[Ada] Check if- and case-expressions for unset references
[official-gcc.git] / gcc / ada / sem_res.adb
blob7d30f150e3df4bee12f0ae276eb8967eaadc9902
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2022, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Debug_A; use Debug_A;
31 with Einfo; use Einfo;
32 with Einfo.Entities; use Einfo.Entities;
33 with Einfo.Utils; use Einfo.Utils;
34 with Errout; use Errout;
35 with Expander; use Expander;
36 with Exp_Ch6; use Exp_Ch6;
37 with Exp_Ch7; use Exp_Ch7;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Inline; use Inline;
44 with Itypes; use Itypes;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Nlists; use Nlists;
50 with Opt; use Opt;
51 with Output; use Output;
52 with Par_SCO; use Par_SCO;
53 with Restrict; use Restrict;
54 with Rident; use Rident;
55 with Rtsfind; use Rtsfind;
56 with Sem; use Sem;
57 with Sem_Aggr; use Sem_Aggr;
58 with Sem_Attr; use Sem_Attr;
59 with Sem_Aux; use Sem_Aux;
60 with Sem_Case; use Sem_Case;
61 with Sem_Cat; use Sem_Cat;
62 with Sem_Ch3; use Sem_Ch3;
63 with Sem_Ch4; use Sem_Ch4;
64 with Sem_Ch6; use Sem_Ch6;
65 with Sem_Ch8; use Sem_Ch8;
66 with Sem_Ch13; use Sem_Ch13;
67 with Sem_Dim; use Sem_Dim;
68 with Sem_Disp; use Sem_Disp;
69 with Sem_Dist; use Sem_Dist;
70 with Sem_Elab; use Sem_Elab;
71 with Sem_Elim; use Sem_Elim;
72 with Sem_Eval; use Sem_Eval;
73 with Sem_Intr; use Sem_Intr;
74 with Sem_Mech; use Sem_Mech;
75 with Sem_Type; use Sem_Type;
76 with Sem_Util; use Sem_Util;
77 with Sem_Warn; use Sem_Warn;
78 with Sinfo; use Sinfo;
79 with Sinfo.Nodes; use Sinfo.Nodes;
80 with Sinfo.Utils; use Sinfo.Utils;
81 with Sinfo.CN; use Sinfo.CN;
82 with Snames; use Snames;
83 with Stand; use Stand;
84 with Stringt; use Stringt;
85 with Strub; use Strub;
86 with Style; use Style;
87 with Targparm; use Targparm;
88 with Tbuild; use Tbuild;
89 with Uintp; use Uintp;
90 with Urealp; use Urealp;
92 package body Sem_Res is
94 -----------------------
95 -- Local Subprograms --
96 -----------------------
98 -- Second pass (top-down) type checking and overload resolution procedures
99 -- Typ is the type required by context. These procedures propagate the
100 -- type information recursively to the descendants of N. If the node is not
101 -- overloaded, its Etype is established in the first pass. If overloaded,
102 -- the Resolve routines set the correct type. For arithmetic operators, the
103 -- Etype is the base type of the context.
105 -- Note that Resolve_Attribute is separated off in Sem_Attr
107 function Has_Applicable_User_Defined_Literal
108 (N : Node_Id;
109 Typ : Entity_Id) return Boolean;
110 -- If N is a literal or a named number, check whether Typ
111 -- has a user-defined literal aspect that can apply to N.
112 -- If present, replace N with a call to the corresponding
113 -- function and return True.
115 procedure Check_Discriminant_Use (N : Node_Id);
116 -- Enforce the restrictions on the use of discriminants when constraining
117 -- a component of a discriminated type (record or concurrent type).
119 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
120 -- Given a node for an operator associated with type T, check that the
121 -- operator is visible. Operators all of whose operands are universal must
122 -- be checked for visibility during resolution because their type is not
123 -- determinable based on their operands.
125 procedure Check_Fully_Declared_Prefix
126 (Typ : Entity_Id;
127 Pref : Node_Id);
128 -- Check that the type of the prefix of a dereference is not incomplete
130 function Check_Infinite_Recursion (Call : Node_Id) return Boolean;
131 -- Given a call node, Call, which is known to occur immediately within the
132 -- subprogram being called, determines whether it is a detectable case of
133 -- an infinite recursion, and if so, outputs appropriate messages. Returns
134 -- True if an infinite recursion is detected, and False otherwise.
136 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
137 -- N is the node for a logical operator. If the operator is predefined, and
138 -- the root type of the operands is Standard.Boolean, then a check is made
139 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
140 -- the style check for Style_Check_Boolean_And_Or.
142 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
143 -- N is either an indexed component or a selected component. This function
144 -- returns true if the prefix denotes an atomic object that has an address
145 -- clause (the case in which we may want to issue a warning).
147 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
148 -- Determine whether E is an access type declared by an access declaration,
149 -- and not an (anonymous) allocator type.
151 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
152 -- Utility to check whether the entity for an operator is a predefined
153 -- operator, in which case the expression is left as an operator in the
154 -- tree (else it is rewritten into a call). An instance of an intrinsic
155 -- conversion operation may be given an operator name, but is not treated
156 -- like an operator. Note that an operator that is an imported back-end
157 -- builtin has convention Intrinsic, but is expected to be rewritten into
158 -- a call, so such an operator is not treated as predefined by this
159 -- predicate.
161 procedure Preanalyze_And_Resolve
162 (N : Node_Id;
163 T : Entity_Id;
164 With_Freezing : Boolean);
165 -- Subsidiary of public versions of Preanalyze_And_Resolve.
167 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
168 -- If a default expression in entry call N depends on the discriminants
169 -- of the task, it must be replaced with a reference to the discriminant
170 -- of the task being called.
172 procedure Resolve_Op_Concat_Arg
173 (N : Node_Id;
174 Arg : Node_Id;
175 Typ : Entity_Id;
176 Is_Comp : Boolean);
177 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
178 -- concatenation operator. The operand is either of the array type or of
179 -- the component type. If the operand is an aggregate, and the component
180 -- type is composite, this is ambiguous if component type has aggregates.
182 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
183 -- Does the first part of the work of Resolve_Op_Concat
185 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
186 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
187 -- has been resolved. See Resolve_Op_Concat for details.
189 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Declare_Expression (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
209 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
210 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
211 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
212 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
213 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
214 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
215 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
216 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
217 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
218 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
219 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
220 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
221 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id);
222 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
223 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
224 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
225 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
227 function Operator_Kind
228 (Op_Name : Name_Id;
229 Is_Binary : Boolean) return Node_Kind;
230 -- Utility to map the name of an operator into the corresponding Node. Used
231 -- by other node rewriting procedures.
233 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
234 -- Resolve actuals of call, and add default expressions for missing ones.
235 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
236 -- called subprogram.
238 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
239 -- Called from Resolve_Call, when the prefix denotes an entry or element
240 -- of entry family. Actuals are resolved as for subprograms, and the node
241 -- is rebuilt as an entry call. Also called for protected operations. Typ
242 -- is the context type, which is used when the operation is a protected
243 -- function with no arguments, and the return value is indexed.
245 procedure Resolve_Implicit_Dereference (P : Node_Id);
246 -- Called when P is the prefix of an indexed component, or of a selected
247 -- component, or of a slice. If P is of an access type, we unconditionally
248 -- rewrite it as an explicit dereference. This ensures that the expander
249 -- and the code generator have a fully explicit tree to work with.
251 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
252 -- A call to a user-defined intrinsic operator is rewritten as a call to
253 -- the corresponding predefined operator, with suitable conversions. Note
254 -- that this applies only for intrinsic operators that denote predefined
255 -- operators, not ones that are intrinsic imports of back-end builtins.
257 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
258 -- Ditto, for arithmetic unary operators
260 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
261 -- If an operator node resolves to a call to a user-defined operator,
262 -- rewrite the node as a function call.
264 procedure Make_Call_Into_Operator
265 (N : Node_Id;
266 Typ : Entity_Id;
267 Op_Id : Entity_Id);
268 -- Inverse transformation: if an operator is given in functional notation,
269 -- then after resolving the node, transform into an operator node, so that
270 -- operands are resolved properly. Recall that predefined operators do not
271 -- have a full signature and special resolution rules apply.
273 procedure Rewrite_Renamed_Operator
274 (N : Node_Id;
275 Op : Entity_Id;
276 Typ : Entity_Id);
277 -- An operator can rename another, e.g. in an instantiation. In that
278 -- case, the proper operator node must be constructed and resolved.
280 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
281 -- The String_Literal_Subtype is built for all strings that are not
282 -- operands of a static concatenation operation. If the argument is not
283 -- a N_String_Literal node, then the call has no effect.
285 procedure Set_Slice_Subtype (N : Node_Id);
286 -- Build subtype of array type, with the range specified by the slice
288 procedure Simplify_Type_Conversion (N : Node_Id);
289 -- Called after N has been resolved and evaluated, but before range checks
290 -- have been applied. This rewrites the conversion into a simpler form.
292 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
293 -- A universal_fixed expression in an universal context is unambiguous if
294 -- there is only one applicable fixed point type. Determining whether there
295 -- is only one requires a search over all visible entities, and happens
296 -- only in very pathological cases (see 6115-006).
298 function Try_User_Defined_Literal
299 (N : Node_Id;
300 Typ : Entity_Id) return Boolean;
301 -- If an operator node has a literal operand, check whether the type
302 -- of the context, or the type of the other operand has a user-defined
303 -- literal aspect that can be applied to the literal to resolve the node.
304 -- If such aspect exists, replace literal with a call to the
305 -- corresponding function and return True, return false otherwise.
307 -------------------------
308 -- Ambiguous_Character --
309 -------------------------
311 procedure Ambiguous_Character (C : Node_Id) is
312 E : Entity_Id;
314 begin
315 if Nkind (C) = N_Character_Literal then
316 Error_Msg_N ("ambiguous character literal", C);
318 -- First the ones in Standard
320 Error_Msg_N ("\\possible interpretation: Character!", C);
321 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
323 -- Include Wide_Wide_Character in Ada 2005 mode
325 if Ada_Version >= Ada_2005 then
326 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
327 end if;
329 -- Now any other types that match
331 E := Current_Entity (C);
332 while Present (E) loop
333 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
334 E := Homonym (E);
335 end loop;
336 end if;
337 end Ambiguous_Character;
339 -------------------------
340 -- Analyze_And_Resolve --
341 -------------------------
343 procedure Analyze_And_Resolve (N : Node_Id) is
344 begin
345 Analyze (N);
346 Resolve (N);
347 end Analyze_And_Resolve;
349 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
350 begin
351 Analyze (N);
352 Resolve (N, Typ);
353 end Analyze_And_Resolve;
355 -- Versions with check(s) suppressed
357 procedure Analyze_And_Resolve
358 (N : Node_Id;
359 Typ : Entity_Id;
360 Suppress : Check_Id)
362 Scop : constant Entity_Id := Current_Scope;
364 begin
365 if Suppress = All_Checks then
366 declare
367 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
368 begin
369 Scope_Suppress.Suppress := (others => True);
370 Analyze_And_Resolve (N, Typ);
371 Scope_Suppress.Suppress := Sva;
372 end;
374 else
375 declare
376 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
377 begin
378 Scope_Suppress.Suppress (Suppress) := True;
379 Analyze_And_Resolve (N, Typ);
380 Scope_Suppress.Suppress (Suppress) := Svg;
381 end;
382 end if;
384 if Current_Scope /= Scop
385 and then Scope_Is_Transient
386 then
387 -- This can only happen if a transient scope was created for an inner
388 -- expression, which will be removed upon completion of the analysis
389 -- of an enclosing construct. The transient scope must have the
390 -- suppress status of the enclosing environment, not of this Analyze
391 -- call.
393 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
394 Scope_Suppress;
395 end if;
396 end Analyze_And_Resolve;
398 procedure Analyze_And_Resolve
399 (N : Node_Id;
400 Suppress : Check_Id)
402 Scop : constant Entity_Id := Current_Scope;
404 begin
405 if Suppress = All_Checks then
406 declare
407 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
408 begin
409 Scope_Suppress.Suppress := (others => True);
410 Analyze_And_Resolve (N);
411 Scope_Suppress.Suppress := Sva;
412 end;
414 else
415 declare
416 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
417 begin
418 Scope_Suppress.Suppress (Suppress) := True;
419 Analyze_And_Resolve (N);
420 Scope_Suppress.Suppress (Suppress) := Svg;
421 end;
422 end if;
424 if Current_Scope /= Scop and then Scope_Is_Transient then
425 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
426 Scope_Suppress;
427 end if;
428 end Analyze_And_Resolve;
430 -------------------------------------
431 -- Has_Applicable_User_Defined_Literal --
432 -------------------------------------
434 function Has_Applicable_User_Defined_Literal
435 (N : Node_Id;
436 Typ : Entity_Id) return Boolean
438 Loc : constant Source_Ptr := Sloc (N);
439 Literal_Aspect_Map :
440 constant array (N_Numeric_Or_String_Literal) of Aspect_Id :=
441 (N_Integer_Literal => Aspect_Integer_Literal,
442 N_Real_Literal => Aspect_Real_Literal,
443 N_String_Literal => Aspect_String_Literal);
445 Named_Number_Aspect_Map : constant array (Named_Kind) of Aspect_Id :=
446 (E_Named_Integer => Aspect_Integer_Literal,
447 E_Named_Real => Aspect_Real_Literal);
449 Lit_Aspect : Aspect_Id;
451 Callee : Entity_Id;
452 Name : Node_Id;
453 Param1 : Node_Id;
454 Param2 : Node_Id;
455 Params : List_Id;
456 Call : Node_Id;
457 Expr : Node_Id;
459 begin
460 if (Nkind (N) in N_Numeric_Or_String_Literal
461 and then Present
462 (Find_Aspect (Typ, Literal_Aspect_Map (Nkind (N)))))
463 or else
464 (Nkind (N) = N_Identifier
465 and then Is_Named_Number (Entity (N))
466 and then
467 Present
468 (Find_Aspect
469 (Typ, Named_Number_Aspect_Map (Ekind (Entity (N))))))
470 then
471 Lit_Aspect :=
472 (if Nkind (N) = N_Identifier
473 then Named_Number_Aspect_Map (Ekind (Entity (N)))
474 else Literal_Aspect_Map (Nkind (N)));
475 Callee :=
476 Entity (Expression (Find_Aspect (Typ, Lit_Aspect)));
477 Name := Make_Identifier (Loc, Chars (Callee));
479 if Is_Derived_Type (Typ)
480 and then Is_Tagged_Type (Typ)
481 and then Base_Type (Etype (Callee)) /= Base_Type (Typ)
482 then
483 Callee :=
484 Corresponding_Primitive_Op
485 (Ancestor_Op => Callee,
486 Descendant_Type => Base_Type (Typ));
487 end if;
489 -- Handle an identifier that denotes a named number.
491 if Nkind (N) = N_Identifier then
492 Expr := Expression (Declaration_Node (Entity (N)));
494 if Ekind (Entity (N)) = E_Named_Integer then
495 UI_Image (Expr_Value (Expr), Decimal);
496 Start_String;
497 Store_String_Chars
498 (UI_Image_Buffer (1 .. UI_Image_Length));
499 Param1 := Make_String_Literal (Loc, End_String);
500 Params := New_List (Param1);
502 else
503 UI_Image (Norm_Num (Expr_Value_R (Expr)), Decimal);
504 Start_String;
506 if UR_Is_Negative (Expr_Value_R (Expr)) then
507 Store_String_Chars ("-");
508 end if;
510 Store_String_Chars
511 (UI_Image_Buffer (1 .. UI_Image_Length));
512 Param1 := Make_String_Literal (Loc, End_String);
514 -- Note: Set_Etype is called below on Param1
516 UI_Image (Norm_Den (Expr_Value_R (Expr)), Decimal);
517 Start_String;
518 Store_String_Chars
519 (UI_Image_Buffer (1 .. UI_Image_Length));
520 Param2 := Make_String_Literal (Loc, End_String);
521 Set_Etype (Param2, Standard_String);
523 Params := New_List (Param1, Param2);
525 if Present (Related_Expression (Callee)) then
526 Callee := Related_Expression (Callee);
527 else
528 Error_Msg_NE
529 ("cannot resolve & for a named real", N, Callee);
530 return False;
531 end if;
532 end if;
534 elsif Nkind (N) = N_String_Literal then
535 Param1 := Make_String_Literal (Loc, Strval (N));
536 Params := New_List (Param1);
538 else
539 Param1 :=
540 Make_String_Literal
541 (Loc, String_From_Numeric_Literal (N));
542 Params := New_List (Param1);
543 end if;
545 Call :=
546 Make_Function_Call
547 (Sloc => Loc,
548 Name => Name,
549 Parameter_Associations => Params);
551 Set_Entity (Name, Callee);
552 Set_Is_Overloaded (Name, False);
554 if Lit_Aspect = Aspect_String_Literal then
555 Set_Etype (Param1, Standard_Wide_Wide_String);
556 else
557 Set_Etype (Param1, Standard_String);
558 end if;
560 Set_Etype (Call, Etype (Callee));
562 if Base_Type (Etype (Call)) /= Base_Type (Typ) then
563 -- Conversion may be needed in case of an inherited
564 -- aspect of a derived type. For a null extension, we
565 -- use a null extension aggregate instead because the
566 -- downward type conversion would be illegal.
568 if Is_Null_Extension_Of
569 (Descendant => Typ,
570 Ancestor => Etype (Call))
571 then
572 Call := Make_Extension_Aggregate (Loc,
573 Ancestor_Part => Call,
574 Null_Record_Present => True);
575 else
576 Call := Convert_To (Typ, Call);
577 end if;
578 end if;
580 Rewrite (N, Call);
582 Analyze_And_Resolve (N, Typ);
583 return True;
584 else
585 return False;
586 end if;
587 end Has_Applicable_User_Defined_Literal;
589 ----------------------------
590 -- Check_Discriminant_Use --
591 ----------------------------
593 procedure Check_Discriminant_Use (N : Node_Id) is
594 PN : constant Node_Id := Parent (N);
595 Disc : constant Entity_Id := Entity (N);
596 P : Node_Id;
597 D : Node_Id;
599 begin
600 -- Any use in a spec-expression is legal
602 if In_Spec_Expression then
603 null;
605 elsif Nkind (PN) = N_Range then
607 -- Discriminant cannot be used to constrain a scalar type
609 P := Parent (PN);
611 if Nkind (P) = N_Range_Constraint
612 and then Nkind (Parent (P)) = N_Subtype_Indication
613 and then Nkind (Parent (Parent (P))) = N_Component_Definition
614 then
615 Error_Msg_N ("discriminant cannot constrain scalar type", N);
617 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
619 -- The following check catches the unusual case where a
620 -- discriminant appears within an index constraint that is part
621 -- of a larger expression within a constraint on a component,
622 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
623 -- check case of record components, and note that a similar check
624 -- should also apply in the case of discriminant constraints
625 -- below. ???
627 -- Note that the check for N_Subtype_Declaration below is to
628 -- detect the valid use of discriminants in the constraints of a
629 -- subtype declaration when this subtype declaration appears
630 -- inside the scope of a record type (which is syntactically
631 -- illegal, but which may be created as part of derived type
632 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
633 -- for more info.
635 if Ekind (Current_Scope) = E_Record_Type
636 and then Scope (Disc) = Current_Scope
637 and then not
638 (Nkind (Parent (P)) = N_Subtype_Indication
639 and then
640 Nkind (Parent (Parent (P))) in N_Component_Definition
641 | N_Subtype_Declaration
642 and then Paren_Count (N) = 0)
643 then
644 Error_Msg_N
645 ("discriminant must appear alone in component constraint", N);
646 return;
647 end if;
649 -- Detect a common error:
651 -- type R (D : Positive := 100) is record
652 -- Name : String (1 .. D);
653 -- end record;
655 -- The default value causes an object of type R to be allocated
656 -- with room for Positive'Last characters. The RM does not mandate
657 -- the allocation of the maximum size, but that is what GNAT does
658 -- so we should warn the programmer that there is a problem.
660 Check_Large : declare
661 SI : Node_Id;
662 T : Entity_Id;
663 TB : Node_Id;
664 CB : Entity_Id;
666 function Large_Storage_Type (T : Entity_Id) return Boolean;
667 -- Return True if type T has a large enough range that any
668 -- array whose index type covered the whole range of the type
669 -- would likely raise Storage_Error.
671 ------------------------
672 -- Large_Storage_Type --
673 ------------------------
675 function Large_Storage_Type (T : Entity_Id) return Boolean is
676 begin
677 -- The type is considered large if its bounds are known at
678 -- compile time and if it requires at least as many bits as
679 -- a Positive to store the possible values.
681 return Compile_Time_Known_Value (Type_Low_Bound (T))
682 and then Compile_Time_Known_Value (Type_High_Bound (T))
683 and then
684 Minimum_Size (T, Biased => True) >=
685 RM_Size (Standard_Positive);
686 end Large_Storage_Type;
688 -- Start of processing for Check_Large
690 begin
691 -- Check that the Disc has a large range
693 if not Large_Storage_Type (Etype (Disc)) then
694 goto No_Danger;
695 end if;
697 -- If the enclosing type is limited, we allocate only the
698 -- default value, not the maximum, and there is no need for
699 -- a warning.
701 if Is_Limited_Type (Scope (Disc)) then
702 goto No_Danger;
703 end if;
705 -- Check that it is the high bound
707 if N /= High_Bound (PN)
708 or else No (Discriminant_Default_Value (Disc))
709 then
710 goto No_Danger;
711 end if;
713 -- Check the array allows a large range at this bound. First
714 -- find the array
716 SI := Parent (P);
718 if Nkind (SI) /= N_Subtype_Indication then
719 goto No_Danger;
720 end if;
722 T := Entity (Subtype_Mark (SI));
724 if not Is_Array_Type (T) then
725 goto No_Danger;
726 end if;
728 -- Next, find the dimension
730 TB := First_Index (T);
731 CB := First (Constraints (P));
732 while True
733 and then Present (TB)
734 and then Present (CB)
735 and then CB /= PN
736 loop
737 Next_Index (TB);
738 Next (CB);
739 end loop;
741 if CB /= PN then
742 goto No_Danger;
743 end if;
745 -- Now, check the dimension has a large range
747 if not Large_Storage_Type (Etype (TB)) then
748 goto No_Danger;
749 end if;
751 -- Warn about the danger
753 Error_Msg_N
754 ("??creation of & object may raise Storage_Error!",
755 Scope (Disc));
757 <<No_Danger>>
758 null;
760 end Check_Large;
761 end if;
763 -- Legal case is in index or discriminant constraint
765 elsif Nkind (PN) in N_Index_Or_Discriminant_Constraint
766 | N_Discriminant_Association
767 then
768 if Paren_Count (N) > 0 then
769 Error_Msg_N
770 ("discriminant in constraint must appear alone", N);
772 elsif Nkind (N) = N_Expanded_Name
773 and then Comes_From_Source (N)
774 then
775 Error_Msg_N
776 ("discriminant must appear alone as a direct name", N);
777 end if;
779 return;
781 -- Otherwise, context is an expression. It should not be within (i.e. a
782 -- subexpression of) a constraint for a component.
784 else
785 D := PN;
786 P := Parent (PN);
787 while Nkind (P) not in
788 N_Component_Declaration | N_Subtype_Indication | N_Entry_Declaration
789 loop
790 D := P;
791 P := Parent (P);
792 exit when No (P);
793 end loop;
795 -- If the discriminant is used in an expression that is a bound of a
796 -- scalar type, an Itype is created and the bounds are attached to
797 -- its range, not to the original subtype indication. Such use is of
798 -- course a double fault.
800 if (Nkind (P) = N_Subtype_Indication
801 and then Nkind (Parent (P)) in N_Component_Definition
802 | N_Derived_Type_Definition
803 and then D = Constraint (P))
805 -- The constraint itself may be given by a subtype indication,
806 -- rather than by a more common discrete range.
808 or else (Nkind (P) = N_Subtype_Indication
809 and then
810 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
811 or else Nkind (P) = N_Entry_Declaration
812 or else Nkind (D) = N_Defining_Identifier
813 then
814 Error_Msg_N
815 ("discriminant in constraint must appear alone", N);
816 end if;
817 end if;
818 end Check_Discriminant_Use;
820 --------------------------------
821 -- Check_For_Visible_Operator --
822 --------------------------------
824 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
825 begin
826 if Comes_From_Source (N)
827 and then not Is_Visible_Operator (Original_Node (N), T)
828 and then not Error_Posted (N)
829 then
830 Error_Msg_NE -- CODEFIX
831 ("operator for} is not directly visible!", N, First_Subtype (T));
832 Error_Msg_N -- CODEFIX
833 ("use clause would make operation legal!", N);
834 end if;
835 end Check_For_Visible_Operator;
837 ---------------------------------
838 -- Check_Fully_Declared_Prefix --
839 ---------------------------------
841 procedure Check_Fully_Declared_Prefix
842 (Typ : Entity_Id;
843 Pref : Node_Id)
845 begin
846 -- Check that the designated type of the prefix of a dereference is
847 -- not an incomplete type. This cannot be done unconditionally, because
848 -- dereferences of private types are legal in default expressions. This
849 -- case is taken care of in Check_Fully_Declared, called below. There
850 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
852 -- This consideration also applies to similar checks for allocators,
853 -- qualified expressions, and type conversions.
855 -- An additional exception concerns other per-object expressions that
856 -- are not directly related to component declarations, in particular
857 -- representation pragmas for tasks. These will be per-object
858 -- expressions if they depend on discriminants or some global entity.
859 -- If the task has access discriminants, the designated type may be
860 -- incomplete at the point the expression is resolved. This resolution
861 -- takes place within the body of the initialization procedure, where
862 -- the discriminant is replaced by its discriminal.
864 if Is_Entity_Name (Pref)
865 and then Ekind (Entity (Pref)) = E_In_Parameter
866 then
867 null;
869 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
870 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
871 -- Analyze_Object_Renaming, and Freeze_Entity.
873 elsif Ada_Version >= Ada_2005
874 and then Is_Entity_Name (Pref)
875 and then Is_Access_Type (Etype (Pref))
876 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
877 E_Incomplete_Type
878 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
879 then
880 null;
881 else
882 Check_Fully_Declared (Typ, Parent (Pref));
883 end if;
884 end Check_Fully_Declared_Prefix;
886 ------------------------------
887 -- Check_Infinite_Recursion --
888 ------------------------------
890 function Check_Infinite_Recursion (Call : Node_Id) return Boolean is
891 function Enclosing_Declaration_Or_Statement (N : Node_Id) return Node_Id;
892 -- Return the nearest enclosing declaration or statement that houses
893 -- arbitrary node N.
895 function Invoked_With_Different_Arguments (N : Node_Id) return Boolean;
896 -- Determine whether call N invokes the related enclosing subprogram
897 -- with actuals that differ from the subprogram's formals.
899 function Is_Conditional_Statement (N : Node_Id) return Boolean;
900 -- Determine whether arbitrary node N denotes a conditional construct
902 function Is_Control_Flow_Statement (N : Node_Id) return Boolean;
903 -- Determine whether arbitrary node N denotes a control flow statement
904 -- or a construct that may contains such a statement.
906 function Is_Immediately_Within_Body (N : Node_Id) return Boolean;
907 -- Determine whether arbitrary node N appears immediately within the
908 -- statements of an entry or subprogram body.
910 function Is_Raise_Idiom (N : Node_Id) return Boolean;
911 -- Determine whether arbitrary node N appears immediately within the
912 -- body of an entry or subprogram, and is preceded by a single raise
913 -- statement.
915 function Is_Raise_Statement (N : Node_Id) return Boolean;
916 -- Determine whether arbitrary node N denotes a raise statement
918 function Is_Sole_Statement (N : Node_Id) return Boolean;
919 -- Determine whether arbitrary node N is the sole source statement in
920 -- the body of the enclosing subprogram.
922 function Preceded_By_Control_Flow_Statement (N : Node_Id) return Boolean;
923 -- Determine whether arbitrary node N is preceded by a control flow
924 -- statement.
926 function Within_Conditional_Statement (N : Node_Id) return Boolean;
927 -- Determine whether arbitrary node N appears within a conditional
928 -- construct.
930 ----------------------------------------
931 -- Enclosing_Declaration_Or_Statement --
932 ----------------------------------------
934 function Enclosing_Declaration_Or_Statement
935 (N : Node_Id) return Node_Id
937 Par : Node_Id;
939 begin
940 Par := N;
941 while Present (Par) loop
942 if Is_Declaration (Par) or else Is_Statement (Par) then
943 return Par;
945 -- Prevent the search from going too far
947 elsif Is_Body_Or_Package_Declaration (Par) then
948 exit;
949 end if;
951 Par := Parent (Par);
952 end loop;
954 return N;
955 end Enclosing_Declaration_Or_Statement;
957 --------------------------------------
958 -- Invoked_With_Different_Arguments --
959 --------------------------------------
961 function Invoked_With_Different_Arguments (N : Node_Id) return Boolean is
962 Subp : constant Entity_Id := Entity (Name (N));
964 Actual : Node_Id;
965 Formal : Entity_Id;
967 begin
968 -- Determine whether the formals of the invoked subprogram are not
969 -- used as actuals in the call.
971 Actual := First_Actual (Call);
972 Formal := First_Formal (Subp);
973 while Present (Actual) and then Present (Formal) loop
975 -- The current actual does not match the current formal
977 if not (Is_Entity_Name (Actual)
978 and then Entity (Actual) = Formal)
979 then
980 return True;
981 end if;
983 Next_Actual (Actual);
984 Next_Formal (Formal);
985 end loop;
987 return False;
988 end Invoked_With_Different_Arguments;
990 ------------------------------
991 -- Is_Conditional_Statement --
992 ------------------------------
994 function Is_Conditional_Statement (N : Node_Id) return Boolean is
995 begin
996 return
997 Nkind (N) in N_And_Then
998 | N_Case_Expression
999 | N_Case_Statement
1000 | N_If_Expression
1001 | N_If_Statement
1002 | N_Or_Else;
1003 end Is_Conditional_Statement;
1005 -------------------------------
1006 -- Is_Control_Flow_Statement --
1007 -------------------------------
1009 function Is_Control_Flow_Statement (N : Node_Id) return Boolean is
1010 begin
1011 -- It is assumed that all statements may affect the control flow in
1012 -- some way. A raise statement may be expanded into a non-statement
1013 -- node.
1015 return Is_Statement (N) or else Is_Raise_Statement (N);
1016 end Is_Control_Flow_Statement;
1018 --------------------------------
1019 -- Is_Immediately_Within_Body --
1020 --------------------------------
1022 function Is_Immediately_Within_Body (N : Node_Id) return Boolean is
1023 HSS : constant Node_Id := Parent (N);
1025 begin
1026 return
1027 Nkind (HSS) = N_Handled_Sequence_Of_Statements
1028 and then Nkind (Parent (HSS)) in N_Entry_Body | N_Subprogram_Body
1029 and then Is_List_Member (N)
1030 and then List_Containing (N) = Statements (HSS);
1031 end Is_Immediately_Within_Body;
1033 --------------------
1034 -- Is_Raise_Idiom --
1035 --------------------
1037 function Is_Raise_Idiom (N : Node_Id) return Boolean is
1038 Raise_Stmt : Node_Id;
1039 Stmt : Node_Id;
1041 begin
1042 if Is_Immediately_Within_Body (N) then
1044 -- Assume that no raise statement has been seen yet
1046 Raise_Stmt := Empty;
1048 -- Examine the statements preceding the input node, skipping
1049 -- internally-generated constructs.
1051 Stmt := Prev (N);
1052 while Present (Stmt) loop
1054 -- Multiple raise statements violate the idiom
1056 if Is_Raise_Statement (Stmt) then
1057 if Present (Raise_Stmt) then
1058 return False;
1059 end if;
1061 Raise_Stmt := Stmt;
1063 elsif Comes_From_Source (Stmt) then
1064 exit;
1065 end if;
1067 Stmt := Prev (Stmt);
1068 end loop;
1070 -- At this point the node must be preceded by a raise statement,
1071 -- and the raise statement has to be the sole statement within
1072 -- the enclosing entry or subprogram body.
1074 return
1075 Present (Raise_Stmt) and then Is_Sole_Statement (Raise_Stmt);
1076 end if;
1078 return False;
1079 end Is_Raise_Idiom;
1081 ------------------------
1082 -- Is_Raise_Statement --
1083 ------------------------
1085 function Is_Raise_Statement (N : Node_Id) return Boolean is
1086 begin
1087 -- A raise statement may be transfomed into a Raise_xxx_Error node
1089 return
1090 Nkind (N) = N_Raise_Statement
1091 or else Nkind (N) in N_Raise_xxx_Error;
1092 end Is_Raise_Statement;
1094 -----------------------
1095 -- Is_Sole_Statement --
1096 -----------------------
1098 function Is_Sole_Statement (N : Node_Id) return Boolean is
1099 Stmt : Node_Id;
1101 begin
1102 -- The input node appears within the statements of an entry or
1103 -- subprogram body. Examine the statements preceding the node.
1105 if Is_Immediately_Within_Body (N) then
1106 Stmt := Prev (N);
1108 while Present (Stmt) loop
1110 -- The statement is preceded by another statement or a source
1111 -- construct. This indicates that the node does not appear by
1112 -- itself.
1114 if Is_Control_Flow_Statement (Stmt)
1115 or else Comes_From_Source (Stmt)
1116 then
1117 return False;
1118 end if;
1120 Stmt := Prev (Stmt);
1121 end loop;
1123 return True;
1124 end if;
1126 -- The input node is within a construct nested inside the entry or
1127 -- subprogram body.
1129 return False;
1130 end Is_Sole_Statement;
1132 ----------------------------------------
1133 -- Preceded_By_Control_Flow_Statement --
1134 ----------------------------------------
1136 function Preceded_By_Control_Flow_Statement
1137 (N : Node_Id) return Boolean
1139 Stmt : Node_Id;
1141 begin
1142 if Is_List_Member (N) then
1143 Stmt := Prev (N);
1145 -- Examine the statements preceding the input node
1147 while Present (Stmt) loop
1148 if Is_Control_Flow_Statement (Stmt) then
1149 return True;
1150 end if;
1152 Stmt := Prev (Stmt);
1153 end loop;
1155 return False;
1156 end if;
1158 -- Assume that the node is part of some control flow statement
1160 return True;
1161 end Preceded_By_Control_Flow_Statement;
1163 ----------------------------------
1164 -- Within_Conditional_Statement --
1165 ----------------------------------
1167 function Within_Conditional_Statement (N : Node_Id) return Boolean is
1168 Stmt : Node_Id;
1170 begin
1171 Stmt := Parent (N);
1172 while Present (Stmt) loop
1173 if Is_Conditional_Statement (Stmt) then
1174 return True;
1176 -- Prevent the search from going too far
1178 elsif Is_Body_Or_Package_Declaration (Stmt) then
1179 exit;
1180 end if;
1182 Stmt := Parent (Stmt);
1183 end loop;
1185 return False;
1186 end Within_Conditional_Statement;
1188 -- Local variables
1190 Call_Context : constant Node_Id :=
1191 Enclosing_Declaration_Or_Statement (Call);
1193 -- Start of processing for Check_Infinite_Recursion
1195 begin
1196 -- The call is assumed to be safe when the enclosing subprogram is
1197 -- invoked with actuals other than its formals.
1199 -- procedure Proc (F1 : ...; F2 : ...; ...; FN : ...) is
1200 -- begin
1201 -- ...
1202 -- Proc (A1, A2, ..., AN);
1203 -- ...
1204 -- end Proc;
1206 if Invoked_With_Different_Arguments (Call) then
1207 return False;
1209 -- The call is assumed to be safe when the invocation of the enclosing
1210 -- subprogram depends on a conditional statement.
1212 -- procedure Proc (F1 : ...; F2 : ...; ...; FN : ...) is
1213 -- begin
1214 -- ...
1215 -- if Some_Condition then
1216 -- Proc (F1, F2, ..., FN);
1217 -- end if;
1218 -- ...
1219 -- end Proc;
1221 elsif Within_Conditional_Statement (Call) then
1222 return False;
1224 -- The context of the call is assumed to be safe when the invocation of
1225 -- the enclosing subprogram is preceded by some control flow statement.
1227 -- procedure Proc (F1 : ...; F2 : ...; ...; FN : ...) is
1228 -- begin
1229 -- ...
1230 -- if Some_Condition then
1231 -- ...
1232 -- end if;
1233 -- ...
1234 -- Proc (F1, F2, ..., FN);
1235 -- ...
1236 -- end Proc;
1238 elsif Preceded_By_Control_Flow_Statement (Call_Context) then
1239 return False;
1241 -- Detect an idiom where the context of the call is preceded by a single
1242 -- raise statement.
1244 -- procedure Proc (F1 : ...; F2 : ...; ...; FN : ...) is
1245 -- begin
1246 -- raise ...;
1247 -- Proc (F1, F2, ..., FN);
1248 -- end Proc;
1250 elsif Is_Raise_Idiom (Call_Context) then
1251 return False;
1252 end if;
1254 -- At this point it is certain that infinite recursion will take place
1255 -- as long as the call is executed. Detect a case where the context of
1256 -- the call is the sole source statement within the subprogram body.
1258 -- procedure Proc (F1 : ...; F2 : ...; ...; FN : ...) is
1259 -- begin
1260 -- Proc (F1, F2, ..., FN);
1261 -- end Proc;
1263 -- Install an explicit raise to prevent the infinite recursion.
1265 if Is_Sole_Statement (Call_Context) then
1266 Error_Msg_Warn := SPARK_Mode /= On;
1267 Error_Msg_N ("!infinite recursion<<", Call);
1268 Error_Msg_N ("\!Storage_Error [<<", Call);
1270 Insert_Action (Call,
1271 Make_Raise_Storage_Error (Sloc (Call),
1272 Reason => SE_Infinite_Recursion));
1274 -- Otherwise infinite recursion could take place, considering other flow
1275 -- control constructs such as gotos, exit statements, etc.
1277 else
1278 Error_Msg_Warn := SPARK_Mode /= On;
1279 Error_Msg_N ("!possible infinite recursion<<", Call);
1280 Error_Msg_N ("\!??Storage_Error ]<<", Call);
1281 end if;
1283 return True;
1284 end Check_Infinite_Recursion;
1286 ---------------------------------------
1287 -- Check_No_Direct_Boolean_Operators --
1288 ---------------------------------------
1290 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
1291 begin
1292 if Scope (Entity (N)) = Standard_Standard
1293 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
1294 then
1295 -- Restriction only applies to original source code
1297 if Comes_From_Source (N) then
1298 Check_Restriction (No_Direct_Boolean_Operators, N);
1299 end if;
1300 end if;
1302 -- Do style check (but skip if in instance, error is on template)
1304 if Style_Check then
1305 if not In_Instance then
1306 Check_Boolean_Operator (N);
1307 end if;
1308 end if;
1309 end Check_No_Direct_Boolean_Operators;
1311 ------------------------------
1312 -- Check_Parameterless_Call --
1313 ------------------------------
1315 procedure Check_Parameterless_Call (N : Node_Id) is
1316 Nam : Node_Id;
1318 function Prefix_Is_Access_Subp return Boolean;
1319 -- If the prefix is of an access_to_subprogram type, the node must be
1320 -- rewritten as a call. Ditto if the prefix is overloaded and all its
1321 -- interpretations are access to subprograms.
1323 ---------------------------
1324 -- Prefix_Is_Access_Subp --
1325 ---------------------------
1327 function Prefix_Is_Access_Subp return Boolean is
1328 I : Interp_Index;
1329 It : Interp;
1331 begin
1332 -- If the context is an attribute reference that can apply to
1333 -- functions, this is never a parameterless call (RM 4.1.4(6)).
1335 if Nkind (Parent (N)) = N_Attribute_Reference
1336 and then Attribute_Name (Parent (N))
1337 in Name_Address | Name_Code_Address | Name_Access
1338 then
1339 return False;
1340 end if;
1342 if not Is_Overloaded (N) then
1343 return
1344 Ekind (Etype (N)) = E_Subprogram_Type
1345 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1346 else
1347 Get_First_Interp (N, I, It);
1348 while Present (It.Typ) loop
1349 if Ekind (It.Typ) /= E_Subprogram_Type
1350 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1351 then
1352 return False;
1353 end if;
1355 Get_Next_Interp (I, It);
1356 end loop;
1358 return True;
1359 end if;
1360 end Prefix_Is_Access_Subp;
1362 -- Start of processing for Check_Parameterless_Call
1364 begin
1365 -- Defend against junk stuff if errors already detected
1367 if Total_Errors_Detected /= 0 then
1368 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1369 return;
1370 elsif Nkind (N) in N_Has_Chars
1371 and then not Is_Valid_Name (Chars (N))
1372 then
1373 return;
1374 end if;
1376 Require_Entity (N);
1377 end if;
1379 -- If the context expects a value, and the name is a procedure, this is
1380 -- most likely a missing 'Access. Don't try to resolve the parameterless
1381 -- call, error will be caught when the outer call is analyzed.
1383 if Is_Entity_Name (N)
1384 and then Ekind (Entity (N)) = E_Procedure
1385 and then not Is_Overloaded (N)
1386 and then
1387 Nkind (Parent (N)) in N_Parameter_Association
1388 | N_Function_Call
1389 | N_Procedure_Call_Statement
1390 then
1391 return;
1392 end if;
1394 -- Rewrite as call if overloadable entity that is (or could be, in the
1395 -- overloaded case) a function call. If we know for sure that the entity
1396 -- is an enumeration literal, we do not rewrite it.
1398 -- If the entity is the name of an operator, it cannot be a call because
1399 -- operators cannot have default parameters. In this case, this must be
1400 -- a string whose contents coincide with an operator name. Set the kind
1401 -- of the node appropriately.
1403 if (Is_Entity_Name (N)
1404 and then Nkind (N) /= N_Operator_Symbol
1405 and then Is_Overloadable (Entity (N))
1406 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1407 or else Is_Overloaded (N)))
1409 -- Rewrite as call if it is an explicit dereference of an expression of
1410 -- a subprogram access type, and the subprogram type is not that of a
1411 -- procedure or entry.
1413 or else
1414 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1416 -- Rewrite as call if it is a selected component which is a function,
1417 -- this is the case of a call to a protected function (which may be
1418 -- overloaded with other protected operations).
1420 or else
1421 (Nkind (N) = N_Selected_Component
1422 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1423 or else
1424 (Ekind (Entity (Selector_Name (N))) in
1425 E_Entry | E_Procedure
1426 and then Is_Overloaded (Selector_Name (N)))))
1428 -- If one of the above three conditions is met, rewrite as call. Apply
1429 -- the rewriting only once.
1431 then
1432 if Nkind (Parent (N)) /= N_Function_Call
1433 or else N /= Name (Parent (N))
1434 then
1436 -- This may be a prefixed call that was not fully analyzed, e.g.
1437 -- an actual in an instance.
1439 if Ada_Version >= Ada_2005
1440 and then Nkind (N) = N_Selected_Component
1441 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1442 then
1443 Analyze_Selected_Component (N);
1445 if Nkind (N) /= N_Selected_Component then
1446 return;
1447 end if;
1448 end if;
1450 -- The node is the name of the parameterless call. Preserve its
1451 -- descendants, which may be complex expressions.
1453 Nam := Relocate_Node (N);
1455 -- If overloaded, overload set belongs to new copy
1457 Save_Interps (N, Nam);
1459 -- Change node to parameterless function call (note that the
1460 -- Parameter_Associations associations field is left set to Empty,
1461 -- its normal default value since there are no parameters)
1463 Change_Node (N, N_Function_Call);
1464 Set_Name (N, Nam);
1465 Set_Sloc (N, Sloc (Nam));
1466 Analyze_Call (N);
1467 end if;
1469 elsif Nkind (N) = N_Parameter_Association then
1470 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1472 elsif Nkind (N) = N_Operator_Symbol then
1473 Set_Etype (N, Empty);
1474 Set_Entity (N, Empty);
1475 Set_Is_Overloaded (N, False);
1476 Change_Operator_Symbol_To_String_Literal (N);
1477 Set_Etype (N, Any_String);
1478 end if;
1479 end Check_Parameterless_Call;
1481 --------------------------------
1482 -- Is_Atomic_Ref_With_Address --
1483 --------------------------------
1485 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1486 Pref : constant Node_Id := Prefix (N);
1488 begin
1489 if not Is_Entity_Name (Pref) then
1490 return False;
1492 else
1493 declare
1494 Pent : constant Entity_Id := Entity (Pref);
1495 Ptyp : constant Entity_Id := Etype (Pent);
1496 begin
1497 return not Is_Access_Type (Ptyp)
1498 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1499 and then Present (Address_Clause (Pent));
1500 end;
1501 end if;
1502 end Is_Atomic_Ref_With_Address;
1504 -----------------------------
1505 -- Is_Definite_Access_Type --
1506 -----------------------------
1508 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1509 Btyp : constant Entity_Id := Base_Type (E);
1510 begin
1511 return Ekind (Btyp) = E_Access_Type
1512 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1513 and then Comes_From_Source (Btyp));
1514 end Is_Definite_Access_Type;
1516 ----------------------
1517 -- Is_Predefined_Op --
1518 ----------------------
1520 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1521 begin
1522 -- Predefined operators are intrinsic subprograms
1524 if not Is_Intrinsic_Subprogram (Nam) then
1525 return False;
1526 end if;
1528 -- A call to a back-end builtin is never a predefined operator
1530 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1531 return False;
1532 end if;
1534 return not Is_Generic_Instance (Nam)
1535 and then Chars (Nam) in Any_Operator_Name
1536 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1537 end Is_Predefined_Op;
1539 -----------------------------
1540 -- Make_Call_Into_Operator --
1541 -----------------------------
1543 procedure Make_Call_Into_Operator
1544 (N : Node_Id;
1545 Typ : Entity_Id;
1546 Op_Id : Entity_Id)
1548 Op_Name : constant Name_Id := Chars (Op_Id);
1549 Act1 : Node_Id := First_Actual (N);
1550 Act2 : Node_Id := Next_Actual (Act1);
1551 Error : Boolean := False;
1552 Func : constant Entity_Id := Entity (Name (N));
1553 Is_Binary : constant Boolean := Present (Act2);
1554 Op_Node : Node_Id;
1555 Opnd_Type : Entity_Id := Empty;
1556 Orig_Type : Entity_Id := Empty;
1557 Pack : Entity_Id;
1559 type Kind_Test is access function (E : Entity_Id) return Boolean;
1561 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1562 -- If the operand is not universal, and the operator is given by an
1563 -- expanded name, verify that the operand has an interpretation with a
1564 -- type defined in the given scope of the operator.
1566 function Type_In_P (Test : Kind_Test) return Entity_Id;
1567 -- Find a type of the given class in package Pack that contains the
1568 -- operator.
1570 ---------------------------
1571 -- Operand_Type_In_Scope --
1572 ---------------------------
1574 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1575 Nod : constant Node_Id := Right_Opnd (Op_Node);
1576 I : Interp_Index;
1577 It : Interp;
1579 begin
1580 if not Is_Overloaded (Nod) then
1581 return Scope (Base_Type (Etype (Nod))) = S;
1583 else
1584 Get_First_Interp (Nod, I, It);
1585 while Present (It.Typ) loop
1586 if Scope (Base_Type (It.Typ)) = S then
1587 return True;
1588 end if;
1590 Get_Next_Interp (I, It);
1591 end loop;
1593 return False;
1594 end if;
1595 end Operand_Type_In_Scope;
1597 ---------------
1598 -- Type_In_P --
1599 ---------------
1601 function Type_In_P (Test : Kind_Test) return Entity_Id is
1602 E : Entity_Id;
1604 function In_Decl return Boolean;
1605 -- Verify that node is not part of the type declaration for the
1606 -- candidate type, which would otherwise be invisible.
1608 -------------
1609 -- In_Decl --
1610 -------------
1612 function In_Decl return Boolean is
1613 Decl_Node : constant Node_Id := Parent (E);
1614 N2 : Node_Id;
1616 begin
1617 N2 := N;
1619 if Etype (E) = Any_Type then
1620 return True;
1622 elsif No (Decl_Node) then
1623 return False;
1625 else
1626 while Present (N2)
1627 and then Nkind (N2) /= N_Compilation_Unit
1628 loop
1629 if N2 = Decl_Node then
1630 return True;
1631 else
1632 N2 := Parent (N2);
1633 end if;
1634 end loop;
1636 return False;
1637 end if;
1638 end In_Decl;
1640 -- Start of processing for Type_In_P
1642 begin
1643 -- If the context type is declared in the prefix package, this is the
1644 -- desired base type.
1646 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1647 return Base_Type (Typ);
1649 else
1650 E := First_Entity (Pack);
1651 while Present (E) loop
1652 if Test (E) and then not In_Decl then
1653 return E;
1654 end if;
1656 Next_Entity (E);
1657 end loop;
1659 return Empty;
1660 end if;
1661 end Type_In_P;
1663 -- Start of processing for Make_Call_Into_Operator
1665 begin
1666 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1668 -- Preserve the Comes_From_Source flag on the result if the original
1669 -- call came from source. Although it is not strictly the case that the
1670 -- operator as such comes from the source, logically it corresponds
1671 -- exactly to the function call in the source, so it should be marked
1672 -- this way (e.g. to make sure that validity checks work fine).
1674 Preserve_Comes_From_Source (Op_Node, N);
1676 -- Ensure that the corresponding operator has the same parent as the
1677 -- original call. This guarantees that parent traversals performed by
1678 -- the ABE mechanism succeed.
1680 Set_Parent (Op_Node, Parent (N));
1682 -- Binary operator
1684 if Is_Binary then
1685 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1686 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1687 Save_Interps (Act1, Left_Opnd (Op_Node));
1688 Save_Interps (Act2, Right_Opnd (Op_Node));
1689 Act1 := Left_Opnd (Op_Node);
1690 Act2 := Right_Opnd (Op_Node);
1692 -- Unary operator
1694 else
1695 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1696 Save_Interps (Act1, Right_Opnd (Op_Node));
1697 Act1 := Right_Opnd (Op_Node);
1698 end if;
1700 -- If the operator is denoted by an expanded name, and the prefix is
1701 -- not Standard, but the operator is a predefined one whose scope is
1702 -- Standard, then this is an implicit_operator, inserted as an
1703 -- interpretation by the procedure of the same name. This procedure
1704 -- overestimates the presence of implicit operators, because it does
1705 -- not examine the type of the operands. Verify now that the operand
1706 -- type appears in the given scope. If right operand is universal,
1707 -- check the other operand. In the case of concatenation, either
1708 -- argument can be the component type, so check the type of the result.
1709 -- If both arguments are literals, look for a type of the right kind
1710 -- defined in the given scope. This elaborate nonsense is brought to
1711 -- you courtesy of b33302a. The type itself must be frozen, so we must
1712 -- find the type of the proper class in the given scope.
1714 -- A final wrinkle is the multiplication operator for fixed point types,
1715 -- which is defined in Standard only, and not in the scope of the
1716 -- fixed point type itself.
1718 if Nkind (Name (N)) = N_Expanded_Name then
1719 Pack := Entity (Prefix (Name (N)));
1721 -- If this is a package renaming, get renamed entity, which will be
1722 -- the scope of the operands if operaton is type-correct.
1724 if Present (Renamed_Entity (Pack)) then
1725 Pack := Renamed_Entity (Pack);
1726 end if;
1728 -- If the entity being called is defined in the given package, it is
1729 -- a renaming of a predefined operator, and known to be legal.
1731 if Scope (Entity (Name (N))) = Pack
1732 and then Pack /= Standard_Standard
1733 then
1734 null;
1736 -- Visibility does not need to be checked in an instance: if the
1737 -- operator was not visible in the generic it has been diagnosed
1738 -- already, else there is an implicit copy of it in the instance.
1740 elsif In_Instance then
1741 null;
1743 elsif Op_Name in Name_Op_Multiply | Name_Op_Divide
1744 and then Is_Fixed_Point_Type (Etype (Act1))
1745 and then Is_Fixed_Point_Type (Etype (Act2))
1746 then
1747 if Pack /= Standard_Standard then
1748 Error := True;
1749 end if;
1751 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1752 -- available.
1754 elsif Ada_Version >= Ada_2005
1755 and then Op_Name in Name_Op_Eq | Name_Op_Ne
1756 and then (Is_Anonymous_Access_Type (Etype (Act1))
1757 or else Is_Anonymous_Access_Type (Etype (Act2)))
1758 then
1759 null;
1761 else
1762 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1764 if Op_Name = Name_Op_Concat then
1765 Opnd_Type := Base_Type (Typ);
1767 elsif (Scope (Opnd_Type) = Standard_Standard
1768 and then Is_Binary)
1769 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1770 and then Is_Binary
1771 and then not Comes_From_Source (Opnd_Type))
1772 then
1773 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1774 end if;
1776 if Scope (Opnd_Type) = Standard_Standard then
1778 -- Verify that the scope contains a type that corresponds to
1779 -- the given literal. Optimize the case where Pack is Standard.
1781 if Pack /= Standard_Standard then
1782 if Opnd_Type = Universal_Integer then
1783 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1785 elsif Opnd_Type = Universal_Real then
1786 Orig_Type := Type_In_P (Is_Real_Type'Access);
1788 elsif Opnd_Type = Universal_Access then
1789 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1791 elsif Opnd_Type = Any_String then
1792 Orig_Type := Type_In_P (Is_String_Type'Access);
1794 elsif Opnd_Type = Any_Composite then
1795 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1797 if Present (Orig_Type) then
1798 if Has_Private_Component (Orig_Type) then
1799 Orig_Type := Empty;
1800 else
1801 Set_Etype (Act1, Orig_Type);
1803 if Is_Binary then
1804 Set_Etype (Act2, Orig_Type);
1805 end if;
1806 end if;
1807 end if;
1809 else
1810 Orig_Type := Empty;
1811 end if;
1813 Error := No (Orig_Type);
1814 end if;
1816 elsif Ekind (Opnd_Type) = E_Allocator_Type
1817 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1818 then
1819 Error := True;
1821 -- If the type is defined elsewhere, and the operator is not
1822 -- defined in the given scope (by a renaming declaration, e.g.)
1823 -- then this is an error as well. If an extension of System is
1824 -- present, and the type may be defined there, Pack must be
1825 -- System itself.
1827 elsif Scope (Opnd_Type) /= Pack
1828 and then Scope (Op_Id) /= Pack
1829 and then (No (System_Aux_Id)
1830 or else Scope (Opnd_Type) /= System_Aux_Id
1831 or else Pack /= Scope (System_Aux_Id))
1832 then
1833 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1834 Error := True;
1835 else
1836 Error := not Operand_Type_In_Scope (Pack);
1837 end if;
1839 elsif Pack = Standard_Standard
1840 and then not Operand_Type_In_Scope (Standard_Standard)
1841 then
1842 Error := True;
1843 end if;
1844 end if;
1846 if Error then
1847 Error_Msg_Node_2 := Pack;
1848 Error_Msg_NE
1849 ("& not declared in&", N, Selector_Name (Name (N)));
1850 Set_Etype (N, Any_Type);
1851 return;
1853 -- Detect a mismatch between the context type and the result type
1854 -- in the named package, which is otherwise not detected if the
1855 -- operands are universal. Check is only needed if source entity is
1856 -- an operator, not a function that renames an operator.
1858 elsif Nkind (Parent (N)) /= N_Type_Conversion
1859 and then Ekind (Entity (Name (N))) = E_Operator
1860 and then Is_Numeric_Type (Typ)
1861 and then not Is_Universal_Numeric_Type (Typ)
1862 and then Scope (Base_Type (Typ)) /= Pack
1863 and then not In_Instance
1864 then
1865 if Is_Fixed_Point_Type (Typ)
1866 and then Op_Name in Name_Op_Multiply | Name_Op_Divide
1867 then
1868 -- Already checked above
1870 null;
1872 -- Operator may be defined in an extension of System
1874 elsif Present (System_Aux_Id)
1875 and then Present (Opnd_Type)
1876 and then Scope (Opnd_Type) = System_Aux_Id
1877 then
1878 null;
1880 else
1881 -- Could we use Wrong_Type here??? (this would require setting
1882 -- Etype (N) to the actual type found where Typ was expected).
1884 Error_Msg_NE ("expect }", N, Typ);
1885 end if;
1886 end if;
1887 end if;
1889 Set_Chars (Op_Node, Op_Name);
1891 if not Is_Private_Type (Etype (N)) then
1892 Set_Etype (Op_Node, Base_Type (Etype (N)));
1893 else
1894 Set_Etype (Op_Node, Etype (N));
1895 end if;
1897 -- If this is a call to a function that renames a predefined equality,
1898 -- the renaming declaration provides a type that must be used to
1899 -- resolve the operands. This must be done now because resolution of
1900 -- the equality node will not resolve any remaining ambiguity, and it
1901 -- assumes that the first operand is not overloaded.
1903 if Op_Name in Name_Op_Eq | Name_Op_Ne
1904 and then Ekind (Func) = E_Function
1905 and then Is_Overloaded (Act1)
1906 then
1907 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1908 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1909 end if;
1911 Set_Entity (Op_Node, Op_Id);
1912 Generate_Reference (Op_Id, N, ' ');
1914 Rewrite (N, Op_Node);
1916 -- If this is an arithmetic operator and the result type is private,
1917 -- the operands and the result must be wrapped in conversion to
1918 -- expose the underlying numeric type and expand the proper checks,
1919 -- e.g. on division.
1921 if Is_Private_Type (Typ) then
1922 case Nkind (N) is
1923 when N_Op_Add
1924 | N_Op_Divide
1925 | N_Op_Expon
1926 | N_Op_Mod
1927 | N_Op_Multiply
1928 | N_Op_Rem
1929 | N_Op_Subtract
1931 Resolve_Intrinsic_Operator (N, Typ);
1933 when N_Op_Abs
1934 | N_Op_Minus
1935 | N_Op_Plus
1937 Resolve_Intrinsic_Unary_Operator (N, Typ);
1939 when others =>
1940 Resolve (N, Typ);
1941 end case;
1942 else
1943 Resolve (N, Typ);
1944 end if;
1945 end Make_Call_Into_Operator;
1947 -------------------
1948 -- Operator_Kind --
1949 -------------------
1951 function Operator_Kind
1952 (Op_Name : Name_Id;
1953 Is_Binary : Boolean) return Node_Kind
1955 Kind : Node_Kind;
1957 begin
1958 -- Use CASE statement or array???
1960 if Is_Binary then
1961 if Op_Name = Name_Op_And then
1962 Kind := N_Op_And;
1963 elsif Op_Name = Name_Op_Or then
1964 Kind := N_Op_Or;
1965 elsif Op_Name = Name_Op_Xor then
1966 Kind := N_Op_Xor;
1967 elsif Op_Name = Name_Op_Eq then
1968 Kind := N_Op_Eq;
1969 elsif Op_Name = Name_Op_Ne then
1970 Kind := N_Op_Ne;
1971 elsif Op_Name = Name_Op_Lt then
1972 Kind := N_Op_Lt;
1973 elsif Op_Name = Name_Op_Le then
1974 Kind := N_Op_Le;
1975 elsif Op_Name = Name_Op_Gt then
1976 Kind := N_Op_Gt;
1977 elsif Op_Name = Name_Op_Ge then
1978 Kind := N_Op_Ge;
1979 elsif Op_Name = Name_Op_Add then
1980 Kind := N_Op_Add;
1981 elsif Op_Name = Name_Op_Subtract then
1982 Kind := N_Op_Subtract;
1983 elsif Op_Name = Name_Op_Concat then
1984 Kind := N_Op_Concat;
1985 elsif Op_Name = Name_Op_Multiply then
1986 Kind := N_Op_Multiply;
1987 elsif Op_Name = Name_Op_Divide then
1988 Kind := N_Op_Divide;
1989 elsif Op_Name = Name_Op_Mod then
1990 Kind := N_Op_Mod;
1991 elsif Op_Name = Name_Op_Rem then
1992 Kind := N_Op_Rem;
1993 elsif Op_Name = Name_Op_Expon then
1994 Kind := N_Op_Expon;
1995 else
1996 raise Program_Error;
1997 end if;
1999 -- Unary operators
2001 else
2002 if Op_Name = Name_Op_Add then
2003 Kind := N_Op_Plus;
2004 elsif Op_Name = Name_Op_Subtract then
2005 Kind := N_Op_Minus;
2006 elsif Op_Name = Name_Op_Abs then
2007 Kind := N_Op_Abs;
2008 elsif Op_Name = Name_Op_Not then
2009 Kind := N_Op_Not;
2010 else
2011 raise Program_Error;
2012 end if;
2013 end if;
2015 return Kind;
2016 end Operator_Kind;
2018 ----------------------------
2019 -- Preanalyze_And_Resolve --
2020 ----------------------------
2022 procedure Preanalyze_And_Resolve
2023 (N : Node_Id;
2024 T : Entity_Id;
2025 With_Freezing : Boolean)
2027 Save_Full_Analysis : constant Boolean := Full_Analysis;
2028 Save_Must_Not_Freeze : constant Boolean := Must_Not_Freeze (N);
2029 Save_Preanalysis_Count : constant Nat :=
2030 Inside_Preanalysis_Without_Freezing;
2031 begin
2032 pragma Assert (Nkind (N) in N_Subexpr);
2034 if not With_Freezing then
2035 Set_Must_Not_Freeze (N);
2036 Inside_Preanalysis_Without_Freezing :=
2037 Inside_Preanalysis_Without_Freezing + 1;
2038 end if;
2040 Full_Analysis := False;
2041 Expander_Mode_Save_And_Set (False);
2043 -- Normally, we suppress all checks for this preanalysis. There is no
2044 -- point in processing them now, since they will be applied properly
2045 -- and in the proper location when the default expressions reanalyzed
2046 -- and reexpanded later on. We will also have more information at that
2047 -- point for possible suppression of individual checks.
2049 -- However, in SPARK mode, most expansion is suppressed, and this
2050 -- later reanalysis and reexpansion may not occur. SPARK mode does
2051 -- require the setting of checking flags for proof purposes, so we
2052 -- do the SPARK preanalysis without suppressing checks.
2054 -- This special handling for SPARK mode is required for example in the
2055 -- case of Ada 2012 constructs such as quantified expressions, which are
2056 -- expanded in two separate steps.
2058 if GNATprove_Mode then
2059 Analyze_And_Resolve (N, T);
2060 else
2061 Analyze_And_Resolve (N, T, Suppress => All_Checks);
2062 end if;
2064 Expander_Mode_Restore;
2065 Full_Analysis := Save_Full_Analysis;
2067 if not With_Freezing then
2068 Set_Must_Not_Freeze (N, Save_Must_Not_Freeze);
2069 Inside_Preanalysis_Without_Freezing :=
2070 Inside_Preanalysis_Without_Freezing - 1;
2071 end if;
2073 pragma Assert
2074 (Inside_Preanalysis_Without_Freezing = Save_Preanalysis_Count);
2075 end Preanalyze_And_Resolve;
2077 ----------------------------
2078 -- Preanalyze_And_Resolve --
2079 ----------------------------
2081 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
2082 begin
2083 Preanalyze_And_Resolve (N, T, With_Freezing => False);
2084 end Preanalyze_And_Resolve;
2086 -- Version without context type
2088 procedure Preanalyze_And_Resolve (N : Node_Id) is
2089 Save_Full_Analysis : constant Boolean := Full_Analysis;
2091 begin
2092 Full_Analysis := False;
2093 Expander_Mode_Save_And_Set (False);
2095 Analyze (N);
2096 Resolve (N, Etype (N), Suppress => All_Checks);
2098 Expander_Mode_Restore;
2099 Full_Analysis := Save_Full_Analysis;
2100 end Preanalyze_And_Resolve;
2102 ------------------------------------------
2103 -- Preanalyze_With_Freezing_And_Resolve --
2104 ------------------------------------------
2106 procedure Preanalyze_With_Freezing_And_Resolve
2107 (N : Node_Id;
2108 T : Entity_Id)
2110 begin
2111 Preanalyze_And_Resolve (N, T, With_Freezing => True);
2112 end Preanalyze_With_Freezing_And_Resolve;
2114 ----------------------------------
2115 -- Replace_Actual_Discriminants --
2116 ----------------------------------
2118 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
2119 Loc : constant Source_Ptr := Sloc (N);
2120 Tsk : Node_Id := Empty;
2122 function Process_Discr (Nod : Node_Id) return Traverse_Result;
2123 -- Comment needed???
2125 -------------------
2126 -- Process_Discr --
2127 -------------------
2129 function Process_Discr (Nod : Node_Id) return Traverse_Result is
2130 Ent : Entity_Id;
2132 begin
2133 if Nkind (Nod) = N_Identifier then
2134 Ent := Entity (Nod);
2136 if Present (Ent)
2137 and then Ekind (Ent) = E_Discriminant
2138 then
2139 Rewrite (Nod,
2140 Make_Selected_Component (Loc,
2141 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
2142 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
2144 Set_Etype (Nod, Etype (Ent));
2145 end if;
2147 end if;
2149 return OK;
2150 end Process_Discr;
2152 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
2154 -- Start of processing for Replace_Actual_Discriminants
2156 begin
2157 if Expander_Active then
2158 null;
2160 -- Allow the replacement of concurrent discriminants in GNATprove even
2161 -- though this is a light expansion activity. Note that generic units
2162 -- are not modified.
2164 elsif GNATprove_Mode and not Inside_A_Generic then
2165 null;
2167 else
2168 return;
2169 end if;
2171 if Nkind (Name (N)) = N_Selected_Component then
2172 Tsk := Prefix (Name (N));
2174 elsif Nkind (Name (N)) = N_Indexed_Component then
2175 Tsk := Prefix (Prefix (Name (N)));
2176 end if;
2178 if Present (Tsk) then
2179 Replace_Discrs (Default);
2180 end if;
2181 end Replace_Actual_Discriminants;
2183 -------------
2184 -- Resolve --
2185 -------------
2187 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
2188 Ambiguous : Boolean := False;
2189 Ctx_Type : Entity_Id := Typ;
2190 Expr_Type : Entity_Id := Empty; -- prevent junk warning
2191 Err_Type : Entity_Id := Empty;
2192 Found : Boolean := False;
2193 From_Lib : Boolean;
2194 I : Interp_Index;
2195 I1 : Interp_Index := 0; -- prevent junk warning
2196 It : Interp;
2197 It1 : Interp;
2198 Seen : Entity_Id := Empty; -- prevent junk warning
2200 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
2201 -- Determine whether a node comes from a predefined library unit or
2202 -- Standard.
2204 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
2205 -- Try and fix up a literal so that it matches its expected type. New
2206 -- literals are manufactured if necessary to avoid cascaded errors.
2208 procedure Report_Ambiguous_Argument;
2209 -- Additional diagnostics when an ambiguous call has an ambiguous
2210 -- argument (typically a controlling actual).
2212 procedure Resolution_Failed;
2213 -- Called when attempt at resolving current expression fails
2215 ------------------------------------
2216 -- Comes_From_Predefined_Lib_Unit --
2217 -------------------------------------
2219 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
2220 begin
2221 return
2222 Sloc (Nod) = Standard_Location or else In_Predefined_Unit (Nod);
2223 end Comes_From_Predefined_Lib_Unit;
2225 --------------------
2226 -- Patch_Up_Value --
2227 --------------------
2229 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
2230 begin
2231 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
2232 Rewrite (N,
2233 Make_Real_Literal (Sloc (N),
2234 Realval => UR_From_Uint (Intval (N))));
2235 Set_Etype (N, Universal_Real);
2236 Set_Is_Static_Expression (N);
2238 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
2239 Rewrite (N,
2240 Make_Integer_Literal (Sloc (N),
2241 Intval => UR_To_Uint (Realval (N))));
2242 Set_Etype (N, Universal_Integer);
2243 Set_Is_Static_Expression (N);
2245 elsif Nkind (N) = N_String_Literal
2246 and then Is_Character_Type (Typ)
2247 then
2248 Set_Character_Literal_Name (Get_Char_Code ('A'));
2249 Rewrite (N,
2250 Make_Character_Literal (Sloc (N),
2251 Chars => Name_Find,
2252 Char_Literal_Value =>
2253 UI_From_CC (Get_Char_Code ('A'))));
2254 Set_Etype (N, Any_Character);
2255 Set_Is_Static_Expression (N);
2257 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
2258 Rewrite (N,
2259 Make_String_Literal (Sloc (N),
2260 Strval => End_String));
2262 elsif Nkind (N) = N_Range then
2263 Patch_Up_Value (Low_Bound (N), Typ);
2264 Patch_Up_Value (High_Bound (N), Typ);
2265 end if;
2266 end Patch_Up_Value;
2268 -------------------------------
2269 -- Report_Ambiguous_Argument --
2270 -------------------------------
2272 procedure Report_Ambiguous_Argument is
2273 Arg : constant Node_Id := First (Parameter_Associations (N));
2274 I : Interp_Index;
2275 It : Interp;
2277 begin
2278 if Nkind (Arg) = N_Function_Call
2279 and then Is_Entity_Name (Name (Arg))
2280 and then Is_Overloaded (Name (Arg))
2281 then
2282 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
2284 -- Examine possible interpretations, and adapt the message
2285 -- for inherited subprograms declared by a type derivation.
2287 Get_First_Interp (Name (Arg), I, It);
2288 while Present (It.Nam) loop
2289 Error_Msg_Sloc := Sloc (It.Nam);
2291 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
2292 Error_Msg_N ("interpretation (inherited) #!", Arg);
2293 else
2294 Error_Msg_N ("interpretation #!", Arg);
2295 end if;
2297 Get_Next_Interp (I, It);
2298 end loop;
2299 end if;
2301 -- Additional message and hint if the ambiguity involves an Ada 2022
2302 -- container aggregate.
2304 Check_Ambiguous_Aggregate (N);
2305 end Report_Ambiguous_Argument;
2307 -----------------------
2308 -- Resolution_Failed --
2309 -----------------------
2311 procedure Resolution_Failed is
2312 begin
2313 Patch_Up_Value (N, Typ);
2315 -- Set the type to the desired one to minimize cascaded errors. Note
2316 -- that this is an approximation and does not work in all cases.
2318 Set_Etype (N, Typ);
2320 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
2321 Set_Is_Overloaded (N, False);
2323 -- The caller will return without calling the expander, so we need
2324 -- to set the analyzed flag. Note that it is fine to set Analyzed
2325 -- to True even if we are in the middle of a shallow analysis,
2326 -- (see the spec of sem for more details) since this is an error
2327 -- situation anyway, and there is no point in repeating the
2328 -- analysis later (indeed it won't work to repeat it later, since
2329 -- we haven't got a clear resolution of which entity is being
2330 -- referenced.)
2332 Set_Analyzed (N, True);
2333 return;
2334 end Resolution_Failed;
2336 -- Start of processing for Resolve
2338 begin
2339 if N = Error then
2340 return;
2341 end if;
2343 -- Access attribute on remote subprogram cannot be used for a non-remote
2344 -- access-to-subprogram type.
2346 if Nkind (N) = N_Attribute_Reference
2347 and then Attribute_Name (N) in Name_Access
2348 | Name_Unrestricted_Access
2349 | Name_Unchecked_Access
2350 and then Comes_From_Source (N)
2351 and then Is_Entity_Name (Prefix (N))
2352 and then Is_Subprogram (Entity (Prefix (N)))
2353 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
2354 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
2355 then
2356 Error_Msg_N
2357 ("prefix must statically denote a non-remote subprogram", N);
2358 end if;
2360 From_Lib := Comes_From_Predefined_Lib_Unit (N);
2362 -- If the context is a Remote_Access_To_Subprogram, access attributes
2363 -- must be resolved with the corresponding fat pointer. There is no need
2364 -- to check for the attribute name since the return type of an
2365 -- attribute is never a remote type.
2367 if Nkind (N) = N_Attribute_Reference
2368 and then Comes_From_Source (N)
2369 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2370 then
2371 declare
2372 Attr : constant Attribute_Id :=
2373 Get_Attribute_Id (Attribute_Name (N));
2374 Pref : constant Node_Id := Prefix (N);
2375 Decl : Node_Id;
2376 Spec : Node_Id;
2377 Is_Remote : Boolean := True;
2379 begin
2380 -- Check that Typ is a remote access-to-subprogram type
2382 if Is_Remote_Access_To_Subprogram_Type (Typ) then
2384 -- Prefix (N) must statically denote a remote subprogram
2385 -- declared in a package specification.
2387 if Attr = Attribute_Access or else
2388 Attr = Attribute_Unchecked_Access or else
2389 Attr = Attribute_Unrestricted_Access
2390 then
2391 Decl := Unit_Declaration_Node (Entity (Pref));
2393 if Nkind (Decl) = N_Subprogram_Body then
2394 Spec := Corresponding_Spec (Decl);
2396 if Present (Spec) then
2397 Decl := Unit_Declaration_Node (Spec);
2398 end if;
2399 end if;
2401 Spec := Parent (Decl);
2403 if not Is_Entity_Name (Prefix (N))
2404 or else Nkind (Spec) /= N_Package_Specification
2405 or else
2406 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2407 then
2408 Is_Remote := False;
2409 Error_Msg_N
2410 ("prefix must statically denote a remote subprogram",
2412 end if;
2414 -- If we are generating code in distributed mode, perform
2415 -- semantic checks against corresponding remote entities.
2417 if Expander_Active
2418 and then Get_PCS_Name /= Name_No_DSA
2419 then
2420 Check_Subtype_Conformant
2421 (New_Id => Entity (Prefix (N)),
2422 Old_Id => Designated_Type
2423 (Corresponding_Remote_Type (Typ)),
2424 Err_Loc => N);
2426 if Is_Remote then
2427 Process_Remote_AST_Attribute (N, Typ);
2428 end if;
2429 end if;
2430 end if;
2431 end if;
2432 end;
2433 end if;
2435 Debug_A_Entry ("resolving ", N);
2437 if Debug_Flag_V then
2438 Write_Overloads (N);
2439 end if;
2441 if Comes_From_Source (N) then
2442 if Is_Fixed_Point_Type (Typ) then
2443 Check_Restriction (No_Fixed_Point, N);
2445 elsif Is_Floating_Point_Type (Typ)
2446 and then Typ /= Universal_Real
2447 and then Typ /= Any_Real
2448 then
2449 Check_Restriction (No_Floating_Point, N);
2450 end if;
2451 end if;
2453 -- Return if already analyzed
2455 if Analyzed (N) then
2456 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2457 Analyze_Dimension (N);
2458 return;
2460 -- Any case of Any_Type as the Etype value means that we had a
2461 -- previous error.
2463 elsif Etype (N) = Any_Type then
2464 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2465 return;
2466 end if;
2468 Check_Parameterless_Call (N);
2470 -- The resolution of an Expression_With_Actions is determined by
2471 -- its Expression, but if the node comes from source it is a
2472 -- Declare_Expression and requires scope management.
2474 if Nkind (N) = N_Expression_With_Actions then
2475 if Comes_From_Source (N) and then N = Original_Node (N) then
2476 Resolve_Declare_Expression (N, Typ);
2477 else
2478 Resolve (Expression (N), Typ);
2479 end if;
2481 Found := True;
2482 Expr_Type := Etype (Expression (N));
2484 -- If not overloaded, then we know the type, and all that needs doing
2485 -- is to check that this type is compatible with the context.
2487 elsif not Is_Overloaded (N) then
2488 Found := Covers (Typ, Etype (N));
2489 Expr_Type := Etype (N);
2491 -- In the overloaded case, we must select the interpretation that
2492 -- is compatible with the context (i.e. the type passed to Resolve)
2494 else
2495 -- Loop through possible interpretations
2497 Get_First_Interp (N, I, It);
2498 Interp_Loop : while Present (It.Typ) loop
2499 if Debug_Flag_V then
2500 Write_Str ("Interp: ");
2501 Write_Interp (It);
2502 end if;
2504 -- We are only interested in interpretations that are compatible
2505 -- with the expected type, any other interpretations are ignored.
2507 if not Covers (Typ, It.Typ) then
2508 if Debug_Flag_V then
2509 Write_Str (" interpretation incompatible with context");
2510 Write_Eol;
2511 end if;
2513 else
2514 -- Skip the current interpretation if it is disabled by an
2515 -- abstract operator. This action is performed only when the
2516 -- type against which we are resolving is the same as the
2517 -- type of the interpretation.
2519 if Ada_Version >= Ada_2005
2520 and then It.Typ = Typ
2521 and then not Is_Universal_Numeric_Type (Typ)
2522 and then Present (It.Abstract_Op)
2523 then
2524 if Debug_Flag_V then
2525 Write_Line ("Skip.");
2526 end if;
2528 goto Continue;
2529 end if;
2531 -- First matching interpretation
2533 if not Found then
2534 Found := True;
2535 I1 := I;
2536 Seen := It.Nam;
2537 Expr_Type := It.Typ;
2539 -- Matching interpretation that is not the first, maybe an
2540 -- error, but there are some cases where preference rules are
2541 -- used to choose between the two possibilities. These and
2542 -- some more obscure cases are handled in Disambiguate.
2544 else
2545 -- If the current statement is part of a predefined library
2546 -- unit, then all interpretations which come from user level
2547 -- packages should not be considered. Check previous and
2548 -- current one.
2550 if From_Lib then
2551 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2552 goto Continue;
2554 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2556 -- Previous interpretation must be discarded
2558 I1 := I;
2559 Seen := It.Nam;
2560 Expr_Type := It.Typ;
2561 Set_Entity (N, Seen);
2562 goto Continue;
2563 end if;
2564 end if;
2566 -- Otherwise apply further disambiguation steps
2568 Error_Msg_Sloc := Sloc (Seen);
2569 It1 := Disambiguate (N, I1, I, Typ);
2571 -- Disambiguation has succeeded. Skip the remaining
2572 -- interpretations.
2574 if It1 /= No_Interp then
2575 Seen := It1.Nam;
2576 Expr_Type := It1.Typ;
2578 while Present (It.Typ) loop
2579 Get_Next_Interp (I, It);
2580 end loop;
2582 else
2583 -- Before we issue an ambiguity complaint, check for the
2584 -- case of a subprogram call where at least one of the
2585 -- arguments is Any_Type, and if so suppress the message,
2586 -- since it is a cascaded error. This can also happen for
2587 -- a generalized indexing operation.
2589 if Nkind (N) in N_Subprogram_Call
2590 or else (Nkind (N) = N_Indexed_Component
2591 and then Present (Generalized_Indexing (N)))
2592 then
2593 declare
2594 A : Node_Id;
2595 E : Node_Id;
2597 begin
2598 if Nkind (N) = N_Indexed_Component then
2599 Rewrite (N, Generalized_Indexing (N));
2600 end if;
2602 A := First_Actual (N);
2603 while Present (A) loop
2604 E := A;
2606 if Nkind (E) = N_Parameter_Association then
2607 E := Explicit_Actual_Parameter (E);
2608 end if;
2610 if Etype (E) = Any_Type then
2611 if Debug_Flag_V then
2612 Write_Str ("Any_Type in call");
2613 Write_Eol;
2614 end if;
2616 exit Interp_Loop;
2617 end if;
2619 Next_Actual (A);
2620 end loop;
2621 end;
2623 elsif Nkind (N) in N_Binary_Op
2624 and then (Etype (Left_Opnd (N)) = Any_Type
2625 or else Etype (Right_Opnd (N)) = Any_Type)
2626 then
2627 exit Interp_Loop;
2629 elsif Nkind (N) in N_Unary_Op
2630 and then Etype (Right_Opnd (N)) = Any_Type
2631 then
2632 exit Interp_Loop;
2633 end if;
2635 -- Not that special case, so issue message using the flag
2636 -- Ambiguous to control printing of the header message
2637 -- only at the start of an ambiguous set.
2639 if not Ambiguous then
2640 if Nkind (N) = N_Function_Call
2641 and then Nkind (Name (N)) = N_Explicit_Dereference
2642 then
2643 Error_Msg_N
2644 ("ambiguous expression (cannot resolve indirect "
2645 & "call)!", N);
2646 else
2647 Error_Msg_NE -- CODEFIX
2648 ("ambiguous expression (cannot resolve&)!",
2649 N, It.Nam);
2650 end if;
2652 Ambiguous := True;
2654 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2655 Error_Msg_N
2656 ("\\possible interpretation (inherited)#!", N);
2657 else
2658 Error_Msg_N -- CODEFIX
2659 ("\\possible interpretation#!", N);
2660 end if;
2662 if Nkind (N) in N_Subprogram_Call
2663 and then Present (Parameter_Associations (N))
2664 then
2665 Report_Ambiguous_Argument;
2666 end if;
2667 end if;
2669 Error_Msg_Sloc := Sloc (It.Nam);
2671 -- By default, the error message refers to the candidate
2672 -- interpretation. But if it is a predefined operator, it
2673 -- is implicitly declared at the declaration of the type
2674 -- of the operand. Recover the sloc of that declaration
2675 -- for the error message.
2677 if Nkind (N) in N_Op
2678 and then Scope (It.Nam) = Standard_Standard
2679 and then not Is_Overloaded (Right_Opnd (N))
2680 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2681 Standard_Standard
2682 then
2683 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2685 if Comes_From_Source (Err_Type)
2686 and then Present (Parent (Err_Type))
2687 then
2688 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2689 end if;
2691 elsif Nkind (N) in N_Binary_Op
2692 and then Scope (It.Nam) = Standard_Standard
2693 and then not Is_Overloaded (Left_Opnd (N))
2694 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2695 Standard_Standard
2696 then
2697 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2699 if Comes_From_Source (Err_Type)
2700 and then Present (Parent (Err_Type))
2701 then
2702 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2703 end if;
2705 -- If this is an indirect call, use the subprogram_type
2706 -- in the message, to have a meaningful location. Also
2707 -- indicate if this is an inherited operation, created
2708 -- by a type declaration.
2710 elsif Nkind (N) = N_Function_Call
2711 and then Nkind (Name (N)) = N_Explicit_Dereference
2712 and then Is_Type (It.Nam)
2713 then
2714 Err_Type := It.Nam;
2715 Error_Msg_Sloc :=
2716 Sloc (Associated_Node_For_Itype (Err_Type));
2717 else
2718 Err_Type := Empty;
2719 end if;
2721 if Nkind (N) in N_Op
2722 and then Scope (It.Nam) = Standard_Standard
2723 and then Present (Err_Type)
2724 then
2725 -- Special-case the message for universal_fixed
2726 -- operators, which are not declared with the type
2727 -- of the operand, but appear forever in Standard.
2729 if It.Typ = Universal_Fixed
2730 and then Scope (It.Nam) = Standard_Standard
2731 then
2732 Error_Msg_N
2733 ("\\possible interpretation as universal_fixed "
2734 & "operation (RM 4.5.5 (19))", N);
2735 else
2736 Error_Msg_N
2737 ("\\possible interpretation (predefined)#!", N);
2738 end if;
2740 elsif
2741 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2742 then
2743 Error_Msg_N
2744 ("\\possible interpretation (inherited)#!", N);
2745 else
2746 Error_Msg_N -- CODEFIX
2747 ("\\possible interpretation#!", N);
2748 end if;
2750 end if;
2751 end if;
2753 -- We have a matching interpretation, Expr_Type is the type
2754 -- from this interpretation, and Seen is the entity.
2756 -- For an operator, just set the entity name. The type will be
2757 -- set by the specific operator resolution routine.
2759 if Nkind (N) in N_Op then
2760 Set_Entity (N, Seen);
2761 Generate_Reference (Seen, N);
2763 elsif Nkind (N) in N_Case_Expression
2764 | N_Character_Literal
2765 | N_Delta_Aggregate
2766 | N_If_Expression
2767 then
2768 Set_Etype (N, Expr_Type);
2770 -- AI05-0139-2: Expression is overloaded because type has
2771 -- implicit dereference. The context may be the one that
2772 -- requires implicit dereferemce.
2774 elsif Has_Implicit_Dereference (Expr_Type) then
2775 Set_Etype (N, Expr_Type);
2776 Set_Is_Overloaded (N, False);
2778 -- If the expression is an entity, generate a reference
2779 -- to it, as this is not done for an overloaded construct
2780 -- during analysis.
2782 if Is_Entity_Name (N)
2783 and then Comes_From_Source (N)
2784 then
2785 Generate_Reference (Entity (N), N);
2787 -- Examine access discriminants of entity type,
2788 -- to check whether one of them yields the
2789 -- expected type.
2791 declare
2792 Disc : Entity_Id :=
2793 First_Discriminant (Etype (Entity (N)));
2795 begin
2796 while Present (Disc) loop
2797 exit when Is_Access_Type (Etype (Disc))
2798 and then Has_Implicit_Dereference (Disc)
2799 and then Designated_Type (Etype (Disc)) = Typ;
2801 Next_Discriminant (Disc);
2802 end loop;
2804 if Present (Disc) then
2805 Build_Explicit_Dereference (N, Disc);
2806 end if;
2807 end;
2808 end if;
2810 exit Interp_Loop;
2812 elsif Is_Overloaded (N)
2813 and then Present (It.Nam)
2814 and then Ekind (It.Nam) = E_Discriminant
2815 and then Has_Implicit_Dereference (It.Nam)
2816 then
2817 -- If the node is a general indexing, the dereference is
2818 -- is inserted when resolving the rewritten form, else
2819 -- insert it now.
2821 if Nkind (N) /= N_Indexed_Component
2822 or else No (Generalized_Indexing (N))
2823 then
2824 Build_Explicit_Dereference (N, It.Nam);
2825 end if;
2827 -- For an explicit dereference, attribute reference, range,
2828 -- short-circuit form (which is not an operator node), or call
2829 -- with a name that is an explicit dereference, there is
2830 -- nothing to be done at this point.
2832 elsif Nkind (N) in N_Attribute_Reference
2833 | N_And_Then
2834 | N_Explicit_Dereference
2835 | N_Identifier
2836 | N_Indexed_Component
2837 | N_Or_Else
2838 | N_Range
2839 | N_Selected_Component
2840 | N_Slice
2841 or else Nkind (Name (N)) = N_Explicit_Dereference
2842 then
2843 null;
2845 -- For procedure or function calls, set the type of the name,
2846 -- and also the entity pointer for the prefix.
2848 elsif Nkind (N) in N_Subprogram_Call
2849 and then Is_Entity_Name (Name (N))
2850 then
2851 Set_Etype (Name (N), Expr_Type);
2852 Set_Entity (Name (N), Seen);
2853 Generate_Reference (Seen, Name (N));
2855 elsif Nkind (N) = N_Function_Call
2856 and then Nkind (Name (N)) = N_Selected_Component
2857 then
2858 Set_Etype (Name (N), Expr_Type);
2859 Set_Entity (Selector_Name (Name (N)), Seen);
2860 Generate_Reference (Seen, Selector_Name (Name (N)));
2862 -- For all other cases, just set the type of the Name
2864 else
2865 Set_Etype (Name (N), Expr_Type);
2866 end if;
2868 end if;
2870 <<Continue>>
2872 -- Move to next interpretation
2874 exit Interp_Loop when No (It.Typ);
2876 Get_Next_Interp (I, It);
2877 end loop Interp_Loop;
2878 end if;
2880 -- At this stage Found indicates whether or not an acceptable
2881 -- interpretation exists. If not, then we have an error, except that if
2882 -- the context is Any_Type as a result of some other error, then we
2883 -- suppress the error report.
2885 if not Found then
2886 if Typ /= Any_Type then
2888 -- If type we are looking for is Void, then this is the procedure
2889 -- call case, and the error is simply that what we gave is not a
2890 -- procedure name (we think of procedure calls as expressions with
2891 -- types internally, but the user doesn't think of them this way).
2893 if Typ = Standard_Void_Type then
2895 -- Special case message if function used as a procedure
2897 if Nkind (N) = N_Procedure_Call_Statement
2898 and then Is_Entity_Name (Name (N))
2899 and then Ekind (Entity (Name (N))) = E_Function
2900 then
2901 Error_Msg_NE
2902 ("cannot use call to function & as a statement",
2903 Name (N), Entity (Name (N)));
2904 Error_Msg_N
2905 ("\return value of a function call cannot be ignored",
2906 Name (N));
2908 -- Otherwise give general message (not clear what cases this
2909 -- covers, but no harm in providing for them).
2911 else
2912 Error_Msg_N ("expect procedure name in procedure call", N);
2913 end if;
2915 Found := True;
2917 -- Otherwise we do have a subexpression with the wrong type
2919 -- Check for the case of an allocator which uses an access type
2920 -- instead of the designated type. This is a common error and we
2921 -- specialize the message, posting an error on the operand of the
2922 -- allocator, complaining that we expected the designated type of
2923 -- the allocator.
2925 elsif Nkind (N) = N_Allocator
2926 and then Is_Access_Type (Typ)
2927 and then Is_Access_Type (Etype (N))
2928 and then Designated_Type (Etype (N)) = Typ
2929 then
2930 Wrong_Type (Expression (N), Designated_Type (Typ));
2931 Found := True;
2933 -- Check for view mismatch on Null in instances, for which the
2934 -- view-swapping mechanism has no identifier.
2936 elsif (In_Instance or else In_Inlined_Body)
2937 and then (Nkind (N) = N_Null)
2938 and then Is_Private_Type (Typ)
2939 and then Is_Access_Type (Full_View (Typ))
2940 then
2941 Resolve (N, Full_View (Typ));
2942 Set_Etype (N, Typ);
2943 return;
2945 -- Check for an aggregate. Sometimes we can get bogus aggregates
2946 -- from misuse of parentheses, and we are about to complain about
2947 -- the aggregate without even looking inside it.
2949 -- Instead, if we have an aggregate of type Any_Composite, then
2950 -- analyze and resolve the component fields, and then only issue
2951 -- another message if we get no errors doing this (otherwise
2952 -- assume that the errors in the aggregate caused the problem).
2954 elsif Nkind (N) = N_Aggregate
2955 and then Etype (N) = Any_Composite
2956 then
2957 if Ada_Version >= Ada_2022
2958 and then Has_Aspect (Typ, Aspect_Aggregate)
2959 then
2960 Resolve_Container_Aggregate (N, Typ);
2962 if Expander_Active then
2963 Expand (N);
2964 end if;
2965 return;
2966 end if;
2968 -- Disable expansion in any case. If there is a type mismatch
2969 -- it may be fatal to try to expand the aggregate. The flag
2970 -- would otherwise be set to false when the error is posted.
2972 Expander_Active := False;
2974 declare
2975 procedure Check_Aggr (Aggr : Node_Id);
2976 -- Check one aggregate, and set Found to True if we have a
2977 -- definite error in any of its elements
2979 procedure Check_Elmt (Aelmt : Node_Id);
2980 -- Check one element of aggregate and set Found to True if
2981 -- we definitely have an error in the element.
2983 ----------------
2984 -- Check_Aggr --
2985 ----------------
2987 procedure Check_Aggr (Aggr : Node_Id) is
2988 Elmt : Node_Id;
2990 begin
2991 if Present (Expressions (Aggr)) then
2992 Elmt := First (Expressions (Aggr));
2993 while Present (Elmt) loop
2994 Check_Elmt (Elmt);
2995 Next (Elmt);
2996 end loop;
2997 end if;
2999 if Present (Component_Associations (Aggr)) then
3000 Elmt := First (Component_Associations (Aggr));
3001 while Present (Elmt) loop
3003 -- If this is a default-initialized component, then
3004 -- there is nothing to check. The box will be
3005 -- replaced by the appropriate call during late
3006 -- expansion.
3008 if Nkind (Elmt) /= N_Iterated_Component_Association
3009 and then not Box_Present (Elmt)
3010 then
3011 Check_Elmt (Expression (Elmt));
3012 end if;
3014 Next (Elmt);
3015 end loop;
3016 end if;
3017 end Check_Aggr;
3019 ----------------
3020 -- Check_Elmt --
3021 ----------------
3023 procedure Check_Elmt (Aelmt : Node_Id) is
3024 begin
3025 -- If we have a nested aggregate, go inside it (to
3026 -- attempt a naked analyze-resolve of the aggregate can
3027 -- cause undesirable cascaded errors). Do not resolve
3028 -- expression if it needs a type from context, as for
3029 -- integer * fixed expression.
3031 if Nkind (Aelmt) = N_Aggregate then
3032 Check_Aggr (Aelmt);
3034 else
3035 Analyze (Aelmt);
3037 if not Is_Overloaded (Aelmt)
3038 and then Etype (Aelmt) /= Any_Fixed
3039 then
3040 Resolve (Aelmt);
3041 end if;
3043 if Etype (Aelmt) = Any_Type then
3044 Found := True;
3045 end if;
3046 end if;
3047 end Check_Elmt;
3049 begin
3050 Check_Aggr (N);
3051 end;
3052 end if;
3054 -- If node is a literal and context type has a user-defined
3055 -- literal aspect, rewrite node as a call to the corresponding
3056 -- function, which plays the role of an implicit conversion.
3058 if Nkind (N) in
3059 N_Numeric_Or_String_Literal | N_Identifier
3060 and then Has_Applicable_User_Defined_Literal (N, Typ)
3061 then
3062 Analyze_And_Resolve (N, Typ);
3063 return;
3064 end if;
3066 -- Looks like we have a type error, but check for special case
3067 -- of Address wanted, integer found, with the configuration pragma
3068 -- Allow_Integer_Address active. If we have this case, introduce
3069 -- an unchecked conversion to allow the integer expression to be
3070 -- treated as an Address. The reverse case of integer wanted,
3071 -- Address found, is treated in an analogous manner.
3073 if Address_Integer_Convert_OK (Typ, Etype (N)) then
3074 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
3075 Analyze_And_Resolve (N, Typ);
3076 return;
3078 -- Under relaxed RM semantics silently replace occurrences of null
3079 -- by System.Null_Address.
3081 elsif Null_To_Null_Address_Convert_OK (N, Typ) then
3082 Replace_Null_By_Null_Address (N);
3083 Analyze_And_Resolve (N, Typ);
3084 return;
3085 end if;
3087 -- That special Allow_Integer_Address check did not apply, so we
3088 -- have a real type error. If an error message was issued already,
3089 -- Found got reset to True, so if it's still False, issue standard
3090 -- Wrong_Type message.
3092 if not Found then
3093 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
3094 declare
3095 Subp_Name : Node_Id;
3097 begin
3098 if Is_Entity_Name (Name (N)) then
3099 Subp_Name := Name (N);
3101 elsif Nkind (Name (N)) = N_Selected_Component then
3103 -- Protected operation: retrieve operation name
3105 Subp_Name := Selector_Name (Name (N));
3107 else
3108 raise Program_Error;
3109 end if;
3111 Error_Msg_Node_2 := Typ;
3112 Error_Msg_NE
3113 ("no visible interpretation of& matches expected type&",
3114 N, Subp_Name);
3115 end;
3117 if All_Errors_Mode then
3118 declare
3119 Index : Interp_Index;
3120 It : Interp;
3122 begin
3123 Error_Msg_N ("\\possible interpretations:", N);
3125 Get_First_Interp (Name (N), Index, It);
3126 while Present (It.Nam) loop
3127 Error_Msg_Sloc := Sloc (It.Nam);
3128 Error_Msg_Node_2 := It.Nam;
3129 Error_Msg_NE
3130 ("\\ type& for & declared#", N, It.Typ);
3131 Get_Next_Interp (Index, It);
3132 end loop;
3133 end;
3135 else
3136 Error_Msg_N ("\use -gnatf for details", N);
3137 end if;
3139 -- Recognize the case of a quantified expression being mistaken
3140 -- for an iterated component association because the user
3141 -- forgot the "all" or "some" keyword after "for". Because the
3142 -- error message starts with "missing ALL", we automatically
3143 -- benefit from the associated CODEFIX, which requires that
3144 -- the message is located on the identifier following "for"
3145 -- in order for the CODEFIX to insert "all" in the right place.
3147 elsif Nkind (N) = N_Aggregate
3148 and then List_Length (Component_Associations (N)) = 1
3149 and then Nkind (First (Component_Associations (N)))
3150 = N_Iterated_Component_Association
3151 and then Is_Boolean_Type (Typ)
3152 then
3153 Error_Msg_N -- CODEFIX
3154 ("missing ALL or SOME in quantified expression",
3155 Defining_Identifier (First (Component_Associations (N))));
3157 -- For an operator with no interpretation, check whether
3158 -- one of its operands may be a user-defined literal.
3160 elsif Nkind (N) in N_Op
3161 and then Try_User_Defined_Literal (N, Typ)
3162 then
3163 return;
3165 else
3166 Wrong_Type (N, Typ);
3167 end if;
3168 end if;
3169 end if;
3171 Resolution_Failed;
3172 return;
3174 -- Test if we have more than one interpretation for the context
3176 elsif Ambiguous then
3177 Resolution_Failed;
3178 return;
3180 -- Only one interpretation
3182 else
3183 -- Prevent implicit conversions between access-to-subprogram types
3184 -- with different strub modes. Explicit conversions are acceptable in
3185 -- some circumstances. We don't have to be concerned about data or
3186 -- access-to-data types. Conversions between data types can safely
3187 -- drop or add strub attributes from types, because strub effects are
3188 -- associated with the locations rather than values. E.g., converting
3189 -- a hypothetical Strub_Integer variable to Integer would load the
3190 -- value from the variable, enabling stack scrabbing for the
3191 -- enclosing subprogram, and then convert the value to Integer. As
3192 -- for conversions between access-to-data types, that's no different
3193 -- from any other case of type punning.
3195 if Is_Access_Type (Typ)
3196 and then Ekind (Designated_Type (Typ)) = E_Subprogram_Type
3197 and then Is_Access_Type (Expr_Type)
3198 and then Ekind (Designated_Type (Expr_Type)) = E_Subprogram_Type
3199 then
3200 Check_Same_Strub_Mode
3201 (Designated_Type (Typ), Designated_Type (Expr_Type));
3202 end if;
3204 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
3205 -- the "+" on T is abstract, and the operands are of universal type,
3206 -- the above code will have (incorrectly) resolved the "+" to the
3207 -- universal one in Standard. Therefore check for this case and give
3208 -- an error. We can't do this earlier, because it would cause legal
3209 -- cases to get errors (when some other type has an abstract "+").
3211 if Ada_Version >= Ada_2005
3212 and then Nkind (N) in N_Op
3213 and then Is_Overloaded (N)
3214 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
3215 then
3216 Get_First_Interp (N, I, It);
3217 while Present (It.Typ) loop
3218 if Present (It.Abstract_Op) and then
3219 Etype (It.Abstract_Op) = Typ
3220 then
3221 Error_Msg_NE
3222 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
3223 return;
3224 end if;
3226 Get_Next_Interp (I, It);
3227 end loop;
3228 end if;
3230 -- Here we have an acceptable interpretation for the context
3232 -- Propagate type information and normalize tree for various
3233 -- predefined operations. If the context only imposes a class of
3234 -- types, rather than a specific type, propagate the actual type
3235 -- downward.
3237 if Typ = Any_Integer or else
3238 Typ = Any_Boolean or else
3239 Typ = Any_Modular or else
3240 Typ = Any_Real or else
3241 Typ = Any_Discrete
3242 then
3243 Ctx_Type := Expr_Type;
3245 -- Any_Fixed is legal in a real context only if a specific fixed-
3246 -- point type is imposed. If Norman Cohen can be confused by this,
3247 -- it deserves a separate message.
3249 if Typ = Any_Real
3250 and then Expr_Type = Any_Fixed
3251 then
3252 Error_Msg_N ("illegal context for mixed mode operation", N);
3253 Set_Etype (N, Universal_Real);
3254 Ctx_Type := Universal_Real;
3255 end if;
3256 end if;
3258 -- A user-defined operator is transformed into a function call at
3259 -- this point, so that further processing knows that operators are
3260 -- really operators (i.e. are predefined operators). User-defined
3261 -- operators that are intrinsic are just renamings of the predefined
3262 -- ones, and need not be turned into calls either, but if they rename
3263 -- a different operator, we must transform the node accordingly.
3264 -- Instantiations of Unchecked_Conversion are intrinsic but are
3265 -- treated as functions, even if given an operator designator.
3267 if Nkind (N) in N_Op
3268 and then Present (Entity (N))
3269 and then Ekind (Entity (N)) /= E_Operator
3270 then
3271 if not Is_Predefined_Op (Entity (N)) then
3272 Rewrite_Operator_As_Call (N, Entity (N));
3274 elsif Present (Alias (Entity (N)))
3275 and then
3276 Nkind (Parent (Parent (Entity (N)))) =
3277 N_Subprogram_Renaming_Declaration
3278 then
3279 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
3281 -- If the node is rewritten, it will be fully resolved in
3282 -- Rewrite_Renamed_Operator.
3284 if Analyzed (N) then
3285 return;
3286 end if;
3287 end if;
3288 end if;
3290 case N_Subexpr'(Nkind (N)) is
3291 when N_Aggregate =>
3292 Resolve_Aggregate (N, Ctx_Type);
3294 when N_Allocator =>
3295 Resolve_Allocator (N, Ctx_Type);
3297 when N_Short_Circuit =>
3298 Resolve_Short_Circuit (N, Ctx_Type);
3300 when N_Attribute_Reference =>
3301 Resolve_Attribute (N, Ctx_Type);
3303 when N_Case_Expression =>
3304 Resolve_Case_Expression (N, Ctx_Type);
3306 when N_Character_Literal =>
3307 Resolve_Character_Literal (N, Ctx_Type);
3309 when N_Delta_Aggregate =>
3310 Resolve_Delta_Aggregate (N, Ctx_Type);
3312 when N_Expanded_Name =>
3313 Resolve_Entity_Name (N, Ctx_Type);
3315 when N_Explicit_Dereference =>
3316 Resolve_Explicit_Dereference (N, Ctx_Type);
3318 when N_Expression_With_Actions =>
3319 Resolve_Expression_With_Actions (N, Ctx_Type);
3321 when N_Extension_Aggregate =>
3322 Resolve_Extension_Aggregate (N, Ctx_Type);
3324 when N_Function_Call =>
3325 Resolve_Call (N, Ctx_Type);
3327 when N_Identifier =>
3328 Resolve_Entity_Name (N, Ctx_Type);
3330 when N_If_Expression =>
3331 Resolve_If_Expression (N, Ctx_Type);
3333 when N_Indexed_Component =>
3334 Resolve_Indexed_Component (N, Ctx_Type);
3336 when N_Integer_Literal =>
3337 Resolve_Integer_Literal (N, Ctx_Type);
3339 when N_Membership_Test =>
3340 Resolve_Membership_Op (N, Ctx_Type);
3342 when N_Null =>
3343 Resolve_Null (N, Ctx_Type);
3345 when N_Op_And
3346 | N_Op_Or
3347 | N_Op_Xor
3349 Resolve_Logical_Op (N, Ctx_Type);
3351 when N_Op_Eq
3352 | N_Op_Ne
3354 Resolve_Equality_Op (N, Ctx_Type);
3356 when N_Op_Ge
3357 | N_Op_Gt
3358 | N_Op_Le
3359 | N_Op_Lt
3361 Resolve_Comparison_Op (N, Ctx_Type);
3363 when N_Op_Not =>
3364 Resolve_Op_Not (N, Ctx_Type);
3366 when N_Op_Add
3367 | N_Op_Divide
3368 | N_Op_Mod
3369 | N_Op_Multiply
3370 | N_Op_Rem
3371 | N_Op_Subtract
3373 Resolve_Arithmetic_Op (N, Ctx_Type);
3375 when N_Op_Concat =>
3376 Resolve_Op_Concat (N, Ctx_Type);
3378 when N_Op_Expon =>
3379 Resolve_Op_Expon (N, Ctx_Type);
3381 when N_Op_Abs
3382 | N_Op_Minus
3383 | N_Op_Plus
3385 Resolve_Unary_Op (N, Ctx_Type);
3387 when N_Op_Shift =>
3388 Resolve_Shift (N, Ctx_Type);
3390 when N_Procedure_Call_Statement =>
3391 Resolve_Call (N, Ctx_Type);
3393 when N_Operator_Symbol =>
3394 Resolve_Operator_Symbol (N, Ctx_Type);
3396 when N_Qualified_Expression =>
3397 Resolve_Qualified_Expression (N, Ctx_Type);
3399 -- Why is the following null, needs a comment ???
3401 when N_Quantified_Expression =>
3402 null;
3404 when N_Raise_Expression =>
3405 Resolve_Raise_Expression (N, Ctx_Type);
3407 when N_Raise_xxx_Error =>
3408 Set_Etype (N, Ctx_Type);
3410 when N_Range =>
3411 Resolve_Range (N, Ctx_Type);
3413 when N_Real_Literal =>
3414 Resolve_Real_Literal (N, Ctx_Type);
3416 when N_Reference =>
3417 Resolve_Reference (N, Ctx_Type);
3419 when N_Selected_Component =>
3420 Resolve_Selected_Component (N, Ctx_Type);
3422 when N_Slice =>
3423 Resolve_Slice (N, Ctx_Type);
3425 when N_String_Literal =>
3426 Resolve_String_Literal (N, Ctx_Type);
3428 when N_Target_Name =>
3429 Resolve_Target_Name (N, Ctx_Type);
3431 when N_Type_Conversion =>
3432 Resolve_Type_Conversion (N, Ctx_Type);
3434 when N_Unchecked_Expression =>
3435 Resolve_Unchecked_Expression (N, Ctx_Type);
3437 when N_Unchecked_Type_Conversion =>
3438 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
3439 end case;
3441 -- Mark relevant use-type and use-package clauses as effective using
3442 -- the original node because constant folding may have occurred and
3443 -- removed references that need to be examined.
3445 if Nkind (Original_Node (N)) in N_Op then
3446 Mark_Use_Clauses (Original_Node (N));
3447 end if;
3449 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
3450 -- expression of an anonymous access type that occurs in the context
3451 -- of a named general access type, except when the expression is that
3452 -- of a membership test. This ensures proper legality checking in
3453 -- terms of allowed conversions (expressions that would be illegal to
3454 -- convert implicitly are allowed in membership tests).
3456 if Ada_Version >= Ada_2012
3457 and then Ekind (Base_Type (Ctx_Type)) = E_General_Access_Type
3458 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
3459 and then Nkind (Parent (N)) not in N_Membership_Test
3460 then
3461 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
3462 Analyze_And_Resolve (N, Ctx_Type);
3463 end if;
3465 -- If the subexpression was replaced by a non-subexpression, then
3466 -- all we do is to expand it. The only legitimate case we know of
3467 -- is converting procedure call statement to entry call statements,
3468 -- but there may be others, so we are making this test general.
3470 if Nkind (N) not in N_Subexpr then
3471 Debug_A_Exit ("resolving ", N, " (done)");
3472 Expand (N);
3473 return;
3474 end if;
3476 -- The expression is definitely NOT overloaded at this point, so
3477 -- we reset the Is_Overloaded flag to avoid any confusion when
3478 -- reanalyzing the node.
3480 Set_Is_Overloaded (N, False);
3482 -- Freeze expression type, entity if it is a name, and designated
3483 -- type if it is an allocator (RM 13.14(10,11,13)).
3485 -- Now that the resolution of the type of the node is complete, and
3486 -- we did not detect an error, we can expand this node. We skip the
3487 -- expand call if we are in a default expression, see section
3488 -- "Handling of Default Expressions" in Sem spec.
3490 Debug_A_Exit ("resolving ", N, " (done)");
3492 -- We unconditionally freeze the expression, even if we are in
3493 -- default expression mode (the Freeze_Expression routine tests this
3494 -- flag and only freezes static types if it is set).
3496 -- Ada 2012 (AI05-177): The declaration of an expression function
3497 -- does not cause freezing, but we never reach here in that case.
3498 -- Here we are resolving the corresponding expanded body, so we do
3499 -- need to perform normal freezing.
3501 -- As elsewhere we do not emit freeze node within a generic.
3503 if not Inside_A_Generic then
3504 Freeze_Expression (N);
3505 end if;
3507 -- Now we can do the expansion
3509 Expand (N);
3510 end if;
3511 end Resolve;
3513 -------------
3514 -- Resolve --
3515 -------------
3517 -- Version with check(s) suppressed
3519 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3520 begin
3521 if Suppress = All_Checks then
3522 declare
3523 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3524 begin
3525 Scope_Suppress.Suppress := (others => True);
3526 Resolve (N, Typ);
3527 Scope_Suppress.Suppress := Sva;
3528 end;
3530 else
3531 declare
3532 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3533 begin
3534 Scope_Suppress.Suppress (Suppress) := True;
3535 Resolve (N, Typ);
3536 Scope_Suppress.Suppress (Suppress) := Svg;
3537 end;
3538 end if;
3539 end Resolve;
3541 -------------
3542 -- Resolve --
3543 -------------
3545 -- Version with implicit type
3547 procedure Resolve (N : Node_Id) is
3548 begin
3549 Resolve (N, Etype (N));
3550 end Resolve;
3552 ---------------------
3553 -- Resolve_Actuals --
3554 ---------------------
3556 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3557 Loc : constant Source_Ptr := Sloc (N);
3558 A : Node_Id;
3559 A_Typ : Entity_Id := Empty; -- init to avoid warning
3560 F : Entity_Id;
3561 F_Typ : Entity_Id;
3562 Prev : Node_Id := Empty;
3563 Orig_A : Node_Id;
3564 Real_F : Entity_Id := Empty; -- init to avoid warning
3566 Real_Subp : Entity_Id;
3567 -- If the subprogram being called is an inherited operation for
3568 -- a formal derived type in an instance, Real_Subp is the subprogram
3569 -- that will be called. It may have different formal names than the
3570 -- operation of the formal in the generic, so after actual is resolved
3571 -- the name of the actual in a named association must carry the name
3572 -- of the actual of the subprogram being called.
3574 procedure Check_Aliased_Parameter;
3575 -- Check rules on aliased parameters and related accessibility rules
3576 -- in (RM 3.10.2 (10.2-10.4)).
3578 procedure Check_Argument_Order;
3579 -- Performs a check for the case where the actuals are all simple
3580 -- identifiers that correspond to the formal names, but in the wrong
3581 -- order, which is considered suspicious and cause for a warning.
3583 procedure Check_Prefixed_Call;
3584 -- If the original node is an overloaded call in prefix notation,
3585 -- insert an 'Access or a dereference as needed over the first actual.
3586 -- Try_Object_Operation has already verified that there is a valid
3587 -- interpretation, but the form of the actual can only be determined
3588 -- once the primitive operation is identified.
3590 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3591 -- Emit an error concerning the illegal usage of an effectively volatile
3592 -- object for reading in interfering context (SPARK RM 7.1.3(10)).
3594 procedure Insert_Default;
3595 -- If the actual is missing in a call, insert in the actuals list
3596 -- an instance of the default expression. The insertion is always
3597 -- a named association.
3599 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3600 -- Check whether T1 and T2, or their full views, are derived from a
3601 -- common type. Used to enforce the restrictions on array conversions
3602 -- of AI95-00246.
3604 function Static_Concatenation (N : Node_Id) return Boolean;
3605 -- Predicate to determine whether an actual that is a concatenation
3606 -- will be evaluated statically and does not need a transient scope.
3607 -- This must be determined before the actual is resolved and expanded
3608 -- because if needed the transient scope must be introduced earlier.
3610 -----------------------------
3611 -- Check_Aliased_Parameter --
3612 -----------------------------
3614 procedure Check_Aliased_Parameter is
3615 Nominal_Subt : Entity_Id;
3617 begin
3618 if Is_Aliased (F) then
3619 if Is_Tagged_Type (A_Typ) then
3620 null;
3622 elsif Is_Aliased_View (A) then
3623 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3624 Nominal_Subt := Base_Type (A_Typ);
3625 else
3626 Nominal_Subt := A_Typ;
3627 end if;
3629 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3630 null;
3632 -- In a generic body assume the worst for generic formals:
3633 -- they can have a constrained partial view (AI05-041).
3635 elsif Has_Discriminants (F_Typ)
3636 and then not Is_Constrained (F_Typ)
3637 and then not Object_Type_Has_Constrained_Partial_View
3638 (Typ => F_Typ, Scop => Current_Scope)
3639 then
3640 null;
3642 else
3643 Error_Msg_NE ("untagged actual does not statically match "
3644 & "aliased formal&", A, F);
3645 end if;
3647 else
3648 Error_Msg_NE ("actual for aliased formal& must be "
3649 & "aliased object", A, F);
3650 end if;
3652 if Ekind (Nam) = E_Procedure then
3653 null;
3655 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3656 if Nkind (Parent (N)) = N_Type_Conversion
3657 and then Type_Access_Level (Etype (Parent (N)))
3658 < Static_Accessibility_Level (A, Object_Decl_Level)
3659 then
3660 Error_Msg_N ("aliased actual has wrong accessibility", A);
3661 end if;
3663 elsif Nkind (Parent (N)) = N_Qualified_Expression
3664 and then Nkind (Parent (Parent (N))) = N_Allocator
3665 and then Type_Access_Level (Etype (Parent (Parent (N))))
3666 < Static_Accessibility_Level (A, Object_Decl_Level)
3667 then
3668 Error_Msg_N
3669 ("aliased actual in allocator has wrong accessibility", A);
3670 end if;
3671 end if;
3672 end Check_Aliased_Parameter;
3674 --------------------------
3675 -- Check_Argument_Order --
3676 --------------------------
3678 procedure Check_Argument_Order is
3679 begin
3680 -- Nothing to do if no parameters, or original node is neither a
3681 -- function call nor a procedure call statement (happens in the
3682 -- operator-transformed-to-function call case), or the call is to an
3683 -- operator symbol (which is usually in infix form), or the call does
3684 -- not come from source, or this warning is off.
3686 if not Warn_On_Parameter_Order
3687 or else No (Parameter_Associations (N))
3688 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3689 or else (Nkind (Name (N)) = N_Identifier
3690 and then Present (Entity (Name (N)))
3691 and then Nkind (Entity (Name (N))) =
3692 N_Defining_Operator_Symbol)
3693 or else not Comes_From_Source (N)
3694 then
3695 return;
3696 end if;
3698 declare
3699 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3701 begin
3702 -- Nothing to do if only one parameter
3704 if Nargs < 2 then
3705 return;
3706 end if;
3708 -- Here if at least two arguments
3710 declare
3711 Actuals : array (1 .. Nargs) of Node_Id;
3712 Actual : Node_Id;
3713 Formal : Node_Id;
3715 Wrong_Order : Boolean := False;
3716 -- Set True if an out of order case is found
3718 begin
3719 -- Collect identifier names of actuals, fail if any actual is
3720 -- not a simple identifier, and record max length of name.
3722 Actual := First (Parameter_Associations (N));
3723 for J in Actuals'Range loop
3724 if Nkind (Actual) /= N_Identifier then
3725 return;
3726 else
3727 Actuals (J) := Actual;
3728 Next (Actual);
3729 end if;
3730 end loop;
3732 -- If we got this far, all actuals are identifiers and the list
3733 -- of their names is stored in the Actuals array.
3735 Formal := First_Formal (Nam);
3736 for J in Actuals'Range loop
3738 -- If we ran out of formals, that's odd, probably an error
3739 -- which will be detected elsewhere, but abandon the search.
3741 if No (Formal) then
3742 return;
3743 end if;
3745 -- If name matches and is in order OK
3747 if Chars (Formal) = Chars (Actuals (J)) then
3748 null;
3750 else
3751 -- If no match, see if it is elsewhere in list and if so
3752 -- flag potential wrong order if type is compatible.
3754 for K in Actuals'Range loop
3755 if Chars (Formal) = Chars (Actuals (K))
3756 and then
3757 Has_Compatible_Type (Actuals (K), Etype (Formal))
3758 then
3759 Wrong_Order := True;
3760 goto Continue;
3761 end if;
3762 end loop;
3764 -- No match
3766 return;
3767 end if;
3769 <<Continue>> Next_Formal (Formal);
3770 end loop;
3772 -- If Formals left over, also probably an error, skip warning
3774 if Present (Formal) then
3775 return;
3776 end if;
3778 -- Here we give the warning if something was out of order
3780 if Wrong_Order then
3781 Error_Msg_N
3782 ("?.p?actuals for this call may be in wrong order", N);
3783 end if;
3784 end;
3785 end;
3786 end Check_Argument_Order;
3788 -------------------------
3789 -- Check_Prefixed_Call --
3790 -------------------------
3792 procedure Check_Prefixed_Call is
3793 Act : constant Node_Id := First_Actual (N);
3794 A_Type : constant Entity_Id := Etype (Act);
3795 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3796 Orig : constant Node_Id := Original_Node (N);
3797 New_A : Node_Id;
3799 begin
3800 -- Check whether the call is a prefixed call, with or without
3801 -- additional actuals.
3803 if Nkind (Orig) = N_Selected_Component
3804 or else
3805 (Nkind (Orig) = N_Indexed_Component
3806 and then Nkind (Prefix (Orig)) = N_Selected_Component
3807 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3808 and then Is_Entity_Name (Act)
3809 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3810 then
3811 if Is_Access_Type (A_Type)
3812 and then not Is_Access_Type (F_Type)
3813 then
3814 -- Introduce dereference on object in prefix
3816 New_A :=
3817 Make_Explicit_Dereference (Sloc (Act),
3818 Prefix => Relocate_Node (Act));
3819 Rewrite (Act, New_A);
3820 Analyze (Act);
3822 elsif Is_Access_Type (F_Type)
3823 and then not Is_Access_Type (A_Type)
3824 then
3825 -- Introduce an implicit 'Access in prefix
3827 if not Is_Aliased_View (Act) then
3828 Error_Msg_NE
3829 ("object in prefixed call to& must be aliased "
3830 & "(RM 4.1.3 (13 1/2))",
3831 Prefix (Act), Nam);
3832 end if;
3834 Rewrite (Act,
3835 Make_Attribute_Reference (Loc,
3836 Attribute_Name => Name_Access,
3837 Prefix => Relocate_Node (Act)));
3838 end if;
3840 Analyze (Act);
3841 end if;
3842 end Check_Prefixed_Call;
3844 ---------------------------------------
3845 -- Flag_Effectively_Volatile_Objects --
3846 ---------------------------------------
3848 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3849 function Flag_Object (N : Node_Id) return Traverse_Result;
3850 -- Determine whether arbitrary node N denotes an effectively volatile
3851 -- object for reading and if it does, emit an error.
3853 -----------------
3854 -- Flag_Object --
3855 -----------------
3857 function Flag_Object (N : Node_Id) return Traverse_Result is
3858 Id : Entity_Id;
3860 begin
3861 case Nkind (N) is
3862 -- Do not consider nested function calls because they have
3863 -- already been processed during their own resolution.
3865 when N_Function_Call =>
3866 return Skip;
3868 when N_Identifier | N_Expanded_Name =>
3869 Id := Entity (N);
3871 if Present (Id)
3872 and then Is_Object (Id)
3873 and then Is_Effectively_Volatile_For_Reading (Id)
3874 and then
3875 not Is_OK_Volatile_Context (Context => Parent (N),
3876 Obj_Ref => N,
3877 Check_Actuals => True)
3878 then
3879 Error_Msg_N
3880 ("volatile object cannot appear in this context"
3881 & " (SPARK RM 7.1.3(10))", N);
3882 end if;
3884 return Skip;
3886 when others =>
3887 return OK;
3888 end case;
3889 end Flag_Object;
3891 procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3893 -- Start of processing for Flag_Effectively_Volatile_Objects
3895 begin
3896 Flag_Objects (Expr);
3897 end Flag_Effectively_Volatile_Objects;
3899 --------------------
3900 -- Insert_Default --
3901 --------------------
3903 procedure Insert_Default is
3904 Actval : Node_Id;
3905 Assoc : Node_Id;
3907 begin
3908 -- Missing argument in call, nothing to insert
3910 if No (Default_Value (F)) then
3911 return;
3913 else
3914 -- Note that we do a full New_Copy_Tree, so that any associated
3915 -- Itypes are properly copied. This may not be needed any more,
3916 -- but it does no harm as a safety measure. Defaults of a generic
3917 -- formal may be out of bounds of the corresponding actual (see
3918 -- cc1311b) and an additional check may be required.
3920 Actval :=
3921 New_Copy_Tree
3922 (Default_Value (F),
3923 New_Scope => Current_Scope,
3924 New_Sloc => Loc);
3926 -- Propagate dimension information, if any.
3928 Copy_Dimensions (Default_Value (F), Actval);
3930 if Is_Concurrent_Type (Scope (Nam))
3931 and then Has_Discriminants (Scope (Nam))
3932 then
3933 Replace_Actual_Discriminants (N, Actval);
3934 end if;
3936 if Is_Overloadable (Nam)
3937 and then Present (Alias (Nam))
3938 then
3939 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3940 and then not Is_Tagged_Type (Etype (F))
3941 then
3942 -- If default is a real literal, do not introduce a
3943 -- conversion whose effect may depend on the run-time
3944 -- size of universal real.
3946 if Nkind (Actval) = N_Real_Literal then
3947 Set_Etype (Actval, Base_Type (Etype (F)));
3948 else
3949 Actval := Unchecked_Convert_To (Etype (F), Actval);
3950 end if;
3951 end if;
3953 if Is_Scalar_Type (Etype (F)) then
3954 Enable_Range_Check (Actval);
3955 end if;
3957 Set_Parent (Actval, N);
3959 -- Resolve aggregates with their base type, to avoid scope
3960 -- anomalies: the subtype was first built in the subprogram
3961 -- declaration, and the current call may be nested.
3963 if Nkind (Actval) = N_Aggregate then
3964 Analyze_And_Resolve (Actval, Etype (F));
3965 else
3966 Analyze_And_Resolve (Actval, Etype (Actval));
3967 end if;
3969 else
3970 Set_Parent (Actval, N);
3972 -- See note above concerning aggregates
3974 if Nkind (Actval) = N_Aggregate
3975 and then Has_Discriminants (Etype (Actval))
3976 then
3977 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3979 -- Resolve entities with their own type, which may differ from
3980 -- the type of a reference in a generic context (the view
3981 -- swapping mechanism did not anticipate the re-analysis of
3982 -- default values in calls).
3984 elsif Is_Entity_Name (Actval) then
3985 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3987 else
3988 Analyze_And_Resolve (Actval, Etype (Actval));
3989 end if;
3990 end if;
3992 -- If default is a tag indeterminate function call, propagate tag
3993 -- to obtain proper dispatching.
3995 if Is_Controlling_Formal (F)
3996 and then Nkind (Default_Value (F)) = N_Function_Call
3997 then
3998 Set_Is_Controlling_Actual (Actval);
3999 end if;
4000 end if;
4002 -- If the default expression raises constraint error, then just
4003 -- silently replace it with an N_Raise_Constraint_Error node, since
4004 -- we already gave the warning on the subprogram spec. If node is
4005 -- already a Raise_Constraint_Error leave as is, to prevent loops in
4006 -- the warnings removal machinery.
4008 if Raises_Constraint_Error (Actval)
4009 and then Nkind (Actval) /= N_Raise_Constraint_Error
4010 then
4011 Rewrite (Actval,
4012 Make_Raise_Constraint_Error (Loc,
4013 Reason => CE_Range_Check_Failed));
4015 Set_Raises_Constraint_Error (Actval);
4016 Set_Etype (Actval, Etype (F));
4017 end if;
4019 Assoc :=
4020 Make_Parameter_Association (Loc,
4021 Explicit_Actual_Parameter => Actval,
4022 Selector_Name => Make_Identifier (Loc, Chars (F)));
4024 -- Case of insertion is first named actual
4026 if No (Prev)
4027 or else Nkind (Parent (Prev)) /= N_Parameter_Association
4028 then
4029 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
4030 Set_First_Named_Actual (N, Actval);
4032 if No (Prev) then
4033 if No (Parameter_Associations (N)) then
4034 Set_Parameter_Associations (N, New_List (Assoc));
4035 else
4036 Append (Assoc, Parameter_Associations (N));
4037 end if;
4039 else
4040 Insert_After (Prev, Assoc);
4041 end if;
4043 -- Case of insertion is not first named actual
4045 else
4046 Set_Next_Named_Actual
4047 (Assoc, Next_Named_Actual (Parent (Prev)));
4048 Set_Next_Named_Actual (Parent (Prev), Actval);
4049 Append (Assoc, Parameter_Associations (N));
4050 end if;
4052 Mark_Rewrite_Insertion (Assoc);
4053 Mark_Rewrite_Insertion (Actval);
4055 Prev := Actval;
4056 end Insert_Default;
4058 -------------------
4059 -- Same_Ancestor --
4060 -------------------
4062 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
4063 FT1 : Entity_Id := T1;
4064 FT2 : Entity_Id := T2;
4066 begin
4067 if Is_Private_Type (T1)
4068 and then Present (Full_View (T1))
4069 then
4070 FT1 := Full_View (T1);
4071 end if;
4073 if Is_Private_Type (T2)
4074 and then Present (Full_View (T2))
4075 then
4076 FT2 := Full_View (T2);
4077 end if;
4079 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
4080 end Same_Ancestor;
4082 --------------------------
4083 -- Static_Concatenation --
4084 --------------------------
4086 function Static_Concatenation (N : Node_Id) return Boolean is
4087 begin
4088 case Nkind (N) is
4089 when N_String_Literal =>
4090 return True;
4092 when N_Op_Concat =>
4094 -- Concatenation is static when both operands are static and
4095 -- the concatenation operator is a predefined one.
4097 return Scope (Entity (N)) = Standard_Standard
4098 and then
4099 Static_Concatenation (Left_Opnd (N))
4100 and then
4101 Static_Concatenation (Right_Opnd (N));
4103 when others =>
4104 if Is_Entity_Name (N) then
4105 declare
4106 Ent : constant Entity_Id := Entity (N);
4107 begin
4108 return Ekind (Ent) = E_Constant
4109 and then Present (Constant_Value (Ent))
4110 and then
4111 Is_OK_Static_Expression (Constant_Value (Ent));
4112 end;
4114 else
4115 return False;
4116 end if;
4117 end case;
4118 end Static_Concatenation;
4120 -- Start of processing for Resolve_Actuals
4122 begin
4123 Check_Argument_Order;
4125 if Is_Overloadable (Nam)
4126 and then Is_Inherited_Operation (Nam)
4127 and then In_Instance
4128 and then Present (Alias (Nam))
4129 and then Present (Overridden_Operation (Alias (Nam)))
4130 then
4131 Real_Subp := Alias (Nam);
4132 else
4133 Real_Subp := Empty;
4134 end if;
4136 if Present (First_Actual (N)) then
4137 Check_Prefixed_Call;
4138 end if;
4140 A := First_Actual (N);
4141 F := First_Formal (Nam);
4143 if Present (Real_Subp) then
4144 Real_F := First_Formal (Real_Subp);
4145 end if;
4147 while Present (F) loop
4148 if No (A) and then Needs_No_Actuals (Nam) then
4149 null;
4151 -- If we have an error in any formal or actual, indicated by a type
4152 -- of Any_Type, then abandon resolution attempt, and set result type
4153 -- to Any_Type.
4155 elsif Etype (F) = Any_Type then
4156 Set_Etype (N, Any_Type);
4157 return;
4159 elsif Present (A) and then Etype (A) = Any_Type then
4160 -- For the peculiar case of a user-defined comparison or equality
4161 -- operator that does not return a boolean type, the operands may
4162 -- have been ambiguous for the predefined operator and, therefore,
4163 -- marked with Any_Type. Since the operation has been resolved to
4164 -- the user-defined operator, that is irrelevant, so reset Etype.
4166 if Nkind (Original_Node (N)) in N_Op_Eq
4167 | N_Op_Ge
4168 | N_Op_Gt
4169 | N_Op_Le
4170 | N_Op_Lt
4171 | N_Op_Ne
4172 and then not Is_Boolean_Type (Etype (N))
4173 then
4174 Set_Etype (A, Etype (F));
4176 -- Also skip this if the actual is a Raise_Expression, whose type
4177 -- is imposed from context.
4179 elsif Nkind (A) = N_Raise_Expression then
4180 null;
4182 else
4183 Set_Etype (N, Any_Type);
4184 return;
4185 end if;
4186 end if;
4188 -- Case where actual is present
4190 -- If the actual is an entity, generate a reference to it now. We
4191 -- do this before the actual is resolved, because a formal of some
4192 -- protected subprogram, or a task discriminant, will be rewritten
4193 -- during expansion, and the source entity reference may be lost.
4195 if Present (A)
4196 and then Is_Entity_Name (A)
4197 and then Comes_From_Source (A)
4198 then
4199 -- Annotate the tree by creating a variable reference marker when
4200 -- the actual denotes a variable reference, in case the reference
4201 -- is folded or optimized away. The variable reference marker is
4202 -- automatically saved for later examination by the ABE Processing
4203 -- phase. The status of the reference is set as follows:
4205 -- status mode
4206 -- read IN, IN OUT
4207 -- write IN OUT, OUT
4209 if Needs_Variable_Reference_Marker
4210 (N => A,
4211 Calls_OK => True)
4212 then
4213 Build_Variable_Reference_Marker
4214 (N => A,
4215 Read => Ekind (F) /= E_Out_Parameter,
4216 Write => Ekind (F) /= E_In_Parameter);
4217 end if;
4219 Orig_A := Entity (A);
4221 if Present (Orig_A) then
4222 if Is_Formal (Orig_A)
4223 and then Ekind (F) /= E_In_Parameter
4224 then
4225 Generate_Reference (Orig_A, A, 'm');
4227 elsif not Is_Overloaded (A) then
4228 if Ekind (F) /= E_Out_Parameter then
4229 Generate_Reference (Orig_A, A);
4231 -- RM 6.4.1(12): For an out parameter that is passed by
4232 -- copy, the formal parameter object is created, and:
4234 -- * For an access type, the formal parameter is initialized
4235 -- from the value of the actual, without checking that the
4236 -- value satisfies any constraint, any predicate, or any
4237 -- exclusion of the null value.
4239 -- * For a scalar type that has the Default_Value aspect
4240 -- specified, the formal parameter is initialized from the
4241 -- value of the actual, without checking that the value
4242 -- satisfies any constraint or any predicate.
4243 -- I do not understand why this case is included??? this is
4244 -- not a case where an OUT parameter is treated as IN OUT.
4246 -- * For a composite type with discriminants or that has
4247 -- implicit initial values for any subcomponents, the
4248 -- behavior is as for an in out parameter passed by copy.
4250 -- Hence for these cases we generate the read reference now
4251 -- (the write reference will be generated later by
4252 -- Note_Possible_Modification).
4254 elsif Is_By_Copy_Type (Etype (F))
4255 and then
4256 (Is_Access_Type (Etype (F))
4257 or else
4258 (Is_Scalar_Type (Etype (F))
4259 and then
4260 Present (Default_Aspect_Value (Etype (F))))
4261 or else
4262 (Is_Composite_Type (Etype (F))
4263 and then (Has_Discriminants (Etype (F))
4264 or else Is_Partially_Initialized_Type
4265 (Etype (F)))))
4266 then
4267 Generate_Reference (Orig_A, A);
4268 end if;
4269 end if;
4270 end if;
4271 end if;
4273 if Present (A)
4274 and then (Nkind (Parent (A)) /= N_Parameter_Association
4275 or else Chars (Selector_Name (Parent (A))) = Chars (F))
4276 then
4277 -- If style checking mode on, check match of formal name
4279 if Style_Check then
4280 if Nkind (Parent (A)) = N_Parameter_Association then
4281 Check_Identifier (Selector_Name (Parent (A)), F);
4282 end if;
4283 end if;
4285 -- If the formal is Out or In_Out, do not resolve and expand the
4286 -- conversion, because it is subsequently expanded into explicit
4287 -- temporaries and assignments. However, the object of the
4288 -- conversion can be resolved. An exception is the case of tagged
4289 -- type conversion with a class-wide actual. In that case we want
4290 -- the tag check to occur and no temporary will be needed (no
4291 -- representation change can occur) and the parameter is passed by
4292 -- reference, so we go ahead and resolve the type conversion.
4293 -- Another exception is the case of reference to component or
4294 -- subcomponent of a bit-packed array, in which case we want to
4295 -- defer expansion to the point the in and out assignments are
4296 -- performed.
4298 if Ekind (F) /= E_In_Parameter
4299 and then Nkind (A) = N_Type_Conversion
4300 and then not Is_Class_Wide_Type (Etype (Expression (A)))
4301 and then not Is_Interface (Etype (A))
4302 then
4303 declare
4304 Expr_Typ : constant Entity_Id := Etype (Expression (A));
4306 begin
4307 -- Check RM 4.6 (24.2/2)
4309 if Is_Array_Type (Etype (F))
4310 and then Is_View_Conversion (A)
4311 then
4312 -- In a view conversion, the conversion must be legal in
4313 -- both directions, and thus both component types must be
4314 -- aliased, or neither (4.6 (8)).
4316 -- Check RM 4.6 (24.8/2)
4318 if Has_Aliased_Components (Expr_Typ) /=
4319 Has_Aliased_Components (Etype (F))
4320 then
4321 -- This normally illegal conversion is legal in an
4322 -- expanded instance body because of RM 12.3(11).
4323 -- At runtime, conversion must create a new object.
4325 if not In_Instance then
4326 Error_Msg_N
4327 ("both component types in a view conversion must"
4328 & " be aliased, or neither", A);
4329 end if;
4331 -- Check RM 4.6 (24/3)
4333 elsif not Same_Ancestor (Etype (F), Expr_Typ) then
4334 -- Check view conv between unrelated by ref array
4335 -- types.
4337 if Is_By_Reference_Type (Etype (F))
4338 or else Is_By_Reference_Type (Expr_Typ)
4339 then
4340 Error_Msg_N
4341 ("view conversion between unrelated by reference "
4342 & "array types not allowed ('A'I-00246)", A);
4344 -- In Ada 2005 mode, check view conversion component
4345 -- type cannot be private, tagged, or volatile. Note
4346 -- that we only apply this to source conversions. The
4347 -- generated code can contain conversions which are
4348 -- not subject to this test, and we cannot extract the
4349 -- component type in such cases since it is not
4350 -- present.
4352 elsif Comes_From_Source (A)
4353 and then Ada_Version >= Ada_2005
4354 then
4355 declare
4356 Comp_Type : constant Entity_Id :=
4357 Component_Type (Expr_Typ);
4358 begin
4359 if (Is_Private_Type (Comp_Type)
4360 and then not Is_Generic_Type (Comp_Type))
4361 or else Is_Tagged_Type (Comp_Type)
4362 or else Is_Volatile (Comp_Type)
4363 then
4364 Error_Msg_N
4365 ("component type of a view conversion " &
4366 "cannot be private, tagged, or volatile" &
4367 " (RM 4.6 (24))",
4368 Expression (A));
4369 end if;
4370 end;
4371 end if;
4372 end if;
4374 -- AI12-0074 & AI12-0377
4375 -- Check 6.4.1: If the mode is out, the actual parameter is
4376 -- a view conversion, and the type of the formal parameter
4377 -- is a scalar type, then either:
4378 -- - the target and operand type both do not have the
4379 -- Default_Value aspect specified; or
4380 -- - the target and operand type both have the
4381 -- Default_Value aspect specified, and there shall exist
4382 -- a type (other than a root numeric type) that is an
4383 -- ancestor of both the target type and the operand
4384 -- type.
4386 elsif Ekind (F) = E_Out_Parameter
4387 and then Is_Scalar_Type (Etype (F))
4388 then
4389 if Has_Default_Aspect (Etype (F)) /=
4390 Has_Default_Aspect (Expr_Typ)
4391 then
4392 Error_Msg_N
4393 ("view conversion requires Default_Value on both " &
4394 "types (RM 6.4.1)", A);
4395 elsif Has_Default_Aspect (Expr_Typ)
4396 and then not Same_Ancestor (Etype (F), Expr_Typ)
4397 then
4398 Error_Msg_N
4399 ("view conversion between unrelated types with "
4400 & "Default_Value not allowed (RM 6.4.1)", A);
4401 end if;
4402 end if;
4403 end;
4405 -- Resolve expression if conversion is all OK
4407 if (Conversion_OK (A)
4408 or else Valid_Conversion (A, Etype (A), Expression (A)))
4409 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
4410 then
4411 Resolve (Expression (A));
4412 end if;
4414 -- If the actual is a function call that returns a limited
4415 -- unconstrained object that needs finalization, create a
4416 -- transient scope for it, so that it can receive the proper
4417 -- finalization list.
4419 elsif Expander_Active
4420 and then Nkind (A) = N_Function_Call
4421 and then Is_Limited_Record (Etype (F))
4422 and then not Is_Constrained (Etype (F))
4423 and then (Needs_Finalization (Etype (F))
4424 or else Has_Task (Etype (F)))
4425 then
4426 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
4427 Resolve (A, Etype (F));
4429 -- A small optimization: if one of the actuals is a concatenation
4430 -- create a block around a procedure call to recover stack space.
4431 -- This alleviates stack usage when several procedure calls in
4432 -- the same statement list use concatenation. We do not perform
4433 -- this wrapping for code statements, where the argument is a
4434 -- static string, and we want to preserve warnings involving
4435 -- sequences of such statements.
4437 elsif Expander_Active
4438 and then Nkind (A) = N_Op_Concat
4439 and then Nkind (N) = N_Procedure_Call_Statement
4440 and then not (Is_Intrinsic_Subprogram (Nam)
4441 and then Chars (Nam) = Name_Asm)
4442 and then not Static_Concatenation (A)
4443 then
4444 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
4445 Resolve (A, Etype (F));
4447 else
4448 if Nkind (A) = N_Type_Conversion
4449 and then Is_Array_Type (Etype (F))
4450 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
4451 and then
4452 (Is_Limited_Type (Etype (F))
4453 or else Is_Limited_Type (Etype (Expression (A))))
4454 then
4455 Error_Msg_N
4456 ("conversion between unrelated limited array types not "
4457 & "allowed ('A'I-00246)", A);
4459 if Is_Limited_Type (Etype (F)) then
4460 Explain_Limited_Type (Etype (F), A);
4461 end if;
4463 if Is_Limited_Type (Etype (Expression (A))) then
4464 Explain_Limited_Type (Etype (Expression (A)), A);
4465 end if;
4466 end if;
4468 -- (Ada 2005: AI-251): If the actual is an allocator whose
4469 -- directly designated type is a class-wide interface, we build
4470 -- an anonymous access type to use it as the type of the
4471 -- allocator. Later, when the subprogram call is expanded, if
4472 -- the interface has a secondary dispatch table the expander
4473 -- will add a type conversion to force the correct displacement
4474 -- of the pointer.
4476 if Nkind (A) = N_Allocator then
4477 declare
4478 DDT : constant Entity_Id :=
4479 Directly_Designated_Type (Base_Type (Etype (F)));
4481 begin
4482 -- Displace the pointer to the object to reference its
4483 -- secondary dispatch table.
4485 if Is_Class_Wide_Type (DDT)
4486 and then Is_Interface (DDT)
4487 then
4488 Rewrite (A, Convert_To (Etype (F), Relocate_Node (A)));
4489 Analyze_And_Resolve (A, Etype (F),
4490 Suppress => Access_Check);
4491 end if;
4493 -- Ada 2005, AI-162:If the actual is an allocator, the
4494 -- innermost enclosing statement is the master of the
4495 -- created object. This needs to be done with expansion
4496 -- enabled only, otherwise the transient scope will not
4497 -- be removed in the expansion of the wrapped construct.
4499 if Expander_Active
4500 and then (Needs_Finalization (DDT)
4501 or else Has_Task (DDT))
4502 then
4503 Establish_Transient_Scope
4504 (A, Manage_Sec_Stack => False);
4505 end if;
4506 end;
4508 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4509 Check_Restriction (No_Access_Parameter_Allocators, A);
4510 end if;
4511 end if;
4513 -- (Ada 2005): The call may be to a primitive operation of a
4514 -- tagged synchronized type, declared outside of the type. In
4515 -- this case the controlling actual must be converted to its
4516 -- corresponding record type, which is the formal type. The
4517 -- actual may be a subtype, either because of a constraint or
4518 -- because it is a generic actual, so use base type to locate
4519 -- concurrent type.
4521 F_Typ := Base_Type (Etype (F));
4523 if Is_Tagged_Type (F_Typ)
4524 and then (Is_Concurrent_Type (F_Typ)
4525 or else Is_Concurrent_Record_Type (F_Typ))
4526 then
4527 -- If the actual is overloaded, look for an interpretation
4528 -- that has a synchronized type.
4530 if not Is_Overloaded (A) then
4531 A_Typ := Base_Type (Etype (A));
4533 else
4534 declare
4535 Index : Interp_Index;
4536 It : Interp;
4538 begin
4539 Get_First_Interp (A, Index, It);
4540 while Present (It.Typ) loop
4541 if Is_Concurrent_Type (It.Typ)
4542 or else Is_Concurrent_Record_Type (It.Typ)
4543 then
4544 A_Typ := Base_Type (It.Typ);
4545 exit;
4546 end if;
4548 Get_Next_Interp (Index, It);
4549 end loop;
4550 end;
4551 end if;
4553 declare
4554 Full_A_Typ : Entity_Id;
4556 begin
4557 if Present (Full_View (A_Typ)) then
4558 Full_A_Typ := Base_Type (Full_View (A_Typ));
4559 else
4560 Full_A_Typ := A_Typ;
4561 end if;
4563 -- Tagged synchronized type (case 1): the actual is a
4564 -- concurrent type.
4566 if Is_Concurrent_Type (A_Typ)
4567 and then Corresponding_Record_Type (A_Typ) = F_Typ
4568 then
4569 Rewrite (A,
4570 Unchecked_Convert_To
4571 (Corresponding_Record_Type (A_Typ), A));
4572 Resolve (A, Etype (F));
4574 -- Tagged synchronized type (case 2): the formal is a
4575 -- concurrent type.
4577 elsif Ekind (Full_A_Typ) = E_Record_Type
4578 and then Present
4579 (Corresponding_Concurrent_Type (Full_A_Typ))
4580 and then Is_Concurrent_Type (F_Typ)
4581 and then Present (Corresponding_Record_Type (F_Typ))
4582 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4583 then
4584 Resolve (A, Corresponding_Record_Type (F_Typ));
4586 -- Common case
4588 else
4589 Resolve (A, Etype (F));
4590 end if;
4591 end;
4593 -- Not a synchronized operation
4595 else
4596 Resolve (A, Etype (F));
4597 end if;
4598 end if;
4600 A_Typ := Etype (A);
4601 F_Typ := Etype (F);
4603 -- An actual cannot be an untagged formal incomplete type
4605 if Ekind (A_Typ) = E_Incomplete_Type
4606 and then not Is_Tagged_Type (A_Typ)
4607 and then Is_Generic_Type (A_Typ)
4608 then
4609 Error_Msg_N
4610 ("invalid use of untagged formal incomplete type", A);
4611 end if;
4613 -- has warnings suppressed, then we reset Never_Set_In_Source for
4614 -- the calling entity. The reason for this is to catch cases like
4615 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4616 -- uses trickery to modify an IN parameter.
4618 if Ekind (F) = E_In_Parameter
4619 and then Is_Entity_Name (A)
4620 and then Present (Entity (A))
4621 and then Ekind (Entity (A)) = E_Variable
4622 and then Has_Warnings_Off (F_Typ)
4623 then
4624 Set_Never_Set_In_Source (Entity (A), False);
4625 end if;
4627 -- Perform error checks for IN and IN OUT parameters
4629 if Ekind (F) /= E_Out_Parameter then
4631 -- Check unset reference. For scalar parameters, it is clearly
4632 -- wrong to pass an uninitialized value as either an IN or
4633 -- IN-OUT parameter. For composites, it is also clearly an
4634 -- error to pass a completely uninitialized value as an IN
4635 -- parameter, but the case of IN OUT is trickier. We prefer
4636 -- not to give a warning here. For example, suppose there is
4637 -- a routine that sets some component of a record to False.
4638 -- It is perfectly reasonable to make this IN-OUT and allow
4639 -- either initialized or uninitialized records to be passed
4640 -- in this case.
4642 -- For partially initialized composite values, we also avoid
4643 -- warnings, since it is quite likely that we are passing a
4644 -- partially initialized value and only the initialized fields
4645 -- will in fact be read in the subprogram.
4647 if Is_Scalar_Type (A_Typ)
4648 or else (Ekind (F) = E_In_Parameter
4649 and then not Is_Partially_Initialized_Type (A_Typ))
4650 then
4651 Check_Unset_Reference (A);
4652 end if;
4654 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4655 -- actual to a nested call, since this constitutes a reading of
4656 -- the parameter, which is not allowed.
4658 if Ada_Version = Ada_83
4659 and then Is_Entity_Name (A)
4660 and then Ekind (Entity (A)) = E_Out_Parameter
4661 then
4662 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4663 end if;
4664 end if;
4666 -- In -gnatd.q mode, forget that a given array is constant when
4667 -- it is passed as an IN parameter to a foreign-convention
4668 -- subprogram. This is in case the subprogram evilly modifies the
4669 -- object. Of course, correct code would use IN OUT.
4671 if Debug_Flag_Dot_Q
4672 and then Ekind (F) = E_In_Parameter
4673 and then Has_Foreign_Convention (Nam)
4674 and then Is_Array_Type (F_Typ)
4675 and then Nkind (A) in N_Has_Entity
4676 and then Present (Entity (A))
4677 then
4678 Set_Is_True_Constant (Entity (A), False);
4679 end if;
4681 -- Case of OUT or IN OUT parameter
4683 if Ekind (F) /= E_In_Parameter then
4685 -- For an Out parameter, check for useless assignment. Note
4686 -- that we can't set Last_Assignment this early, because we may
4687 -- kill current values in Resolve_Call, and that call would
4688 -- clobber the Last_Assignment field.
4690 -- Note: call Warn_On_Useless_Assignment before doing the check
4691 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4692 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4693 -- reflects the last assignment, not this one.
4695 if Ekind (F) = E_Out_Parameter then
4696 if Warn_On_Modified_As_Out_Parameter (F)
4697 and then Is_Entity_Name (A)
4698 and then Present (Entity (A))
4699 and then Comes_From_Source (N)
4700 then
4701 Warn_On_Useless_Assignment (Entity (A), A);
4702 end if;
4703 end if;
4705 -- Validate the form of the actual. Note that the call to
4706 -- Is_OK_Variable_For_Out_Formal generates the required
4707 -- reference in this case.
4709 -- A call to an initialization procedure for an aggregate
4710 -- component may initialize a nested component of a constant
4711 -- designated object. In this context the object is variable.
4713 if not Is_OK_Variable_For_Out_Formal (A)
4714 and then not Is_Init_Proc (Nam)
4715 then
4716 Error_Msg_NE ("actual for& must be a variable", A, F);
4718 if Is_Subprogram (Current_Scope) then
4719 if Is_Invariant_Procedure (Current_Scope)
4720 or else Is_Partial_Invariant_Procedure (Current_Scope)
4721 then
4722 Error_Msg_N
4723 ("function used in invariant cannot modify its "
4724 & "argument", F);
4726 elsif Is_Predicate_Function (Current_Scope) then
4727 Error_Msg_N
4728 ("function used in predicate cannot modify its "
4729 & "argument", F);
4730 end if;
4731 end if;
4732 end if;
4734 -- What's the following about???
4736 if Is_Entity_Name (A) then
4737 Kill_Checks (Entity (A));
4738 else
4739 Kill_All_Checks;
4740 end if;
4741 end if;
4743 if A_Typ = Any_Type then
4744 Set_Etype (N, Any_Type);
4745 return;
4746 end if;
4748 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4750 if Ekind (F) in E_In_Parameter | E_In_Out_Parameter then
4752 -- Apply predicate tests except in certain special cases. Note
4753 -- that it might be more consistent to apply these only when
4754 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4755 -- for the outbound predicate tests ??? In any case indicate
4756 -- the function being called, for better warnings if the call
4757 -- leads to an infinite recursion.
4759 if Predicate_Tests_On_Arguments (Nam) then
4760 Apply_Predicate_Check (A, F_Typ, Nam);
4761 end if;
4763 -- Apply required constraint checks
4765 if Is_Scalar_Type (A_Typ) then
4766 Apply_Scalar_Range_Check (A, F_Typ);
4768 elsif Is_Array_Type (A_Typ) then
4769 Apply_Length_Check (A, F_Typ);
4771 elsif Is_Record_Type (F_Typ)
4772 and then Has_Discriminants (F_Typ)
4773 and then Is_Constrained (F_Typ)
4774 and then (not Is_Derived_Type (F_Typ)
4775 or else Comes_From_Source (Nam))
4776 then
4777 Apply_Discriminant_Check (A, F_Typ);
4779 -- For view conversions of a discriminated object, apply
4780 -- check to object itself, the conversion alreay has the
4781 -- proper type.
4783 if Nkind (A) = N_Type_Conversion
4784 and then Is_Constrained (Etype (Expression (A)))
4785 then
4786 Apply_Discriminant_Check (Expression (A), F_Typ);
4787 end if;
4789 elsif Is_Access_Type (F_Typ)
4790 and then Is_Array_Type (Designated_Type (F_Typ))
4791 and then Is_Constrained (Designated_Type (F_Typ))
4792 then
4793 Apply_Length_Check (A, F_Typ);
4795 elsif Is_Access_Type (F_Typ)
4796 and then Has_Discriminants (Designated_Type (F_Typ))
4797 and then Is_Constrained (Designated_Type (F_Typ))
4798 then
4799 Apply_Discriminant_Check (A, F_Typ);
4801 else
4802 Apply_Range_Check (A, F_Typ);
4803 end if;
4805 -- Ada 2005 (AI-231): Note that the controlling parameter case
4806 -- already existed in Ada 95, which is partially checked
4807 -- elsewhere (see Checks), and we don't want the warning
4808 -- message to differ.
4810 if Is_Access_Type (F_Typ)
4811 and then Can_Never_Be_Null (F_Typ)
4812 and then Known_Null (A)
4813 then
4814 if Is_Controlling_Formal (F) then
4815 Apply_Compile_Time_Constraint_Error
4816 (N => A,
4817 Msg => "null value not allowed here??",
4818 Reason => CE_Access_Check_Failed);
4820 elsif Ada_Version >= Ada_2005 then
4821 Apply_Compile_Time_Constraint_Error
4822 (N => A,
4823 Msg => "(Ada 2005) NULL not allowed in "
4824 & "null-excluding formal??",
4825 Reason => CE_Null_Not_Allowed);
4826 end if;
4827 end if;
4828 end if;
4830 -- Checks for OUT parameters and IN OUT parameters
4832 if Ekind (F) in E_Out_Parameter | E_In_Out_Parameter then
4834 -- If there is a type conversion, make sure the return value
4835 -- meets the constraints of the variable before the conversion.
4837 if Nkind (A) = N_Type_Conversion then
4838 if Is_Scalar_Type (A_Typ) then
4840 -- Special case here tailored to Exp_Ch6.Is_Legal_Copy,
4841 -- which would prevent the check from being generated.
4842 -- This is for Starlet only though, so long obsolete.
4844 if Mechanism (F) = By_Reference
4845 and then Ekind (Nam) = E_Procedure
4846 and then Is_Valued_Procedure (Nam)
4847 then
4848 null;
4849 else
4850 Apply_Scalar_Range_Check
4851 (Expression (A), Etype (Expression (A)), A_Typ);
4852 end if;
4854 -- In addition the return value must meet the constraints
4855 -- of the object type (see the comment below).
4857 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4859 else
4860 Apply_Range_Check
4861 (Expression (A), Etype (Expression (A)), A_Typ);
4862 end if;
4864 -- If no conversion, apply scalar range checks and length check
4865 -- based on the subtype of the actual (NOT that of the formal).
4866 -- This indicates that the check takes place on return from the
4867 -- call. During expansion the required constraint checks are
4868 -- inserted. In GNATprove mode, in the absence of expansion,
4869 -- the flag indicates that the returned value is valid.
4871 else
4872 if Is_Scalar_Type (F_Typ) then
4873 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4875 elsif Is_Array_Type (F_Typ)
4876 and then Ekind (F) = E_Out_Parameter
4877 then
4878 Apply_Length_Check (A, F_Typ);
4880 else
4881 Apply_Range_Check (A, A_Typ, F_Typ);
4882 end if;
4883 end if;
4885 -- Note: we do not apply the predicate checks for the case of
4886 -- OUT and IN OUT parameters. They are instead applied in the
4887 -- Expand_Actuals routine in Exp_Ch6.
4888 end if;
4890 -- If the formal is of an unconstrained array subtype with fixed
4891 -- lower bound, then sliding to that bound may be needed.
4893 if Is_Fixed_Lower_Bound_Array_Subtype (F_Typ) then
4894 Expand_Sliding_Conversion (A, F_Typ);
4895 end if;
4897 -- An actual associated with an access parameter is implicitly
4898 -- converted to the anonymous access type of the formal and must
4899 -- satisfy the legality checks for access conversions.
4901 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4902 if not Valid_Conversion (A, F_Typ, A) then
4903 Error_Msg_N
4904 ("invalid implicit conversion for access parameter", A);
4905 end if;
4907 -- If the actual is an access selected component of a variable,
4908 -- the call may modify its designated object. It is reasonable
4909 -- to treat this as a potential modification of the enclosing
4910 -- record, to prevent spurious warnings that it should be
4911 -- declared as a constant, because intuitively programmers
4912 -- regard the designated subcomponent as part of the record.
4914 if Nkind (A) = N_Selected_Component
4915 and then Is_Entity_Name (Prefix (A))
4916 and then not Is_Constant_Object (Entity (Prefix (A)))
4917 then
4918 Note_Possible_Modification (A, Sure => False);
4919 end if;
4920 end if;
4922 -- Check illegal cases of atomic/volatile/VFA actual (RM C.6(12))
4924 if (Is_By_Reference_Type (F_Typ) or else Is_Aliased (F))
4925 and then Comes_From_Source (N)
4926 then
4927 if Is_Atomic_Object (A)
4928 and then not Is_Atomic (F_Typ)
4929 then
4930 Error_Msg_NE
4931 ("cannot pass atomic object to nonatomic formal&",
4932 A, F);
4933 Error_Msg_N
4934 ("\which is passed by reference (RM C.6(12))", A);
4936 elsif Is_Volatile_Object_Ref (A)
4937 and then not Is_Volatile (F_Typ)
4938 then
4939 Error_Msg_NE
4940 ("cannot pass volatile object to nonvolatile formal&",
4941 A, F);
4942 Error_Msg_N
4943 ("\which is passed by reference (RM C.6(12))", A);
4945 elsif Is_Volatile_Full_Access_Object_Ref (A)
4946 and then not Is_Volatile_Full_Access (F_Typ)
4947 then
4948 Error_Msg_NE
4949 ("cannot pass full access object to nonfull access "
4950 & "formal&", A, F);
4951 Error_Msg_N
4952 ("\which is passed by reference (RM C.6(12))", A);
4953 end if;
4955 -- Check for nonatomic subcomponent of a full access object
4956 -- in Ada 2022 (RM C.6 (12)).
4958 if Ada_Version >= Ada_2022
4959 and then Is_Subcomponent_Of_Full_Access_Object (A)
4960 and then not Is_Atomic_Object (A)
4961 then
4962 Error_Msg_N
4963 ("cannot pass nonatomic subcomponent of full access "
4964 & "object", A);
4965 Error_Msg_NE
4966 ("\to formal & which is passed by reference (RM C.6(12))",
4967 A, F);
4968 end if;
4969 end if;
4971 -- Check that subprograms don't have improper controlling
4972 -- arguments (RM 3.9.2 (9)).
4974 -- A primitive operation may have an access parameter of an
4975 -- incomplete tagged type, but a dispatching call is illegal
4976 -- if the type is still incomplete.
4978 if Is_Controlling_Formal (F) then
4979 Set_Is_Controlling_Actual (A);
4981 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4982 declare
4983 Desig : constant Entity_Id := Designated_Type (F_Typ);
4984 begin
4985 if Ekind (Desig) = E_Incomplete_Type
4986 and then No (Full_View (Desig))
4987 and then No (Non_Limited_View (Desig))
4988 then
4989 Error_Msg_NE
4990 ("premature use of incomplete type& "
4991 & "in dispatching call", A, Desig);
4992 end if;
4993 end;
4994 end if;
4996 elsif Nkind (A) = N_Explicit_Dereference then
4997 Validate_Remote_Access_To_Class_Wide_Type (A);
4998 end if;
5000 -- Apply legality rule 3.9.2 (9/1)
5002 -- Skip this check on helpers and indirect-call wrappers built to
5003 -- support class-wide preconditions.
5005 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
5006 and then not Is_Class_Wide_Type (F_Typ)
5007 and then not Is_Controlling_Formal (F)
5008 and then not In_Instance
5009 and then (not Is_Subprogram (Nam)
5010 or else No (Class_Preconditions_Subprogram (Nam)))
5011 then
5012 Error_Msg_N ("class-wide argument not allowed here!", A);
5014 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
5015 Error_Msg_Node_2 := F_Typ;
5016 Error_Msg_NE
5017 ("& is not a dispatching operation of &!", A, Nam);
5018 end if;
5020 -- Apply the checks described in 3.10.2(27): if the context is a
5021 -- specific access-to-object, the actual cannot be class-wide.
5022 -- Use base type to exclude access_to_subprogram cases.
5024 elsif Is_Access_Type (A_Typ)
5025 and then Is_Access_Type (F_Typ)
5026 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
5027 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
5028 or else (Nkind (A) = N_Attribute_Reference
5029 and then
5030 Is_Class_Wide_Type (Etype (Prefix (A)))))
5031 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
5032 and then not Is_Controlling_Formal (F)
5034 -- Disable these checks for call to imported C++ subprograms
5036 and then not
5037 (Is_Entity_Name (Name (N))
5038 and then Is_Imported (Entity (Name (N)))
5039 and then Convention (Entity (Name (N))) = Convention_CPP)
5040 then
5041 Error_Msg_N
5042 ("access to class-wide argument not allowed here!", A);
5044 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
5045 Error_Msg_Node_2 := Designated_Type (F_Typ);
5046 Error_Msg_NE
5047 ("& is not a dispatching operation of &!", A, Nam);
5048 end if;
5049 end if;
5051 Check_Aliased_Parameter;
5053 Eval_Actual (A);
5055 -- If it is a named association, treat the selector_name as a
5056 -- proper identifier, and mark the corresponding entity.
5058 if Nkind (Parent (A)) = N_Parameter_Association
5060 -- Ignore reference in SPARK mode, as it refers to an entity not
5061 -- in scope at the point of reference, so the reference should
5062 -- be ignored for computing effects of subprograms.
5064 and then not GNATprove_Mode
5065 then
5066 -- If subprogram is overridden, use name of formal that
5067 -- is being called.
5069 if Present (Real_Subp) then
5070 Set_Entity (Selector_Name (Parent (A)), Real_F);
5071 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
5073 else
5074 Set_Entity (Selector_Name (Parent (A)), F);
5075 Generate_Reference (F, Selector_Name (Parent (A)));
5076 Set_Etype (Selector_Name (Parent (A)), F_Typ);
5077 Generate_Reference (F_Typ, N, ' ');
5078 end if;
5079 end if;
5081 Prev := A;
5083 if Ekind (F) /= E_Out_Parameter then
5084 Check_Unset_Reference (A);
5085 end if;
5087 -- The following checks are only relevant when SPARK_Mode is on as
5088 -- they are not standard Ada legality rule. Internally generated
5089 -- temporaries are ignored.
5091 if SPARK_Mode = On and then Comes_From_Source (A) then
5093 -- Inspect the expression and flag each effectively volatile
5094 -- object for reading as illegal because it appears within
5095 -- an interfering context. Note that this is usually done
5096 -- in Resolve_Entity_Name, but when the effectively volatile
5097 -- object for reading appears as an actual in a call, the call
5098 -- must be resolved first.
5100 Flag_Effectively_Volatile_Objects (A);
5101 end if;
5103 -- A formal parameter of a specific tagged type whose related
5104 -- subprogram is subject to pragma Extensions_Visible with value
5105 -- "False" cannot act as an actual in a subprogram with value
5106 -- "True" (SPARK RM 6.1.7(3)).
5108 -- No check needed for helpers and indirect-call wrappers built to
5109 -- support class-wide preconditions.
5111 if Is_EVF_Expression (A)
5112 and then Extensions_Visible_Status (Nam) =
5113 Extensions_Visible_True
5114 and then No (Class_Preconditions_Subprogram (Current_Scope))
5115 then
5116 Error_Msg_N
5117 ("formal parameter cannot act as actual parameter when "
5118 & "Extensions_Visible is False", A);
5119 Error_Msg_NE
5120 ("\subprogram & has Extensions_Visible True", A, Nam);
5121 end if;
5123 -- The actual parameter of a Ghost subprogram whose formal is of
5124 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
5126 if Comes_From_Source (Nam)
5127 and then Is_Ghost_Entity (Nam)
5128 and then Ekind (F) in E_In_Out_Parameter | E_Out_Parameter
5129 and then Is_Entity_Name (A)
5130 and then Present (Entity (A))
5131 and then not Is_Ghost_Entity (Entity (A))
5132 then
5133 Error_Msg_NE
5134 ("non-ghost variable & cannot appear as actual in call to "
5135 & "ghost procedure", A, Entity (A));
5137 if Ekind (F) = E_In_Out_Parameter then
5138 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
5139 else
5140 Error_Msg_N ("\corresponding formal has mode OUT", A);
5141 end if;
5142 end if;
5144 -- (AI12-0397): The target of a subprogram call that occurs within
5145 -- the expression of an Default_Initial_Condition aspect and has
5146 -- an actual that is the current instance of the type must be
5147 -- either a primitive of the type or a class-wide subprogram,
5148 -- because the type of the current instance in such an aspect is
5149 -- considered to be a notional formal derived type whose only
5150 -- operations correspond to the primitives of the enclosing type.
5151 -- Nonprimitives can be called, but the current instance must be
5152 -- converted rather than passed directly. Note that a current
5153 -- instance of a type with DIC will occur as a reference to an
5154 -- in-mode formal of an enclosing DIC procedure or partial DIC
5155 -- procedure. (It seems that this check should perhaps also apply
5156 -- to calls within Type_Invariant'Class, but not Type_Invariant,
5157 -- aspects???)
5159 if Nkind (A) = N_Identifier
5160 and then Ekind (Entity (A)) = E_In_Parameter
5162 and then Is_Subprogram (Scope (Entity (A)))
5163 and then Is_DIC_Procedure (Scope (Entity (A)))
5165 -- We check Comes_From_Source to exclude inherited primitives
5166 -- from being flagged, because such subprograms turn out to not
5167 -- always have the Is_Primitive flag set. ???
5169 and then Comes_From_Source (Nam)
5171 and then not Is_Primitive (Nam)
5172 and then not Is_Class_Wide_Type (F_Typ)
5173 then
5174 Error_Msg_NE
5175 ("call to nonprimitive & with current instance not allowed " &
5176 "for aspect", A, Nam);
5177 end if;
5179 Next_Actual (A);
5181 -- Case where actual is not present
5183 else
5184 Insert_Default;
5185 end if;
5187 Next_Formal (F);
5189 if Present (Real_Subp) then
5190 Next_Formal (Real_F);
5191 end if;
5192 end loop;
5193 end Resolve_Actuals;
5195 -----------------------
5196 -- Resolve_Allocator --
5197 -----------------------
5199 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
5200 Desig_T : constant Entity_Id := Designated_Type (Typ);
5201 E : constant Node_Id := Expression (N);
5202 Subtyp : Entity_Id;
5203 Discrim : Entity_Id;
5204 Constr : Node_Id;
5205 Aggr : Node_Id;
5206 Assoc : Node_Id := Empty;
5207 Disc_Exp : Node_Id;
5209 procedure Check_Allocator_Discrim_Accessibility
5210 (Disc_Exp : Node_Id;
5211 Alloc_Typ : Entity_Id);
5212 -- Check that accessibility level associated with an access discriminant
5213 -- initialized in an allocator by the expression Disc_Exp is not deeper
5214 -- than the level of the allocator type Alloc_Typ. An error message is
5215 -- issued if this condition is violated. Specialized checks are done for
5216 -- the cases of a constraint expression which is an access attribute or
5217 -- an access discriminant.
5219 procedure Check_Allocator_Discrim_Accessibility_Exprs
5220 (Curr_Exp : Node_Id;
5221 Alloc_Typ : Entity_Id);
5222 -- Dispatch checks performed by Check_Allocator_Discrim_Accessibility
5223 -- across all expressions within a given conditional expression.
5225 function In_Dispatching_Context return Boolean;
5226 -- If the allocator is an actual in a call, it is allowed to be class-
5227 -- wide when the context is not because it is a controlling actual.
5229 -------------------------------------------
5230 -- Check_Allocator_Discrim_Accessibility --
5231 -------------------------------------------
5233 procedure Check_Allocator_Discrim_Accessibility
5234 (Disc_Exp : Node_Id;
5235 Alloc_Typ : Entity_Id)
5237 begin
5238 if Type_Access_Level (Etype (Disc_Exp)) >
5239 Deepest_Type_Access_Level (Alloc_Typ)
5240 then
5241 Error_Msg_N
5242 ("operand type has deeper level than allocator type", Disc_Exp);
5244 -- When the expression is an Access attribute the level of the prefix
5245 -- object must not be deeper than that of the allocator's type.
5247 elsif Nkind (Disc_Exp) = N_Attribute_Reference
5248 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
5249 Attribute_Access
5250 and then Static_Accessibility_Level
5251 (Disc_Exp, Zero_On_Dynamic_Level)
5252 > Deepest_Type_Access_Level (Alloc_Typ)
5253 then
5254 Error_Msg_N
5255 ("prefix of attribute has deeper level than allocator type",
5256 Disc_Exp);
5258 -- When the expression is an access discriminant the check is against
5259 -- the level of the prefix object.
5261 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
5262 and then Nkind (Disc_Exp) = N_Selected_Component
5263 and then Static_Accessibility_Level
5264 (Disc_Exp, Zero_On_Dynamic_Level)
5265 > Deepest_Type_Access_Level (Alloc_Typ)
5266 then
5267 Error_Msg_N
5268 ("access discriminant has deeper level than allocator type",
5269 Disc_Exp);
5271 -- All other cases are legal
5273 else
5274 null;
5275 end if;
5276 end Check_Allocator_Discrim_Accessibility;
5278 -------------------------------------------------
5279 -- Check_Allocator_Discrim_Accessibility_Exprs --
5280 -------------------------------------------------
5282 procedure Check_Allocator_Discrim_Accessibility_Exprs
5283 (Curr_Exp : Node_Id;
5284 Alloc_Typ : Entity_Id)
5286 Alt : Node_Id;
5287 Expr : Node_Id;
5288 Disc_Exp : constant Node_Id := Original_Node (Curr_Exp);
5289 begin
5290 -- When conditional expressions are constant folded we know at
5291 -- compile time which expression to check - so don't bother with
5292 -- the rest of the cases.
5294 if Nkind (Curr_Exp) = N_Attribute_Reference then
5295 Check_Allocator_Discrim_Accessibility (Curr_Exp, Alloc_Typ);
5297 -- Non-constant-folded if expressions
5299 elsif Nkind (Disc_Exp) = N_If_Expression then
5300 -- Check both expressions if they are still present in the face
5301 -- of expansion.
5303 Expr := Next (First (Expressions (Disc_Exp)));
5304 if Present (Expr) then
5305 Check_Allocator_Discrim_Accessibility_Exprs (Expr, Alloc_Typ);
5306 Next (Expr);
5307 if Present (Expr) then
5308 Check_Allocator_Discrim_Accessibility_Exprs
5309 (Expr, Alloc_Typ);
5310 end if;
5311 end if;
5313 -- Non-constant-folded case expressions
5315 elsif Nkind (Disc_Exp) = N_Case_Expression then
5316 -- Check all alternatives
5318 Alt := First (Alternatives (Disc_Exp));
5319 while Present (Alt) loop
5320 Check_Allocator_Discrim_Accessibility_Exprs
5321 (Expression (Alt), Alloc_Typ);
5323 Next (Alt);
5324 end loop;
5326 -- Base case, check the accessibility of the original node of the
5327 -- expression.
5329 else
5330 Check_Allocator_Discrim_Accessibility (Disc_Exp, Alloc_Typ);
5331 end if;
5332 end Check_Allocator_Discrim_Accessibility_Exprs;
5334 ----------------------------
5335 -- In_Dispatching_Context --
5336 ----------------------------
5338 function In_Dispatching_Context return Boolean is
5339 Par : constant Node_Id := Parent (N);
5341 begin
5342 return Nkind (Par) in N_Subprogram_Call
5343 and then Is_Entity_Name (Name (Par))
5344 and then Is_Dispatching_Operation (Entity (Name (Par)));
5345 end In_Dispatching_Context;
5347 -- Start of processing for Resolve_Allocator
5349 begin
5350 -- Replace general access with specific type
5352 if Ekind (Etype (N)) = E_Allocator_Type then
5353 Set_Etype (N, Base_Type (Typ));
5354 end if;
5356 if Is_Abstract_Type (Typ) then
5357 Error_Msg_N ("type of allocator cannot be abstract", N);
5358 end if;
5360 -- For qualified expression, resolve the expression using the given
5361 -- subtype (nothing to do for type mark, subtype indication)
5363 if Nkind (E) = N_Qualified_Expression then
5364 if Is_Class_Wide_Type (Etype (E))
5365 and then not Is_Class_Wide_Type (Desig_T)
5366 and then not In_Dispatching_Context
5367 then
5368 Error_Msg_N
5369 ("class-wide allocator not allowed for this access type", N);
5370 end if;
5372 -- Do a full resolution to apply constraint and predicate checks
5374 Resolve_Qualified_Expression (E, Etype (E));
5375 Check_Unset_Reference (Expression (E));
5377 -- Allocators generated by the build-in-place expansion mechanism
5378 -- are explicitly marked as coming from source but do not need to be
5379 -- checked for limited initialization. To exclude this case, ensure
5380 -- that the parent of the allocator is a source node.
5381 -- The return statement constructed for an Expression_Function does
5382 -- not come from source but requires a limited check.
5384 if Is_Limited_Type (Etype (E))
5385 and then Comes_From_Source (N)
5386 and then
5387 (Comes_From_Source (Parent (N))
5388 or else
5389 (Ekind (Current_Scope) = E_Function
5390 and then Nkind (Original_Node (Unit_Declaration_Node
5391 (Current_Scope))) = N_Expression_Function))
5392 and then not In_Instance_Body
5393 then
5394 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
5395 if Nkind (Parent (N)) = N_Assignment_Statement then
5396 Error_Msg_N
5397 ("illegal expression for initialized allocator of a "
5398 & "limited type (RM 7.5 (2.7/2))", N);
5399 else
5400 Error_Msg_N
5401 ("initialization not allowed for limited types", N);
5402 end if;
5404 Explain_Limited_Type (Etype (E), N);
5405 end if;
5406 end if;
5408 -- Calls to build-in-place functions are not currently supported in
5409 -- allocators for access types associated with a simple storage pool.
5410 -- Supporting such allocators may require passing additional implicit
5411 -- parameters to build-in-place functions (or a significant revision
5412 -- of the current b-i-p implementation to unify the handling for
5413 -- multiple kinds of storage pools). ???
5415 if Is_Limited_View (Desig_T)
5416 and then Nkind (Expression (E)) = N_Function_Call
5417 then
5418 declare
5419 Pool : constant Entity_Id :=
5420 Associated_Storage_Pool (Root_Type (Typ));
5421 begin
5422 if Present (Pool)
5423 and then
5424 Present (Get_Rep_Pragma
5425 (Etype (Pool), Name_Simple_Storage_Pool_Type))
5426 then
5427 Error_Msg_N
5428 ("limited function calls not yet supported in simple "
5429 & "storage pool allocators", Expression (E));
5430 end if;
5431 end;
5432 end if;
5434 -- A special accessibility check is needed for allocators that
5435 -- constrain access discriminants. The level of the type of the
5436 -- expression used to constrain an access discriminant cannot be
5437 -- deeper than the type of the allocator (in contrast to access
5438 -- parameters, where the level of the actual can be arbitrary).
5440 -- We can't use Valid_Conversion to perform this check because in
5441 -- general the type of the allocator is unrelated to the type of
5442 -- the access discriminant.
5444 if Ekind (Typ) /= E_Anonymous_Access_Type
5445 or else Is_Local_Anonymous_Access (Typ)
5446 then
5447 Subtyp := Entity (Subtype_Mark (E));
5449 Aggr := Original_Node (Expression (E));
5451 if Has_Discriminants (Subtyp)
5452 and then Nkind (Aggr) in N_Aggregate | N_Extension_Aggregate
5453 then
5454 Discrim := First_Discriminant (Base_Type (Subtyp));
5456 -- Get the first component expression of the aggregate
5458 if Present (Expressions (Aggr)) then
5459 Disc_Exp := First (Expressions (Aggr));
5461 elsif Present (Component_Associations (Aggr)) then
5462 Assoc := First (Component_Associations (Aggr));
5464 if Present (Assoc) then
5465 Disc_Exp := Expression (Assoc);
5466 else
5467 Disc_Exp := Empty;
5468 end if;
5470 else
5471 Disc_Exp := Empty;
5472 end if;
5474 while Present (Discrim) and then Present (Disc_Exp) loop
5475 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
5476 Check_Allocator_Discrim_Accessibility_Exprs
5477 (Disc_Exp, Typ);
5478 end if;
5480 Next_Discriminant (Discrim);
5482 if Present (Discrim) then
5483 if Present (Assoc) then
5484 Next (Assoc);
5485 Disc_Exp := Expression (Assoc);
5487 elsif Present (Next (Disc_Exp)) then
5488 Next (Disc_Exp);
5490 else
5491 Assoc := First (Component_Associations (Aggr));
5493 if Present (Assoc) then
5494 Disc_Exp := Expression (Assoc);
5495 else
5496 Disc_Exp := Empty;
5497 end if;
5498 end if;
5499 end if;
5500 end loop;
5501 end if;
5502 end if;
5504 -- For a subtype mark or subtype indication, freeze the subtype
5506 else
5507 Freeze_Expression (E);
5509 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
5510 Error_Msg_N
5511 ("initialization required for access-to-constant allocator", N);
5512 end if;
5514 -- A special accessibility check is needed for allocators that
5515 -- constrain access discriminants. The level of the type of the
5516 -- expression used to constrain an access discriminant cannot be
5517 -- deeper than the type of the allocator (in contrast to access
5518 -- parameters, where the level of the actual can be arbitrary).
5519 -- We can't use Valid_Conversion to perform this check because
5520 -- in general the type of the allocator is unrelated to the type
5521 -- of the access discriminant.
5523 if Nkind (Original_Node (E)) = N_Subtype_Indication
5524 and then (Ekind (Typ) /= E_Anonymous_Access_Type
5525 or else Is_Local_Anonymous_Access (Typ))
5526 then
5527 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
5529 if Has_Discriminants (Subtyp) then
5530 Discrim := First_Discriminant (Base_Type (Subtyp));
5531 Constr := First (Constraints (Constraint (Original_Node (E))));
5532 while Present (Discrim) and then Present (Constr) loop
5533 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
5534 if Nkind (Constr) = N_Discriminant_Association then
5535 Disc_Exp := Expression (Constr);
5536 else
5537 Disc_Exp := Constr;
5538 end if;
5540 Check_Allocator_Discrim_Accessibility_Exprs
5541 (Disc_Exp, Typ);
5542 end if;
5544 Next_Discriminant (Discrim);
5545 Next (Constr);
5546 end loop;
5547 end if;
5548 end if;
5549 end if;
5551 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
5552 -- check that the level of the type of the created object is not deeper
5553 -- than the level of the allocator's access type, since extensions can
5554 -- now occur at deeper levels than their ancestor types. This is a
5555 -- static accessibility level check; a run-time check is also needed in
5556 -- the case of an initialized allocator with a class-wide argument (see
5557 -- Expand_Allocator_Expression).
5559 if Ada_Version >= Ada_2005
5560 and then Is_Class_Wide_Type (Desig_T)
5561 then
5562 declare
5563 Exp_Typ : Entity_Id;
5565 begin
5566 if Nkind (E) = N_Qualified_Expression then
5567 Exp_Typ := Etype (E);
5568 elsif Nkind (E) = N_Subtype_Indication then
5569 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
5570 else
5571 Exp_Typ := Entity (E);
5572 end if;
5574 if Type_Access_Level (Exp_Typ) >
5575 Deepest_Type_Access_Level (Typ)
5576 then
5577 if In_Instance_Body then
5578 Error_Msg_Warn := SPARK_Mode /= On;
5579 Error_Msg_N
5580 ("type in allocator has deeper level than designated "
5581 & "class-wide type<<", E);
5582 Error_Msg_N ("\Program_Error [<<", E);
5584 Rewrite (N,
5585 Make_Raise_Program_Error (Sloc (N),
5586 Reason => PE_Accessibility_Check_Failed));
5587 Set_Etype (N, Typ);
5589 -- Do not apply Ada 2005 accessibility checks on a class-wide
5590 -- allocator if the type given in the allocator is a formal
5591 -- type or within a formal package. A run-time check will be
5592 -- performed in the instance.
5594 elsif not Is_Generic_Type (Exp_Typ)
5595 and then not In_Generic_Formal_Package (Exp_Typ)
5596 then
5597 Error_Msg_N
5598 ("type in allocator has deeper level than designated "
5599 & "class-wide type", E);
5600 end if;
5601 end if;
5602 end;
5603 end if;
5605 -- Check for allocation from an empty storage pool. But do not complain
5606 -- if it's a return statement for a build-in-place function, because the
5607 -- allocator is there just in case the caller uses an allocator. If the
5608 -- caller does use an allocator, it will be caught at the call site.
5610 if No_Pool_Assigned (Typ)
5611 and then not Alloc_For_BIP_Return (N)
5612 then
5613 Error_Msg_N ("allocation from empty storage pool!", N);
5615 -- If the context is an unchecked conversion, as may happen within an
5616 -- inlined subprogram, the allocator is being resolved with its own
5617 -- anonymous type. In that case, if the target type has a specific
5618 -- storage pool, it must be inherited explicitly by the allocator type.
5620 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5621 and then No (Associated_Storage_Pool (Typ))
5622 then
5623 Set_Associated_Storage_Pool
5624 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5625 end if;
5627 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5628 Check_Restriction (No_Anonymous_Allocators, N);
5629 end if;
5631 -- Check that an allocator with task parts isn't for a nested access
5632 -- type when restriction No_Task_Hierarchy applies.
5634 if not Is_Library_Level_Entity (Base_Type (Typ))
5635 and then Has_Task (Base_Type (Desig_T))
5636 then
5637 Check_Restriction (No_Task_Hierarchy, N);
5638 end if;
5640 -- An illegal allocator may be rewritten as a raise Program_Error
5641 -- statement.
5643 if Nkind (N) = N_Allocator then
5645 -- Avoid coextension processing for an allocator that is the
5646 -- expansion of a build-in-place function call.
5648 if Nkind (Original_Node (N)) = N_Allocator
5649 and then Nkind (Expression (Original_Node (N))) =
5650 N_Qualified_Expression
5651 and then Nkind (Expression (Expression (Original_Node (N)))) =
5652 N_Function_Call
5653 and then Is_Expanded_Build_In_Place_Call
5654 (Expression (Expression (Original_Node (N))))
5655 then
5656 null; -- b-i-p function call case
5658 else
5659 -- An anonymous access discriminant is the definition of a
5660 -- coextension.
5662 if Ekind (Typ) = E_Anonymous_Access_Type
5663 and then Nkind (Associated_Node_For_Itype (Typ)) =
5664 N_Discriminant_Specification
5665 then
5666 declare
5667 Discr : constant Entity_Id :=
5668 Defining_Identifier (Associated_Node_For_Itype (Typ));
5670 begin
5671 Check_Restriction (No_Coextensions, N);
5673 -- Ada 2012 AI05-0052: If the designated type of the
5674 -- allocator is limited, then the allocator shall not
5675 -- be used to define the value of an access discriminant
5676 -- unless the discriminated type is immutably limited.
5678 if Ada_Version >= Ada_2012
5679 and then Is_Limited_Type (Desig_T)
5680 and then not Is_Limited_View (Scope (Discr))
5681 then
5682 Error_Msg_N
5683 ("only immutably limited types can have anonymous "
5684 & "access discriminants designating a limited type",
5686 end if;
5687 end;
5689 -- Avoid marking an allocator as a dynamic coextension if it is
5690 -- within a static construct.
5692 if not Is_Static_Coextension (N) then
5693 Set_Is_Dynamic_Coextension (N);
5695 -- Finalization and deallocation of coextensions utilizes an
5696 -- approximate implementation which does not directly adhere
5697 -- to the semantic rules. Warn on potential issues involving
5698 -- coextensions.
5700 if Is_Controlled (Desig_T) then
5701 Error_Msg_N
5702 ("??coextension will not be finalized when its "
5703 & "associated owner is deallocated or finalized", N);
5704 else
5705 Error_Msg_N
5706 ("??coextension will not be deallocated when its "
5707 & "associated owner is deallocated", N);
5708 end if;
5709 end if;
5711 -- Cleanup for potential static coextensions
5713 else
5714 Set_Is_Dynamic_Coextension (N, False);
5715 Set_Is_Static_Coextension (N, False);
5717 -- Anonymous access-to-controlled objects are not finalized on
5718 -- time because this involves run-time ownership and currently
5719 -- this property is not available. In rare cases the object may
5720 -- not be finalized at all. Warn on potential issues involving
5721 -- anonymous access-to-controlled objects.
5723 if Ekind (Typ) = E_Anonymous_Access_Type
5724 and then Is_Controlled_Active (Desig_T)
5725 then
5726 Error_Msg_N
5727 ("??object designated by anonymous access object might "
5728 & "not be finalized until its enclosing library unit "
5729 & "goes out of scope", N);
5730 Error_Msg_N ("\use named access type instead", N);
5731 end if;
5732 end if;
5733 end if;
5734 end if;
5736 -- Report a simple error: if the designated object is a local task,
5737 -- its body has not been seen yet, and its activation will fail an
5738 -- elaboration check.
5740 if Is_Task_Type (Desig_T)
5741 and then Scope (Base_Type (Desig_T)) = Current_Scope
5742 and then Is_Compilation_Unit (Current_Scope)
5743 and then Ekind (Current_Scope) = E_Package
5744 and then not In_Package_Body (Current_Scope)
5745 then
5746 Error_Msg_Warn := SPARK_Mode /= On;
5747 Error_Msg_N ("cannot activate task before body seen<<", N);
5748 Error_Msg_N ("\Program_Error [<<", N);
5749 end if;
5751 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5752 -- type with a task component on a subpool. This action must raise
5753 -- Program_Error at runtime.
5755 if Ada_Version >= Ada_2012
5756 and then Nkind (N) = N_Allocator
5757 and then Present (Subpool_Handle_Name (N))
5758 and then Has_Task (Desig_T)
5759 then
5760 Error_Msg_Warn := SPARK_Mode /= On;
5761 Error_Msg_N ("cannot allocate task on subpool<<", N);
5762 Error_Msg_N ("\Program_Error [<<", N);
5764 Rewrite (N,
5765 Make_Raise_Program_Error (Sloc (N),
5766 Reason => PE_Explicit_Raise));
5767 Set_Etype (N, Typ);
5768 end if;
5769 end Resolve_Allocator;
5771 ---------------------------
5772 -- Resolve_Arithmetic_Op --
5773 ---------------------------
5775 -- Used for resolving all arithmetic operators except exponentiation
5777 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5778 L : constant Node_Id := Left_Opnd (N);
5779 R : constant Node_Id := Right_Opnd (N);
5780 TL : constant Entity_Id := Base_Type (Etype (L));
5781 TR : constant Entity_Id := Base_Type (Etype (R));
5782 T : Entity_Id;
5783 Rop : Node_Id;
5785 B_Typ : constant Entity_Id := Base_Type (Typ);
5786 -- We do the resolution using the base type, because intermediate values
5787 -- in expressions always are of the base type, not a subtype of it.
5789 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5790 -- Returns True if N is in a context that expects "any real type"
5792 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5793 -- Return True iff given type is Integer or universal real/integer
5795 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5796 -- Choose type of integer literal in fixed-point operation to conform
5797 -- to available fixed-point type. T is the type of the other operand,
5798 -- which is needed to determine the expected type of N.
5800 procedure Set_Operand_Type (N : Node_Id);
5801 -- Set operand type to T if universal
5803 -------------------------------
5804 -- Expected_Type_Is_Any_Real --
5805 -------------------------------
5807 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5808 begin
5809 -- N is the expression after "delta" in a fixed_point_definition;
5810 -- see RM-3.5.9(6):
5812 return Nkind (Parent (N)) in N_Ordinary_Fixed_Point_Definition
5813 | N_Decimal_Fixed_Point_Definition
5815 -- N is one of the bounds in a real_range_specification;
5816 -- see RM-3.5.7(5):
5818 | N_Real_Range_Specification
5820 -- N is the expression of a delta_constraint;
5821 -- see RM-J.3(3):
5823 | N_Delta_Constraint;
5824 end Expected_Type_Is_Any_Real;
5826 -----------------------------
5827 -- Is_Integer_Or_Universal --
5828 -----------------------------
5830 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5831 T : Entity_Id;
5832 Index : Interp_Index;
5833 It : Interp;
5835 begin
5836 if not Is_Overloaded (N) then
5837 T := Etype (N);
5838 return Base_Type (T) = Base_Type (Standard_Integer)
5839 or else Is_Universal_Numeric_Type (T);
5840 else
5841 Get_First_Interp (N, Index, It);
5842 while Present (It.Typ) loop
5843 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5844 or else Is_Universal_Numeric_Type (It.Typ)
5845 then
5846 return True;
5847 end if;
5849 Get_Next_Interp (Index, It);
5850 end loop;
5851 end if;
5853 return False;
5854 end Is_Integer_Or_Universal;
5856 ----------------------------
5857 -- Set_Mixed_Mode_Operand --
5858 ----------------------------
5860 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5861 Index : Interp_Index;
5862 It : Interp;
5864 begin
5865 if Universal_Interpretation (N) = Universal_Integer then
5867 -- A universal integer literal is resolved as standard integer
5868 -- except in the case of a fixed-point result, where we leave it
5869 -- as universal (to be handled by Exp_Fixd later on)
5871 if Is_Fixed_Point_Type (T) then
5872 Resolve (N, Universal_Integer);
5873 else
5874 Resolve (N, Standard_Integer);
5875 end if;
5877 elsif Universal_Interpretation (N) = Universal_Real
5878 and then (T = Base_Type (Standard_Integer)
5879 or else Is_Universal_Numeric_Type (T))
5880 then
5881 -- A universal real can appear in a fixed-type context. We resolve
5882 -- the literal with that context, even though this might raise an
5883 -- exception prematurely (the other operand may be zero).
5885 Resolve (N, B_Typ);
5887 elsif Etype (N) = Base_Type (Standard_Integer)
5888 and then T = Universal_Real
5889 and then Is_Overloaded (N)
5890 then
5891 -- Integer arg in mixed-mode operation. Resolve with universal
5892 -- type, in case preference rule must be applied.
5894 Resolve (N, Universal_Integer);
5896 elsif Etype (N) = T and then B_Typ /= Universal_Fixed then
5898 -- If the operand is part of a fixed multiplication operation,
5899 -- a conversion will be applied to each operand, so resolve it
5900 -- with its own type.
5902 if Nkind (Parent (N)) in N_Op_Divide | N_Op_Multiply then
5903 Resolve (N);
5905 else
5906 -- Not a mixed-mode operation, resolve with context
5908 Resolve (N, B_Typ);
5909 end if;
5911 elsif Etype (N) = Any_Fixed then
5913 -- N may itself be a mixed-mode operation, so use context type
5915 Resolve (N, B_Typ);
5917 elsif Is_Fixed_Point_Type (T)
5918 and then B_Typ = Universal_Fixed
5919 and then Is_Overloaded (N)
5920 then
5921 -- Must be (fixed * fixed) operation, operand must have one
5922 -- compatible interpretation.
5924 Resolve (N, Any_Fixed);
5926 elsif Is_Fixed_Point_Type (B_Typ)
5927 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5928 and then Is_Overloaded (N)
5929 then
5930 -- C * F(X) in a fixed context, where C is a real literal or a
5931 -- fixed-point expression. F must have either a fixed type
5932 -- interpretation or an integer interpretation, but not both.
5934 Get_First_Interp (N, Index, It);
5935 while Present (It.Typ) loop
5936 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5937 if Analyzed (N) then
5938 Error_Msg_N ("ambiguous operand in fixed operation", N);
5939 else
5940 Resolve (N, Standard_Integer);
5941 end if;
5943 elsif Is_Fixed_Point_Type (It.Typ) then
5944 if Analyzed (N) then
5945 Error_Msg_N ("ambiguous operand in fixed operation", N);
5946 else
5947 Resolve (N, It.Typ);
5948 end if;
5949 end if;
5951 Get_Next_Interp (Index, It);
5952 end loop;
5954 -- Reanalyze the literal with the fixed type of the context. If
5955 -- context is Universal_Fixed, we are within a conversion, leave
5956 -- the literal as a universal real because there is no usable
5957 -- fixed type, and the target of the conversion plays no role in
5958 -- the resolution.
5960 declare
5961 Op2 : Node_Id;
5962 T2 : Entity_Id;
5964 begin
5965 if N = L then
5966 Op2 := R;
5967 else
5968 Op2 := L;
5969 end if;
5971 if B_Typ = Universal_Fixed
5972 and then Nkind (Op2) = N_Real_Literal
5973 then
5974 T2 := Universal_Real;
5975 else
5976 T2 := B_Typ;
5977 end if;
5979 Set_Analyzed (Op2, False);
5980 Resolve (Op2, T2);
5981 end;
5983 -- A universal real conditional expression can appear in a fixed-type
5984 -- context and must be resolved with that context to facilitate the
5985 -- code generation in the back end. However, If the context is
5986 -- Universal_fixed (i.e. as an operand of a multiplication/division
5987 -- involving a fixed-point operand) the conditional expression must
5988 -- resolve to a unique visible fixed_point type, normally Duration.
5990 elsif Nkind (N) in N_Case_Expression | N_If_Expression
5991 and then Etype (N) = Universal_Real
5992 and then Is_Fixed_Point_Type (B_Typ)
5993 then
5994 if B_Typ = Universal_Fixed then
5995 Resolve (N, Unique_Fixed_Point_Type (N));
5997 else
5998 Resolve (N, B_Typ);
5999 end if;
6001 else
6002 Resolve (N);
6003 end if;
6004 end Set_Mixed_Mode_Operand;
6006 ----------------------
6007 -- Set_Operand_Type --
6008 ----------------------
6010 procedure Set_Operand_Type (N : Node_Id) is
6011 begin
6012 if Is_Universal_Numeric_Type (Etype (N)) then
6013 Set_Etype (N, T);
6014 end if;
6015 end Set_Operand_Type;
6017 -- Start of processing for Resolve_Arithmetic_Op
6019 begin
6020 if Comes_From_Source (N)
6021 and then Ekind (Entity (N)) = E_Function
6022 and then Is_Imported (Entity (N))
6023 and then Is_Intrinsic_Subprogram (Entity (N))
6024 then
6025 Resolve_Intrinsic_Operator (N, Typ);
6026 return;
6028 -- Special-case for mixed-mode universal expressions or fixed point type
6029 -- operation: each argument is resolved separately. The same treatment
6030 -- is required if one of the operands of a fixed point operation is
6031 -- universal real, since in this case we don't do a conversion to a
6032 -- specific fixed-point type (instead the expander handles the case).
6034 -- Set the type of the node to its universal interpretation because
6035 -- legality checks on an exponentiation operand need the context.
6037 elsif Is_Universal_Numeric_Type (B_Typ)
6038 and then Present (Universal_Interpretation (L))
6039 and then Present (Universal_Interpretation (R))
6040 then
6041 Set_Etype (N, B_Typ);
6042 Resolve (L, Universal_Interpretation (L));
6043 Resolve (R, Universal_Interpretation (R));
6045 elsif (B_Typ = Universal_Real
6046 or else Etype (N) = Universal_Fixed
6047 or else (Etype (N) = Any_Fixed
6048 and then Is_Fixed_Point_Type (B_Typ))
6049 or else (Is_Fixed_Point_Type (B_Typ)
6050 and then (Is_Integer_Or_Universal (L)
6051 or else
6052 Is_Integer_Or_Universal (R))))
6053 and then Nkind (N) in N_Op_Multiply | N_Op_Divide
6054 then
6055 if TL = Universal_Integer or else TR = Universal_Integer then
6056 Check_For_Visible_Operator (N, B_Typ);
6057 end if;
6059 -- If context is a fixed type and one operand is integer, the other
6060 -- is resolved with the type of the context.
6062 if Is_Fixed_Point_Type (B_Typ)
6063 and then (Base_Type (TL) = Base_Type (Standard_Integer)
6064 or else TL = Universal_Integer)
6065 then
6066 Resolve (R, B_Typ);
6067 Resolve (L, TL);
6069 elsif Is_Fixed_Point_Type (B_Typ)
6070 and then (Base_Type (TR) = Base_Type (Standard_Integer)
6071 or else TR = Universal_Integer)
6072 then
6073 Resolve (L, B_Typ);
6074 Resolve (R, TR);
6076 -- If both operands are universal and the context is a floating
6077 -- point type, the operands are resolved to the type of the context.
6079 elsif Is_Floating_Point_Type (B_Typ) then
6080 Resolve (L, B_Typ);
6081 Resolve (R, B_Typ);
6083 else
6084 Set_Mixed_Mode_Operand (L, TR);
6085 Set_Mixed_Mode_Operand (R, TL);
6086 end if;
6088 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
6089 -- multiplying operators from being used when the expected type is
6090 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
6091 -- some cases where the expected type is actually Any_Real;
6092 -- Expected_Type_Is_Any_Real takes care of that case.
6094 if Etype (N) = Universal_Fixed
6095 or else Etype (N) = Any_Fixed
6096 then
6097 if B_Typ = Universal_Fixed
6098 and then not Expected_Type_Is_Any_Real (N)
6099 and then Nkind (Parent (N)) not in
6100 N_Type_Conversion | N_Unchecked_Type_Conversion
6101 then
6102 Error_Msg_N ("type cannot be determined from context!", N);
6103 Error_Msg_N ("\explicit conversion to result type required", N);
6105 Set_Etype (L, Any_Type);
6106 Set_Etype (R, Any_Type);
6108 else
6109 if Ada_Version = Ada_83
6110 and then Etype (N) = Universal_Fixed
6111 and then Nkind (Parent (N)) not in
6112 N_Type_Conversion | N_Unchecked_Type_Conversion
6113 then
6114 Error_Msg_N
6115 ("(Ada 83) fixed-point operation needs explicit "
6116 & "conversion", N);
6117 end if;
6119 -- The expected type is "any real type" in contexts like
6121 -- type T is delta <universal_fixed-expression> ...
6123 -- in which case we need to set the type to Universal_Real
6124 -- so that static expression evaluation will work properly.
6126 if Expected_Type_Is_Any_Real (N) then
6127 Set_Etype (N, Universal_Real);
6128 else
6129 Set_Etype (N, B_Typ);
6130 end if;
6131 end if;
6133 elsif Is_Fixed_Point_Type (B_Typ)
6134 and then (Is_Integer_Or_Universal (L)
6135 or else Nkind (L) = N_Real_Literal
6136 or else Nkind (R) = N_Real_Literal
6137 or else Is_Integer_Or_Universal (R))
6138 then
6139 Set_Etype (N, B_Typ);
6141 elsif Etype (N) = Any_Fixed then
6143 -- If no previous errors, this is only possible if one operand is
6144 -- overloaded and the context is universal. Resolve as such.
6146 Set_Etype (N, B_Typ);
6147 end if;
6149 else
6150 if Is_Universal_Numeric_Type (TL)
6151 and then
6152 Is_Universal_Numeric_Type (TR)
6153 then
6154 Check_For_Visible_Operator (N, B_Typ);
6155 end if;
6157 -- If the context is Universal_Fixed and the operands are also
6158 -- universal fixed, this is an error, unless there is only one
6159 -- applicable fixed_point type (usually Duration).
6161 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
6162 T := Unique_Fixed_Point_Type (N);
6164 if T = Any_Type then
6165 Set_Etype (N, T);
6166 return;
6167 else
6168 Resolve (L, T);
6169 Resolve (R, T);
6170 end if;
6172 else
6173 Resolve (L, B_Typ);
6174 Resolve (R, B_Typ);
6175 end if;
6177 -- If one of the arguments was resolved to a non-universal type.
6178 -- label the result of the operation itself with the same type.
6179 -- Do the same for the universal argument, if any.
6181 T := Intersect_Types (L, R);
6182 Set_Etype (N, Base_Type (T));
6183 Set_Operand_Type (L);
6184 Set_Operand_Type (R);
6185 end if;
6187 Generate_Operator_Reference (N, Typ);
6188 Analyze_Dimension (N);
6189 Eval_Arithmetic_Op (N);
6191 -- Set overflow and division checking bit
6193 if Nkind (N) in N_Op then
6194 if not Overflow_Checks_Suppressed (Etype (N)) then
6195 Enable_Overflow_Check (N);
6196 end if;
6198 -- Give warning if explicit division by zero
6200 if Nkind (N) in N_Op_Divide | N_Op_Rem | N_Op_Mod
6201 and then not Division_Checks_Suppressed (Etype (N))
6202 then
6203 Rop := Right_Opnd (N);
6205 if Compile_Time_Known_Value (Rop)
6206 and then ((Is_Integer_Type (Etype (Rop))
6207 and then Expr_Value (Rop) = Uint_0)
6208 or else
6209 (Is_Real_Type (Etype (Rop))
6210 and then Expr_Value_R (Rop) = Ureal_0))
6211 then
6212 -- Specialize the warning message according to the operation.
6213 -- When SPARK_Mode is On, force a warning instead of an error
6214 -- in that case, as this likely corresponds to deactivated
6215 -- code. The following warnings are for the case
6217 case Nkind (N) is
6218 when N_Op_Divide =>
6220 -- For division, we have two cases, for float division
6221 -- of an unconstrained float type, on a machine where
6222 -- Machine_Overflows is false, we don't get an exception
6223 -- at run-time, but rather an infinity or Nan. The Nan
6224 -- case is pretty obscure, so just warn about infinities.
6226 if Is_Floating_Point_Type (Typ)
6227 and then not Is_Constrained (Typ)
6228 and then not Machine_Overflows_On_Target
6229 then
6230 Error_Msg_N
6231 ("float division by zero, may generate "
6232 & "'+'/'- infinity??", Right_Opnd (N));
6234 -- For all other cases, we get a Constraint_Error
6236 else
6237 Apply_Compile_Time_Constraint_Error
6238 (N, "division by zero??", CE_Divide_By_Zero,
6239 Loc => Sloc (Right_Opnd (N)),
6240 Warn => SPARK_Mode = On);
6241 end if;
6243 when N_Op_Rem =>
6244 Apply_Compile_Time_Constraint_Error
6245 (N, "rem with zero divisor??", CE_Divide_By_Zero,
6246 Loc => Sloc (Right_Opnd (N)),
6247 Warn => SPARK_Mode = On);
6249 when N_Op_Mod =>
6250 Apply_Compile_Time_Constraint_Error
6251 (N, "mod with zero divisor??", CE_Divide_By_Zero,
6252 Loc => Sloc (Right_Opnd (N)),
6253 Warn => SPARK_Mode = On);
6255 -- Division by zero can only happen with division, rem,
6256 -- and mod operations.
6258 when others =>
6259 raise Program_Error;
6260 end case;
6262 -- Otherwise just set the flag to check at run time
6264 else
6265 Activate_Division_Check (N);
6266 end if;
6267 end if;
6269 -- If Restriction No_Implicit_Conditionals is active, then it is
6270 -- violated if either operand can be negative for mod, or for rem
6271 -- if both operands can be negative.
6273 if Restriction_Check_Required (No_Implicit_Conditionals)
6274 and then Nkind (N) in N_Op_Rem | N_Op_Mod
6275 then
6276 declare
6277 Lo : Uint;
6278 Hi : Uint;
6279 OK : Boolean;
6281 LNeg : Boolean;
6282 RNeg : Boolean;
6283 -- Set if corresponding operand might be negative
6285 begin
6286 Determine_Range
6287 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
6288 LNeg := (not OK) or else Lo < 0;
6290 Determine_Range
6291 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
6292 RNeg := (not OK) or else Lo < 0;
6294 -- Check if we will be generating conditionals. There are two
6295 -- cases where that can happen, first for REM, the only case
6296 -- is largest negative integer mod -1, where the division can
6297 -- overflow, but we still have to give the right result. The
6298 -- front end generates a test for this annoying case. Here we
6299 -- just test if both operands can be negative (that's what the
6300 -- expander does, so we match its logic here).
6302 -- The second case is mod where either operand can be negative.
6303 -- In this case, the back end has to generate additional tests.
6305 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
6306 or else
6307 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
6308 then
6309 Check_Restriction (No_Implicit_Conditionals, N);
6310 end if;
6311 end;
6312 end if;
6313 end if;
6315 Check_Unset_Reference (L);
6316 Check_Unset_Reference (R);
6317 end Resolve_Arithmetic_Op;
6319 ------------------
6320 -- Resolve_Call --
6321 ------------------
6323 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
6324 Loc : constant Source_Ptr := Sloc (N);
6325 Subp : constant Node_Id := Name (N);
6326 Body_Id : Entity_Id;
6327 I : Interp_Index;
6328 It : Interp;
6329 Nam : Entity_Id;
6330 Nam_Decl : Node_Id;
6331 Nam_UA : Entity_Id;
6332 Norm_OK : Boolean;
6333 Rtype : Entity_Id;
6334 Scop : Entity_Id;
6336 begin
6337 -- Preserve relevant elaboration-related attributes of the context which
6338 -- are no longer available or very expensive to recompute once analysis,
6339 -- resolution, and expansion are over.
6341 Mark_Elaboration_Attributes
6342 (N_Id => N,
6343 Checks => True,
6344 Modes => True,
6345 Warnings => True);
6347 -- The context imposes a unique interpretation with type Typ on a
6348 -- procedure or function call. Find the entity of the subprogram that
6349 -- yields the expected type, and propagate the corresponding formal
6350 -- constraints on the actuals. The caller has established that an
6351 -- interpretation exists, and emitted an error if not unique.
6353 -- First deal with the case of a call to an access-to-subprogram,
6354 -- dereference made explicit in Analyze_Call.
6356 if Ekind (Etype (Subp)) = E_Subprogram_Type then
6357 if not Is_Overloaded (Subp) then
6358 Nam := Etype (Subp);
6360 else
6361 -- Find the interpretation whose type (a subprogram type) has a
6362 -- return type that is compatible with the context. Analysis of
6363 -- the node has established that one exists.
6365 Nam := Empty;
6367 Get_First_Interp (Subp, I, It);
6368 while Present (It.Typ) loop
6369 if Covers (Typ, Etype (It.Typ)) then
6370 Nam := It.Typ;
6371 exit;
6372 end if;
6374 Get_Next_Interp (I, It);
6375 end loop;
6377 if No (Nam) then
6378 raise Program_Error;
6379 end if;
6380 end if;
6382 -- If the prefix is not an entity, then resolve it
6384 if not Is_Entity_Name (Subp) then
6385 Resolve (Subp, Nam);
6386 end if;
6388 -- For an indirect call, we always invalidate checks, since we do not
6389 -- know whether the subprogram is local or global. Yes we could do
6390 -- better here, e.g. by knowing that there are no local subprograms,
6391 -- but it does not seem worth the effort. Similarly, we kill all
6392 -- knowledge of current constant values.
6394 Kill_Current_Values;
6396 -- If this is a procedure call which is really an entry call, do
6397 -- the conversion of the procedure call to an entry call. Protected
6398 -- operations use the same circuitry because the name in the call
6399 -- can be an arbitrary expression with special resolution rules.
6401 elsif Nkind (Subp) in N_Selected_Component | N_Indexed_Component
6402 or else (Is_Entity_Name (Subp) and then Is_Entry (Entity (Subp)))
6403 then
6404 Resolve_Entry_Call (N, Typ);
6406 if Legacy_Elaboration_Checks then
6407 Check_Elab_Call (N);
6408 end if;
6410 -- Annotate the tree by creating a call marker in case the original
6411 -- call is transformed by expansion. The call marker is automatically
6412 -- saved for later examination by the ABE Processing phase.
6414 Build_Call_Marker (N);
6416 -- Kill checks and constant values, as above for indirect case
6417 -- Who knows what happens when another task is activated?
6419 Kill_Current_Values;
6420 return;
6422 -- Normal subprogram call with name established in Resolve
6424 elsif not Is_Type (Entity (Subp)) then
6425 Nam := Entity (Subp);
6426 Set_Entity_With_Checks (Subp, Nam);
6428 -- Otherwise we must have the case of an overloaded call
6430 else
6431 pragma Assert (Is_Overloaded (Subp));
6433 -- Initialize Nam to prevent warning (we know it will be assigned
6434 -- in the loop below, but the compiler does not know that).
6436 Nam := Empty;
6438 Get_First_Interp (Subp, I, It);
6439 while Present (It.Typ) loop
6440 if Covers (Typ, It.Typ) then
6441 Nam := It.Nam;
6442 Set_Entity_With_Checks (Subp, Nam);
6443 exit;
6444 end if;
6446 Get_Next_Interp (I, It);
6447 end loop;
6448 end if;
6450 -- Check that a call to Current_Task does not occur in an entry body
6452 if Is_RTE (Nam, RE_Current_Task) then
6453 declare
6454 P : Node_Id;
6456 begin
6457 P := N;
6458 loop
6459 P := Parent (P);
6461 -- Exclude calls that occur within the default of a formal
6462 -- parameter of the entry, since those are evaluated outside
6463 -- of the body.
6465 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
6467 if Nkind (P) = N_Entry_Body
6468 or else (Nkind (P) = N_Subprogram_Body
6469 and then Is_Entry_Barrier_Function (P))
6470 then
6471 Rtype := Etype (N);
6472 Error_Msg_Warn := SPARK_Mode /= On;
6473 Error_Msg_NE
6474 ("& should not be used in entry body (RM C.7(17))<<",
6475 N, Nam);
6476 Error_Msg_NE ("\Program_Error [<<", N, Nam);
6477 Rewrite (N,
6478 Make_Raise_Program_Error (Loc,
6479 Reason => PE_Current_Task_In_Entry_Body));
6480 Set_Etype (N, Rtype);
6481 return;
6482 end if;
6483 end loop;
6484 end;
6485 end if;
6487 -- Check that a procedure call does not occur in the context of the
6488 -- entry call statement of a conditional or timed entry call. Note that
6489 -- the case of a call to a subprogram renaming of an entry will also be
6490 -- rejected. The test for N not being an N_Entry_Call_Statement is
6491 -- defensive, covering the possibility that the processing of entry
6492 -- calls might reach this point due to later modifications of the code
6493 -- above.
6495 if Nkind (Parent (N)) = N_Entry_Call_Alternative
6496 and then Nkind (N) /= N_Entry_Call_Statement
6497 and then Entry_Call_Statement (Parent (N)) = N
6498 then
6499 if Ada_Version < Ada_2005 then
6500 Error_Msg_N ("entry call required in select statement", N);
6502 -- Ada 2005 (AI-345): If a procedure_call_statement is used
6503 -- for a procedure_or_entry_call, the procedure_name or
6504 -- procedure_prefix of the procedure_call_statement shall denote
6505 -- an entry renamed by a procedure, or (a view of) a primitive
6506 -- subprogram of a limited interface whose first parameter is
6507 -- a controlling parameter.
6509 elsif Nkind (N) = N_Procedure_Call_Statement
6510 and then not Is_Renamed_Entry (Nam)
6511 and then not Is_Controlling_Limited_Procedure (Nam)
6512 then
6513 Error_Msg_N
6514 ("entry call or dispatching primitive of interface required", N);
6515 end if;
6516 end if;
6518 -- Check that this is not a call to a protected procedure or entry from
6519 -- within a protected function.
6521 Check_Internal_Protected_Use (N, Nam);
6523 -- Freeze the subprogram name if not in a spec-expression. Note that
6524 -- we freeze procedure calls as well as function calls. Procedure calls
6525 -- are not frozen according to the rules (RM 13.14(14)) because it is
6526 -- impossible to have a procedure call to a non-frozen procedure in
6527 -- pure Ada, but in the code that we generate in the expander, this
6528 -- rule needs extending because we can generate procedure calls that
6529 -- need freezing.
6531 -- In Ada 2012, expression functions may be called within pre/post
6532 -- conditions of subsequent functions or expression functions. Such
6533 -- calls do not freeze when they appear within generated bodies,
6534 -- (including the body of another expression function) which would
6535 -- place the freeze node in the wrong scope. An expression function
6536 -- is frozen in the usual fashion, by the appearance of a real body,
6537 -- or at the end of a declarative part. However an implicit call to
6538 -- an expression function may appear when it is part of a default
6539 -- expression in a call to an initialization procedure, and must be
6540 -- frozen now, even if the body is inserted at a later point.
6541 -- Otherwise, the call freezes the expression if expander is active,
6542 -- for example as part of an object declaration.
6544 if Is_Entity_Name (Subp)
6545 and then not In_Spec_Expression
6546 and then not Is_Expression_Function_Or_Completion (Current_Scope)
6547 and then
6548 (not Is_Expression_Function_Or_Completion (Entity (Subp))
6549 or else Expander_Active)
6550 then
6551 if Is_Expression_Function (Entity (Subp)) then
6553 -- Force freeze of expression function in call
6555 Set_Comes_From_Source (Subp, True);
6556 Set_Must_Not_Freeze (Subp, False);
6557 end if;
6559 Freeze_Expression (Subp);
6560 end if;
6562 -- For a predefined operator, the type of the result is the type imposed
6563 -- by context, except for a predefined operation on universal fixed.
6564 -- Otherwise the type of the call is the type returned by the subprogram
6565 -- being called.
6567 if Is_Predefined_Op (Nam) then
6568 if Etype (N) /= Universal_Fixed then
6569 Set_Etype (N, Typ);
6570 end if;
6572 -- If the subprogram returns an array type, and the context requires the
6573 -- component type of that array type, the node is really an indexing of
6574 -- the parameterless call. Resolve as such. A pathological case occurs
6575 -- when the type of the component is an access to the array type. In
6576 -- this case the call is truly ambiguous. If the call is to an intrinsic
6577 -- subprogram, it can't be an indexed component. This check is necessary
6578 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
6579 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
6580 -- pointers to the same array), the compiler gets confused and does an
6581 -- infinite recursion.
6583 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
6584 and then
6585 ((Is_Array_Type (Etype (Nam))
6586 and then Covers (Typ, Component_Type (Etype (Nam))))
6587 or else
6588 (Is_Access_Type (Etype (Nam))
6589 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6590 and then
6591 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))
6592 and then not Is_Intrinsic_Subprogram (Entity (Subp))))
6593 then
6594 declare
6595 Index_Node : Node_Id;
6596 New_Subp : Node_Id;
6597 Ret_Type : constant Entity_Id := Etype (Nam);
6599 begin
6600 -- If this is a parameterless call there is no ambiguity and the
6601 -- call has the type of the function.
6603 if No (First_Actual (N)) then
6604 Set_Etype (N, Etype (Nam));
6606 if Present (First_Formal (Nam)) then
6607 Resolve_Actuals (N, Nam);
6608 end if;
6610 -- Annotate the tree by creating a call marker in case the
6611 -- original call is transformed by expansion. The call marker
6612 -- is automatically saved for later examination by the ABE
6613 -- Processing phase.
6615 Build_Call_Marker (N);
6617 elsif Is_Access_Type (Ret_Type)
6619 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
6620 then
6621 Error_Msg_N
6622 ("cannot disambiguate function call and indexing", N);
6623 else
6624 New_Subp := Relocate_Node (Subp);
6626 -- The called entity may be an explicit dereference, in which
6627 -- case there is no entity to set.
6629 if Nkind (New_Subp) /= N_Explicit_Dereference then
6630 Set_Entity (Subp, Nam);
6631 end if;
6633 if (Is_Array_Type (Ret_Type)
6634 and then Component_Type (Ret_Type) /= Any_Type)
6635 or else
6636 (Is_Access_Type (Ret_Type)
6637 and then
6638 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
6639 then
6640 if Needs_No_Actuals (Nam) then
6642 -- Indexed call to a parameterless function
6644 Index_Node :=
6645 Make_Indexed_Component (Loc,
6646 Prefix =>
6647 Make_Function_Call (Loc, Name => New_Subp),
6648 Expressions => Parameter_Associations (N));
6649 else
6650 -- An Ada 2005 prefixed call to a primitive operation
6651 -- whose first parameter is the prefix. This prefix was
6652 -- prepended to the parameter list, which is actually a
6653 -- list of indexes. Remove the prefix in order to build
6654 -- the proper indexed component.
6656 Index_Node :=
6657 Make_Indexed_Component (Loc,
6658 Prefix =>
6659 Make_Function_Call (Loc,
6660 Name => New_Subp,
6661 Parameter_Associations =>
6662 New_List
6663 (Remove_Head (Parameter_Associations (N)))),
6664 Expressions => Parameter_Associations (N));
6665 end if;
6667 -- Preserve the parenthesis count of the node
6669 Set_Paren_Count (Index_Node, Paren_Count (N));
6671 -- Since we are correcting a node classification error made
6672 -- by the parser, we call Replace rather than Rewrite.
6674 Replace (N, Index_Node);
6676 Set_Etype (Prefix (N), Ret_Type);
6677 Set_Etype (N, Typ);
6679 if Legacy_Elaboration_Checks then
6680 Check_Elab_Call (Prefix (N));
6681 end if;
6683 -- Annotate the tree by creating a call marker in case
6684 -- the original call is transformed by expansion. The call
6685 -- marker is automatically saved for later examination by
6686 -- the ABE Processing phase.
6688 Build_Call_Marker (Prefix (N));
6690 Resolve_Indexed_Component (N, Typ);
6691 end if;
6692 end if;
6694 return;
6695 end;
6697 else
6698 -- If the called function is not declared in the main unit and it
6699 -- returns the limited view of type then use the available view (as
6700 -- is done in Try_Object_Operation) to prevent back-end confusion;
6701 -- for the function entity itself. The call must appear in a context
6702 -- where the nonlimited view is available. If the function entity is
6703 -- in the extended main unit then no action is needed, because the
6704 -- back end handles this case. In either case the type of the call
6705 -- is the nonlimited view.
6707 if From_Limited_With (Etype (Nam))
6708 and then Present (Available_View (Etype (Nam)))
6709 then
6710 Set_Etype (N, Available_View (Etype (Nam)));
6712 if not In_Extended_Main_Code_Unit (Nam) then
6713 Set_Etype (Nam, Available_View (Etype (Nam)));
6714 end if;
6716 else
6717 Set_Etype (N, Etype (Nam));
6718 end if;
6719 end if;
6721 -- In the case where the call is to an overloaded subprogram, Analyze
6722 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6723 -- such a case Normalize_Actuals needs to be called once more to order
6724 -- the actuals correctly. Otherwise the call will have the ordering
6725 -- given by the last overloaded subprogram whether this is the correct
6726 -- one being called or not.
6728 if Is_Overloaded (Subp) then
6729 Normalize_Actuals (N, Nam, False, Norm_OK);
6730 pragma Assert (Norm_OK);
6731 end if;
6733 -- In any case, call is fully resolved now. Reset Overload flag, to
6734 -- prevent subsequent overload resolution if node is analyzed again
6736 Set_Is_Overloaded (Subp, False);
6737 Set_Is_Overloaded (N, False);
6739 -- A Ghost entity must appear in a specific context
6741 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6742 Check_Ghost_Context (Nam, N);
6743 end if;
6745 -- If we are calling the current subprogram from immediately within its
6746 -- body, then that is the case where we can sometimes detect cases of
6747 -- infinite recursion statically. Do not try this in case restriction
6748 -- No_Recursion is in effect anyway, and do it only for source calls.
6750 if Comes_From_Source (N) then
6751 Scop := Current_Scope;
6753 -- Issue warning for possible infinite recursion in the absence
6754 -- of the No_Recursion restriction.
6756 if Same_Or_Aliased_Subprograms (Nam, Scop)
6757 and then not Restriction_Active (No_Recursion)
6758 and then not Is_Static_Function (Scop)
6759 and then Check_Infinite_Recursion (N)
6760 then
6761 -- Here we detected and flagged an infinite recursion, so we do
6762 -- not need to test the case below for further warnings. Also we
6763 -- are all done if we now have a raise SE node.
6765 if Nkind (N) = N_Raise_Storage_Error then
6766 return;
6767 end if;
6769 -- If call is to immediately containing subprogram, then check for
6770 -- the case of a possible run-time detectable infinite recursion.
6772 else
6773 Scope_Loop : while Scop /= Standard_Standard loop
6774 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6776 -- Ada 2022 (AI12-0075): Static functions are never allowed
6777 -- to make a recursive call, as specified by 6.8(5.4/5).
6779 if Is_Static_Function (Scop) then
6780 Error_Msg_N
6781 ("recursive call not allowed in static expression "
6782 & "function", N);
6784 Set_Error_Posted (Scop);
6786 exit Scope_Loop;
6787 end if;
6789 -- Although in general case, recursion is not statically
6790 -- checkable, the case of calling an immediately containing
6791 -- subprogram is easy to catch.
6793 if not Is_Ignored_Ghost_Entity (Nam) then
6794 Check_Restriction (No_Recursion, N);
6795 end if;
6797 -- If the recursive call is to a parameterless subprogram,
6798 -- then even if we can't statically detect infinite
6799 -- recursion, this is pretty suspicious, and we output a
6800 -- warning. Furthermore, we will try later to detect some
6801 -- cases here at run time by expanding checking code (see
6802 -- Detect_Infinite_Recursion in package Exp_Ch6).
6804 -- If the recursive call is within a handler, do not emit a
6805 -- warning, because this is a common idiom: loop until input
6806 -- is correct, catch illegal input in handler and restart.
6808 if No (First_Formal (Nam))
6809 and then Etype (Nam) = Standard_Void_Type
6810 and then not Error_Posted (N)
6811 and then Nkind (Parent (N)) /= N_Exception_Handler
6812 then
6813 -- For the case of a procedure call. We give the message
6814 -- only if the call is the first statement in a sequence
6815 -- of statements, or if all previous statements are
6816 -- simple assignments. This is simply a heuristic to
6817 -- decrease false positives, without losing too many good
6818 -- warnings. The idea is that these previous statements
6819 -- may affect global variables the procedure depends on.
6820 -- We also exclude raise statements, that may arise from
6821 -- constraint checks and are probably unrelated to the
6822 -- intended control flow.
6824 if Nkind (N) = N_Procedure_Call_Statement
6825 and then Is_List_Member (N)
6826 then
6827 declare
6828 P : Node_Id;
6829 begin
6830 P := Prev (N);
6831 while Present (P) loop
6832 if Nkind (P) not in N_Assignment_Statement
6833 | N_Raise_Constraint_Error
6834 then
6835 exit Scope_Loop;
6836 end if;
6838 Prev (P);
6839 end loop;
6840 end;
6841 end if;
6843 -- Do not give warning if we are in a conditional context
6845 declare
6846 K : constant Node_Kind := Nkind (Parent (N));
6847 begin
6848 if (K = N_Loop_Statement
6849 and then Present (Iteration_Scheme (Parent (N))))
6850 or else K = N_If_Statement
6851 or else K = N_Elsif_Part
6852 or else K = N_Case_Statement_Alternative
6853 then
6854 exit Scope_Loop;
6855 end if;
6856 end;
6858 -- Here warning is to be issued
6860 Set_Has_Recursive_Call (Nam);
6861 Error_Msg_Warn := SPARK_Mode /= On;
6862 Error_Msg_N ("possible infinite recursion<<!", N);
6863 Error_Msg_N ("\Storage_Error ]<<!", N);
6864 end if;
6866 exit Scope_Loop;
6867 end if;
6869 Scop := Scope (Scop);
6870 end loop Scope_Loop;
6871 end if;
6872 end if;
6874 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6876 Check_Obsolescent_2005_Entity (Nam, Subp);
6878 -- If subprogram name is a predefined operator, it was given in
6879 -- functional notation. Replace call node with operator node, so
6880 -- that actuals can be resolved appropriately.
6882 if Ekind (Nam) = E_Operator or else Is_Predefined_Op (Nam) then
6883 Make_Call_Into_Operator (N, Typ, Nam);
6884 return;
6886 elsif Present (Alias (Nam)) and then Is_Predefined_Op (Alias (Nam)) then
6887 Resolve_Actuals (N, Nam);
6888 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6889 return;
6890 end if;
6892 -- Create a transient scope if the resulting type requires it
6894 -- There are several notable exceptions:
6896 -- a) In init procs, the transient scope overhead is not needed, and is
6897 -- even incorrect when the call is a nested initialization call for a
6898 -- component whose expansion may generate adjust calls. However, if the
6899 -- call is some other procedure call within an initialization procedure
6900 -- (for example a call to Create_Task in the init_proc of the task
6901 -- run-time record) a transient scope must be created around this call.
6903 -- b) Enumeration literal pseudo-calls need no transient scope
6905 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6906 -- functions) do not use the secondary stack even though the return
6907 -- type may be unconstrained.
6909 -- d) Calls to a build-in-place function, since such functions may
6910 -- allocate their result directly in a target object, and cases where
6911 -- the result does get allocated in the secondary stack are checked for
6912 -- within the specialized Exp_Ch6 procedures for expanding those
6913 -- build-in-place calls.
6915 -- e) Calls to inlinable expression functions do not use the secondary
6916 -- stack (since the call will be replaced by its returned object).
6918 -- f) If the subprogram is marked Inline_Always, then even if it returns
6919 -- an unconstrained type the call does not require use of the secondary
6920 -- stack. However, inlining will only take place if the body to inline
6921 -- is already present. It may not be available if e.g. the subprogram is
6922 -- declared in a child instance.
6924 -- g) If the subprogram is a static expression function and the call is
6925 -- a static call (the actuals are all static expressions), then we never
6926 -- want to create a transient scope (this could occur in the case of a
6927 -- static string-returning call).
6929 if Is_Inlined (Nam)
6930 and then Has_Pragma_Inline (Nam)
6931 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6932 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6933 then
6934 null;
6936 elsif Ekind (Nam) = E_Enumeration_Literal
6937 or else Is_Build_In_Place_Function (Nam)
6938 or else Is_Intrinsic_Subprogram (Nam)
6939 or else Is_Inlinable_Expression_Function (Nam)
6940 or else Is_Static_Function_Call (N)
6941 then
6942 null;
6944 -- A return statement from an ignored Ghost function does not use the
6945 -- secondary stack (or any other one).
6947 elsif Expander_Active
6948 and then Ekind (Nam) in E_Function | E_Subprogram_Type
6949 and then Requires_Transient_Scope (Etype (Nam))
6950 and then not Is_Ignored_Ghost_Entity (Nam)
6951 then
6952 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
6954 -- If the call appears within the bounds of a loop, it will be
6955 -- rewritten and reanalyzed, nothing left to do here.
6957 if Nkind (N) /= N_Function_Call then
6958 return;
6959 end if;
6960 end if;
6962 -- A protected function cannot be called within the definition of the
6963 -- enclosing protected type, unless it is part of a pre/postcondition
6964 -- on another protected operation. This may appear in the entry wrapper
6965 -- created for an entry with preconditions.
6967 if Is_Protected_Type (Scope (Nam))
6968 and then In_Open_Scopes (Scope (Nam))
6969 and then not Has_Completion (Scope (Nam))
6970 and then not In_Spec_Expression
6971 and then not Is_Entry_Wrapper (Current_Scope)
6972 then
6973 Error_Msg_NE
6974 ("& cannot be called before end of protected definition", N, Nam);
6975 end if;
6977 -- Propagate interpretation to actuals, and add default expressions
6978 -- where needed.
6980 if Present (First_Formal (Nam)) then
6981 Resolve_Actuals (N, Nam);
6983 -- Overloaded literals are rewritten as function calls, for purpose of
6984 -- resolution. After resolution, we can replace the call with the
6985 -- literal itself.
6987 elsif Ekind (Nam) = E_Enumeration_Literal then
6988 Copy_Node (Subp, N);
6989 Resolve_Entity_Name (N, Typ);
6991 -- Avoid validation, since it is a static function call
6993 Generate_Reference (Nam, Subp);
6994 return;
6995 end if;
6997 -- If the subprogram is not global, then kill all saved values and
6998 -- checks. This is a bit conservative, since in many cases we could do
6999 -- better, but it is not worth the effort. Similarly, we kill constant
7000 -- values. However we do not need to do this for internal entities
7001 -- (unless they are inherited user-defined subprograms), since they
7002 -- are not in the business of molesting local values.
7004 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
7005 -- kill all checks and values for calls to global subprograms. This
7006 -- takes care of the case where an access to a local subprogram is
7007 -- taken, and could be passed directly or indirectly and then called
7008 -- from almost any context.
7010 -- Note: we do not do this step till after resolving the actuals. That
7011 -- way we still take advantage of the current value information while
7012 -- scanning the actuals.
7014 -- We suppress killing values if we are processing the nodes associated
7015 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
7016 -- type kills all the values as part of analyzing the code that
7017 -- initializes the dispatch tables.
7019 if Inside_Freezing_Actions = 0
7020 and then (not Is_Library_Level_Entity (Nam)
7021 or else Suppress_Value_Tracking_On_Call
7022 (Nearest_Dynamic_Scope (Current_Scope)))
7023 and then (Comes_From_Source (Nam)
7024 or else (Present (Alias (Nam))
7025 and then Comes_From_Source (Alias (Nam))))
7026 then
7027 Kill_Current_Values;
7028 end if;
7030 -- If we are warning about unread OUT parameters, this is the place to
7031 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
7032 -- after the above call to Kill_Current_Values (since that call clears
7033 -- the Last_Assignment field of all local variables).
7035 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
7036 and then Comes_From_Source (N)
7037 and then In_Extended_Main_Source_Unit (N)
7038 then
7039 declare
7040 F : Entity_Id;
7041 A : Node_Id;
7043 begin
7044 F := First_Formal (Nam);
7045 A := First_Actual (N);
7046 while Present (F) and then Present (A) loop
7047 if Ekind (F) in E_Out_Parameter | E_In_Out_Parameter
7048 and then Warn_On_Modified_As_Out_Parameter (F)
7049 and then Is_Entity_Name (A)
7050 and then Present (Entity (A))
7051 and then Comes_From_Source (N)
7052 and then Safe_To_Capture_Value (N, Entity (A))
7053 then
7054 Set_Last_Assignment (Entity (A), A);
7055 end if;
7057 Next_Formal (F);
7058 Next_Actual (A);
7059 end loop;
7060 end;
7061 end if;
7063 -- If the subprogram is a primitive operation, check whether or not
7064 -- it is a correct dispatching call.
7066 if Is_Overloadable (Nam)
7067 and then Is_Dispatching_Operation (Nam)
7068 then
7069 Check_Dispatching_Call (N);
7071 elsif Ekind (Nam) /= E_Subprogram_Type
7072 and then Is_Abstract_Subprogram (Nam)
7073 and then not In_Instance
7074 then
7075 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
7076 end if;
7078 -- If this is a dispatching call, generate the appropriate reference,
7079 -- for better source navigation in GNAT Studio.
7081 if Is_Overloadable (Nam)
7082 and then Present (Controlling_Argument (N))
7083 then
7084 Generate_Reference (Nam, Subp, 'R');
7086 -- Normal case, not a dispatching call: generate a call reference
7088 else
7089 Generate_Reference (Nam, Subp, 's');
7090 end if;
7092 if Is_Intrinsic_Subprogram (Nam) then
7093 Check_Intrinsic_Call (N);
7094 end if;
7096 -- Check for violation of restriction No_Specific_Termination_Handlers
7097 -- and warn on a potentially blocking call to Abort_Task.
7099 if Restriction_Check_Required (No_Specific_Termination_Handlers)
7100 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
7101 or else
7102 Is_RTE (Nam, RE_Specific_Handler))
7103 then
7104 Check_Restriction (No_Specific_Termination_Handlers, N);
7106 elsif Is_RTE (Nam, RE_Abort_Task) then
7107 Check_Potentially_Blocking_Operation (N);
7108 end if;
7110 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
7111 -- timing event violates restriction No_Relative_Delay (AI-0211). We
7112 -- need to check the second argument to determine whether it is an
7113 -- absolute or relative timing event.
7115 if Restriction_Check_Required (No_Relative_Delay)
7116 and then Is_RTE (Nam, RE_Set_Handler)
7117 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
7118 then
7119 Check_Restriction (No_Relative_Delay, N);
7120 end if;
7122 -- Issue an error for a call to an eliminated subprogram. This routine
7123 -- will not perform the check if the call appears within a default
7124 -- expression.
7126 Check_For_Eliminated_Subprogram (Subp, Nam);
7128 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
7129 -- class-wide and the call dispatches on result in a context that does
7130 -- not provide a tag, the call raises Program_Error.
7132 if Nkind (N) = N_Function_Call
7133 and then In_Instance
7134 and then Is_Generic_Actual_Type (Typ)
7135 and then Is_Class_Wide_Type (Typ)
7136 and then Has_Controlling_Result (Nam)
7137 and then Nkind (Parent (N)) = N_Object_Declaration
7138 then
7139 -- Verify that none of the formals are controlling
7141 declare
7142 Call_OK : Boolean := False;
7143 F : Entity_Id;
7145 begin
7146 F := First_Formal (Nam);
7147 while Present (F) loop
7148 if Is_Controlling_Formal (F) then
7149 Call_OK := True;
7150 exit;
7151 end if;
7153 Next_Formal (F);
7154 end loop;
7156 if not Call_OK then
7157 Error_Msg_Warn := SPARK_Mode /= On;
7158 Error_Msg_N ("!cannot determine tag of result<<", N);
7159 Error_Msg_N ("\Program_Error [<<!", N);
7160 Insert_Action (N,
7161 Make_Raise_Program_Error (Sloc (N),
7162 Reason => PE_Explicit_Raise));
7163 end if;
7164 end;
7165 end if;
7167 -- Check for calling a function with OUT or IN OUT parameter when the
7168 -- calling context (us right now) is not Ada 2012, so does not allow
7169 -- OUT or IN OUT parameters in function calls. Functions declared in
7170 -- a predefined unit are OK, as they may be called indirectly from a
7171 -- user-declared instantiation.
7173 if Ada_Version < Ada_2012
7174 and then Ekind (Nam) = E_Function
7175 and then Has_Out_Or_In_Out_Parameter (Nam)
7176 and then not In_Predefined_Unit (Nam)
7177 then
7178 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
7179 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
7180 end if;
7182 -- Check the dimensions of the actuals in the call. For function calls,
7183 -- propagate the dimensions from the returned type to N.
7185 Analyze_Dimension_Call (N, Nam);
7187 -- All done, evaluate call and deal with elaboration issues
7189 Eval_Call (N);
7191 if Legacy_Elaboration_Checks then
7192 Check_Elab_Call (N);
7193 end if;
7195 -- Annotate the tree by creating a call marker in case the original call
7196 -- is transformed by expansion. The call marker is automatically saved
7197 -- for later examination by the ABE Processing phase.
7199 Build_Call_Marker (N);
7201 Mark_Use_Clauses (Subp);
7203 Warn_On_Overlapping_Actuals (Nam, N);
7205 -- Ada 2022 (AI12-0075): If the call is a static call to a static
7206 -- expression function, then we want to "inline" the call, replacing
7207 -- it with the folded static result. This is not done if the checking
7208 -- for a potentially static expression is enabled or if an error has
7209 -- been posted on the call (which may be due to the check for recursive
7210 -- calls, in which case we don't want to fall into infinite recursion
7211 -- when doing the inlining).
7213 if not Checking_Potentially_Static_Expression
7214 and then Is_Static_Function_Call (N)
7215 and then not Is_Intrinsic_Subprogram (Ultimate_Alias (Nam))
7216 and then not Error_Posted (Ultimate_Alias (Nam))
7217 then
7218 Inline_Static_Function_Call (N, Ultimate_Alias (Nam));
7220 -- In GNATprove mode, expansion is disabled, but we want to inline some
7221 -- subprograms to facilitate formal verification. Indirect calls through
7222 -- a subprogram type or within a generic cannot be inlined. Inlining is
7223 -- performed only for calls subject to SPARK_Mode on.
7225 elsif GNATprove_Mode
7226 and then SPARK_Mode = On
7227 and then Is_Overloadable (Nam)
7228 and then not Inside_A_Generic
7229 then
7230 Nam_UA := Ultimate_Alias (Nam);
7231 Nam_Decl := Unit_Declaration_Node (Nam_UA);
7233 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
7234 Body_Id := Corresponding_Body (Nam_Decl);
7236 -- Nothing to do if the subprogram is not eligible for inlining in
7237 -- GNATprove mode, or inlining is disabled with switch -gnatdm
7239 if not Is_Inlined_Always (Nam_UA)
7240 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
7241 or else Debug_Flag_M
7242 then
7243 null;
7245 -- Calls cannot be inlined inside assertions, as GNATprove treats
7246 -- assertions as logic expressions. Only issue a message when the
7247 -- body has been seen, otherwise this leads to spurious messages
7248 -- on expression functions.
7250 elsif In_Assertion_Expr /= 0 then
7251 Cannot_Inline
7252 ("cannot inline & (in assertion expression)?", N, Nam_UA,
7253 Suppress_Info => No (Body_Id));
7255 -- Calls cannot be inlined inside default expressions
7257 elsif In_Default_Expr then
7258 Cannot_Inline
7259 ("cannot inline & (in default expression)?", N, Nam_UA);
7261 -- Calls cannot be inlined inside quantified expressions, which
7262 -- are left in expression form for GNATprove. Since these
7263 -- expressions are only preanalyzed, we need to detect the failure
7264 -- to inline outside of the case for Full_Analysis below.
7266 elsif In_Quantified_Expression (N) then
7267 Cannot_Inline
7268 ("cannot inline & (in quantified expression)?", N, Nam_UA);
7270 -- Inlining should not be performed during preanalysis
7272 elsif Full_Analysis then
7274 -- Do not inline calls inside expression functions or functions
7275 -- generated by the front end for subtype predicates, as this
7276 -- would prevent interpreting them as logical formulas in
7277 -- GNATprove. Only issue a message when the body has been seen,
7278 -- otherwise this leads to spurious messages on callees that
7279 -- are themselves expression functions.
7281 if Present (Current_Subprogram)
7282 and then
7283 (Is_Expression_Function_Or_Completion (Current_Subprogram)
7284 or else Is_Predicate_Function (Current_Subprogram)
7285 or else Is_Invariant_Procedure (Current_Subprogram)
7286 or else Is_DIC_Procedure (Current_Subprogram))
7287 then
7288 if Present (Body_Id)
7289 and then Present (Body_To_Inline (Nam_Decl))
7290 then
7291 if Is_Predicate_Function (Current_Subprogram) then
7292 Cannot_Inline
7293 ("cannot inline & (inside predicate)?",
7294 N, Nam_UA);
7296 elsif Is_Invariant_Procedure (Current_Subprogram) then
7297 Cannot_Inline
7298 ("cannot inline & (inside invariant)?",
7299 N, Nam_UA);
7301 elsif Is_DIC_Procedure (Current_Subprogram) then
7302 Cannot_Inline
7303 ("cannot inline & (inside Default_Initial_Condition)?",
7304 N, Nam_UA);
7306 else
7307 Cannot_Inline
7308 ("cannot inline & (inside expression function)?",
7309 N, Nam_UA);
7310 end if;
7311 end if;
7313 -- Cannot inline a call inside the definition of a record type,
7314 -- typically inside the constraints of the type. Calls in
7315 -- default expressions are also not inlined, but this is
7316 -- filtered out above when testing In_Default_Expr.
7318 elsif Is_Record_Type (Current_Scope) then
7319 Cannot_Inline
7320 ("cannot inline & (inside record type)?", N, Nam_UA);
7322 -- With the one-pass inlining technique, a call cannot be
7323 -- inlined if the corresponding body has not been seen yet.
7325 elsif No (Body_Id) then
7326 Cannot_Inline
7327 ("cannot inline & (body not seen yet)?", N, Nam_UA);
7329 -- Nothing to do if there is no body to inline, indicating that
7330 -- the subprogram is not suitable for inlining in GNATprove
7331 -- mode.
7333 elsif No (Body_To_Inline (Nam_Decl)) then
7334 null;
7336 -- Calls cannot be inlined inside potentially unevaluated
7337 -- expressions, as this would create complex actions inside
7338 -- expressions, that are not handled by GNATprove.
7340 elsif Is_Potentially_Unevaluated (N) then
7341 Cannot_Inline
7342 ("cannot inline & (in potentially unevaluated context)?",
7343 N, Nam_UA);
7345 -- Calls cannot be inlined inside the conditions of while
7346 -- loops, as this would create complex actions inside
7347 -- the condition, that are not handled by GNATprove.
7349 elsif In_Statement_Condition_With_Actions (N) then
7350 Cannot_Inline
7351 ("cannot inline & (in while loop condition)?", N, Nam_UA);
7353 -- Do not inline calls which would possibly lead to missing a
7354 -- type conversion check on an input parameter.
7356 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode (N, Nam) then
7357 Cannot_Inline
7358 ("cannot inline & (possible check on input parameters)?",
7359 N, Nam_UA);
7361 -- Otherwise, inline the call, issuing an info message when
7362 -- -gnatd_f is set.
7364 else
7365 if Debug_Flag_Underscore_F then
7366 Error_Msg_NE
7367 ("info: analyzing call to & in context?", N, Nam_UA);
7368 end if;
7370 Expand_Inlined_Call (N, Nam_UA, Nam);
7371 end if;
7372 end if;
7373 end if;
7374 end if;
7375 end Resolve_Call;
7377 -----------------------------
7378 -- Resolve_Case_Expression --
7379 -----------------------------
7381 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
7382 Alt : Node_Id;
7383 Alt_Expr : Node_Id;
7384 Alt_Typ : Entity_Id;
7385 Is_Dyn : Boolean;
7387 begin
7388 Alt := First (Alternatives (N));
7389 while Present (Alt) loop
7390 Alt_Expr := Expression (Alt);
7392 if Error_Posted (Alt_Expr) then
7393 return;
7394 end if;
7396 Resolve (Alt_Expr, Typ);
7397 Check_Unset_Reference (Alt_Expr);
7398 Alt_Typ := Etype (Alt_Expr);
7400 -- When the expression is of a scalar subtype different from the
7401 -- result subtype, then insert a conversion to ensure the generation
7402 -- of a constraint check.
7404 if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
7405 Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
7406 Analyze_And_Resolve (Alt_Expr, Typ);
7407 end if;
7409 Next (Alt);
7410 end loop;
7412 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
7413 -- dynamically tagged must be known statically.
7415 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
7416 Alt := First (Alternatives (N));
7417 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
7419 while Present (Alt) loop
7420 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
7421 Error_Msg_N
7422 ("all or none of the dependent expressions can be "
7423 & "dynamically tagged", N);
7424 end if;
7426 Next (Alt);
7427 end loop;
7428 end if;
7430 Set_Etype (N, Typ);
7431 Eval_Case_Expression (N);
7432 Analyze_Dimension (N);
7433 end Resolve_Case_Expression;
7435 -------------------------------
7436 -- Resolve_Character_Literal --
7437 -------------------------------
7439 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
7440 B_Typ : constant Entity_Id := Base_Type (Typ);
7441 C : Entity_Id;
7443 begin
7444 -- Verify that the character does belong to the type of the context
7446 Set_Etype (N, B_Typ);
7447 Eval_Character_Literal (N);
7449 -- Wide_Wide_Character literals must always be defined, since the set
7450 -- of wide wide character literals is complete, i.e. if a character
7451 -- literal is accepted by the parser, then it is OK for wide wide
7452 -- character (out of range character literals are rejected).
7454 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
7455 return;
7457 -- Always accept character literal for type Any_Character, which
7458 -- occurs in error situations and in comparisons of literals, both
7459 -- of which should accept all literals.
7461 elsif B_Typ = Any_Character then
7462 return;
7464 -- For Standard.Character or a type derived from it, check that the
7465 -- literal is in range.
7467 elsif Root_Type (B_Typ) = Standard_Character then
7468 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
7469 return;
7470 end if;
7472 -- For Standard.Wide_Character or a type derived from it, check that the
7473 -- literal is in range.
7475 elsif Root_Type (B_Typ) = Standard_Wide_Character then
7476 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
7477 return;
7478 end if;
7480 -- If the entity is already set, this has already been resolved in a
7481 -- generic context, or comes from expansion. Nothing else to do.
7483 elsif Present (Entity (N)) then
7484 return;
7486 -- Otherwise we have a user defined character type, and we can use the
7487 -- standard visibility mechanisms to locate the referenced entity.
7489 else
7490 C := Current_Entity (N);
7491 while Present (C) loop
7492 if Etype (C) = B_Typ then
7493 Set_Entity_With_Checks (N, C);
7494 Generate_Reference (C, N);
7495 return;
7496 end if;
7498 C := Homonym (C);
7499 end loop;
7500 end if;
7502 -- If we fall through, then the literal does not match any of the
7503 -- entries of the enumeration type. This isn't just a constraint error
7504 -- situation, it is an illegality (see RM 4.2).
7506 Error_Msg_NE
7507 ("character not defined for }", N, First_Subtype (B_Typ));
7508 end Resolve_Character_Literal;
7510 ---------------------------
7511 -- Resolve_Comparison_Op --
7512 ---------------------------
7514 -- The operands must have compatible types and the boolean context does not
7515 -- participate in the resolution. The first pass verifies that the operands
7516 -- are not ambiguous and sets their type correctly, or to Any_Type in case
7517 -- of ambiguity. If both operands are strings or aggregates, then they are
7518 -- ambiguous even if they carry a single (universal) type.
7520 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
7521 L : constant Node_Id := Left_Opnd (N);
7522 R : constant Node_Id := Right_Opnd (N);
7524 T : Entity_Id := Find_Unique_Type (L, R);
7526 begin
7527 if T = Any_Fixed then
7528 T := Unique_Fixed_Point_Type (L);
7529 end if;
7531 Set_Etype (N, Base_Type (Typ));
7532 Generate_Reference (T, N, ' ');
7534 if T = Any_Type then
7535 -- Deal with explicit ambiguity of operands
7537 if Ekind (Entity (N)) = E_Operator
7538 and then (Is_Overloaded (L) or else Is_Overloaded (R))
7539 then
7540 Ambiguous_Operands (N);
7541 end if;
7543 return;
7544 end if;
7546 -- Deal with other error cases
7548 if T = Any_String or else
7549 T = Any_Composite or else
7550 T = Any_Character
7551 then
7552 if T = Any_Character then
7553 Ambiguous_Character (L);
7554 else
7555 Error_Msg_N ("ambiguous operands for comparison", N);
7556 end if;
7558 Set_Etype (N, Any_Type);
7559 return;
7560 end if;
7562 -- Resolve the operands if types OK
7564 Resolve (L, T);
7565 Resolve (R, T);
7566 Check_Unset_Reference (L);
7567 Check_Unset_Reference (R);
7568 Generate_Operator_Reference (N, T);
7569 Check_Low_Bound_Tested (N);
7571 -- Check comparison on unordered enumeration
7573 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
7574 Error_Msg_Sloc := Sloc (Etype (L));
7575 Error_Msg_NE
7576 ("comparison on unordered enumeration type& declared#?.u?",
7577 N, Etype (L));
7578 end if;
7580 Analyze_Dimension (N);
7582 Eval_Relational_Op (N);
7583 end Resolve_Comparison_Op;
7585 --------------------------------
7586 -- Resolve_Declare_Expression --
7587 --------------------------------
7589 procedure Resolve_Declare_Expression
7590 (N : Node_Id;
7591 Typ : Entity_Id)
7593 Expr : constant Node_Id := Expression (N);
7595 Decl : Node_Id;
7596 Local : Entity_Id := Empty;
7598 function Replace_Local (N : Node_Id) return Traverse_Result;
7599 -- Use a tree traversal to replace each occurrence of the name of
7600 -- a local object declared in the construct, with the corresponding
7601 -- entity. This replaces the usual way to perform name capture by
7602 -- visibility, because it is not possible to place on the scope
7603 -- stack the fake scope created for the analysis of the local
7604 -- declarations; such a scope conflicts with the transient scopes
7605 -- that may be generated if the expression includes function calls
7606 -- requiring finalization.
7608 -------------------
7609 -- Replace_Local --
7610 -------------------
7612 function Replace_Local (N : Node_Id) return Traverse_Result is
7613 begin
7614 -- The identifier may be the prefix of a selected component,
7615 -- but not a selector name, because the local entities do not
7616 -- have a scope that can be named: a selected component whose
7617 -- selector is a homonym of a local entity must denote some
7618 -- global entity.
7620 if Nkind (N) = N_Identifier
7621 and then Chars (N) = Chars (Local)
7622 and then No (Entity (N))
7623 and then
7624 (Nkind (Parent (N)) /= N_Selected_Component
7625 or else N = Prefix (Parent (N)))
7626 then
7627 Set_Entity (N, Local);
7628 Set_Etype (N, Etype (Local));
7629 end if;
7631 return OK;
7632 end Replace_Local;
7634 procedure Replace_Local_Ref is new Traverse_Proc (Replace_Local);
7636 -- Start of processing for Resolve_Declare_Expression
7638 begin
7640 Decl := First (Actions (N));
7642 while Present (Decl) loop
7643 if Nkind (Decl) in
7644 N_Object_Declaration | N_Object_Renaming_Declaration
7645 and then Comes_From_Source (Defining_Identifier (Decl))
7646 then
7647 Local := Defining_Identifier (Decl);
7648 Replace_Local_Ref (Expr);
7650 -- Traverse the expression to replace references to local
7651 -- variables that occur within declarations of the
7652 -- declare_expression.
7654 declare
7655 D : Node_Id := Next (Decl);
7656 begin
7657 while Present (D) loop
7658 Replace_Local_Ref (D);
7659 Next (D);
7660 end loop;
7661 end;
7662 end if;
7664 Next (Decl);
7665 end loop;
7667 -- The end of the declarative list is a freeze point for the
7668 -- local declarations.
7670 if Present (Local) then
7671 Decl := Parent (Local);
7672 Freeze_All (First_Entity (Scope (Local)), Decl);
7673 end if;
7675 Resolve (Expr, Typ);
7676 end Resolve_Declare_Expression;
7678 -----------------------------------------
7679 -- Resolve_Discrete_Subtype_Indication --
7680 -----------------------------------------
7682 procedure Resolve_Discrete_Subtype_Indication
7683 (N : Node_Id;
7684 Typ : Entity_Id)
7686 R : Node_Id;
7687 S : Entity_Id;
7689 begin
7690 Analyze (Subtype_Mark (N));
7691 S := Entity (Subtype_Mark (N));
7693 if Nkind (Constraint (N)) /= N_Range_Constraint then
7694 Error_Msg_N ("expect range constraint for discrete type", N);
7695 Set_Etype (N, Any_Type);
7697 else
7698 R := Range_Expression (Constraint (N));
7700 if R = Error then
7701 return;
7702 end if;
7704 Analyze (R);
7706 if Base_Type (S) /= Base_Type (Typ) then
7707 Error_Msg_NE
7708 ("expect subtype of }", N, First_Subtype (Typ));
7710 -- Rewrite the constraint as a range of Typ
7711 -- to allow compilation to proceed further.
7713 Set_Etype (N, Typ);
7714 Rewrite (Low_Bound (R),
7715 Make_Attribute_Reference (Sloc (Low_Bound (R)),
7716 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7717 Attribute_Name => Name_First));
7718 Rewrite (High_Bound (R),
7719 Make_Attribute_Reference (Sloc (High_Bound (R)),
7720 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7721 Attribute_Name => Name_First));
7723 else
7724 Resolve (R, Typ);
7725 Set_Etype (N, Etype (R));
7727 -- Additionally, we must check that the bounds are compatible
7728 -- with the given subtype, which might be different from the
7729 -- type of the context.
7731 Apply_Range_Check (R, S);
7733 -- ??? If the above check statically detects a Constraint_Error
7734 -- it replaces the offending bound(s) of the range R with a
7735 -- Constraint_Error node. When the itype which uses these bounds
7736 -- is frozen the resulting call to Duplicate_Subexpr generates
7737 -- a new temporary for the bounds.
7739 -- Unfortunately there are other itypes that are also made depend
7740 -- on these bounds, so when Duplicate_Subexpr is called they get
7741 -- a forward reference to the newly created temporaries and Gigi
7742 -- aborts on such forward references. This is probably sign of a
7743 -- more fundamental problem somewhere else in either the order of
7744 -- itype freezing or the way certain itypes are constructed.
7746 -- To get around this problem we call Remove_Side_Effects right
7747 -- away if either bounds of R are a Constraint_Error.
7749 declare
7750 L : constant Node_Id := Low_Bound (R);
7751 H : constant Node_Id := High_Bound (R);
7753 begin
7754 if Nkind (L) = N_Raise_Constraint_Error then
7755 Remove_Side_Effects (L);
7756 end if;
7758 if Nkind (H) = N_Raise_Constraint_Error then
7759 Remove_Side_Effects (H);
7760 end if;
7761 end;
7763 Check_Unset_Reference (Low_Bound (R));
7764 Check_Unset_Reference (High_Bound (R));
7765 end if;
7766 end if;
7767 end Resolve_Discrete_Subtype_Indication;
7769 -------------------------
7770 -- Resolve_Entity_Name --
7771 -------------------------
7773 -- Used to resolve identifiers and expanded names
7775 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
7776 function Is_Assignment_Or_Object_Expression
7777 (Context : Node_Id;
7778 Expr : Node_Id) return Boolean;
7779 -- Determine whether node Context denotes an assignment statement or an
7780 -- object declaration whose expression is node Expr.
7782 function Is_Attribute_Expression (Expr : Node_Id) return Boolean;
7783 -- Determine whether Expr is part of an N_Attribute_Reference
7784 -- expression.
7786 ----------------------------------------
7787 -- Is_Assignment_Or_Object_Expression --
7788 ----------------------------------------
7790 function Is_Assignment_Or_Object_Expression
7791 (Context : Node_Id;
7792 Expr : Node_Id) return Boolean
7794 begin
7795 if Nkind (Context) in N_Assignment_Statement | N_Object_Declaration
7796 and then Expression (Context) = Expr
7797 then
7798 return True;
7800 -- Check whether a construct that yields a name is the expression of
7801 -- an assignment statement or an object declaration.
7803 elsif (Nkind (Context) in N_Attribute_Reference
7804 | N_Explicit_Dereference
7805 | N_Indexed_Component
7806 | N_Selected_Component
7807 | N_Slice
7808 and then Prefix (Context) = Expr)
7809 or else
7810 (Nkind (Context) in N_Type_Conversion
7811 | N_Unchecked_Type_Conversion
7812 and then Expression (Context) = Expr)
7813 then
7814 return
7815 Is_Assignment_Or_Object_Expression
7816 (Context => Parent (Context),
7817 Expr => Context);
7819 -- Otherwise the context is not an assignment statement or an object
7820 -- declaration.
7822 else
7823 return False;
7824 end if;
7825 end Is_Assignment_Or_Object_Expression;
7827 -----------------------------
7828 -- Is_Attribute_Expression --
7829 -----------------------------
7831 function Is_Attribute_Expression (Expr : Node_Id) return Boolean is
7832 N : Node_Id := Expr;
7833 begin
7834 while Present (N) loop
7835 if Nkind (N) = N_Attribute_Reference then
7836 return True;
7838 -- Prevent the search from going too far
7840 elsif Is_Body_Or_Package_Declaration (N) then
7841 return False;
7842 end if;
7844 N := Parent (N);
7845 end loop;
7847 return False;
7848 end Is_Attribute_Expression;
7850 -- Local variables
7852 E : constant Entity_Id := Entity (N);
7853 Par : Node_Id;
7855 -- Start of processing for Resolve_Entity_Name
7857 begin
7858 -- If garbage from errors, set to Any_Type and return
7860 if No (E) and then Total_Errors_Detected /= 0 then
7861 Set_Etype (N, Any_Type);
7862 return;
7863 end if;
7865 -- Replace named numbers by corresponding literals. Note that this is
7866 -- the one case where Resolve_Entity_Name must reset the Etype, since
7867 -- it is currently marked as universal.
7869 if Ekind (E) = E_Named_Integer then
7870 Set_Etype (N, Typ);
7871 Eval_Named_Integer (N);
7873 elsif Ekind (E) = E_Named_Real then
7874 Set_Etype (N, Typ);
7875 Eval_Named_Real (N);
7877 -- For enumeration literals, we need to make sure that a proper style
7878 -- check is done, since such literals are overloaded, and thus we did
7879 -- not do a style check during the first phase of analysis.
7881 elsif Ekind (E) = E_Enumeration_Literal then
7882 Set_Entity_With_Checks (N, E);
7883 Eval_Entity_Name (N);
7885 -- Case of (sub)type name appearing in a context where an expression
7886 -- is expected. This is legal if occurrence is a current instance.
7887 -- See RM 8.6 (17/3). It is also legal if the expression is
7888 -- part of a choice pattern for a case stmt/expr having a
7889 -- non-discrete selecting expression.
7891 elsif Is_Type (E) then
7892 if Is_Current_Instance (N) or else Is_Case_Choice_Pattern (N) then
7893 null;
7895 -- Any other use is an error
7897 else
7898 Error_Msg_N
7899 ("invalid use of subtype mark in expression or call", N);
7900 end if;
7902 -- Check discriminant use if entity is discriminant in current scope,
7903 -- i.e. discriminant of record or concurrent type currently being
7904 -- analyzed. Uses in corresponding body are unrestricted.
7906 elsif Ekind (E) = E_Discriminant
7907 and then Scope (E) = Current_Scope
7908 and then not Has_Completion (Current_Scope)
7909 then
7910 Check_Discriminant_Use (N);
7912 -- A parameterless generic function cannot appear in a context that
7913 -- requires resolution.
7915 elsif Ekind (E) = E_Generic_Function then
7916 Error_Msg_N ("illegal use of generic function", N);
7918 -- In Ada 83 an OUT parameter cannot be read, but attributes of
7919 -- array types (i.e. bounds and length) are legal.
7921 elsif Ekind (E) = E_Out_Parameter
7922 and then (Is_Scalar_Type (Etype (E))
7923 or else not Is_Attribute_Expression (Parent (N)))
7925 and then (Nkind (Parent (N)) in N_Op
7926 or else Nkind (Parent (N)) = N_Explicit_Dereference
7927 or else Is_Assignment_Or_Object_Expression
7928 (Context => Parent (N),
7929 Expr => N))
7930 then
7931 if Ada_Version = Ada_83 then
7932 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7933 end if;
7935 -- In all other cases, just do the possible static evaluation
7937 else
7938 -- A deferred constant that appears in an expression must have a
7939 -- completion, unless it has been removed by in-place expansion of
7940 -- an aggregate. A constant that is a renaming does not need
7941 -- initialization.
7943 if Ekind (E) = E_Constant
7944 and then Comes_From_Source (E)
7945 and then No (Constant_Value (E))
7946 and then Is_Frozen (Etype (E))
7947 and then not In_Spec_Expression
7948 and then not Is_Imported (E)
7949 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7950 then
7951 if No_Initialization (Parent (E))
7952 or else (Present (Full_View (E))
7953 and then No_Initialization (Parent (Full_View (E))))
7954 then
7955 null;
7956 else
7957 Error_Msg_N
7958 ("deferred constant is frozen before completion", N);
7959 end if;
7960 end if;
7962 Eval_Entity_Name (N);
7963 end if;
7965 Par := Parent (N);
7967 -- When the entity appears in a parameter association, retrieve the
7968 -- related subprogram call.
7970 if Nkind (Par) = N_Parameter_Association then
7971 Par := Parent (Par);
7972 end if;
7974 if Comes_From_Source (N) then
7976 -- The following checks are only relevant when SPARK_Mode is on as
7977 -- they are not standard Ada legality rules.
7979 if SPARK_Mode = On then
7981 -- An effectively volatile object for reading must appear in
7982 -- non-interfering context (SPARK RM 7.1.3(10)).
7984 if Is_Object (E)
7985 and then Is_Effectively_Volatile_For_Reading (E)
7986 and then
7987 not Is_OK_Volatile_Context (Par, N, Check_Actuals => False)
7988 then
7989 SPARK_Msg_N
7990 ("volatile object cannot appear in this context "
7991 & "(SPARK RM 7.1.3(10))", N);
7992 end if;
7994 -- Check for possible elaboration issues with respect to reads of
7995 -- variables. The act of renaming the variable is not considered a
7996 -- read as it simply establishes an alias.
7998 if Legacy_Elaboration_Checks
7999 and then Ekind (E) = E_Variable
8000 and then Dynamic_Elaboration_Checks
8001 and then Nkind (Par) /= N_Object_Renaming_Declaration
8002 then
8003 Check_Elab_Call (N);
8004 end if;
8005 end if;
8007 -- The variable may eventually become a constituent of a single
8008 -- protected/task type. Record the reference now and verify its
8009 -- legality when analyzing the contract of the variable
8010 -- (SPARK RM 9.3).
8012 if Ekind (E) = E_Variable then
8013 Record_Possible_Part_Of_Reference (E, N);
8014 end if;
8016 -- A Ghost entity must appear in a specific context
8018 if Is_Ghost_Entity (E) then
8019 Check_Ghost_Context (E, N);
8020 end if;
8021 end if;
8023 -- We may be resolving an entity within expanded code, so a reference to
8024 -- an entity should be ignored when calculating effective use clauses to
8025 -- avoid inappropriate marking.
8027 if Comes_From_Source (N) then
8028 Mark_Use_Clauses (E);
8029 end if;
8030 end Resolve_Entity_Name;
8032 -------------------
8033 -- Resolve_Entry --
8034 -------------------
8036 procedure Resolve_Entry (Entry_Name : Node_Id) is
8037 Loc : constant Source_Ptr := Sloc (Entry_Name);
8038 Nam : Entity_Id;
8039 New_N : Node_Id;
8040 S : Entity_Id;
8041 Tsk : Entity_Id;
8042 E_Name : Node_Id;
8043 Index : Node_Id;
8045 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
8046 -- If the bounds of the entry family being called depend on task
8047 -- discriminants, build a new index subtype where a discriminant is
8048 -- replaced with the value of the discriminant of the target task.
8049 -- The target task is the prefix of the entry name in the call.
8051 -----------------------
8052 -- Actual_Index_Type --
8053 -----------------------
8055 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
8056 Typ : constant Entity_Id := Entry_Index_Type (E);
8057 Tsk : constant Entity_Id := Scope (E);
8058 Lo : constant Node_Id := Type_Low_Bound (Typ);
8059 Hi : constant Node_Id := Type_High_Bound (Typ);
8060 New_T : Entity_Id;
8062 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
8063 -- If the bound is given by a discriminant, replace with a reference
8064 -- to the discriminant of the same name in the target task. If the
8065 -- entry name is the target of a requeue statement and the entry is
8066 -- in the current protected object, the bound to be used is the
8067 -- discriminal of the object (see Apply_Range_Check for details of
8068 -- the transformation).
8070 -----------------------------
8071 -- Actual_Discriminant_Ref --
8072 -----------------------------
8074 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
8075 Typ : constant Entity_Id := Etype (Bound);
8076 Ref : Node_Id;
8078 begin
8079 Remove_Side_Effects (Bound);
8081 if not Is_Entity_Name (Bound)
8082 or else Ekind (Entity (Bound)) /= E_Discriminant
8083 then
8084 return Bound;
8086 elsif Is_Protected_Type (Tsk)
8087 and then In_Open_Scopes (Tsk)
8088 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
8089 then
8090 -- Note: here Bound denotes a discriminant of the corresponding
8091 -- record type tskV, whose discriminal is a formal of the
8092 -- init-proc tskVIP. What we want is the body discriminal,
8093 -- which is associated to the discriminant of the original
8094 -- concurrent type tsk.
8096 return New_Occurrence_Of
8097 (Find_Body_Discriminal (Entity (Bound)), Loc);
8099 else
8100 Ref :=
8101 Make_Selected_Component (Loc,
8102 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
8103 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
8104 Analyze (Ref);
8105 Resolve (Ref, Typ);
8106 return Ref;
8107 end if;
8108 end Actual_Discriminant_Ref;
8110 -- Start of processing for Actual_Index_Type
8112 begin
8113 if not Has_Discriminants (Tsk)
8114 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
8115 then
8116 return Entry_Index_Type (E);
8118 else
8119 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
8120 Set_Etype (New_T, Base_Type (Typ));
8121 Set_Size_Info (New_T, Typ);
8122 Set_RM_Size (New_T, RM_Size (Typ));
8123 Set_Scalar_Range (New_T,
8124 Make_Range (Sloc (Entry_Name),
8125 Low_Bound => Actual_Discriminant_Ref (Lo),
8126 High_Bound => Actual_Discriminant_Ref (Hi)));
8128 return New_T;
8129 end if;
8130 end Actual_Index_Type;
8132 -- Start of processing for Resolve_Entry
8134 begin
8135 -- Find name of entry being called, and resolve prefix of name with its
8136 -- own type. The prefix can be overloaded, and the name and signature of
8137 -- the entry must be taken into account.
8139 if Nkind (Entry_Name) = N_Indexed_Component then
8141 -- Case of dealing with entry family within the current tasks
8143 E_Name := Prefix (Entry_Name);
8145 else
8146 E_Name := Entry_Name;
8147 end if;
8149 if Is_Entity_Name (E_Name) then
8151 -- Entry call to an entry (or entry family) in the current task. This
8152 -- is legal even though the task will deadlock. Rewrite as call to
8153 -- current task.
8155 -- This can also be a call to an entry in an enclosing task. If this
8156 -- is a single task, we have to retrieve its name, because the scope
8157 -- of the entry is the task type, not the object. If the enclosing
8158 -- task is a task type, the identity of the task is given by its own
8159 -- self variable.
8161 -- Finally this can be a requeue on an entry of the same task or
8162 -- protected object.
8164 S := Scope (Entity (E_Name));
8166 for J in reverse 0 .. Scope_Stack.Last loop
8167 if Is_Task_Type (Scope_Stack.Table (J).Entity)
8168 and then not Comes_From_Source (S)
8169 then
8170 -- S is an enclosing task or protected object. The concurrent
8171 -- declaration has been converted into a type declaration, and
8172 -- the object itself has an object declaration that follows
8173 -- the type in the same declarative part.
8175 Tsk := Next_Entity (S);
8176 while Etype (Tsk) /= S loop
8177 Next_Entity (Tsk);
8178 end loop;
8180 S := Tsk;
8181 exit;
8183 elsif S = Scope_Stack.Table (J).Entity then
8185 -- Call to current task. Will be transformed into call to Self
8187 exit;
8189 end if;
8190 end loop;
8192 New_N :=
8193 Make_Selected_Component (Loc,
8194 Prefix => New_Occurrence_Of (S, Loc),
8195 Selector_Name =>
8196 New_Occurrence_Of (Entity (E_Name), Loc));
8197 Rewrite (E_Name, New_N);
8198 Analyze (E_Name);
8200 elsif Nkind (Entry_Name) = N_Selected_Component
8201 and then Is_Overloaded (Prefix (Entry_Name))
8202 then
8203 -- Use the entry name (which must be unique at this point) to find
8204 -- the prefix that returns the corresponding task/protected type.
8206 declare
8207 Pref : constant Node_Id := Prefix (Entry_Name);
8208 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
8209 I : Interp_Index;
8210 It : Interp;
8212 begin
8213 Get_First_Interp (Pref, I, It);
8214 while Present (It.Typ) loop
8215 if Scope (Ent) = It.Typ then
8216 Set_Etype (Pref, It.Typ);
8217 exit;
8218 end if;
8220 Get_Next_Interp (I, It);
8221 end loop;
8222 end;
8223 end if;
8225 if Nkind (Entry_Name) = N_Selected_Component then
8226 Resolve (Prefix (Entry_Name));
8227 Resolve_Implicit_Dereference (Prefix (Entry_Name));
8229 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
8230 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
8231 Resolve (Prefix (Prefix (Entry_Name)));
8232 Resolve_Implicit_Dereference (Prefix (Prefix (Entry_Name)));
8234 -- We do not resolve the prefix because an Entry_Family has no type,
8235 -- although it has the semantics of an array since it can be indexed.
8236 -- In order to perform the associated range check, we would need to
8237 -- build an array type on the fly and set it on the prefix, but this
8238 -- would be wasteful since only the index type matters. Therefore we
8239 -- attach this index type directly, so that Actual_Index_Expression
8240 -- can pick it up later in order to generate the range check.
8242 Set_Etype (Prefix (Entry_Name), Actual_Index_Type (Nam));
8244 Index := First (Expressions (Entry_Name));
8245 Resolve (Index, Entry_Index_Type (Nam));
8247 -- Generate a reference for the index when it denotes an entity
8249 if Is_Entity_Name (Index) then
8250 Generate_Reference (Entity (Index), Nam);
8251 end if;
8253 -- Up to this point the expression could have been the actual in a
8254 -- simple entry call, and be given by a named association.
8256 if Nkind (Index) = N_Parameter_Association then
8257 Error_Msg_N ("expect expression for entry index", Index);
8258 else
8259 Apply_Scalar_Range_Check (Index, Etype (Prefix (Entry_Name)));
8260 end if;
8261 end if;
8262 end Resolve_Entry;
8264 ------------------------
8265 -- Resolve_Entry_Call --
8266 ------------------------
8268 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
8269 Entry_Name : constant Node_Id := Name (N);
8270 Loc : constant Source_Ptr := Sloc (Entry_Name);
8272 Nam : Entity_Id;
8273 Norm_OK : Boolean;
8274 Obj : Node_Id;
8275 Was_Over : Boolean;
8277 begin
8278 -- We kill all checks here, because it does not seem worth the effort to
8279 -- do anything better, an entry call is a big operation.
8281 Kill_All_Checks;
8283 -- Processing of the name is similar for entry calls and protected
8284 -- operation calls. Once the entity is determined, we can complete
8285 -- the resolution of the actuals.
8287 -- The selector may be overloaded, in the case of a protected object
8288 -- with overloaded functions. The type of the context is used for
8289 -- resolution.
8291 if Nkind (Entry_Name) = N_Selected_Component
8292 and then Is_Overloaded (Selector_Name (Entry_Name))
8293 and then Typ /= Standard_Void_Type
8294 then
8295 declare
8296 I : Interp_Index;
8297 It : Interp;
8299 begin
8300 Get_First_Interp (Selector_Name (Entry_Name), I, It);
8301 while Present (It.Typ) loop
8302 if Covers (Typ, It.Typ) then
8303 Set_Entity (Selector_Name (Entry_Name), It.Nam);
8304 Set_Etype (Entry_Name, It.Typ);
8306 Generate_Reference (It.Typ, N, ' ');
8307 end if;
8309 Get_Next_Interp (I, It);
8310 end loop;
8311 end;
8312 end if;
8314 Resolve_Entry (Entry_Name);
8316 if Nkind (Entry_Name) = N_Selected_Component then
8318 -- Simple entry or protected operation call
8320 Nam := Entity (Selector_Name (Entry_Name));
8321 Obj := Prefix (Entry_Name);
8323 if Is_Subprogram (Nam) then
8324 Check_For_Eliminated_Subprogram (Entry_Name, Nam);
8325 end if;
8327 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
8329 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
8331 -- Call to member of entry family
8333 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
8334 Obj := Prefix (Prefix (Entry_Name));
8335 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
8336 end if;
8338 -- We cannot in general check the maximum depth of protected entry calls
8339 -- at compile time. But we can tell that any protected entry call at all
8340 -- violates a specified nesting depth of zero.
8342 if Is_Protected_Type (Scope (Nam)) then
8343 Check_Restriction (Max_Entry_Queue_Length, N);
8344 end if;
8346 -- Use context type to disambiguate a protected function that can be
8347 -- called without actuals and that returns an array type, and where the
8348 -- argument list may be an indexing of the returned value.
8350 if Ekind (Nam) = E_Function
8351 and then Needs_No_Actuals (Nam)
8352 and then Present (Parameter_Associations (N))
8353 and then
8354 ((Is_Array_Type (Etype (Nam))
8355 and then Covers (Typ, Component_Type (Etype (Nam))))
8357 or else (Is_Access_Type (Etype (Nam))
8358 and then Is_Array_Type (Designated_Type (Etype (Nam)))
8359 and then
8360 Covers
8361 (Typ,
8362 Component_Type (Designated_Type (Etype (Nam))))))
8363 then
8364 declare
8365 Index_Node : Node_Id;
8367 begin
8368 Index_Node :=
8369 Make_Indexed_Component (Loc,
8370 Prefix =>
8371 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
8372 Expressions => Parameter_Associations (N));
8374 -- Since we are correcting a node classification error made by the
8375 -- parser, we call Replace rather than Rewrite.
8377 Replace (N, Index_Node);
8378 Set_Etype (Prefix (N), Etype (Nam));
8379 Set_Etype (N, Typ);
8380 Resolve_Indexed_Component (N, Typ);
8381 return;
8382 end;
8383 end if;
8385 if Is_Entry (Nam)
8386 and then Present (Contract_Wrapper (Nam))
8387 and then Current_Scope /= Contract_Wrapper (Nam)
8388 then
8389 -- Note the entity being called before rewriting the call, so that
8390 -- it appears used at this point.
8392 Generate_Reference (Nam, Entry_Name, 'r');
8394 -- Rewrite as call to the precondition wrapper, adding the task
8395 -- object to the list of actuals. If the call is to a member of an
8396 -- entry family, include the index as well.
8398 declare
8399 New_Call : Node_Id;
8400 New_Actuals : List_Id;
8402 begin
8403 New_Actuals := New_List (Obj);
8405 if Nkind (Entry_Name) = N_Indexed_Component then
8406 Append_To (New_Actuals,
8407 New_Copy_Tree (First (Expressions (Entry_Name))));
8408 end if;
8410 Append_List (Parameter_Associations (N), New_Actuals);
8411 New_Call :=
8412 Make_Procedure_Call_Statement (Loc,
8413 Name =>
8414 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
8415 Parameter_Associations => New_Actuals);
8416 Rewrite (N, New_Call);
8418 -- Preanalyze and resolve new call. Current procedure is called
8419 -- from Resolve_Call, after which expansion will take place.
8421 Preanalyze_And_Resolve (N);
8422 return;
8423 end;
8424 end if;
8426 -- The operation name may have been overloaded. Order the actuals
8427 -- according to the formals of the resolved entity, and set the return
8428 -- type to that of the operation.
8430 if Was_Over then
8431 Normalize_Actuals (N, Nam, False, Norm_OK);
8432 pragma Assert (Norm_OK);
8433 Set_Etype (N, Etype (Nam));
8435 -- Reset the Is_Overloaded flag, since resolution is now completed
8437 -- Simple entry call
8439 if Nkind (Entry_Name) = N_Selected_Component then
8440 Set_Is_Overloaded (Selector_Name (Entry_Name), False);
8442 -- Call to a member of an entry family
8444 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
8445 Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
8446 end if;
8447 end if;
8449 Resolve_Actuals (N, Nam);
8450 Check_Internal_Protected_Use (N, Nam);
8452 -- Create a call reference to the entry
8454 Generate_Reference (Nam, Entry_Name, 's');
8456 if Is_Entry (Nam) then
8457 Check_Potentially_Blocking_Operation (N);
8458 end if;
8460 -- Verify that a procedure call cannot masquerade as an entry
8461 -- call where an entry call is expected.
8463 if Ekind (Nam) = E_Procedure then
8464 if Nkind (Parent (N)) = N_Entry_Call_Alternative
8465 and then N = Entry_Call_Statement (Parent (N))
8466 then
8467 Error_Msg_N ("entry call required in select statement", N);
8469 elsif Nkind (Parent (N)) = N_Triggering_Alternative
8470 and then N = Triggering_Statement (Parent (N))
8471 then
8472 Error_Msg_N ("triggering statement cannot be procedure call", N);
8474 elsif Ekind (Scope (Nam)) = E_Task_Type
8475 and then not In_Open_Scopes (Scope (Nam))
8476 then
8477 Error_Msg_N ("task has no entry with this name", Entry_Name);
8478 end if;
8479 end if;
8481 -- After resolution, entry calls and protected procedure calls are
8482 -- changed into entry calls, for expansion. The structure of the node
8483 -- does not change, so it can safely be done in place. Protected
8484 -- function calls must keep their structure because they are
8485 -- subexpressions.
8487 if Ekind (Nam) /= E_Function then
8489 -- A protected operation that is not a function may modify the
8490 -- corresponding object, and cannot apply to a constant. If this
8491 -- is an internal call, the prefix is the type itself.
8493 if Is_Protected_Type (Scope (Nam))
8494 and then not Is_Variable (Obj)
8495 and then (not Is_Entity_Name (Obj)
8496 or else not Is_Type (Entity (Obj)))
8497 then
8498 Error_Msg_N
8499 ("prefix of protected procedure or entry call must be variable",
8500 Entry_Name);
8501 end if;
8503 declare
8504 Entry_Call : Node_Id;
8506 begin
8507 Entry_Call :=
8508 Make_Entry_Call_Statement (Loc,
8509 Name => Entry_Name,
8510 Parameter_Associations => Parameter_Associations (N));
8512 -- Inherit relevant attributes from the original call
8514 Set_First_Named_Actual
8515 (Entry_Call, First_Named_Actual (N));
8517 Set_Is_Elaboration_Checks_OK_Node
8518 (Entry_Call, Is_Elaboration_Checks_OK_Node (N));
8520 Set_Is_Elaboration_Warnings_OK_Node
8521 (Entry_Call, Is_Elaboration_Warnings_OK_Node (N));
8523 Set_Is_SPARK_Mode_On_Node
8524 (Entry_Call, Is_SPARK_Mode_On_Node (N));
8526 Rewrite (N, Entry_Call);
8527 Set_Analyzed (N, True);
8528 end;
8530 -- Protected functions can return on the secondary stack, in which case
8531 -- we must trigger the transient scope mechanism.
8533 elsif Expander_Active
8534 and then Requires_Transient_Scope (Etype (Nam))
8535 then
8536 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
8537 end if;
8539 -- Now we know that this is not a call to a function that returns an
8540 -- array type; moreover, we know the name of the called entry. Detect
8541 -- overlapping actuals, just like for a subprogram call.
8543 Warn_On_Overlapping_Actuals (Nam, N);
8544 end Resolve_Entry_Call;
8546 -------------------------
8547 -- Resolve_Equality_Op --
8548 -------------------------
8550 -- The operands must have compatible types and the boolean context does not
8551 -- participate in the resolution. The first pass verifies that the operands
8552 -- are not ambiguous and sets their type correctly, or to Any_Type in case
8553 -- of ambiguity. If both operands are strings, aggregates, allocators, or
8554 -- null, they are ambiguous even if they carry a single (universal) type.
8556 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
8557 L : constant Node_Id := Left_Opnd (N);
8558 R : constant Node_Id := Right_Opnd (N);
8560 T : Entity_Id := Find_Unique_Type (L, R);
8562 procedure Check_Access_Attribute (N : Node_Id);
8563 -- For any object, '[Unchecked_]Access of such object can never be
8564 -- passed as an operand to the Universal_Access equality operators.
8565 -- This is so because the expected type for Obj'Access in a call to
8566 -- these operators, whose formals are of type Universal_Access, is
8567 -- Universal_Access, and Universal_Access does not have a designated
8568 -- type. For more details, see RM 3.10.2(2/2) and 6.4.1(3).
8570 procedure Check_Designated_Object_Types (T1, T2 : Entity_Id);
8571 -- Check RM 4.5.2(9.6/2) on the given designated object types
8573 procedure Check_Designated_Subprogram_Types (T1, T2 : Entity_Id);
8574 -- Check RM 4.5.2(9.7/2) on the given designated subprogram types
8576 procedure Check_If_Expression (Cond : Node_Id);
8577 -- The resolution rule for if expressions requires that each such must
8578 -- have a unique type. This means that if several dependent expressions
8579 -- are of a non-null anonymous access type, and the context does not
8580 -- impose an expected type (as can be the case in an equality operation)
8581 -- the expression must be rejected.
8583 procedure Explain_Redundancy (N : Node_Id);
8584 -- Attempt to explain the nature of a redundant comparison with True. If
8585 -- the expression N is too complex, this routine issues a general error
8586 -- message.
8588 function Find_Unique_Access_Type return Entity_Id;
8589 -- In the case of allocators and access attributes, the context must
8590 -- provide an indication of the specific access type to be used. If
8591 -- one operand is of such a "generic" access type, check whether there
8592 -- is a specific visible access type that has the same designated type.
8593 -- This is semantically dubious, and of no interest to any real code,
8594 -- but c48008a makes it all worthwhile.
8596 function Suspicious_Prio_For_Equality return Boolean;
8597 -- Returns True iff the parent node is a and/or/xor operation that
8598 -- could be the cause of confused priorities. Note that if the not is
8599 -- in parens, then False is returned.
8601 ----------------------------
8602 -- Check_Access_Attribute --
8603 ----------------------------
8605 procedure Check_Access_Attribute (N : Node_Id) is
8606 begin
8607 if Nkind (N) = N_Attribute_Reference
8608 and then Attribute_Name (N) in Name_Access | Name_Unchecked_Access
8609 then
8610 Error_Msg_N
8611 ("access attribute cannot be used as actual for "
8612 & "universal_access equality", N);
8613 end if;
8614 end Check_Access_Attribute;
8616 -----------------------------------
8617 -- Check_Designated_Object_Types --
8618 -----------------------------------
8620 procedure Check_Designated_Object_Types (T1, T2 : Entity_Id) is
8621 begin
8622 if (Is_Elementary_Type (T1) or else Is_Array_Type (T1))
8623 and then (Base_Type (T1) /= Base_Type (T2)
8624 or else not Subtypes_Statically_Match (T1, T2))
8625 then
8626 Error_Msg_N
8627 ("designated subtypes for universal_access equality "
8628 & "do not statically match (RM 4.5.2(9.6/2)", N);
8629 Error_Msg_NE ("\left operand has}!", N, Etype (L));
8630 Error_Msg_NE ("\right operand has}!", N, Etype (R));
8631 end if;
8632 end Check_Designated_Object_Types;
8634 ---------------------------------------
8635 -- Check_Designated_Subprogram_Types --
8636 ---------------------------------------
8638 procedure Check_Designated_Subprogram_Types (T1, T2 : Entity_Id) is
8639 begin
8640 if not Subtype_Conformant (T1, T2) then
8641 Error_Msg_N
8642 ("designated subtypes for universal_access equality "
8643 & "not subtype conformant (RM 4.5.2(9.7/2)", N);
8644 Error_Msg_NE ("\left operand has}!", N, Etype (L));
8645 Error_Msg_NE ("\right operand has}!", N, Etype (R));
8646 end if;
8647 end Check_Designated_Subprogram_Types;
8649 -------------------------
8650 -- Check_If_Expression --
8651 -------------------------
8653 procedure Check_If_Expression (Cond : Node_Id) is
8654 Then_Expr : Node_Id;
8655 Else_Expr : Node_Id;
8657 begin
8658 if Nkind (Cond) = N_If_Expression then
8659 Then_Expr := Next (First (Expressions (Cond)));
8660 Else_Expr := Next (Then_Expr);
8662 if Nkind (Then_Expr) /= N_Null
8663 and then Nkind (Else_Expr) /= N_Null
8664 then
8665 Error_Msg_N ("cannot determine type of if expression", Cond);
8666 end if;
8667 end if;
8668 end Check_If_Expression;
8670 ------------------------
8671 -- Explain_Redundancy --
8672 ------------------------
8674 procedure Explain_Redundancy (N : Node_Id) is
8675 Error : Name_Id;
8676 Val : Node_Id;
8677 Val_Id : Entity_Id;
8679 begin
8680 Val := N;
8682 -- Strip the operand down to an entity
8684 loop
8685 if Nkind (Val) = N_Selected_Component then
8686 Val := Selector_Name (Val);
8687 else
8688 exit;
8689 end if;
8690 end loop;
8692 -- The construct denotes an entity
8694 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
8695 Val_Id := Entity (Val);
8697 -- Do not generate an error message when the comparison is done
8698 -- against the enumeration literal Standard.True.
8700 if Ekind (Val_Id) /= E_Enumeration_Literal then
8702 -- Build a customized error message
8704 Name_Len := 0;
8705 Add_Str_To_Name_Buffer ("?r?");
8707 if Ekind (Val_Id) = E_Component then
8708 Add_Str_To_Name_Buffer ("component ");
8710 elsif Ekind (Val_Id) = E_Constant then
8711 Add_Str_To_Name_Buffer ("constant ");
8713 elsif Ekind (Val_Id) = E_Discriminant then
8714 Add_Str_To_Name_Buffer ("discriminant ");
8716 elsif Is_Formal (Val_Id) then
8717 Add_Str_To_Name_Buffer ("parameter ");
8719 elsif Ekind (Val_Id) = E_Variable then
8720 Add_Str_To_Name_Buffer ("variable ");
8721 end if;
8723 Add_Str_To_Name_Buffer ("& is always True!");
8724 Error := Name_Find;
8726 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
8727 end if;
8729 -- The construct is too complex to disect, issue a general message
8731 else
8732 Error_Msg_N ("?r?expression is always True!", Val);
8733 end if;
8734 end Explain_Redundancy;
8736 -----------------------------
8737 -- Find_Unique_Access_Type --
8738 -----------------------------
8740 function Find_Unique_Access_Type return Entity_Id is
8741 Acc : Entity_Id;
8742 E : Entity_Id;
8743 S : Entity_Id;
8745 begin
8746 if Ekind (Etype (R)) in E_Allocator_Type | E_Access_Attribute_Type
8747 then
8748 Acc := Designated_Type (Etype (R));
8750 elsif Ekind (Etype (L)) in E_Allocator_Type | E_Access_Attribute_Type
8751 then
8752 Acc := Designated_Type (Etype (L));
8753 else
8754 return Empty;
8755 end if;
8757 S := Current_Scope;
8758 while S /= Standard_Standard loop
8759 E := First_Entity (S);
8760 while Present (E) loop
8761 if Is_Type (E)
8762 and then Is_Access_Type (E)
8763 and then Ekind (E) /= E_Allocator_Type
8764 and then Designated_Type (E) = Base_Type (Acc)
8765 then
8766 return E;
8767 end if;
8769 Next_Entity (E);
8770 end loop;
8772 S := Scope (S);
8773 end loop;
8775 return Empty;
8776 end Find_Unique_Access_Type;
8778 ----------------------------------
8779 -- Suspicious_Prio_For_Equality --
8780 ----------------------------------
8782 function Suspicious_Prio_For_Equality return Boolean is
8783 Par : constant Node_Id := Parent (N);
8785 begin
8786 -- Check if parent node is one of and/or/xor, not parenthesized
8787 -- explicitly, and its own parent is not of this kind. Otherwise,
8788 -- it's a case of chained Boolean conditions which is likely well
8789 -- parenthesized.
8791 if Nkind (Par) in N_Op_And | N_Op_Or | N_Op_Xor
8792 and then Paren_Count (N) = 0
8793 and then Nkind (Parent (Par)) not in N_Op_And | N_Op_Or | N_Op_Xor
8794 then
8795 declare
8796 Compar : Node_Id :=
8797 (if Left_Opnd (Par) = N then
8798 Right_Opnd (Par)
8799 else
8800 Left_Opnd (Par));
8801 begin
8802 -- Compar may have been rewritten, for example from (a /= b)
8803 -- into not (a = b). Use the Original_Node instead.
8805 Compar := Original_Node (Compar);
8807 -- If the other argument of the and/or/xor is also a
8808 -- comparison, or another and/or/xor then most likely
8809 -- the priorities are correctly set.
8811 return Nkind (Compar) not in N_Op_Boolean;
8812 end;
8814 else
8815 return False;
8816 end if;
8817 end Suspicious_Prio_For_Equality;
8819 -- Start of processing for Resolve_Equality_Op
8821 begin
8822 if T = Any_Fixed then
8823 T := Unique_Fixed_Point_Type (L);
8824 end if;
8826 Set_Etype (N, Base_Type (Typ));
8827 Generate_Reference (T, N, ' ');
8829 if T = Any_Type then
8830 -- Deal with explicit ambiguity of operands
8832 if Ekind (Entity (N)) = E_Operator
8833 and then (Is_Overloaded (L) or else Is_Overloaded (R))
8834 then
8835 Ambiguous_Operands (N);
8836 end if;
8838 else
8839 -- Deal with other error cases
8841 if T = Any_String or else
8842 T = Any_Composite or else
8843 T = Any_Character
8844 then
8845 if T = Any_Character then
8846 Ambiguous_Character (L);
8847 else
8848 Error_Msg_N ("ambiguous operands for equality", N);
8849 end if;
8851 Set_Etype (N, Any_Type);
8852 return;
8854 elsif T = Universal_Access
8855 or else Ekind (T) in E_Allocator_Type | E_Access_Attribute_Type
8856 then
8857 T := Find_Unique_Access_Type;
8859 if No (T) then
8860 Error_Msg_N ("ambiguous operands for equality", N);
8861 Set_Etype (N, Any_Type);
8862 return;
8863 end if;
8865 -- If expressions must have a single type, and if the context does
8866 -- not impose one the dependent expressions cannot be anonymous
8867 -- access types.
8869 -- Why no similar processing for case expressions???
8871 elsif Ada_Version >= Ada_2012
8872 and then Is_Anonymous_Access_Type (Etype (L))
8873 and then Is_Anonymous_Access_Type (Etype (R))
8874 then
8875 Check_If_Expression (L);
8876 Check_If_Expression (R);
8877 end if;
8879 -- RM 4.5.2(9.5/2): At least one of the operands of the equality
8880 -- operators for universal_access shall be of type universal_access,
8881 -- or both shall be of access-to-object types, or both shall be of
8882 -- access-to-subprogram types (RM 4.5.2(9.5/2)).
8884 if Is_Anonymous_Access_Type (T)
8885 and then Etype (L) /= Universal_Access
8886 and then Etype (R) /= Universal_Access
8887 then
8888 -- RM 4.5.2(9.6/2): When both are of access-to-object types, the
8889 -- designated types shall be the same or one shall cover the other
8890 -- and if the designated types are elementary or array types, then
8891 -- the designated subtypes shall statically match.
8893 if Is_Access_Object_Type (Etype (L))
8894 and then Is_Access_Object_Type (Etype (R))
8895 then
8896 Check_Designated_Object_Types
8897 (Designated_Type (Etype (L)), Designated_Type (Etype (R)));
8899 -- RM 4.5.2(9.7/2): When both are of access-to-subprogram types,
8900 -- the designated profiles shall be subtype conformant.
8902 elsif Is_Access_Subprogram_Type (Etype (L))
8903 and then Is_Access_Subprogram_Type (Etype (R))
8904 then
8905 Check_Designated_Subprogram_Types
8906 (Designated_Type (Etype (L)), Designated_Type (Etype (R)));
8907 end if;
8908 end if;
8910 -- Check another case of equality operators for universal_access
8912 if Is_Anonymous_Access_Type (T) and then Comes_From_Source (N) then
8913 Check_Access_Attribute (L);
8914 Check_Access_Attribute (R);
8915 end if;
8917 Resolve (L, T);
8918 Resolve (R, T);
8920 -- If the unique type is a class-wide type then it will be expanded
8921 -- into a dispatching call to the predefined primitive. Therefore we
8922 -- check here for potential violation of such restriction.
8924 if Is_Class_Wide_Type (T) then
8925 Check_Restriction (No_Dispatching_Calls, N);
8926 end if;
8928 -- Only warn for redundant equality comparison to True for objects
8929 -- (e.g. "X = True") and operations (e.g. "(X < Y) = True"). For
8930 -- other expressions, it may be a matter of preference to write
8931 -- "Expr = True" or "Expr".
8933 if Warn_On_Redundant_Constructs
8934 and then Comes_From_Source (N)
8935 and then Comes_From_Source (R)
8936 and then Is_Entity_Name (R)
8937 and then Entity (R) = Standard_True
8938 and then
8939 ((Is_Entity_Name (L) and then Is_Object (Entity (L)))
8940 or else
8941 Nkind (L) in N_Op)
8942 then
8943 Error_Msg_N -- CODEFIX
8944 ("?r?comparison with True is redundant!", N);
8945 Explain_Redundancy (Original_Node (R));
8946 end if;
8948 -- Warn on a (in)equality between boolean values which is not
8949 -- parenthesized when the parent expression is one of and/or/xor, as
8950 -- this is interpreted as (a = b) op c where most likely a = (b op c)
8951 -- was intended. Do not generate a warning in generic instances, as
8952 -- the problematic expression may be implicitly parenthesized in
8953 -- the generic itself if one of the operators is a generic formal.
8954 -- Also do not generate a warning for generated equality, for
8955 -- example from rewritting a membership test.
8957 if Warn_On_Questionable_Missing_Parens
8958 and then not In_Instance
8959 and then Comes_From_Source (N)
8960 and then Is_Boolean_Type (T)
8961 and then Suspicious_Prio_For_Equality
8962 then
8963 Error_Msg_N ("?q?equality should be parenthesized here!", N);
8964 end if;
8966 Check_Unset_Reference (L);
8967 Check_Unset_Reference (R);
8968 Generate_Operator_Reference (N, T);
8969 Check_Low_Bound_Tested (N);
8971 -- If this is an inequality, it may be the implicit inequality
8972 -- created for a user-defined operation, in which case the corres-
8973 -- ponding equality operation is not intrinsic, and the operation
8974 -- cannot be constant-folded. Else fold.
8976 if Nkind (N) = N_Op_Eq
8977 or else Comes_From_Source (Entity (N))
8978 or else Ekind (Entity (N)) = E_Operator
8979 or else Is_Intrinsic_Subprogram
8980 (Corresponding_Equality (Entity (N)))
8981 then
8982 Analyze_Dimension (N);
8983 Eval_Relational_Op (N);
8985 elsif Nkind (N) = N_Op_Ne
8986 and then Is_Abstract_Subprogram (Entity (N))
8987 then
8988 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
8989 end if;
8990 end if;
8991 end Resolve_Equality_Op;
8993 ----------------------------------
8994 -- Resolve_Explicit_Dereference --
8995 ----------------------------------
8997 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8998 Loc : constant Source_Ptr := Sloc (N);
8999 New_N : Node_Id;
9000 P : constant Node_Id := Prefix (N);
9002 P_Typ : Entity_Id;
9003 -- The candidate prefix type, if overloaded
9005 I : Interp_Index;
9006 It : Interp;
9008 begin
9009 Check_Fully_Declared_Prefix (Typ, P);
9010 P_Typ := Empty;
9012 -- A useful optimization: check whether the dereference denotes an
9013 -- element of a container, and if so rewrite it as a call to the
9014 -- corresponding Element function.
9016 -- Disabled for now, on advice of ARG. A more restricted form of the
9017 -- predicate might be acceptable ???
9019 -- if Is_Container_Element (N) then
9020 -- return;
9021 -- end if;
9023 if Is_Overloaded (P) then
9025 -- Use the context type to select the prefix that has the correct
9026 -- designated type. Keep the first match, which will be the inner-
9027 -- most.
9029 Get_First_Interp (P, I, It);
9031 while Present (It.Typ) loop
9032 if Is_Access_Type (It.Typ)
9033 and then Covers (Typ, Designated_Type (It.Typ))
9034 then
9035 if No (P_Typ) then
9036 P_Typ := It.Typ;
9037 end if;
9039 -- Remove access types that do not match, but preserve access
9040 -- to subprogram interpretations, in case a further dereference
9041 -- is needed (see below).
9043 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
9044 Remove_Interp (I);
9045 end if;
9047 Get_Next_Interp (I, It);
9048 end loop;
9050 if Present (P_Typ) then
9051 Resolve (P, P_Typ);
9052 Set_Etype (N, Designated_Type (P_Typ));
9054 else
9055 -- If no interpretation covers the designated type of the prefix,
9056 -- this is the pathological case where not all implementations of
9057 -- the prefix allow the interpretation of the node as a call. Now
9058 -- that the expected type is known, Remove other interpretations
9059 -- from prefix, rewrite it as a call, and resolve again, so that
9060 -- the proper call node is generated.
9062 Get_First_Interp (P, I, It);
9063 while Present (It.Typ) loop
9064 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
9065 Remove_Interp (I);
9066 end if;
9068 Get_Next_Interp (I, It);
9069 end loop;
9071 New_N :=
9072 Make_Function_Call (Loc,
9073 Name =>
9074 Make_Explicit_Dereference (Loc,
9075 Prefix => P),
9076 Parameter_Associations => New_List);
9078 Save_Interps (N, New_N);
9079 Rewrite (N, New_N);
9080 Analyze_And_Resolve (N, Typ);
9081 return;
9082 end if;
9084 -- If not overloaded, resolve P with its own type
9086 else
9087 Resolve (P);
9088 end if;
9090 -- If the prefix might be null, add an access check
9092 if Is_Access_Type (Etype (P))
9093 and then not Can_Never_Be_Null (Etype (P))
9094 then
9095 Apply_Access_Check (N);
9096 end if;
9098 -- If the designated type is a packed unconstrained array type, and the
9099 -- explicit dereference is not in the context of an attribute reference,
9100 -- then we must compute and set the actual subtype, since it is needed
9101 -- by Gigi. The reason we exclude the attribute case is that this is
9102 -- handled fine by Gigi, and in fact we use such attributes to build the
9103 -- actual subtype. We also exclude generated code (which builds actual
9104 -- subtypes directly if they are needed).
9106 if Is_Packed_Array (Etype (N))
9107 and then not Is_Constrained (Etype (N))
9108 and then Nkind (Parent (N)) /= N_Attribute_Reference
9109 and then Comes_From_Source (N)
9110 then
9111 Set_Etype (N, Get_Actual_Subtype (N));
9112 end if;
9114 Analyze_Dimension (N);
9116 -- Note: No Eval processing is required for an explicit dereference,
9117 -- because such a name can never be static.
9119 end Resolve_Explicit_Dereference;
9121 -------------------------------------
9122 -- Resolve_Expression_With_Actions --
9123 -------------------------------------
9125 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
9127 function OK_For_Static (Act : Node_Id) return Boolean;
9128 -- True if Act is an action of a declare_expression that is allowed in a
9129 -- static declare_expression.
9131 function All_OK_For_Static return Boolean;
9132 -- True if all actions of N are allowed in a static declare_expression.
9134 function Get_Literal (Expr : Node_Id) return Node_Id;
9135 -- Expr is an expression with compile-time-known value. This returns the
9136 -- literal node that reprsents that value.
9138 function OK_For_Static (Act : Node_Id) return Boolean is
9139 begin
9140 case Nkind (Act) is
9141 when N_Object_Declaration =>
9142 if Constant_Present (Act)
9143 and then Is_Static_Expression (Expression (Act))
9144 then
9145 return True;
9146 end if;
9148 when N_Object_Renaming_Declaration =>
9149 if Statically_Names_Object (Name (Act)) then
9150 return True;
9151 end if;
9153 when others =>
9154 -- No other declarations, nor even pragmas, are allowed in a
9155 -- declare expression, so if we see something else, it must be
9156 -- an internally generated expression_with_actions.
9157 null;
9158 end case;
9160 return False;
9161 end OK_For_Static;
9163 function All_OK_For_Static return Boolean is
9164 Act : Node_Id := First (Actions (N));
9165 begin
9166 while Present (Act) loop
9167 if not OK_For_Static (Act) then
9168 return False;
9169 end if;
9171 Next (Act);
9172 end loop;
9174 return True;
9175 end All_OK_For_Static;
9177 function Get_Literal (Expr : Node_Id) return Node_Id is
9178 pragma Assert (Compile_Time_Known_Value (Expr));
9179 Result : Node_Id;
9180 begin
9181 case Nkind (Expr) is
9182 when N_Has_Entity =>
9183 if Ekind (Entity (Expr)) = E_Enumeration_Literal then
9184 Result := Expr;
9185 else
9186 Result := Constant_Value (Entity (Expr));
9187 end if;
9188 when N_Numeric_Or_String_Literal =>
9189 Result := Expr;
9190 when others =>
9191 raise Program_Error;
9192 end case;
9194 pragma Assert
9195 (Nkind (Result) in N_Numeric_Or_String_Literal
9196 or else Ekind (Entity (Result)) = E_Enumeration_Literal);
9197 return Result;
9198 end Get_Literal;
9200 Loc : constant Source_Ptr := Sloc (N);
9202 begin
9203 Set_Etype (N, Typ);
9205 if Is_Empty_List (Actions (N)) then
9206 pragma Assert (All_OK_For_Static); null;
9207 end if;
9209 -- If the value of the expression is known at compile time, and all
9210 -- of the actions (if any) are suitable, then replace the declare
9211 -- expression with its expression. This allows the declare expression
9212 -- as a whole to be static if appropriate. See AI12-0368.
9214 if Compile_Time_Known_Value (Expression (N)) then
9215 if Is_Empty_List (Actions (N)) then
9216 Rewrite (N, Expression (N));
9217 elsif All_OK_For_Static then
9218 Rewrite
9219 (N, New_Copy_Tree
9220 (Get_Literal (Expression (N)), New_Sloc => Loc));
9221 end if;
9222 end if;
9223 end Resolve_Expression_With_Actions;
9225 ----------------------------------
9226 -- Resolve_Generalized_Indexing --
9227 ----------------------------------
9229 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
9230 Indexing : constant Node_Id := Generalized_Indexing (N);
9231 begin
9232 Rewrite (N, Indexing);
9233 Resolve (N, Typ);
9234 end Resolve_Generalized_Indexing;
9236 ---------------------------
9237 -- Resolve_If_Expression --
9238 ---------------------------
9240 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
9241 procedure Apply_Check (Expr : Node_Id);
9242 -- When a dependent expression is of a subtype different from
9243 -- the context subtype, then insert a qualification to ensure
9244 -- the generation of a constraint check. This was previously
9245 -- for scalar types. For array types apply a length check, given
9246 -- that the context in general allows sliding, while a qualified
9247 -- expression forces equality of bounds.
9249 Result_Type : Entity_Id := Typ;
9250 -- So in most cases the type of the If_Expression and of its
9251 -- dependent expressions is that of the context. However, if
9252 -- the expression is the index of an Indexed_Component, we must
9253 -- ensure that a proper index check is applied, rather than a
9254 -- range check on the index type (which might be discriminant
9255 -- dependent). In this case we resolve with the base type of the
9256 -- index type, and the index check is generated in the resolution
9257 -- of the indexed_component above.
9259 -----------------
9260 -- Apply_Check --
9261 -----------------
9263 procedure Apply_Check (Expr : Node_Id) is
9264 Expr_Typ : constant Entity_Id := Etype (Expr);
9265 Loc : constant Source_Ptr := Sloc (Expr);
9267 begin
9268 if Expr_Typ = Typ
9269 or else Is_Tagged_Type (Typ)
9270 or else Is_Access_Type (Typ)
9271 or else not Is_Constrained (Typ)
9272 or else Inside_A_Generic
9273 then
9274 null;
9276 elsif Is_Array_Type (Typ) then
9277 Apply_Length_Check (Expr, Typ);
9279 else
9280 Rewrite (Expr,
9281 Make_Qualified_Expression (Loc,
9282 Subtype_Mark => New_Occurrence_Of (Result_Type, Loc),
9283 Expression => Relocate_Node (Expr)));
9285 Analyze_And_Resolve (Expr, Result_Type);
9286 end if;
9287 end Apply_Check;
9289 -- Local variables
9291 Condition : constant Node_Id := First (Expressions (N));
9292 Else_Expr : Node_Id;
9293 Then_Expr : Node_Id;
9295 -- Start of processing for Resolve_If_Expression
9297 begin
9298 -- Defend against malformed expressions
9300 if No (Condition) then
9301 return;
9302 end if;
9304 if Present (Parent (N))
9305 and then (Nkind (Parent (N)) = N_Indexed_Component
9306 or else Nkind (Parent (Parent (N))) = N_Indexed_Component)
9307 then
9308 Result_Type := Base_Type (Typ);
9309 end if;
9311 Then_Expr := Next (Condition);
9313 if No (Then_Expr) then
9314 return;
9315 end if;
9317 Else_Expr := Next (Then_Expr);
9319 Resolve (Condition, Any_Boolean);
9320 Resolve (Then_Expr, Result_Type);
9321 Check_Unset_Reference (Condition);
9322 Check_Unset_Reference (Then_Expr);
9324 Apply_Check (Then_Expr);
9326 -- If ELSE expression present, just resolve using the determined type
9327 -- If type is universal, resolve to any member of the class.
9329 if Present (Else_Expr) then
9330 if Typ = Universal_Integer then
9331 Resolve (Else_Expr, Any_Integer);
9333 elsif Typ = Universal_Real then
9334 Resolve (Else_Expr, Any_Real);
9336 else
9337 Resolve (Else_Expr, Result_Type);
9338 end if;
9340 Check_Unset_Reference (Else_Expr);
9342 Apply_Check (Else_Expr);
9344 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
9345 -- dynamically tagged must be known statically.
9347 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
9348 if Is_Dynamically_Tagged (Then_Expr) /=
9349 Is_Dynamically_Tagged (Else_Expr)
9350 then
9351 Error_Msg_N ("all or none of the dependent expressions "
9352 & "can be dynamically tagged", N);
9353 end if;
9354 end if;
9356 -- If no ELSE expression is present, root type must be Standard.Boolean
9357 -- and we provide a Standard.True result converted to the appropriate
9358 -- Boolean type (in case it is a derived boolean type).
9360 elsif Root_Type (Typ) = Standard_Boolean then
9361 Else_Expr :=
9362 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
9363 Analyze_And_Resolve (Else_Expr, Result_Type);
9364 Append_To (Expressions (N), Else_Expr);
9366 else
9367 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
9368 Append_To (Expressions (N), Error);
9369 end if;
9371 Set_Etype (N, Result_Type);
9373 if not Error_Posted (N) then
9374 Eval_If_Expression (N);
9375 end if;
9377 Analyze_Dimension (N);
9378 end Resolve_If_Expression;
9380 ----------------------------------
9381 -- Resolve_Implicit_Dereference --
9382 ----------------------------------
9384 procedure Resolve_Implicit_Dereference (P : Node_Id) is
9385 Desig_Typ : Entity_Id;
9387 begin
9388 -- In an instance the proper view may not always be correct for
9389 -- private types, see e.g. Sem_Type.Covers for similar handling.
9391 if Is_Private_Type (Etype (P))
9392 and then Present (Full_View (Etype (P)))
9393 and then Is_Access_Type (Full_View (Etype (P)))
9394 and then In_Instance
9395 then
9396 Set_Etype (P, Full_View (Etype (P)));
9397 end if;
9399 if Is_Access_Type (Etype (P)) then
9400 Desig_Typ := Implicitly_Designated_Type (Etype (P));
9401 Insert_Explicit_Dereference (P);
9402 Analyze_And_Resolve (P, Desig_Typ);
9403 end if;
9404 end Resolve_Implicit_Dereference;
9406 -------------------------------
9407 -- Resolve_Indexed_Component --
9408 -------------------------------
9410 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
9411 Pref : constant Node_Id := Prefix (N);
9412 Expr : Node_Id;
9413 Array_Type : Entity_Id := Empty; -- to prevent junk warning
9414 Index : Node_Id;
9416 begin
9417 if Present (Generalized_Indexing (N)) then
9418 Resolve_Generalized_Indexing (N, Typ);
9419 return;
9420 end if;
9422 if Is_Overloaded (Pref) then
9424 -- Use the context type to select the prefix that yields the correct
9425 -- component type.
9427 declare
9428 I : Interp_Index;
9429 It : Interp;
9430 I1 : Interp_Index := 0;
9431 Found : Boolean := False;
9433 begin
9434 Get_First_Interp (Pref, I, It);
9435 while Present (It.Typ) loop
9436 if (Is_Array_Type (It.Typ)
9437 and then Covers (Typ, Component_Type (It.Typ)))
9438 or else (Is_Access_Type (It.Typ)
9439 and then Is_Array_Type (Designated_Type (It.Typ))
9440 and then
9441 Covers
9442 (Typ,
9443 Component_Type (Designated_Type (It.Typ))))
9444 then
9445 if Found then
9446 It := Disambiguate (Pref, I1, I, Any_Type);
9448 if It = No_Interp then
9449 Error_Msg_N ("ambiguous prefix for indexing", N);
9450 Set_Etype (N, Typ);
9451 return;
9453 else
9454 Found := True;
9455 Array_Type := It.Typ;
9456 I1 := I;
9457 end if;
9459 else
9460 Found := True;
9461 Array_Type := It.Typ;
9462 I1 := I;
9463 end if;
9464 end if;
9466 Get_Next_Interp (I, It);
9467 end loop;
9468 end;
9470 else
9471 Array_Type := Etype (Pref);
9472 end if;
9474 Resolve (Pref, Array_Type);
9475 Array_Type := Get_Actual_Subtype_If_Available (Pref);
9477 -- If the prefix's type is an access type, get to the real array type.
9478 -- Note: we do not apply an access check because an explicit dereference
9479 -- will be introduced later, and the check will happen there.
9481 if Is_Access_Type (Array_Type) then
9482 Array_Type := Implicitly_Designated_Type (Array_Type);
9483 end if;
9485 -- If name was overloaded, set component type correctly now.
9486 -- If a misplaced call to an entry family (which has no index types)
9487 -- return. Error will be diagnosed from calling context.
9489 if Is_Array_Type (Array_Type) then
9490 Set_Etype (N, Component_Type (Array_Type));
9491 else
9492 return;
9493 end if;
9495 Index := First_Index (Array_Type);
9496 Expr := First (Expressions (N));
9498 -- The prefix may have resolved to a string literal, in which case its
9499 -- etype has a special representation. This is only possible currently
9500 -- if the prefix is a static concatenation, written in functional
9501 -- notation.
9503 if Ekind (Array_Type) = E_String_Literal_Subtype then
9504 Resolve (Expr, Standard_Positive);
9506 else
9507 while Present (Index) and then Present (Expr) loop
9508 Resolve (Expr, Etype (Index));
9509 Check_Unset_Reference (Expr);
9511 Apply_Scalar_Range_Check (Expr, Etype (Index));
9513 Next_Index (Index);
9514 Next (Expr);
9515 end loop;
9516 end if;
9518 Resolve_Implicit_Dereference (Pref);
9519 Analyze_Dimension (N);
9521 -- Do not generate the warning on suspicious index if we are analyzing
9522 -- package Ada.Tags; otherwise we will report the warning with the
9523 -- Prims_Ptr field of the dispatch table.
9525 if Scope (Etype (Pref)) = Standard_Standard
9526 or else not
9527 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Pref))), Ada_Tags)
9528 then
9529 Warn_On_Suspicious_Index (Pref, First (Expressions (N)));
9530 Eval_Indexed_Component (N);
9531 end if;
9533 -- If the array type is atomic and the component is not, then this is
9534 -- worth a warning before Ada 2022, since we have a situation where the
9535 -- access to the component may cause extra read/writes of the atomic
9536 -- object, or partial word accesses, both of which may be unexpected.
9538 if Nkind (N) = N_Indexed_Component
9539 and then Is_Atomic_Ref_With_Address (N)
9540 and then not (Has_Atomic_Components (Array_Type)
9541 or else (Is_Entity_Name (Pref)
9542 and then Has_Atomic_Components
9543 (Entity (Pref))))
9544 and then not Is_Atomic (Component_Type (Array_Type))
9545 and then Ada_Version < Ada_2022
9546 then
9547 Error_Msg_N
9548 ("??access to non-atomic component of atomic array", Pref);
9549 Error_Msg_N
9550 ("??\may cause unexpected accesses to atomic object", Pref);
9551 end if;
9552 end Resolve_Indexed_Component;
9554 -----------------------------
9555 -- Resolve_Integer_Literal --
9556 -----------------------------
9558 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
9559 begin
9560 Set_Etype (N, Typ);
9561 Eval_Integer_Literal (N);
9562 end Resolve_Integer_Literal;
9564 --------------------------------
9565 -- Resolve_Intrinsic_Operator --
9566 --------------------------------
9568 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
9569 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
9570 Op : Entity_Id;
9571 Arg1 : Node_Id;
9572 Arg2 : Node_Id;
9574 function Convert_Operand (Opnd : Node_Id) return Node_Id;
9575 -- If the operand is a literal, it cannot be the expression in a
9576 -- conversion. Use a qualified expression instead.
9578 ---------------------
9579 -- Convert_Operand --
9580 ---------------------
9582 function Convert_Operand (Opnd : Node_Id) return Node_Id is
9583 Loc : constant Source_Ptr := Sloc (Opnd);
9584 Res : Node_Id;
9586 begin
9587 if Nkind (Opnd) in N_Integer_Literal | N_Real_Literal then
9588 Res :=
9589 Make_Qualified_Expression (Loc,
9590 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
9591 Expression => Relocate_Node (Opnd));
9592 Analyze (Res);
9594 else
9595 Res := Unchecked_Convert_To (Btyp, Opnd);
9596 end if;
9598 return Res;
9599 end Convert_Operand;
9601 -- Start of processing for Resolve_Intrinsic_Operator
9603 begin
9604 -- We must preserve the original entity in a generic setting, so that
9605 -- the legality of the operation can be verified in an instance.
9607 if not Expander_Active then
9608 return;
9609 end if;
9611 Op := Entity (N);
9612 while Scope (Op) /= Standard_Standard loop
9613 Op := Homonym (Op);
9614 pragma Assert (Present (Op));
9615 end loop;
9617 Set_Entity (N, Op);
9618 Set_Is_Overloaded (N, False);
9620 -- If the result or operand types are private, rewrite with unchecked
9621 -- conversions on the operands and the result, to expose the proper
9622 -- underlying numeric type.
9624 if Is_Private_Type (Typ)
9625 or else Is_Private_Type (Etype (Left_Opnd (N)))
9626 or else Is_Private_Type (Etype (Right_Opnd (N)))
9627 then
9628 Arg1 := Convert_Operand (Left_Opnd (N));
9630 if Nkind (N) = N_Op_Expon then
9631 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
9632 else
9633 Arg2 := Convert_Operand (Right_Opnd (N));
9634 end if;
9636 if Nkind (Arg1) = N_Type_Conversion then
9637 Save_Interps (Left_Opnd (N), Expression (Arg1));
9638 end if;
9640 if Nkind (Arg2) = N_Type_Conversion then
9641 Save_Interps (Right_Opnd (N), Expression (Arg2));
9642 end if;
9644 Set_Left_Opnd (N, Arg1);
9645 Set_Right_Opnd (N, Arg2);
9647 Set_Etype (N, Btyp);
9648 Rewrite (N, Unchecked_Convert_To (Typ, N));
9649 Resolve (N, Typ);
9651 elsif Typ /= Etype (Left_Opnd (N))
9652 or else Typ /= Etype (Right_Opnd (N))
9653 then
9654 -- Add explicit conversion where needed, and save interpretations in
9655 -- case operands are overloaded.
9657 Arg1 := Convert_To (Typ, Left_Opnd (N));
9658 Arg2 := Convert_To (Typ, Right_Opnd (N));
9660 if Nkind (Arg1) = N_Type_Conversion then
9661 Save_Interps (Left_Opnd (N), Expression (Arg1));
9662 else
9663 Save_Interps (Left_Opnd (N), Arg1);
9664 end if;
9666 if Nkind (Arg2) = N_Type_Conversion then
9667 Save_Interps (Right_Opnd (N), Expression (Arg2));
9668 else
9669 Save_Interps (Right_Opnd (N), Arg2);
9670 end if;
9672 Rewrite (Left_Opnd (N), Arg1);
9673 Rewrite (Right_Opnd (N), Arg2);
9674 Analyze (Arg1);
9675 Analyze (Arg2);
9676 Resolve_Arithmetic_Op (N, Typ);
9678 else
9679 Resolve_Arithmetic_Op (N, Typ);
9680 end if;
9681 end Resolve_Intrinsic_Operator;
9683 --------------------------------------
9684 -- Resolve_Intrinsic_Unary_Operator --
9685 --------------------------------------
9687 procedure Resolve_Intrinsic_Unary_Operator
9688 (N : Node_Id;
9689 Typ : Entity_Id)
9691 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
9692 Op : Entity_Id;
9693 Arg2 : Node_Id;
9695 begin
9696 Op := Entity (N);
9697 while Scope (Op) /= Standard_Standard loop
9698 Op := Homonym (Op);
9699 pragma Assert (Present (Op));
9700 end loop;
9702 Set_Entity (N, Op);
9704 if Is_Private_Type (Typ) then
9705 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
9706 Save_Interps (Right_Opnd (N), Expression (Arg2));
9708 Set_Right_Opnd (N, Arg2);
9710 Set_Etype (N, Btyp);
9711 Rewrite (N, Unchecked_Convert_To (Typ, N));
9712 Resolve (N, Typ);
9714 else
9715 Resolve_Unary_Op (N, Typ);
9716 end if;
9717 end Resolve_Intrinsic_Unary_Operator;
9719 ------------------------
9720 -- Resolve_Logical_Op --
9721 ------------------------
9723 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
9724 B_Typ : Entity_Id;
9726 begin
9727 Check_No_Direct_Boolean_Operators (N);
9729 -- Predefined operations on scalar types yield the base type. On the
9730 -- other hand, logical operations on arrays yield the type of the
9731 -- arguments (and the context).
9733 if Is_Array_Type (Typ) then
9734 B_Typ := Typ;
9735 else
9736 B_Typ := Base_Type (Typ);
9737 end if;
9739 -- The following test is required because the operands of the operation
9740 -- may be literals, in which case the resulting type appears to be
9741 -- compatible with a signed integer type, when in fact it is compatible
9742 -- only with modular types. If the context itself is universal, the
9743 -- operation is illegal.
9745 if not Valid_Boolean_Arg (Typ) then
9746 Error_Msg_N ("invalid context for logical operation", N);
9747 Set_Etype (N, Any_Type);
9748 return;
9750 elsif Typ = Any_Modular then
9751 Error_Msg_N
9752 ("no modular type available in this context", N);
9753 Set_Etype (N, Any_Type);
9754 return;
9756 elsif Is_Modular_Integer_Type (Typ)
9757 and then Etype (Left_Opnd (N)) = Universal_Integer
9758 and then Etype (Right_Opnd (N)) = Universal_Integer
9759 then
9760 Check_For_Visible_Operator (N, B_Typ);
9761 end if;
9763 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
9764 -- is active and the result type is standard Boolean (do not mess with
9765 -- ops that return a nonstandard Boolean type, because something strange
9766 -- is going on).
9768 -- Note: you might expect this replacement to be done during expansion,
9769 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
9770 -- is used, no part of the right operand of an "and" or "or" operator
9771 -- should be executed if the left operand would short-circuit the
9772 -- evaluation of the corresponding "and then" or "or else". If we left
9773 -- the replacement to expansion time, then run-time checks associated
9774 -- with such operands would be evaluated unconditionally, due to being
9775 -- before the condition prior to the rewriting as short-circuit forms
9776 -- during expansion.
9778 if Short_Circuit_And_Or
9779 and then B_Typ = Standard_Boolean
9780 and then Nkind (N) in N_Op_And | N_Op_Or
9781 then
9782 -- Mark the corresponding putative SCO operator as truly a logical
9783 -- (and short-circuit) operator.
9785 if Generate_SCO and then Comes_From_Source (N) then
9786 Set_SCO_Logical_Operator (N);
9787 end if;
9789 if Nkind (N) = N_Op_And then
9790 Rewrite (N,
9791 Make_And_Then (Sloc (N),
9792 Left_Opnd => Relocate_Node (Left_Opnd (N)),
9793 Right_Opnd => Relocate_Node (Right_Opnd (N))));
9794 Analyze_And_Resolve (N, B_Typ);
9796 -- Case of OR changed to OR ELSE
9798 else
9799 Rewrite (N,
9800 Make_Or_Else (Sloc (N),
9801 Left_Opnd => Relocate_Node (Left_Opnd (N)),
9802 Right_Opnd => Relocate_Node (Right_Opnd (N))));
9803 Analyze_And_Resolve (N, B_Typ);
9804 end if;
9806 -- Return now, since analysis of the rewritten ops will take care of
9807 -- other reference bookkeeping and expression folding.
9809 return;
9810 end if;
9812 Resolve (Left_Opnd (N), B_Typ);
9813 Resolve (Right_Opnd (N), B_Typ);
9815 Check_Unset_Reference (Left_Opnd (N));
9816 Check_Unset_Reference (Right_Opnd (N));
9818 Set_Etype (N, B_Typ);
9819 Generate_Operator_Reference (N, B_Typ);
9820 Eval_Logical_Op (N);
9821 end Resolve_Logical_Op;
9823 ---------------------------
9824 -- Resolve_Membership_Op --
9825 ---------------------------
9827 -- The context can only be a boolean type, and does not determine the
9828 -- arguments. Arguments should be unambiguous, but the preference rule for
9829 -- universal types applies.
9831 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
9832 pragma Assert (Is_Boolean_Type (Typ));
9834 L : constant Node_Id := Left_Opnd (N);
9835 R : constant Node_Id := Right_Opnd (N);
9836 T : Entity_Id;
9838 procedure Resolve_Set_Membership;
9839 -- Analysis has determined a unique type for the left operand. Use it as
9840 -- the basis to resolve the disjuncts.
9842 ----------------------------
9843 -- Resolve_Set_Membership --
9844 ----------------------------
9846 procedure Resolve_Set_Membership is
9847 Alt : Node_Id;
9849 begin
9850 -- If the left operand is overloaded, find type compatible with not
9851 -- overloaded alternative of the right operand.
9853 Alt := First (Alternatives (N));
9854 if Is_Overloaded (L) then
9855 T := Empty;
9856 while Present (Alt) loop
9857 if not Is_Overloaded (Alt) then
9858 T := Intersect_Types (L, Alt);
9859 exit;
9860 else
9861 Next (Alt);
9862 end if;
9863 end loop;
9865 -- Unclear how to resolve expression if all alternatives are also
9866 -- overloaded.
9868 if No (T) then
9869 Error_Msg_N ("ambiguous expression", N);
9870 end if;
9872 else
9873 T := Intersect_Types (L, Alt);
9874 end if;
9876 Resolve (L, T);
9878 Alt := First (Alternatives (N));
9879 while Present (Alt) loop
9881 -- Alternative is an expression, a range
9882 -- or a subtype mark.
9884 if not Is_Entity_Name (Alt)
9885 or else not Is_Type (Entity (Alt))
9886 then
9887 Resolve (Alt, T);
9888 end if;
9890 Next (Alt);
9891 end loop;
9893 -- Check for duplicates for discrete case
9895 if Is_Discrete_Type (T) then
9896 declare
9897 type Ent is record
9898 Alt : Node_Id;
9899 Val : Uint;
9900 end record;
9902 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
9903 Nalts : Nat;
9905 begin
9906 -- Loop checking duplicates. This is quadratic, but giant sets
9907 -- are unlikely in this context so it's a reasonable choice.
9909 Nalts := 0;
9910 Alt := First (Alternatives (N));
9911 while Present (Alt) loop
9912 if Is_OK_Static_Expression (Alt)
9913 and then Nkind (Alt) in N_Integer_Literal
9914 | N_Character_Literal
9915 | N_Has_Entity
9916 then
9917 Nalts := Nalts + 1;
9918 Alts (Nalts) := (Alt, Expr_Value (Alt));
9920 for J in 1 .. Nalts - 1 loop
9921 if Alts (J).Val = Alts (Nalts).Val then
9922 Error_Msg_Sloc := Sloc (Alts (J).Alt);
9923 Error_Msg_N ("duplicate of value given#??", Alt);
9924 end if;
9925 end loop;
9926 end if;
9928 Next (Alt);
9929 end loop;
9930 end;
9931 end if;
9933 -- RM 4.5.2 (28.1/3) specifies that for types other than records or
9934 -- limited types, evaluation of a membership test uses the predefined
9935 -- equality for the type. This may be confusing to users, and the
9936 -- following warning appears useful for the most common case.
9938 if Is_Scalar_Type (Etype (L))
9939 and then Present (Get_User_Defined_Eq (Etype (L)))
9940 then
9941 Error_Msg_NE
9942 ("membership test on& uses predefined equality?", N, Etype (L));
9943 Error_Msg_N
9944 ("\even if user-defined equality exists (RM 4.5.2 (28.1/3)?", N);
9945 end if;
9946 end Resolve_Set_Membership;
9948 -- Start of processing for Resolve_Membership_Op
9950 begin
9951 if L = Error or else R = Error then
9952 return;
9953 end if;
9955 if Present (Alternatives (N)) then
9956 Resolve_Set_Membership;
9957 goto SM_Exit;
9959 elsif not Is_Overloaded (R)
9960 and then Is_Universal_Numeric_Type (Etype (R))
9961 and then Is_Overloaded (L)
9962 then
9963 T := Etype (R);
9965 -- Ada 2005 (AI-251): Support the following case:
9967 -- type I is interface;
9968 -- type T is tagged ...
9970 -- function Test (O : I'Class) is
9971 -- begin
9972 -- return O in T'Class.
9973 -- end Test;
9975 -- In this case we have nothing else to do. The membership test will be
9976 -- done at run time.
9978 elsif Ada_Version >= Ada_2005
9979 and then Is_Class_Wide_Type (Etype (L))
9980 and then Is_Interface (Etype (L))
9981 and then not Is_Interface (Etype (R))
9982 then
9983 return;
9984 else
9985 T := Intersect_Types (L, R);
9986 end if;
9988 -- If mixed-mode operations are present and operands are all literal,
9989 -- the only interpretation involves Duration, which is probably not
9990 -- the intention of the programmer.
9992 if T = Any_Fixed then
9993 T := Unique_Fixed_Point_Type (N);
9995 if T = Any_Type then
9996 return;
9997 end if;
9998 end if;
10000 Resolve (L, T);
10001 Check_Unset_Reference (L);
10003 if Nkind (R) = N_Range
10004 and then not Is_Scalar_Type (T)
10005 then
10006 Error_Msg_N ("scalar type required for range", R);
10007 end if;
10009 if Is_Entity_Name (R) then
10010 Freeze_Expression (R);
10011 else
10012 Resolve (R, T);
10013 Check_Unset_Reference (R);
10014 end if;
10016 -- Here after resolving membership operation
10018 <<SM_Exit>>
10020 Eval_Membership_Op (N);
10021 end Resolve_Membership_Op;
10023 ------------------
10024 -- Resolve_Null --
10025 ------------------
10027 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
10028 Loc : constant Source_Ptr := Sloc (N);
10030 begin
10031 -- Handle restriction against anonymous null access values This
10032 -- restriction can be turned off using -gnatdj.
10034 -- Ada 2005 (AI-231): Remove restriction
10036 if Ada_Version < Ada_2005
10037 and then not Debug_Flag_J
10038 and then Ekind (Typ) = E_Anonymous_Access_Type
10039 and then Comes_From_Source (N)
10040 then
10041 -- In the common case of a call which uses an explicitly null value
10042 -- for an access parameter, give specialized error message.
10044 if Nkind (Parent (N)) in N_Subprogram_Call then
10045 Error_Msg_N
10046 ("NULL is not allowed as argument for an access parameter", N);
10048 -- Standard message for all other cases (are there any?)
10050 else
10051 Error_Msg_N
10052 ("NULL cannot be of an anonymous access type", N);
10053 end if;
10054 end if;
10056 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
10057 -- assignment to a null-excluding object.
10059 if Ada_Version >= Ada_2005
10060 and then Can_Never_Be_Null (Typ)
10061 and then Nkind (Parent (N)) = N_Assignment_Statement
10062 then
10063 if Inside_Init_Proc then
10065 -- Decide whether to generate an if_statement around our
10066 -- null-excluding check to avoid them on certain internal object
10067 -- declarations by looking at the type the current Init_Proc
10068 -- belongs to.
10070 -- Generate:
10071 -- if T1b_skip_null_excluding_check then
10072 -- [constraint_error "access check failed"]
10073 -- end if;
10075 if Needs_Conditional_Null_Excluding_Check
10076 (Etype (First_Formal (Enclosing_Init_Proc)))
10077 then
10078 Insert_Action (N,
10079 Make_If_Statement (Loc,
10080 Condition =>
10081 Make_Identifier (Loc,
10082 New_External_Name
10083 (Chars (Typ), "_skip_null_excluding_check")),
10084 Then_Statements =>
10085 New_List (
10086 Make_Raise_Constraint_Error (Loc,
10087 Reason => CE_Access_Check_Failed))));
10089 -- Otherwise, simply create the check
10091 else
10092 Insert_Action (N,
10093 Make_Raise_Constraint_Error (Loc,
10094 Reason => CE_Access_Check_Failed));
10095 end if;
10096 else
10097 Insert_Action
10098 (Compile_Time_Constraint_Error (N,
10099 "(Ada 2005) NULL not allowed in null-excluding objects??"),
10100 Make_Raise_Constraint_Error (Loc,
10101 Reason => CE_Access_Check_Failed));
10102 end if;
10103 end if;
10105 -- In a distributed context, null for a remote access to subprogram may
10106 -- need to be replaced with a special record aggregate. In this case,
10107 -- return after having done the transformation.
10109 if (Ekind (Typ) = E_Record_Type
10110 or else Is_Remote_Access_To_Subprogram_Type (Typ))
10111 and then Remote_AST_Null_Value (N, Typ)
10112 then
10113 return;
10114 end if;
10116 -- The null literal takes its type from the context
10118 Set_Etype (N, Typ);
10119 end Resolve_Null;
10121 -----------------------
10122 -- Resolve_Op_Concat --
10123 -----------------------
10125 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
10127 -- We wish to avoid deep recursion, because concatenations are often
10128 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
10129 -- operands nonrecursively until we find something that is not a simple
10130 -- concatenation (A in this case). We resolve that, and then walk back
10131 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
10132 -- to do the rest of the work at each level. The Parent pointers allow
10133 -- us to avoid recursion, and thus avoid running out of memory. See also
10134 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
10136 NN : Node_Id := N;
10137 Op1 : Node_Id;
10139 begin
10140 -- The following code is equivalent to:
10142 -- Resolve_Op_Concat_First (NN, Typ);
10143 -- Resolve_Op_Concat_Arg (N, ...);
10144 -- Resolve_Op_Concat_Rest (N, Typ);
10146 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
10147 -- operand is a concatenation.
10149 -- Walk down left operands
10151 loop
10152 Resolve_Op_Concat_First (NN, Typ);
10153 Op1 := Left_Opnd (NN);
10154 exit when not (Nkind (Op1) = N_Op_Concat
10155 and then not Is_Array_Type (Component_Type (Typ))
10156 and then Entity (Op1) = Entity (NN));
10157 NN := Op1;
10158 end loop;
10160 -- Now (given the above example) NN is A&B and Op1 is A
10162 -- First resolve Op1 ...
10164 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
10166 -- ... then walk NN back up until we reach N (where we started), calling
10167 -- Resolve_Op_Concat_Rest along the way.
10169 loop
10170 Resolve_Op_Concat_Rest (NN, Typ);
10171 exit when NN = N;
10172 NN := Parent (NN);
10173 end loop;
10174 end Resolve_Op_Concat;
10176 ---------------------------
10177 -- Resolve_Op_Concat_Arg --
10178 ---------------------------
10180 procedure Resolve_Op_Concat_Arg
10181 (N : Node_Id;
10182 Arg : Node_Id;
10183 Typ : Entity_Id;
10184 Is_Comp : Boolean)
10186 Btyp : constant Entity_Id := Base_Type (Typ);
10187 Ctyp : constant Entity_Id := Component_Type (Typ);
10189 begin
10190 if In_Instance then
10191 if Is_Comp
10192 or else (not Is_Overloaded (Arg)
10193 and then Etype (Arg) /= Any_Composite
10194 and then Covers (Ctyp, Etype (Arg)))
10195 then
10196 Resolve (Arg, Ctyp);
10197 else
10198 Resolve (Arg, Btyp);
10199 end if;
10201 -- If both Array & Array and Array & Component are visible, there is a
10202 -- potential ambiguity that must be reported.
10204 elsif Has_Compatible_Type (Arg, Ctyp) then
10205 if Nkind (Arg) = N_Aggregate
10206 and then Is_Composite_Type (Ctyp)
10207 then
10208 if Is_Private_Type (Ctyp) then
10209 Resolve (Arg, Btyp);
10211 -- If the operation is user-defined and not overloaded use its
10212 -- profile. The operation may be a renaming, in which case it has
10213 -- been rewritten, and we want the original profile.
10215 elsif not Is_Overloaded (N)
10216 and then Comes_From_Source (Entity (Original_Node (N)))
10217 and then Ekind (Entity (Original_Node (N))) = E_Function
10218 then
10219 Resolve (Arg,
10220 Etype
10221 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
10222 return;
10224 -- Otherwise an aggregate may match both the array type and the
10225 -- component type.
10227 else
10228 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
10229 Set_Etype (Arg, Any_Type);
10230 end if;
10232 else
10233 if Is_Overloaded (Arg)
10234 and then Has_Compatible_Type (Arg, Typ)
10235 and then Etype (Arg) /= Any_Type
10236 then
10237 declare
10238 I : Interp_Index;
10239 It : Interp;
10240 Func : Entity_Id;
10242 begin
10243 Get_First_Interp (Arg, I, It);
10244 Func := It.Nam;
10245 Get_Next_Interp (I, It);
10247 -- Special-case the error message when the overloading is
10248 -- caused by a function that yields an array and can be
10249 -- called without parameters.
10251 if It.Nam = Func then
10252 Error_Msg_Sloc := Sloc (Func);
10253 Error_Msg_N ("ambiguous call to function#", Arg);
10254 Error_Msg_NE
10255 ("\\interpretation as call yields&", Arg, Typ);
10256 Error_Msg_NE
10257 ("\\interpretation as indexing of call yields&",
10258 Arg, Ctyp);
10260 else
10261 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
10263 Get_First_Interp (Arg, I, It);
10264 while Present (It.Nam) loop
10265 Error_Msg_Sloc := Sloc (It.Nam);
10267 if Base_Type (It.Typ) = Btyp
10268 or else
10269 Base_Type (It.Typ) = Base_Type (Ctyp)
10270 then
10271 Error_Msg_N -- CODEFIX
10272 ("\\possible interpretation#", Arg);
10273 end if;
10275 Get_Next_Interp (I, It);
10276 end loop;
10277 end if;
10278 end;
10279 end if;
10281 Resolve (Arg, Ctyp);
10283 if Nkind (Arg) = N_String_Literal then
10284 Set_Etype (Arg, Ctyp);
10286 elsif Is_Scalar_Type (Etype (Arg))
10287 and then Compile_Time_Known_Value (Arg)
10288 then
10289 -- Determine if the out-of-range violation constitutes a
10290 -- warning or an error according to the expression base type,
10291 -- according to Ada 2022 RM 4.9 (35/2).
10293 if Is_Out_Of_Range (Arg, Base_Type (Ctyp)) then
10294 Apply_Compile_Time_Constraint_Error
10295 (Arg, "value not in range of}", CE_Range_Check_Failed,
10296 Ent => Base_Type (Ctyp),
10297 Typ => Base_Type (Ctyp));
10299 elsif Is_Out_Of_Range (Arg, Ctyp) then
10300 Apply_Compile_Time_Constraint_Error
10301 (Arg, "value not in range of}??", CE_Range_Check_Failed,
10302 Ent => Ctyp,
10303 Typ => Ctyp);
10304 end if;
10305 end if;
10307 if Arg = Left_Opnd (N) then
10308 Set_Is_Component_Left_Opnd (N);
10309 else
10310 Set_Is_Component_Right_Opnd (N);
10311 end if;
10312 end if;
10314 else
10315 Resolve (Arg, Btyp);
10316 end if;
10318 Check_Unset_Reference (Arg);
10319 end Resolve_Op_Concat_Arg;
10321 -----------------------------
10322 -- Resolve_Op_Concat_First --
10323 -----------------------------
10325 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
10326 Btyp : constant Entity_Id := Base_Type (Typ);
10327 Op1 : constant Node_Id := Left_Opnd (N);
10328 Op2 : constant Node_Id := Right_Opnd (N);
10330 begin
10331 -- The parser folds an enormous sequence of concatenations of string
10332 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
10333 -- in the right operand. If the expression resolves to a predefined "&"
10334 -- operator, all is well. Otherwise, the parser's folding is wrong, so
10335 -- we give an error. See P_Simple_Expression in Par.Ch4.
10337 if Nkind (Op2) = N_String_Literal
10338 and then Is_Folded_In_Parser (Op2)
10339 and then Ekind (Entity (N)) = E_Function
10340 then
10341 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
10342 and then String_Length (Strval (Op1)) = 0);
10343 Error_Msg_N ("too many user-defined concatenations", N);
10344 return;
10345 end if;
10347 Set_Etype (N, Btyp);
10349 if Is_Limited_Composite (Btyp) then
10350 Error_Msg_N ("concatenation not available for limited array", N);
10351 Explain_Limited_Type (Btyp, N);
10352 end if;
10353 end Resolve_Op_Concat_First;
10355 ----------------------------
10356 -- Resolve_Op_Concat_Rest --
10357 ----------------------------
10359 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
10360 Op1 : constant Node_Id := Left_Opnd (N);
10361 Op2 : constant Node_Id := Right_Opnd (N);
10363 begin
10364 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
10366 Generate_Operator_Reference (N, Typ);
10368 if Is_String_Type (Typ) then
10369 Eval_Concatenation (N);
10370 end if;
10372 -- If this is not a static concatenation, but the result is a string
10373 -- type (and not an array of strings) ensure that static string operands
10374 -- have their subtypes properly constructed.
10376 if Nkind (N) /= N_String_Literal
10377 and then Is_Character_Type (Component_Type (Typ))
10378 then
10379 Set_String_Literal_Subtype (Op1, Typ);
10380 Set_String_Literal_Subtype (Op2, Typ);
10381 end if;
10382 end Resolve_Op_Concat_Rest;
10384 ----------------------
10385 -- Resolve_Op_Expon --
10386 ----------------------
10388 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
10389 B_Typ : constant Entity_Id := Base_Type (Typ);
10391 begin
10392 -- Catch attempts to do fixed-point exponentiation with universal
10393 -- operands, which is a case where the illegality is not caught during
10394 -- normal operator analysis. This is not done in preanalysis mode
10395 -- since the tree is not fully decorated during preanalysis.
10397 if Full_Analysis then
10398 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
10399 Error_Msg_N ("exponentiation not available for fixed point", N);
10400 return;
10402 elsif Nkind (Parent (N)) in N_Op
10403 and then Present (Etype (Parent (N)))
10404 and then Is_Fixed_Point_Type (Etype (Parent (N)))
10405 and then Etype (N) = Universal_Real
10406 and then Comes_From_Source (N)
10407 then
10408 Error_Msg_N ("exponentiation not available for fixed point", N);
10409 return;
10410 end if;
10411 end if;
10413 if Comes_From_Source (N)
10414 and then Ekind (Entity (N)) = E_Function
10415 and then Is_Imported (Entity (N))
10416 and then Is_Intrinsic_Subprogram (Entity (N))
10417 then
10418 Resolve_Intrinsic_Operator (N, Typ);
10419 return;
10420 end if;
10422 if Is_Universal_Numeric_Type (Etype (Left_Opnd (N))) then
10423 Check_For_Visible_Operator (N, B_Typ);
10424 end if;
10426 -- We do the resolution using the base type, because intermediate values
10427 -- in expressions are always of the base type, not a subtype of it.
10429 Resolve (Left_Opnd (N), B_Typ);
10430 Resolve (Right_Opnd (N), Standard_Integer);
10432 -- For integer types, right argument must be in Natural range
10434 if Is_Integer_Type (Typ) then
10435 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
10436 end if;
10438 Check_Unset_Reference (Left_Opnd (N));
10439 Check_Unset_Reference (Right_Opnd (N));
10441 Set_Etype (N, B_Typ);
10442 Generate_Operator_Reference (N, B_Typ);
10444 Analyze_Dimension (N);
10446 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
10447 -- Evaluate the exponentiation operator for dimensioned type
10449 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
10450 else
10451 Eval_Op_Expon (N);
10452 end if;
10454 -- Set overflow checking bit. Much cleverer code needed here eventually
10455 -- and perhaps the Resolve routines should be separated for the various
10456 -- arithmetic operations, since they will need different processing. ???
10458 if Nkind (N) in N_Op then
10459 if not Overflow_Checks_Suppressed (Etype (N)) then
10460 Enable_Overflow_Check (N);
10461 end if;
10462 end if;
10463 end Resolve_Op_Expon;
10465 --------------------
10466 -- Resolve_Op_Not --
10467 --------------------
10469 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
10470 function Parent_Is_Boolean return Boolean;
10471 -- This function determines if the parent node is a boolean operator or
10472 -- operation (comparison op, membership test, or short circuit form) and
10473 -- the not in question is the left operand of this operation. Note that
10474 -- if the not is in parens, then false is returned.
10476 -----------------------
10477 -- Parent_Is_Boolean --
10478 -----------------------
10480 function Parent_Is_Boolean return Boolean is
10481 begin
10482 return Paren_Count (N) = 0
10483 and then Nkind (Parent (N)) in N_Membership_Test
10484 | N_Op_Boolean
10485 | N_Short_Circuit
10486 and then Left_Opnd (Parent (N)) = N;
10487 end Parent_Is_Boolean;
10489 -- Local variables
10491 B_Typ : Entity_Id;
10493 -- Start of processing for Resolve_Op_Not
10495 begin
10496 -- Predefined operations on scalar types yield the base type. On the
10497 -- other hand, logical operations on arrays yield the type of the
10498 -- arguments (and the context).
10500 if Is_Array_Type (Typ) then
10501 B_Typ := Typ;
10502 else
10503 B_Typ := Base_Type (Typ);
10504 end if;
10506 -- Straightforward case of incorrect arguments
10508 if not Valid_Boolean_Arg (Typ) then
10509 Error_Msg_N ("invalid operand type for operator&", N);
10510 Set_Etype (N, Any_Type);
10511 return;
10513 -- Special case of probable missing parens
10515 elsif Typ = Universal_Integer or else Typ = Any_Modular then
10516 if Parent_Is_Boolean then
10517 Error_Msg_N
10518 ("operand of NOT must be enclosed in parentheses",
10519 Right_Opnd (N));
10520 else
10521 Error_Msg_N
10522 ("no modular type available in this context", N);
10523 end if;
10525 Set_Etype (N, Any_Type);
10526 return;
10528 -- OK resolution of NOT
10530 else
10531 -- Warn if non-boolean types involved. This is a case like not a < b
10532 -- where a and b are modular, where we will get (not a) < b and most
10533 -- likely not (a < b) was intended.
10535 if Warn_On_Questionable_Missing_Parens
10536 and then not Is_Boolean_Type (Typ)
10537 and then Parent_Is_Boolean
10538 then
10539 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
10540 end if;
10542 -- Warn on double negation if checking redundant constructs
10544 if Warn_On_Redundant_Constructs
10545 and then Comes_From_Source (N)
10546 and then Comes_From_Source (Right_Opnd (N))
10547 and then Root_Type (Typ) = Standard_Boolean
10548 and then Nkind (Right_Opnd (N)) = N_Op_Not
10549 then
10550 Error_Msg_N ("redundant double negation?r?", N);
10551 end if;
10553 -- Complete resolution and evaluation of NOT
10555 Resolve (Right_Opnd (N), B_Typ);
10556 Check_Unset_Reference (Right_Opnd (N));
10557 Set_Etype (N, B_Typ);
10558 Generate_Operator_Reference (N, B_Typ);
10559 Eval_Op_Not (N);
10560 end if;
10561 end Resolve_Op_Not;
10563 -----------------------------
10564 -- Resolve_Operator_Symbol --
10565 -----------------------------
10567 -- Nothing to be done, all resolved already
10569 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
10570 pragma Warnings (Off, N);
10571 pragma Warnings (Off, Typ);
10573 begin
10574 null;
10575 end Resolve_Operator_Symbol;
10577 ----------------------------------
10578 -- Resolve_Qualified_Expression --
10579 ----------------------------------
10581 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
10582 pragma Warnings (Off, Typ);
10584 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
10585 Expr : constant Node_Id := Expression (N);
10587 begin
10588 Resolve (Expr, Target_Typ);
10590 -- A qualified expression requires an exact match of the type, class-
10591 -- wide matching is not allowed. However, if the qualifying type is
10592 -- specific and the expression has a class-wide type, it may still be
10593 -- okay, since it can be the result of the expansion of a call to a
10594 -- dispatching function, so we also have to check class-wideness of the
10595 -- type of the expression's original node.
10597 if (Is_Class_Wide_Type (Target_Typ)
10598 or else
10599 (Is_Class_Wide_Type (Etype (Expr))
10600 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
10601 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
10602 then
10603 Wrong_Type (Expr, Target_Typ);
10604 end if;
10606 -- If the target type is unconstrained, then we reset the type of the
10607 -- result from the type of the expression. For other cases, the actual
10608 -- subtype of the expression is the target type. But we avoid doing it
10609 -- for an allocator since this is not needed and might be problematic.
10611 if Is_Composite_Type (Target_Typ)
10612 and then not Is_Constrained (Target_Typ)
10613 and then Nkind (Parent (N)) /= N_Allocator
10614 then
10615 Set_Etype (N, Etype (Expr));
10616 end if;
10618 Analyze_Dimension (N);
10619 Eval_Qualified_Expression (N);
10621 -- If we still have a qualified expression after the static evaluation,
10622 -- then apply a scalar range check if needed. The reason that we do this
10623 -- after the Eval call is that otherwise, the application of the range
10624 -- check may convert an illegal static expression and result in warning
10625 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
10627 if Nkind (N) = N_Qualified_Expression
10628 and then Is_Scalar_Type (Target_Typ)
10629 then
10630 Apply_Scalar_Range_Check (Expr, Target_Typ);
10631 end if;
10633 -- AI12-0100: Once the qualified expression is resolved, check whether
10634 -- operand satisfies a static predicate of the target subtype, if any.
10635 -- In the static expression case, a predicate check failure is an error.
10637 if Has_Predicates (Target_Typ) then
10638 Check_Expression_Against_Static_Predicate
10639 (Expr, Target_Typ, Static_Failure_Is_Error => True);
10640 end if;
10641 end Resolve_Qualified_Expression;
10643 ------------------------------
10644 -- Resolve_Raise_Expression --
10645 ------------------------------
10647 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
10648 begin
10649 if Typ = Raise_Type then
10650 Error_Msg_N ("cannot find unique type for raise expression", N);
10651 Set_Etype (N, Any_Type);
10653 else
10654 Set_Etype (N, Typ);
10656 -- Apply check for required parentheses in the enclosing
10657 -- context of raise_expressions (RM 11.3 (2)), including default
10658 -- expressions in contexts that can include aspect specifications,
10659 -- and ancestor parts of extension aggregates.
10661 declare
10662 Par : Node_Id := Parent (N);
10663 Parentheses_Found : Boolean := Paren_Count (N) > 0;
10665 begin
10666 while Present (Par)
10667 and then Nkind (Par) in N_Has_Etype
10668 loop
10669 if Paren_Count (Par) > 0 then
10670 Parentheses_Found := True;
10671 end if;
10673 if Nkind (Par) = N_Extension_Aggregate
10674 and then N = Ancestor_Part (Par)
10675 then
10676 exit;
10677 end if;
10679 Par := Parent (Par);
10680 end loop;
10682 if not Parentheses_Found
10683 and then Comes_From_Source (Par)
10684 and then
10685 ((Nkind (Par) in N_Modular_Type_Definition
10686 | N_Floating_Point_Definition
10687 | N_Ordinary_Fixed_Point_Definition
10688 | N_Decimal_Fixed_Point_Definition
10689 | N_Extension_Aggregate
10690 | N_Discriminant_Specification
10691 | N_Parameter_Specification
10692 | N_Formal_Object_Declaration)
10694 or else (Nkind (Par) = N_Object_Declaration
10695 and then
10696 Nkind (Parent (Par)) /= N_Extended_Return_Statement))
10697 then
10698 Error_Msg_N
10699 ("raise_expression must be parenthesized in this context",
10701 end if;
10702 end;
10703 end if;
10704 end Resolve_Raise_Expression;
10706 -------------------
10707 -- Resolve_Range --
10708 -------------------
10710 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
10711 L : constant Node_Id := Low_Bound (N);
10712 H : constant Node_Id := High_Bound (N);
10714 function First_Last_Ref return Boolean;
10715 -- Returns True if N is of the form X'First .. X'Last where X is the
10716 -- same entity for both attributes.
10718 --------------------
10719 -- First_Last_Ref --
10720 --------------------
10722 function First_Last_Ref return Boolean is
10723 Lorig : constant Node_Id := Original_Node (L);
10724 Horig : constant Node_Id := Original_Node (H);
10726 begin
10727 if Nkind (Lorig) = N_Attribute_Reference
10728 and then Nkind (Horig) = N_Attribute_Reference
10729 and then Attribute_Name (Lorig) = Name_First
10730 and then Attribute_Name (Horig) = Name_Last
10731 then
10732 declare
10733 PL : constant Node_Id := Prefix (Lorig);
10734 PH : constant Node_Id := Prefix (Horig);
10735 begin
10736 return Is_Entity_Name (PL)
10737 and then Is_Entity_Name (PH)
10738 and then Entity (PL) = Entity (PH);
10739 end;
10740 end if;
10742 return False;
10743 end First_Last_Ref;
10745 -- Start of processing for Resolve_Range
10747 begin
10748 Set_Etype (N, Typ);
10750 Resolve (L, Typ);
10751 Resolve (H, Typ);
10753 -- Reanalyze the lower bound after both bounds have been analyzed, so
10754 -- that the range is known to be static or not by now. This may trigger
10755 -- more compile-time evaluation, which is useful for static analysis
10756 -- with GNATprove. This is not needed for compilation or static analysis
10757 -- with CodePeer, as full expansion does that evaluation then.
10759 if GNATprove_Mode then
10760 Set_Analyzed (L, False);
10761 Resolve (L, Typ);
10762 end if;
10764 -- Check for inappropriate range on unordered enumeration type
10766 if Bad_Unordered_Enumeration_Reference (N, Typ)
10768 -- Exclude X'First .. X'Last if X is the same entity for both
10770 and then not First_Last_Ref
10771 then
10772 Error_Msg_Sloc := Sloc (Typ);
10773 Error_Msg_NE
10774 ("subrange of unordered enumeration type& declared#?.u?", N, Typ);
10775 end if;
10777 Check_Unset_Reference (L);
10778 Check_Unset_Reference (H);
10780 -- We have to check the bounds for being within the base range as
10781 -- required for a non-static context. Normally this is automatic and
10782 -- done as part of evaluating expressions, but the N_Range node is an
10783 -- exception, since in GNAT we consider this node to be a subexpression,
10784 -- even though in Ada it is not. The circuit in Sem_Eval could check for
10785 -- this, but that would put the test on the main evaluation path for
10786 -- expressions.
10788 Check_Non_Static_Context (L);
10789 Check_Non_Static_Context (H);
10791 -- Check for an ambiguous range over character literals. This will
10792 -- happen with a membership test involving only literals.
10794 if Typ = Any_Character then
10795 Ambiguous_Character (L);
10796 Set_Etype (N, Any_Type);
10797 return;
10798 end if;
10800 -- If bounds are static, constant-fold them, so size computations are
10801 -- identical between front-end and back-end. Do not perform this
10802 -- transformation while analyzing generic units, as type information
10803 -- would be lost when reanalyzing the constant node in the instance.
10805 if Is_Discrete_Type (Typ) and then Expander_Active then
10806 if Is_OK_Static_Expression (L) then
10807 Fold_Uint (L, Expr_Value (L), Static => True);
10808 end if;
10810 if Is_OK_Static_Expression (H) then
10811 Fold_Uint (H, Expr_Value (H), Static => True);
10812 end if;
10813 end if;
10815 -- If we have a compile-time-known null range, we warn, because that is
10816 -- likely to be a mistake. (Dynamic null ranges make sense, but often
10817 -- compile-time-known ones do not.) Warn only if this is in a subtype
10818 -- declaration. We do this here, rather than while analyzing a subtype
10819 -- declaration, in case we decide to expand the cases. We do not want to
10820 -- warn in all cases, because some are idiomatic, such as an empty
10821 -- aggregate (1 .. 0 => <>).
10823 -- We don't warn in generics or their instances, because there might be
10824 -- some instances where the range is null, and some where it is not,
10825 -- which would lead to false alarms.
10827 if not (Inside_A_Generic or In_Instance)
10828 and then Comes_From_Source (N)
10829 and then Compile_Time_Compare
10830 (Low_Bound (N), High_Bound (N), Assume_Valid => True) = GT
10831 and then Nkind (Parent (N)) = N_Range_Constraint
10832 and then Nkind (Parent (Parent (N))) = N_Subtype_Indication
10833 and then Nkind (Parent (Parent (Parent (N)))) = N_Subtype_Declaration
10834 and then Is_OK_Static_Range (N)
10835 then
10836 Error_Msg_N ("null range??", N);
10837 end if;
10838 end Resolve_Range;
10840 --------------------------
10841 -- Resolve_Real_Literal --
10842 --------------------------
10844 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
10845 Actual_Typ : constant Entity_Id := Etype (N);
10847 begin
10848 -- Special processing for fixed-point literals to make sure that the
10849 -- value is an exact multiple of the small where this is required. We
10850 -- skip this for the universal real case, and also for generic types.
10852 if Is_Fixed_Point_Type (Typ)
10853 and then Typ /= Universal_Fixed
10854 and then Typ /= Any_Fixed
10855 and then not Is_Generic_Type (Typ)
10856 then
10857 -- We must freeze the base type to get the proper value of the small
10859 if not Is_Frozen (Base_Type (Typ)) then
10860 Freeze_Fixed_Point_Type (Base_Type (Typ));
10861 end if;
10863 declare
10864 Val : constant Ureal := Realval (N);
10865 Cintr : constant Ureal := Val / Small_Value (Base_Type (Typ));
10866 Cint : constant Uint := UR_Trunc (Cintr);
10867 Den : constant Uint := Norm_Den (Cintr);
10868 Stat : Boolean;
10870 begin
10871 -- Case of literal is not an exact multiple of the Small
10873 if Den /= 1 then
10875 -- For a source program literal for a decimal fixed-point type,
10876 -- this is statically illegal (RM 4.9(36)).
10878 if Is_Decimal_Fixed_Point_Type (Typ)
10879 and then Actual_Typ = Universal_Real
10880 and then Comes_From_Source (N)
10881 then
10882 Error_Msg_N ("value has extraneous low order digits", N);
10883 end if;
10885 -- Generate a warning if literal from source
10887 if Is_OK_Static_Expression (N)
10888 and then Warn_On_Bad_Fixed_Value
10889 then
10890 Error_Msg_N
10891 ("?b?static fixed-point value is not a multiple of Small!",
10893 end if;
10895 -- Replace literal by a value that is the exact representation
10896 -- of a value of the type, i.e. a multiple of the small value,
10897 -- by truncation, since Machine_Rounds is false for all GNAT
10898 -- fixed-point types (RM 4.9(38)).
10900 Stat := Is_OK_Static_Expression (N);
10901 Rewrite (N,
10902 Make_Real_Literal (Sloc (N),
10903 Realval => Small_Value (Typ) * Cint));
10905 Set_Is_Static_Expression (N, Stat);
10906 end if;
10908 -- In all cases, set the corresponding integer field
10910 Set_Corresponding_Integer_Value (N, Cint);
10911 end;
10912 end if;
10914 -- Now replace the actual type by the expected type as usual
10916 Set_Etype (N, Typ);
10917 Eval_Real_Literal (N);
10918 end Resolve_Real_Literal;
10920 -----------------------
10921 -- Resolve_Reference --
10922 -----------------------
10924 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
10925 P : constant Node_Id := Prefix (N);
10927 begin
10928 -- Replace general access with specific type
10930 if Ekind (Etype (N)) = E_Allocator_Type then
10931 Set_Etype (N, Base_Type (Typ));
10932 end if;
10934 Resolve (P, Designated_Type (Etype (N)));
10936 -- If we are taking the reference of a volatile entity, then treat it as
10937 -- a potential modification of this entity. This is too conservative,
10938 -- but necessary because remove side effects can cause transformations
10939 -- of normal assignments into reference sequences that otherwise fail to
10940 -- notice the modification.
10942 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
10943 Note_Possible_Modification (P, Sure => False);
10944 end if;
10945 end Resolve_Reference;
10947 --------------------------------
10948 -- Resolve_Selected_Component --
10949 --------------------------------
10951 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
10952 Comp : Entity_Id;
10953 Comp1 : Entity_Id := Empty; -- prevent junk warning
10954 P : constant Node_Id := Prefix (N);
10955 S : constant Node_Id := Selector_Name (N);
10956 T : Entity_Id := Etype (P);
10957 I : Interp_Index;
10958 I1 : Interp_Index := 0; -- prevent junk warning
10959 It : Interp;
10960 It1 : Interp;
10961 Found : Boolean;
10963 function Init_Component return Boolean;
10964 -- Check whether this is the initialization of a component within an
10965 -- init proc (by assignment or call to another init proc). If true,
10966 -- there is no need for a discriminant check.
10968 --------------------
10969 -- Init_Component --
10970 --------------------
10972 function Init_Component return Boolean is
10973 begin
10974 return Inside_Init_Proc
10975 and then Nkind (Prefix (N)) = N_Identifier
10976 and then Chars (Prefix (N)) = Name_uInit
10977 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
10978 end Init_Component;
10980 -- Start of processing for Resolve_Selected_Component
10982 begin
10983 if Is_Overloaded (P) then
10985 -- Use the context type to select the prefix that has a selector
10986 -- of the correct name and type.
10988 Found := False;
10989 Get_First_Interp (P, I, It);
10991 Search : while Present (It.Typ) loop
10992 if Is_Access_Type (It.Typ) then
10993 T := Designated_Type (It.Typ);
10994 else
10995 T := It.Typ;
10996 end if;
10998 -- Locate selected component. For a private prefix the selector
10999 -- can denote a discriminant.
11001 if Is_Record_Type (T) or else Is_Private_Type (T) then
11003 -- The visible components of a class-wide type are those of
11004 -- the root type.
11006 if Is_Class_Wide_Type (T) then
11007 T := Etype (T);
11008 end if;
11010 Comp := First_Entity (T);
11011 while Present (Comp) loop
11012 if Chars (Comp) = Chars (S)
11013 and then Covers (Typ, Etype (Comp))
11014 then
11015 if not Found then
11016 Found := True;
11017 I1 := I;
11018 It1 := It;
11019 Comp1 := Comp;
11021 else
11022 It := Disambiguate (P, I1, I, Any_Type);
11024 if It = No_Interp then
11025 Error_Msg_N
11026 ("ambiguous prefix for selected component", N);
11027 Set_Etype (N, Typ);
11028 return;
11030 else
11031 It1 := It;
11033 -- There may be an implicit dereference. Retrieve
11034 -- designated record type.
11036 if Is_Access_Type (It1.Typ) then
11037 T := Designated_Type (It1.Typ);
11038 else
11039 T := It1.Typ;
11040 end if;
11042 if Scope (Comp1) /= T then
11044 -- Resolution chooses the new interpretation.
11045 -- Find the component with the right name.
11047 Comp1 := First_Entity (T);
11048 while Present (Comp1)
11049 and then Chars (Comp1) /= Chars (S)
11050 loop
11051 Next_Entity (Comp1);
11052 end loop;
11053 end if;
11055 exit Search;
11056 end if;
11057 end if;
11058 end if;
11060 Next_Entity (Comp);
11061 end loop;
11062 end if;
11064 Get_Next_Interp (I, It);
11065 end loop Search;
11067 -- There must be a legal interpretation at this point
11069 pragma Assert (Found);
11070 Resolve (P, It1.Typ);
11072 -- In general the expected type is the type of the context, not the
11073 -- type of the candidate selected component.
11075 Set_Etype (N, Typ);
11076 Set_Entity_With_Checks (S, Comp1);
11078 -- The type of the context and that of the component are
11079 -- compatible and in general identical, but if they are anonymous
11080 -- access-to-subprogram types, the relevant type is that of the
11081 -- component. This matters in Unnest_Subprograms mode, where the
11082 -- relevant context is the one in which the type is declared, not
11083 -- the point of use. This determines what activation record to use.
11085 if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
11086 Set_Etype (N, Etype (Comp1));
11088 -- When the type of the component is an access to a class-wide type
11089 -- the relevant type is that of the component (since in such case we
11090 -- may need to generate implicit type conversions or dispatching
11091 -- calls).
11093 elsif Is_Access_Type (Typ)
11094 and then not Is_Class_Wide_Type (Designated_Type (Typ))
11095 and then Is_Class_Wide_Type (Designated_Type (Etype (Comp1)))
11096 then
11097 Set_Etype (N, Etype (Comp1));
11098 end if;
11100 else
11101 -- Resolve prefix with its type
11103 Resolve (P, T);
11104 end if;
11106 -- Generate cross-reference. We needed to wait until full overloading
11107 -- resolution was complete to do this, since otherwise we can't tell if
11108 -- we are an lvalue or not.
11110 if Known_To_Be_Assigned (N) then
11111 Generate_Reference (Entity (S), S, 'm');
11112 else
11113 Generate_Reference (Entity (S), S, 'r');
11114 end if;
11116 -- If the prefix's type is an access type, get to the real record type.
11117 -- Note: we do not apply an access check because an explicit dereference
11118 -- will be introduced later, and the check will happen there.
11120 if Is_Access_Type (Etype (P)) then
11121 T := Implicitly_Designated_Type (Etype (P));
11122 Check_Fully_Declared_Prefix (T, P);
11124 else
11125 T := Etype (P);
11127 -- If the prefix is an entity it may have a deferred reference set
11128 -- during analysis of the selected component. After resolution we
11129 -- can transform it into a proper reference. This prevents spurious
11130 -- warnings on useless assignments when the same selected component
11131 -- is the actual for an out parameter in a subsequent call.
11133 if Is_Entity_Name (P)
11134 and then Has_Deferred_Reference (Entity (P))
11135 then
11136 if Known_To_Be_Assigned (N) then
11137 Generate_Reference (Entity (P), P, 'm');
11138 else
11139 Generate_Reference (Entity (P), P, 'r');
11140 end if;
11141 end if;
11142 end if;
11144 -- Set flag for expander if discriminant check required on a component
11145 -- appearing within a variant.
11147 if Has_Discriminants (T)
11148 and then Ekind (Entity (S)) = E_Component
11149 and then Present (Original_Record_Component (Entity (S)))
11150 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
11151 and then
11152 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
11153 and then not Discriminant_Checks_Suppressed (T)
11154 and then not Init_Component
11155 then
11156 Set_Do_Discriminant_Check (N);
11157 end if;
11159 if Ekind (Entity (S)) = E_Void then
11160 Error_Msg_N ("premature use of component", S);
11161 end if;
11163 -- If the prefix is a record conversion, this may be a renamed
11164 -- discriminant whose bounds differ from those of the original
11165 -- one, so we must ensure that a range check is performed.
11167 if Nkind (P) = N_Type_Conversion
11168 and then Ekind (Entity (S)) = E_Discriminant
11169 and then Is_Discrete_Type (Typ)
11170 then
11171 Set_Etype (N, Base_Type (Typ));
11172 end if;
11174 -- Eval_Selected_Component may e.g. fold statically known discriminants.
11176 Eval_Selected_Component (N);
11178 if Nkind (N) = N_Selected_Component then
11180 -- If the record type is atomic and the component is not, then this
11181 -- is worth a warning before Ada 2022, since we have a situation
11182 -- where the access to the component may cause extra read/writes of
11183 -- the atomic object, or partial word accesses, both of which may be
11184 -- unexpected.
11186 if Is_Atomic_Ref_With_Address (N)
11187 and then not Is_Atomic (Entity (S))
11188 and then not Is_Atomic (Etype (Entity (S)))
11189 and then Ada_Version < Ada_2022
11190 then
11191 Error_Msg_N
11192 ("??access to non-atomic component of atomic record",
11193 Prefix (N));
11194 Error_Msg_N
11195 ("\??may cause unexpected accesses to atomic object",
11196 Prefix (N));
11197 end if;
11199 Resolve_Implicit_Dereference (Prefix (N));
11200 Analyze_Dimension (N);
11201 end if;
11202 end Resolve_Selected_Component;
11204 -------------------
11205 -- Resolve_Shift --
11206 -------------------
11208 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
11209 B_Typ : constant Entity_Id := Base_Type (Typ);
11210 L : constant Node_Id := Left_Opnd (N);
11211 R : constant Node_Id := Right_Opnd (N);
11213 begin
11214 -- We do the resolution using the base type, because intermediate values
11215 -- in expressions always are of the base type, not a subtype of it.
11217 Resolve (L, B_Typ);
11218 Resolve (R, Standard_Natural);
11220 Check_Unset_Reference (L);
11221 Check_Unset_Reference (R);
11223 Set_Etype (N, B_Typ);
11224 Generate_Operator_Reference (N, B_Typ);
11225 Eval_Shift (N);
11226 end Resolve_Shift;
11228 ---------------------------
11229 -- Resolve_Short_Circuit --
11230 ---------------------------
11232 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
11233 B_Typ : constant Entity_Id := Base_Type (Typ);
11234 L : constant Node_Id := Left_Opnd (N);
11235 R : constant Node_Id := Right_Opnd (N);
11237 begin
11238 -- Ensure all actions associated with the left operand (e.g.
11239 -- finalization of transient objects) are fully evaluated locally within
11240 -- an expression with actions. This is particularly helpful for coverage
11241 -- analysis. However this should not happen in generics or if option
11242 -- Minimize_Expression_With_Actions is set.
11244 if Expander_Active and not Minimize_Expression_With_Actions then
11245 declare
11246 Reloc_L : constant Node_Id := Relocate_Node (L);
11247 begin
11248 Save_Interps (Old_N => L, New_N => Reloc_L);
11250 Rewrite (L,
11251 Make_Expression_With_Actions (Sloc (L),
11252 Actions => New_List,
11253 Expression => Reloc_L));
11255 -- Set Comes_From_Source on L to preserve warnings for unset
11256 -- reference.
11258 Preserve_Comes_From_Source (L, Reloc_L);
11259 end;
11260 end if;
11262 Resolve (L, B_Typ);
11263 Resolve (R, B_Typ);
11265 -- Check for issuing warning for always False assert/check, this happens
11266 -- when assertions are turned off, in which case the pragma Assert/Check
11267 -- was transformed into:
11269 -- if False and then <condition> then ...
11271 -- and we detect this pattern
11273 if Warn_On_Assertion_Failure
11274 and then Is_Entity_Name (R)
11275 and then Entity (R) = Standard_False
11276 and then Nkind (Parent (N)) = N_If_Statement
11277 and then Nkind (N) = N_And_Then
11278 and then Is_Entity_Name (L)
11279 and then Entity (L) = Standard_False
11280 then
11281 declare
11282 Orig : constant Node_Id := Original_Node (Parent (N));
11284 begin
11285 -- Special handling of Asssert pragma
11287 if Nkind (Orig) = N_Pragma
11288 and then Pragma_Name (Orig) = Name_Assert
11289 then
11290 declare
11291 Expr : constant Node_Id :=
11292 Original_Node
11293 (Expression
11294 (First (Pragma_Argument_Associations (Orig))));
11296 begin
11297 -- Don't warn if original condition is explicit False,
11298 -- since obviously the failure is expected in this case.
11300 if Is_Entity_Name (Expr)
11301 and then Entity (Expr) = Standard_False
11302 then
11303 null;
11305 -- Issue warning. We do not want the deletion of the
11306 -- IF/AND-THEN to take this message with it. We achieve this
11307 -- by making sure that the expanded code points to the Sloc
11308 -- of the expression, not the original pragma.
11310 else
11311 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
11312 -- The source location of the expression is not usually
11313 -- the best choice here. For example, it gets located on
11314 -- the last AND keyword in a chain of boolean expressiond
11315 -- AND'ed together. It is best to put the message on the
11316 -- first character of the assertion, which is the effect
11317 -- of the First_Node call here.
11319 Error_Msg_F
11320 ("?.a?assertion would fail at run time!",
11321 Expression
11322 (First (Pragma_Argument_Associations (Orig))));
11323 end if;
11324 end;
11326 -- Similar processing for Check pragma
11328 elsif Nkind (Orig) = N_Pragma
11329 and then Pragma_Name (Orig) = Name_Check
11330 then
11331 -- Don't want to warn if original condition is explicit False
11333 declare
11334 Expr : constant Node_Id :=
11335 Original_Node
11336 (Expression
11337 (Next (First (Pragma_Argument_Associations (Orig)))));
11338 begin
11339 if Is_Entity_Name (Expr)
11340 and then Entity (Expr) = Standard_False
11341 then
11342 null;
11344 -- Post warning
11346 else
11347 -- Again use Error_Msg_F rather than Error_Msg_N, see
11348 -- comment above for an explanation of why we do this.
11350 Error_Msg_F
11351 ("?.a?check would fail at run time!",
11352 Expression
11353 (Last (Pragma_Argument_Associations (Orig))));
11354 end if;
11355 end;
11356 end if;
11357 end;
11358 end if;
11360 -- Continue with processing of short circuit
11362 Check_Unset_Reference (L);
11363 Check_Unset_Reference (R);
11365 Set_Etype (N, B_Typ);
11366 Eval_Short_Circuit (N);
11367 end Resolve_Short_Circuit;
11369 -------------------
11370 -- Resolve_Slice --
11371 -------------------
11373 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
11374 Drange : constant Node_Id := Discrete_Range (N);
11375 Pref : constant Node_Id := Prefix (N);
11376 Array_Type : Entity_Id := Empty;
11377 Dexpr : Node_Id := Empty;
11378 Index_Type : Entity_Id;
11380 begin
11381 if Is_Overloaded (Pref) then
11383 -- Use the context type to select the prefix that yields the correct
11384 -- array type.
11386 declare
11387 I : Interp_Index;
11388 I1 : Interp_Index := 0;
11389 It : Interp;
11390 Found : Boolean := False;
11392 begin
11393 Get_First_Interp (Pref, I, It);
11394 while Present (It.Typ) loop
11395 if (Is_Array_Type (It.Typ)
11396 and then Covers (Typ, It.Typ))
11397 or else (Is_Access_Type (It.Typ)
11398 and then Is_Array_Type (Designated_Type (It.Typ))
11399 and then Covers (Typ, Designated_Type (It.Typ)))
11400 then
11401 if Found then
11402 It := Disambiguate (Pref, I1, I, Any_Type);
11404 if It = No_Interp then
11405 Error_Msg_N ("ambiguous prefix for slicing", N);
11406 Set_Etype (N, Typ);
11407 return;
11408 else
11409 Found := True;
11410 Array_Type := It.Typ;
11411 I1 := I;
11412 end if;
11413 else
11414 Found := True;
11415 Array_Type := It.Typ;
11416 I1 := I;
11417 end if;
11418 end if;
11420 Get_Next_Interp (I, It);
11421 end loop;
11422 end;
11424 else
11425 Array_Type := Etype (Pref);
11426 end if;
11428 Resolve (Pref, Array_Type);
11430 -- If the prefix's type is an access type, get to the real array type.
11431 -- Note: we do not apply an access check because an explicit dereference
11432 -- will be introduced later, and the check will happen there.
11434 if Is_Access_Type (Array_Type) then
11435 Array_Type := Implicitly_Designated_Type (Array_Type);
11437 -- If the prefix is an access to an unconstrained array, we must use
11438 -- the actual subtype of the object to perform the index checks. The
11439 -- object denoted by the prefix is implicit in the node, so we build
11440 -- an explicit representation for it in order to compute the actual
11441 -- subtype.
11443 if not Is_Constrained (Array_Type) then
11444 Remove_Side_Effects (Pref);
11446 declare
11447 Obj : constant Node_Id :=
11448 Make_Explicit_Dereference (Sloc (N),
11449 Prefix => New_Copy_Tree (Pref));
11450 begin
11451 Set_Etype (Obj, Array_Type);
11452 Set_Parent (Obj, Parent (N));
11453 Array_Type := Get_Actual_Subtype (Obj);
11454 end;
11455 end if;
11457 -- In CodePeer mode the attribute Image is not expanded, so when it
11458 -- acts as a prefix of a slice, we handle it like a call to function
11459 -- returning an unconstrained string. Same for the Wide variants of
11460 -- attribute Image.
11462 elsif Is_Entity_Name (Pref)
11463 or else Nkind (Pref) = N_Explicit_Dereference
11464 or else (Nkind (Pref) = N_Function_Call
11465 and then not Is_Constrained (Etype (Pref)))
11466 or else (CodePeer_Mode
11467 and then Nkind (Pref) = N_Attribute_Reference
11468 and then Attribute_Name (Pref) in Name_Image
11469 | Name_Wide_Image
11470 | Name_Wide_Wide_Image)
11471 then
11472 Array_Type := Get_Actual_Subtype (Pref);
11474 -- If the name is a selected component that depends on discriminants,
11475 -- build an actual subtype for it. This can happen only when the name
11476 -- itself is overloaded; otherwise the actual subtype is created when
11477 -- the selected component is analyzed.
11479 elsif Nkind (Pref) = N_Selected_Component
11480 and then Full_Analysis
11481 and then Depends_On_Discriminant (First_Index (Array_Type))
11482 then
11483 declare
11484 Act_Decl : constant Node_Id :=
11485 Build_Actual_Subtype_Of_Component (Array_Type, Pref);
11486 begin
11487 Insert_Action (N, Act_Decl);
11488 Array_Type := Defining_Identifier (Act_Decl);
11489 end;
11491 -- Maybe this should just be "else", instead of checking for the
11492 -- specific case of slice??? This is needed for the case where the
11493 -- prefix is an Image attribute, which gets expanded to a slice, and so
11494 -- has a constrained subtype which we want to use for the slice range
11495 -- check applied below (the range check won't get done if the
11496 -- unconstrained subtype of the 'Image is used).
11498 elsif Nkind (Pref) = N_Slice then
11499 Array_Type := Etype (Pref);
11500 end if;
11502 -- Obtain the type of the array index
11504 if Ekind (Array_Type) = E_String_Literal_Subtype then
11505 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
11506 else
11507 Index_Type := Etype (First_Index (Array_Type));
11508 end if;
11510 -- If name was overloaded, set slice type correctly now
11512 Set_Etype (N, Array_Type);
11514 -- Handle the generation of a range check that compares the array index
11515 -- against the discrete_range. The check is not applied to internally
11516 -- built nodes associated with the expansion of dispatch tables. Check
11517 -- that Ada.Tags has already been loaded to avoid extra dependencies on
11518 -- the unit.
11520 if Tagged_Type_Expansion
11521 and then RTU_Loaded (Ada_Tags)
11522 and then Nkind (Pref) = N_Selected_Component
11523 and then Present (Entity (Selector_Name (Pref)))
11524 and then Entity (Selector_Name (Pref)) =
11525 RTE_Record_Component (RE_Prims_Ptr)
11526 then
11527 null;
11529 -- The discrete_range is specified by a subtype name. Create an
11530 -- equivalent range attribute, apply checks to this attribute, but
11531 -- insert them into the range expression of the slice itself.
11533 elsif Is_Entity_Name (Drange) then
11534 Dexpr :=
11535 Make_Attribute_Reference
11536 (Sloc (Drange),
11537 Prefix =>
11538 New_Occurrence_Of (Entity (Drange), Sloc (Drange)),
11539 Attribute_Name => Name_Range);
11541 Analyze_And_Resolve (Dexpr, Etype (Drange));
11543 elsif Nkind (Drange) = N_Subtype_Indication then
11544 Dexpr := Range_Expression (Constraint (Drange));
11546 -- The discrete_range is a regular range (or a range attribute, which
11547 -- will be resolved into a regular range). Resolve the bounds and remove
11548 -- their side effects.
11550 else
11551 Resolve (Drange, Base_Type (Index_Type));
11553 if Nkind (Drange) = N_Range then
11554 Force_Evaluation (Low_Bound (Drange));
11555 Force_Evaluation (High_Bound (Drange));
11557 Dexpr := Drange;
11558 end if;
11559 end if;
11561 if Present (Dexpr) then
11562 Apply_Range_Check (Dexpr, Index_Type, Insert_Node => Drange);
11563 end if;
11565 Set_Slice_Subtype (N);
11567 -- Check bad use of type with predicates
11569 declare
11570 Subt : Entity_Id;
11572 begin
11573 if Nkind (Drange) = N_Subtype_Indication
11574 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
11575 then
11576 Subt := Entity (Subtype_Mark (Drange));
11577 else
11578 Subt := Etype (Drange);
11579 end if;
11581 if Has_Predicates (Subt) then
11582 Bad_Predicated_Subtype_Use
11583 ("subtype& has predicate, not allowed in slice", Drange, Subt);
11584 end if;
11585 end;
11587 -- Otherwise here is where we check suspicious indexes
11589 if Nkind (Drange) = N_Range then
11590 Warn_On_Suspicious_Index (Pref, Low_Bound (Drange));
11591 Warn_On_Suspicious_Index (Pref, High_Bound (Drange));
11592 end if;
11594 Resolve_Implicit_Dereference (Pref);
11595 Analyze_Dimension (N);
11596 Eval_Slice (N);
11597 end Resolve_Slice;
11599 ----------------------------
11600 -- Resolve_String_Literal --
11601 ----------------------------
11603 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
11604 C_Typ : constant Entity_Id := Component_Type (Typ);
11605 R_Typ : constant Entity_Id := Root_Type (C_Typ);
11606 Loc : constant Source_Ptr := Sloc (N);
11607 Str : constant String_Id := Strval (N);
11608 Strlen : constant Nat := String_Length (Str);
11609 Subtype_Id : Entity_Id;
11610 Need_Check : Boolean;
11612 begin
11613 -- For a string appearing in a concatenation, defer creation of the
11614 -- string_literal_subtype until the end of the resolution of the
11615 -- concatenation, because the literal may be constant-folded away. This
11616 -- is a useful optimization for long concatenation expressions.
11618 -- If the string is an aggregate built for a single character (which
11619 -- happens in a non-static context) or a is null string to which special
11620 -- checks may apply, we build the subtype. Wide strings must also get a
11621 -- string subtype if they come from a one character aggregate. Strings
11622 -- generated by attributes might be static, but it is often hard to
11623 -- determine whether the enclosing context is static, so we generate
11624 -- subtypes for them as well, thus losing some rarer optimizations ???
11625 -- Same for strings that come from a static conversion.
11627 Need_Check :=
11628 (Strlen = 0 and then Typ /= Standard_String)
11629 or else Nkind (Parent (N)) /= N_Op_Concat
11630 or else (N /= Left_Opnd (Parent (N))
11631 and then N /= Right_Opnd (Parent (N)))
11632 or else ((Typ = Standard_Wide_String
11633 or else Typ = Standard_Wide_Wide_String)
11634 and then Nkind (Original_Node (N)) /= N_String_Literal);
11636 -- If the resolving type is itself a string literal subtype, we can just
11637 -- reuse it, since there is no point in creating another.
11639 if Ekind (Typ) = E_String_Literal_Subtype then
11640 Subtype_Id := Typ;
11642 elsif Nkind (Parent (N)) = N_Op_Concat
11643 and then not Need_Check
11644 and then Nkind (Original_Node (N)) not in N_Character_Literal
11645 | N_Attribute_Reference
11646 | N_Qualified_Expression
11647 | N_Type_Conversion
11648 then
11649 Subtype_Id := Typ;
11651 -- Do not generate a string literal subtype for the default expression
11652 -- of a formal parameter in GNATprove mode. This is because the string
11653 -- subtype is associated with the freezing actions of the subprogram,
11654 -- however freezing is disabled in GNATprove mode and as a result the
11655 -- subtype is unavailable.
11657 elsif GNATprove_Mode
11658 and then Nkind (Parent (N)) = N_Parameter_Specification
11659 then
11660 Subtype_Id := Typ;
11662 -- Otherwise we must create a string literal subtype. Note that the
11663 -- whole idea of string literal subtypes is simply to avoid the need
11664 -- for building a full fledged array subtype for each literal.
11666 else
11667 Set_String_Literal_Subtype (N, Typ);
11668 Subtype_Id := Etype (N);
11669 end if;
11671 if Nkind (Parent (N)) /= N_Op_Concat
11672 or else Need_Check
11673 then
11674 Set_Etype (N, Subtype_Id);
11675 Eval_String_Literal (N);
11676 end if;
11678 if Is_Limited_Composite (Typ)
11679 or else Is_Private_Composite (Typ)
11680 then
11681 Error_Msg_N ("string literal not available for private array", N);
11682 Set_Etype (N, Any_Type);
11683 return;
11684 end if;
11686 -- The validity of a null string has been checked in the call to
11687 -- Eval_String_Literal.
11689 if Strlen = 0 then
11690 return;
11692 -- Always accept string literal with component type Any_Character, which
11693 -- occurs in error situations and in comparisons of literals, both of
11694 -- which should accept all literals.
11696 elsif R_Typ = Any_Character then
11697 return;
11699 -- If the type is bit-packed, then we always transform the string
11700 -- literal into a full fledged aggregate.
11702 elsif Is_Bit_Packed_Array (Typ) then
11703 null;
11705 -- Deal with cases of Wide_Wide_String, Wide_String, and String
11707 else
11708 -- For Standard.Wide_Wide_String, or any other type whose component
11709 -- type is Standard.Wide_Wide_Character, we know that all the
11710 -- characters in the string must be acceptable, since the parser
11711 -- accepted the characters as valid character literals.
11713 if R_Typ = Standard_Wide_Wide_Character then
11714 null;
11716 -- For the case of Standard.String, or any other type whose component
11717 -- type is Standard.Character, we must make sure that there are no
11718 -- wide characters in the string, i.e. that it is entirely composed
11719 -- of characters in range of type Character.
11721 -- If the string literal is the result of a static concatenation, the
11722 -- test has already been performed on the components, and need not be
11723 -- repeated.
11725 elsif R_Typ = Standard_Character
11726 and then Nkind (Original_Node (N)) /= N_Op_Concat
11727 then
11728 for J in 1 .. Strlen loop
11729 if not In_Character_Range (Get_String_Char (Str, J)) then
11731 -- If we are out of range, post error. This is one of the
11732 -- very few places that we place the flag in the middle of
11733 -- a token, right under the offending wide character. Not
11734 -- quite clear if this is right wrt wide character encoding
11735 -- sequences, but it's only an error message.
11737 Error_Msg
11738 ("literal out of range of type Standard.Character",
11739 Source_Ptr (Int (Loc) + J));
11740 return;
11741 end if;
11742 end loop;
11744 -- For the case of Standard.Wide_String, or any other type whose
11745 -- component type is Standard.Wide_Character, we must make sure that
11746 -- there are no wide characters in the string, i.e. that it is
11747 -- entirely composed of characters in range of type Wide_Character.
11749 -- If the string literal is the result of a static concatenation,
11750 -- the test has already been performed on the components, and need
11751 -- not be repeated.
11753 elsif R_Typ = Standard_Wide_Character
11754 and then Nkind (Original_Node (N)) /= N_Op_Concat
11755 then
11756 for J in 1 .. Strlen loop
11757 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
11759 -- If we are out of range, post error. This is one of the
11760 -- very few places that we place the flag in the middle of
11761 -- a token, right under the offending wide character.
11763 -- This is not quite right, because characters in general
11764 -- will take more than one character position ???
11766 Error_Msg
11767 ("literal out of range of type Standard.Wide_Character",
11768 Source_Ptr (Int (Loc) + J));
11769 return;
11770 end if;
11771 end loop;
11773 -- If the root type is not a standard character, then we will convert
11774 -- the string into an aggregate and will let the aggregate code do
11775 -- the checking. Standard Wide_Wide_Character is also OK here.
11777 else
11778 null;
11779 end if;
11781 -- See if the component type of the array corresponding to the string
11782 -- has compile time known bounds. If yes we can directly check
11783 -- whether the evaluation of the string will raise constraint error.
11784 -- Otherwise we need to transform the string literal into the
11785 -- corresponding character aggregate and let the aggregate code do
11786 -- the checking. We use the same transformation if the component
11787 -- type has a static predicate, which will be applied to each
11788 -- character when the aggregate is resolved.
11790 if Is_Standard_Character_Type (R_Typ) then
11792 -- Check for the case of full range, where we are definitely OK
11794 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
11795 return;
11796 end if;
11798 -- Here the range is not the complete base type range, so check
11800 declare
11801 Comp_Typ_Lo : constant Node_Id :=
11802 Type_Low_Bound (Component_Type (Typ));
11803 Comp_Typ_Hi : constant Node_Id :=
11804 Type_High_Bound (Component_Type (Typ));
11806 Char_Val : Uint;
11808 begin
11809 if Compile_Time_Known_Value (Comp_Typ_Lo)
11810 and then Compile_Time_Known_Value (Comp_Typ_Hi)
11811 then
11812 for J in 1 .. Strlen loop
11813 Char_Val := UI_From_CC (Get_String_Char (Str, J));
11815 if Char_Val < Expr_Value (Comp_Typ_Lo)
11816 or else Char_Val > Expr_Value (Comp_Typ_Hi)
11817 then
11818 Apply_Compile_Time_Constraint_Error
11819 (N, "character out of range??",
11820 CE_Range_Check_Failed,
11821 Loc => Loc + Source_Ptr (J));
11822 end if;
11823 end loop;
11825 if not Has_Static_Predicate (C_Typ) then
11826 return;
11827 end if;
11828 end if;
11829 end;
11830 end if;
11831 end if;
11833 -- If we got here we meed to transform the string literal into the
11834 -- equivalent qualified positional array aggregate. This is rather
11835 -- heavy artillery for this situation, but it is hard work to avoid.
11837 declare
11838 Lits : constant List_Id := New_List;
11839 P : Source_Ptr := Loc + 1;
11840 C : Char_Code;
11842 begin
11843 -- Build the character literals, we give them source locations that
11844 -- correspond to the string positions, which is a bit tricky given
11845 -- the possible presence of wide character escape sequences.
11847 for J in 1 .. Strlen loop
11848 C := Get_String_Char (Str, J);
11849 Set_Character_Literal_Name (C);
11851 Append_To (Lits,
11852 Make_Character_Literal (P,
11853 Chars => Name_Find,
11854 Char_Literal_Value => UI_From_CC (C)));
11856 if In_Character_Range (C) then
11857 P := P + 1;
11859 -- Should we have a call to Skip_Wide here ???
11861 -- ??? else
11862 -- Skip_Wide (P);
11864 end if;
11865 end loop;
11867 Rewrite (N,
11868 Make_Qualified_Expression (Loc,
11869 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
11870 Expression =>
11871 Make_Aggregate (Loc, Expressions => Lits)));
11873 Analyze_And_Resolve (N, Typ);
11874 end;
11875 end Resolve_String_Literal;
11877 -------------------------
11878 -- Resolve_Target_Name --
11879 -------------------------
11881 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id) is
11882 begin
11883 Set_Etype (N, Typ);
11884 end Resolve_Target_Name;
11886 -----------------------------
11887 -- Resolve_Type_Conversion --
11888 -----------------------------
11890 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
11891 Conv_OK : constant Boolean := Conversion_OK (N);
11892 Operand : constant Node_Id := Expression (N);
11893 Operand_Typ : constant Entity_Id := Etype (Operand);
11894 Target_Typ : constant Entity_Id := Etype (N);
11895 Rop : Node_Id;
11896 Orig_N : Node_Id;
11897 Orig_T : Node_Id;
11899 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
11900 -- Set to False to suppress cases where we want to suppress the test
11901 -- for redundancy to avoid possible false positives on this warning.
11903 begin
11904 if not Conv_OK
11905 and then not Valid_Conversion (N, Target_Typ, Operand)
11906 then
11907 return;
11908 end if;
11910 -- If the Operand Etype is Universal_Fixed, then the conversion is
11911 -- never redundant. We need this check because by the time we have
11912 -- finished the rather complex transformation, the conversion looks
11913 -- redundant when it is not.
11915 if Operand_Typ = Universal_Fixed then
11916 Test_Redundant := False;
11918 -- If the operand is marked as Any_Fixed, then special processing is
11919 -- required. This is also a case where we suppress the test for a
11920 -- redundant conversion, since most certainly it is not redundant.
11922 elsif Operand_Typ = Any_Fixed then
11923 Test_Redundant := False;
11925 -- Mixed-mode operation involving a literal. Context must be a fixed
11926 -- type which is applied to the literal subsequently.
11928 -- Multiplication and division involving two fixed type operands must
11929 -- yield a universal real because the result is computed in arbitrary
11930 -- precision.
11932 if Is_Fixed_Point_Type (Typ)
11933 and then Nkind (Operand) in N_Op_Divide | N_Op_Multiply
11934 and then Etype (Left_Opnd (Operand)) = Any_Fixed
11935 and then Etype (Right_Opnd (Operand)) = Any_Fixed
11936 then
11937 Set_Etype (Operand, Universal_Real);
11939 elsif Is_Numeric_Type (Typ)
11940 and then Nkind (Operand) in N_Op_Multiply | N_Op_Divide
11941 and then (Etype (Right_Opnd (Operand)) = Universal_Real
11942 or else
11943 Etype (Left_Opnd (Operand)) = Universal_Real)
11944 then
11945 -- Return if expression is ambiguous
11947 if Unique_Fixed_Point_Type (N) = Any_Type then
11948 return;
11950 -- If nothing else, the available fixed type is Duration
11952 else
11953 Set_Etype (Operand, Standard_Duration);
11954 end if;
11956 -- Resolve the real operand with largest available precision
11958 if Etype (Right_Opnd (Operand)) = Universal_Real then
11959 Rop := New_Copy_Tree (Right_Opnd (Operand));
11960 else
11961 Rop := New_Copy_Tree (Left_Opnd (Operand));
11962 end if;
11964 Resolve (Rop, Universal_Real);
11966 -- If the operand is a literal (it could be a non-static and
11967 -- illegal exponentiation) check whether the use of Duration
11968 -- is potentially inaccurate.
11970 if Nkind (Rop) = N_Real_Literal
11971 and then Realval (Rop) /= Ureal_0
11972 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
11973 then
11974 Error_Msg_N
11975 ("??universal real operand can only "
11976 & "be interpreted as Duration!", Rop);
11977 Error_Msg_N
11978 ("\??precision will be lost in the conversion!", Rop);
11979 end if;
11981 elsif Is_Numeric_Type (Typ)
11982 and then Nkind (Operand) in N_Op
11983 and then Unique_Fixed_Point_Type (N) /= Any_Type
11984 then
11985 Set_Etype (Operand, Standard_Duration);
11987 else
11988 Error_Msg_N ("invalid context for mixed mode operation", N);
11989 Set_Etype (Operand, Any_Type);
11990 return;
11991 end if;
11992 end if;
11994 Resolve (Operand);
11996 Analyze_Dimension (N);
11998 -- Note: we do the Eval_Type_Conversion call before applying the
11999 -- required checks for a subtype conversion. This is important, since
12000 -- both are prepared under certain circumstances to change the type
12001 -- conversion to a constraint error node, but in the case of
12002 -- Eval_Type_Conversion this may reflect an illegality in the static
12003 -- case, and we would miss the illegality (getting only a warning
12004 -- message), if we applied the type conversion checks first.
12006 Eval_Type_Conversion (N);
12008 -- Even when evaluation is not possible, we may be able to simplify the
12009 -- conversion or its expression. This needs to be done before applying
12010 -- checks, since otherwise the checks may use the original expression
12011 -- and defeat the simplifications. This is specifically the case for
12012 -- elimination of the floating-point Truncation attribute in
12013 -- float-to-int conversions.
12015 Simplify_Type_Conversion (N);
12017 -- If after evaluation we still have a type conversion, then we may need
12018 -- to apply checks required for a subtype conversion. But skip them if
12019 -- universal fixed operands are involved, since range checks are handled
12020 -- separately for these cases, after the expansion done by Exp_Fixd.
12022 if Nkind (N) = N_Type_Conversion
12023 and then not Is_Generic_Type (Root_Type (Target_Typ))
12024 and then Target_Typ /= Universal_Fixed
12025 and then Etype (Operand) /= Universal_Fixed
12026 then
12027 Apply_Type_Conversion_Checks (N);
12028 end if;
12030 -- Issue warning for conversion of simple object to its own type. We
12031 -- have to test the original nodes, since they may have been rewritten
12032 -- by various optimizations.
12034 Orig_N := Original_Node (N);
12036 -- Here we test for a redundant conversion if the warning mode is
12037 -- active (and was not locally reset), and we have a type conversion
12038 -- from source not appearing in a generic instance.
12040 if Test_Redundant
12041 and then Nkind (Orig_N) = N_Type_Conversion
12042 and then Comes_From_Source (Orig_N)
12043 and then not In_Instance
12044 then
12045 Orig_N := Original_Node (Expression (Orig_N));
12046 Orig_T := Target_Typ;
12048 -- If the node is part of a larger expression, the Target_Type
12049 -- may not be the original type of the node if the context is a
12050 -- condition. Recover original type to see if conversion is needed.
12052 if Is_Boolean_Type (Orig_T)
12053 and then Nkind (Parent (N)) in N_Op
12054 then
12055 Orig_T := Etype (Parent (N));
12056 end if;
12058 -- If we have an entity name, then give the warning if the entity
12059 -- is the right type, or if it is a loop parameter covered by the
12060 -- original type (that's needed because loop parameters have an
12061 -- odd subtype coming from the bounds).
12063 if (Is_Entity_Name (Orig_N)
12064 and then Present (Entity (Orig_N))
12065 and then
12066 (Etype (Entity (Orig_N)) = Orig_T
12067 or else
12068 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
12069 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
12071 -- If not an entity, then type of expression must match
12073 or else Etype (Orig_N) = Orig_T
12074 then
12075 -- One more check, do not give warning if the analyzed conversion
12076 -- has an expression with non-static bounds, and the bounds of the
12077 -- target are static. This avoids junk warnings in cases where the
12078 -- conversion is necessary to establish staticness, for example in
12079 -- a case statement.
12081 if not Is_OK_Static_Subtype (Operand_Typ)
12082 and then Is_OK_Static_Subtype (Target_Typ)
12083 then
12084 null;
12086 -- Finally, if this type conversion occurs in a context requiring
12087 -- a prefix, and the expression is a qualified expression then the
12088 -- type conversion is not redundant, since a qualified expression
12089 -- is not a prefix, whereas a type conversion is. For example, "X
12090 -- := T'(Funx(...)).Y;" is illegal because a selected component
12091 -- requires a prefix, but a type conversion makes it legal: "X :=
12092 -- T(T'(Funx(...))).Y;"
12094 -- In Ada 2012, a qualified expression is a name, so this idiom is
12095 -- no longer needed, but we still suppress the warning because it
12096 -- seems unfriendly for warnings to pop up when you switch to the
12097 -- newer language version.
12099 elsif Nkind (Orig_N) = N_Qualified_Expression
12100 and then Nkind (Parent (N)) in N_Attribute_Reference
12101 | N_Indexed_Component
12102 | N_Selected_Component
12103 | N_Slice
12104 | N_Explicit_Dereference
12105 then
12106 null;
12108 -- Never warn on conversion to Long_Long_Integer'Base since
12109 -- that is most likely an artifact of the extended overflow
12110 -- checking and comes from complex expanded code.
12112 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
12113 null;
12115 -- Here we give the redundant conversion warning. If it is an
12116 -- entity, give the name of the entity in the message. If not,
12117 -- just mention the expression.
12119 else
12120 if Is_Entity_Name (Orig_N) then
12121 Error_Msg_Node_2 := Orig_T;
12122 Error_Msg_NE -- CODEFIX
12123 ("?r?redundant conversion, & is of type &!",
12124 N, Entity (Orig_N));
12125 else
12126 Error_Msg_NE
12127 ("?r?redundant conversion, expression is of type&!",
12128 N, Orig_T);
12129 end if;
12130 end if;
12131 end if;
12132 end if;
12134 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
12135 -- No need to perform any interface conversion if the type of the
12136 -- expression coincides with the target type.
12138 if Ada_Version >= Ada_2005
12139 and then Expander_Active
12140 and then Operand_Typ /= Target_Typ
12141 then
12142 declare
12143 Opnd : Entity_Id := Operand_Typ;
12144 Target : Entity_Id := Target_Typ;
12146 begin
12147 -- If the type of the operand is a limited view, use nonlimited
12148 -- view when available. If it is a class-wide type, recover the
12149 -- class-wide type of the nonlimited view.
12151 if From_Limited_With (Opnd)
12152 and then Has_Non_Limited_View (Opnd)
12153 then
12154 Opnd := Non_Limited_View (Opnd);
12155 Set_Etype (Expression (N), Opnd);
12156 end if;
12158 -- It seems that Non_Limited_View should also be applied for
12159 -- Target when it has a limited view, but that leads to missing
12160 -- error checks on interface conversions further below. ???
12162 if Is_Access_Type (Opnd) then
12163 Opnd := Designated_Type (Opnd);
12165 -- If the type of the operand is a limited view, use nonlimited
12166 -- view when available. If it is a class-wide type, recover the
12167 -- class-wide type of the nonlimited view.
12169 if From_Limited_With (Opnd)
12170 and then Has_Non_Limited_View (Opnd)
12171 then
12172 Opnd := Non_Limited_View (Opnd);
12173 end if;
12174 end if;
12176 if Is_Access_Type (Target_Typ) then
12177 Target := Designated_Type (Target);
12179 -- If the target type is a limited view, use nonlimited view
12180 -- when available.
12182 if From_Limited_With (Target)
12183 and then Has_Non_Limited_View (Target)
12184 then
12185 Target := Non_Limited_View (Target);
12186 end if;
12187 end if;
12189 if Opnd = Target then
12190 null;
12192 -- Conversion from interface type
12194 -- It seems that it would be better for the error checks below
12195 -- to be performed as part of Validate_Conversion (and maybe some
12196 -- of the error checks above could be moved as well?). ???
12198 elsif Is_Interface (Opnd) then
12200 -- Ada 2005 (AI-217): Handle entities from limited views
12202 if From_Limited_With (Opnd) then
12203 Error_Msg_Qual_Level := 99;
12204 Error_Msg_NE -- CODEFIX
12205 ("missing WITH clause on package &", N,
12206 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
12207 Error_Msg_N
12208 ("type conversions require visibility of the full view",
12211 elsif From_Limited_With (Target)
12212 and then not
12213 (Is_Access_Type (Target_Typ)
12214 and then Present (Non_Limited_View (Etype (Target))))
12215 then
12216 Error_Msg_Qual_Level := 99;
12217 Error_Msg_NE -- CODEFIX
12218 ("missing WITH clause on package &", N,
12219 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
12220 Error_Msg_N
12221 ("type conversions require visibility of the full view",
12224 else
12225 Expand_Interface_Conversion (N);
12226 end if;
12228 -- Conversion to interface type
12230 elsif Is_Interface (Target) then
12232 -- Handle subtypes
12234 if Ekind (Opnd) in E_Protected_Subtype | E_Task_Subtype then
12235 Opnd := Etype (Opnd);
12236 end if;
12238 if Is_Class_Wide_Type (Opnd)
12239 or else Interface_Present_In_Ancestor
12240 (Typ => Opnd,
12241 Iface => Target)
12242 then
12243 Expand_Interface_Conversion (N);
12244 else
12245 Error_Msg_Name_1 := Chars (Etype (Target));
12246 Error_Msg_Name_2 := Chars (Opnd);
12247 Error_Msg_N
12248 ("wrong interface conversion (% is not a progenitor "
12249 & "of %)", N);
12250 end if;
12251 end if;
12252 end;
12253 end if;
12255 -- Ada 2012: Once the type conversion is resolved, check whether the
12256 -- operand satisfies a static predicate of the target subtype, if any.
12257 -- In the static expression case, a predicate check failure is an error.
12259 if Has_Predicates (Target_Typ) then
12260 Check_Expression_Against_Static_Predicate
12261 (N, Target_Typ, Static_Failure_Is_Error => True);
12262 end if;
12264 -- If at this stage we have a fixed to integer conversion, make sure the
12265 -- Do_Range_Check flag is set, because such conversions in general need
12266 -- a range check. We only need this if expansion is off, see above why.
12268 if Nkind (N) = N_Type_Conversion
12269 and then not Expander_Active
12270 and then Is_Integer_Type (Target_Typ)
12271 and then Is_Fixed_Point_Type (Operand_Typ)
12272 and then not Range_Checks_Suppressed (Target_Typ)
12273 and then not Range_Checks_Suppressed (Operand_Typ)
12274 then
12275 Set_Do_Range_Check (Operand);
12276 end if;
12278 -- Generating C code a type conversion of an access to constrained
12279 -- array type to access to unconstrained array type involves building
12280 -- a fat pointer which in general cannot be generated on the fly. We
12281 -- remove side effects in order to store the result of the conversion
12282 -- into a temporary.
12284 if Modify_Tree_For_C
12285 and then Nkind (N) = N_Type_Conversion
12286 and then Nkind (Parent (N)) /= N_Object_Declaration
12287 and then Is_Access_Type (Etype (N))
12288 and then Is_Array_Type (Designated_Type (Etype (N)))
12289 and then not Is_Constrained (Designated_Type (Etype (N)))
12290 and then Is_Constrained (Designated_Type (Etype (Expression (N))))
12291 then
12292 Remove_Side_Effects (N);
12293 end if;
12294 end Resolve_Type_Conversion;
12296 ----------------------
12297 -- Resolve_Unary_Op --
12298 ----------------------
12300 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
12301 B_Typ : constant Entity_Id := Base_Type (Typ);
12302 R : constant Node_Id := Right_Opnd (N);
12303 OK : Boolean;
12304 Lo : Uint;
12305 Hi : Uint;
12307 begin
12308 -- Deal with intrinsic unary operators
12310 if Comes_From_Source (N)
12311 and then Ekind (Entity (N)) = E_Function
12312 and then Is_Imported (Entity (N))
12313 and then Is_Intrinsic_Subprogram (Entity (N))
12314 then
12315 Resolve_Intrinsic_Unary_Operator (N, Typ);
12316 return;
12317 end if;
12319 -- Deal with universal cases
12321 if Is_Universal_Numeric_Type (Etype (R)) then
12322 Check_For_Visible_Operator (N, B_Typ);
12323 end if;
12325 Set_Etype (N, B_Typ);
12326 Resolve (R, B_Typ);
12328 -- Generate warning for negative literal of a modular type, unless it is
12329 -- enclosed directly in a type qualification or a type conversion, as it
12330 -- is likely not what the user intended. We don't issue the warning for
12331 -- the common use of -1 to denote OxFFFF_FFFF...
12333 if Warn_On_Suspicious_Modulus_Value
12334 and then Nkind (N) = N_Op_Minus
12335 and then Nkind (R) = N_Integer_Literal
12336 and then Is_Modular_Integer_Type (B_Typ)
12337 and then Nkind (Parent (N)) not in N_Qualified_Expression
12338 | N_Type_Conversion
12339 and then Expr_Value (R) > Uint_1
12340 then
12341 Error_Msg_N
12342 ("?.m?negative literal of modular type is in fact positive", N);
12343 Error_Msg_Uint_1 := (-Expr_Value (R)) mod Modulus (B_Typ);
12344 Error_Msg_Uint_2 := Expr_Value (R);
12345 Error_Msg_N ("\do you really mean^ when writing -^ '?", N);
12346 Error_Msg_N
12347 ("\if you do, use qualification to avoid this warning", N);
12348 end if;
12350 -- Generate warning for expressions like abs (x mod 2)
12352 if Warn_On_Redundant_Constructs
12353 and then Nkind (N) = N_Op_Abs
12354 then
12355 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
12357 if OK and then Hi >= Lo and then Lo >= 0 then
12358 Error_Msg_N -- CODEFIX
12359 ("?r?abs applied to known non-negative value has no effect", N);
12360 end if;
12361 end if;
12363 -- Deal with reference generation
12365 Check_Unset_Reference (R);
12366 Generate_Operator_Reference (N, B_Typ);
12367 Analyze_Dimension (N);
12368 Eval_Unary_Op (N);
12370 -- Set overflow checking bit. Much cleverer code needed here eventually
12371 -- and perhaps the Resolve routines should be separated for the various
12372 -- arithmetic operations, since they will need different processing ???
12374 if Nkind (N) in N_Op then
12375 if not Overflow_Checks_Suppressed (Etype (N)) then
12376 Enable_Overflow_Check (N);
12377 end if;
12378 end if;
12380 -- Generate warning for expressions like -5 mod 3 for integers. No need
12381 -- to worry in the floating-point case, since parens do not affect the
12382 -- result so there is no point in giving in a warning.
12384 declare
12385 Norig : constant Node_Id := Original_Node (N);
12386 Rorig : Node_Id;
12387 Val : Uint;
12388 HB : Uint;
12389 LB : Uint;
12390 Lval : Uint;
12391 Opnd : Node_Id;
12393 begin
12394 if Warn_On_Questionable_Missing_Parens
12395 and then Comes_From_Source (Norig)
12396 and then Is_Integer_Type (Typ)
12397 and then Nkind (Norig) = N_Op_Minus
12398 then
12399 Rorig := Original_Node (Right_Opnd (Norig));
12401 -- We are looking for cases where the right operand is not
12402 -- parenthesized, and is a binary operator, multiply, divide, or
12403 -- mod. These are the cases where the grouping can affect results.
12405 if Paren_Count (Rorig) = 0
12406 and then Nkind (Rorig) in N_Op_Mod | N_Op_Multiply | N_Op_Divide
12407 then
12408 -- For mod, we always give the warning, since the value is
12409 -- affected by the parenthesization (e.g. (-5) mod 315 /=
12410 -- -(5 mod 315)). But for the other cases, the only concern is
12411 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
12412 -- overflows, but (-2) * 64 does not). So we try to give the
12413 -- message only when overflow is possible.
12415 if Nkind (Rorig) /= N_Op_Mod
12416 and then Compile_Time_Known_Value (R)
12417 then
12418 Val := Expr_Value (R);
12420 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
12421 HB := Expr_Value (Type_High_Bound (Typ));
12422 else
12423 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
12424 end if;
12426 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
12427 LB := Expr_Value (Type_Low_Bound (Typ));
12428 else
12429 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
12430 end if;
12432 -- Note that the test below is deliberately excluding the
12433 -- largest negative number, since that is a potentially
12434 -- troublesome case (e.g. -2 * x, where the result is the
12435 -- largest negative integer has an overflow with 2 * x).
12437 if Val > LB and then Val <= HB then
12438 return;
12439 end if;
12440 end if;
12442 -- For the multiplication case, the only case we have to worry
12443 -- about is when (-a)*b is exactly the largest negative number
12444 -- so that -(a*b) can cause overflow. This can only happen if
12445 -- a is a power of 2, and more generally if any operand is a
12446 -- constant that is not a power of 2, then the parentheses
12447 -- cannot affect whether overflow occurs. We only bother to
12448 -- test the left most operand
12450 -- Loop looking at left operands for one that has known value
12452 Opnd := Rorig;
12453 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
12454 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
12455 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
12457 -- Operand value of 0 or 1 skips warning
12459 if Lval <= 1 then
12460 return;
12462 -- Otherwise check power of 2, if power of 2, warn, if
12463 -- anything else, skip warning.
12465 else
12466 while Lval /= 2 loop
12467 if Lval mod 2 = 1 then
12468 return;
12469 else
12470 Lval := Lval / 2;
12471 end if;
12472 end loop;
12474 exit Opnd_Loop;
12475 end if;
12476 end if;
12478 -- Keep looking at left operands
12480 Opnd := Left_Opnd (Opnd);
12481 end loop Opnd_Loop;
12483 -- For rem or "/" we can only have a problematic situation
12484 -- if the divisor has a value of minus one or one. Otherwise
12485 -- overflow is impossible (divisor > 1) or we have a case of
12486 -- division by zero in any case.
12488 if Nkind (Rorig) in N_Op_Divide | N_Op_Rem
12489 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
12490 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
12491 then
12492 return;
12493 end if;
12495 -- If we fall through warning should be issued
12497 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
12499 Error_Msg_N
12500 ("??unary minus expression should be parenthesized here!", N);
12501 end if;
12502 end if;
12503 end;
12504 end Resolve_Unary_Op;
12506 ----------------------------------
12507 -- Resolve_Unchecked_Expression --
12508 ----------------------------------
12510 procedure Resolve_Unchecked_Expression
12511 (N : Node_Id;
12512 Typ : Entity_Id)
12514 begin
12515 Resolve (Expression (N), Typ, Suppress => All_Checks);
12516 Set_Etype (N, Typ);
12517 end Resolve_Unchecked_Expression;
12519 ---------------------------------------
12520 -- Resolve_Unchecked_Type_Conversion --
12521 ---------------------------------------
12523 procedure Resolve_Unchecked_Type_Conversion
12524 (N : Node_Id;
12525 Typ : Entity_Id)
12527 pragma Warnings (Off, Typ);
12529 Operand : constant Node_Id := Expression (N);
12530 Opnd_Type : constant Entity_Id := Etype (Operand);
12532 begin
12533 -- Resolve operand using its own type
12535 Resolve (Operand, Opnd_Type);
12537 -- If the expression is a conversion to universal integer of an
12538 -- an expression with an integer type, then we can eliminate the
12539 -- intermediate conversion to universal integer.
12541 if Nkind (Operand) = N_Type_Conversion
12542 and then Entity (Subtype_Mark (Operand)) = Universal_Integer
12543 and then Is_Integer_Type (Etype (Expression (Operand)))
12544 then
12545 Rewrite (Operand, Relocate_Node (Expression (Operand)));
12546 Analyze_And_Resolve (Operand);
12547 end if;
12549 -- In an inlined context, the unchecked conversion may be applied
12550 -- to a literal, in which case its type is the type of the context.
12551 -- (In other contexts conversions cannot apply to literals).
12553 if In_Inlined_Body
12554 and then (Opnd_Type = Any_Character or else
12555 Opnd_Type = Any_Integer or else
12556 Opnd_Type = Any_Real)
12557 then
12558 Set_Etype (Operand, Typ);
12559 end if;
12561 Analyze_Dimension (N);
12562 Eval_Unchecked_Conversion (N);
12563 end Resolve_Unchecked_Type_Conversion;
12565 ------------------------------
12566 -- Rewrite_Operator_As_Call --
12567 ------------------------------
12569 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
12570 Loc : constant Source_Ptr := Sloc (N);
12571 Actuals : constant List_Id := New_List;
12572 New_N : Node_Id;
12574 begin
12575 if Nkind (N) in N_Binary_Op then
12576 Append (Left_Opnd (N), Actuals);
12577 end if;
12579 Append (Right_Opnd (N), Actuals);
12581 New_N :=
12582 Make_Function_Call (Sloc => Loc,
12583 Name => New_Occurrence_Of (Nam, Loc),
12584 Parameter_Associations => Actuals);
12586 Preserve_Comes_From_Source (New_N, N);
12587 Preserve_Comes_From_Source (Name (New_N), N);
12588 Rewrite (N, New_N);
12589 Set_Etype (N, Etype (Nam));
12590 end Rewrite_Operator_As_Call;
12592 ------------------------------
12593 -- Rewrite_Renamed_Operator --
12594 ------------------------------
12596 procedure Rewrite_Renamed_Operator
12597 (N : Node_Id;
12598 Op : Entity_Id;
12599 Typ : Entity_Id)
12601 Nam : constant Name_Id := Chars (Op);
12602 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
12603 Op_Node : Node_Id;
12605 begin
12606 -- Do not perform this transformation within a pre/postcondition,
12607 -- because the expression will be reanalyzed, and the transformation
12608 -- might affect the visibility of the operator, e.g. in an instance.
12609 -- Note that fully analyzed and expanded pre/postconditions appear as
12610 -- pragma Check equivalents.
12612 if In_Pre_Post_Condition (N) then
12613 return;
12614 end if;
12616 -- Likewise when an expression function is being preanalyzed, since the
12617 -- expression will be reanalyzed as part of the generated body.
12619 if In_Spec_Expression then
12620 declare
12621 S : constant Entity_Id := Current_Scope_No_Loops;
12622 begin
12623 if Ekind (S) = E_Function
12624 and then Nkind (Original_Node (Unit_Declaration_Node (S))) =
12625 N_Expression_Function
12626 then
12627 return;
12628 end if;
12629 end;
12630 end if;
12632 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
12633 Set_Chars (Op_Node, Nam);
12634 Set_Etype (Op_Node, Etype (N));
12635 Set_Entity (Op_Node, Op);
12636 Set_Right_Opnd (Op_Node, Right_Opnd (N));
12638 if Is_Binary then
12639 Set_Left_Opnd (Op_Node, Left_Opnd (N));
12640 end if;
12642 -- Indicate that both the original entity and its renaming are
12643 -- referenced at this point.
12645 Generate_Reference (Entity (N), N);
12646 Generate_Reference (Op, N);
12648 Rewrite (N, Op_Node);
12650 -- If the context type is private, add the appropriate conversions so
12651 -- that the operator is applied to the full view. This is done in the
12652 -- routines that resolve intrinsic operators.
12654 if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
12655 case Nkind (N) is
12656 when N_Op_Add
12657 | N_Op_Divide
12658 | N_Op_Expon
12659 | N_Op_Mod
12660 | N_Op_Multiply
12661 | N_Op_Rem
12662 | N_Op_Subtract
12664 Resolve_Intrinsic_Operator (N, Typ);
12666 when N_Op_Abs
12667 | N_Op_Minus
12668 | N_Op_Plus
12670 Resolve_Intrinsic_Unary_Operator (N, Typ);
12672 when others =>
12673 Resolve (N, Typ);
12674 end case;
12675 end if;
12676 end Rewrite_Renamed_Operator;
12678 -----------------------
12679 -- Set_Slice_Subtype --
12680 -----------------------
12682 -- Build an implicit subtype declaration to represent the type delivered by
12683 -- the slice. This is an abbreviated version of an array subtype. We define
12684 -- an index subtype for the slice, using either the subtype name or the
12685 -- discrete range of the slice. To be consistent with index usage elsewhere
12686 -- we create a list header to hold the single index. This list is not
12687 -- otherwise attached to the syntax tree.
12689 procedure Set_Slice_Subtype (N : Node_Id) is
12690 Loc : constant Source_Ptr := Sloc (N);
12691 Index_List : constant List_Id := New_List;
12692 Index : Node_Id;
12693 Index_Subtype : Entity_Id;
12694 Index_Type : Entity_Id;
12695 Slice_Subtype : Entity_Id;
12696 Drange : constant Node_Id := Discrete_Range (N);
12698 begin
12699 Index_Type := Base_Type (Etype (Drange));
12701 if Is_Entity_Name (Drange) then
12702 Index_Subtype := Entity (Drange);
12704 else
12705 -- We force the evaluation of a range. This is definitely needed in
12706 -- the renamed case, and seems safer to do unconditionally. Note in
12707 -- any case that since we will create and insert an Itype referring
12708 -- to this range, we must make sure any side effect removal actions
12709 -- are inserted before the Itype definition.
12711 if Nkind (Drange) = N_Range then
12712 Force_Evaluation (Low_Bound (Drange));
12713 Force_Evaluation (High_Bound (Drange));
12715 -- If the discrete range is given by a subtype indication, the
12716 -- type of the slice is the base of the subtype mark.
12718 elsif Nkind (Drange) = N_Subtype_Indication then
12719 declare
12720 R : constant Node_Id := Range_Expression (Constraint (Drange));
12721 begin
12722 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
12723 Force_Evaluation (Low_Bound (R));
12724 Force_Evaluation (High_Bound (R));
12725 end;
12726 end if;
12728 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
12730 -- Take a new copy of Drange (where bounds have been rewritten to
12731 -- reference side-effect-free names). Using a separate tree ensures
12732 -- that further expansion (e.g. while rewriting a slice assignment
12733 -- into a FOR loop) does not attempt to remove side effects on the
12734 -- bounds again (which would cause the bounds in the index subtype
12735 -- definition to refer to temporaries before they are defined) (the
12736 -- reason is that some names are considered side effect free here
12737 -- for the subtype, but not in the context of a loop iteration
12738 -- scheme).
12740 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
12741 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
12742 Set_Etype (Index_Subtype, Index_Type);
12743 Set_Size_Info (Index_Subtype, Index_Type);
12744 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
12745 Set_Is_Constrained (Index_Subtype);
12746 end if;
12748 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
12750 Index := New_Occurrence_Of (Index_Subtype, Loc);
12751 Set_Etype (Index, Index_Subtype);
12752 Append (Index, Index_List);
12754 Set_First_Index (Slice_Subtype, Index);
12755 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
12756 Set_Is_Constrained (Slice_Subtype, True);
12758 Check_Compile_Time_Size (Slice_Subtype);
12760 -- The Etype of the existing Slice node is reset to this slice subtype.
12761 -- Its bounds are obtained from its first index.
12763 Set_Etype (N, Slice_Subtype);
12765 -- For bit-packed slice subtypes, freeze immediately (except in the case
12766 -- of being in a "spec expression" where we never freeze when we first
12767 -- see the expression).
12769 if Is_Bit_Packed_Array (Slice_Subtype) and not In_Spec_Expression then
12770 Freeze_Itype (Slice_Subtype, N);
12772 -- For all other cases insert an itype reference in the slice's actions
12773 -- so that the itype is frozen at the proper place in the tree (i.e. at
12774 -- the point where actions for the slice are analyzed). Note that this
12775 -- is different from freezing the itype immediately, which might be
12776 -- premature (e.g. if the slice is within a transient scope). This needs
12777 -- to be done only if expansion is enabled.
12779 elsif Expander_Active then
12780 Ensure_Defined (Typ => Slice_Subtype, N => N);
12781 end if;
12782 end Set_Slice_Subtype;
12784 --------------------------------
12785 -- Set_String_Literal_Subtype --
12786 --------------------------------
12788 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
12789 Loc : constant Source_Ptr := Sloc (N);
12790 Low_Bound : constant Node_Id :=
12791 Type_Low_Bound (Etype (First_Index (Typ)));
12792 Subtype_Id : Entity_Id;
12794 begin
12795 if Nkind (N) /= N_String_Literal then
12796 return;
12797 end if;
12799 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
12800 Set_String_Literal_Length (Subtype_Id, UI_From_Int
12801 (String_Length (Strval (N))));
12802 Set_Etype (Subtype_Id, Base_Type (Typ));
12803 Set_Is_Constrained (Subtype_Id);
12804 Set_Etype (N, Subtype_Id);
12806 -- The low bound is set from the low bound of the corresponding index
12807 -- type. Note that we do not store the high bound in the string literal
12808 -- subtype, but it can be deduced if necessary from the length and the
12809 -- low bound.
12811 if Is_OK_Static_Expression (Low_Bound) then
12812 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
12814 -- If the lower bound is not static we create a range for the string
12815 -- literal, using the index type and the known length of the literal.
12816 -- If the length is 1, then the upper bound is set to a mere copy of
12817 -- the lower bound; or else, if the index type is a signed integer,
12818 -- then the upper bound is computed as Low_Bound + L - 1; otherwise,
12819 -- the upper bound is computed as T'Val (T'Pos (Low_Bound) + L - 1).
12821 else
12822 declare
12823 Length : constant Nat := String_Length (Strval (N));
12824 Index_List : constant List_Id := New_List;
12825 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
12826 Array_Subtype : Entity_Id;
12827 Drange : Node_Id;
12828 High_Bound : Node_Id;
12829 Index : Node_Id;
12830 Index_Subtype : Entity_Id;
12832 begin
12833 if Length = 1 then
12834 High_Bound := New_Copy_Tree (Low_Bound);
12836 elsif Is_Signed_Integer_Type (Index_Type) then
12837 High_Bound :=
12838 Make_Op_Add (Loc,
12839 Left_Opnd => New_Copy_Tree (Low_Bound),
12840 Right_Opnd => Make_Integer_Literal (Loc, Length - 1));
12842 else
12843 High_Bound :=
12844 Make_Attribute_Reference (Loc,
12845 Attribute_Name => Name_Val,
12846 Prefix =>
12847 New_Occurrence_Of (Index_Type, Loc),
12848 Expressions => New_List (
12849 Make_Op_Add (Loc,
12850 Left_Opnd =>
12851 Make_Attribute_Reference (Loc,
12852 Attribute_Name => Name_Pos,
12853 Prefix =>
12854 New_Occurrence_Of (Index_Type, Loc),
12855 Expressions =>
12856 New_List (New_Copy_Tree (Low_Bound))),
12857 Right_Opnd =>
12858 Make_Integer_Literal (Loc, Length - 1))));
12859 end if;
12861 if Is_Integer_Type (Index_Type) then
12862 Set_String_Literal_Low_Bound
12863 (Subtype_Id, Make_Integer_Literal (Loc, 1));
12865 else
12866 -- If the index type is an enumeration type, build bounds
12867 -- expression with attributes.
12869 Set_String_Literal_Low_Bound
12870 (Subtype_Id,
12871 Make_Attribute_Reference (Loc,
12872 Attribute_Name => Name_First,
12873 Prefix =>
12874 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
12875 end if;
12877 Analyze_And_Resolve
12878 (String_Literal_Low_Bound (Subtype_Id), Base_Type (Index_Type));
12880 -- Build bona fide subtype for the string, and wrap it in an
12881 -- unchecked conversion, because the back end expects the
12882 -- String_Literal_Subtype to have a static lower bound.
12884 Index_Subtype :=
12885 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
12886 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
12887 Set_Scalar_Range (Index_Subtype, Drange);
12888 Set_Parent (Drange, N);
12889 Analyze_And_Resolve (Drange, Index_Type);
12891 -- In this context, the Index_Type may already have a constraint,
12892 -- so use common base type on string subtype. The base type may
12893 -- be used when generating attributes of the string, for example
12894 -- in the context of a slice assignment.
12896 Set_Etype (Index_Subtype, Base_Type (Index_Type));
12897 Set_Size_Info (Index_Subtype, Index_Type);
12898 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
12900 Array_Subtype := Create_Itype (E_Array_Subtype, N);
12902 Index := New_Occurrence_Of (Index_Subtype, Loc);
12903 Set_Etype (Index, Index_Subtype);
12904 Append (Index, Index_List);
12906 Set_First_Index (Array_Subtype, Index);
12907 Set_Etype (Array_Subtype, Base_Type (Typ));
12908 Set_Is_Constrained (Array_Subtype, True);
12910 Rewrite (N, Unchecked_Convert_To (Array_Subtype, N));
12911 Set_Etype (N, Array_Subtype);
12912 end;
12913 end if;
12914 end Set_String_Literal_Subtype;
12916 ------------------------------
12917 -- Simplify_Type_Conversion --
12918 ------------------------------
12920 procedure Simplify_Type_Conversion (N : Node_Id) is
12921 begin
12922 if Nkind (N) = N_Type_Conversion then
12923 declare
12924 Operand : constant Node_Id := Expression (N);
12925 Target_Typ : constant Entity_Id := Etype (N);
12926 Opnd_Typ : constant Entity_Id := Etype (Operand);
12928 begin
12929 -- Special processing if the conversion is the expression of a
12930 -- Rounding or Truncation attribute reference. In this case we
12931 -- replace:
12933 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
12935 -- by
12937 -- ityp (x)
12939 -- with the Float_Truncate flag set to False or True respectively,
12940 -- which is more efficient. We reuse Rounding for Machine_Rounding
12941 -- as System.Fat_Gen, which is a permissible behavior.
12943 if Is_Floating_Point_Type (Opnd_Typ)
12944 and then
12945 (Is_Integer_Type (Target_Typ)
12946 or else (Is_Fixed_Point_Type (Target_Typ)
12947 and then Conversion_OK (N)))
12948 and then Nkind (Operand) = N_Attribute_Reference
12949 and then Attribute_Name (Operand) in Name_Rounding
12950 | Name_Machine_Rounding
12951 | Name_Truncation
12952 then
12953 declare
12954 Truncate : constant Boolean :=
12955 Attribute_Name (Operand) = Name_Truncation;
12956 begin
12957 Rewrite (Operand,
12958 Relocate_Node (First (Expressions (Operand))));
12959 Set_Float_Truncate (N, Truncate);
12960 end;
12962 -- Special processing for the conversion of an integer literal to
12963 -- a dynamic type: we first convert the literal to the root type
12964 -- and then convert the result to the target type, the goal being
12965 -- to avoid doing range checks in universal integer.
12967 elsif Is_Integer_Type (Target_Typ)
12968 and then not Is_Generic_Type (Root_Type (Target_Typ))
12969 and then Nkind (Operand) = N_Integer_Literal
12970 and then Opnd_Typ = Universal_Integer
12971 then
12972 Convert_To_And_Rewrite (Root_Type (Target_Typ), Operand);
12973 Analyze_And_Resolve (Operand);
12975 -- If the expression is a conversion to universal integer of an
12976 -- an expression with an integer type, then we can eliminate the
12977 -- intermediate conversion to universal integer.
12979 elsif Nkind (Operand) = N_Type_Conversion
12980 and then Entity (Subtype_Mark (Operand)) = Universal_Integer
12981 and then Is_Integer_Type (Etype (Expression (Operand)))
12982 then
12983 Rewrite (Operand, Relocate_Node (Expression (Operand)));
12984 Analyze_And_Resolve (Operand);
12985 end if;
12986 end;
12987 end if;
12988 end Simplify_Type_Conversion;
12990 ------------------------------
12991 -- Try_User_Defined_Literal --
12992 ------------------------------
12994 function Try_User_Defined_Literal
12995 (N : Node_Id;
12996 Typ : Entity_Id) return Boolean
12998 begin
12999 if Nkind (N) in N_Op_Add | N_Op_Divide | N_Op_Mod | N_Op_Multiply
13000 | N_Op_Rem | N_Op_Subtract
13001 then
13003 -- Both operands must have the same type as the context.
13004 -- (ignoring for now fixed-point and exponentiation ops).
13006 if Has_Applicable_User_Defined_Literal (Right_Opnd (N), Typ) then
13007 Resolve (Left_Opnd (N), Typ);
13008 Analyze_And_Resolve (N, Typ);
13009 return True;
13010 end if;
13013 Has_Applicable_User_Defined_Literal (Left_Opnd (N), Typ)
13014 then
13015 Resolve (Right_Opnd (N), Typ);
13016 Analyze_And_Resolve (N, Typ);
13017 return True;
13019 else
13020 return False;
13021 end if;
13023 elsif Nkind (N) in N_Binary_Op then
13024 -- For other operators the context does not impose a type on
13025 -- the operands, but their types must match.
13027 if (Nkind (Left_Opnd (N))
13028 not in N_Integer_Literal | N_String_Literal | N_Real_Literal)
13029 and then
13030 Has_Applicable_User_Defined_Literal
13031 (Right_Opnd (N), Etype (Left_Opnd (N)))
13032 then
13033 Analyze_And_Resolve (N, Typ);
13034 return True;
13036 elsif (Nkind (Right_Opnd (N))
13037 not in N_Integer_Literal | N_String_Literal | N_Real_Literal)
13038 and then
13039 Has_Applicable_User_Defined_Literal
13040 (Left_Opnd (N), Etype (Right_Opnd (N)))
13041 then
13042 Analyze_And_Resolve (N, Typ);
13043 return True;
13044 else
13045 return False;
13046 end if;
13048 elsif Nkind (N) in N_Unary_Op
13049 and then
13050 Has_Applicable_User_Defined_Literal (Right_Opnd (N), Typ)
13051 then
13052 Analyze_And_Resolve (N, Typ);
13053 return True;
13055 else -- Other operators
13056 return False;
13057 end if;
13058 end Try_User_Defined_Literal;
13060 -----------------------------
13061 -- Unique_Fixed_Point_Type --
13062 -----------------------------
13064 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
13065 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id);
13066 -- Give error messages for true ambiguity. Messages are posted on node
13067 -- N, and entities T1, T2 are the possible interpretations.
13069 -----------------------
13070 -- Fixed_Point_Error --
13071 -----------------------
13073 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id) is
13074 begin
13075 Error_Msg_N ("ambiguous universal_fixed_expression", N);
13076 Error_Msg_NE ("\\possible interpretation as}", N, T1);
13077 Error_Msg_NE ("\\possible interpretation as}", N, T2);
13078 end Fixed_Point_Error;
13080 -- Local variables
13082 ErrN : Node_Id;
13083 Item : Node_Id;
13084 Scop : Entity_Id;
13085 T1 : Entity_Id;
13086 T2 : Entity_Id;
13088 -- Start of processing for Unique_Fixed_Point_Type
13090 begin
13091 -- The operations on Duration are visible, so Duration is always a
13092 -- possible interpretation.
13094 T1 := Standard_Duration;
13096 -- Look for fixed-point types in enclosing scopes
13098 Scop := Current_Scope;
13099 while Scop /= Standard_Standard loop
13100 T2 := First_Entity (Scop);
13101 while Present (T2) loop
13102 if Is_Fixed_Point_Type (T2)
13103 and then Current_Entity (T2) = T2
13104 and then Scope (Base_Type (T2)) = Scop
13105 then
13106 if Present (T1) then
13107 Fixed_Point_Error (T1, T2);
13108 return Any_Type;
13109 else
13110 T1 := T2;
13111 end if;
13112 end if;
13114 Next_Entity (T2);
13115 end loop;
13117 Scop := Scope (Scop);
13118 end loop;
13120 -- Look for visible fixed type declarations in the context
13122 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
13123 while Present (Item) loop
13124 if Nkind (Item) = N_With_Clause then
13125 Scop := Entity (Name (Item));
13126 T2 := First_Entity (Scop);
13127 while Present (T2) loop
13128 if Is_Fixed_Point_Type (T2)
13129 and then Scope (Base_Type (T2)) = Scop
13130 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
13131 then
13132 if Present (T1) then
13133 Fixed_Point_Error (T1, T2);
13134 return Any_Type;
13135 else
13136 T1 := T2;
13137 end if;
13138 end if;
13140 Next_Entity (T2);
13141 end loop;
13142 end if;
13144 Next (Item);
13145 end loop;
13147 if Nkind (N) = N_Real_Literal then
13148 Error_Msg_NE ("??real literal interpreted as }!", N, T1);
13150 else
13151 -- When the context is a type conversion, issue the warning on the
13152 -- expression of the conversion because it is the actual operation.
13154 if Nkind (N) in N_Type_Conversion | N_Unchecked_Type_Conversion then
13155 ErrN := Expression (N);
13156 else
13157 ErrN := N;
13158 end if;
13160 Error_Msg_NE
13161 ("??universal_fixed expression interpreted as }!", ErrN, T1);
13162 end if;
13164 return T1;
13165 end Unique_Fixed_Point_Type;
13167 ----------------------
13168 -- Valid_Conversion --
13169 ----------------------
13171 function Valid_Conversion
13172 (N : Node_Id;
13173 Target : Entity_Id;
13174 Operand : Node_Id;
13175 Report_Errs : Boolean := True) return Boolean
13177 Target_Type : constant Entity_Id := Base_Type (Target);
13178 Opnd_Type : Entity_Id := Etype (Operand);
13179 Inc_Ancestor : Entity_Id;
13181 function Conversion_Check
13182 (Valid : Boolean;
13183 Msg : String) return Boolean;
13184 -- Little routine to post Msg if Valid is False, returns Valid value
13186 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
13187 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
13189 procedure Conversion_Error_NE
13190 (Msg : String;
13191 N : Node_Or_Entity_Id;
13192 E : Node_Or_Entity_Id);
13193 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
13195 function In_Instance_Code return Boolean;
13196 -- Return True if expression is within an instance but is not in one of
13197 -- the actuals of the instantiation. Type conversions within an instance
13198 -- are not rechecked because type visibility may lead to spurious errors
13199 -- but conversions in an actual for a formal object must be checked.
13201 function Is_Discrim_Of_Bad_Access_Conversion_Argument
13202 (Expr : Node_Id) return Boolean;
13203 -- Implicit anonymous-to-named access type conversions are not allowed
13204 -- if the "statically deeper than" relationship does not apply to the
13205 -- type of the conversion operand. See RM 8.6(28.1) and AARM 8.6(28.d).
13206 -- We deal with most such cases elsewhere so that we can emit more
13207 -- specific error messages (e.g., if the operand is an access parameter
13208 -- or a saooaaat (stand-alone object of an anonymous access type)), but
13209 -- here is where we catch the case where the operand is an access
13210 -- discriminant selected from a dereference of another such "bad"
13211 -- conversion argument.
13213 function Valid_Tagged_Conversion
13214 (Target_Type : Entity_Id;
13215 Opnd_Type : Entity_Id) return Boolean;
13216 -- Specifically test for validity of tagged conversions
13218 function Valid_Array_Conversion return Boolean;
13219 -- Check index and component conformance, and accessibility levels if
13220 -- the component types are anonymous access types (Ada 2005).
13222 ----------------------
13223 -- Conversion_Check --
13224 ----------------------
13226 function Conversion_Check
13227 (Valid : Boolean;
13228 Msg : String) return Boolean
13230 begin
13231 if not Valid
13233 -- A generic unit has already been analyzed and we have verified
13234 -- that a particular conversion is OK in that context. Since the
13235 -- instance is reanalyzed without relying on the relationships
13236 -- established during the analysis of the generic, it is possible
13237 -- to end up with inconsistent views of private types. Do not emit
13238 -- the error message in such cases. The rest of the machinery in
13239 -- Valid_Conversion still ensures the proper compatibility of
13240 -- target and operand types.
13242 and then not In_Instance_Code
13243 then
13244 Conversion_Error_N (Msg, Operand);
13245 end if;
13247 return Valid;
13248 end Conversion_Check;
13250 ------------------------
13251 -- Conversion_Error_N --
13252 ------------------------
13254 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
13255 begin
13256 if Report_Errs then
13257 Error_Msg_N (Msg, N);
13258 end if;
13259 end Conversion_Error_N;
13261 -------------------------
13262 -- Conversion_Error_NE --
13263 -------------------------
13265 procedure Conversion_Error_NE
13266 (Msg : String;
13267 N : Node_Or_Entity_Id;
13268 E : Node_Or_Entity_Id)
13270 begin
13271 if Report_Errs then
13272 Error_Msg_NE (Msg, N, E);
13273 end if;
13274 end Conversion_Error_NE;
13276 ----------------------
13277 -- In_Instance_Code --
13278 ----------------------
13280 function In_Instance_Code return Boolean is
13281 Par : Node_Id;
13283 begin
13284 if not In_Instance then
13285 return False;
13287 else
13288 Par := Parent (N);
13289 while Present (Par) loop
13291 -- The expression is part of an actual object if it appears in
13292 -- the generated object declaration in the instance.
13294 if Nkind (Par) = N_Object_Declaration
13295 and then Present (Corresponding_Generic_Association (Par))
13296 then
13297 return False;
13299 else
13300 exit when
13301 Nkind (Par) in N_Statement_Other_Than_Procedure_Call
13302 or else Nkind (Par) in N_Subprogram_Call
13303 or else Nkind (Par) in N_Declaration;
13304 end if;
13306 Par := Parent (Par);
13307 end loop;
13309 -- Otherwise the expression appears within the instantiated unit
13311 return True;
13312 end if;
13313 end In_Instance_Code;
13315 --------------------------------------------------
13316 -- Is_Discrim_Of_Bad_Access_Conversion_Argument --
13317 --------------------------------------------------
13319 function Is_Discrim_Of_Bad_Access_Conversion_Argument
13320 (Expr : Node_Id) return Boolean
13322 Exp_Type : Entity_Id := Base_Type (Etype (Expr));
13323 pragma Assert (Is_Access_Type (Exp_Type));
13325 Associated_Node : Node_Id;
13326 Deref_Prefix : Node_Id;
13327 begin
13328 if not Is_Anonymous_Access_Type (Exp_Type) then
13329 return False;
13330 end if;
13332 pragma Assert (Is_Itype (Exp_Type));
13333 Associated_Node := Associated_Node_For_Itype (Exp_Type);
13335 if Nkind (Associated_Node) /= N_Discriminant_Specification then
13336 return False; -- not the type of an access discriminant
13337 end if;
13339 -- return False if Expr not of form <prefix>.all.Some_Component
13341 if (Nkind (Expr) /= N_Selected_Component)
13342 or else (Nkind (Prefix (Expr)) /= N_Explicit_Dereference)
13343 then
13344 -- conditional expressions, declare expressions ???
13345 return False;
13346 end if;
13348 Deref_Prefix := Prefix (Prefix (Expr));
13349 Exp_Type := Base_Type (Etype (Deref_Prefix));
13351 -- The "statically deeper relationship" does not apply
13352 -- to generic formal access types, so a prefix of such
13353 -- a type is a "bad" prefix.
13355 if Is_Generic_Formal (Exp_Type) then
13356 return True;
13358 -- The "statically deeper relationship" does apply to
13359 -- any other named access type.
13361 elsif not Is_Anonymous_Access_Type (Exp_Type) then
13362 return False;
13363 end if;
13365 pragma Assert (Is_Itype (Exp_Type));
13366 Associated_Node := Associated_Node_For_Itype (Exp_Type);
13368 -- The "statically deeper relationship" applies to some
13369 -- anonymous access types and not to others. Return
13370 -- True for the cases where it does not apply. Also check
13371 -- recursively for the
13372 -- <prefix>.all.Access_Discrim.all.Access_Discrim case,
13373 -- where the correct result depends on <prefix>.
13375 return Nkind (Associated_Node) in
13376 N_Procedure_Specification | -- access parameter
13377 N_Function_Specification | -- access parameter
13378 N_Object_Declaration -- saooaaat
13379 or else Is_Discrim_Of_Bad_Access_Conversion_Argument (Deref_Prefix);
13380 end Is_Discrim_Of_Bad_Access_Conversion_Argument;
13382 ----------------------------
13383 -- Valid_Array_Conversion --
13384 ----------------------------
13386 function Valid_Array_Conversion return Boolean is
13387 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
13388 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
13390 Opnd_Index : Node_Id;
13391 Opnd_Index_Type : Entity_Id;
13393 Target_Comp_Type : constant Entity_Id :=
13394 Component_Type (Target_Type);
13395 Target_Comp_Base : constant Entity_Id :=
13396 Base_Type (Target_Comp_Type);
13398 Target_Index : Node_Id;
13399 Target_Index_Type : Entity_Id;
13401 begin
13402 -- Error if wrong number of dimensions
13405 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
13406 then
13407 Conversion_Error_N
13408 ("incompatible number of dimensions for conversion", Operand);
13409 return False;
13411 -- Number of dimensions matches
13413 else
13414 -- Loop through indexes of the two arrays
13416 Target_Index := First_Index (Target_Type);
13417 Opnd_Index := First_Index (Opnd_Type);
13418 while Present (Target_Index) and then Present (Opnd_Index) loop
13419 Target_Index_Type := Etype (Target_Index);
13420 Opnd_Index_Type := Etype (Opnd_Index);
13422 -- Error if index types are incompatible
13424 if not (Is_Integer_Type (Target_Index_Type)
13425 and then Is_Integer_Type (Opnd_Index_Type))
13426 and then (Root_Type (Target_Index_Type)
13427 /= Root_Type (Opnd_Index_Type))
13428 then
13429 Conversion_Error_N
13430 ("incompatible index types for array conversion",
13431 Operand);
13432 return False;
13433 end if;
13435 Next_Index (Target_Index);
13436 Next_Index (Opnd_Index);
13437 end loop;
13439 -- If component types have same base type, all set
13441 if Target_Comp_Base = Opnd_Comp_Base then
13442 null;
13444 -- Here if base types of components are not the same. The only
13445 -- time this is allowed is if we have anonymous access types.
13447 -- The conversion of arrays of anonymous access types can lead
13448 -- to dangling pointers. AI-392 formalizes the accessibility
13449 -- checks that must be applied to such conversions to prevent
13450 -- out-of-scope references.
13452 elsif Ekind (Target_Comp_Base) in
13453 E_Anonymous_Access_Type
13454 | E_Anonymous_Access_Subprogram_Type
13455 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
13456 and then
13457 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
13458 then
13459 if Type_Access_Level (Target_Type) <
13460 Deepest_Type_Access_Level (Opnd_Type)
13461 then
13462 if In_Instance_Body then
13463 Error_Msg_Warn := SPARK_Mode /= On;
13464 Conversion_Error_N
13465 ("source array type has deeper accessibility "
13466 & "level than target<<", Operand);
13467 Conversion_Error_N ("\Program_Error [<<", Operand);
13468 Rewrite (N,
13469 Make_Raise_Program_Error (Sloc (N),
13470 Reason => PE_Accessibility_Check_Failed));
13471 Set_Etype (N, Target_Type);
13472 return False;
13474 -- Conversion not allowed because of accessibility levels
13476 else
13477 Conversion_Error_N
13478 ("source array type has deeper accessibility "
13479 & "level than target", Operand);
13480 return False;
13481 end if;
13483 else
13484 null;
13485 end if;
13487 -- All other cases where component base types do not match
13489 else
13490 Conversion_Error_N
13491 ("incompatible component types for array conversion",
13492 Operand);
13493 return False;
13494 end if;
13496 -- Check that component subtypes statically match. For numeric
13497 -- types this means that both must be either constrained or
13498 -- unconstrained. For enumeration types the bounds must match.
13499 -- All of this is checked in Subtypes_Statically_Match.
13501 if not Subtypes_Statically_Match
13502 (Target_Comp_Type, Opnd_Comp_Type)
13503 then
13504 Conversion_Error_N
13505 ("component subtypes must statically match", Operand);
13506 return False;
13507 end if;
13508 end if;
13510 return True;
13511 end Valid_Array_Conversion;
13513 -----------------------------
13514 -- Valid_Tagged_Conversion --
13515 -----------------------------
13517 function Valid_Tagged_Conversion
13518 (Target_Type : Entity_Id;
13519 Opnd_Type : Entity_Id) return Boolean
13521 begin
13522 -- Upward conversions are allowed (RM 4.6(22))
13524 if Covers (Target_Type, Opnd_Type)
13525 or else Is_Ancestor (Target_Type, Opnd_Type)
13526 then
13527 return True;
13529 -- Downward conversion are allowed if the operand is class-wide
13530 -- (RM 4.6(23)).
13532 elsif Is_Class_Wide_Type (Opnd_Type)
13533 and then Covers (Opnd_Type, Target_Type)
13534 then
13535 return True;
13537 elsif Covers (Opnd_Type, Target_Type)
13538 or else Is_Ancestor (Opnd_Type, Target_Type)
13539 then
13540 return
13541 Conversion_Check (False,
13542 "downward conversion of tagged objects not allowed");
13544 -- Ada 2005 (AI-251): The conversion to/from interface types is
13545 -- always valid. The types involved may be class-wide (sub)types.
13547 elsif Is_Interface (Etype (Base_Type (Target_Type)))
13548 or else Is_Interface (Etype (Base_Type (Opnd_Type)))
13549 then
13550 return True;
13552 -- If the operand is a class-wide type obtained through a limited_
13553 -- with clause, and the context includes the nonlimited view, use
13554 -- it to determine whether the conversion is legal.
13556 elsif Is_Class_Wide_Type (Opnd_Type)
13557 and then From_Limited_With (Opnd_Type)
13558 and then Present (Non_Limited_View (Etype (Opnd_Type)))
13559 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
13560 then
13561 return True;
13563 elsif Is_Access_Type (Opnd_Type)
13564 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
13565 then
13566 return True;
13568 else
13569 Conversion_Error_NE
13570 ("invalid tagged conversion, not compatible with}",
13571 N, First_Subtype (Opnd_Type));
13572 return False;
13573 end if;
13574 end Valid_Tagged_Conversion;
13576 -- Start of processing for Valid_Conversion
13578 begin
13579 Check_Parameterless_Call (Operand);
13581 if Is_Overloaded (Operand) then
13582 declare
13583 I : Interp_Index;
13584 I1 : Interp_Index;
13585 It : Interp;
13586 It1 : Interp;
13587 N1 : Entity_Id;
13588 T1 : Entity_Id;
13590 begin
13591 -- Remove procedure calls, which syntactically cannot appear in
13592 -- this context, but which cannot be removed by type checking,
13593 -- because the context does not impose a type.
13595 -- The node may be labelled overloaded, but still contain only one
13596 -- interpretation because others were discarded earlier. If this
13597 -- is the case, retain the single interpretation if legal.
13599 Get_First_Interp (Operand, I, It);
13600 Opnd_Type := It.Typ;
13601 Get_Next_Interp (I, It);
13603 if Present (It.Typ)
13604 and then Opnd_Type /= Standard_Void_Type
13605 then
13606 -- More than one candidate interpretation is available
13608 Get_First_Interp (Operand, I, It);
13609 while Present (It.Typ) loop
13610 if It.Typ = Standard_Void_Type then
13611 Remove_Interp (I);
13612 end if;
13614 -- When compiling for a system where Address is of a visible
13615 -- integer type, spurious ambiguities can be produced when
13616 -- arithmetic operations have a literal operand and return
13617 -- System.Address or a descendant of it. These ambiguities
13618 -- are usually resolved by the context, but for conversions
13619 -- there is no context type and the removal of the spurious
13620 -- operations must be done explicitly here.
13622 if not Address_Is_Private
13623 and then Is_Descendant_Of_Address (It.Typ)
13624 then
13625 Remove_Interp (I);
13626 end if;
13628 Get_Next_Interp (I, It);
13629 end loop;
13630 end if;
13632 Get_First_Interp (Operand, I, It);
13633 I1 := I;
13634 It1 := It;
13636 if No (It.Typ) then
13637 Conversion_Error_N ("illegal operand in conversion", Operand);
13638 return False;
13639 end if;
13641 Get_Next_Interp (I, It);
13643 if Present (It.Typ) then
13644 N1 := It1.Nam;
13645 T1 := It1.Typ;
13646 It1 := Disambiguate (Operand, I1, I, Any_Type);
13648 if It1 = No_Interp then
13649 Conversion_Error_N
13650 ("ambiguous operand in conversion", Operand);
13652 -- If the interpretation involves a standard operator, use
13653 -- the location of the type, which may be user-defined.
13655 if Sloc (It.Nam) = Standard_Location then
13656 Error_Msg_Sloc := Sloc (It.Typ);
13657 else
13658 Error_Msg_Sloc := Sloc (It.Nam);
13659 end if;
13661 Conversion_Error_N -- CODEFIX
13662 ("\\possible interpretation#!", Operand);
13664 if Sloc (N1) = Standard_Location then
13665 Error_Msg_Sloc := Sloc (T1);
13666 else
13667 Error_Msg_Sloc := Sloc (N1);
13668 end if;
13670 Conversion_Error_N -- CODEFIX
13671 ("\\possible interpretation#!", Operand);
13673 return False;
13674 end if;
13675 end if;
13677 Set_Etype (Operand, It1.Typ);
13678 Opnd_Type := It1.Typ;
13679 end;
13680 end if;
13682 -- Deal with conversion of integer type to address if the pragma
13683 -- Allow_Integer_Address is in effect. We convert the conversion to
13684 -- an unchecked conversion in this case and we are all done.
13686 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
13687 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
13688 Analyze_And_Resolve (N, Target_Type);
13689 return True;
13690 end if;
13692 -- If we are within a child unit, check whether the type of the
13693 -- expression has an ancestor in a parent unit, in which case it
13694 -- belongs to its derivation class even if the ancestor is private.
13695 -- See RM 7.3.1 (5.2/3).
13697 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
13699 -- Numeric types
13701 if Is_Numeric_Type (Target_Type) then
13703 -- A universal fixed expression can be converted to any numeric type
13705 if Opnd_Type = Universal_Fixed then
13706 return True;
13708 -- Also no need to check when in an instance or inlined body, because
13709 -- the legality has been established when the template was analyzed.
13710 -- Furthermore, numeric conversions may occur where only a private
13711 -- view of the operand type is visible at the instantiation point.
13712 -- This results in a spurious error if we check that the operand type
13713 -- is a numeric type.
13715 -- Note: in a previous version of this unit, the following tests were
13716 -- applied only for generated code (Comes_From_Source set to False),
13717 -- but in fact the test is required for source code as well, since
13718 -- this situation can arise in source code.
13720 elsif In_Instance_Code or else In_Inlined_Body then
13721 return True;
13723 -- Otherwise we need the conversion check
13725 else
13726 return Conversion_Check
13727 (Is_Numeric_Type (Opnd_Type)
13728 or else
13729 (Present (Inc_Ancestor)
13730 and then Is_Numeric_Type (Inc_Ancestor)),
13731 "illegal operand for numeric conversion");
13732 end if;
13734 -- Array types
13736 elsif Is_Array_Type (Target_Type) then
13737 if not Is_Array_Type (Opnd_Type)
13738 or else Opnd_Type = Any_Composite
13739 or else Opnd_Type = Any_String
13740 then
13741 Conversion_Error_N
13742 ("illegal operand for array conversion", Operand);
13743 return False;
13745 else
13746 return Valid_Array_Conversion;
13747 end if;
13749 -- Ada 2005 (AI-251): Internally generated conversions of access to
13750 -- interface types added to force the displacement of the pointer to
13751 -- reference the corresponding dispatch table.
13753 elsif not Comes_From_Source (N)
13754 and then Is_Access_Type (Target_Type)
13755 and then Is_Interface (Designated_Type (Target_Type))
13756 then
13757 return True;
13759 -- Ada 2005 (AI-251): Anonymous access types where target references an
13760 -- interface type.
13762 elsif Is_Access_Type (Opnd_Type)
13763 and then Ekind (Target_Type) in
13764 E_General_Access_Type | E_Anonymous_Access_Type
13765 and then Is_Interface (Directly_Designated_Type (Target_Type))
13766 then
13767 -- Check the static accessibility rule of 4.6(17). Note that the
13768 -- check is not enforced when within an instance body, since the
13769 -- RM requires such cases to be caught at run time.
13771 -- If the operand is a rewriting of an allocator no check is needed
13772 -- because there are no accessibility issues.
13774 if Nkind (Original_Node (N)) = N_Allocator then
13775 null;
13777 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
13778 if Type_Access_Level (Opnd_Type) >
13779 Deepest_Type_Access_Level (Target_Type)
13780 then
13781 -- In an instance, this is a run-time check, but one we know
13782 -- will fail, so generate an appropriate warning. The raise
13783 -- will be generated by Expand_N_Type_Conversion.
13785 if In_Instance_Body then
13786 Error_Msg_Warn := SPARK_Mode /= On;
13787 Conversion_Error_N
13788 ("cannot convert local pointer to non-local access type<<",
13789 Operand);
13790 Conversion_Error_N ("\Program_Error [<<", Operand);
13792 else
13793 Conversion_Error_N
13794 ("cannot convert local pointer to non-local access type",
13795 Operand);
13796 return False;
13797 end if;
13799 -- Special accessibility checks are needed in the case of access
13800 -- discriminants declared for a limited type.
13802 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
13803 and then not Is_Local_Anonymous_Access (Opnd_Type)
13804 then
13805 -- When the operand is a selected access discriminant the check
13806 -- needs to be made against the level of the object denoted by
13807 -- the prefix of the selected name (Accessibility_Level handles
13808 -- checking the prefix of the operand for this case).
13810 if Nkind (Operand) = N_Selected_Component
13811 and then Static_Accessibility_Level
13812 (Operand, Zero_On_Dynamic_Level)
13813 > Deepest_Type_Access_Level (Target_Type)
13814 then
13815 -- In an instance, this is a run-time check, but one we know
13816 -- will fail, so generate an appropriate warning. The raise
13817 -- will be generated by Expand_N_Type_Conversion.
13819 if In_Instance_Body then
13820 Error_Msg_Warn := SPARK_Mode /= On;
13821 Conversion_Error_N
13822 ("cannot convert access discriminant to non-local "
13823 & "access type<<", Operand);
13824 Conversion_Error_N ("\Program_Error [<<", Operand);
13826 -- Real error if not in instance body
13828 else
13829 Conversion_Error_N
13830 ("cannot convert access discriminant to non-local "
13831 & "access type", Operand);
13832 return False;
13833 end if;
13834 end if;
13836 -- The case of a reference to an access discriminant from
13837 -- within a limited type declaration (which will appear as
13838 -- a discriminal) is always illegal because the level of the
13839 -- discriminant is considered to be deeper than any (nameable)
13840 -- access type.
13842 if Is_Entity_Name (Operand)
13843 and then not Is_Local_Anonymous_Access (Opnd_Type)
13844 and then
13845 Ekind (Entity (Operand)) in E_In_Parameter | E_Constant
13846 and then Present (Discriminal_Link (Entity (Operand)))
13847 then
13848 Conversion_Error_N
13849 ("discriminant has deeper accessibility level than target",
13850 Operand);
13851 return False;
13852 end if;
13853 end if;
13854 end if;
13856 return True;
13858 -- General and anonymous access types
13860 elsif Ekind (Target_Type) in
13861 E_General_Access_Type | E_Anonymous_Access_Type
13862 and then
13863 Conversion_Check
13864 (Is_Access_Type (Opnd_Type)
13865 and then
13866 Ekind (Opnd_Type) not in
13867 E_Access_Subprogram_Type |
13868 E_Access_Protected_Subprogram_Type,
13869 "must be an access-to-object type")
13870 then
13871 if Is_Access_Constant (Opnd_Type)
13872 and then not Is_Access_Constant (Target_Type)
13873 then
13874 Conversion_Error_N
13875 ("access-to-constant operand type not allowed", Operand);
13876 return False;
13877 end if;
13879 -- Check the static accessibility rule of 4.6(17). Note that the
13880 -- check is not enforced when within an instance body, since the RM
13881 -- requires such cases to be caught at run time.
13883 if Ekind (Target_Type) /= E_Anonymous_Access_Type
13884 or else Is_Local_Anonymous_Access (Target_Type)
13885 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
13886 N_Object_Declaration
13887 then
13888 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
13889 -- conversions from an anonymous access type to a named general
13890 -- access type. Such conversions are not allowed in the case of
13891 -- access parameters and stand-alone objects of an anonymous
13892 -- access type. The implicit conversion case is recognized by
13893 -- testing that Comes_From_Source is False and that it's been
13894 -- rewritten. The Comes_From_Source test isn't sufficient because
13895 -- nodes in inlined calls to predefined library routines can have
13896 -- Comes_From_Source set to False. (Is there a better way to test
13897 -- for implicit conversions???).
13899 -- Do not treat a rewritten 'Old attribute reference like other
13900 -- rewrite substitutions. This makes a difference, for example,
13901 -- in the case where we are generating the expansion of a
13902 -- membership test of the form
13903 -- Saooaaat'Old in Named_Access_Type
13904 -- because in this case Valid_Conversion needs to return True
13905 -- (otherwise the expansion will be False - see the call site
13906 -- in exp_ch4.adb).
13908 if Ada_Version >= Ada_2012
13909 and then not Comes_From_Source (N)
13910 and then Is_Rewrite_Substitution (N)
13911 and then not Is_Attribute_Old (Original_Node (N))
13912 and then Ekind (Base_Type (Target_Type)) = E_General_Access_Type
13913 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
13914 then
13915 if Is_Itype (Opnd_Type) then
13917 -- When applying restriction No_Dynamic_Accessibility_Check,
13918 -- implicit conversions are allowed when the operand type is
13919 -- not deeper than the target type.
13921 if No_Dynamic_Accessibility_Checks_Enabled (N) then
13922 if Type_Access_Level (Opnd_Type)
13923 > Deepest_Type_Access_Level (Target_Type)
13924 then
13925 Conversion_Error_N
13926 ("operand has deeper level than target", Operand);
13927 end if;
13929 -- Implicit conversions aren't allowed for objects of an
13930 -- anonymous access type, since such objects have nonstatic
13931 -- levels in Ada 2012.
13933 elsif Nkind (Associated_Node_For_Itype (Opnd_Type))
13934 = N_Object_Declaration
13935 then
13936 Conversion_Error_N
13937 ("implicit conversion of stand-alone anonymous "
13938 & "access object not allowed", Operand);
13939 return False;
13941 -- Implicit conversions aren't allowed for anonymous access
13942 -- parameters. We exclude anonymous access results as well
13943 -- as universal_access "=".
13945 elsif not Is_Local_Anonymous_Access (Opnd_Type)
13946 and then Nkind (Associated_Node_For_Itype (Opnd_Type)) in
13947 N_Function_Specification |
13948 N_Procedure_Specification
13949 and then Nkind (Parent (N)) not in N_Op_Eq | N_Op_Ne
13950 then
13951 Conversion_Error_N
13952 ("implicit conversion of anonymous access parameter "
13953 & "not allowed", Operand);
13954 return False;
13956 -- Detect access discriminant values that are illegal
13957 -- implicit anonymous-to-named access conversion operands.
13959 elsif Is_Discrim_Of_Bad_Access_Conversion_Argument (Operand)
13960 then
13961 Conversion_Error_N
13962 ("implicit conversion of anonymous access value "
13963 & "not allowed", Operand);
13964 return False;
13966 -- In other cases, the level of the operand's type must be
13967 -- statically less deep than that of the target type, else
13968 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
13970 elsif Type_Access_Level (Opnd_Type) >
13971 Deepest_Type_Access_Level (Target_Type)
13972 then
13973 Conversion_Error_N
13974 ("implicit conversion of anonymous access value "
13975 & "violates accessibility", Operand);
13976 return False;
13977 end if;
13978 end if;
13980 -- Check if the operand is deeper than the target type, taking
13981 -- care to avoid the case where we are converting a result of a
13982 -- function returning an anonymous access type since the "master
13983 -- of the call" would be target type of the conversion unless
13984 -- the target type is anonymous access as well - see RM 3.10.2
13985 -- (10.3/3).
13987 -- Note that when the restriction No_Dynamic_Accessibility_Checks
13988 -- is in effect wei also want to proceed with the conversion check
13989 -- described above.
13991 elsif Type_Access_Level (Opnd_Type, Assoc_Ent => Operand)
13992 > Deepest_Type_Access_Level (Target_Type)
13993 and then (Nkind (Associated_Node_For_Itype (Opnd_Type))
13994 /= N_Function_Specification
13995 or else Ekind (Target_Type) in Anonymous_Access_Kind
13996 or else No_Dynamic_Accessibility_Checks_Enabled (N))
13998 -- Check we are not in a return value ???
14000 and then (not In_Return_Value (N)
14001 or else
14002 Nkind (Associated_Node_For_Itype (Target_Type))
14003 = N_Component_Declaration)
14004 then
14005 -- In an instance, this is a run-time check, but one we know
14006 -- will fail, so generate an appropriate warning. The raise
14007 -- will be generated by Expand_N_Type_Conversion.
14009 if In_Instance_Body then
14010 Error_Msg_Warn := SPARK_Mode /= On;
14011 Conversion_Error_N
14012 ("cannot convert local pointer to non-local access type<<",
14013 Operand);
14014 Conversion_Error_N ("\Program_Error [<<", Operand);
14016 -- If not in an instance body, this is a real error
14018 else
14019 -- Avoid generation of spurious error message
14021 if not Error_Posted (N) then
14022 Conversion_Error_N
14023 ("cannot convert local pointer to non-local access type",
14024 Operand);
14025 end if;
14027 return False;
14028 end if;
14030 -- Special accessibility checks are needed in the case of access
14031 -- discriminants declared for a limited type.
14033 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
14034 and then not Is_Local_Anonymous_Access (Opnd_Type)
14035 then
14036 -- When the operand is a selected access discriminant the check
14037 -- needs to be made against the level of the object denoted by
14038 -- the prefix of the selected name (Accessibility_Level handles
14039 -- checking the prefix of the operand for this case).
14041 if Nkind (Operand) = N_Selected_Component
14042 and then Static_Accessibility_Level
14043 (Operand, Zero_On_Dynamic_Level)
14044 > Deepest_Type_Access_Level (Target_Type)
14045 then
14046 -- In an instance, this is a run-time check, but one we know
14047 -- will fail, so generate an appropriate warning. The raise
14048 -- will be generated by Expand_N_Type_Conversion.
14050 if In_Instance_Body then
14051 Error_Msg_Warn := SPARK_Mode /= On;
14052 Conversion_Error_N
14053 ("cannot convert access discriminant to non-local "
14054 & "access type<<", Operand);
14055 Conversion_Error_N ("\Program_Error [<<", Operand);
14057 -- If not in an instance body, this is a real error
14059 else
14060 Conversion_Error_N
14061 ("cannot convert access discriminant to non-local "
14062 & "access type", Operand);
14063 return False;
14064 end if;
14065 end if;
14067 -- The case of a reference to an access discriminant from
14068 -- within a limited type declaration (which will appear as
14069 -- a discriminal) is always illegal because the level of the
14070 -- discriminant is considered to be deeper than any (nameable)
14071 -- access type.
14073 if Is_Entity_Name (Operand)
14074 and then
14075 Ekind (Entity (Operand)) in E_In_Parameter | E_Constant
14076 and then Present (Discriminal_Link (Entity (Operand)))
14077 then
14078 Conversion_Error_N
14079 ("discriminant has deeper accessibility level than target",
14080 Operand);
14081 return False;
14082 end if;
14083 end if;
14084 end if;
14086 -- In the presence of limited_with clauses we have to use nonlimited
14087 -- views, if available.
14089 Check_Limited : declare
14090 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
14091 -- Helper function to handle limited views
14093 --------------------------
14094 -- Full_Designated_Type --
14095 --------------------------
14097 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
14098 Desig : constant Entity_Id := Designated_Type (T);
14100 begin
14101 -- Handle the limited view of a type
14103 if From_Limited_With (Desig)
14104 and then Has_Non_Limited_View (Desig)
14105 then
14106 return Available_View (Desig);
14107 else
14108 return Desig;
14109 end if;
14110 end Full_Designated_Type;
14112 -- Local Declarations
14114 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
14115 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
14117 Same_Base : constant Boolean :=
14118 Base_Type (Target) = Base_Type (Opnd);
14120 -- Start of processing for Check_Limited
14122 begin
14123 if Is_Tagged_Type (Target) then
14124 return Valid_Tagged_Conversion (Target, Opnd);
14126 else
14127 if not Same_Base then
14128 Conversion_Error_NE
14129 ("target designated type not compatible with }",
14130 N, Base_Type (Opnd));
14131 return False;
14133 -- Ada 2005 AI-384: legality rule is symmetric in both
14134 -- designated types. The conversion is legal (with possible
14135 -- constraint check) if either designated type is
14136 -- unconstrained.
14138 elsif Subtypes_Statically_Match (Target, Opnd)
14139 or else
14140 (Has_Discriminants (Target)
14141 and then
14142 (not Is_Constrained (Opnd)
14143 or else not Is_Constrained (Target)))
14144 then
14145 -- Special case, if Value_Size has been used to make the
14146 -- sizes different, the conversion is not allowed even
14147 -- though the subtypes statically match.
14149 if Known_Static_RM_Size (Target)
14150 and then Known_Static_RM_Size (Opnd)
14151 and then RM_Size (Target) /= RM_Size (Opnd)
14152 then
14153 Conversion_Error_NE
14154 ("target designated subtype not compatible with }",
14155 N, Opnd);
14156 Conversion_Error_NE
14157 ("\because sizes of the two designated subtypes differ",
14158 N, Opnd);
14159 return False;
14161 -- Normal case where conversion is allowed
14163 else
14164 return True;
14165 end if;
14167 else
14168 Error_Msg_NE
14169 ("target designated subtype not compatible with }",
14170 N, Opnd);
14171 return False;
14172 end if;
14173 end if;
14174 end Check_Limited;
14176 -- Access to subprogram types. If the operand is an access parameter,
14177 -- the type has a deeper accessibility that any master, and cannot be
14178 -- assigned. We must make an exception if the conversion is part of an
14179 -- assignment and the target is the return object of an extended return
14180 -- statement, because in that case the accessibility check takes place
14181 -- after the return.
14183 elsif Is_Access_Subprogram_Type (Target_Type)
14185 -- Note: this test of Opnd_Type is there to prevent entering this
14186 -- branch in the case of a remote access to subprogram type, which
14187 -- is internally represented as an E_Record_Type.
14189 and then Is_Access_Type (Opnd_Type)
14190 then
14191 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
14192 and then Is_Entity_Name (Operand)
14193 and then Ekind (Entity (Operand)) = E_In_Parameter
14194 and then
14195 (Nkind (Parent (N)) /= N_Assignment_Statement
14196 or else not Is_Entity_Name (Name (Parent (N)))
14197 or else not Is_Return_Object (Entity (Name (Parent (N)))))
14198 then
14199 Conversion_Error_N
14200 ("illegal attempt to store anonymous access to subprogram",
14201 Operand);
14202 Conversion_Error_N
14203 ("\value has deeper accessibility than any master "
14204 & "(RM 3.10.2 (13))",
14205 Operand);
14207 Error_Msg_NE
14208 ("\use named access type for& instead of access parameter",
14209 Operand, Entity (Operand));
14210 end if;
14212 -- Check that the designated types are subtype conformant
14214 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
14215 Old_Id => Designated_Type (Opnd_Type),
14216 Err_Loc => N);
14218 -- Check the static accessibility rule of 4.6(20)
14220 if Type_Access_Level (Opnd_Type) >
14221 Deepest_Type_Access_Level (Target_Type)
14222 then
14223 Conversion_Error_N
14224 ("operand type has deeper accessibility level than target",
14225 Operand);
14227 -- Check that if the operand type is declared in a generic body,
14228 -- then the target type must be declared within that same body
14229 -- (enforces last sentence of 4.6(20)).
14231 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
14232 declare
14233 O_Gen : constant Node_Id :=
14234 Enclosing_Generic_Body (Opnd_Type);
14236 T_Gen : Node_Id;
14238 begin
14239 T_Gen := Enclosing_Generic_Body (Target_Type);
14240 while Present (T_Gen) and then T_Gen /= O_Gen loop
14241 T_Gen := Enclosing_Generic_Body (T_Gen);
14242 end loop;
14244 if T_Gen /= O_Gen then
14245 Conversion_Error_N
14246 ("target type must be declared in same generic body "
14247 & "as operand type", N);
14248 end if;
14249 end;
14250 end if;
14252 -- Check that the strub modes are compatible.
14253 -- We wish to reject explicit conversions only for
14254 -- incompatible modes.
14256 return Conversion_Check
14257 (Compatible_Strub_Modes
14258 (Designated_Type (Target_Type),
14259 Designated_Type (Opnd_Type)),
14260 "incompatible `strub` modes");
14262 -- Remote access to subprogram types
14264 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
14265 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
14266 then
14267 -- It is valid to convert from one RAS type to another provided
14268 -- that their specification statically match.
14270 -- Note: at this point, remote access to subprogram types have been
14271 -- expanded to their E_Record_Type representation, and we need to
14272 -- go back to the original access type definition using the
14273 -- Corresponding_Remote_Type attribute in order to check that the
14274 -- designated profiles match.
14276 pragma Assert (Ekind (Target_Type) = E_Record_Type);
14277 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
14279 Check_Subtype_Conformant
14280 (New_Id =>
14281 Designated_Type (Corresponding_Remote_Type (Target_Type)),
14282 Old_Id =>
14283 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
14284 Err_Loc =>
14287 -- Check that the strub modes are compatible.
14288 -- We wish to reject explicit conversions only for
14289 -- incompatible modes.
14291 return Conversion_Check
14292 (Compatible_Strub_Modes
14293 (Designated_Type (Target_Type),
14294 Designated_Type (Opnd_Type)),
14295 "incompatible `strub` modes");
14297 -- If it was legal in the generic, it's legal in the instance
14299 elsif In_Instance_Body then
14300 return True;
14302 -- If both are tagged types, check legality of view conversions
14304 elsif Is_Tagged_Type (Target_Type)
14305 and then
14306 Is_Tagged_Type (Opnd_Type)
14307 then
14308 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
14310 -- Types derived from the same root type are convertible
14312 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
14313 return True;
14315 -- In an instance or an inlined body, there may be inconsistent views of
14316 -- the same type, or of types derived from a common root.
14318 elsif (In_Instance or In_Inlined_Body)
14319 and then
14320 Root_Type (Underlying_Type (Target_Type)) =
14321 Root_Type (Underlying_Type (Opnd_Type))
14322 then
14323 return True;
14325 -- Special check for common access type error case
14327 elsif Ekind (Target_Type) = E_Access_Type
14328 and then Is_Access_Type (Opnd_Type)
14329 then
14330 Conversion_Error_N ("target type must be general access type!", N);
14331 Conversion_Error_NE -- CODEFIX
14332 ("\add ALL to }!", N, Target_Type);
14333 return False;
14335 -- Here we have a real conversion error
14337 else
14338 -- Check for missing regular with_clause when only a limited view of
14339 -- target is available.
14341 if From_Limited_With (Opnd_Type) and then In_Package_Body then
14342 Conversion_Error_NE
14343 ("invalid conversion, not compatible with limited view of }",
14344 N, Opnd_Type);
14345 Conversion_Error_NE
14346 ("\add with_clause for& to current unit!", N, Scope (Opnd_Type));
14348 elsif Is_Access_Type (Opnd_Type)
14349 and then From_Limited_With (Designated_Type (Opnd_Type))
14350 and then In_Package_Body
14351 then
14352 Conversion_Error_NE
14353 ("invalid conversion, not compatible with }", N, Opnd_Type);
14354 Conversion_Error_NE
14355 ("\add with_clause for& to current unit!",
14356 N, Scope (Designated_Type (Opnd_Type)));
14358 else
14359 Conversion_Error_NE
14360 ("invalid conversion, not compatible with }", N, Opnd_Type);
14361 end if;
14363 return False;
14364 end if;
14365 end Valid_Conversion;
14367 end Sem_Res;