1 /* Graph coloring register allocator
2 Copyright (C) 2001, 2002 Free Software Foundation, Inc.
3 Contributed by Michael Matz <matz@suse.de>
4 and Daniel Berlin <dan@cgsoftware.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under the
9 terms of the GNU General Public License as published by the Free Software
10 Foundation; either version 2, or (at your option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
17 You should have received a copy of the GNU General Public License along
18 with GCC; see the file COPYING. If not, write to the Free Software
19 Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23 #include "coretypes.h"
27 #include "insn-config.h"
30 #include "integrate.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
43 /* This is the toplevel file of a graph coloring register allocator.
44 It is able to act like a George & Appel allocator, i.e. with iterative
45 coalescing plus spill coalescing/propagation.
46 And it can act as a traditional Briggs allocator, although with
47 optimistic coalescing. Additionally it has a custom pass, which
48 tries to reduce the overall cost of the colored graph.
50 We support two modes of spilling: spill-everywhere, which is extremely
51 fast, and interference region spilling, which reduces spill code to a
52 large extent, but is slower.
56 Briggs, P., Cooper, K. D., and Torczon, L. 1994. Improvements to graph
57 coloring register allocation. ACM Trans. Program. Lang. Syst. 16, 3 (May),
60 Bergner, P., Dahl, P., Engebretsen, D., and O'Keefe, M. 1997. Spill code
61 minimization via interference region spilling. In Proc. ACM SIGPLAN '97
62 Conf. on Prog. Language Design and Implementation. ACM, 287-295.
64 George, L., Appel, A.W. 1996. Iterated register coalescing.
65 ACM Trans. Program. Lang. Syst. 18, 3 (May), 300-324.
69 /* This file contains the main entry point (reg_alloc), some helper routines
70 used by more than one file of the register allocator, and the toplevel
71 driver procedure (one_pass). */
73 /* Things, one might do somewhen:
75 * Lattice based rematerialization
76 * create definitions of ever-life regs at the beginning of
78 * insert loads as soon, stores as late as possible
79 * insert spill insns as outward as possible (either looptree, or LCM)
81 * delete coalesced insns. Partly done. The rest can only go, when we get
83 * don't destroy coalescing information completely when spilling
84 * use the constraints from asms
87 static struct obstack ra_obstack
;
88 static void create_insn_info
PARAMS ((struct df
*));
89 static void free_insn_info
PARAMS ((void));
90 static void alloc_mem
PARAMS ((struct df
*));
91 static void free_mem
PARAMS ((struct df
*));
92 static void free_all_mem
PARAMS ((struct df
*df
));
93 static int one_pass
PARAMS ((struct df
*, int));
94 static void check_df
PARAMS ((struct df
*));
95 static void init_ra
PARAMS ((void));
97 void reg_alloc
PARAMS ((void));
99 /* These global variables are "internal" to the register allocator.
100 They are all documented at their declarations in ra.h. */
102 /* Somewhen we want to get rid of one of those sbitmaps.
103 (for now I need the sup_igraph to note if there is any conflict between
104 parts of webs at all. I can't use igraph for this, as there only the real
105 conflicts are noted.) This is only used to prevent coalescing two
106 conflicting webs, were only parts of them are in conflict. */
110 /* Note the insns not inserted by the allocator, where we detected any
111 deaths of pseudos. It is used to detect closeness of defs and uses.
112 In the first pass this is empty (we could initialize it from REG_DEAD
113 notes), in the other passes it is left from the pass before. */
114 sbitmap insns_with_deaths
;
115 int death_insns_max_uid
;
117 struct web_part
*web_parts
;
119 unsigned int num_webs
;
120 unsigned int num_subwebs
;
121 unsigned int num_allwebs
;
123 struct web
*hardreg2web
[FIRST_PSEUDO_REGISTER
];
124 struct web
**def2web
;
125 struct web
**use2web
;
126 struct move_list
*wl_moves
;
128 short *ra_reg_renumber
;
132 unsigned int max_normal_pseudo
;
133 int an_unusable_color
;
135 /* The different lists on which a web can be (based on the type). */
136 struct dlist
*web_lists
[(int) LAST_NODE_TYPE
];
138 unsigned int last_def_id
;
139 unsigned int last_use_id
;
140 unsigned int last_num_webs
;
142 sbitmap last_check_uses
;
143 unsigned int remember_conflicts
;
147 HARD_REG_SET never_use_colors
;
148 HARD_REG_SET usable_regs
[N_REG_CLASSES
];
149 unsigned int num_free_regs
[N_REG_CLASSES
];
150 HARD_REG_SET hardregs_for_mode
[NUM_MACHINE_MODES
];
151 unsigned char byte2bitcount
[256];
153 unsigned int debug_new_regalloc
= -1;
154 int flag_ra_biased
= 0;
155 int flag_ra_improved_spilling
= 0;
156 int flag_ra_ir_spilling
= 0;
157 int flag_ra_optimistic_coalescing
= 0;
158 int flag_ra_break_aliases
= 0;
159 int flag_ra_merge_spill_costs
= 0;
160 int flag_ra_spill_every_use
= 0;
161 int flag_ra_dump_notes
= 0;
163 /* Fast allocation of small objects, which live until the allocator
164 is done. Allocate an object of SIZE bytes. */
170 return obstack_alloc (&ra_obstack
, size
);
173 /* Like ra_alloc(), but clear the returned memory. */
179 void *p
= obstack_alloc (&ra_obstack
, size
);
184 /* Returns the number of hardregs in HARD_REG_SET RS. */
194 unsigned char byte
= rs
& 0xFF;
196 /* Avoid memory access, if nothing is set. */
198 count
+= byte2bitcount
[byte
];
202 for (ofs
= 0; ofs
< HARD_REG_SET_LONGS
; ofs
++)
204 HARD_REG_ELT_TYPE elt
= rs
[ofs
];
207 unsigned char byte
= elt
& 0xFF;
210 count
+= byte2bitcount
[byte
];
217 /* Basically like emit_move_insn (i.e. validifies constants and such),
218 but also handle MODE_CC moves (but then the operands must already
219 be basically valid. */
222 ra_emit_move_insn (x
, y
)
225 enum machine_mode mode
= GET_MODE (x
);
226 if (GET_MODE_CLASS (mode
) == MODE_CC
)
227 return emit_insn (gen_move_insn (x
, y
));
229 return emit_move_insn (x
, y
);
233 struct ra_insn_info
*insn_df
;
234 static struct ref
**refs_for_insn_df
;
236 /* Create the insn_df structure for each insn to have fast access to
237 all valid defs and uses in an insn. */
240 create_insn_info (df
)
244 struct ref
**act_refs
;
245 insn_df_max_uid
= get_max_uid ();
246 insn_df
= xcalloc (insn_df_max_uid
, sizeof (insn_df
[0]));
247 refs_for_insn_df
= xcalloc (df
->def_id
+ df
->use_id
, sizeof (struct ref
*));
248 act_refs
= refs_for_insn_df
;
249 /* We create those things backwards to mimic the order in which
250 the insns are visited in rewrite_program2() and live_in(). */
251 for (insn
= get_last_insn (); insn
; insn
= PREV_INSN (insn
))
253 int uid
= INSN_UID (insn
);
255 struct df_link
*link
;
258 for (n
= 0, link
= DF_INSN_DEFS (df
, insn
); link
; link
= link
->next
)
260 && (DF_REF_REGNO (link
->ref
) >= FIRST_PSEUDO_REGISTER
261 || !TEST_HARD_REG_BIT (never_use_colors
,
262 DF_REF_REGNO (link
->ref
))))
265 insn_df
[uid
].defs
= act_refs
;
266 insn_df
[uid
].defs
[n
++] = link
->ref
;
269 insn_df
[uid
].num_defs
= n
;
270 for (n
= 0, link
= DF_INSN_USES (df
, insn
); link
; link
= link
->next
)
272 && (DF_REF_REGNO (link
->ref
) >= FIRST_PSEUDO_REGISTER
273 || !TEST_HARD_REG_BIT (never_use_colors
,
274 DF_REF_REGNO (link
->ref
))))
277 insn_df
[uid
].uses
= act_refs
;
278 insn_df
[uid
].uses
[n
++] = link
->ref
;
281 insn_df
[uid
].num_uses
= n
;
283 if (refs_for_insn_df
+ (df
->def_id
+ df
->use_id
) < act_refs
)
287 /* Free the insn_df structures. */
292 free (refs_for_insn_df
);
293 refs_for_insn_df
= NULL
;
299 /* Search WEB for a subweb, which represents REG. REG needs to
300 be a SUBREG, and the inner reg of it needs to be the one which is
301 represented by WEB. Returns the matching subweb or NULL. */
304 find_subweb (web
, reg
)
309 if (GET_CODE (reg
) != SUBREG
)
311 for (w
= web
->subreg_next
; w
; w
= w
->subreg_next
)
312 if (GET_MODE (w
->orig_x
) == GET_MODE (reg
)
313 && SUBREG_BYTE (w
->orig_x
) == SUBREG_BYTE (reg
))
318 /* Similar to find_subweb(), but matches according to SIZE_WORD,
319 a collection of the needed size and offset (in bytes). */
322 find_subweb_2 (web
, size_word
)
324 unsigned int size_word
;
327 if (size_word
== GET_MODE_SIZE (GET_MODE (web
->orig_x
)))
328 /* size_word == size means BYTE_BEGIN(size_word) == 0. */
330 for (w
= web
->subreg_next
; w
; w
= w
->subreg_next
)
332 unsigned int bl
= rtx_to_bits (w
->orig_x
);
339 /* Returns the superweb for SUBWEB. */
342 find_web_for_subweb_1 (subweb
)
345 while (subweb
->parent_web
)
346 subweb
= subweb
->parent_web
;
350 /* Determine if two hard register sets intersect.
351 Return 1 if they do. */
354 hard_regs_intersect_p (a
, b
)
358 COPY_HARD_REG_SET (c
, *a
);
359 AND_HARD_REG_SET (c
, *b
);
360 GO_IF_HARD_REG_SUBSET (c
, reg_class_contents
[(int) NO_REGS
], lose
);
366 /* Allocate and initialize the memory necessary for one pass of the
367 register allocator. */
374 ra_build_realloc (df
);
377 live_at_end
= (bitmap
*) xmalloc ((last_basic_block
+ 2)
379 for (i
= 0; i
< last_basic_block
+ 2; i
++)
380 live_at_end
[i
] = BITMAP_XMALLOC ();
383 create_insn_info (df
);
386 /* Free the memory which isn't necessary for the next pass. */
390 struct df
*df ATTRIBUTE_UNUSED
;
396 /* Free all memory allocated for the register allocator. Used, when
405 for (i
= 0; i
< (unsigned)last_basic_block
+ 2; i
++)
406 BITMAP_XFREE (live_at_end
[i
]);
409 ra_colorize_free_all ();
410 ra_build_free_all (df
);
411 obstack_free (&ra_obstack
, NULL
);
414 static long ticks_build
;
415 static long ticks_rebuild
;
417 /* Perform one pass of allocation. Returns nonzero, if some spill code
418 was added, i.e. if the allocator needs to rerun. */
421 one_pass (df
, rebuild
)
425 long ticks
= clock ();
426 int something_spilled
;
427 remember_conflicts
= 0;
429 /* Build the complete interference graph, or if this is not the first
430 pass, rebuild it incrementally. */
433 /* From now on, if we create new conflicts, we need to remember the
434 initial list of conflicts per web. */
435 remember_conflicts
= 1;
437 dump_igraph_machine ();
439 /* Colorize the I-graph. This results in either a list of
440 spilled_webs, in which case we need to run the spill phase, and
441 rerun the allocator, or that list is empty, meaning we are done. */
442 ra_colorize_graph (df
);
444 last_max_uid
= get_max_uid ();
445 /* actual_spill() might change WEBS(SPILLED) and even empty it,
446 so we need to remember it's state. */
447 something_spilled
= !!WEBS(SPILLED
);
449 /* Add spill code if necessary. */
450 if (something_spilled
)
453 ticks
= clock () - ticks
;
455 ticks_rebuild
+= ticks
;
457 ticks_build
+= ticks
;
458 return something_spilled
;
461 /* Initialize various arrays for the register allocator. */
468 #ifdef ELIMINABLE_REGS
469 static const struct {const int from
, to
; } eliminables
[] = ELIMINABLE_REGS
;
473 = (! flag_omit_frame_pointer
474 #ifdef EXIT_IGNORE_STACK
475 || (current_function_calls_alloca
&& EXIT_IGNORE_STACK
)
477 || FRAME_POINTER_REQUIRED
);
481 /* We can't ever use any of the fixed regs. */
482 COPY_HARD_REG_SET (never_use_colors
, fixed_reg_set
);
484 /* Additionally don't even try to use hardregs, which we already
485 know are not eliminable. This includes also either the
486 hard framepointer or all regs which are eliminable into the
487 stack pointer, if need_fp is set. */
488 #ifdef ELIMINABLE_REGS
489 for (j
= 0; j
< ARRAY_SIZE (eliminables
); j
++)
491 if (! CAN_ELIMINATE (eliminables
[j
].from
, eliminables
[j
].to
)
492 || (eliminables
[j
].to
== STACK_POINTER_REGNUM
&& need_fp
))
493 for (i
= HARD_REGNO_NREGS (eliminables
[j
].from
, Pmode
); i
--;)
494 SET_HARD_REG_BIT (never_use_colors
, eliminables
[j
].from
+ i
);
496 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
498 for (i
= HARD_REGNO_NREGS (HARD_FRAME_POINTER_REGNUM
, Pmode
); i
--;)
499 SET_HARD_REG_BIT (never_use_colors
, HARD_FRAME_POINTER_REGNUM
+ i
);
504 for (i
= HARD_REGNO_NREGS (FRAME_POINTER_REGNUM
, Pmode
); i
--;)
505 SET_HARD_REG_BIT (never_use_colors
, FRAME_POINTER_REGNUM
+ i
);
508 /* Stack and argument pointer are also rather useless to us. */
509 for (i
= HARD_REGNO_NREGS (STACK_POINTER_REGNUM
, Pmode
); i
--;)
510 SET_HARD_REG_BIT (never_use_colors
, STACK_POINTER_REGNUM
+ i
);
512 for (i
= HARD_REGNO_NREGS (ARG_POINTER_REGNUM
, Pmode
); i
--;)
513 SET_HARD_REG_BIT (never_use_colors
, ARG_POINTER_REGNUM
+ i
);
515 for (i
= 0; i
< 256; i
++)
517 unsigned char byte
= ((unsigned) i
) & 0xFF;
518 unsigned char count
= 0;
525 byte2bitcount
[i
] = count
;
528 for (i
= 0; i
< N_REG_CLASSES
; i
++)
531 COPY_HARD_REG_SET (rs
, reg_class_contents
[i
]);
532 AND_COMPL_HARD_REG_SET (rs
, never_use_colors
);
533 size
= hard_regs_count (rs
);
534 num_free_regs
[i
] = size
;
535 COPY_HARD_REG_SET (usable_regs
[i
], rs
);
538 /* Setup hardregs_for_mode[].
539 We are not interested only in the beginning of a multi-reg, but in
540 all the hardregs involved. Maybe HARD_REGNO_MODE_OK() only ok's
542 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
545 CLEAR_HARD_REG_SET (rs
);
546 for (reg
= 0; reg
< FIRST_PSEUDO_REGISTER
; reg
++)
547 if (HARD_REGNO_MODE_OK (reg
, i
)
548 /* Ignore VOIDmode and similar things. */
549 && (size
= HARD_REGNO_NREGS (reg
, i
)) != 0
550 && (reg
+ size
) <= FIRST_PSEUDO_REGISTER
)
553 SET_HARD_REG_BIT (rs
, reg
+ size
);
555 COPY_HARD_REG_SET (hardregs_for_mode
[i
], rs
);
558 for (an_unusable_color
= 0; an_unusable_color
< FIRST_PSEUDO_REGISTER
;
560 if (TEST_HARD_REG_BIT (never_use_colors
, an_unusable_color
))
562 if (an_unusable_color
== FIRST_PSEUDO_REGISTER
)
565 orig_max_uid
= get_max_uid ();
566 compute_bb_for_insn ();
567 ra_reg_renumber
= NULL
;
568 insns_with_deaths
= sbitmap_alloc (orig_max_uid
);
569 death_insns_max_uid
= orig_max_uid
;
570 sbitmap_ones (insns_with_deaths
);
571 gcc_obstack_init (&ra_obstack
);
574 /* Check the consistency of DF. This aborts if it violates some
575 invariances we expect. */
581 struct df_link
*link
;
585 bitmap b
= BITMAP_XMALLOC ();
586 bitmap empty_defs
= BITMAP_XMALLOC ();
587 bitmap empty_uses
= BITMAP_XMALLOC ();
589 /* Collect all the IDs of NULL references in the ID->REF arrays,
590 as df.c leaves them when updating the df structure. */
591 for (ui
= 0; ui
< df
->def_id
; ui
++)
593 bitmap_set_bit (empty_defs
, ui
);
594 for (ui
= 0; ui
< df
->use_id
; ui
++)
596 bitmap_set_bit (empty_uses
, ui
);
598 /* For each insn we check if the chain of references contain each
599 ref only once, doesn't contain NULL refs, or refs whose ID is invalid
600 (it df->refs[id] element is NULL). */
601 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
605 for (link
= DF_INSN_DEFS (df
, insn
); link
; link
= link
->next
)
606 if (!link
->ref
|| bitmap_bit_p (empty_defs
, DF_REF_ID (link
->ref
))
607 || bitmap_bit_p (b
, DF_REF_ID (link
->ref
)))
610 bitmap_set_bit (b
, DF_REF_ID (link
->ref
));
613 for (link
= DF_INSN_USES (df
, insn
); link
; link
= link
->next
)
614 if (!link
->ref
|| bitmap_bit_p (empty_uses
, DF_REF_ID (link
->ref
))
615 || bitmap_bit_p (b
, DF_REF_ID (link
->ref
)))
618 bitmap_set_bit (b
, DF_REF_ID (link
->ref
));
621 /* Now the same for the chains per register number. */
622 for (regno
= 0; regno
< max_reg_num (); regno
++)
625 for (link
= df
->regs
[regno
].defs
; link
; link
= link
->next
)
626 if (!link
->ref
|| bitmap_bit_p (empty_defs
, DF_REF_ID (link
->ref
))
627 || bitmap_bit_p (b
, DF_REF_ID (link
->ref
)))
630 bitmap_set_bit (b
, DF_REF_ID (link
->ref
));
633 for (link
= df
->regs
[regno
].uses
; link
; link
= link
->next
)
634 if (!link
->ref
|| bitmap_bit_p (empty_uses
, DF_REF_ID (link
->ref
))
635 || bitmap_bit_p (b
, DF_REF_ID (link
->ref
)))
638 bitmap_set_bit (b
, DF_REF_ID (link
->ref
));
641 BITMAP_XFREE (empty_uses
);
642 BITMAP_XFREE (empty_defs
);
646 /* Main register allocator entry point. */
652 FILE *ra_dump_file
= rtl_dump_file
;
653 rtx last
= get_last_insn ();
656 last
= prev_real_insn (last
);
657 /* If this is an empty function we shouldn't do all the following,
658 but instead just setup what's necessary, and return. */
660 /* We currently rely on the existence of the return value USE as
661 one of the last insns. Add it if it's not there anymore. */
665 for (e
= EXIT_BLOCK_PTR
->pred
; e
; e
= e
->pred_next
)
667 basic_block bb
= e
->src
;
669 if (!INSN_P (last
) || GET_CODE (PATTERN (last
)) != USE
)
673 use_return_register ();
674 insns
= get_insns ();
676 emit_insn_after (insns
, last
);
681 /* Setup debugging levels. */
684 /* Some useful presets of the debug level, I often use. */
685 case 0: debug_new_regalloc
= DUMP_EVER
; break;
686 case 1: debug_new_regalloc
= DUMP_COSTS
; break;
687 case 2: debug_new_regalloc
= DUMP_IGRAPH_M
; break;
688 case 3: debug_new_regalloc
= DUMP_COLORIZE
+ DUMP_COSTS
; break;
689 case 4: debug_new_regalloc
= DUMP_COLORIZE
+ DUMP_COSTS
+ DUMP_WEBS
;
691 case 5: debug_new_regalloc
= DUMP_FINAL_RTL
+ DUMP_COSTS
+
694 case 6: debug_new_regalloc
= DUMP_VALIDIFY
; break;
697 debug_new_regalloc
= 0;
699 /* Run regclass first, so we know the preferred and alternate classes
700 for each pseudo. Deactivate emitting of debug info, if it's not
701 explicitly requested. */
702 if ((debug_new_regalloc
& DUMP_REGCLASS
) == 0)
703 rtl_dump_file
= NULL
;
704 regclass (get_insns (), max_reg_num (), rtl_dump_file
);
705 rtl_dump_file
= ra_dump_file
;
707 /* We don't use those NOTEs, and as we anyway change all registers,
708 they only make problems later. */
709 count_or_remove_death_notes (NULL
, 1);
711 /* Initialize the different global arrays and regsets. */
714 /* And some global variables. */
717 max_normal_pseudo
= (unsigned) max_reg_num ();
723 last_check_uses
= NULL
;
725 WEBS(INITIAL
) = NULL
;
727 memset (hardreg2web
, 0, sizeof (hardreg2web
));
728 ticks_build
= ticks_rebuild
= 0;
730 /* The default is to use optimistic coalescing with interference
731 region spilling, without biased coloring. */
733 flag_ra_spill_every_use
= 0;
734 flag_ra_improved_spilling
= 1;
735 flag_ra_ir_spilling
= 1;
736 flag_ra_break_aliases
= 0;
737 flag_ra_optimistic_coalescing
= 1;
738 flag_ra_merge_spill_costs
= 1;
739 if (flag_ra_optimistic_coalescing
)
740 flag_ra_break_aliases
= 1;
741 flag_ra_dump_notes
= 0;
743 /* Allocate the global df structure. */
746 /* This is the main loop, calling one_pass as long as there are still
747 some spilled webs. */
750 ra_debug_msg (DUMP_NEARLY_EVER
, "RegAlloc Pass %d\n\n", ra_pass
);
752 internal_error ("Didn't find a coloring.\n");
754 /* First collect all the register refs and put them into
755 chains per insn, and per regno. In later passes only update
756 that info from the new and modified insns. */
757 df_analyse (df
, (ra_pass
== 1) ? 0 : (bitmap
) -1,
758 DF_HARD_REGS
| DF_RD_CHAIN
| DF_RU_CHAIN
);
760 if ((debug_new_regalloc
& DUMP_DF
) != 0)
763 df_dump (df
, DF_HARD_REGS
, rtl_dump_file
);
764 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
766 df_insn_debug_regno (df
, insn
, rtl_dump_file
);
770 /* Now allocate the memory needed for this pass, or (if it's not the
771 first pass), reallocate only additional memory. */
774 /* Build and colorize the interference graph, and possibly emit
775 spill insns. This also might delete certain move insns. */
776 changed
= one_pass (df
, ra_pass
> 1);
778 /* If that produced no changes, the graph was colorizable. */
781 /* Change the insns to refer to the new pseudos (one per web). */
783 /* Already setup a preliminary reg_renumber[] array, but don't
784 free our own version. reg_renumber[] will again be destroyed
785 later. We right now need it in dump_constraints() for
786 constrain_operands(1) whose subproc sometimes reference
787 it (because we are checking strictly, i.e. as if
790 /* Delete some more of the coalesced moves. */
796 /* If there were changes, this means spill code was added,
797 therefore repeat some things, including some initialization
798 of global data structures. */
799 if ((debug_new_regalloc
& DUMP_REGCLASS
) == 0)
800 rtl_dump_file
= NULL
;
801 /* We have new pseudos (the stackwebs). */
802 allocate_reg_info (max_reg_num (), FALSE
, FALSE
);
804 compute_bb_for_insn ();
805 /* Some of them might be dead. */
806 delete_trivially_dead_insns (get_insns (), max_reg_num ());
807 /* Those new pseudos need to have their REFS count set. */
808 reg_scan_update (get_insns (), NULL
, max_regno
);
809 max_regno
= max_reg_num ();
810 /* And they need useful classes too. */
811 regclass (get_insns (), max_reg_num (), rtl_dump_file
);
812 rtl_dump_file
= ra_dump_file
;
814 /* Remember the number of defs and uses, so we can distinguish
815 new from old refs in the next pass. */
816 last_def_id
= df
->def_id
;
817 last_use_id
= df
->use_id
;
820 /* Output the graph, and possibly the current insn sequence. */
822 if (changed
&& (debug_new_regalloc
& DUMP_RTL
) != 0)
824 ra_print_rtl_with_bb (rtl_dump_file
, get_insns ());
825 fflush (rtl_dump_file
);
828 /* Reset the web lists. */
834 /* We are done with allocation, free all memory and output some
838 if ((debug_new_regalloc
& DUMP_RESULTS
) == 0)
839 dump_cost (DUMP_COSTS
);
840 ra_debug_msg (DUMP_COSTS
, "ticks for build-phase: %ld\n", ticks_build
);
841 ra_debug_msg (DUMP_COSTS
, "ticks for rebuild-phase: %ld\n", ticks_rebuild
);
842 if ((debug_new_regalloc
& (DUMP_FINAL_RTL
| DUMP_RTL
)) != 0)
843 ra_print_rtl_with_bb (rtl_dump_file
, get_insns ());
845 /* We might have new pseudos, so allocate the info arrays for them. */
846 if ((debug_new_regalloc
& DUMP_SM
) == 0)
847 rtl_dump_file
= NULL
;
849 allocate_reg_info (max_reg_num (), FALSE
, FALSE
);
851 rtl_dump_file
= ra_dump_file
;
853 /* Some spill insns could've been inserted after trapping calls, i.e.
854 at the end of a basic block, which really ends at that call.
855 Fixup that breakages by adjusting basic block boundaries. */
856 fixup_abnormal_edges ();
858 /* Cleanup the flow graph. */
859 if ((debug_new_regalloc
& DUMP_LAST_FLOW
) == 0)
860 rtl_dump_file
= NULL
;
861 life_analysis (get_insns (), rtl_dump_file
,
862 PROP_DEATH_NOTES
| PROP_LOG_LINKS
| PROP_REG_INFO
);
863 cleanup_cfg (CLEANUP_EXPENSIVE
);
864 recompute_reg_usage (get_insns (), TRUE
);
866 dump_flow_info (rtl_dump_file
);
867 rtl_dump_file
= ra_dump_file
;
869 /* update_equiv_regs() can't be called after register allocation.
870 It might delete some pseudos, and insert other insns setting
871 up those pseudos in different places. This of course screws up
872 the allocation because that may destroy a hardreg for another
874 XXX we probably should do something like that on our own. I.e.
875 creating REG_EQUIV notes. */
876 /*update_equiv_regs ();*/
878 /* Setup the reg_renumber[] array for reload. */
880 sbitmap_free (insns_with_deaths
);
882 /* Remove REG_DEAD notes which are incorrectly set. See the docu
884 remove_suspicious_death_notes ();
886 if ((debug_new_regalloc
& DUMP_LAST_RTL
) != 0)
887 ra_print_rtl_with_bb (rtl_dump_file
, get_insns ());
888 dump_static_insn_cost (rtl_dump_file
,
889 "after allocation/spilling, before reload", NULL
);
891 /* Allocate the reg_equiv_memory_loc array for reload. */
892 reg_equiv_memory_loc
= (rtx
*) xcalloc (max_regno
, sizeof (rtx
));
893 /* And possibly initialize it. */
894 allocate_initial_values (reg_equiv_memory_loc
);
895 /* And one last regclass pass just before reload. */
896 regclass (get_insns (), max_reg_num (), rtl_dump_file
);
900 vim:cinoptions={.5s,g0,p5,t0,(0,^-0.5s,n-0.5s:tw=78:cindent:sw=4: