1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
27 #include "coretypes.h"
34 #include "insn-config.h"
39 #include "langhooks.h"
41 static void store_fixed_bit_field (rtx
, unsigned HOST_WIDE_INT
,
42 unsigned HOST_WIDE_INT
,
43 unsigned HOST_WIDE_INT
, rtx
);
44 static void store_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
45 unsigned HOST_WIDE_INT
, rtx
);
46 static rtx
extract_fixed_bit_field (enum machine_mode
, rtx
,
47 unsigned HOST_WIDE_INT
,
48 unsigned HOST_WIDE_INT
,
49 unsigned HOST_WIDE_INT
, rtx
, int);
50 static rtx
mask_rtx (enum machine_mode
, int, int, int);
51 static rtx
lshift_value (enum machine_mode
, rtx
, int, int);
52 static rtx
extract_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
53 unsigned HOST_WIDE_INT
, int);
54 static void do_cmp_and_jump (rtx
, rtx
, enum rtx_code
, enum machine_mode
, rtx
);
55 static rtx
expand_smod_pow2 (enum machine_mode
, rtx
, HOST_WIDE_INT
);
56 static rtx
expand_sdiv_pow2 (enum machine_mode
, rtx
, HOST_WIDE_INT
);
58 /* Test whether a value is zero of a power of two. */
59 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
61 /* Nonzero means divides or modulus operations are relatively cheap for
62 powers of two, so don't use branches; emit the operation instead.
63 Usually, this will mean that the MD file will emit non-branch
66 static bool sdiv_pow2_cheap
[NUM_MACHINE_MODES
];
67 static bool smod_pow2_cheap
[NUM_MACHINE_MODES
];
69 #ifndef SLOW_UNALIGNED_ACCESS
70 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
73 /* For compilers that support multiple targets with different word sizes,
74 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
75 is the H8/300(H) compiler. */
77 #ifndef MAX_BITS_PER_WORD
78 #define MAX_BITS_PER_WORD BITS_PER_WORD
81 /* Reduce conditional compilation elsewhere. */
84 #define CODE_FOR_insv CODE_FOR_nothing
85 #define gen_insv(a,b,c,d) NULL_RTX
89 #define CODE_FOR_extv CODE_FOR_nothing
90 #define gen_extv(a,b,c,d) NULL_RTX
94 #define CODE_FOR_extzv CODE_FOR_nothing
95 #define gen_extzv(a,b,c,d) NULL_RTX
98 /* Cost of various pieces of RTL. Note that some of these are indexed by
99 shift count and some by mode. */
100 static int zero_cost
;
101 static int add_cost
[NUM_MACHINE_MODES
];
102 static int neg_cost
[NUM_MACHINE_MODES
];
103 static int shift_cost
[NUM_MACHINE_MODES
][MAX_BITS_PER_WORD
];
104 static int shiftadd_cost
[NUM_MACHINE_MODES
][MAX_BITS_PER_WORD
];
105 static int shiftsub_cost
[NUM_MACHINE_MODES
][MAX_BITS_PER_WORD
];
106 static int mul_cost
[NUM_MACHINE_MODES
];
107 static int sdiv_cost
[NUM_MACHINE_MODES
];
108 static int udiv_cost
[NUM_MACHINE_MODES
];
109 static int mul_widen_cost
[NUM_MACHINE_MODES
];
110 static int mul_highpart_cost
[NUM_MACHINE_MODES
];
117 struct rtx_def reg
; rtunion reg_fld
[2];
118 struct rtx_def plus
; rtunion plus_fld1
;
120 struct rtx_def mult
; rtunion mult_fld1
;
121 struct rtx_def sdiv
; rtunion sdiv_fld1
;
122 struct rtx_def udiv
; rtunion udiv_fld1
;
124 struct rtx_def sdiv_32
; rtunion sdiv_32_fld1
;
125 struct rtx_def smod_32
; rtunion smod_32_fld1
;
126 struct rtx_def wide_mult
; rtunion wide_mult_fld1
;
127 struct rtx_def wide_lshr
; rtunion wide_lshr_fld1
;
128 struct rtx_def wide_trunc
;
129 struct rtx_def shift
; rtunion shift_fld1
;
130 struct rtx_def shift_mult
; rtunion shift_mult_fld1
;
131 struct rtx_def shift_add
; rtunion shift_add_fld1
;
132 struct rtx_def shift_sub
; rtunion shift_sub_fld1
;
135 rtx pow2
[MAX_BITS_PER_WORD
];
136 rtx cint
[MAX_BITS_PER_WORD
];
138 enum machine_mode mode
, wider_mode
;
140 zero_cost
= rtx_cost (const0_rtx
, 0);
142 for (m
= 1; m
< MAX_BITS_PER_WORD
; m
++)
144 pow2
[m
] = GEN_INT ((HOST_WIDE_INT
) 1 << m
);
145 cint
[m
] = GEN_INT (m
);
148 memset (&all
, 0, sizeof all
);
150 PUT_CODE (&all
.reg
, REG
);
151 /* Avoid using hard regs in ways which may be unsupported. */
152 REGNO (&all
.reg
) = LAST_VIRTUAL_REGISTER
+ 1;
154 PUT_CODE (&all
.plus
, PLUS
);
155 XEXP (&all
.plus
, 0) = &all
.reg
;
156 XEXP (&all
.plus
, 1) = &all
.reg
;
158 PUT_CODE (&all
.neg
, NEG
);
159 XEXP (&all
.neg
, 0) = &all
.reg
;
161 PUT_CODE (&all
.mult
, MULT
);
162 XEXP (&all
.mult
, 0) = &all
.reg
;
163 XEXP (&all
.mult
, 1) = &all
.reg
;
165 PUT_CODE (&all
.sdiv
, DIV
);
166 XEXP (&all
.sdiv
, 0) = &all
.reg
;
167 XEXP (&all
.sdiv
, 1) = &all
.reg
;
169 PUT_CODE (&all
.udiv
, UDIV
);
170 XEXP (&all
.udiv
, 0) = &all
.reg
;
171 XEXP (&all
.udiv
, 1) = &all
.reg
;
173 PUT_CODE (&all
.sdiv_32
, DIV
);
174 XEXP (&all
.sdiv_32
, 0) = &all
.reg
;
175 XEXP (&all
.sdiv_32
, 1) = 32 < MAX_BITS_PER_WORD
? cint
[32] : GEN_INT (32);
177 PUT_CODE (&all
.smod_32
, MOD
);
178 XEXP (&all
.smod_32
, 0) = &all
.reg
;
179 XEXP (&all
.smod_32
, 1) = XEXP (&all
.sdiv_32
, 1);
181 PUT_CODE (&all
.zext
, ZERO_EXTEND
);
182 XEXP (&all
.zext
, 0) = &all
.reg
;
184 PUT_CODE (&all
.wide_mult
, MULT
);
185 XEXP (&all
.wide_mult
, 0) = &all
.zext
;
186 XEXP (&all
.wide_mult
, 1) = &all
.zext
;
188 PUT_CODE (&all
.wide_lshr
, LSHIFTRT
);
189 XEXP (&all
.wide_lshr
, 0) = &all
.wide_mult
;
191 PUT_CODE (&all
.wide_trunc
, TRUNCATE
);
192 XEXP (&all
.wide_trunc
, 0) = &all
.wide_lshr
;
194 PUT_CODE (&all
.shift
, ASHIFT
);
195 XEXP (&all
.shift
, 0) = &all
.reg
;
197 PUT_CODE (&all
.shift_mult
, MULT
);
198 XEXP (&all
.shift_mult
, 0) = &all
.reg
;
200 PUT_CODE (&all
.shift_add
, PLUS
);
201 XEXP (&all
.shift_add
, 0) = &all
.shift_mult
;
202 XEXP (&all
.shift_add
, 1) = &all
.reg
;
204 PUT_CODE (&all
.shift_sub
, MINUS
);
205 XEXP (&all
.shift_sub
, 0) = &all
.shift_mult
;
206 XEXP (&all
.shift_sub
, 1) = &all
.reg
;
208 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
210 mode
= GET_MODE_WIDER_MODE (mode
))
212 PUT_MODE (&all
.reg
, mode
);
213 PUT_MODE (&all
.plus
, mode
);
214 PUT_MODE (&all
.neg
, mode
);
215 PUT_MODE (&all
.mult
, mode
);
216 PUT_MODE (&all
.sdiv
, mode
);
217 PUT_MODE (&all
.udiv
, mode
);
218 PUT_MODE (&all
.sdiv_32
, mode
);
219 PUT_MODE (&all
.smod_32
, mode
);
220 PUT_MODE (&all
.wide_trunc
, mode
);
221 PUT_MODE (&all
.shift
, mode
);
222 PUT_MODE (&all
.shift_mult
, mode
);
223 PUT_MODE (&all
.shift_add
, mode
);
224 PUT_MODE (&all
.shift_sub
, mode
);
226 add_cost
[mode
] = rtx_cost (&all
.plus
, SET
);
227 neg_cost
[mode
] = rtx_cost (&all
.neg
, SET
);
228 mul_cost
[mode
] = rtx_cost (&all
.mult
, SET
);
229 sdiv_cost
[mode
] = rtx_cost (&all
.sdiv
, SET
);
230 udiv_cost
[mode
] = rtx_cost (&all
.udiv
, SET
);
232 sdiv_pow2_cheap
[mode
] = (rtx_cost (&all
.sdiv_32
, SET
)
233 <= 2 * add_cost
[mode
]);
234 smod_pow2_cheap
[mode
] = (rtx_cost (&all
.smod_32
, SET
)
235 <= 4 * add_cost
[mode
]);
237 wider_mode
= GET_MODE_WIDER_MODE (mode
);
238 if (wider_mode
!= VOIDmode
)
240 PUT_MODE (&all
.zext
, wider_mode
);
241 PUT_MODE (&all
.wide_mult
, wider_mode
);
242 PUT_MODE (&all
.wide_lshr
, wider_mode
);
243 XEXP (&all
.wide_lshr
, 1) = GEN_INT (GET_MODE_BITSIZE (mode
));
245 mul_widen_cost
[wider_mode
] = rtx_cost (&all
.wide_mult
, SET
);
246 mul_highpart_cost
[mode
] = rtx_cost (&all
.wide_trunc
, SET
);
249 shift_cost
[mode
][0] = 0;
250 shiftadd_cost
[mode
][0] = shiftsub_cost
[mode
][0] = add_cost
[mode
];
252 n
= MIN (MAX_BITS_PER_WORD
, GET_MODE_BITSIZE (mode
));
253 for (m
= 1; m
< n
; m
++)
255 XEXP (&all
.shift
, 1) = cint
[m
];
256 XEXP (&all
.shift_mult
, 1) = pow2
[m
];
258 shift_cost
[mode
][m
] = rtx_cost (&all
.shift
, SET
);
259 shiftadd_cost
[mode
][m
] = rtx_cost (&all
.shift_add
, SET
);
260 shiftsub_cost
[mode
][m
] = rtx_cost (&all
.shift_sub
, SET
);
265 /* Return an rtx representing minus the value of X.
266 MODE is the intended mode of the result,
267 useful if X is a CONST_INT. */
270 negate_rtx (enum machine_mode mode
, rtx x
)
272 rtx result
= simplify_unary_operation (NEG
, mode
, x
, mode
);
275 result
= expand_unop (mode
, neg_optab
, x
, NULL_RTX
, 0);
280 /* Report on the availability of insv/extv/extzv and the desired mode
281 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
282 is false; else the mode of the specified operand. If OPNO is -1,
283 all the caller cares about is whether the insn is available. */
285 mode_for_extraction (enum extraction_pattern pattern
, int opno
)
287 const struct insn_data
*data
;
294 data
= &insn_data
[CODE_FOR_insv
];
297 return MAX_MACHINE_MODE
;
302 data
= &insn_data
[CODE_FOR_extv
];
305 return MAX_MACHINE_MODE
;
310 data
= &insn_data
[CODE_FOR_extzv
];
313 return MAX_MACHINE_MODE
;
322 /* Everyone who uses this function used to follow it with
323 if (result == VOIDmode) result = word_mode; */
324 if (data
->operand
[opno
].mode
== VOIDmode
)
326 return data
->operand
[opno
].mode
;
330 /* Generate code to store value from rtx VALUE
331 into a bit-field within structure STR_RTX
332 containing BITSIZE bits starting at bit BITNUM.
333 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
334 ALIGN is the alignment that STR_RTX is known to have.
335 TOTAL_SIZE is the size of the structure in bytes, or -1 if varying. */
337 /* ??? Note that there are two different ideas here for how
338 to determine the size to count bits within, for a register.
339 One is BITS_PER_WORD, and the other is the size of operand 3
342 If operand 3 of the insv pattern is VOIDmode, then we will use BITS_PER_WORD
343 else, we use the mode of operand 3. */
346 store_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
347 unsigned HOST_WIDE_INT bitnum
, enum machine_mode fieldmode
,
351 = (MEM_P (str_rtx
)) ? BITS_PER_UNIT
: BITS_PER_WORD
;
352 unsigned HOST_WIDE_INT offset
, bitpos
;
357 enum machine_mode op_mode
= mode_for_extraction (EP_insv
, 3);
359 while (GET_CODE (op0
) == SUBREG
)
361 /* The following line once was done only if WORDS_BIG_ENDIAN,
362 but I think that is a mistake. WORDS_BIG_ENDIAN is
363 meaningful at a much higher level; when structures are copied
364 between memory and regs, the higher-numbered regs
365 always get higher addresses. */
366 int inner_mode_size
= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)));
367 int outer_mode_size
= GET_MODE_SIZE (GET_MODE (op0
));
371 /* Paradoxical subregs need special handling on big endian machines. */
372 if (SUBREG_BYTE (op0
) == 0 && inner_mode_size
< outer_mode_size
)
374 int difference
= inner_mode_size
- outer_mode_size
;
376 if (WORDS_BIG_ENDIAN
)
377 byte_offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
378 if (BYTES_BIG_ENDIAN
)
379 byte_offset
+= difference
% UNITS_PER_WORD
;
382 byte_offset
= SUBREG_BYTE (op0
);
384 bitnum
+= byte_offset
* BITS_PER_UNIT
;
385 op0
= SUBREG_REG (op0
);
388 /* No action is needed if the target is a register and if the field
389 lies completely outside that register. This can occur if the source
390 code contains an out-of-bounds access to a small array. */
391 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
394 /* Use vec_set patterns for inserting parts of vectors whenever
396 if (VECTOR_MODE_P (GET_MODE (op0
))
398 && (vec_set_optab
->handlers
[GET_MODE (op0
)].insn_code
400 && fieldmode
== GET_MODE_INNER (GET_MODE (op0
))
401 && bitsize
== GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))
402 && !(bitnum
% GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))))
404 enum machine_mode outermode
= GET_MODE (op0
);
405 enum machine_mode innermode
= GET_MODE_INNER (outermode
);
406 int icode
= (int) vec_set_optab
->handlers
[outermode
].insn_code
;
407 int pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
408 rtx rtxpos
= GEN_INT (pos
);
412 enum machine_mode mode0
= insn_data
[icode
].operand
[0].mode
;
413 enum machine_mode mode1
= insn_data
[icode
].operand
[1].mode
;
414 enum machine_mode mode2
= insn_data
[icode
].operand
[2].mode
;
418 if (! (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
))
419 src
= copy_to_mode_reg (mode1
, src
);
421 if (! (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
))
422 rtxpos
= copy_to_mode_reg (mode1
, rtxpos
);
424 /* We could handle this, but we should always be called with a pseudo
425 for our targets and all insns should take them as outputs. */
426 gcc_assert ((*insn_data
[icode
].operand
[0].predicate
) (dest
, mode0
)
427 && (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
)
428 && (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
));
429 pat
= GEN_FCN (icode
) (dest
, src
, rtxpos
);
440 /* If the target is a register, overwriting the entire object, or storing
441 a full-word or multi-word field can be done with just a SUBREG.
443 If the target is memory, storing any naturally aligned field can be
444 done with a simple store. For targets that support fast unaligned
445 memory, any naturally sized, unit aligned field can be done directly. */
447 offset
= bitnum
/ unit
;
448 bitpos
= bitnum
% unit
;
449 byte_offset
= (bitnum
% BITS_PER_WORD
) / BITS_PER_UNIT
450 + (offset
* UNITS_PER_WORD
);
453 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
455 ? ((GET_MODE_SIZE (fieldmode
) >= UNITS_PER_WORD
456 || GET_MODE_SIZE (GET_MODE (op0
)) == GET_MODE_SIZE (fieldmode
))
457 && byte_offset
% GET_MODE_SIZE (fieldmode
) == 0)
458 : (! SLOW_UNALIGNED_ACCESS (fieldmode
, MEM_ALIGN (op0
))
459 || (offset
* BITS_PER_UNIT
% bitsize
== 0
460 && MEM_ALIGN (op0
) % GET_MODE_BITSIZE (fieldmode
) == 0))))
463 op0
= adjust_address (op0
, fieldmode
, offset
);
464 else if (GET_MODE (op0
) != fieldmode
)
465 op0
= simplify_gen_subreg (fieldmode
, op0
, GET_MODE (op0
),
467 emit_move_insn (op0
, value
);
471 /* Make sure we are playing with integral modes. Pun with subregs
472 if we aren't. This must come after the entire register case above,
473 since that case is valid for any mode. The following cases are only
474 valid for integral modes. */
476 enum machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
477 if (imode
!= GET_MODE (op0
))
480 op0
= adjust_address (op0
, imode
, 0);
483 gcc_assert (imode
!= BLKmode
);
484 op0
= gen_lowpart (imode
, op0
);
489 /* We may be accessing data outside the field, which means
490 we can alias adjacent data. */
493 op0
= shallow_copy_rtx (op0
);
494 set_mem_alias_set (op0
, 0);
495 set_mem_expr (op0
, 0);
498 /* If OP0 is a register, BITPOS must count within a word.
499 But as we have it, it counts within whatever size OP0 now has.
500 On a bigendian machine, these are not the same, so convert. */
503 && unit
> GET_MODE_BITSIZE (GET_MODE (op0
)))
504 bitpos
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
506 /* Storing an lsb-aligned field in a register
507 can be done with a movestrict instruction. */
510 && (BYTES_BIG_ENDIAN
? bitpos
+ bitsize
== unit
: bitpos
== 0)
511 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
512 && (movstrict_optab
->handlers
[fieldmode
].insn_code
513 != CODE_FOR_nothing
))
515 int icode
= movstrict_optab
->handlers
[fieldmode
].insn_code
;
517 /* Get appropriate low part of the value being stored. */
518 if (GET_CODE (value
) == CONST_INT
|| REG_P (value
))
519 value
= gen_lowpart (fieldmode
, value
);
520 else if (!(GET_CODE (value
) == SYMBOL_REF
521 || GET_CODE (value
) == LABEL_REF
522 || GET_CODE (value
) == CONST
))
523 value
= convert_to_mode (fieldmode
, value
, 0);
525 if (! (*insn_data
[icode
].operand
[1].predicate
) (value
, fieldmode
))
526 value
= copy_to_mode_reg (fieldmode
, value
);
528 if (GET_CODE (op0
) == SUBREG
)
530 /* Else we've got some float mode source being extracted into
531 a different float mode destination -- this combination of
532 subregs results in Severe Tire Damage. */
533 gcc_assert (GET_MODE (SUBREG_REG (op0
)) == fieldmode
534 || GET_MODE_CLASS (fieldmode
) == MODE_INT
535 || GET_MODE_CLASS (fieldmode
) == MODE_PARTIAL_INT
);
536 op0
= SUBREG_REG (op0
);
539 emit_insn (GEN_FCN (icode
)
540 (gen_rtx_SUBREG (fieldmode
, op0
,
541 (bitnum
% BITS_PER_WORD
) / BITS_PER_UNIT
542 + (offset
* UNITS_PER_WORD
)),
548 /* Handle fields bigger than a word. */
550 if (bitsize
> BITS_PER_WORD
)
552 /* Here we transfer the words of the field
553 in the order least significant first.
554 This is because the most significant word is the one which may
556 However, only do that if the value is not BLKmode. */
558 unsigned int backwards
= WORDS_BIG_ENDIAN
&& fieldmode
!= BLKmode
;
559 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
562 /* This is the mode we must force value to, so that there will be enough
563 subwords to extract. Note that fieldmode will often (always?) be
564 VOIDmode, because that is what store_field uses to indicate that this
565 is a bit field, but passing VOIDmode to operand_subword_force
567 fieldmode
= GET_MODE (value
);
568 if (fieldmode
== VOIDmode
)
569 fieldmode
= smallest_mode_for_size (nwords
* BITS_PER_WORD
, MODE_INT
);
571 for (i
= 0; i
< nwords
; i
++)
573 /* If I is 0, use the low-order word in both field and target;
574 if I is 1, use the next to lowest word; and so on. */
575 unsigned int wordnum
= (backwards
? nwords
- i
- 1 : i
);
576 unsigned int bit_offset
= (backwards
577 ? MAX ((int) bitsize
- ((int) i
+ 1)
580 : (int) i
* BITS_PER_WORD
);
582 store_bit_field (op0
, MIN (BITS_PER_WORD
,
583 bitsize
- i
* BITS_PER_WORD
),
584 bitnum
+ bit_offset
, word_mode
,
585 operand_subword_force (value
, wordnum
, fieldmode
));
590 /* From here on we can assume that the field to be stored in is
591 a full-word (whatever type that is), since it is shorter than a word. */
593 /* OFFSET is the number of words or bytes (UNIT says which)
594 from STR_RTX to the first word or byte containing part of the field. */
599 || GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
)
603 /* Since this is a destination (lvalue), we can't copy
604 it to a pseudo. We can remove a SUBREG that does not
605 change the size of the operand. Such a SUBREG may
606 have been added above. */
607 gcc_assert (GET_CODE (op0
) == SUBREG
608 && (GET_MODE_SIZE (GET_MODE (op0
))
609 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)))));
610 op0
= SUBREG_REG (op0
);
612 op0
= gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD
, MODE_INT
, 0),
613 op0
, (offset
* UNITS_PER_WORD
));
618 /* If VALUE has a floating-point or complex mode, access it as an
619 integer of the corresponding size. This can occur on a machine
620 with 64 bit registers that uses SFmode for float. It can also
621 occur for unaligned float or complex fields. */
623 if (GET_MODE (value
) != VOIDmode
624 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_INT
625 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_PARTIAL_INT
)
627 value
= gen_reg_rtx (int_mode_for_mode (GET_MODE (value
)));
628 emit_move_insn (gen_lowpart (GET_MODE (orig_value
), value
), orig_value
);
631 /* Now OFFSET is nonzero only if OP0 is memory
632 and is therefore always measured in bytes. */
635 && GET_MODE (value
) != BLKmode
637 && GET_MODE_BITSIZE (op_mode
) >= bitsize
638 && ! ((REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
639 && (bitsize
+ bitpos
> GET_MODE_BITSIZE (op_mode
)))
640 && insn_data
[CODE_FOR_insv
].operand
[1].predicate (GEN_INT (bitsize
),
643 int xbitpos
= bitpos
;
646 rtx last
= get_last_insn ();
648 enum machine_mode maxmode
= mode_for_extraction (EP_insv
, 3);
649 int save_volatile_ok
= volatile_ok
;
653 /* If this machine's insv can only insert into a register, copy OP0
654 into a register and save it back later. */
656 && ! ((*insn_data
[(int) CODE_FOR_insv
].operand
[0].predicate
)
660 enum machine_mode bestmode
;
662 /* Get the mode to use for inserting into this field. If OP0 is
663 BLKmode, get the smallest mode consistent with the alignment. If
664 OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
665 mode. Otherwise, use the smallest mode containing the field. */
667 if (GET_MODE (op0
) == BLKmode
668 || GET_MODE_SIZE (GET_MODE (op0
)) > GET_MODE_SIZE (maxmode
))
670 = get_best_mode (bitsize
, bitnum
, MEM_ALIGN (op0
), maxmode
,
671 MEM_VOLATILE_P (op0
));
673 bestmode
= GET_MODE (op0
);
675 if (bestmode
== VOIDmode
676 || GET_MODE_SIZE (bestmode
) < GET_MODE_SIZE (fieldmode
)
677 || (SLOW_UNALIGNED_ACCESS (bestmode
, MEM_ALIGN (op0
))
678 && GET_MODE_BITSIZE (bestmode
) > MEM_ALIGN (op0
)))
681 /* Adjust address to point to the containing unit of that mode.
682 Compute offset as multiple of this unit, counting in bytes. */
683 unit
= GET_MODE_BITSIZE (bestmode
);
684 offset
= (bitnum
/ unit
) * GET_MODE_SIZE (bestmode
);
685 bitpos
= bitnum
% unit
;
686 op0
= adjust_address (op0
, bestmode
, offset
);
688 /* Fetch that unit, store the bitfield in it, then store
690 tempreg
= copy_to_reg (op0
);
691 store_bit_field (tempreg
, bitsize
, bitpos
, fieldmode
, orig_value
);
692 emit_move_insn (op0
, tempreg
);
695 volatile_ok
= save_volatile_ok
;
697 /* Add OFFSET into OP0's address. */
699 xop0
= adjust_address (xop0
, byte_mode
, offset
);
701 /* If xop0 is a register, we need it in MAXMODE
702 to make it acceptable to the format of insv. */
703 if (GET_CODE (xop0
) == SUBREG
)
704 /* We can't just change the mode, because this might clobber op0,
705 and we will need the original value of op0 if insv fails. */
706 xop0
= gen_rtx_SUBREG (maxmode
, SUBREG_REG (xop0
), SUBREG_BYTE (xop0
));
707 if (REG_P (xop0
) && GET_MODE (xop0
) != maxmode
)
708 xop0
= gen_rtx_SUBREG (maxmode
, xop0
, 0);
710 /* On big-endian machines, we count bits from the most significant.
711 If the bit field insn does not, we must invert. */
713 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
714 xbitpos
= unit
- bitsize
- xbitpos
;
716 /* We have been counting XBITPOS within UNIT.
717 Count instead within the size of the register. */
718 if (BITS_BIG_ENDIAN
&& !MEM_P (xop0
))
719 xbitpos
+= GET_MODE_BITSIZE (maxmode
) - unit
;
721 unit
= GET_MODE_BITSIZE (maxmode
);
723 /* Convert VALUE to maxmode (which insv insn wants) in VALUE1. */
725 if (GET_MODE (value
) != maxmode
)
727 if (GET_MODE_BITSIZE (GET_MODE (value
)) >= bitsize
)
729 /* Optimization: Don't bother really extending VALUE
730 if it has all the bits we will actually use. However,
731 if we must narrow it, be sure we do it correctly. */
733 if (GET_MODE_SIZE (GET_MODE (value
)) < GET_MODE_SIZE (maxmode
))
737 tmp
= simplify_subreg (maxmode
, value1
, GET_MODE (value
), 0);
739 tmp
= simplify_gen_subreg (maxmode
,
740 force_reg (GET_MODE (value
),
742 GET_MODE (value
), 0);
746 value1
= gen_lowpart (maxmode
, value1
);
748 else if (GET_CODE (value
) == CONST_INT
)
749 value1
= gen_int_mode (INTVAL (value
), maxmode
);
751 /* Parse phase is supposed to make VALUE's data type
752 match that of the component reference, which is a type
753 at least as wide as the field; so VALUE should have
754 a mode that corresponds to that type. */
755 gcc_assert (CONSTANT_P (value
));
758 /* If this machine's insv insists on a register,
759 get VALUE1 into a register. */
760 if (! ((*insn_data
[(int) CODE_FOR_insv
].operand
[3].predicate
)
762 value1
= force_reg (maxmode
, value1
);
764 pat
= gen_insv (xop0
, GEN_INT (bitsize
), GEN_INT (xbitpos
), value1
);
769 delete_insns_since (last
);
770 store_fixed_bit_field (op0
, offset
, bitsize
, bitpos
, value
);
775 /* Insv is not available; store using shifts and boolean ops. */
776 store_fixed_bit_field (op0
, offset
, bitsize
, bitpos
, value
);
780 /* Use shifts and boolean operations to store VALUE
781 into a bit field of width BITSIZE
782 in a memory location specified by OP0 except offset by OFFSET bytes.
783 (OFFSET must be 0 if OP0 is a register.)
784 The field starts at position BITPOS within the byte.
785 (If OP0 is a register, it may be a full word or a narrower mode,
786 but BITPOS still counts within a full word,
787 which is significant on bigendian machines.) */
790 store_fixed_bit_field (rtx op0
, unsigned HOST_WIDE_INT offset
,
791 unsigned HOST_WIDE_INT bitsize
,
792 unsigned HOST_WIDE_INT bitpos
, rtx value
)
794 enum machine_mode mode
;
795 unsigned int total_bits
= BITS_PER_WORD
;
800 /* There is a case not handled here:
801 a structure with a known alignment of just a halfword
802 and a field split across two aligned halfwords within the structure.
803 Or likewise a structure with a known alignment of just a byte
804 and a field split across two bytes.
805 Such cases are not supposed to be able to occur. */
807 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
809 gcc_assert (!offset
);
810 /* Special treatment for a bit field split across two registers. */
811 if (bitsize
+ bitpos
> BITS_PER_WORD
)
813 store_split_bit_field (op0
, bitsize
, bitpos
, value
);
819 /* Get the proper mode to use for this field. We want a mode that
820 includes the entire field. If such a mode would be larger than
821 a word, we won't be doing the extraction the normal way.
822 We don't want a mode bigger than the destination. */
824 mode
= GET_MODE (op0
);
825 if (GET_MODE_BITSIZE (mode
) == 0
826 || GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (word_mode
))
828 mode
= get_best_mode (bitsize
, bitpos
+ offset
* BITS_PER_UNIT
,
829 MEM_ALIGN (op0
), mode
, MEM_VOLATILE_P (op0
));
831 if (mode
== VOIDmode
)
833 /* The only way this should occur is if the field spans word
835 store_split_bit_field (op0
, bitsize
, bitpos
+ offset
* BITS_PER_UNIT
,
840 total_bits
= GET_MODE_BITSIZE (mode
);
842 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
843 be in the range 0 to total_bits-1, and put any excess bytes in
845 if (bitpos
>= total_bits
)
847 offset
+= (bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
);
848 bitpos
-= ((bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
)
852 /* Get ref to an aligned byte, halfword, or word containing the field.
853 Adjust BITPOS to be position within a word,
854 and OFFSET to be the offset of that word.
855 Then alter OP0 to refer to that word. */
856 bitpos
+= (offset
% (total_bits
/ BITS_PER_UNIT
)) * BITS_PER_UNIT
;
857 offset
-= (offset
% (total_bits
/ BITS_PER_UNIT
));
858 op0
= adjust_address (op0
, mode
, offset
);
861 mode
= GET_MODE (op0
);
863 /* Now MODE is either some integral mode for a MEM as OP0,
864 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
865 The bit field is contained entirely within OP0.
866 BITPOS is the starting bit number within OP0.
867 (OP0's mode may actually be narrower than MODE.) */
869 if (BYTES_BIG_ENDIAN
)
870 /* BITPOS is the distance between our msb
871 and that of the containing datum.
872 Convert it to the distance from the lsb. */
873 bitpos
= total_bits
- bitsize
- bitpos
;
875 /* Now BITPOS is always the distance between our lsb
878 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
879 we must first convert its mode to MODE. */
881 if (GET_CODE (value
) == CONST_INT
)
883 HOST_WIDE_INT v
= INTVAL (value
);
885 if (bitsize
< HOST_BITS_PER_WIDE_INT
)
886 v
&= ((HOST_WIDE_INT
) 1 << bitsize
) - 1;
890 else if ((bitsize
< HOST_BITS_PER_WIDE_INT
891 && v
== ((HOST_WIDE_INT
) 1 << bitsize
) - 1)
892 || (bitsize
== HOST_BITS_PER_WIDE_INT
&& v
== -1))
895 value
= lshift_value (mode
, value
, bitpos
, bitsize
);
899 int must_and
= (GET_MODE_BITSIZE (GET_MODE (value
)) != bitsize
900 && bitpos
+ bitsize
!= GET_MODE_BITSIZE (mode
));
902 if (GET_MODE (value
) != mode
)
904 if ((REG_P (value
) || GET_CODE (value
) == SUBREG
)
905 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (value
)))
906 value
= gen_lowpart (mode
, value
);
908 value
= convert_to_mode (mode
, value
, 1);
912 value
= expand_binop (mode
, and_optab
, value
,
913 mask_rtx (mode
, 0, bitsize
, 0),
914 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
916 value
= expand_shift (LSHIFT_EXPR
, mode
, value
,
917 build_int_cst (NULL_TREE
, bitpos
), NULL_RTX
, 1);
920 /* Now clear the chosen bits in OP0,
921 except that if VALUE is -1 we need not bother. */
922 /* We keep the intermediates in registers to allow CSE to combine
923 consecutive bitfield assignments. */
925 temp
= force_reg (mode
, op0
);
929 temp
= expand_binop (mode
, and_optab
, temp
,
930 mask_rtx (mode
, bitpos
, bitsize
, 1),
931 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
932 temp
= force_reg (mode
, temp
);
935 /* Now logical-or VALUE into OP0, unless it is zero. */
939 temp
= expand_binop (mode
, ior_optab
, temp
, value
,
940 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
941 temp
= force_reg (mode
, temp
);
945 emit_move_insn (op0
, temp
);
948 /* Store a bit field that is split across multiple accessible memory objects.
950 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
951 BITSIZE is the field width; BITPOS the position of its first bit
953 VALUE is the value to store.
955 This does not yet handle fields wider than BITS_PER_WORD. */
958 store_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
959 unsigned HOST_WIDE_INT bitpos
, rtx value
)
962 unsigned int bitsdone
= 0;
964 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
966 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
967 unit
= BITS_PER_WORD
;
969 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
971 /* If VALUE is a constant other than a CONST_INT, get it into a register in
972 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
973 that VALUE might be a floating-point constant. */
974 if (CONSTANT_P (value
) && GET_CODE (value
) != CONST_INT
)
976 rtx word
= gen_lowpart_common (word_mode
, value
);
978 if (word
&& (value
!= word
))
981 value
= gen_lowpart_common (word_mode
,
982 force_reg (GET_MODE (value
) != VOIDmode
984 : word_mode
, value
));
987 while (bitsdone
< bitsize
)
989 unsigned HOST_WIDE_INT thissize
;
991 unsigned HOST_WIDE_INT thispos
;
992 unsigned HOST_WIDE_INT offset
;
994 offset
= (bitpos
+ bitsdone
) / unit
;
995 thispos
= (bitpos
+ bitsdone
) % unit
;
997 /* THISSIZE must not overrun a word boundary. Otherwise,
998 store_fixed_bit_field will call us again, and we will mutually
1000 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
1001 thissize
= MIN (thissize
, unit
- thispos
);
1003 if (BYTES_BIG_ENDIAN
)
1007 /* We must do an endian conversion exactly the same way as it is
1008 done in extract_bit_field, so that the two calls to
1009 extract_fixed_bit_field will have comparable arguments. */
1010 if (!MEM_P (value
) || GET_MODE (value
) == BLKmode
)
1011 total_bits
= BITS_PER_WORD
;
1013 total_bits
= GET_MODE_BITSIZE (GET_MODE (value
));
1015 /* Fetch successively less significant portions. */
1016 if (GET_CODE (value
) == CONST_INT
)
1017 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1018 >> (bitsize
- bitsdone
- thissize
))
1019 & (((HOST_WIDE_INT
) 1 << thissize
) - 1));
1021 /* The args are chosen so that the last part includes the
1022 lsb. Give extract_bit_field the value it needs (with
1023 endianness compensation) to fetch the piece we want. */
1024 part
= extract_fixed_bit_field (word_mode
, value
, 0, thissize
,
1025 total_bits
- bitsize
+ bitsdone
,
1030 /* Fetch successively more significant portions. */
1031 if (GET_CODE (value
) == CONST_INT
)
1032 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1034 & (((HOST_WIDE_INT
) 1 << thissize
) - 1));
1036 part
= extract_fixed_bit_field (word_mode
, value
, 0, thissize
,
1037 bitsdone
, NULL_RTX
, 1);
1040 /* If OP0 is a register, then handle OFFSET here.
1042 When handling multiword bitfields, extract_bit_field may pass
1043 down a word_mode SUBREG of a larger REG for a bitfield that actually
1044 crosses a word boundary. Thus, for a SUBREG, we must find
1045 the current word starting from the base register. */
1046 if (GET_CODE (op0
) == SUBREG
)
1048 int word_offset
= (SUBREG_BYTE (op0
) / UNITS_PER_WORD
) + offset
;
1049 word
= operand_subword_force (SUBREG_REG (op0
), word_offset
,
1050 GET_MODE (SUBREG_REG (op0
)));
1053 else if (REG_P (op0
))
1055 word
= operand_subword_force (op0
, offset
, GET_MODE (op0
));
1061 /* OFFSET is in UNITs, and UNIT is in bits.
1062 store_fixed_bit_field wants offset in bytes. */
1063 store_fixed_bit_field (word
, offset
* unit
/ BITS_PER_UNIT
, thissize
,
1065 bitsdone
+= thissize
;
1069 /* Generate code to extract a byte-field from STR_RTX
1070 containing BITSIZE bits, starting at BITNUM,
1071 and put it in TARGET if possible (if TARGET is nonzero).
1072 Regardless of TARGET, we return the rtx for where the value is placed.
1074 STR_RTX is the structure containing the byte (a REG or MEM).
1075 UNSIGNEDP is nonzero if this is an unsigned bit field.
1076 MODE is the natural mode of the field value once extracted.
1077 TMODE is the mode the caller would like the value to have;
1078 but the value may be returned with type MODE instead.
1080 TOTAL_SIZE is the size in bytes of the containing structure,
1083 If a TARGET is specified and we can store in it at no extra cost,
1084 we do so, and return TARGET.
1085 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1086 if they are equally easy. */
1089 extract_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1090 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1091 enum machine_mode mode
, enum machine_mode tmode
)
1094 = (MEM_P (str_rtx
)) ? BITS_PER_UNIT
: BITS_PER_WORD
;
1095 unsigned HOST_WIDE_INT offset
, bitpos
;
1097 rtx spec_target
= target
;
1098 rtx spec_target_subreg
= 0;
1099 enum machine_mode int_mode
;
1100 enum machine_mode extv_mode
= mode_for_extraction (EP_extv
, 0);
1101 enum machine_mode extzv_mode
= mode_for_extraction (EP_extzv
, 0);
1102 enum machine_mode mode1
;
1105 if (tmode
== VOIDmode
)
1108 while (GET_CODE (op0
) == SUBREG
)
1110 bitnum
+= SUBREG_BYTE (op0
) * BITS_PER_UNIT
;
1111 op0
= SUBREG_REG (op0
);
1114 /* If we have an out-of-bounds access to a register, just return an
1115 uninitialized register of the required mode. This can occur if the
1116 source code contains an out-of-bounds access to a small array. */
1117 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
1118 return gen_reg_rtx (tmode
);
1121 && mode
== GET_MODE (op0
)
1123 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
1125 /* We're trying to extract a full register from itself. */
1129 /* Use vec_extract patterns for extracting parts of vectors whenever
1131 if (VECTOR_MODE_P (GET_MODE (op0
))
1133 && (vec_extract_optab
->handlers
[GET_MODE (op0
)].insn_code
1134 != CODE_FOR_nothing
)
1135 && ((bitnum
+ bitsize
- 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))
1136 == bitnum
/ GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))))
1138 enum machine_mode outermode
= GET_MODE (op0
);
1139 enum machine_mode innermode
= GET_MODE_INNER (outermode
);
1140 int icode
= (int) vec_extract_optab
->handlers
[outermode
].insn_code
;
1141 unsigned HOST_WIDE_INT pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
1142 rtx rtxpos
= GEN_INT (pos
);
1144 rtx dest
= NULL
, pat
, seq
;
1145 enum machine_mode mode0
= insn_data
[icode
].operand
[0].mode
;
1146 enum machine_mode mode1
= insn_data
[icode
].operand
[1].mode
;
1147 enum machine_mode mode2
= insn_data
[icode
].operand
[2].mode
;
1149 if (innermode
== tmode
|| innermode
== mode
)
1153 dest
= gen_reg_rtx (innermode
);
1157 if (! (*insn_data
[icode
].operand
[0].predicate
) (dest
, mode0
))
1158 dest
= copy_to_mode_reg (mode0
, dest
);
1160 if (! (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
))
1161 src
= copy_to_mode_reg (mode1
, src
);
1163 if (! (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
))
1164 rtxpos
= copy_to_mode_reg (mode1
, rtxpos
);
1166 /* We could handle this, but we should always be called with a pseudo
1167 for our targets and all insns should take them as outputs. */
1168 gcc_assert ((*insn_data
[icode
].operand
[0].predicate
) (dest
, mode0
)
1169 && (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
)
1170 && (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
));
1172 pat
= GEN_FCN (icode
) (dest
, src
, rtxpos
);
1183 /* Make sure we are playing with integral modes. Pun with subregs
1186 enum machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
1187 if (imode
!= GET_MODE (op0
))
1190 op0
= adjust_address (op0
, imode
, 0);
1193 gcc_assert (imode
!= BLKmode
);
1194 op0
= gen_lowpart (imode
, op0
);
1196 /* If we got a SUBREG, force it into a register since we
1197 aren't going to be able to do another SUBREG on it. */
1198 if (GET_CODE (op0
) == SUBREG
)
1199 op0
= force_reg (imode
, op0
);
1204 /* We may be accessing data outside the field, which means
1205 we can alias adjacent data. */
1208 op0
= shallow_copy_rtx (op0
);
1209 set_mem_alias_set (op0
, 0);
1210 set_mem_expr (op0
, 0);
1213 /* Extraction of a full-word or multi-word value from a structure
1214 in a register or aligned memory can be done with just a SUBREG.
1215 A subword value in the least significant part of a register
1216 can also be extracted with a SUBREG. For this, we need the
1217 byte offset of the value in op0. */
1219 bitpos
= bitnum
% unit
;
1220 offset
= bitnum
/ unit
;
1221 byte_offset
= bitpos
/ BITS_PER_UNIT
+ offset
* UNITS_PER_WORD
;
1223 /* If OP0 is a register, BITPOS must count within a word.
1224 But as we have it, it counts within whatever size OP0 now has.
1225 On a bigendian machine, these are not the same, so convert. */
1226 if (BYTES_BIG_ENDIAN
1228 && unit
> GET_MODE_BITSIZE (GET_MODE (op0
)))
1229 bitpos
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
1231 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1232 If that's wrong, the solution is to test for it and set TARGET to 0
1235 /* Only scalar integer modes can be converted via subregs. There is an
1236 additional problem for FP modes here in that they can have a precision
1237 which is different from the size. mode_for_size uses precision, but
1238 we want a mode based on the size, so we must avoid calling it for FP
1240 mode1
= (SCALAR_INT_MODE_P (tmode
)
1241 ? mode_for_size (bitsize
, GET_MODE_CLASS (tmode
), 0)
1244 if (((bitsize
>= BITS_PER_WORD
&& bitsize
== GET_MODE_BITSIZE (mode
)
1245 && bitpos
% BITS_PER_WORD
== 0)
1246 || (mode1
!= BLKmode
1247 /* ??? The big endian test here is wrong. This is correct
1248 if the value is in a register, and if mode_for_size is not
1249 the same mode as op0. This causes us to get unnecessarily
1250 inefficient code from the Thumb port when -mbig-endian. */
1251 && (BYTES_BIG_ENDIAN
1252 ? bitpos
+ bitsize
== BITS_PER_WORD
1255 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
1256 GET_MODE_BITSIZE (GET_MODE (op0
)))
1257 && GET_MODE_SIZE (mode1
) != 0
1258 && byte_offset
% GET_MODE_SIZE (mode1
) == 0)
1260 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (op0
))
1261 || (offset
* BITS_PER_UNIT
% bitsize
== 0
1262 && MEM_ALIGN (op0
) % bitsize
== 0)))))
1264 if (mode1
!= GET_MODE (op0
))
1267 op0
= adjust_address (op0
, mode1
, offset
);
1270 rtx sub
= simplify_gen_subreg (mode1
, op0
, GET_MODE (op0
),
1273 goto no_subreg_mode_swap
;
1278 return convert_to_mode (tmode
, op0
, unsignedp
);
1281 no_subreg_mode_swap
:
1283 /* Handle fields bigger than a word. */
1285 if (bitsize
> BITS_PER_WORD
)
1287 /* Here we transfer the words of the field
1288 in the order least significant first.
1289 This is because the most significant word is the one which may
1290 be less than full. */
1292 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
1295 if (target
== 0 || !REG_P (target
))
1296 target
= gen_reg_rtx (mode
);
1298 /* Indicate for flow that the entire target reg is being set. */
1299 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
1301 for (i
= 0; i
< nwords
; i
++)
1303 /* If I is 0, use the low-order word in both field and target;
1304 if I is 1, use the next to lowest word; and so on. */
1305 /* Word number in TARGET to use. */
1306 unsigned int wordnum
1308 ? GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
- i
- 1
1310 /* Offset from start of field in OP0. */
1311 unsigned int bit_offset
= (WORDS_BIG_ENDIAN
1312 ? MAX (0, ((int) bitsize
- ((int) i
+ 1)
1313 * (int) BITS_PER_WORD
))
1314 : (int) i
* BITS_PER_WORD
);
1315 rtx target_part
= operand_subword (target
, wordnum
, 1, VOIDmode
);
1317 = extract_bit_field (op0
, MIN (BITS_PER_WORD
,
1318 bitsize
- i
* BITS_PER_WORD
),
1319 bitnum
+ bit_offset
, 1, target_part
, mode
,
1322 gcc_assert (target_part
);
1324 if (result_part
!= target_part
)
1325 emit_move_insn (target_part
, result_part
);
1330 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1331 need to be zero'd out. */
1332 if (GET_MODE_SIZE (GET_MODE (target
)) > nwords
* UNITS_PER_WORD
)
1334 unsigned int i
, total_words
;
1336 total_words
= GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
;
1337 for (i
= nwords
; i
< total_words
; i
++)
1339 (operand_subword (target
,
1340 WORDS_BIG_ENDIAN
? total_words
- i
- 1 : i
,
1347 /* Signed bit field: sign-extend with two arithmetic shifts. */
1348 target
= expand_shift (LSHIFT_EXPR
, mode
, target
,
1349 build_int_cst (NULL_TREE
,
1350 GET_MODE_BITSIZE (mode
) - bitsize
),
1352 return expand_shift (RSHIFT_EXPR
, mode
, target
,
1353 build_int_cst (NULL_TREE
,
1354 GET_MODE_BITSIZE (mode
) - bitsize
),
1358 /* From here on we know the desired field is smaller than a word. */
1360 /* Check if there is a correspondingly-sized integer field, so we can
1361 safely extract it as one size of integer, if necessary; then
1362 truncate or extend to the size that is wanted; then use SUBREGs or
1363 convert_to_mode to get one of the modes we really wanted. */
1365 int_mode
= int_mode_for_mode (tmode
);
1366 if (int_mode
== BLKmode
)
1367 int_mode
= int_mode_for_mode (mode
);
1368 /* Should probably push op0 out to memory and then do a load. */
1369 gcc_assert (int_mode
!= BLKmode
);
1371 /* OFFSET is the number of words or bytes (UNIT says which)
1372 from STR_RTX to the first word or byte containing part of the field. */
1376 || GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
)
1379 op0
= copy_to_reg (op0
);
1380 op0
= gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD
, MODE_INT
, 0),
1381 op0
, (offset
* UNITS_PER_WORD
));
1386 /* Now OFFSET is nonzero only for memory operands. */
1392 && GET_MODE_BITSIZE (extzv_mode
) >= bitsize
1393 && ! ((REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1394 && (bitsize
+ bitpos
> GET_MODE_BITSIZE (extzv_mode
))))
1396 unsigned HOST_WIDE_INT xbitpos
= bitpos
, xoffset
= offset
;
1397 rtx bitsize_rtx
, bitpos_rtx
;
1398 rtx last
= get_last_insn ();
1400 rtx xtarget
= target
;
1401 rtx xspec_target
= spec_target
;
1402 rtx xspec_target_subreg
= spec_target_subreg
;
1404 enum machine_mode maxmode
= mode_for_extraction (EP_extzv
, 0);
1408 int save_volatile_ok
= volatile_ok
;
1411 /* Is the memory operand acceptable? */
1412 if (! ((*insn_data
[(int) CODE_FOR_extzv
].operand
[1].predicate
)
1413 (xop0
, GET_MODE (xop0
))))
1415 /* No, load into a reg and extract from there. */
1416 enum machine_mode bestmode
;
1418 /* Get the mode to use for inserting into this field. If
1419 OP0 is BLKmode, get the smallest mode consistent with the
1420 alignment. If OP0 is a non-BLKmode object that is no
1421 wider than MAXMODE, use its mode. Otherwise, use the
1422 smallest mode containing the field. */
1424 if (GET_MODE (xop0
) == BLKmode
1425 || (GET_MODE_SIZE (GET_MODE (op0
))
1426 > GET_MODE_SIZE (maxmode
)))
1427 bestmode
= get_best_mode (bitsize
, bitnum
,
1428 MEM_ALIGN (xop0
), maxmode
,
1429 MEM_VOLATILE_P (xop0
));
1431 bestmode
= GET_MODE (xop0
);
1433 if (bestmode
== VOIDmode
1434 || (SLOW_UNALIGNED_ACCESS (bestmode
, MEM_ALIGN (xop0
))
1435 && GET_MODE_BITSIZE (bestmode
) > MEM_ALIGN (xop0
)))
1438 /* Compute offset as multiple of this unit,
1439 counting in bytes. */
1440 unit
= GET_MODE_BITSIZE (bestmode
);
1441 xoffset
= (bitnum
/ unit
) * GET_MODE_SIZE (bestmode
);
1442 xbitpos
= bitnum
% unit
;
1443 xop0
= adjust_address (xop0
, bestmode
, xoffset
);
1445 /* Make sure register is big enough for the whole field. */
1446 if (xoffset
* BITS_PER_UNIT
+ unit
1447 < offset
* BITS_PER_UNIT
+ bitsize
)
1450 /* Fetch it to a register in that size. */
1451 xop0
= force_reg (bestmode
, xop0
);
1453 /* XBITPOS counts within UNIT, which is what is expected. */
1456 /* Get ref to first byte containing part of the field. */
1457 xop0
= adjust_address (xop0
, byte_mode
, xoffset
);
1459 volatile_ok
= save_volatile_ok
;
1462 /* If op0 is a register, we need it in MAXMODE (which is usually
1463 SImode). to make it acceptable to the format of extzv. */
1464 if (GET_CODE (xop0
) == SUBREG
&& GET_MODE (xop0
) != maxmode
)
1466 if (REG_P (xop0
) && GET_MODE (xop0
) != maxmode
)
1467 xop0
= gen_rtx_SUBREG (maxmode
, xop0
, 0);
1469 /* On big-endian machines, we count bits from the most significant.
1470 If the bit field insn does not, we must invert. */
1471 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
1472 xbitpos
= unit
- bitsize
- xbitpos
;
1474 /* Now convert from counting within UNIT to counting in MAXMODE. */
1475 if (BITS_BIG_ENDIAN
&& !MEM_P (xop0
))
1476 xbitpos
+= GET_MODE_BITSIZE (maxmode
) - unit
;
1478 unit
= GET_MODE_BITSIZE (maxmode
);
1481 xtarget
= xspec_target
= gen_reg_rtx (tmode
);
1483 if (GET_MODE (xtarget
) != maxmode
)
1485 if (REG_P (xtarget
))
1487 int wider
= (GET_MODE_SIZE (maxmode
)
1488 > GET_MODE_SIZE (GET_MODE (xtarget
)));
1489 xtarget
= gen_lowpart (maxmode
, xtarget
);
1491 xspec_target_subreg
= xtarget
;
1494 xtarget
= gen_reg_rtx (maxmode
);
1497 /* If this machine's extzv insists on a register target,
1498 make sure we have one. */
1499 if (! ((*insn_data
[(int) CODE_FOR_extzv
].operand
[0].predicate
)
1500 (xtarget
, maxmode
)))
1501 xtarget
= gen_reg_rtx (maxmode
);
1503 bitsize_rtx
= GEN_INT (bitsize
);
1504 bitpos_rtx
= GEN_INT (xbitpos
);
1506 pat
= gen_extzv (xtarget
, xop0
, bitsize_rtx
, bitpos_rtx
);
1511 spec_target
= xspec_target
;
1512 spec_target_subreg
= xspec_target_subreg
;
1516 delete_insns_since (last
);
1517 target
= extract_fixed_bit_field (int_mode
, op0
, offset
, bitsize
,
1523 target
= extract_fixed_bit_field (int_mode
, op0
, offset
, bitsize
,
1530 && GET_MODE_BITSIZE (extv_mode
) >= bitsize
1531 && ! ((REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1532 && (bitsize
+ bitpos
> GET_MODE_BITSIZE (extv_mode
))))
1534 int xbitpos
= bitpos
, xoffset
= offset
;
1535 rtx bitsize_rtx
, bitpos_rtx
;
1536 rtx last
= get_last_insn ();
1537 rtx xop0
= op0
, xtarget
= target
;
1538 rtx xspec_target
= spec_target
;
1539 rtx xspec_target_subreg
= spec_target_subreg
;
1541 enum machine_mode maxmode
= mode_for_extraction (EP_extv
, 0);
1545 /* Is the memory operand acceptable? */
1546 if (! ((*insn_data
[(int) CODE_FOR_extv
].operand
[1].predicate
)
1547 (xop0
, GET_MODE (xop0
))))
1549 /* No, load into a reg and extract from there. */
1550 enum machine_mode bestmode
;
1552 /* Get the mode to use for inserting into this field. If
1553 OP0 is BLKmode, get the smallest mode consistent with the
1554 alignment. If OP0 is a non-BLKmode object that is no
1555 wider than MAXMODE, use its mode. Otherwise, use the
1556 smallest mode containing the field. */
1558 if (GET_MODE (xop0
) == BLKmode
1559 || (GET_MODE_SIZE (GET_MODE (op0
))
1560 > GET_MODE_SIZE (maxmode
)))
1561 bestmode
= get_best_mode (bitsize
, bitnum
,
1562 MEM_ALIGN (xop0
), maxmode
,
1563 MEM_VOLATILE_P (xop0
));
1565 bestmode
= GET_MODE (xop0
);
1567 if (bestmode
== VOIDmode
1568 || (SLOW_UNALIGNED_ACCESS (bestmode
, MEM_ALIGN (xop0
))
1569 && GET_MODE_BITSIZE (bestmode
) > MEM_ALIGN (xop0
)))
1572 /* Compute offset as multiple of this unit,
1573 counting in bytes. */
1574 unit
= GET_MODE_BITSIZE (bestmode
);
1575 xoffset
= (bitnum
/ unit
) * GET_MODE_SIZE (bestmode
);
1576 xbitpos
= bitnum
% unit
;
1577 xop0
= adjust_address (xop0
, bestmode
, xoffset
);
1579 /* Make sure register is big enough for the whole field. */
1580 if (xoffset
* BITS_PER_UNIT
+ unit
1581 < offset
* BITS_PER_UNIT
+ bitsize
)
1584 /* Fetch it to a register in that size. */
1585 xop0
= force_reg (bestmode
, xop0
);
1587 /* XBITPOS counts within UNIT, which is what is expected. */
1590 /* Get ref to first byte containing part of the field. */
1591 xop0
= adjust_address (xop0
, byte_mode
, xoffset
);
1594 /* If op0 is a register, we need it in MAXMODE (which is usually
1595 SImode) to make it acceptable to the format of extv. */
1596 if (GET_CODE (xop0
) == SUBREG
&& GET_MODE (xop0
) != maxmode
)
1598 if (REG_P (xop0
) && GET_MODE (xop0
) != maxmode
)
1599 xop0
= gen_rtx_SUBREG (maxmode
, xop0
, 0);
1601 /* On big-endian machines, we count bits from the most significant.
1602 If the bit field insn does not, we must invert. */
1603 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
1604 xbitpos
= unit
- bitsize
- xbitpos
;
1606 /* XBITPOS counts within a size of UNIT.
1607 Adjust to count within a size of MAXMODE. */
1608 if (BITS_BIG_ENDIAN
&& !MEM_P (xop0
))
1609 xbitpos
+= (GET_MODE_BITSIZE (maxmode
) - unit
);
1611 unit
= GET_MODE_BITSIZE (maxmode
);
1614 xtarget
= xspec_target
= gen_reg_rtx (tmode
);
1616 if (GET_MODE (xtarget
) != maxmode
)
1618 if (REG_P (xtarget
))
1620 int wider
= (GET_MODE_SIZE (maxmode
)
1621 > GET_MODE_SIZE (GET_MODE (xtarget
)));
1622 xtarget
= gen_lowpart (maxmode
, xtarget
);
1624 xspec_target_subreg
= xtarget
;
1627 xtarget
= gen_reg_rtx (maxmode
);
1630 /* If this machine's extv insists on a register target,
1631 make sure we have one. */
1632 if (! ((*insn_data
[(int) CODE_FOR_extv
].operand
[0].predicate
)
1633 (xtarget
, maxmode
)))
1634 xtarget
= gen_reg_rtx (maxmode
);
1636 bitsize_rtx
= GEN_INT (bitsize
);
1637 bitpos_rtx
= GEN_INT (xbitpos
);
1639 pat
= gen_extv (xtarget
, xop0
, bitsize_rtx
, bitpos_rtx
);
1644 spec_target
= xspec_target
;
1645 spec_target_subreg
= xspec_target_subreg
;
1649 delete_insns_since (last
);
1650 target
= extract_fixed_bit_field (int_mode
, op0
, offset
, bitsize
,
1656 target
= extract_fixed_bit_field (int_mode
, op0
, offset
, bitsize
,
1659 if (target
== spec_target
)
1661 if (target
== spec_target_subreg
)
1663 if (GET_MODE (target
) != tmode
&& GET_MODE (target
) != mode
)
1665 /* If the target mode is not a scalar integral, first convert to the
1666 integer mode of that size and then access it as a floating-point
1667 value via a SUBREG. */
1668 if (!SCALAR_INT_MODE_P (tmode
))
1670 enum machine_mode smode
1671 = mode_for_size (GET_MODE_BITSIZE (tmode
), MODE_INT
, 0);
1672 target
= convert_to_mode (smode
, target
, unsignedp
);
1673 target
= force_reg (smode
, target
);
1674 return gen_lowpart (tmode
, target
);
1677 return convert_to_mode (tmode
, target
, unsignedp
);
1682 /* Extract a bit field using shifts and boolean operations
1683 Returns an rtx to represent the value.
1684 OP0 addresses a register (word) or memory (byte).
1685 BITPOS says which bit within the word or byte the bit field starts in.
1686 OFFSET says how many bytes farther the bit field starts;
1687 it is 0 if OP0 is a register.
1688 BITSIZE says how many bits long the bit field is.
1689 (If OP0 is a register, it may be narrower than a full word,
1690 but BITPOS still counts within a full word,
1691 which is significant on bigendian machines.)
1693 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1694 If TARGET is nonzero, attempts to store the value there
1695 and return TARGET, but this is not guaranteed.
1696 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1699 extract_fixed_bit_field (enum machine_mode tmode
, rtx op0
,
1700 unsigned HOST_WIDE_INT offset
,
1701 unsigned HOST_WIDE_INT bitsize
,
1702 unsigned HOST_WIDE_INT bitpos
, rtx target
,
1705 unsigned int total_bits
= BITS_PER_WORD
;
1706 enum machine_mode mode
;
1708 if (GET_CODE (op0
) == SUBREG
|| REG_P (op0
))
1710 /* Special treatment for a bit field split across two registers. */
1711 if (bitsize
+ bitpos
> BITS_PER_WORD
)
1712 return extract_split_bit_field (op0
, bitsize
, bitpos
, unsignedp
);
1716 /* Get the proper mode to use for this field. We want a mode that
1717 includes the entire field. If such a mode would be larger than
1718 a word, we won't be doing the extraction the normal way. */
1720 mode
= get_best_mode (bitsize
, bitpos
+ offset
* BITS_PER_UNIT
,
1721 MEM_ALIGN (op0
), word_mode
, MEM_VOLATILE_P (op0
));
1723 if (mode
== VOIDmode
)
1724 /* The only way this should occur is if the field spans word
1726 return extract_split_bit_field (op0
, bitsize
,
1727 bitpos
+ offset
* BITS_PER_UNIT
,
1730 total_bits
= GET_MODE_BITSIZE (mode
);
1732 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1733 be in the range 0 to total_bits-1, and put any excess bytes in
1735 if (bitpos
>= total_bits
)
1737 offset
+= (bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
);
1738 bitpos
-= ((bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
)
1742 /* Get ref to an aligned byte, halfword, or word containing the field.
1743 Adjust BITPOS to be position within a word,
1744 and OFFSET to be the offset of that word.
1745 Then alter OP0 to refer to that word. */
1746 bitpos
+= (offset
% (total_bits
/ BITS_PER_UNIT
)) * BITS_PER_UNIT
;
1747 offset
-= (offset
% (total_bits
/ BITS_PER_UNIT
));
1748 op0
= adjust_address (op0
, mode
, offset
);
1751 mode
= GET_MODE (op0
);
1753 if (BYTES_BIG_ENDIAN
)
1754 /* BITPOS is the distance between our msb and that of OP0.
1755 Convert it to the distance from the lsb. */
1756 bitpos
= total_bits
- bitsize
- bitpos
;
1758 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1759 We have reduced the big-endian case to the little-endian case. */
1765 /* If the field does not already start at the lsb,
1766 shift it so it does. */
1767 tree amount
= build_int_cst (NULL_TREE
, bitpos
);
1768 /* Maybe propagate the target for the shift. */
1769 /* But not if we will return it--could confuse integrate.c. */
1770 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
1771 if (tmode
!= mode
) subtarget
= 0;
1772 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
, amount
, subtarget
, 1);
1774 /* Convert the value to the desired mode. */
1776 op0
= convert_to_mode (tmode
, op0
, 1);
1778 /* Unless the msb of the field used to be the msb when we shifted,
1779 mask out the upper bits. */
1781 if (GET_MODE_BITSIZE (mode
) != bitpos
+ bitsize
)
1782 return expand_binop (GET_MODE (op0
), and_optab
, op0
,
1783 mask_rtx (GET_MODE (op0
), 0, bitsize
, 0),
1784 target
, 1, OPTAB_LIB_WIDEN
);
1788 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1789 then arithmetic-shift its lsb to the lsb of the word. */
1790 op0
= force_reg (mode
, op0
);
1794 /* Find the narrowest integer mode that contains the field. */
1796 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1797 mode
= GET_MODE_WIDER_MODE (mode
))
1798 if (GET_MODE_BITSIZE (mode
) >= bitsize
+ bitpos
)
1800 op0
= convert_to_mode (mode
, op0
, 0);
1804 if (GET_MODE_BITSIZE (mode
) != (bitsize
+ bitpos
))
1807 = build_int_cst (NULL_TREE
,
1808 GET_MODE_BITSIZE (mode
) - (bitsize
+ bitpos
));
1809 /* Maybe propagate the target for the shift. */
1810 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
1811 op0
= expand_shift (LSHIFT_EXPR
, mode
, op0
, amount
, subtarget
, 1);
1814 return expand_shift (RSHIFT_EXPR
, mode
, op0
,
1815 build_int_cst (NULL_TREE
,
1816 GET_MODE_BITSIZE (mode
) - bitsize
),
1820 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1821 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1822 complement of that if COMPLEMENT. The mask is truncated if
1823 necessary to the width of mode MODE. The mask is zero-extended if
1824 BITSIZE+BITPOS is too small for MODE. */
1827 mask_rtx (enum machine_mode mode
, int bitpos
, int bitsize
, int complement
)
1829 HOST_WIDE_INT masklow
, maskhigh
;
1833 else if (bitpos
< HOST_BITS_PER_WIDE_INT
)
1834 masklow
= (HOST_WIDE_INT
) -1 << bitpos
;
1838 if (bitpos
+ bitsize
< HOST_BITS_PER_WIDE_INT
)
1839 masklow
&= ((unsigned HOST_WIDE_INT
) -1
1840 >> (HOST_BITS_PER_WIDE_INT
- bitpos
- bitsize
));
1842 if (bitpos
<= HOST_BITS_PER_WIDE_INT
)
1845 maskhigh
= (HOST_WIDE_INT
) -1 << (bitpos
- HOST_BITS_PER_WIDE_INT
);
1849 else if (bitpos
+ bitsize
> HOST_BITS_PER_WIDE_INT
)
1850 maskhigh
&= ((unsigned HOST_WIDE_INT
) -1
1851 >> (2 * HOST_BITS_PER_WIDE_INT
- bitpos
- bitsize
));
1857 maskhigh
= ~maskhigh
;
1861 return immed_double_const (masklow
, maskhigh
, mode
);
1864 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1865 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1868 lshift_value (enum machine_mode mode
, rtx value
, int bitpos
, int bitsize
)
1870 unsigned HOST_WIDE_INT v
= INTVAL (value
);
1871 HOST_WIDE_INT low
, high
;
1873 if (bitsize
< HOST_BITS_PER_WIDE_INT
)
1874 v
&= ~((HOST_WIDE_INT
) -1 << bitsize
);
1876 if (bitpos
< HOST_BITS_PER_WIDE_INT
)
1879 high
= (bitpos
> 0 ? (v
>> (HOST_BITS_PER_WIDE_INT
- bitpos
)) : 0);
1884 high
= v
<< (bitpos
- HOST_BITS_PER_WIDE_INT
);
1887 return immed_double_const (low
, high
, mode
);
1890 /* Extract a bit field from a memory by forcing the alignment of the
1891 memory. This efficient only if the field spans at least 4 boundaries.
1894 BITSIZE is the field width; BITPOS is the position of the first bit.
1895 UNSIGNEDP is true if the result should be zero-extended. */
1898 extract_force_align_mem_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1899 unsigned HOST_WIDE_INT bitpos
,
1902 enum machine_mode mode
, dmode
;
1903 unsigned int m_bitsize
, m_size
;
1904 unsigned int sign_shift_up
, sign_shift_dn
;
1905 rtx base
, a1
, a2
, v1
, v2
, comb
, shift
, result
, start
;
1907 /* Choose a mode that will fit BITSIZE. */
1908 mode
= smallest_mode_for_size (bitsize
, MODE_INT
);
1909 m_size
= GET_MODE_SIZE (mode
);
1910 m_bitsize
= GET_MODE_BITSIZE (mode
);
1912 /* Choose a mode twice as wide. Fail if no such mode exists. */
1913 dmode
= mode_for_size (m_bitsize
* 2, MODE_INT
, false);
1914 if (dmode
== BLKmode
)
1917 do_pending_stack_adjust ();
1918 start
= get_last_insn ();
1920 /* At the end, we'll need an additional shift to deal with sign/zero
1921 extension. By default this will be a left+right shift of the
1922 appropriate size. But we may be able to eliminate one of them. */
1923 sign_shift_up
= sign_shift_dn
= m_bitsize
- bitsize
;
1925 if (STRICT_ALIGNMENT
)
1927 base
= plus_constant (XEXP (op0
, 0), bitpos
/ BITS_PER_UNIT
);
1928 bitpos
%= BITS_PER_UNIT
;
1930 /* We load two values to be concatenate. There's an edge condition
1931 that bears notice -- an aligned value at the end of a page can
1932 only load one value lest we segfault. So the two values we load
1933 are at "base & -size" and "(base + size - 1) & -size". If base
1934 is unaligned, the addresses will be aligned and sequential; if
1935 base is aligned, the addresses will both be equal to base. */
1937 a1
= expand_simple_binop (Pmode
, AND
, force_operand (base
, NULL
),
1938 GEN_INT (-(HOST_WIDE_INT
)m_size
),
1939 NULL
, true, OPTAB_LIB_WIDEN
);
1940 mark_reg_pointer (a1
, m_bitsize
);
1941 v1
= gen_rtx_MEM (mode
, a1
);
1942 set_mem_align (v1
, m_bitsize
);
1943 v1
= force_reg (mode
, validize_mem (v1
));
1945 a2
= plus_constant (base
, GET_MODE_SIZE (mode
) - 1);
1946 a2
= expand_simple_binop (Pmode
, AND
, force_operand (a2
, NULL
),
1947 GEN_INT (-(HOST_WIDE_INT
)m_size
),
1948 NULL
, true, OPTAB_LIB_WIDEN
);
1949 v2
= gen_rtx_MEM (mode
, a2
);
1950 set_mem_align (v2
, m_bitsize
);
1951 v2
= force_reg (mode
, validize_mem (v2
));
1953 /* Combine these two values into a double-word value. */
1954 if (m_bitsize
== BITS_PER_WORD
)
1956 comb
= gen_reg_rtx (dmode
);
1957 emit_insn (gen_rtx_CLOBBER (VOIDmode
, comb
));
1958 emit_move_insn (gen_rtx_SUBREG (mode
, comb
, 0), v1
);
1959 emit_move_insn (gen_rtx_SUBREG (mode
, comb
, m_size
), v2
);
1963 if (BYTES_BIG_ENDIAN
)
1964 comb
= v1
, v1
= v2
, v2
= comb
;
1965 v1
= convert_modes (dmode
, mode
, v1
, true);
1968 v2
= convert_modes (dmode
, mode
, v2
, true);
1969 v2
= expand_simple_binop (dmode
, ASHIFT
, v2
, GEN_INT (m_bitsize
),
1970 NULL
, true, OPTAB_LIB_WIDEN
);
1973 comb
= expand_simple_binop (dmode
, IOR
, v1
, v2
, NULL
,
1974 true, OPTAB_LIB_WIDEN
);
1979 shift
= expand_simple_binop (Pmode
, AND
, base
, GEN_INT (m_size
- 1),
1980 NULL
, true, OPTAB_LIB_WIDEN
);
1981 shift
= expand_mult (Pmode
, shift
, GEN_INT (BITS_PER_UNIT
), NULL
, 1);
1985 if (sign_shift_up
<= bitpos
)
1986 bitpos
-= sign_shift_up
, sign_shift_up
= 0;
1987 shift
= expand_simple_binop (Pmode
, PLUS
, shift
, GEN_INT (bitpos
),
1988 NULL
, true, OPTAB_LIB_WIDEN
);
1993 unsigned HOST_WIDE_INT offset
= bitpos
/ BITS_PER_UNIT
;
1994 bitpos
%= BITS_PER_UNIT
;
1996 /* When strict alignment is not required, we can just load directly
1997 from memory without masking. If the remaining BITPOS offset is
1998 small enough, we may be able to do all operations in MODE as
1999 opposed to DMODE. */
2000 if (bitpos
+ bitsize
<= m_bitsize
)
2002 comb
= adjust_address (op0
, dmode
, offset
);
2004 if (sign_shift_up
<= bitpos
)
2005 bitpos
-= sign_shift_up
, sign_shift_up
= 0;
2006 shift
= GEN_INT (bitpos
);
2009 /* Shift down the double-word such that the requested value is at bit 0. */
2010 if (shift
!= const0_rtx
)
2011 comb
= expand_simple_binop (dmode
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
2012 comb
, shift
, NULL
, unsignedp
, OPTAB_LIB_WIDEN
);
2016 /* If the field exactly matches MODE, then all we need to do is return the
2017 lowpart. Otherwise, shift to get the sign bits set properly. */
2018 result
= force_reg (mode
, gen_lowpart (mode
, comb
));
2021 result
= expand_simple_binop (mode
, ASHIFT
, result
,
2022 GEN_INT (sign_shift_up
),
2023 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
2025 result
= expand_simple_binop (mode
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
2026 result
, GEN_INT (sign_shift_dn
),
2027 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
2032 delete_insns_since (start
);
2036 /* Extract a bit field that is split across two words
2037 and return an RTX for the result.
2039 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2040 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2041 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
2044 extract_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
2045 unsigned HOST_WIDE_INT bitpos
, int unsignedp
)
2048 unsigned int bitsdone
= 0;
2049 rtx result
= NULL_RTX
;
2052 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2054 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
2055 unit
= BITS_PER_WORD
;
2058 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
2059 if (0 && bitsize
/ unit
> 2)
2061 rtx tmp
= extract_force_align_mem_bit_field (op0
, bitsize
, bitpos
,
2068 while (bitsdone
< bitsize
)
2070 unsigned HOST_WIDE_INT thissize
;
2072 unsigned HOST_WIDE_INT thispos
;
2073 unsigned HOST_WIDE_INT offset
;
2075 offset
= (bitpos
+ bitsdone
) / unit
;
2076 thispos
= (bitpos
+ bitsdone
) % unit
;
2078 /* THISSIZE must not overrun a word boundary. Otherwise,
2079 extract_fixed_bit_field will call us again, and we will mutually
2081 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
2082 thissize
= MIN (thissize
, unit
- thispos
);
2084 /* If OP0 is a register, then handle OFFSET here.
2086 When handling multiword bitfields, extract_bit_field may pass
2087 down a word_mode SUBREG of a larger REG for a bitfield that actually
2088 crosses a word boundary. Thus, for a SUBREG, we must find
2089 the current word starting from the base register. */
2090 if (GET_CODE (op0
) == SUBREG
)
2092 int word_offset
= (SUBREG_BYTE (op0
) / UNITS_PER_WORD
) + offset
;
2093 word
= operand_subword_force (SUBREG_REG (op0
), word_offset
,
2094 GET_MODE (SUBREG_REG (op0
)));
2097 else if (REG_P (op0
))
2099 word
= operand_subword_force (op0
, offset
, GET_MODE (op0
));
2105 /* Extract the parts in bit-counting order,
2106 whose meaning is determined by BYTES_PER_UNIT.
2107 OFFSET is in UNITs, and UNIT is in bits.
2108 extract_fixed_bit_field wants offset in bytes. */
2109 part
= extract_fixed_bit_field (word_mode
, word
,
2110 offset
* unit
/ BITS_PER_UNIT
,
2111 thissize
, thispos
, 0, 1);
2112 bitsdone
+= thissize
;
2114 /* Shift this part into place for the result. */
2115 if (BYTES_BIG_ENDIAN
)
2117 if (bitsize
!= bitsdone
)
2118 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2119 build_int_cst (NULL_TREE
, bitsize
- bitsdone
),
2124 if (bitsdone
!= thissize
)
2125 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2126 build_int_cst (NULL_TREE
,
2127 bitsdone
- thissize
), 0, 1);
2133 /* Combine the parts with bitwise or. This works
2134 because we extracted each part as an unsigned bit field. */
2135 result
= expand_binop (word_mode
, ior_optab
, part
, result
, NULL_RTX
, 1,
2141 /* Unsigned bit field: we are done. */
2144 /* Signed bit field: sign-extend with two arithmetic shifts. */
2145 result
= expand_shift (LSHIFT_EXPR
, word_mode
, result
,
2146 build_int_cst (NULL_TREE
, BITS_PER_WORD
- bitsize
),
2148 return expand_shift (RSHIFT_EXPR
, word_mode
, result
,
2149 build_int_cst (NULL_TREE
, BITS_PER_WORD
- bitsize
),
2153 /* Add INC into TARGET. */
2156 expand_inc (rtx target
, rtx inc
)
2158 rtx value
= expand_binop (GET_MODE (target
), add_optab
,
2160 target
, 0, OPTAB_LIB_WIDEN
);
2161 if (value
!= target
)
2162 emit_move_insn (target
, value
);
2165 /* Subtract DEC from TARGET. */
2168 expand_dec (rtx target
, rtx dec
)
2170 rtx value
= expand_binop (GET_MODE (target
), sub_optab
,
2172 target
, 0, OPTAB_LIB_WIDEN
);
2173 if (value
!= target
)
2174 emit_move_insn (target
, value
);
2177 /* Output a shift instruction for expression code CODE,
2178 with SHIFTED being the rtx for the value to shift,
2179 and AMOUNT the tree for the amount to shift by.
2180 Store the result in the rtx TARGET, if that is convenient.
2181 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2182 Return the rtx for where the value is. */
2185 expand_shift (enum tree_code code
, enum machine_mode mode
, rtx shifted
,
2186 tree amount
, rtx target
, int unsignedp
)
2189 int left
= (code
== LSHIFT_EXPR
|| code
== LROTATE_EXPR
);
2190 int rotate
= (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
);
2193 /* Previously detected shift-counts computed by NEGATE_EXPR
2194 and shifted in the other direction; but that does not work
2197 op1
= expand_normal (amount
);
2199 if (SHIFT_COUNT_TRUNCATED
)
2201 if (GET_CODE (op1
) == CONST_INT
2202 && ((unsigned HOST_WIDE_INT
) INTVAL (op1
) >=
2203 (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)))
2204 op1
= GEN_INT ((unsigned HOST_WIDE_INT
) INTVAL (op1
)
2205 % GET_MODE_BITSIZE (mode
));
2206 else if (GET_CODE (op1
) == SUBREG
2207 && subreg_lowpart_p (op1
))
2208 op1
= SUBREG_REG (op1
);
2211 if (op1
== const0_rtx
)
2214 /* Check whether its cheaper to implement a left shift by a constant
2215 bit count by a sequence of additions. */
2216 if (code
== LSHIFT_EXPR
2217 && GET_CODE (op1
) == CONST_INT
2219 && INTVAL (op1
) < GET_MODE_BITSIZE (mode
)
2220 && INTVAL (op1
) < MAX_BITS_PER_WORD
2221 && shift_cost
[mode
][INTVAL (op1
)] > INTVAL (op1
) * add_cost
[mode
]
2222 && shift_cost
[mode
][INTVAL (op1
)] != MAX_COST
)
2225 for (i
= 0; i
< INTVAL (op1
); i
++)
2227 temp
= force_reg (mode
, shifted
);
2228 shifted
= expand_binop (mode
, add_optab
, temp
, temp
, NULL_RTX
,
2229 unsignedp
, OPTAB_LIB_WIDEN
);
2234 for (try = 0; temp
== 0 && try < 3; try++)
2236 enum optab_methods methods
;
2239 methods
= OPTAB_DIRECT
;
2241 methods
= OPTAB_WIDEN
;
2243 methods
= OPTAB_LIB_WIDEN
;
2247 /* Widening does not work for rotation. */
2248 if (methods
== OPTAB_WIDEN
)
2250 else if (methods
== OPTAB_LIB_WIDEN
)
2252 /* If we have been unable to open-code this by a rotation,
2253 do it as the IOR of two shifts. I.e., to rotate A
2254 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2255 where C is the bitsize of A.
2257 It is theoretically possible that the target machine might
2258 not be able to perform either shift and hence we would
2259 be making two libcalls rather than just the one for the
2260 shift (similarly if IOR could not be done). We will allow
2261 this extremely unlikely lossage to avoid complicating the
2264 rtx subtarget
= target
== shifted
? 0 : target
;
2265 tree new_amount
, other_amount
;
2267 tree type
= TREE_TYPE (amount
);
2268 if (GET_MODE (op1
) != TYPE_MODE (type
)
2269 && GET_MODE (op1
) != VOIDmode
)
2270 op1
= convert_to_mode (TYPE_MODE (type
), op1
, 1);
2271 new_amount
= make_tree (type
, op1
);
2273 = fold_build2 (MINUS_EXPR
, type
,
2274 build_int_cst (type
, GET_MODE_BITSIZE (mode
)),
2277 shifted
= force_reg (mode
, shifted
);
2279 temp
= expand_shift (left
? LSHIFT_EXPR
: RSHIFT_EXPR
,
2280 mode
, shifted
, new_amount
, 0, 1);
2281 temp1
= expand_shift (left
? RSHIFT_EXPR
: LSHIFT_EXPR
,
2282 mode
, shifted
, other_amount
, subtarget
, 1);
2283 return expand_binop (mode
, ior_optab
, temp
, temp1
, target
,
2284 unsignedp
, methods
);
2287 temp
= expand_binop (mode
,
2288 left
? rotl_optab
: rotr_optab
,
2289 shifted
, op1
, target
, unsignedp
, methods
);
2292 temp
= expand_binop (mode
,
2293 left
? ashl_optab
: lshr_optab
,
2294 shifted
, op1
, target
, unsignedp
, methods
);
2296 /* Do arithmetic shifts.
2297 Also, if we are going to widen the operand, we can just as well
2298 use an arithmetic right-shift instead of a logical one. */
2299 if (temp
== 0 && ! rotate
2300 && (! unsignedp
|| (! left
&& methods
== OPTAB_WIDEN
)))
2302 enum optab_methods methods1
= methods
;
2304 /* If trying to widen a log shift to an arithmetic shift,
2305 don't accept an arithmetic shift of the same size. */
2307 methods1
= OPTAB_MUST_WIDEN
;
2309 /* Arithmetic shift */
2311 temp
= expand_binop (mode
,
2312 left
? ashl_optab
: ashr_optab
,
2313 shifted
, op1
, target
, unsignedp
, methods1
);
2316 /* We used to try extzv here for logical right shifts, but that was
2317 only useful for one machine, the VAX, and caused poor code
2318 generation there for lshrdi3, so the code was deleted and a
2319 define_expand for lshrsi3 was added to vax.md. */
2339 /* This structure holds the "cost" of a multiply sequence. The
2340 "cost" field holds the total rtx_cost of every operator in the
2341 synthetic multiplication sequence, hence cost(a op b) is defined
2342 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2343 The "latency" field holds the minimum possible latency of the
2344 synthetic multiply, on a hypothetical infinitely parallel CPU.
2345 This is the critical path, or the maximum height, of the expression
2346 tree which is the sum of rtx_costs on the most expensive path from
2347 any leaf to the root. Hence latency(a op b) is defined as zero for
2348 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2351 short cost
; /* Total rtx_cost of the multiplication sequence. */
2352 short latency
; /* The latency of the multiplication sequence. */
2355 /* This macro is used to compare a pointer to a mult_cost against an
2356 single integer "rtx_cost" value. This is equivalent to the macro
2357 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2358 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2359 || ((X)->cost == (Y) && (X)->latency < (Y)))
2361 /* This macro is used to compare two pointers to mult_costs against
2362 each other. The macro returns true if X is cheaper than Y.
2363 Currently, the cheaper of two mult_costs is the one with the
2364 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2365 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2366 || ((X)->cost == (Y)->cost \
2367 && (X)->latency < (Y)->latency))
2369 /* This structure records a sequence of operations.
2370 `ops' is the number of operations recorded.
2371 `cost' is their total cost.
2372 The operations are stored in `op' and the corresponding
2373 logarithms of the integer coefficients in `log'.
2375 These are the operations:
2376 alg_zero total := 0;
2377 alg_m total := multiplicand;
2378 alg_shift total := total * coeff
2379 alg_add_t_m2 total := total + multiplicand * coeff;
2380 alg_sub_t_m2 total := total - multiplicand * coeff;
2381 alg_add_factor total := total * coeff + total;
2382 alg_sub_factor total := total * coeff - total;
2383 alg_add_t2_m total := total * coeff + multiplicand;
2384 alg_sub_t2_m total := total * coeff - multiplicand;
2386 The first operand must be either alg_zero or alg_m. */
2390 struct mult_cost cost
;
2392 /* The size of the OP and LOG fields are not directly related to the
2393 word size, but the worst-case algorithms will be if we have few
2394 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2395 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2396 in total wordsize operations. */
2397 enum alg_code op
[MAX_BITS_PER_WORD
];
2398 char log
[MAX_BITS_PER_WORD
];
2401 /* The entry for our multiplication cache/hash table. */
2402 struct alg_hash_entry
{
2403 /* The number we are multiplying by. */
2404 unsigned HOST_WIDE_INT t
;
2406 /* The mode in which we are multiplying something by T. */
2407 enum machine_mode mode
;
2409 /* The best multiplication algorithm for t. */
2412 /* The cost of multiplication if ALG_CODE is not alg_impossible.
2413 Otherwise, the cost within which multiplication by T is
2415 struct mult_cost cost
;
2418 /* The number of cache/hash entries. */
2419 #if HOST_BITS_PER_WIDE_INT == 64
2420 #define NUM_ALG_HASH_ENTRIES 1031
2422 #define NUM_ALG_HASH_ENTRIES 307
2425 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2426 actually a hash table. If we have a collision, that the older
2427 entry is kicked out. */
2428 static struct alg_hash_entry alg_hash
[NUM_ALG_HASH_ENTRIES
];
2430 /* Indicates the type of fixup needed after a constant multiplication.
2431 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2432 the result should be negated, and ADD_VARIANT means that the
2433 multiplicand should be added to the result. */
2434 enum mult_variant
{basic_variant
, negate_variant
, add_variant
};
2436 static void synth_mult (struct algorithm
*, unsigned HOST_WIDE_INT
,
2437 const struct mult_cost
*, enum machine_mode mode
);
2438 static bool choose_mult_variant (enum machine_mode
, HOST_WIDE_INT
,
2439 struct algorithm
*, enum mult_variant
*, int);
2440 static rtx
expand_mult_const (enum machine_mode
, rtx
, HOST_WIDE_INT
, rtx
,
2441 const struct algorithm
*, enum mult_variant
);
2442 static unsigned HOST_WIDE_INT
choose_multiplier (unsigned HOST_WIDE_INT
, int,
2443 int, rtx
*, int *, int *);
2444 static unsigned HOST_WIDE_INT
invert_mod2n (unsigned HOST_WIDE_INT
, int);
2445 static rtx
extract_high_half (enum machine_mode
, rtx
);
2446 static rtx
expand_mult_highpart (enum machine_mode
, rtx
, rtx
, rtx
, int, int);
2447 static rtx
expand_mult_highpart_optab (enum machine_mode
, rtx
, rtx
, rtx
,
2449 /* Compute and return the best algorithm for multiplying by T.
2450 The algorithm must cost less than cost_limit
2451 If retval.cost >= COST_LIMIT, no algorithm was found and all
2452 other field of the returned struct are undefined.
2453 MODE is the machine mode of the multiplication. */
2456 synth_mult (struct algorithm
*alg_out
, unsigned HOST_WIDE_INT t
,
2457 const struct mult_cost
*cost_limit
, enum machine_mode mode
)
2460 struct algorithm
*alg_in
, *best_alg
;
2461 struct mult_cost best_cost
;
2462 struct mult_cost new_limit
;
2463 int op_cost
, op_latency
;
2464 unsigned HOST_WIDE_INT q
;
2465 int maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (mode
));
2467 bool cache_hit
= false;
2468 enum alg_code cache_alg
= alg_zero
;
2470 /* Indicate that no algorithm is yet found. If no algorithm
2471 is found, this value will be returned and indicate failure. */
2472 alg_out
->cost
.cost
= cost_limit
->cost
+ 1;
2473 alg_out
->cost
.latency
= cost_limit
->latency
+ 1;
2475 if (cost_limit
->cost
< 0
2476 || (cost_limit
->cost
== 0 && cost_limit
->latency
<= 0))
2479 /* Restrict the bits of "t" to the multiplication's mode. */
2480 t
&= GET_MODE_MASK (mode
);
2482 /* t == 1 can be done in zero cost. */
2486 alg_out
->cost
.cost
= 0;
2487 alg_out
->cost
.latency
= 0;
2488 alg_out
->op
[0] = alg_m
;
2492 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2496 if (MULT_COST_LESS (cost_limit
, zero_cost
))
2501 alg_out
->cost
.cost
= zero_cost
;
2502 alg_out
->cost
.latency
= zero_cost
;
2503 alg_out
->op
[0] = alg_zero
;
2508 /* We'll be needing a couple extra algorithm structures now. */
2510 alg_in
= alloca (sizeof (struct algorithm
));
2511 best_alg
= alloca (sizeof (struct algorithm
));
2512 best_cost
= *cost_limit
;
2514 /* Compute the hash index. */
2515 hash_index
= (t
^ (unsigned int) mode
) % NUM_ALG_HASH_ENTRIES
;
2517 /* See if we already know what to do for T. */
2518 if (alg_hash
[hash_index
].t
== t
2519 && alg_hash
[hash_index
].mode
== mode
2520 && alg_hash
[hash_index
].alg
!= alg_unknown
)
2522 cache_alg
= alg_hash
[hash_index
].alg
;
2524 if (cache_alg
== alg_impossible
)
2526 /* The cache tells us that it's impossible to synthesize
2527 multiplication by T within alg_hash[hash_index].cost. */
2528 if (!CHEAPER_MULT_COST (&alg_hash
[hash_index
].cost
, cost_limit
))
2529 /* COST_LIMIT is at least as restrictive as the one
2530 recorded in the hash table, in which case we have no
2531 hope of synthesizing a multiplication. Just
2535 /* If we get here, COST_LIMIT is less restrictive than the
2536 one recorded in the hash table, so we may be able to
2537 synthesize a multiplication. Proceed as if we didn't
2538 have the cache entry. */
2542 if (CHEAPER_MULT_COST (cost_limit
, &alg_hash
[hash_index
].cost
))
2543 /* The cached algorithm shows that this multiplication
2544 requires more cost than COST_LIMIT. Just return. This
2545 way, we don't clobber this cache entry with
2546 alg_impossible but retain useful information. */
2558 goto do_alg_addsub_t_m2
;
2560 case alg_add_factor
:
2561 case alg_sub_factor
:
2562 goto do_alg_addsub_factor
;
2565 goto do_alg_add_t2_m
;
2568 goto do_alg_sub_t2_m
;
2576 /* If we have a group of zero bits at the low-order part of T, try
2577 multiplying by the remaining bits and then doing a shift. */
2582 m
= floor_log2 (t
& -t
); /* m = number of low zero bits */
2586 /* The function expand_shift will choose between a shift and
2587 a sequence of additions, so the observed cost is given as
2588 MIN (m * add_cost[mode], shift_cost[mode][m]). */
2589 op_cost
= m
* add_cost
[mode
];
2590 if (shift_cost
[mode
][m
] < op_cost
)
2591 op_cost
= shift_cost
[mode
][m
];
2592 new_limit
.cost
= best_cost
.cost
- op_cost
;
2593 new_limit
.latency
= best_cost
.latency
- op_cost
;
2594 synth_mult (alg_in
, q
, &new_limit
, mode
);
2596 alg_in
->cost
.cost
+= op_cost
;
2597 alg_in
->cost
.latency
+= op_cost
;
2598 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2600 struct algorithm
*x
;
2601 best_cost
= alg_in
->cost
;
2602 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2603 best_alg
->log
[best_alg
->ops
] = m
;
2604 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2611 /* If we have an odd number, add or subtract one. */
2614 unsigned HOST_WIDE_INT w
;
2617 for (w
= 1; (w
& t
) != 0; w
<<= 1)
2619 /* If T was -1, then W will be zero after the loop. This is another
2620 case where T ends with ...111. Handling this with (T + 1) and
2621 subtract 1 produces slightly better code and results in algorithm
2622 selection much faster than treating it like the ...0111 case
2626 /* Reject the case where t is 3.
2627 Thus we prefer addition in that case. */
2630 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2632 op_cost
= add_cost
[mode
];
2633 new_limit
.cost
= best_cost
.cost
- op_cost
;
2634 new_limit
.latency
= best_cost
.latency
- op_cost
;
2635 synth_mult (alg_in
, t
+ 1, &new_limit
, mode
);
2637 alg_in
->cost
.cost
+= op_cost
;
2638 alg_in
->cost
.latency
+= op_cost
;
2639 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2641 struct algorithm
*x
;
2642 best_cost
= alg_in
->cost
;
2643 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2644 best_alg
->log
[best_alg
->ops
] = 0;
2645 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2650 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2652 op_cost
= add_cost
[mode
];
2653 new_limit
.cost
= best_cost
.cost
- op_cost
;
2654 new_limit
.latency
= best_cost
.latency
- op_cost
;
2655 synth_mult (alg_in
, t
- 1, &new_limit
, mode
);
2657 alg_in
->cost
.cost
+= op_cost
;
2658 alg_in
->cost
.latency
+= op_cost
;
2659 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2661 struct algorithm
*x
;
2662 best_cost
= alg_in
->cost
;
2663 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2664 best_alg
->log
[best_alg
->ops
] = 0;
2665 best_alg
->op
[best_alg
->ops
] = alg_add_t_m2
;
2672 /* Look for factors of t of the form
2673 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2674 If we find such a factor, we can multiply by t using an algorithm that
2675 multiplies by q, shift the result by m and add/subtract it to itself.
2677 We search for large factors first and loop down, even if large factors
2678 are less probable than small; if we find a large factor we will find a
2679 good sequence quickly, and therefore be able to prune (by decreasing
2680 COST_LIMIT) the search. */
2682 do_alg_addsub_factor
:
2683 for (m
= floor_log2 (t
- 1); m
>= 2; m
--)
2685 unsigned HOST_WIDE_INT d
;
2687 d
= ((unsigned HOST_WIDE_INT
) 1 << m
) + 1;
2688 if (t
% d
== 0 && t
> d
&& m
< maxm
2689 && (!cache_hit
|| cache_alg
== alg_add_factor
))
2691 /* If the target has a cheap shift-and-add instruction use
2692 that in preference to a shift insn followed by an add insn.
2693 Assume that the shift-and-add is "atomic" with a latency
2694 equal to its cost, otherwise assume that on superscalar
2695 hardware the shift may be executed concurrently with the
2696 earlier steps in the algorithm. */
2697 op_cost
= add_cost
[mode
] + shift_cost
[mode
][m
];
2698 if (shiftadd_cost
[mode
][m
] < op_cost
)
2700 op_cost
= shiftadd_cost
[mode
][m
];
2701 op_latency
= op_cost
;
2704 op_latency
= add_cost
[mode
];
2706 new_limit
.cost
= best_cost
.cost
- op_cost
;
2707 new_limit
.latency
= best_cost
.latency
- op_latency
;
2708 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2710 alg_in
->cost
.cost
+= op_cost
;
2711 alg_in
->cost
.latency
+= op_latency
;
2712 if (alg_in
->cost
.latency
< op_cost
)
2713 alg_in
->cost
.latency
= op_cost
;
2714 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2716 struct algorithm
*x
;
2717 best_cost
= alg_in
->cost
;
2718 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2719 best_alg
->log
[best_alg
->ops
] = m
;
2720 best_alg
->op
[best_alg
->ops
] = alg_add_factor
;
2722 /* Other factors will have been taken care of in the recursion. */
2726 d
= ((unsigned HOST_WIDE_INT
) 1 << m
) - 1;
2727 if (t
% d
== 0 && t
> d
&& m
< maxm
2728 && (!cache_hit
|| cache_alg
== alg_sub_factor
))
2730 /* If the target has a cheap shift-and-subtract insn use
2731 that in preference to a shift insn followed by a sub insn.
2732 Assume that the shift-and-sub is "atomic" with a latency
2733 equal to it's cost, otherwise assume that on superscalar
2734 hardware the shift may be executed concurrently with the
2735 earlier steps in the algorithm. */
2736 op_cost
= add_cost
[mode
] + shift_cost
[mode
][m
];
2737 if (shiftsub_cost
[mode
][m
] < op_cost
)
2739 op_cost
= shiftsub_cost
[mode
][m
];
2740 op_latency
= op_cost
;
2743 op_latency
= add_cost
[mode
];
2745 new_limit
.cost
= best_cost
.cost
- op_cost
;
2746 new_limit
.latency
= best_cost
.latency
- op_latency
;
2747 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2749 alg_in
->cost
.cost
+= op_cost
;
2750 alg_in
->cost
.latency
+= op_latency
;
2751 if (alg_in
->cost
.latency
< op_cost
)
2752 alg_in
->cost
.latency
= op_cost
;
2753 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2755 struct algorithm
*x
;
2756 best_cost
= alg_in
->cost
;
2757 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2758 best_alg
->log
[best_alg
->ops
] = m
;
2759 best_alg
->op
[best_alg
->ops
] = alg_sub_factor
;
2767 /* Try shift-and-add (load effective address) instructions,
2768 i.e. do a*3, a*5, a*9. */
2775 if (m
>= 0 && m
< maxm
)
2777 op_cost
= shiftadd_cost
[mode
][m
];
2778 new_limit
.cost
= best_cost
.cost
- op_cost
;
2779 new_limit
.latency
= best_cost
.latency
- op_cost
;
2780 synth_mult (alg_in
, (t
- 1) >> m
, &new_limit
, mode
);
2782 alg_in
->cost
.cost
+= op_cost
;
2783 alg_in
->cost
.latency
+= op_cost
;
2784 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2786 struct algorithm
*x
;
2787 best_cost
= alg_in
->cost
;
2788 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2789 best_alg
->log
[best_alg
->ops
] = m
;
2790 best_alg
->op
[best_alg
->ops
] = alg_add_t2_m
;
2800 if (m
>= 0 && m
< maxm
)
2802 op_cost
= shiftsub_cost
[mode
][m
];
2803 new_limit
.cost
= best_cost
.cost
- op_cost
;
2804 new_limit
.latency
= best_cost
.latency
- op_cost
;
2805 synth_mult (alg_in
, (t
+ 1) >> m
, &new_limit
, mode
);
2807 alg_in
->cost
.cost
+= op_cost
;
2808 alg_in
->cost
.latency
+= op_cost
;
2809 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2811 struct algorithm
*x
;
2812 best_cost
= alg_in
->cost
;
2813 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2814 best_alg
->log
[best_alg
->ops
] = m
;
2815 best_alg
->op
[best_alg
->ops
] = alg_sub_t2_m
;
2823 /* If best_cost has not decreased, we have not found any algorithm. */
2824 if (!CHEAPER_MULT_COST (&best_cost
, cost_limit
))
2826 /* We failed to find an algorithm. Record alg_impossible for
2827 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2828 we are asked to find an algorithm for T within the same or
2829 lower COST_LIMIT, we can immediately return to the
2831 alg_hash
[hash_index
].t
= t
;
2832 alg_hash
[hash_index
].mode
= mode
;
2833 alg_hash
[hash_index
].alg
= alg_impossible
;
2834 alg_hash
[hash_index
].cost
= *cost_limit
;
2838 /* Cache the result. */
2841 alg_hash
[hash_index
].t
= t
;
2842 alg_hash
[hash_index
].mode
= mode
;
2843 alg_hash
[hash_index
].alg
= best_alg
->op
[best_alg
->ops
];
2844 alg_hash
[hash_index
].cost
.cost
= best_cost
.cost
;
2845 alg_hash
[hash_index
].cost
.latency
= best_cost
.latency
;
2848 /* If we are getting a too long sequence for `struct algorithm'
2849 to record, make this search fail. */
2850 if (best_alg
->ops
== MAX_BITS_PER_WORD
)
2853 /* Copy the algorithm from temporary space to the space at alg_out.
2854 We avoid using structure assignment because the majority of
2855 best_alg is normally undefined, and this is a critical function. */
2856 alg_out
->ops
= best_alg
->ops
+ 1;
2857 alg_out
->cost
= best_cost
;
2858 memcpy (alg_out
->op
, best_alg
->op
,
2859 alg_out
->ops
* sizeof *alg_out
->op
);
2860 memcpy (alg_out
->log
, best_alg
->log
,
2861 alg_out
->ops
* sizeof *alg_out
->log
);
2864 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2865 Try three variations:
2867 - a shift/add sequence based on VAL itself
2868 - a shift/add sequence based on -VAL, followed by a negation
2869 - a shift/add sequence based on VAL - 1, followed by an addition.
2871 Return true if the cheapest of these cost less than MULT_COST,
2872 describing the algorithm in *ALG and final fixup in *VARIANT. */
2875 choose_mult_variant (enum machine_mode mode
, HOST_WIDE_INT val
,
2876 struct algorithm
*alg
, enum mult_variant
*variant
,
2879 struct algorithm alg2
;
2880 struct mult_cost limit
;
2883 /* Fail quickly for impossible bounds. */
2887 /* Ensure that mult_cost provides a reasonable upper bound.
2888 Any constant multiplication can be performed with less
2889 than 2 * bits additions. */
2890 op_cost
= 2 * GET_MODE_BITSIZE (mode
) * add_cost
[mode
];
2891 if (mult_cost
> op_cost
)
2892 mult_cost
= op_cost
;
2894 *variant
= basic_variant
;
2895 limit
.cost
= mult_cost
;
2896 limit
.latency
= mult_cost
;
2897 synth_mult (alg
, val
, &limit
, mode
);
2899 /* This works only if the inverted value actually fits in an
2901 if (HOST_BITS_PER_INT
>= GET_MODE_BITSIZE (mode
))
2903 op_cost
= neg_cost
[mode
];
2904 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
2906 limit
.cost
= alg
->cost
.cost
- op_cost
;
2907 limit
.latency
= alg
->cost
.latency
- op_cost
;
2911 limit
.cost
= mult_cost
- op_cost
;
2912 limit
.latency
= mult_cost
- op_cost
;
2915 synth_mult (&alg2
, -val
, &limit
, mode
);
2916 alg2
.cost
.cost
+= op_cost
;
2917 alg2
.cost
.latency
+= op_cost
;
2918 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
2919 *alg
= alg2
, *variant
= negate_variant
;
2922 /* This proves very useful for division-by-constant. */
2923 op_cost
= add_cost
[mode
];
2924 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
2926 limit
.cost
= alg
->cost
.cost
- op_cost
;
2927 limit
.latency
= alg
->cost
.latency
- op_cost
;
2931 limit
.cost
= mult_cost
- op_cost
;
2932 limit
.latency
= mult_cost
- op_cost
;
2935 synth_mult (&alg2
, val
- 1, &limit
, mode
);
2936 alg2
.cost
.cost
+= op_cost
;
2937 alg2
.cost
.latency
+= op_cost
;
2938 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
2939 *alg
= alg2
, *variant
= add_variant
;
2941 return MULT_COST_LESS (&alg
->cost
, mult_cost
);
2944 /* A subroutine of expand_mult, used for constant multiplications.
2945 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2946 convenient. Use the shift/add sequence described by ALG and apply
2947 the final fixup specified by VARIANT. */
2950 expand_mult_const (enum machine_mode mode
, rtx op0
, HOST_WIDE_INT val
,
2951 rtx target
, const struct algorithm
*alg
,
2952 enum mult_variant variant
)
2954 HOST_WIDE_INT val_so_far
;
2955 rtx insn
, accum
, tem
;
2957 enum machine_mode nmode
;
2959 /* Avoid referencing memory over and over.
2960 For speed, but also for correctness when mem is volatile. */
2962 op0
= force_reg (mode
, op0
);
2964 /* ACCUM starts out either as OP0 or as a zero, depending on
2965 the first operation. */
2967 if (alg
->op
[0] == alg_zero
)
2969 accum
= copy_to_mode_reg (mode
, const0_rtx
);
2972 else if (alg
->op
[0] == alg_m
)
2974 accum
= copy_to_mode_reg (mode
, op0
);
2980 for (opno
= 1; opno
< alg
->ops
; opno
++)
2982 int log
= alg
->log
[opno
];
2983 rtx shift_subtarget
= optimize
? 0 : accum
;
2985 = (opno
== alg
->ops
- 1 && target
!= 0 && variant
!= add_variant
2988 rtx accum_target
= optimize
? 0 : accum
;
2990 switch (alg
->op
[opno
])
2993 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2994 build_int_cst (NULL_TREE
, log
),
3000 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
,
3001 build_int_cst (NULL_TREE
, log
),
3003 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
3004 add_target
? add_target
: accum_target
);
3005 val_so_far
+= (HOST_WIDE_INT
) 1 << log
;
3009 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
,
3010 build_int_cst (NULL_TREE
, log
),
3012 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, tem
),
3013 add_target
? add_target
: accum_target
);
3014 val_so_far
-= (HOST_WIDE_INT
) 1 << log
;
3018 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3019 build_int_cst (NULL_TREE
, log
),
3022 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
),
3023 add_target
? add_target
: accum_target
);
3024 val_so_far
= (val_so_far
<< log
) + 1;
3028 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3029 build_int_cst (NULL_TREE
, log
),
3030 shift_subtarget
, 0);
3031 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, op0
),
3032 add_target
? add_target
: accum_target
);
3033 val_so_far
= (val_so_far
<< log
) - 1;
3036 case alg_add_factor
:
3037 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3038 build_int_cst (NULL_TREE
, log
),
3040 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
3041 add_target
? add_target
: accum_target
);
3042 val_so_far
+= val_so_far
<< log
;
3045 case alg_sub_factor
:
3046 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3047 build_int_cst (NULL_TREE
, log
),
3049 accum
= force_operand (gen_rtx_MINUS (mode
, tem
, accum
),
3051 ? add_target
: (optimize
? 0 : tem
)));
3052 val_so_far
= (val_so_far
<< log
) - val_so_far
;
3059 /* Write a REG_EQUAL note on the last insn so that we can cse
3060 multiplication sequences. Note that if ACCUM is a SUBREG,
3061 we've set the inner register and must properly indicate
3064 tem
= op0
, nmode
= mode
;
3065 if (GET_CODE (accum
) == SUBREG
)
3067 nmode
= GET_MODE (SUBREG_REG (accum
));
3068 tem
= gen_lowpart (nmode
, op0
);
3071 insn
= get_last_insn ();
3072 set_unique_reg_note (insn
, REG_EQUAL
,
3073 gen_rtx_MULT (nmode
, tem
, GEN_INT (val_so_far
)));
3076 if (variant
== negate_variant
)
3078 val_so_far
= -val_so_far
;
3079 accum
= expand_unop (mode
, neg_optab
, accum
, target
, 0);
3081 else if (variant
== add_variant
)
3083 val_so_far
= val_so_far
+ 1;
3084 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
), target
);
3087 /* Compare only the bits of val and val_so_far that are significant
3088 in the result mode, to avoid sign-/zero-extension confusion. */
3089 val
&= GET_MODE_MASK (mode
);
3090 val_so_far
&= GET_MODE_MASK (mode
);
3091 gcc_assert (val
== val_so_far
);
3096 /* Perform a multiplication and return an rtx for the result.
3097 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3098 TARGET is a suggestion for where to store the result (an rtx).
3100 We check specially for a constant integer as OP1.
3101 If you want this check for OP0 as well, then before calling
3102 you should swap the two operands if OP0 would be constant. */
3105 expand_mult (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3108 enum mult_variant variant
;
3109 struct algorithm algorithm
;
3112 /* Handling const0_rtx here allows us to use zero as a rogue value for
3114 if (op1
== const0_rtx
)
3116 if (op1
== const1_rtx
)
3118 if (op1
== constm1_rtx
)
3119 return expand_unop (mode
,
3120 GET_MODE_CLASS (mode
) == MODE_INT
3121 && !unsignedp
&& flag_trapv
3122 ? negv_optab
: neg_optab
,
3125 /* These are the operations that are potentially turned into a sequence
3126 of shifts and additions. */
3127 if (SCALAR_INT_MODE_P (mode
)
3128 && (unsignedp
|| !flag_trapv
))
3130 HOST_WIDE_INT coeff
= 0;
3131 rtx fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3133 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3134 less than or equal in size to `unsigned int' this doesn't matter.
3135 If the mode is larger than `unsigned int', then synth_mult works
3136 only if the constant value exactly fits in an `unsigned int' without
3137 any truncation. This means that multiplying by negative values does
3138 not work; results are off by 2^32 on a 32 bit machine. */
3140 if (GET_CODE (op1
) == CONST_INT
)
3142 /* Attempt to handle multiplication of DImode values by negative
3143 coefficients, by performing the multiplication by a positive
3144 multiplier and then inverting the result. */
3145 if (INTVAL (op1
) < 0
3146 && GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
3148 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3149 result is interpreted as an unsigned coefficient.
3150 Exclude cost of op0 from max_cost to match the cost
3151 calculation of the synth_mult. */
3152 max_cost
= rtx_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), SET
)
3155 && choose_mult_variant (mode
, -INTVAL (op1
), &algorithm
,
3156 &variant
, max_cost
))
3158 rtx temp
= expand_mult_const (mode
, op0
, -INTVAL (op1
),
3159 NULL_RTX
, &algorithm
,
3161 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3164 else coeff
= INTVAL (op1
);
3166 else if (GET_CODE (op1
) == CONST_DOUBLE
)
3168 /* If we are multiplying in DImode, it may still be a win
3169 to try to work with shifts and adds. */
3170 if (CONST_DOUBLE_HIGH (op1
) == 0)
3171 coeff
= CONST_DOUBLE_LOW (op1
);
3172 else if (CONST_DOUBLE_LOW (op1
) == 0
3173 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1
)))
3175 int shift
= floor_log2 (CONST_DOUBLE_HIGH (op1
))
3176 + HOST_BITS_PER_WIDE_INT
;
3177 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3178 build_int_cst (NULL_TREE
, shift
),
3183 /* We used to test optimize here, on the grounds that it's better to
3184 produce a smaller program when -O is not used. But this causes
3185 such a terrible slowdown sometimes that it seems better to always
3189 /* Special case powers of two. */
3190 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3191 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3192 build_int_cst (NULL_TREE
, floor_log2 (coeff
)),
3195 /* Exclude cost of op0 from max_cost to match the cost
3196 calculation of the synth_mult. */
3197 max_cost
= rtx_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), SET
);
3198 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3200 return expand_mult_const (mode
, op0
, coeff
, target
,
3201 &algorithm
, variant
);
3205 if (GET_CODE (op0
) == CONST_DOUBLE
)
3212 /* Expand x*2.0 as x+x. */
3213 if (GET_CODE (op1
) == CONST_DOUBLE
3214 && SCALAR_FLOAT_MODE_P (mode
))
3217 REAL_VALUE_FROM_CONST_DOUBLE (d
, op1
);
3219 if (REAL_VALUES_EQUAL (d
, dconst2
))
3221 op0
= force_reg (GET_MODE (op0
), op0
);
3222 return expand_binop (mode
, add_optab
, op0
, op0
,
3223 target
, unsignedp
, OPTAB_LIB_WIDEN
);
3227 /* This used to use umul_optab if unsigned, but for non-widening multiply
3228 there is no difference between signed and unsigned. */
3229 op0
= expand_binop (mode
,
3231 && flag_trapv
&& (GET_MODE_CLASS(mode
) == MODE_INT
)
3232 ? smulv_optab
: smul_optab
,
3233 op0
, op1
, target
, unsignedp
, OPTAB_LIB_WIDEN
);
3238 /* Return the smallest n such that 2**n >= X. */
3241 ceil_log2 (unsigned HOST_WIDE_INT x
)
3243 return floor_log2 (x
- 1) + 1;
3246 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3247 replace division by D, and put the least significant N bits of the result
3248 in *MULTIPLIER_PTR and return the most significant bit.
3250 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3251 needed precision is in PRECISION (should be <= N).
3253 PRECISION should be as small as possible so this function can choose
3254 multiplier more freely.
3256 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3257 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3259 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3260 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3263 unsigned HOST_WIDE_INT
3264 choose_multiplier (unsigned HOST_WIDE_INT d
, int n
, int precision
,
3265 rtx
*multiplier_ptr
, int *post_shift_ptr
, int *lgup_ptr
)
3267 HOST_WIDE_INT mhigh_hi
, mlow_hi
;
3268 unsigned HOST_WIDE_INT mhigh_lo
, mlow_lo
;
3269 int lgup
, post_shift
;
3271 unsigned HOST_WIDE_INT nl
, dummy1
;
3272 HOST_WIDE_INT nh
, dummy2
;
3274 /* lgup = ceil(log2(divisor)); */
3275 lgup
= ceil_log2 (d
);
3277 gcc_assert (lgup
<= n
);
3280 pow2
= n
+ lgup
- precision
;
3282 /* We could handle this with some effort, but this case is much
3283 better handled directly with a scc insn, so rely on caller using
3285 gcc_assert (pow
!= 2 * HOST_BITS_PER_WIDE_INT
);
3287 /* mlow = 2^(N + lgup)/d */
3288 if (pow
>= HOST_BITS_PER_WIDE_INT
)
3290 nh
= (HOST_WIDE_INT
) 1 << (pow
- HOST_BITS_PER_WIDE_INT
);
3296 nl
= (unsigned HOST_WIDE_INT
) 1 << pow
;
3298 div_and_round_double (TRUNC_DIV_EXPR
, 1, nl
, nh
, d
, (HOST_WIDE_INT
) 0,
3299 &mlow_lo
, &mlow_hi
, &dummy1
, &dummy2
);
3301 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3302 if (pow2
>= HOST_BITS_PER_WIDE_INT
)
3303 nh
|= (HOST_WIDE_INT
) 1 << (pow2
- HOST_BITS_PER_WIDE_INT
);
3305 nl
|= (unsigned HOST_WIDE_INT
) 1 << pow2
;
3306 div_and_round_double (TRUNC_DIV_EXPR
, 1, nl
, nh
, d
, (HOST_WIDE_INT
) 0,
3307 &mhigh_lo
, &mhigh_hi
, &dummy1
, &dummy2
);
3309 gcc_assert (!mhigh_hi
|| nh
- d
< d
);
3310 gcc_assert (mhigh_hi
<= 1 && mlow_hi
<= 1);
3311 /* Assert that mlow < mhigh. */
3312 gcc_assert (mlow_hi
< mhigh_hi
3313 || (mlow_hi
== mhigh_hi
&& mlow_lo
< mhigh_lo
));
3315 /* If precision == N, then mlow, mhigh exceed 2^N
3316 (but they do not exceed 2^(N+1)). */
3318 /* Reduce to lowest terms. */
3319 for (post_shift
= lgup
; post_shift
> 0; post_shift
--)
3321 unsigned HOST_WIDE_INT ml_lo
= (mlow_hi
<< (HOST_BITS_PER_WIDE_INT
- 1)) | (mlow_lo
>> 1);
3322 unsigned HOST_WIDE_INT mh_lo
= (mhigh_hi
<< (HOST_BITS_PER_WIDE_INT
- 1)) | (mhigh_lo
>> 1);
3332 *post_shift_ptr
= post_shift
;
3334 if (n
< HOST_BITS_PER_WIDE_INT
)
3336 unsigned HOST_WIDE_INT mask
= ((unsigned HOST_WIDE_INT
) 1 << n
) - 1;
3337 *multiplier_ptr
= GEN_INT (mhigh_lo
& mask
);
3338 return mhigh_lo
>= mask
;
3342 *multiplier_ptr
= GEN_INT (mhigh_lo
);
3347 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3348 congruent to 1 (mod 2**N). */
3350 static unsigned HOST_WIDE_INT
3351 invert_mod2n (unsigned HOST_WIDE_INT x
, int n
)
3353 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3355 /* The algorithm notes that the choice y = x satisfies
3356 x*y == 1 mod 2^3, since x is assumed odd.
3357 Each iteration doubles the number of bits of significance in y. */
3359 unsigned HOST_WIDE_INT mask
;
3360 unsigned HOST_WIDE_INT y
= x
;
3363 mask
= (n
== HOST_BITS_PER_WIDE_INT
3364 ? ~(unsigned HOST_WIDE_INT
) 0
3365 : ((unsigned HOST_WIDE_INT
) 1 << n
) - 1);
3369 y
= y
* (2 - x
*y
) & mask
; /* Modulo 2^N */
3375 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3376 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3377 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3378 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3381 The result is put in TARGET if that is convenient.
3383 MODE is the mode of operation. */
3386 expand_mult_highpart_adjust (enum machine_mode mode
, rtx adj_operand
, rtx op0
,
3387 rtx op1
, rtx target
, int unsignedp
)
3390 enum rtx_code adj_code
= unsignedp
? PLUS
: MINUS
;
3392 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3393 build_int_cst (NULL_TREE
, GET_MODE_BITSIZE (mode
) - 1),
3395 tem
= expand_and (mode
, tem
, op1
, NULL_RTX
);
3397 = force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3400 tem
= expand_shift (RSHIFT_EXPR
, mode
, op1
,
3401 build_int_cst (NULL_TREE
, GET_MODE_BITSIZE (mode
) - 1),
3403 tem
= expand_and (mode
, tem
, op0
, NULL_RTX
);
3404 target
= force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3410 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3413 extract_high_half (enum machine_mode mode
, rtx op
)
3415 enum machine_mode wider_mode
;
3417 if (mode
== word_mode
)
3418 return gen_highpart (mode
, op
);
3420 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3422 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3423 op
= expand_shift (RSHIFT_EXPR
, wider_mode
, op
,
3424 build_int_cst (NULL_TREE
, GET_MODE_BITSIZE (mode
)), 0, 1);
3425 return convert_modes (mode
, wider_mode
, op
, 0);
3428 /* Like expand_mult_highpart, but only consider using a multiplication
3429 optab. OP1 is an rtx for the constant operand. */
3432 expand_mult_highpart_optab (enum machine_mode mode
, rtx op0
, rtx op1
,
3433 rtx target
, int unsignedp
, int max_cost
)
3435 rtx narrow_op1
= gen_int_mode (INTVAL (op1
), mode
);
3436 enum machine_mode wider_mode
;
3441 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3443 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3444 size
= GET_MODE_BITSIZE (mode
);
3446 /* Firstly, try using a multiplication insn that only generates the needed
3447 high part of the product, and in the sign flavor of unsignedp. */
3448 if (mul_highpart_cost
[mode
] < max_cost
)
3450 moptab
= unsignedp
? umul_highpart_optab
: smul_highpart_optab
;
3451 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3452 unsignedp
, OPTAB_DIRECT
);
3457 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3458 Need to adjust the result after the multiplication. */
3459 if (size
- 1 < BITS_PER_WORD
3460 && (mul_highpart_cost
[mode
] + 2 * shift_cost
[mode
][size
-1]
3461 + 4 * add_cost
[mode
] < max_cost
))
3463 moptab
= unsignedp
? smul_highpart_optab
: umul_highpart_optab
;
3464 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3465 unsignedp
, OPTAB_DIRECT
);
3467 /* We used the wrong signedness. Adjust the result. */
3468 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3472 /* Try widening multiplication. */
3473 moptab
= unsignedp
? umul_widen_optab
: smul_widen_optab
;
3474 if (moptab
->handlers
[wider_mode
].insn_code
!= CODE_FOR_nothing
3475 && mul_widen_cost
[wider_mode
] < max_cost
)
3477 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
, 0,
3478 unsignedp
, OPTAB_WIDEN
);
3480 return extract_high_half (mode
, tem
);
3483 /* Try widening the mode and perform a non-widening multiplication. */
3484 if (smul_optab
->handlers
[wider_mode
].insn_code
!= CODE_FOR_nothing
3485 && size
- 1 < BITS_PER_WORD
3486 && mul_cost
[wider_mode
] + shift_cost
[mode
][size
-1] < max_cost
)
3488 rtx insns
, wop0
, wop1
;
3490 /* We need to widen the operands, for example to ensure the
3491 constant multiplier is correctly sign or zero extended.
3492 Use a sequence to clean-up any instructions emitted by
3493 the conversions if things don't work out. */
3495 wop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
3496 wop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
3497 tem
= expand_binop (wider_mode
, smul_optab
, wop0
, wop1
, 0,
3498 unsignedp
, OPTAB_WIDEN
);
3499 insns
= get_insns ();
3505 return extract_high_half (mode
, tem
);
3509 /* Try widening multiplication of opposite signedness, and adjust. */
3510 moptab
= unsignedp
? smul_widen_optab
: umul_widen_optab
;
3511 if (moptab
->handlers
[wider_mode
].insn_code
!= CODE_FOR_nothing
3512 && size
- 1 < BITS_PER_WORD
3513 && (mul_widen_cost
[wider_mode
] + 2 * shift_cost
[mode
][size
-1]
3514 + 4 * add_cost
[mode
] < max_cost
))
3516 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
,
3517 NULL_RTX
, ! unsignedp
, OPTAB_WIDEN
);
3520 tem
= extract_high_half (mode
, tem
);
3521 /* We used the wrong signedness. Adjust the result. */
3522 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3530 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3531 putting the high half of the result in TARGET if that is convenient,
3532 and return where the result is. If the operation can not be performed,
3535 MODE is the mode of operation and result.
3537 UNSIGNEDP nonzero means unsigned multiply.
3539 MAX_COST is the total allowed cost for the expanded RTL. */
3542 expand_mult_highpart (enum machine_mode mode
, rtx op0
, rtx op1
,
3543 rtx target
, int unsignedp
, int max_cost
)
3545 enum machine_mode wider_mode
= GET_MODE_WIDER_MODE (mode
);
3546 unsigned HOST_WIDE_INT cnst1
;
3548 bool sign_adjust
= false;
3549 enum mult_variant variant
;
3550 struct algorithm alg
;
3553 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3554 /* We can't support modes wider than HOST_BITS_PER_INT. */
3555 gcc_assert (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
);
3557 cnst1
= INTVAL (op1
) & GET_MODE_MASK (mode
);
3559 /* We can't optimize modes wider than BITS_PER_WORD.
3560 ??? We might be able to perform double-word arithmetic if
3561 mode == word_mode, however all the cost calculations in
3562 synth_mult etc. assume single-word operations. */
3563 if (GET_MODE_BITSIZE (wider_mode
) > BITS_PER_WORD
)
3564 return expand_mult_highpart_optab (mode
, op0
, op1
, target
,
3565 unsignedp
, max_cost
);
3567 extra_cost
= shift_cost
[mode
][GET_MODE_BITSIZE (mode
) - 1];
3569 /* Check whether we try to multiply by a negative constant. */
3570 if (!unsignedp
&& ((cnst1
>> (GET_MODE_BITSIZE (mode
) - 1)) & 1))
3573 extra_cost
+= add_cost
[mode
];
3576 /* See whether shift/add multiplication is cheap enough. */
3577 if (choose_mult_variant (wider_mode
, cnst1
, &alg
, &variant
,
3578 max_cost
- extra_cost
))
3580 /* See whether the specialized multiplication optabs are
3581 cheaper than the shift/add version. */
3582 tem
= expand_mult_highpart_optab (mode
, op0
, op1
, target
, unsignedp
,
3583 alg
.cost
.cost
+ extra_cost
);
3587 tem
= convert_to_mode (wider_mode
, op0
, unsignedp
);
3588 tem
= expand_mult_const (wider_mode
, tem
, cnst1
, 0, &alg
, variant
);
3589 tem
= extract_high_half (mode
, tem
);
3591 /* Adjust result for signedness. */
3593 tem
= force_operand (gen_rtx_MINUS (mode
, tem
, op0
), tem
);
3597 return expand_mult_highpart_optab (mode
, op0
, op1
, target
,
3598 unsignedp
, max_cost
);
3602 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3605 expand_smod_pow2 (enum machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3607 unsigned HOST_WIDE_INT masklow
, maskhigh
;
3608 rtx result
, temp
, shift
, label
;
3611 logd
= floor_log2 (d
);
3612 result
= gen_reg_rtx (mode
);
3614 /* Avoid conditional branches when they're expensive. */
3615 if (BRANCH_COST
>= 2
3618 rtx signmask
= emit_store_flag (result
, LT
, op0
, const0_rtx
,
3622 signmask
= force_reg (mode
, signmask
);
3623 masklow
= ((HOST_WIDE_INT
) 1 << logd
) - 1;
3624 shift
= GEN_INT (GET_MODE_BITSIZE (mode
) - logd
);
3626 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3627 which instruction sequence to use. If logical right shifts
3628 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3629 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3631 temp
= gen_rtx_LSHIFTRT (mode
, result
, shift
);
3632 if (lshr_optab
->handlers
[mode
].insn_code
== CODE_FOR_nothing
3633 || rtx_cost (temp
, SET
) > COSTS_N_INSNS (2))
3635 temp
= expand_binop (mode
, xor_optab
, op0
, signmask
,
3636 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3637 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3638 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3639 temp
= expand_binop (mode
, and_optab
, temp
, GEN_INT (masklow
),
3640 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3641 temp
= expand_binop (mode
, xor_optab
, temp
, signmask
,
3642 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3643 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3644 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3648 signmask
= expand_binop (mode
, lshr_optab
, signmask
, shift
,
3649 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3650 signmask
= force_reg (mode
, signmask
);
3652 temp
= expand_binop (mode
, add_optab
, op0
, signmask
,
3653 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3654 temp
= expand_binop (mode
, and_optab
, temp
, GEN_INT (masklow
),
3655 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3656 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3657 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3663 /* Mask contains the mode's signbit and the significant bits of the
3664 modulus. By including the signbit in the operation, many targets
3665 can avoid an explicit compare operation in the following comparison
3668 masklow
= ((HOST_WIDE_INT
) 1 << logd
) - 1;
3669 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3671 masklow
|= (HOST_WIDE_INT
) -1 << (GET_MODE_BITSIZE (mode
) - 1);
3675 maskhigh
= (HOST_WIDE_INT
) -1
3676 << (GET_MODE_BITSIZE (mode
) - HOST_BITS_PER_WIDE_INT
- 1);
3678 temp
= expand_binop (mode
, and_optab
, op0
,
3679 immed_double_const (masklow
, maskhigh
, mode
),
3680 result
, 1, OPTAB_LIB_WIDEN
);
3682 emit_move_insn (result
, temp
);
3684 label
= gen_label_rtx ();
3685 do_cmp_and_jump (result
, const0_rtx
, GE
, mode
, label
);
3687 temp
= expand_binop (mode
, sub_optab
, result
, const1_rtx
, result
,
3688 0, OPTAB_LIB_WIDEN
);
3689 masklow
= (HOST_WIDE_INT
) -1 << logd
;
3691 temp
= expand_binop (mode
, ior_optab
, temp
,
3692 immed_double_const (masklow
, maskhigh
, mode
),
3693 result
, 1, OPTAB_LIB_WIDEN
);
3694 temp
= expand_binop (mode
, add_optab
, temp
, const1_rtx
, result
,
3695 0, OPTAB_LIB_WIDEN
);
3697 emit_move_insn (result
, temp
);
3702 /* Expand signed division of OP0 by a power of two D in mode MODE.
3703 This routine is only called for positive values of D. */
3706 expand_sdiv_pow2 (enum machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3712 logd
= floor_log2 (d
);
3713 shift
= build_int_cst (NULL_TREE
, logd
);
3715 if (d
== 2 && BRANCH_COST
>= 1)
3717 temp
= gen_reg_rtx (mode
);
3718 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, 1);
3719 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3720 0, OPTAB_LIB_WIDEN
);
3721 return expand_shift (RSHIFT_EXPR
, mode
, temp
, shift
, NULL_RTX
, 0);
3724 #ifdef HAVE_conditional_move
3725 if (BRANCH_COST
>= 2)
3729 /* ??? emit_conditional_move forces a stack adjustment via
3730 compare_from_rtx so, if the sequence is discarded, it will
3731 be lost. Do it now instead. */
3732 do_pending_stack_adjust ();
3735 temp2
= copy_to_mode_reg (mode
, op0
);
3736 temp
= expand_binop (mode
, add_optab
, temp2
, GEN_INT (d
-1),
3737 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3738 temp
= force_reg (mode
, temp
);
3740 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3741 temp2
= emit_conditional_move (temp2
, LT
, temp2
, const0_rtx
,
3742 mode
, temp
, temp2
, mode
, 0);
3745 rtx seq
= get_insns ();
3748 return expand_shift (RSHIFT_EXPR
, mode
, temp2
, shift
, NULL_RTX
, 0);
3754 if (BRANCH_COST
>= 2)
3756 int ushift
= GET_MODE_BITSIZE (mode
) - logd
;
3758 temp
= gen_reg_rtx (mode
);
3759 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, -1);
3760 if (shift_cost
[mode
][ushift
] > COSTS_N_INSNS (1))
3761 temp
= expand_binop (mode
, and_optab
, temp
, GEN_INT (d
- 1),
3762 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3764 temp
= expand_shift (RSHIFT_EXPR
, mode
, temp
,
3765 build_int_cst (NULL_TREE
, ushift
),
3767 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3768 0, OPTAB_LIB_WIDEN
);
3769 return expand_shift (RSHIFT_EXPR
, mode
, temp
, shift
, NULL_RTX
, 0);
3772 label
= gen_label_rtx ();
3773 temp
= copy_to_mode_reg (mode
, op0
);
3774 do_cmp_and_jump (temp
, const0_rtx
, GE
, mode
, label
);
3775 expand_inc (temp
, GEN_INT (d
- 1));
3777 return expand_shift (RSHIFT_EXPR
, mode
, temp
, shift
, NULL_RTX
, 0);
3780 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3781 if that is convenient, and returning where the result is.
3782 You may request either the quotient or the remainder as the result;
3783 specify REM_FLAG nonzero to get the remainder.
3785 CODE is the expression code for which kind of division this is;
3786 it controls how rounding is done. MODE is the machine mode to use.
3787 UNSIGNEDP nonzero means do unsigned division. */
3789 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3790 and then correct it by or'ing in missing high bits
3791 if result of ANDI is nonzero.
3792 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3793 This could optimize to a bfexts instruction.
3794 But C doesn't use these operations, so their optimizations are
3796 /* ??? For modulo, we don't actually need the highpart of the first product,
3797 the low part will do nicely. And for small divisors, the second multiply
3798 can also be a low-part only multiply or even be completely left out.
3799 E.g. to calculate the remainder of a division by 3 with a 32 bit
3800 multiply, multiply with 0x55555556 and extract the upper two bits;
3801 the result is exact for inputs up to 0x1fffffff.
3802 The input range can be reduced by using cross-sum rules.
3803 For odd divisors >= 3, the following table gives right shift counts
3804 so that if a number is shifted by an integer multiple of the given
3805 amount, the remainder stays the same:
3806 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3807 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3808 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3809 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3810 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3812 Cross-sum rules for even numbers can be derived by leaving as many bits
3813 to the right alone as the divisor has zeros to the right.
3814 E.g. if x is an unsigned 32 bit number:
3815 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3819 expand_divmod (int rem_flag
, enum tree_code code
, enum machine_mode mode
,
3820 rtx op0
, rtx op1
, rtx target
, int unsignedp
)
3822 enum machine_mode compute_mode
;
3824 rtx quotient
= 0, remainder
= 0;
3828 optab optab1
, optab2
;
3829 int op1_is_constant
, op1_is_pow2
= 0;
3830 int max_cost
, extra_cost
;
3831 static HOST_WIDE_INT last_div_const
= 0;
3832 static HOST_WIDE_INT ext_op1
;
3834 op1_is_constant
= GET_CODE (op1
) == CONST_INT
;
3835 if (op1_is_constant
)
3837 ext_op1
= INTVAL (op1
);
3839 ext_op1
&= GET_MODE_MASK (mode
);
3840 op1_is_pow2
= ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1
)
3841 || (! unsignedp
&& EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1
))));
3845 This is the structure of expand_divmod:
3847 First comes code to fix up the operands so we can perform the operations
3848 correctly and efficiently.
3850 Second comes a switch statement with code specific for each rounding mode.
3851 For some special operands this code emits all RTL for the desired
3852 operation, for other cases, it generates only a quotient and stores it in
3853 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3854 to indicate that it has not done anything.
3856 Last comes code that finishes the operation. If QUOTIENT is set and
3857 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3858 QUOTIENT is not set, it is computed using trunc rounding.
3860 We try to generate special code for division and remainder when OP1 is a
3861 constant. If |OP1| = 2**n we can use shifts and some other fast
3862 operations. For other values of OP1, we compute a carefully selected
3863 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3866 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3867 half of the product. Different strategies for generating the product are
3868 implemented in expand_mult_highpart.
3870 If what we actually want is the remainder, we generate that by another
3871 by-constant multiplication and a subtraction. */
3873 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3874 code below will malfunction if we are, so check here and handle
3875 the special case if so. */
3876 if (op1
== const1_rtx
)
3877 return rem_flag
? const0_rtx
: op0
;
3879 /* When dividing by -1, we could get an overflow.
3880 negv_optab can handle overflows. */
3881 if (! unsignedp
&& op1
== constm1_rtx
)
3885 return expand_unop (mode
, flag_trapv
&& GET_MODE_CLASS(mode
) == MODE_INT
3886 ? negv_optab
: neg_optab
, op0
, target
, 0);
3890 /* Don't use the function value register as a target
3891 since we have to read it as well as write it,
3892 and function-inlining gets confused by this. */
3893 && ((REG_P (target
) && REG_FUNCTION_VALUE_P (target
))
3894 /* Don't clobber an operand while doing a multi-step calculation. */
3895 || ((rem_flag
|| op1_is_constant
)
3896 && (reg_mentioned_p (target
, op0
)
3897 || (MEM_P (op0
) && MEM_P (target
))))
3898 || reg_mentioned_p (target
, op1
)
3899 || (MEM_P (op1
) && MEM_P (target
))))
3902 /* Get the mode in which to perform this computation. Normally it will
3903 be MODE, but sometimes we can't do the desired operation in MODE.
3904 If so, pick a wider mode in which we can do the operation. Convert
3905 to that mode at the start to avoid repeated conversions.
3907 First see what operations we need. These depend on the expression
3908 we are evaluating. (We assume that divxx3 insns exist under the
3909 same conditions that modxx3 insns and that these insns don't normally
3910 fail. If these assumptions are not correct, we may generate less
3911 efficient code in some cases.)
3913 Then see if we find a mode in which we can open-code that operation
3914 (either a division, modulus, or shift). Finally, check for the smallest
3915 mode for which we can do the operation with a library call. */
3917 /* We might want to refine this now that we have division-by-constant
3918 optimization. Since expand_mult_highpart tries so many variants, it is
3919 not straightforward to generalize this. Maybe we should make an array
3920 of possible modes in init_expmed? Save this for GCC 2.7. */
3922 optab1
= ((op1_is_pow2
&& op1
!= const0_rtx
)
3923 ? (unsignedp
? lshr_optab
: ashr_optab
)
3924 : (unsignedp
? udiv_optab
: sdiv_optab
));
3925 optab2
= ((op1_is_pow2
&& op1
!= const0_rtx
)
3927 : (unsignedp
? udivmod_optab
: sdivmod_optab
));
3929 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
3930 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
3931 if (optab1
->handlers
[compute_mode
].insn_code
!= CODE_FOR_nothing
3932 || optab2
->handlers
[compute_mode
].insn_code
!= CODE_FOR_nothing
)
3935 if (compute_mode
== VOIDmode
)
3936 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
3937 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
3938 if (optab1
->handlers
[compute_mode
].libfunc
3939 || optab2
->handlers
[compute_mode
].libfunc
)
3942 /* If we still couldn't find a mode, use MODE, but expand_binop will
3944 if (compute_mode
== VOIDmode
)
3945 compute_mode
= mode
;
3947 if (target
&& GET_MODE (target
) == compute_mode
)
3950 tquotient
= gen_reg_rtx (compute_mode
);
3952 size
= GET_MODE_BITSIZE (compute_mode
);
3954 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3955 (mode), and thereby get better code when OP1 is a constant. Do that
3956 later. It will require going over all usages of SIZE below. */
3957 size
= GET_MODE_BITSIZE (mode
);
3960 /* Only deduct something for a REM if the last divide done was
3961 for a different constant. Then set the constant of the last
3963 max_cost
= unsignedp
? udiv_cost
[compute_mode
] : sdiv_cost
[compute_mode
];
3964 if (rem_flag
&& ! (last_div_const
!= 0 && op1_is_constant
3965 && INTVAL (op1
) == last_div_const
))
3966 max_cost
-= mul_cost
[compute_mode
] + add_cost
[compute_mode
];
3968 last_div_const
= ! rem_flag
&& op1_is_constant
? INTVAL (op1
) : 0;
3970 /* Now convert to the best mode to use. */
3971 if (compute_mode
!= mode
)
3973 op0
= convert_modes (compute_mode
, mode
, op0
, unsignedp
);
3974 op1
= convert_modes (compute_mode
, mode
, op1
, unsignedp
);
3976 /* convert_modes may have placed op1 into a register, so we
3977 must recompute the following. */
3978 op1_is_constant
= GET_CODE (op1
) == CONST_INT
;
3979 op1_is_pow2
= (op1_is_constant
3980 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
3982 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1
)))))) ;
3985 /* If one of the operands is a volatile MEM, copy it into a register. */
3987 if (MEM_P (op0
) && MEM_VOLATILE_P (op0
))
3988 op0
= force_reg (compute_mode
, op0
);
3989 if (MEM_P (op1
) && MEM_VOLATILE_P (op1
))
3990 op1
= force_reg (compute_mode
, op1
);
3992 /* If we need the remainder or if OP1 is constant, we need to
3993 put OP0 in a register in case it has any queued subexpressions. */
3994 if (rem_flag
|| op1_is_constant
)
3995 op0
= force_reg (compute_mode
, op0
);
3997 last
= get_last_insn ();
3999 /* Promote floor rounding to trunc rounding for unsigned operations. */
4002 if (code
== FLOOR_DIV_EXPR
)
4003 code
= TRUNC_DIV_EXPR
;
4004 if (code
== FLOOR_MOD_EXPR
)
4005 code
= TRUNC_MOD_EXPR
;
4006 if (code
== EXACT_DIV_EXPR
&& op1_is_pow2
)
4007 code
= TRUNC_DIV_EXPR
;
4010 if (op1
!= const0_rtx
)
4013 case TRUNC_MOD_EXPR
:
4014 case TRUNC_DIV_EXPR
:
4015 if (op1_is_constant
)
4019 unsigned HOST_WIDE_INT mh
;
4020 int pre_shift
, post_shift
;
4023 unsigned HOST_WIDE_INT d
= (INTVAL (op1
)
4024 & GET_MODE_MASK (compute_mode
));
4026 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
4028 pre_shift
= floor_log2 (d
);
4032 = expand_binop (compute_mode
, and_optab
, op0
,
4033 GEN_INT (((HOST_WIDE_INT
) 1 << pre_shift
) - 1),
4037 return gen_lowpart (mode
, remainder
);
4039 quotient
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4040 build_int_cst (NULL_TREE
,
4044 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4046 if (d
>= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1)))
4048 /* Most significant bit of divisor is set; emit an scc
4050 quotient
= emit_store_flag (tquotient
, GEU
, op0
, op1
,
4051 compute_mode
, 1, 1);
4057 /* Find a suitable multiplier and right shift count
4058 instead of multiplying with D. */
4060 mh
= choose_multiplier (d
, size
, size
,
4061 &ml
, &post_shift
, &dummy
);
4063 /* If the suggested multiplier is more than SIZE bits,
4064 we can do better for even divisors, using an
4065 initial right shift. */
4066 if (mh
!= 0 && (d
& 1) == 0)
4068 pre_shift
= floor_log2 (d
& -d
);
4069 mh
= choose_multiplier (d
>> pre_shift
, size
,
4071 &ml
, &post_shift
, &dummy
);
4081 if (post_shift
- 1 >= BITS_PER_WORD
)
4085 = (shift_cost
[compute_mode
][post_shift
- 1]
4086 + shift_cost
[compute_mode
][1]
4087 + 2 * add_cost
[compute_mode
]);
4088 t1
= expand_mult_highpart (compute_mode
, op0
, ml
,
4090 max_cost
- extra_cost
);
4093 t2
= force_operand (gen_rtx_MINUS (compute_mode
,
4097 (RSHIFT_EXPR
, compute_mode
, t2
,
4098 build_int_cst (NULL_TREE
, 1),
4100 t4
= force_operand (gen_rtx_PLUS (compute_mode
,
4103 quotient
= expand_shift
4104 (RSHIFT_EXPR
, compute_mode
, t4
,
4105 build_int_cst (NULL_TREE
, post_shift
- 1),
4112 if (pre_shift
>= BITS_PER_WORD
4113 || post_shift
>= BITS_PER_WORD
)
4117 (RSHIFT_EXPR
, compute_mode
, op0
,
4118 build_int_cst (NULL_TREE
, pre_shift
),
4121 = (shift_cost
[compute_mode
][pre_shift
]
4122 + shift_cost
[compute_mode
][post_shift
]);
4123 t2
= expand_mult_highpart (compute_mode
, t1
, ml
,
4125 max_cost
- extra_cost
);
4128 quotient
= expand_shift
4129 (RSHIFT_EXPR
, compute_mode
, t2
,
4130 build_int_cst (NULL_TREE
, post_shift
),
4135 else /* Too wide mode to use tricky code */
4138 insn
= get_last_insn ();
4140 && (set
= single_set (insn
)) != 0
4141 && SET_DEST (set
) == quotient
)
4142 set_unique_reg_note (insn
,
4144 gen_rtx_UDIV (compute_mode
, op0
, op1
));
4146 else /* TRUNC_DIV, signed */
4148 unsigned HOST_WIDE_INT ml
;
4149 int lgup
, post_shift
;
4151 HOST_WIDE_INT d
= INTVAL (op1
);
4152 unsigned HOST_WIDE_INT abs_d
= d
>= 0 ? d
: -d
;
4154 /* n rem d = n rem -d */
4155 if (rem_flag
&& d
< 0)
4158 op1
= gen_int_mode (abs_d
, compute_mode
);
4164 quotient
= expand_unop (compute_mode
, neg_optab
, op0
,
4166 else if (abs_d
== (unsigned HOST_WIDE_INT
) 1 << (size
- 1))
4168 /* This case is not handled correctly below. */
4169 quotient
= emit_store_flag (tquotient
, EQ
, op0
, op1
,
4170 compute_mode
, 1, 1);
4174 else if (EXACT_POWER_OF_2_OR_ZERO_P (d
)
4175 && (rem_flag
? smod_pow2_cheap
[compute_mode
]
4176 : sdiv_pow2_cheap
[compute_mode
])
4177 /* We assume that cheap metric is true if the
4178 optab has an expander for this mode. */
4179 && (((rem_flag
? smod_optab
: sdiv_optab
)
4180 ->handlers
[compute_mode
].insn_code
4181 != CODE_FOR_nothing
)
4182 || (sdivmod_optab
->handlers
[compute_mode
]
4183 .insn_code
!= CODE_FOR_nothing
)))
4185 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d
))
4189 remainder
= expand_smod_pow2 (compute_mode
, op0
, d
);
4191 return gen_lowpart (mode
, remainder
);
4194 if (sdiv_pow2_cheap
[compute_mode
]
4195 && ((sdiv_optab
->handlers
[compute_mode
].insn_code
4196 != CODE_FOR_nothing
)
4197 || (sdivmod_optab
->handlers
[compute_mode
].insn_code
4198 != CODE_FOR_nothing
)))
4199 quotient
= expand_divmod (0, TRUNC_DIV_EXPR
,
4201 gen_int_mode (abs_d
,
4205 quotient
= expand_sdiv_pow2 (compute_mode
, op0
, abs_d
);
4207 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4208 negate the quotient. */
4211 insn
= get_last_insn ();
4213 && (set
= single_set (insn
)) != 0
4214 && SET_DEST (set
) == quotient
4215 && abs_d
< ((unsigned HOST_WIDE_INT
) 1
4216 << (HOST_BITS_PER_WIDE_INT
- 1)))
4217 set_unique_reg_note (insn
,
4219 gen_rtx_DIV (compute_mode
,
4226 quotient
= expand_unop (compute_mode
, neg_optab
,
4227 quotient
, quotient
, 0);
4230 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4232 choose_multiplier (abs_d
, size
, size
- 1,
4233 &mlr
, &post_shift
, &lgup
);
4234 ml
= (unsigned HOST_WIDE_INT
) INTVAL (mlr
);
4235 if (ml
< (unsigned HOST_WIDE_INT
) 1 << (size
- 1))
4239 if (post_shift
>= BITS_PER_WORD
4240 || size
- 1 >= BITS_PER_WORD
)
4243 extra_cost
= (shift_cost
[compute_mode
][post_shift
]
4244 + shift_cost
[compute_mode
][size
- 1]
4245 + add_cost
[compute_mode
]);
4246 t1
= expand_mult_highpart (compute_mode
, op0
, mlr
,
4248 max_cost
- extra_cost
);
4252 (RSHIFT_EXPR
, compute_mode
, t1
,
4253 build_int_cst (NULL_TREE
, post_shift
),
4256 (RSHIFT_EXPR
, compute_mode
, op0
,
4257 build_int_cst (NULL_TREE
, size
- 1),
4261 = force_operand (gen_rtx_MINUS (compute_mode
,
4266 = force_operand (gen_rtx_MINUS (compute_mode
,
4274 if (post_shift
>= BITS_PER_WORD
4275 || size
- 1 >= BITS_PER_WORD
)
4278 ml
|= (~(unsigned HOST_WIDE_INT
) 0) << (size
- 1);
4279 mlr
= gen_int_mode (ml
, compute_mode
);
4280 extra_cost
= (shift_cost
[compute_mode
][post_shift
]
4281 + shift_cost
[compute_mode
][size
- 1]
4282 + 2 * add_cost
[compute_mode
]);
4283 t1
= expand_mult_highpart (compute_mode
, op0
, mlr
,
4285 max_cost
- extra_cost
);
4288 t2
= force_operand (gen_rtx_PLUS (compute_mode
,
4292 (RSHIFT_EXPR
, compute_mode
, t2
,
4293 build_int_cst (NULL_TREE
, post_shift
),
4296 (RSHIFT_EXPR
, compute_mode
, op0
,
4297 build_int_cst (NULL_TREE
, size
- 1),
4301 = force_operand (gen_rtx_MINUS (compute_mode
,
4306 = force_operand (gen_rtx_MINUS (compute_mode
,
4311 else /* Too wide mode to use tricky code */
4314 insn
= get_last_insn ();
4316 && (set
= single_set (insn
)) != 0
4317 && SET_DEST (set
) == quotient
)
4318 set_unique_reg_note (insn
,
4320 gen_rtx_DIV (compute_mode
, op0
, op1
));
4325 delete_insns_since (last
);
4328 case FLOOR_DIV_EXPR
:
4329 case FLOOR_MOD_EXPR
:
4330 /* We will come here only for signed operations. */
4331 if (op1_is_constant
&& HOST_BITS_PER_WIDE_INT
>= size
)
4333 unsigned HOST_WIDE_INT mh
;
4334 int pre_shift
, lgup
, post_shift
;
4335 HOST_WIDE_INT d
= INTVAL (op1
);
4340 /* We could just as easily deal with negative constants here,
4341 but it does not seem worth the trouble for GCC 2.6. */
4342 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
4344 pre_shift
= floor_log2 (d
);
4347 remainder
= expand_binop (compute_mode
, and_optab
, op0
,
4348 GEN_INT (((HOST_WIDE_INT
) 1 << pre_shift
) - 1),
4349 remainder
, 0, OPTAB_LIB_WIDEN
);
4351 return gen_lowpart (mode
, remainder
);
4353 quotient
= expand_shift
4354 (RSHIFT_EXPR
, compute_mode
, op0
,
4355 build_int_cst (NULL_TREE
, pre_shift
),
4362 mh
= choose_multiplier (d
, size
, size
- 1,
4363 &ml
, &post_shift
, &lgup
);
4366 if (post_shift
< BITS_PER_WORD
4367 && size
- 1 < BITS_PER_WORD
)
4370 (RSHIFT_EXPR
, compute_mode
, op0
,
4371 build_int_cst (NULL_TREE
, size
- 1),
4373 t2
= expand_binop (compute_mode
, xor_optab
, op0
, t1
,
4374 NULL_RTX
, 0, OPTAB_WIDEN
);
4375 extra_cost
= (shift_cost
[compute_mode
][post_shift
]
4376 + shift_cost
[compute_mode
][size
- 1]
4377 + 2 * add_cost
[compute_mode
]);
4378 t3
= expand_mult_highpart (compute_mode
, t2
, ml
,
4380 max_cost
- extra_cost
);
4384 (RSHIFT_EXPR
, compute_mode
, t3
,
4385 build_int_cst (NULL_TREE
, post_shift
),
4387 quotient
= expand_binop (compute_mode
, xor_optab
,
4388 t4
, t1
, tquotient
, 0,
4396 rtx nsign
, t1
, t2
, t3
, t4
;
4397 t1
= force_operand (gen_rtx_PLUS (compute_mode
,
4398 op0
, constm1_rtx
), NULL_RTX
);
4399 t2
= expand_binop (compute_mode
, ior_optab
, op0
, t1
, NULL_RTX
,
4401 nsign
= expand_shift
4402 (RSHIFT_EXPR
, compute_mode
, t2
,
4403 build_int_cst (NULL_TREE
, size
- 1),
4405 t3
= force_operand (gen_rtx_MINUS (compute_mode
, t1
, nsign
),
4407 t4
= expand_divmod (0, TRUNC_DIV_EXPR
, compute_mode
, t3
, op1
,
4412 t5
= expand_unop (compute_mode
, one_cmpl_optab
, nsign
,
4414 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4423 delete_insns_since (last
);
4425 /* Try using an instruction that produces both the quotient and
4426 remainder, using truncation. We can easily compensate the quotient
4427 or remainder to get floor rounding, once we have the remainder.
4428 Notice that we compute also the final remainder value here,
4429 and return the result right away. */
4430 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4431 target
= gen_reg_rtx (compute_mode
);
4436 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4437 quotient
= gen_reg_rtx (compute_mode
);
4442 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4443 remainder
= gen_reg_rtx (compute_mode
);
4446 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
,
4447 quotient
, remainder
, 0))
4449 /* This could be computed with a branch-less sequence.
4450 Save that for later. */
4452 rtx label
= gen_label_rtx ();
4453 do_cmp_and_jump (remainder
, const0_rtx
, EQ
, compute_mode
, label
);
4454 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4455 NULL_RTX
, 0, OPTAB_WIDEN
);
4456 do_cmp_and_jump (tem
, const0_rtx
, GE
, compute_mode
, label
);
4457 expand_dec (quotient
, const1_rtx
);
4458 expand_inc (remainder
, op1
);
4460 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4463 /* No luck with division elimination or divmod. Have to do it
4464 by conditionally adjusting op0 *and* the result. */
4466 rtx label1
, label2
, label3
, label4
, label5
;
4470 quotient
= gen_reg_rtx (compute_mode
);
4471 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4472 label1
= gen_label_rtx ();
4473 label2
= gen_label_rtx ();
4474 label3
= gen_label_rtx ();
4475 label4
= gen_label_rtx ();
4476 label5
= gen_label_rtx ();
4477 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4478 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
, compute_mode
, label1
);
4479 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4480 quotient
, 0, OPTAB_LIB_WIDEN
);
4481 if (tem
!= quotient
)
4482 emit_move_insn (quotient
, tem
);
4483 emit_jump_insn (gen_jump (label5
));
4485 emit_label (label1
);
4486 expand_inc (adjusted_op0
, const1_rtx
);
4487 emit_jump_insn (gen_jump (label4
));
4489 emit_label (label2
);
4490 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
, compute_mode
, label3
);
4491 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4492 quotient
, 0, OPTAB_LIB_WIDEN
);
4493 if (tem
!= quotient
)
4494 emit_move_insn (quotient
, tem
);
4495 emit_jump_insn (gen_jump (label5
));
4497 emit_label (label3
);
4498 expand_dec (adjusted_op0
, const1_rtx
);
4499 emit_label (label4
);
4500 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4501 quotient
, 0, OPTAB_LIB_WIDEN
);
4502 if (tem
!= quotient
)
4503 emit_move_insn (quotient
, tem
);
4504 expand_dec (quotient
, const1_rtx
);
4505 emit_label (label5
);
4513 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
)))
4516 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4517 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4518 build_int_cst (NULL_TREE
, floor_log2 (d
)),
4520 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4522 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4523 t3
= gen_reg_rtx (compute_mode
);
4524 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4525 compute_mode
, 1, 1);
4529 lab
= gen_label_rtx ();
4530 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4531 expand_inc (t1
, const1_rtx
);
4536 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4542 /* Try using an instruction that produces both the quotient and
4543 remainder, using truncation. We can easily compensate the
4544 quotient or remainder to get ceiling rounding, once we have the
4545 remainder. Notice that we compute also the final remainder
4546 value here, and return the result right away. */
4547 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4548 target
= gen_reg_rtx (compute_mode
);
4552 remainder
= (REG_P (target
)
4553 ? target
: gen_reg_rtx (compute_mode
));
4554 quotient
= gen_reg_rtx (compute_mode
);
4558 quotient
= (REG_P (target
)
4559 ? target
: gen_reg_rtx (compute_mode
));
4560 remainder
= gen_reg_rtx (compute_mode
);
4563 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
,
4566 /* This could be computed with a branch-less sequence.
4567 Save that for later. */
4568 rtx label
= gen_label_rtx ();
4569 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4570 compute_mode
, label
);
4571 expand_inc (quotient
, const1_rtx
);
4572 expand_dec (remainder
, op1
);
4574 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4577 /* No luck with division elimination or divmod. Have to do it
4578 by conditionally adjusting op0 *and* the result. */
4581 rtx adjusted_op0
, tem
;
4583 quotient
= gen_reg_rtx (compute_mode
);
4584 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4585 label1
= gen_label_rtx ();
4586 label2
= gen_label_rtx ();
4587 do_cmp_and_jump (adjusted_op0
, const0_rtx
, NE
,
4588 compute_mode
, label1
);
4589 emit_move_insn (quotient
, const0_rtx
);
4590 emit_jump_insn (gen_jump (label2
));
4592 emit_label (label1
);
4593 expand_dec (adjusted_op0
, const1_rtx
);
4594 tem
= expand_binop (compute_mode
, udiv_optab
, adjusted_op0
, op1
,
4595 quotient
, 1, OPTAB_LIB_WIDEN
);
4596 if (tem
!= quotient
)
4597 emit_move_insn (quotient
, tem
);
4598 expand_inc (quotient
, const1_rtx
);
4599 emit_label (label2
);
4604 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4605 && INTVAL (op1
) >= 0)
4607 /* This is extremely similar to the code for the unsigned case
4608 above. For 2.7 we should merge these variants, but for
4609 2.6.1 I don't want to touch the code for unsigned since that
4610 get used in C. The signed case will only be used by other
4614 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4615 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4616 build_int_cst (NULL_TREE
, floor_log2 (d
)),
4618 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4620 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4621 t3
= gen_reg_rtx (compute_mode
);
4622 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4623 compute_mode
, 1, 1);
4627 lab
= gen_label_rtx ();
4628 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4629 expand_inc (t1
, const1_rtx
);
4634 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4640 /* Try using an instruction that produces both the quotient and
4641 remainder, using truncation. We can easily compensate the
4642 quotient or remainder to get ceiling rounding, once we have the
4643 remainder. Notice that we compute also the final remainder
4644 value here, and return the result right away. */
4645 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4646 target
= gen_reg_rtx (compute_mode
);
4649 remainder
= (REG_P (target
)
4650 ? target
: gen_reg_rtx (compute_mode
));
4651 quotient
= gen_reg_rtx (compute_mode
);
4655 quotient
= (REG_P (target
)
4656 ? target
: gen_reg_rtx (compute_mode
));
4657 remainder
= gen_reg_rtx (compute_mode
);
4660 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
,
4663 /* This could be computed with a branch-less sequence.
4664 Save that for later. */
4666 rtx label
= gen_label_rtx ();
4667 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4668 compute_mode
, label
);
4669 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4670 NULL_RTX
, 0, OPTAB_WIDEN
);
4671 do_cmp_and_jump (tem
, const0_rtx
, LT
, compute_mode
, label
);
4672 expand_inc (quotient
, const1_rtx
);
4673 expand_dec (remainder
, op1
);
4675 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4678 /* No luck with division elimination or divmod. Have to do it
4679 by conditionally adjusting op0 *and* the result. */
4681 rtx label1
, label2
, label3
, label4
, label5
;
4685 quotient
= gen_reg_rtx (compute_mode
);
4686 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4687 label1
= gen_label_rtx ();
4688 label2
= gen_label_rtx ();
4689 label3
= gen_label_rtx ();
4690 label4
= gen_label_rtx ();
4691 label5
= gen_label_rtx ();
4692 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4693 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
,
4694 compute_mode
, label1
);
4695 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4696 quotient
, 0, OPTAB_LIB_WIDEN
);
4697 if (tem
!= quotient
)
4698 emit_move_insn (quotient
, tem
);
4699 emit_jump_insn (gen_jump (label5
));
4701 emit_label (label1
);
4702 expand_dec (adjusted_op0
, const1_rtx
);
4703 emit_jump_insn (gen_jump (label4
));
4705 emit_label (label2
);
4706 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
,
4707 compute_mode
, label3
);
4708 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4709 quotient
, 0, OPTAB_LIB_WIDEN
);
4710 if (tem
!= quotient
)
4711 emit_move_insn (quotient
, tem
);
4712 emit_jump_insn (gen_jump (label5
));
4714 emit_label (label3
);
4715 expand_inc (adjusted_op0
, const1_rtx
);
4716 emit_label (label4
);
4717 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4718 quotient
, 0, OPTAB_LIB_WIDEN
);
4719 if (tem
!= quotient
)
4720 emit_move_insn (quotient
, tem
);
4721 expand_inc (quotient
, const1_rtx
);
4722 emit_label (label5
);
4727 case EXACT_DIV_EXPR
:
4728 if (op1_is_constant
&& HOST_BITS_PER_WIDE_INT
>= size
)
4730 HOST_WIDE_INT d
= INTVAL (op1
);
4731 unsigned HOST_WIDE_INT ml
;
4735 pre_shift
= floor_log2 (d
& -d
);
4736 ml
= invert_mod2n (d
>> pre_shift
, size
);
4737 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4738 build_int_cst (NULL_TREE
, pre_shift
),
4739 NULL_RTX
, unsignedp
);
4740 quotient
= expand_mult (compute_mode
, t1
,
4741 gen_int_mode (ml
, compute_mode
),
4744 insn
= get_last_insn ();
4745 set_unique_reg_note (insn
,
4747 gen_rtx_fmt_ee (unsignedp
? UDIV
: DIV
,
4753 case ROUND_DIV_EXPR
:
4754 case ROUND_MOD_EXPR
:
4759 label
= gen_label_rtx ();
4760 quotient
= gen_reg_rtx (compute_mode
);
4761 remainder
= gen_reg_rtx (compute_mode
);
4762 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
, remainder
, 1) == 0)
4765 quotient
= expand_binop (compute_mode
, udiv_optab
, op0
, op1
,
4766 quotient
, 1, OPTAB_LIB_WIDEN
);
4767 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 1);
4768 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4769 remainder
, 1, OPTAB_LIB_WIDEN
);
4771 tem
= plus_constant (op1
, -1);
4772 tem
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
,
4773 build_int_cst (NULL_TREE
, 1),
4775 do_cmp_and_jump (remainder
, tem
, LEU
, compute_mode
, label
);
4776 expand_inc (quotient
, const1_rtx
);
4777 expand_dec (remainder
, op1
);
4782 rtx abs_rem
, abs_op1
, tem
, mask
;
4784 label
= gen_label_rtx ();
4785 quotient
= gen_reg_rtx (compute_mode
);
4786 remainder
= gen_reg_rtx (compute_mode
);
4787 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
, remainder
, 0) == 0)
4790 quotient
= expand_binop (compute_mode
, sdiv_optab
, op0
, op1
,
4791 quotient
, 0, OPTAB_LIB_WIDEN
);
4792 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 0);
4793 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4794 remainder
, 0, OPTAB_LIB_WIDEN
);
4796 abs_rem
= expand_abs (compute_mode
, remainder
, NULL_RTX
, 1, 0);
4797 abs_op1
= expand_abs (compute_mode
, op1
, NULL_RTX
, 1, 0);
4798 tem
= expand_shift (LSHIFT_EXPR
, compute_mode
, abs_rem
,
4799 build_int_cst (NULL_TREE
, 1),
4801 do_cmp_and_jump (tem
, abs_op1
, LTU
, compute_mode
, label
);
4802 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4803 NULL_RTX
, 0, OPTAB_WIDEN
);
4804 mask
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
,
4805 build_int_cst (NULL_TREE
, size
- 1),
4807 tem
= expand_binop (compute_mode
, xor_optab
, mask
, const1_rtx
,
4808 NULL_RTX
, 0, OPTAB_WIDEN
);
4809 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4810 NULL_RTX
, 0, OPTAB_WIDEN
);
4811 expand_inc (quotient
, tem
);
4812 tem
= expand_binop (compute_mode
, xor_optab
, mask
, op1
,
4813 NULL_RTX
, 0, OPTAB_WIDEN
);
4814 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4815 NULL_RTX
, 0, OPTAB_WIDEN
);
4816 expand_dec (remainder
, tem
);
4819 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4827 if (target
&& GET_MODE (target
) != compute_mode
)
4832 /* Try to produce the remainder without producing the quotient.
4833 If we seem to have a divmod pattern that does not require widening,
4834 don't try widening here. We should really have a WIDEN argument
4835 to expand_twoval_binop, since what we'd really like to do here is
4836 1) try a mod insn in compute_mode
4837 2) try a divmod insn in compute_mode
4838 3) try a div insn in compute_mode and multiply-subtract to get
4840 4) try the same things with widening allowed. */
4842 = sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
4845 ((optab2
->handlers
[compute_mode
].insn_code
4846 != CODE_FOR_nothing
)
4847 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
4850 /* No luck there. Can we do remainder and divide at once
4851 without a library call? */
4852 remainder
= gen_reg_rtx (compute_mode
);
4853 if (! expand_twoval_binop ((unsignedp
4857 NULL_RTX
, remainder
, unsignedp
))
4862 return gen_lowpart (mode
, remainder
);
4865 /* Produce the quotient. Try a quotient insn, but not a library call.
4866 If we have a divmod in this mode, use it in preference to widening
4867 the div (for this test we assume it will not fail). Note that optab2
4868 is set to the one of the two optabs that the call below will use. */
4870 = sign_expand_binop (compute_mode
, udiv_optab
, sdiv_optab
,
4871 op0
, op1
, rem_flag
? NULL_RTX
: target
,
4873 ((optab2
->handlers
[compute_mode
].insn_code
4874 != CODE_FOR_nothing
)
4875 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
4879 /* No luck there. Try a quotient-and-remainder insn,
4880 keeping the quotient alone. */
4881 quotient
= gen_reg_rtx (compute_mode
);
4882 if (! expand_twoval_binop (unsignedp
? udivmod_optab
: sdivmod_optab
,
4884 quotient
, NULL_RTX
, unsignedp
))
4888 /* Still no luck. If we are not computing the remainder,
4889 use a library call for the quotient. */
4890 quotient
= sign_expand_binop (compute_mode
,
4891 udiv_optab
, sdiv_optab
,
4893 unsignedp
, OPTAB_LIB_WIDEN
);
4900 if (target
&& GET_MODE (target
) != compute_mode
)
4905 /* No divide instruction either. Use library for remainder. */
4906 remainder
= sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
4908 unsignedp
, OPTAB_LIB_WIDEN
);
4909 /* No remainder function. Try a quotient-and-remainder
4910 function, keeping the remainder. */
4913 remainder
= gen_reg_rtx (compute_mode
);
4914 if (!expand_twoval_binop_libfunc
4915 (unsignedp
? udivmod_optab
: sdivmod_optab
,
4917 NULL_RTX
, remainder
,
4918 unsignedp
? UMOD
: MOD
))
4919 remainder
= NULL_RTX
;
4924 /* We divided. Now finish doing X - Y * (X / Y). */
4925 remainder
= expand_mult (compute_mode
, quotient
, op1
,
4926 NULL_RTX
, unsignedp
);
4927 remainder
= expand_binop (compute_mode
, sub_optab
, op0
,
4928 remainder
, target
, unsignedp
,
4933 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4936 /* Return a tree node with data type TYPE, describing the value of X.
4937 Usually this is an VAR_DECL, if there is no obvious better choice.
4938 X may be an expression, however we only support those expressions
4939 generated by loop.c. */
4942 make_tree (tree type
, rtx x
)
4946 switch (GET_CODE (x
))
4950 HOST_WIDE_INT hi
= 0;
4953 && !(TYPE_UNSIGNED (type
)
4954 && (GET_MODE_BITSIZE (TYPE_MODE (type
))
4955 < HOST_BITS_PER_WIDE_INT
)))
4958 t
= build_int_cst_wide (type
, INTVAL (x
), hi
);
4964 if (GET_MODE (x
) == VOIDmode
)
4965 t
= build_int_cst_wide (type
,
4966 CONST_DOUBLE_LOW (x
), CONST_DOUBLE_HIGH (x
));
4971 REAL_VALUE_FROM_CONST_DOUBLE (d
, x
);
4972 t
= build_real (type
, d
);
4983 units
= CONST_VECTOR_NUNITS (x
);
4985 /* Build a tree with vector elements. */
4986 for (i
= units
- 1; i
>= 0; --i
)
4988 elt
= CONST_VECTOR_ELT (x
, i
);
4989 t
= tree_cons (NULL_TREE
, make_tree (type
, elt
), t
);
4992 return build_vector (type
, t
);
4996 return fold_build2 (PLUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
4997 make_tree (type
, XEXP (x
, 1)));
5000 return fold_build2 (MINUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5001 make_tree (type
, XEXP (x
, 1)));
5004 return fold_build1 (NEGATE_EXPR
, type
, make_tree (type
, XEXP (x
, 0)));
5007 return fold_build2 (MULT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5008 make_tree (type
, XEXP (x
, 1)));
5011 return fold_build2 (LSHIFT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5012 make_tree (type
, XEXP (x
, 1)));
5015 t
= lang_hooks
.types
.unsigned_type (type
);
5016 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5017 make_tree (t
, XEXP (x
, 0)),
5018 make_tree (type
, XEXP (x
, 1))));
5021 t
= lang_hooks
.types
.signed_type (type
);
5022 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5023 make_tree (t
, XEXP (x
, 0)),
5024 make_tree (type
, XEXP (x
, 1))));
5027 if (TREE_CODE (type
) != REAL_TYPE
)
5028 t
= lang_hooks
.types
.signed_type (type
);
5032 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5033 make_tree (t
, XEXP (x
, 0)),
5034 make_tree (t
, XEXP (x
, 1))));
5036 t
= lang_hooks
.types
.unsigned_type (type
);
5037 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5038 make_tree (t
, XEXP (x
, 0)),
5039 make_tree (t
, XEXP (x
, 1))));
5043 t
= lang_hooks
.types
.type_for_mode (GET_MODE (XEXP (x
, 0)),
5044 GET_CODE (x
) == ZERO_EXTEND
);
5045 return fold_convert (type
, make_tree (t
, XEXP (x
, 0)));
5048 t
= build_decl (VAR_DECL
, NULL_TREE
, type
);
5050 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
5051 ptr_mode. So convert. */
5052 if (POINTER_TYPE_P (type
))
5053 x
= convert_memory_address (TYPE_MODE (type
), x
);
5055 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5056 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5057 t
->decl_with_rtl
.rtl
= x
;
5063 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5064 and returning TARGET.
5066 If TARGET is 0, a pseudo-register or constant is returned. */
5069 expand_and (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
)
5073 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
5074 tem
= simplify_binary_operation (AND
, mode
, op0
, op1
);
5076 tem
= expand_binop (mode
, and_optab
, op0
, op1
, target
, 0, OPTAB_LIB_WIDEN
);
5080 else if (tem
!= target
)
5081 emit_move_insn (target
, tem
);
5085 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5086 and storing in TARGET. Normally return TARGET.
5087 Return 0 if that cannot be done.
5089 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5090 it is VOIDmode, they cannot both be CONST_INT.
5092 UNSIGNEDP is for the case where we have to widen the operands
5093 to perform the operation. It says to use zero-extension.
5095 NORMALIZEP is 1 if we should convert the result to be either zero
5096 or one. Normalize is -1 if we should convert the result to be
5097 either zero or -1. If NORMALIZEP is zero, the result will be left
5098 "raw" out of the scc insn. */
5101 emit_store_flag (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5102 enum machine_mode mode
, int unsignedp
, int normalizep
)
5105 enum insn_code icode
;
5106 enum machine_mode compare_mode
;
5107 enum machine_mode target_mode
= GET_MODE (target
);
5109 rtx last
= get_last_insn ();
5110 rtx pattern
, comparison
;
5113 code
= unsigned_condition (code
);
5115 /* If one operand is constant, make it the second one. Only do this
5116 if the other operand is not constant as well. */
5118 if (swap_commutative_operands_p (op0
, op1
))
5123 code
= swap_condition (code
);
5126 if (mode
== VOIDmode
)
5127 mode
= GET_MODE (op0
);
5129 /* For some comparisons with 1 and -1, we can convert this to
5130 comparisons with zero. This will often produce more opportunities for
5131 store-flag insns. */
5136 if (op1
== const1_rtx
)
5137 op1
= const0_rtx
, code
= LE
;
5140 if (op1
== constm1_rtx
)
5141 op1
= const0_rtx
, code
= LT
;
5144 if (op1
== const1_rtx
)
5145 op1
= const0_rtx
, code
= GT
;
5148 if (op1
== constm1_rtx
)
5149 op1
= const0_rtx
, code
= GE
;
5152 if (op1
== const1_rtx
)
5153 op1
= const0_rtx
, code
= NE
;
5156 if (op1
== const1_rtx
)
5157 op1
= const0_rtx
, code
= EQ
;
5163 /* If we are comparing a double-word integer with zero or -1, we can
5164 convert the comparison into one involving a single word. */
5165 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
* 2
5166 && GET_MODE_CLASS (mode
) == MODE_INT
5167 && (!MEM_P (op0
) || ! MEM_VOLATILE_P (op0
)))
5169 if ((code
== EQ
|| code
== NE
)
5170 && (op1
== const0_rtx
|| op1
== constm1_rtx
))
5172 rtx op00
, op01
, op0both
;
5174 /* Do a logical OR or AND of the two words and compare the result. */
5175 op00
= simplify_gen_subreg (word_mode
, op0
, mode
, 0);
5176 op01
= simplify_gen_subreg (word_mode
, op0
, mode
, UNITS_PER_WORD
);
5177 op0both
= expand_binop (word_mode
,
5178 op1
== const0_rtx
? ior_optab
: and_optab
,
5179 op00
, op01
, NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
5182 return emit_store_flag (target
, code
, op0both
, op1
, word_mode
,
5183 unsignedp
, normalizep
);
5185 else if ((code
== LT
|| code
== GE
) && op1
== const0_rtx
)
5189 /* If testing the sign bit, can just test on high word. */
5190 op0h
= simplify_gen_subreg (word_mode
, op0
, mode
,
5191 subreg_highpart_offset (word_mode
, mode
));
5192 return emit_store_flag (target
, code
, op0h
, op1
, word_mode
,
5193 unsignedp
, normalizep
);
5197 /* From now on, we won't change CODE, so set ICODE now. */
5198 icode
= setcc_gen_code
[(int) code
];
5200 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5201 complement of A (for GE) and shifting the sign bit to the low bit. */
5202 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
5203 && GET_MODE_CLASS (mode
) == MODE_INT
5204 && (normalizep
|| STORE_FLAG_VALUE
== 1
5205 || (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5206 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
5207 == (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1)))))
5211 /* If the result is to be wider than OP0, it is best to convert it
5212 first. If it is to be narrower, it is *incorrect* to convert it
5214 if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (mode
))
5216 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5220 if (target_mode
!= mode
)
5224 op0
= expand_unop (mode
, one_cmpl_optab
, op0
,
5225 ((STORE_FLAG_VALUE
== 1 || normalizep
)
5226 ? 0 : subtarget
), 0);
5228 if (STORE_FLAG_VALUE
== 1 || normalizep
)
5229 /* If we are supposed to produce a 0/1 value, we want to do
5230 a logical shift from the sign bit to the low-order bit; for
5231 a -1/0 value, we do an arithmetic shift. */
5232 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5233 size_int (GET_MODE_BITSIZE (mode
) - 1),
5234 subtarget
, normalizep
!= -1);
5236 if (mode
!= target_mode
)
5237 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5242 if (icode
!= CODE_FOR_nothing
)
5244 insn_operand_predicate_fn pred
;
5246 /* We think we may be able to do this with a scc insn. Emit the
5247 comparison and then the scc insn. */
5249 do_pending_stack_adjust ();
5250 last
= get_last_insn ();
5253 = compare_from_rtx (op0
, op1
, code
, unsignedp
, mode
, NULL_RTX
);
5254 if (CONSTANT_P (comparison
))
5256 switch (GET_CODE (comparison
))
5259 if (comparison
== const0_rtx
)
5263 #ifdef FLOAT_STORE_FLAG_VALUE
5265 if (comparison
== CONST0_RTX (GET_MODE (comparison
)))
5273 if (normalizep
== 1)
5275 if (normalizep
== -1)
5277 return const_true_rtx
;
5280 /* The code of COMPARISON may not match CODE if compare_from_rtx
5281 decided to swap its operands and reverse the original code.
5283 We know that compare_from_rtx returns either a CONST_INT or
5284 a new comparison code, so it is safe to just extract the
5285 code from COMPARISON. */
5286 code
= GET_CODE (comparison
);
5288 /* Get a reference to the target in the proper mode for this insn. */
5289 compare_mode
= insn_data
[(int) icode
].operand
[0].mode
;
5291 pred
= insn_data
[(int) icode
].operand
[0].predicate
;
5292 if (optimize
|| ! (*pred
) (subtarget
, compare_mode
))
5293 subtarget
= gen_reg_rtx (compare_mode
);
5295 pattern
= GEN_FCN (icode
) (subtarget
);
5298 emit_insn (pattern
);
5300 /* If we are converting to a wider mode, first convert to
5301 TARGET_MODE, then normalize. This produces better combining
5302 opportunities on machines that have a SIGN_EXTRACT when we are
5303 testing a single bit. This mostly benefits the 68k.
5305 If STORE_FLAG_VALUE does not have the sign bit set when
5306 interpreted in COMPARE_MODE, we can do this conversion as
5307 unsigned, which is usually more efficient. */
5308 if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (compare_mode
))
5310 convert_move (target
, subtarget
,
5311 (GET_MODE_BITSIZE (compare_mode
)
5312 <= HOST_BITS_PER_WIDE_INT
)
5313 && 0 == (STORE_FLAG_VALUE
5314 & ((HOST_WIDE_INT
) 1
5315 << (GET_MODE_BITSIZE (compare_mode
) -1))));
5317 compare_mode
= target_mode
;
5322 /* If we want to keep subexpressions around, don't reuse our
5328 /* Now normalize to the proper value in COMPARE_MODE. Sometimes
5329 we don't have to do anything. */
5330 if (normalizep
== 0 || normalizep
== STORE_FLAG_VALUE
)
5332 /* STORE_FLAG_VALUE might be the most negative number, so write
5333 the comparison this way to avoid a compiler-time warning. */
5334 else if (- normalizep
== STORE_FLAG_VALUE
)
5335 op0
= expand_unop (compare_mode
, neg_optab
, op0
, subtarget
, 0);
5337 /* We don't want to use STORE_FLAG_VALUE < 0 below since this
5338 makes it hard to use a value of just the sign bit due to
5339 ANSI integer constant typing rules. */
5340 else if (GET_MODE_BITSIZE (compare_mode
) <= HOST_BITS_PER_WIDE_INT
5341 && (STORE_FLAG_VALUE
5342 & ((HOST_WIDE_INT
) 1
5343 << (GET_MODE_BITSIZE (compare_mode
) - 1))))
5344 op0
= expand_shift (RSHIFT_EXPR
, compare_mode
, op0
,
5345 size_int (GET_MODE_BITSIZE (compare_mode
) - 1),
5346 subtarget
, normalizep
== 1);
5349 gcc_assert (STORE_FLAG_VALUE
& 1);
5351 op0
= expand_and (compare_mode
, op0
, const1_rtx
, subtarget
);
5352 if (normalizep
== -1)
5353 op0
= expand_unop (compare_mode
, neg_optab
, op0
, op0
, 0);
5356 /* If we were converting to a smaller mode, do the
5358 if (target_mode
!= compare_mode
)
5360 convert_move (target
, op0
, 0);
5368 delete_insns_since (last
);
5370 /* If optimizing, use different pseudo registers for each insn, instead
5371 of reusing the same pseudo. This leads to better CSE, but slows
5372 down the compiler, since there are more pseudos */
5373 subtarget
= (!optimize
5374 && (target_mode
== mode
)) ? target
: NULL_RTX
;
5376 /* If we reached here, we can't do this with a scc insn. However, there
5377 are some comparisons that can be done directly. For example, if
5378 this is an equality comparison of integers, we can try to exclusive-or
5379 (or subtract) the two operands and use a recursive call to try the
5380 comparison with zero. Don't do any of these cases if branches are
5384 && GET_MODE_CLASS (mode
) == MODE_INT
&& (code
== EQ
|| code
== NE
)
5385 && op1
!= const0_rtx
)
5387 tem
= expand_binop (mode
, xor_optab
, op0
, op1
, subtarget
, 1,
5391 tem
= expand_binop (mode
, sub_optab
, op0
, op1
, subtarget
, 1,
5394 tem
= emit_store_flag (target
, code
, tem
, const0_rtx
,
5395 mode
, unsignedp
, normalizep
);
5397 delete_insns_since (last
);
5401 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5402 the constant zero. Reject all other comparisons at this point. Only
5403 do LE and GT if branches are expensive since they are expensive on
5404 2-operand machines. */
5406 if (BRANCH_COST
== 0
5407 || GET_MODE_CLASS (mode
) != MODE_INT
|| op1
!= const0_rtx
5408 || (code
!= EQ
&& code
!= NE
5409 && (BRANCH_COST
<= 1 || (code
!= LE
&& code
!= GT
))))
5412 /* See what we need to return. We can only return a 1, -1, or the
5415 if (normalizep
== 0)
5417 if (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
5418 normalizep
= STORE_FLAG_VALUE
;
5420 else if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5421 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
5422 == (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1)))
5428 /* Try to put the result of the comparison in the sign bit. Assume we can't
5429 do the necessary operation below. */
5433 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5434 the sign bit set. */
5438 /* This is destructive, so SUBTARGET can't be OP0. */
5439 if (rtx_equal_p (subtarget
, op0
))
5442 tem
= expand_binop (mode
, sub_optab
, op0
, const1_rtx
, subtarget
, 0,
5445 tem
= expand_binop (mode
, ior_optab
, op0
, tem
, subtarget
, 0,
5449 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5450 number of bits in the mode of OP0, minus one. */
5454 if (rtx_equal_p (subtarget
, op0
))
5457 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5458 size_int (GET_MODE_BITSIZE (mode
) - 1),
5460 tem
= expand_binop (mode
, sub_optab
, tem
, op0
, subtarget
, 0,
5464 if (code
== EQ
|| code
== NE
)
5466 /* For EQ or NE, one way to do the comparison is to apply an operation
5467 that converts the operand into a positive number if it is nonzero
5468 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5469 for NE we negate. This puts the result in the sign bit. Then we
5470 normalize with a shift, if needed.
5472 Two operations that can do the above actions are ABS and FFS, so try
5473 them. If that doesn't work, and MODE is smaller than a full word,
5474 we can use zero-extension to the wider mode (an unsigned conversion)
5475 as the operation. */
5477 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5478 that is compensated by the subsequent overflow when subtracting
5481 if (abs_optab
->handlers
[mode
].insn_code
!= CODE_FOR_nothing
)
5482 tem
= expand_unop (mode
, abs_optab
, op0
, subtarget
, 1);
5483 else if (ffs_optab
->handlers
[mode
].insn_code
!= CODE_FOR_nothing
)
5484 tem
= expand_unop (mode
, ffs_optab
, op0
, subtarget
, 1);
5485 else if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
5487 tem
= convert_modes (word_mode
, mode
, op0
, 1);
5494 tem
= expand_binop (mode
, sub_optab
, tem
, const1_rtx
, subtarget
,
5497 tem
= expand_unop (mode
, neg_optab
, tem
, subtarget
, 0);
5500 /* If we couldn't do it that way, for NE we can "or" the two's complement
5501 of the value with itself. For EQ, we take the one's complement of
5502 that "or", which is an extra insn, so we only handle EQ if branches
5505 if (tem
== 0 && (code
== NE
|| BRANCH_COST
> 1))
5507 if (rtx_equal_p (subtarget
, op0
))
5510 tem
= expand_unop (mode
, neg_optab
, op0
, subtarget
, 0);
5511 tem
= expand_binop (mode
, ior_optab
, tem
, op0
, subtarget
, 0,
5514 if (tem
&& code
== EQ
)
5515 tem
= expand_unop (mode
, one_cmpl_optab
, tem
, subtarget
, 0);
5519 if (tem
&& normalizep
)
5520 tem
= expand_shift (RSHIFT_EXPR
, mode
, tem
,
5521 size_int (GET_MODE_BITSIZE (mode
) - 1),
5522 subtarget
, normalizep
== 1);
5526 if (GET_MODE (tem
) != target_mode
)
5528 convert_move (target
, tem
, 0);
5531 else if (!subtarget
)
5533 emit_move_insn (target
, tem
);
5538 delete_insns_since (last
);
5543 /* Like emit_store_flag, but always succeeds. */
5546 emit_store_flag_force (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5547 enum machine_mode mode
, int unsignedp
, int normalizep
)
5551 /* First see if emit_store_flag can do the job. */
5552 tem
= emit_store_flag (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
);
5556 if (normalizep
== 0)
5559 /* If this failed, we have to do this with set/compare/jump/set code. */
5562 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
5563 target
= gen_reg_rtx (GET_MODE (target
));
5565 emit_move_insn (target
, const1_rtx
);
5566 label
= gen_label_rtx ();
5567 do_compare_rtx_and_jump (op0
, op1
, code
, unsignedp
, mode
, NULL_RTX
,
5570 emit_move_insn (target
, const0_rtx
);
5576 /* Perform possibly multi-word comparison and conditional jump to LABEL
5577 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5578 now a thin wrapper around do_compare_rtx_and_jump. */
5581 do_cmp_and_jump (rtx arg1
, rtx arg2
, enum rtx_code op
, enum machine_mode mode
,
5584 int unsignedp
= (op
== LTU
|| op
== LEU
|| op
== GTU
|| op
== GEU
);
5585 do_compare_rtx_and_jump (arg1
, arg2
, op
, unsignedp
, mode
,
5586 NULL_RTX
, NULL_RTX
, label
);