2006-09-13 Andreas Krebbel <krebbel1@de.ibm.com>
[official-gcc.git] / gcc / tree-ssa-propagate.c
blob00d5a9458896fa9780afedb86009cc6ab150e34d
1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "function.h"
35 #include "diagnostic.h"
36 #include "timevar.h"
37 #include "tree-dump.h"
38 #include "tree-flow.h"
39 #include "tree-pass.h"
40 #include "tree-ssa-propagate.h"
41 #include "langhooks.h"
42 #include "varray.h"
43 #include "vec.h"
45 /* This file implements a generic value propagation engine based on
46 the same propagation used by the SSA-CCP algorithm [1].
48 Propagation is performed by simulating the execution of every
49 statement that produces the value being propagated. Simulation
50 proceeds as follows:
52 1- Initially, all edges of the CFG are marked not executable and
53 the CFG worklist is seeded with all the statements in the entry
54 basic block (block 0).
56 2- Every statement S is simulated with a call to the call-back
57 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
58 results:
60 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
61 interest and does not affect any of the work lists.
63 SSA_PROP_VARYING: The value produced by S cannot be determined
64 at compile time. Further simulation of S is not required.
65 If S is a conditional jump, all the outgoing edges for the
66 block are considered executable and added to the work
67 list.
69 SSA_PROP_INTERESTING: S produces a value that can be computed
70 at compile time. Its result can be propagated into the
71 statements that feed from S. Furthermore, if S is a
72 conditional jump, only the edge known to be taken is added
73 to the work list. Edges that are known not to execute are
74 never simulated.
76 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
77 return value from SSA_PROP_VISIT_PHI has the same semantics as
78 described in #2.
80 4- Three work lists are kept. Statements are only added to these
81 lists if they produce one of SSA_PROP_INTERESTING or
82 SSA_PROP_VARYING.
84 CFG_BLOCKS contains the list of blocks to be simulated.
85 Blocks are added to this list if their incoming edges are
86 found executable.
88 VARYING_SSA_EDGES contains the list of statements that feed
89 from statements that produce an SSA_PROP_VARYING result.
90 These are simulated first to speed up processing.
92 INTERESTING_SSA_EDGES contains the list of statements that
93 feed from statements that produce an SSA_PROP_INTERESTING
94 result.
96 5- Simulation terminates when all three work lists are drained.
98 Before calling ssa_propagate, it is important to clear
99 DONT_SIMULATE_AGAIN for all the statements in the program that
100 should be simulated. This initialization allows an implementation
101 to specify which statements should never be simulated.
103 It is also important to compute def-use information before calling
104 ssa_propagate.
106 References:
108 [1] Constant propagation with conditional branches,
109 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
111 [2] Building an Optimizing Compiler,
112 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
114 [3] Advanced Compiler Design and Implementation,
115 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
117 /* Function pointers used to parameterize the propagation engine. */
118 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
119 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
121 /* Use the TREE_DEPRECATED bitflag to mark statements that have been
122 added to one of the SSA edges worklists. This flag is used to
123 avoid visiting statements unnecessarily when draining an SSA edge
124 worklist. If while simulating a basic block, we find a statement with
125 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
126 processing from visiting it again. */
127 #define STMT_IN_SSA_EDGE_WORKLIST(T) TREE_DEPRECATED (T)
129 /* A bitmap to keep track of executable blocks in the CFG. */
130 static sbitmap executable_blocks;
132 /* Array of control flow edges on the worklist. */
133 static VEC(basic_block,heap) *cfg_blocks;
135 static unsigned int cfg_blocks_num = 0;
136 static int cfg_blocks_tail;
137 static int cfg_blocks_head;
139 static sbitmap bb_in_list;
141 /* Worklist of SSA edges which will need reexamination as their
142 definition has changed. SSA edges are def-use edges in the SSA
143 web. For each D-U edge, we store the target statement or PHI node
144 U. */
145 static GTY(()) VEC(tree,gc) *interesting_ssa_edges;
147 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
148 list of SSA edges is split into two. One contains all SSA edges
149 who need to be reexamined because their lattice value changed to
150 varying (this worklist), and the other contains all other SSA edges
151 to be reexamined (INTERESTING_SSA_EDGES).
153 Since most values in the program are VARYING, the ideal situation
154 is to move them to that lattice value as quickly as possible.
155 Thus, it doesn't make sense to process any other type of lattice
156 value until all VARYING values are propagated fully, which is one
157 thing using the VARYING worklist achieves. In addition, if we
158 don't use a separate worklist for VARYING edges, we end up with
159 situations where lattice values move from
160 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
161 static GTY(()) VEC(tree,gc) *varying_ssa_edges;
164 /* Return true if the block worklist empty. */
166 static inline bool
167 cfg_blocks_empty_p (void)
169 return (cfg_blocks_num == 0);
173 /* Add a basic block to the worklist. The block must not be already
174 in the worklist, and it must not be the ENTRY or EXIT block. */
176 static void
177 cfg_blocks_add (basic_block bb)
179 gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
180 gcc_assert (!TEST_BIT (bb_in_list, bb->index));
182 if (cfg_blocks_empty_p ())
184 cfg_blocks_tail = cfg_blocks_head = 0;
185 cfg_blocks_num = 1;
187 else
189 cfg_blocks_num++;
190 if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks))
192 /* We have to grow the array now. Adjust to queue to occupy
193 the full space of the original array. We do not need to
194 initialize the newly allocated portion of the array
195 because we keep track of CFG_BLOCKS_HEAD and
196 CFG_BLOCKS_HEAD. */
197 cfg_blocks_tail = VEC_length (basic_block, cfg_blocks);
198 cfg_blocks_head = 0;
199 VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail);
201 else
202 cfg_blocks_tail = ((cfg_blocks_tail + 1)
203 % VEC_length (basic_block, cfg_blocks));
206 VEC_replace (basic_block, cfg_blocks, cfg_blocks_tail, bb);
207 SET_BIT (bb_in_list, bb->index);
211 /* Remove a block from the worklist. */
213 static basic_block
214 cfg_blocks_get (void)
216 basic_block bb;
218 bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head);
220 gcc_assert (!cfg_blocks_empty_p ());
221 gcc_assert (bb);
223 cfg_blocks_head = ((cfg_blocks_head + 1)
224 % VEC_length (basic_block, cfg_blocks));
225 --cfg_blocks_num;
226 RESET_BIT (bb_in_list, bb->index);
228 return bb;
232 /* We have just defined a new value for VAR. If IS_VARYING is true,
233 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
234 them to INTERESTING_SSA_EDGES. */
236 static void
237 add_ssa_edge (tree var, bool is_varying)
239 imm_use_iterator iter;
240 use_operand_p use_p;
242 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
244 tree use_stmt = USE_STMT (use_p);
246 if (!DONT_SIMULATE_AGAIN (use_stmt)
247 && !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
249 STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
250 if (is_varying)
251 VEC_safe_push (tree, gc, varying_ssa_edges, use_stmt);
252 else
253 VEC_safe_push (tree, gc, interesting_ssa_edges, use_stmt);
259 /* Add edge E to the control flow worklist. */
261 static void
262 add_control_edge (edge e)
264 basic_block bb = e->dest;
265 if (bb == EXIT_BLOCK_PTR)
266 return;
268 /* If the edge had already been executed, skip it. */
269 if (e->flags & EDGE_EXECUTABLE)
270 return;
272 e->flags |= EDGE_EXECUTABLE;
274 /* If the block is already in the list, we're done. */
275 if (TEST_BIT (bb_in_list, bb->index))
276 return;
278 cfg_blocks_add (bb);
280 if (dump_file && (dump_flags & TDF_DETAILS))
281 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
282 e->src->index, e->dest->index);
286 /* Simulate the execution of STMT and update the work lists accordingly. */
288 static void
289 simulate_stmt (tree stmt)
291 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
292 edge taken_edge = NULL;
293 tree output_name = NULL_TREE;
295 /* Don't bother visiting statements that are already
296 considered varying by the propagator. */
297 if (DONT_SIMULATE_AGAIN (stmt))
298 return;
300 if (TREE_CODE (stmt) == PHI_NODE)
302 val = ssa_prop_visit_phi (stmt);
303 output_name = PHI_RESULT (stmt);
305 else
306 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
308 if (val == SSA_PROP_VARYING)
310 DONT_SIMULATE_AGAIN (stmt) = 1;
312 /* If the statement produced a new varying value, add the SSA
313 edges coming out of OUTPUT_NAME. */
314 if (output_name)
315 add_ssa_edge (output_name, true);
317 /* If STMT transfers control out of its basic block, add
318 all outgoing edges to the work list. */
319 if (stmt_ends_bb_p (stmt))
321 edge e;
322 edge_iterator ei;
323 basic_block bb = bb_for_stmt (stmt);
324 FOR_EACH_EDGE (e, ei, bb->succs)
325 add_control_edge (e);
328 else if (val == SSA_PROP_INTERESTING)
330 /* If the statement produced new value, add the SSA edges coming
331 out of OUTPUT_NAME. */
332 if (output_name)
333 add_ssa_edge (output_name, false);
335 /* If we know which edge is going to be taken out of this block,
336 add it to the CFG work list. */
337 if (taken_edge)
338 add_control_edge (taken_edge);
342 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
343 drain. This pops statements off the given WORKLIST and processes
344 them until there are no more statements on WORKLIST.
345 We take a pointer to WORKLIST because it may be reallocated when an
346 SSA edge is added to it in simulate_stmt. */
348 static void
349 process_ssa_edge_worklist (VEC(tree,gc) **worklist)
351 /* Drain the entire worklist. */
352 while (VEC_length (tree, *worklist) > 0)
354 basic_block bb;
356 /* Pull the statement to simulate off the worklist. */
357 tree stmt = VEC_pop (tree, *worklist);
359 /* If this statement was already visited by simulate_block, then
360 we don't need to visit it again here. */
361 if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
362 continue;
364 /* STMT is no longer in a worklist. */
365 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
367 if (dump_file && (dump_flags & TDF_DETAILS))
369 fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
370 print_generic_stmt (dump_file, stmt, dump_flags);
373 bb = bb_for_stmt (stmt);
375 /* PHI nodes are always visited, regardless of whether or not
376 the destination block is executable. Otherwise, visit the
377 statement only if its block is marked executable. */
378 if (TREE_CODE (stmt) == PHI_NODE
379 || TEST_BIT (executable_blocks, bb->index))
380 simulate_stmt (stmt);
385 /* Simulate the execution of BLOCK. Evaluate the statement associated
386 with each variable reference inside the block. */
388 static void
389 simulate_block (basic_block block)
391 tree phi;
393 /* There is nothing to do for the exit block. */
394 if (block == EXIT_BLOCK_PTR)
395 return;
397 if (dump_file && (dump_flags & TDF_DETAILS))
398 fprintf (dump_file, "\nSimulating block %d\n", block->index);
400 /* Always simulate PHI nodes, even if we have simulated this block
401 before. */
402 for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
403 simulate_stmt (phi);
405 /* If this is the first time we've simulated this block, then we
406 must simulate each of its statements. */
407 if (!TEST_BIT (executable_blocks, block->index))
409 block_stmt_iterator j;
410 unsigned int normal_edge_count;
411 edge e, normal_edge;
412 edge_iterator ei;
414 /* Note that we have simulated this block. */
415 SET_BIT (executable_blocks, block->index);
417 for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
419 tree stmt = bsi_stmt (j);
421 /* If this statement is already in the worklist then
422 "cancel" it. The reevaluation implied by the worklist
423 entry will produce the same value we generate here and
424 thus reevaluating it again from the worklist is
425 pointless. */
426 if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
427 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
429 simulate_stmt (stmt);
432 /* We can not predict when abnormal edges will be executed, so
433 once a block is considered executable, we consider any
434 outgoing abnormal edges as executable.
436 At the same time, if this block has only one successor that is
437 reached by non-abnormal edges, then add that successor to the
438 worklist. */
439 normal_edge_count = 0;
440 normal_edge = NULL;
441 FOR_EACH_EDGE (e, ei, block->succs)
443 if (e->flags & EDGE_ABNORMAL)
444 add_control_edge (e);
445 else
447 normal_edge_count++;
448 normal_edge = e;
452 if (normal_edge_count == 1)
453 add_control_edge (normal_edge);
458 /* Initialize local data structures and work lists. */
460 static void
461 ssa_prop_init (void)
463 edge e;
464 edge_iterator ei;
465 basic_block bb;
466 size_t i;
468 /* Worklists of SSA edges. */
469 interesting_ssa_edges = VEC_alloc (tree, gc, 20);
470 varying_ssa_edges = VEC_alloc (tree, gc, 20);
472 executable_blocks = sbitmap_alloc (last_basic_block);
473 sbitmap_zero (executable_blocks);
475 bb_in_list = sbitmap_alloc (last_basic_block);
476 sbitmap_zero (bb_in_list);
478 if (dump_file && (dump_flags & TDF_DETAILS))
479 dump_immediate_uses (dump_file);
481 cfg_blocks = VEC_alloc (basic_block, heap, 20);
482 VEC_safe_grow (basic_block, heap, cfg_blocks, 20);
484 /* Initialize the values for every SSA_NAME. */
485 for (i = 1; i < num_ssa_names; i++)
486 if (ssa_name (i))
487 SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE;
489 /* Initially assume that every edge in the CFG is not executable.
490 (including the edges coming out of ENTRY_BLOCK_PTR). */
491 FOR_ALL_BB (bb)
493 block_stmt_iterator si;
495 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
496 STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
498 FOR_EACH_EDGE (e, ei, bb->succs)
499 e->flags &= ~EDGE_EXECUTABLE;
502 /* Seed the algorithm by adding the successors of the entry block to the
503 edge worklist. */
504 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
505 add_control_edge (e);
509 /* Free allocated storage. */
511 static void
512 ssa_prop_fini (void)
514 VEC_free (tree, gc, interesting_ssa_edges);
515 VEC_free (tree, gc, varying_ssa_edges);
516 VEC_free (basic_block, heap, cfg_blocks);
517 cfg_blocks = NULL;
518 sbitmap_free (bb_in_list);
519 sbitmap_free (executable_blocks);
523 /* Get the main expression from statement STMT. */
525 tree
526 get_rhs (tree stmt)
528 enum tree_code code = TREE_CODE (stmt);
530 switch (code)
532 case RETURN_EXPR:
533 stmt = TREE_OPERAND (stmt, 0);
534 if (!stmt || TREE_CODE (stmt) != MODIFY_EXPR)
535 return stmt;
536 /* FALLTHRU */
538 case MODIFY_EXPR:
539 stmt = TREE_OPERAND (stmt, 1);
540 if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
541 return TREE_OPERAND (stmt, 0);
542 else
543 return stmt;
545 case COND_EXPR:
546 return COND_EXPR_COND (stmt);
547 case SWITCH_EXPR:
548 return SWITCH_COND (stmt);
549 case GOTO_EXPR:
550 return GOTO_DESTINATION (stmt);
551 case LABEL_EXPR:
552 return LABEL_EXPR_LABEL (stmt);
554 default:
555 return stmt;
560 /* Set the main expression of *STMT_P to EXPR. If EXPR is not a valid
561 GIMPLE expression no changes are done and the function returns
562 false. */
564 bool
565 set_rhs (tree *stmt_p, tree expr)
567 tree stmt = *stmt_p, op;
568 enum tree_code code = TREE_CODE (expr);
569 stmt_ann_t ann;
570 tree var;
571 ssa_op_iter iter;
573 /* Verify the constant folded result is valid gimple. */
574 if (TREE_CODE_CLASS (code) == tcc_binary)
576 if (!is_gimple_val (TREE_OPERAND (expr, 0))
577 || !is_gimple_val (TREE_OPERAND (expr, 1)))
578 return false;
580 else if (TREE_CODE_CLASS (code) == tcc_unary)
582 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
583 return false;
585 else if (code == ADDR_EXPR)
587 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ARRAY_REF
588 && !is_gimple_val (TREE_OPERAND (TREE_OPERAND (expr, 0), 1)))
589 return false;
591 else if (code == COMPOUND_EXPR)
592 return false;
594 switch (TREE_CODE (stmt))
596 case RETURN_EXPR:
597 op = TREE_OPERAND (stmt, 0);
598 if (TREE_CODE (op) != MODIFY_EXPR)
600 TREE_OPERAND (stmt, 0) = expr;
601 break;
603 stmt = op;
604 /* FALLTHRU */
606 case MODIFY_EXPR:
607 op = TREE_OPERAND (stmt, 1);
608 if (TREE_CODE (op) == WITH_SIZE_EXPR)
609 stmt = op;
610 TREE_OPERAND (stmt, 1) = expr;
611 break;
613 case COND_EXPR:
614 if (!is_gimple_condexpr (expr))
615 return false;
616 COND_EXPR_COND (stmt) = expr;
617 break;
618 case SWITCH_EXPR:
619 SWITCH_COND (stmt) = expr;
620 break;
621 case GOTO_EXPR:
622 GOTO_DESTINATION (stmt) = expr;
623 break;
624 case LABEL_EXPR:
625 LABEL_EXPR_LABEL (stmt) = expr;
626 break;
628 default:
629 /* Replace the whole statement with EXPR. If EXPR has no side
630 effects, then replace *STMT_P with an empty statement. */
631 ann = stmt_ann (stmt);
632 *stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
633 (*stmt_p)->common.ann = (tree_ann_t) ann;
635 if (in_ssa_p
636 && TREE_SIDE_EFFECTS (expr))
638 /* Fix all the SSA_NAMEs created by *STMT_P to point to its new
639 replacement. */
640 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
642 if (TREE_CODE (var) == SSA_NAME)
643 SSA_NAME_DEF_STMT (var) = *stmt_p;
646 break;
649 return true;
653 /* Entry point to the propagation engine.
655 VISIT_STMT is called for every statement visited.
656 VISIT_PHI is called for every PHI node visited. */
658 void
659 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
660 ssa_prop_visit_phi_fn visit_phi)
662 ssa_prop_visit_stmt = visit_stmt;
663 ssa_prop_visit_phi = visit_phi;
665 ssa_prop_init ();
667 /* Iterate until the worklists are empty. */
668 while (!cfg_blocks_empty_p ()
669 || VEC_length (tree, interesting_ssa_edges) > 0
670 || VEC_length (tree, varying_ssa_edges) > 0)
672 if (!cfg_blocks_empty_p ())
674 /* Pull the next block to simulate off the worklist. */
675 basic_block dest_block = cfg_blocks_get ();
676 simulate_block (dest_block);
679 /* In order to move things to varying as quickly as
680 possible,process the VARYING_SSA_EDGES worklist first. */
681 process_ssa_edge_worklist (&varying_ssa_edges);
683 /* Now process the INTERESTING_SSA_EDGES worklist. */
684 process_ssa_edge_worklist (&interesting_ssa_edges);
687 ssa_prop_fini ();
691 /* Return the first V_MAY_DEF or V_MUST_DEF operand for STMT. */
693 tree
694 first_vdef (tree stmt)
696 ssa_op_iter iter;
697 tree op;
699 /* Simply return the first operand we arrive at. */
700 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
701 return (op);
703 gcc_unreachable ();
707 /* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref'
708 is a non-volatile pointer dereference, a structure reference or a
709 reference to a single _DECL. Ignore volatile memory references
710 because they are not interesting for the optimizers. */
712 bool
713 stmt_makes_single_load (tree stmt)
715 tree rhs;
717 if (TREE_CODE (stmt) != MODIFY_EXPR)
718 return false;
720 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VUSE))
721 return false;
723 rhs = TREE_OPERAND (stmt, 1);
724 STRIP_NOPS (rhs);
726 return (!TREE_THIS_VOLATILE (rhs)
727 && (DECL_P (rhs)
728 || REFERENCE_CLASS_P (rhs)));
732 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
733 is a non-volatile pointer dereference, a structure reference or a
734 reference to a single _DECL. Ignore volatile memory references
735 because they are not interesting for the optimizers. */
737 bool
738 stmt_makes_single_store (tree stmt)
740 tree lhs;
742 if (TREE_CODE (stmt) != MODIFY_EXPR)
743 return false;
745 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VMUSTDEF))
746 return false;
748 lhs = TREE_OPERAND (stmt, 0);
749 STRIP_NOPS (lhs);
751 return (!TREE_THIS_VOLATILE (lhs)
752 && (DECL_P (lhs)
753 || REFERENCE_CLASS_P (lhs)));
757 /* If STMT makes a single memory load and all the virtual use operands
758 have the same value in array VALUES, return it. Otherwise, return
759 NULL. */
761 prop_value_t *
762 get_value_loaded_by (tree stmt, prop_value_t *values)
764 ssa_op_iter i;
765 tree vuse;
766 prop_value_t *prev_val = NULL;
767 prop_value_t *val = NULL;
769 FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, i, SSA_OP_VIRTUAL_USES)
771 val = &values[SSA_NAME_VERSION (vuse)];
772 if (prev_val && prev_val->value != val->value)
773 return NULL;
774 prev_val = val;
777 return val;
781 /* Propagation statistics. */
782 struct prop_stats_d
784 long num_const_prop;
785 long num_copy_prop;
786 long num_pred_folded;
789 static struct prop_stats_d prop_stats;
791 /* Replace USE references in statement STMT with the values stored in
792 PROP_VALUE. Return true if at least one reference was replaced. If
793 REPLACED_ADDRESSES_P is given, it will be set to true if an address
794 constant was replaced. */
796 bool
797 replace_uses_in (tree stmt, bool *replaced_addresses_p,
798 prop_value_t *prop_value)
800 bool replaced = false;
801 use_operand_p use;
802 ssa_op_iter iter;
804 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
806 tree tuse = USE_FROM_PTR (use);
807 tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
809 if (val == tuse || val == NULL_TREE)
810 continue;
812 if (TREE_CODE (stmt) == ASM_EXPR
813 && !may_propagate_copy_into_asm (tuse))
814 continue;
816 if (!may_propagate_copy (tuse, val))
817 continue;
819 if (TREE_CODE (val) != SSA_NAME)
820 prop_stats.num_const_prop++;
821 else
822 prop_stats.num_copy_prop++;
824 propagate_value (use, val);
826 replaced = true;
827 if (POINTER_TYPE_P (TREE_TYPE (tuse)) && replaced_addresses_p)
828 *replaced_addresses_p = true;
831 return replaced;
835 /* Replace the VUSE references in statement STMT with the values
836 stored in PROP_VALUE. Return true if a reference was replaced. If
837 REPLACED_ADDRESSES_P is given, it will be set to true if an address
838 constant was replaced.
840 Replacing VUSE operands is slightly more complex than replacing
841 regular USEs. We are only interested in two types of replacements
842 here:
844 1- If the value to be replaced is a constant or an SSA name for a
845 GIMPLE register, then we are making a copy/constant propagation
846 from a memory store. For instance,
848 # a_3 = V_MAY_DEF <a_2>
849 a.b = x_1;
851 # VUSE <a_3>
852 y_4 = a.b;
854 This replacement is only possible iff STMT is an assignment
855 whose RHS is identical to the LHS of the statement that created
856 the VUSE(s) that we are replacing. Otherwise, we may do the
857 wrong replacement:
859 # a_3 = V_MAY_DEF <a_2>
860 # b_5 = V_MAY_DEF <b_4>
861 *p = 10;
863 # VUSE <b_5>
864 x_8 = b;
866 Even though 'b_5' acquires the value '10' during propagation,
867 there is no way for the propagator to tell whether the
868 replacement is correct in every reached use, because values are
869 computed at definition sites. Therefore, when doing final
870 substitution of propagated values, we have to check each use
871 site. Since the RHS of STMT ('b') is different from the LHS of
872 the originating statement ('*p'), we cannot replace 'b' with
873 '10'.
875 Similarly, when merging values from PHI node arguments,
876 propagators need to take care not to merge the same values
877 stored in different locations:
879 if (...)
880 # a_3 = V_MAY_DEF <a_2>
881 a.b = 3;
882 else
883 # a_4 = V_MAY_DEF <a_2>
884 a.c = 3;
885 # a_5 = PHI <a_3, a_4>
887 It would be wrong to propagate '3' into 'a_5' because that
888 operation merges two stores to different memory locations.
891 2- If the value to be replaced is an SSA name for a virtual
892 register, then we simply replace each VUSE operand with its
893 value from PROP_VALUE. This is the same replacement done by
894 replace_uses_in. */
896 static bool
897 replace_vuses_in (tree stmt, bool *replaced_addresses_p,
898 prop_value_t *prop_value)
900 bool replaced = false;
901 ssa_op_iter iter;
902 use_operand_p vuse;
904 if (stmt_makes_single_load (stmt))
906 /* If STMT is an assignment whose RHS is a single memory load,
907 see if we are trying to propagate a constant or a GIMPLE
908 register (case #1 above). */
909 prop_value_t *val = get_value_loaded_by (stmt, prop_value);
910 tree rhs = TREE_OPERAND (stmt, 1);
912 if (val
913 && val->value
914 && (is_gimple_reg (val->value)
915 || is_gimple_min_invariant (val->value))
916 && simple_cst_equal (rhs, val->mem_ref) == 1)
919 /* If we are replacing a constant address, inform our
920 caller. */
921 if (TREE_CODE (val->value) != SSA_NAME
922 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1)))
923 && replaced_addresses_p)
924 *replaced_addresses_p = true;
926 /* We can only perform the substitution if the load is done
927 from the same memory location as the original store.
928 Since we already know that there are no intervening
929 stores between DEF_STMT and STMT, we only need to check
930 that the RHS of STMT is the same as the memory reference
931 propagated together with the value. */
932 TREE_OPERAND (stmt, 1) = val->value;
934 if (TREE_CODE (val->value) != SSA_NAME)
935 prop_stats.num_const_prop++;
936 else
937 prop_stats.num_copy_prop++;
939 /* Since we have replaced the whole RHS of STMT, there
940 is no point in checking the other VUSEs, as they will
941 all have the same value. */
942 return true;
946 /* Otherwise, the values for every VUSE operand must be other
947 SSA_NAMEs that can be propagated into STMT. */
948 FOR_EACH_SSA_USE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES)
950 tree var = USE_FROM_PTR (vuse);
951 tree val = prop_value[SSA_NAME_VERSION (var)].value;
953 if (val == NULL_TREE || var == val)
954 continue;
956 /* Constants and copies propagated between real and virtual
957 operands are only possible in the cases handled above. They
958 should be ignored in any other context. */
959 if (is_gimple_min_invariant (val) || is_gimple_reg (val))
960 continue;
962 propagate_value (vuse, val);
963 prop_stats.num_copy_prop++;
964 replaced = true;
967 return replaced;
971 /* Replace propagated values into all the arguments for PHI using the
972 values from PROP_VALUE. */
974 static void
975 replace_phi_args_in (tree phi, prop_value_t *prop_value)
977 int i;
978 bool replaced = false;
979 tree prev_phi = NULL;
981 if (dump_file && (dump_flags & TDF_DETAILS))
982 prev_phi = unshare_expr (phi);
984 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
986 tree arg = PHI_ARG_DEF (phi, i);
988 if (TREE_CODE (arg) == SSA_NAME)
990 tree val = prop_value[SSA_NAME_VERSION (arg)].value;
992 if (val && val != arg && may_propagate_copy (arg, val))
994 if (TREE_CODE (val) != SSA_NAME)
995 prop_stats.num_const_prop++;
996 else
997 prop_stats.num_copy_prop++;
999 propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
1000 replaced = true;
1002 /* If we propagated a copy and this argument flows
1003 through an abnormal edge, update the replacement
1004 accordingly. */
1005 if (TREE_CODE (val) == SSA_NAME
1006 && PHI_ARG_EDGE (phi, i)->flags & EDGE_ABNORMAL)
1007 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1012 if (replaced && dump_file && (dump_flags & TDF_DETAILS))
1014 fprintf (dump_file, "Folded PHI node: ");
1015 print_generic_stmt (dump_file, prev_phi, TDF_SLIM);
1016 fprintf (dump_file, " into: ");
1017 print_generic_stmt (dump_file, phi, TDF_SLIM);
1018 fprintf (dump_file, "\n");
1023 /* If STMT has a predicate whose value can be computed using the value
1024 range information computed by VRP, compute its value and return true.
1025 Otherwise, return false. */
1027 static bool
1028 fold_predicate_in (tree stmt)
1030 tree *pred_p = NULL;
1031 bool modify_expr_p = false;
1032 tree val;
1034 if (TREE_CODE (stmt) == MODIFY_EXPR
1035 && COMPARISON_CLASS_P (TREE_OPERAND (stmt, 1)))
1037 modify_expr_p = true;
1038 pred_p = &TREE_OPERAND (stmt, 1);
1040 else if (TREE_CODE (stmt) == COND_EXPR)
1041 pred_p = &COND_EXPR_COND (stmt);
1042 else
1043 return false;
1045 val = vrp_evaluate_conditional (*pred_p, true);
1046 if (val)
1048 if (modify_expr_p)
1049 val = fold_convert (TREE_TYPE (*pred_p), val);
1051 if (dump_file)
1053 fprintf (dump_file, "Folding predicate ");
1054 print_generic_expr (dump_file, *pred_p, 0);
1055 fprintf (dump_file, " to ");
1056 print_generic_expr (dump_file, val, 0);
1057 fprintf (dump_file, "\n");
1060 prop_stats.num_pred_folded++;
1061 *pred_p = val;
1062 return true;
1065 return false;
1069 /* Perform final substitution and folding of propagated values.
1071 PROP_VALUE[I] contains the single value that should be substituted
1072 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
1073 substituted.
1075 If USE_RANGES_P is true, statements that contain predicate
1076 expressions are evaluated with a call to vrp_evaluate_conditional.
1077 This will only give meaningful results when called from tree-vrp.c
1078 (the information used by vrp_evaluate_conditional is built by the
1079 VRP pass). */
1081 void
1082 substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p)
1084 basic_block bb;
1086 if (prop_value == NULL && !use_ranges_p)
1087 return;
1089 if (dump_file && (dump_flags & TDF_DETAILS))
1090 fprintf (dump_file, "\nSubstituing values and folding statements\n\n");
1092 memset (&prop_stats, 0, sizeof (prop_stats));
1094 /* Substitute values in every statement of every basic block. */
1095 FOR_EACH_BB (bb)
1097 block_stmt_iterator i;
1098 tree phi;
1100 /* Propagate known values into PHI nodes. */
1101 if (prop_value)
1102 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1103 replace_phi_args_in (phi, prop_value);
1105 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
1107 bool replaced_address, did_replace;
1108 tree prev_stmt = NULL;
1109 tree stmt = bsi_stmt (i);
1111 /* Ignore ASSERT_EXPRs. They are used by VRP to generate
1112 range information for names and they are discarded
1113 afterwards. */
1114 if (TREE_CODE (stmt) == MODIFY_EXPR
1115 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
1116 continue;
1118 /* Replace the statement with its folded version and mark it
1119 folded. */
1120 did_replace = false;
1121 replaced_address = false;
1122 if (dump_file && (dump_flags & TDF_DETAILS))
1123 prev_stmt = unshare_expr (stmt);
1125 /* If we have range information, see if we can fold
1126 predicate expressions. */
1127 if (use_ranges_p)
1128 did_replace = fold_predicate_in (stmt);
1130 if (prop_value)
1132 /* Only replace real uses if we couldn't fold the
1133 statement using value range information (value range
1134 information is not collected on virtuals, so we only
1135 need to check this for real uses). */
1136 if (!did_replace)
1137 did_replace |= replace_uses_in (stmt, &replaced_address,
1138 prop_value);
1140 did_replace |= replace_vuses_in (stmt, &replaced_address,
1141 prop_value);
1144 /* If we made a replacement, fold and cleanup the statement. */
1145 if (did_replace)
1147 tree old_stmt = stmt;
1148 tree rhs;
1150 fold_stmt (bsi_stmt_ptr (i));
1151 stmt = bsi_stmt (i);
1153 /* If we folded a builtin function, we'll likely
1154 need to rename VDEFs. */
1155 mark_new_vars_to_rename (stmt);
1157 /* If we cleaned up EH information from the statement,
1158 remove EH edges. */
1159 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1160 tree_purge_dead_eh_edges (bb);
1162 rhs = get_rhs (stmt);
1163 if (TREE_CODE (rhs) == ADDR_EXPR)
1164 recompute_tree_invariant_for_addr_expr (rhs);
1166 if (dump_file && (dump_flags & TDF_DETAILS))
1168 fprintf (dump_file, "Folded statement: ");
1169 print_generic_stmt (dump_file, prev_stmt, TDF_SLIM);
1170 fprintf (dump_file, " into: ");
1171 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1172 fprintf (dump_file, "\n");
1176 /* Some statements may be simplified using ranges. For
1177 example, division may be replaced by shifts, modulo
1178 replaced with bitwise and, etc. Do this after
1179 substituting constants, folding, etc so that we're
1180 presented with a fully propagated, canonicalized
1181 statement. */
1182 if (use_ranges_p)
1183 simplify_stmt_using_ranges (stmt);
1188 if (dump_file && (dump_flags & TDF_STATS))
1190 fprintf (dump_file, "Constants propagated: %6ld\n",
1191 prop_stats.num_const_prop);
1192 fprintf (dump_file, "Copies propagated: %6ld\n",
1193 prop_stats.num_copy_prop);
1194 fprintf (dump_file, "Predicates folded: %6ld\n",
1195 prop_stats.num_pred_folded);
1199 #include "gt-tree-ssa-propagate.h"