob, unsigned then_scale, unsigned else_scale,
1698 bool place_after)
1700 basic_block first_head, second_head;
1701 edge entry, latch_edge, true_edge, false_edge;
1702 int irred_flag;
1703 struct loop *nloop;
1704 basic_block cond_bb;
1706 /* Record entry and latch edges for the loop */
1707 entry = loop_preheader_edge (loop);
1708 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1709 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1711 /* Note down head of loop as first_head. */
1712 first_head = entry->dest;
1714 /* Duplicate loop. */
1715 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1716 NULL, NULL, NULL, 0))
1718 entry->flags |= irred_flag;
1719 return NULL;
1722 /* After duplication entry edge now points to new loop head block.
1723 Note down new head as second_head. */
1724 second_head = entry->dest;
1726 /* Split loop entry edge and insert new block with cond expr. */
1727 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1728 entry, cond_expr, then_prob);
1729 if (condition_bb)
1730 *condition_bb = cond_bb;
1732 if (!cond_bb)
1734 entry->flags |= irred_flag;
1735 return NULL;
1738 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1740 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1741 nloop = loopify (latch_edge,
1742 single_pred_edge (get_bb_copy (loop->header)),
1743 cond_bb, true_edge, false_edge,
1744 false /* Do not redirect all edges. */,
1745 then_scale, else_scale);
1747 copy_loop_info (loop, nloop);
1749 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1750 lv_flush_pending_stmts (latch_edge);
1752 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1753 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1754 lv_flush_pending_stmts (false_edge);
1755 /* Adjust irreducible flag. */
1756 if (irred_flag)
1758 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1759 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1760 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1761 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1764 if (place_after)
1766 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1767 unsigned i;
1769 after = loop->latch;
1771 for (i = 0; i < nloop->num_nodes; i++)
1773 move_block_after (bbs[i], after);
1774 after = bbs[i];
1776 free (bbs);
1779 /* At this point condition_bb is loop preheader with two successors,
1780 first_head and second_head. Make sure that loop preheader has only
1781 one successor. */
1782 split_edge (loop_preheader_edge (loop));
1783 split_edge (loop_preheader_edge (nloop));
1785 return nloop;