2015-09-21 Steven G. Kargl <kargl@gcc.gnu.org>
[official-gcc.git] / gcc / fwprop.c
blob16c79817614579a8d6275ea8f033ffb9938441bc
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "predict.h"
26 #include "rtl.h"
27 #include "df.h"
28 #include "diagnostic-core.h"
30 #include "sparseset.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "flags.h"
35 #include "cfgrtl.h"
36 #include "cfgcleanup.h"
37 #include "target.h"
38 #include "cfgloop.h"
39 #include "tree-pass.h"
40 #include "domwalk.h"
41 #include "emit-rtl.h"
42 #include "rtl-iter.h"
45 /* This pass does simple forward propagation and simplification when an
46 operand of an insn can only come from a single def. This pass uses
47 df.c, so it is global. However, we only do limited analysis of
48 available expressions.
50 1) The pass tries to propagate the source of the def into the use,
51 and checks if the result is independent of the substituted value.
52 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
53 zero, independent of the source register.
55 In particular, we propagate constants into the use site. Sometimes
56 RTL expansion did not put the constant in the same insn on purpose,
57 to satisfy a predicate, and the result will fail to be recognized;
58 but this happens rarely and in this case we can still create a
59 REG_EQUAL note. For multi-word operations, this
61 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
62 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
63 (set (subreg:SI (reg:DI 122) 0)
64 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
65 (set (subreg:SI (reg:DI 122) 4)
66 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
68 can be simplified to the much simpler
70 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
71 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
73 This particular propagation is also effective at putting together
74 complex addressing modes. We are more aggressive inside MEMs, in
75 that all definitions are propagated if the use is in a MEM; if the
76 result is a valid memory address we check address_cost to decide
77 whether the substitution is worthwhile.
79 2) The pass propagates register copies. This is not as effective as
80 the copy propagation done by CSE's canon_reg, which works by walking
81 the instruction chain, it can help the other transformations.
83 We should consider removing this optimization, and instead reorder the
84 RTL passes, because GCSE does this transformation too. With some luck,
85 the CSE pass at the end of rest_of_handle_gcse could also go away.
87 3) The pass looks for paradoxical subregs that are actually unnecessary.
88 Things like this:
90 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
91 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
92 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
93 (subreg:SI (reg:QI 121) 0)))
95 are very common on machines that can only do word-sized operations.
96 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
97 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
98 we can replace the paradoxical subreg with simply (reg:WIDE M). The
99 above will simplify this to
101 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
102 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
103 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
105 where the first two insns are now dead.
107 We used to use reaching definitions to find which uses have a
108 single reaching definition (sounds obvious...), but this is too
109 complex a problem in nasty testcases like PR33928. Now we use the
110 multiple definitions problem in df-problems.c. The similarity
111 between that problem and SSA form creation is taken further, in
112 that fwprop does a dominator walk to create its chains; however,
113 instead of creating a PHI function where multiple definitions meet
114 I just punt and record only singleton use-def chains, which is
115 all that is needed by fwprop. */
118 static int num_changes;
120 static vec<df_ref> use_def_ref;
121 static vec<df_ref> reg_defs;
122 static vec<df_ref> reg_defs_stack;
124 /* The MD bitmaps are trimmed to include only live registers to cut
125 memory usage on testcases like insn-recog.c. Track live registers
126 in the basic block and do not perform forward propagation if the
127 destination is a dead pseudo occurring in a note. */
128 static bitmap local_md;
129 static bitmap local_lr;
131 /* Return the only def in USE's use-def chain, or NULL if there is
132 more than one def in the chain. */
134 static inline df_ref
135 get_def_for_use (df_ref use)
137 return use_def_ref[DF_REF_ID (use)];
141 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
142 TOP_FLAG says which artificials uses should be used, when DEF_REC
143 is an artificial def vector. LOCAL_MD is modified as after a
144 df_md_simulate_* function; we do more or less the same processing
145 done there, so we do not use those functions. */
147 #define DF_MD_GEN_FLAGS \
148 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
150 static void
151 process_defs (df_ref def, int top_flag)
153 for (; def; def = DF_REF_NEXT_LOC (def))
155 df_ref curr_def = reg_defs[DF_REF_REGNO (def)];
156 unsigned int dregno;
158 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
159 continue;
161 dregno = DF_REF_REGNO (def);
162 if (curr_def)
163 reg_defs_stack.safe_push (curr_def);
164 else
166 /* Do not store anything if "transitioning" from NULL to NULL. But
167 otherwise, push a special entry on the stack to tell the
168 leave_block callback that the entry in reg_defs was NULL. */
169 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
171 else
172 reg_defs_stack.safe_push (def);
175 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
177 bitmap_set_bit (local_md, dregno);
178 reg_defs[dregno] = NULL;
180 else
182 bitmap_clear_bit (local_md, dregno);
183 reg_defs[dregno] = def;
189 /* Fill the use_def_ref vector with values for the uses in USE_REC,
190 taking reaching definitions info from LOCAL_MD and REG_DEFS.
191 TOP_FLAG says which artificials uses should be used, when USE_REC
192 is an artificial use vector. */
194 static void
195 process_uses (df_ref use, int top_flag)
197 for (; use; use = DF_REF_NEXT_LOC (use))
198 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
200 unsigned int uregno = DF_REF_REGNO (use);
201 if (reg_defs[uregno]
202 && !bitmap_bit_p (local_md, uregno)
203 && bitmap_bit_p (local_lr, uregno))
204 use_def_ref[DF_REF_ID (use)] = reg_defs[uregno];
208 class single_def_use_dom_walker : public dom_walker
210 public:
211 single_def_use_dom_walker (cdi_direction direction)
212 : dom_walker (direction) {}
213 virtual void before_dom_children (basic_block);
214 virtual void after_dom_children (basic_block);
217 void
218 single_def_use_dom_walker::before_dom_children (basic_block bb)
220 int bb_index = bb->index;
221 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
222 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
223 rtx_insn *insn;
225 bitmap_copy (local_md, &md_bb_info->in);
226 bitmap_copy (local_lr, &lr_bb_info->in);
228 /* Push a marker for the leave_block callback. */
229 reg_defs_stack.safe_push (NULL);
231 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
232 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
234 /* We don't call df_simulate_initialize_forwards, as it may overestimate
235 the live registers if there are unused artificial defs. We prefer
236 liveness to be underestimated. */
238 FOR_BB_INSNS (bb, insn)
239 if (INSN_P (insn))
241 unsigned int uid = INSN_UID (insn);
242 process_uses (DF_INSN_UID_USES (uid), 0);
243 process_uses (DF_INSN_UID_EQ_USES (uid), 0);
244 process_defs (DF_INSN_UID_DEFS (uid), 0);
245 df_simulate_one_insn_forwards (bb, insn, local_lr);
248 process_uses (df_get_artificial_uses (bb_index), 0);
249 process_defs (df_get_artificial_defs (bb_index), 0);
252 /* Pop the definitions created in this basic block when leaving its
253 dominated parts. */
255 void
256 single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
258 df_ref saved_def;
259 while ((saved_def = reg_defs_stack.pop ()) != NULL)
261 unsigned int dregno = DF_REF_REGNO (saved_def);
263 /* See also process_defs. */
264 if (saved_def == reg_defs[dregno])
265 reg_defs[dregno] = NULL;
266 else
267 reg_defs[dregno] = saved_def;
272 /* Build a vector holding the reaching definitions of uses reached by a
273 single dominating definition. */
275 static void
276 build_single_def_use_links (void)
278 /* We use the multiple definitions problem to compute our restricted
279 use-def chains. */
280 df_set_flags (DF_EQ_NOTES);
281 df_md_add_problem ();
282 df_note_add_problem ();
283 df_analyze ();
284 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
286 use_def_ref.create (DF_USES_TABLE_SIZE ());
287 use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ());
289 reg_defs.create (max_reg_num ());
290 reg_defs.safe_grow_cleared (max_reg_num ());
292 reg_defs_stack.create (n_basic_blocks_for_fn (cfun) * 10);
293 local_md = BITMAP_ALLOC (NULL);
294 local_lr = BITMAP_ALLOC (NULL);
296 /* Walk the dominator tree looking for single reaching definitions
297 dominating the uses. This is similar to how SSA form is built. */
298 single_def_use_dom_walker (CDI_DOMINATORS)
299 .walk (cfun->cfg->x_entry_block_ptr);
301 BITMAP_FREE (local_lr);
302 BITMAP_FREE (local_md);
303 reg_defs.release ();
304 reg_defs_stack.release ();
308 /* Do not try to replace constant addresses or addresses of local and
309 argument slots. These MEM expressions are made only once and inserted
310 in many instructions, as well as being used to control symbol table
311 output. It is not safe to clobber them.
313 There are some uncommon cases where the address is already in a register
314 for some reason, but we cannot take advantage of that because we have
315 no easy way to unshare the MEM. In addition, looking up all stack
316 addresses is costly. */
318 static bool
319 can_simplify_addr (rtx addr)
321 rtx reg;
323 if (CONSTANT_ADDRESS_P (addr))
324 return false;
326 if (GET_CODE (addr) == PLUS)
327 reg = XEXP (addr, 0);
328 else
329 reg = addr;
331 return (!REG_P (reg)
332 || (REGNO (reg) != FRAME_POINTER_REGNUM
333 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
334 && REGNO (reg) != ARG_POINTER_REGNUM));
337 /* Returns a canonical version of X for the address, from the point of view,
338 that all multiplications are represented as MULT instead of the multiply
339 by a power of 2 being represented as ASHIFT.
341 Every ASHIFT we find has been made by simplify_gen_binary and was not
342 there before, so it is not shared. So we can do this in place. */
344 static void
345 canonicalize_address (rtx x)
347 for (;;)
348 switch (GET_CODE (x))
350 case ASHIFT:
351 if (CONST_INT_P (XEXP (x, 1))
352 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
353 && INTVAL (XEXP (x, 1)) >= 0)
355 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
356 PUT_CODE (x, MULT);
357 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
358 GET_MODE (x));
361 x = XEXP (x, 0);
362 break;
364 case PLUS:
365 if (GET_CODE (XEXP (x, 0)) == PLUS
366 || GET_CODE (XEXP (x, 0)) == ASHIFT
367 || GET_CODE (XEXP (x, 0)) == CONST)
368 canonicalize_address (XEXP (x, 0));
370 x = XEXP (x, 1);
371 break;
373 case CONST:
374 x = XEXP (x, 0);
375 break;
377 default:
378 return;
382 /* OLD is a memory address. Return whether it is good to use NEW instead,
383 for a memory access in the given MODE. */
385 static bool
386 should_replace_address (rtx old_rtx, rtx new_rtx, machine_mode mode,
387 addr_space_t as, bool speed)
389 int gain;
391 if (rtx_equal_p (old_rtx, new_rtx)
392 || !memory_address_addr_space_p (mode, new_rtx, as))
393 return false;
395 /* Copy propagation is always ok. */
396 if (REG_P (old_rtx) && REG_P (new_rtx))
397 return true;
399 /* Prefer the new address if it is less expensive. */
400 gain = (address_cost (old_rtx, mode, as, speed)
401 - address_cost (new_rtx, mode, as, speed));
403 /* If the addresses have equivalent cost, prefer the new address
404 if it has the highest `set_src_cost'. That has the potential of
405 eliminating the most insns without additional costs, and it
406 is the same that cse.c used to do. */
407 if (gain == 0)
408 gain = (set_src_cost (new_rtx, VOIDmode, speed)
409 - set_src_cost (old_rtx, VOIDmode, speed));
411 return (gain > 0);
415 /* Flags for the last parameter of propagate_rtx_1. */
417 enum {
418 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
419 if it is false, propagate_rtx_1 returns false if, for at least
420 one occurrence OLD, it failed to collapse the result to a constant.
421 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
422 collapse to zero if replacing (reg:M B) with (reg:M A).
424 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
425 propagate_rtx_1 just tries to make cheaper and valid memory
426 addresses. */
427 PR_CAN_APPEAR = 1,
429 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
430 outside memory addresses. This is needed because propagate_rtx_1 does
431 not do any analysis on memory; thus it is very conservative and in general
432 it will fail if non-read-only MEMs are found in the source expression.
434 PR_HANDLE_MEM is set when the source of the propagation was not
435 another MEM. Then, it is safe not to treat non-read-only MEMs as
436 ``opaque'' objects. */
437 PR_HANDLE_MEM = 2,
439 /* Set when costs should be optimized for speed. */
440 PR_OPTIMIZE_FOR_SPEED = 4
444 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
445 resulting expression. Replace *PX with a new RTL expression if an
446 occurrence of OLD was found.
448 This is only a wrapper around simplify-rtx.c: do not add any pattern
449 matching code here. (The sole exception is the handling of LO_SUM, but
450 that is because there is no simplify_gen_* function for LO_SUM). */
452 static bool
453 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
455 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
456 enum rtx_code code = GET_CODE (x);
457 machine_mode mode = GET_MODE (x);
458 machine_mode op_mode;
459 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
460 bool valid_ops = true;
462 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
464 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
465 they have side effects or not). */
466 *px = (side_effects_p (x)
467 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
468 : gen_rtx_SCRATCH (GET_MODE (x)));
469 return false;
472 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
473 address, and we are *not* inside one. */
474 if (x == old_rtx)
476 *px = new_rtx;
477 return can_appear;
480 /* If this is an expression, try recursive substitution. */
481 switch (GET_RTX_CLASS (code))
483 case RTX_UNARY:
484 op0 = XEXP (x, 0);
485 op_mode = GET_MODE (op0);
486 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
487 if (op0 == XEXP (x, 0))
488 return true;
489 tem = simplify_gen_unary (code, mode, op0, op_mode);
490 break;
492 case RTX_BIN_ARITH:
493 case RTX_COMM_ARITH:
494 op0 = XEXP (x, 0);
495 op1 = XEXP (x, 1);
496 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
497 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
498 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
499 return true;
500 tem = simplify_gen_binary (code, mode, op0, op1);
501 break;
503 case RTX_COMPARE:
504 case RTX_COMM_COMPARE:
505 op0 = XEXP (x, 0);
506 op1 = XEXP (x, 1);
507 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
508 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
509 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
510 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
511 return true;
512 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
513 break;
515 case RTX_TERNARY:
516 case RTX_BITFIELD_OPS:
517 op0 = XEXP (x, 0);
518 op1 = XEXP (x, 1);
519 op2 = XEXP (x, 2);
520 op_mode = GET_MODE (op0);
521 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
522 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
523 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
524 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
525 return true;
526 if (op_mode == VOIDmode)
527 op_mode = GET_MODE (op0);
528 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
529 break;
531 case RTX_EXTRA:
532 /* The only case we try to handle is a SUBREG. */
533 if (code == SUBREG)
535 op0 = XEXP (x, 0);
536 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
537 if (op0 == XEXP (x, 0))
538 return true;
539 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
540 SUBREG_BYTE (x));
542 break;
544 case RTX_OBJ:
545 if (code == MEM && x != new_rtx)
547 rtx new_op0;
548 op0 = XEXP (x, 0);
550 /* There are some addresses that we cannot work on. */
551 if (!can_simplify_addr (op0))
552 return true;
554 op0 = new_op0 = targetm.delegitimize_address (op0);
555 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
556 flags | PR_CAN_APPEAR);
558 /* Dismiss transformation that we do not want to carry on. */
559 if (!valid_ops
560 || new_op0 == op0
561 || !(GET_MODE (new_op0) == GET_MODE (op0)
562 || GET_MODE (new_op0) == VOIDmode))
563 return true;
565 canonicalize_address (new_op0);
567 /* Copy propagations are always ok. Otherwise check the costs. */
568 if (!(REG_P (old_rtx) && REG_P (new_rtx))
569 && !should_replace_address (op0, new_op0, GET_MODE (x),
570 MEM_ADDR_SPACE (x),
571 flags & PR_OPTIMIZE_FOR_SPEED))
572 return true;
574 tem = replace_equiv_address_nv (x, new_op0);
577 else if (code == LO_SUM)
579 op0 = XEXP (x, 0);
580 op1 = XEXP (x, 1);
582 /* The only simplification we do attempts to remove references to op0
583 or make it constant -- in both cases, op0's invalidity will not
584 make the result invalid. */
585 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
586 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
587 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
588 return true;
590 /* (lo_sum (high x) x) -> x */
591 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
592 tem = op1;
593 else
594 tem = gen_rtx_LO_SUM (mode, op0, op1);
596 /* OP1 is likely not a legitimate address, otherwise there would have
597 been no LO_SUM. We want it to disappear if it is invalid, return
598 false in that case. */
599 return memory_address_p (mode, tem);
602 else if (code == REG)
604 if (rtx_equal_p (x, old_rtx))
606 *px = new_rtx;
607 return can_appear;
610 break;
612 default:
613 break;
616 /* No change, no trouble. */
617 if (tem == NULL_RTX)
618 return true;
620 *px = tem;
622 /* The replacement we made so far is valid, if all of the recursive
623 replacements were valid, or we could simplify everything to
624 a constant. */
625 return valid_ops || can_appear || CONSTANT_P (tem);
629 /* Return true if X constains a non-constant mem. */
631 static bool
632 varying_mem_p (const_rtx x)
634 subrtx_iterator::array_type array;
635 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
636 if (MEM_P (*iter) && !MEM_READONLY_P (*iter))
637 return true;
638 return false;
642 /* Replace all occurrences of OLD in X with NEW and try to simplify the
643 resulting expression (in mode MODE). Return a new expression if it is
644 a constant, otherwise X.
646 Simplifications where occurrences of NEW collapse to a constant are always
647 accepted. All simplifications are accepted if NEW is a pseudo too.
648 Otherwise, we accept simplifications that have a lower or equal cost. */
650 static rtx
651 propagate_rtx (rtx x, machine_mode mode, rtx old_rtx, rtx new_rtx,
652 bool speed)
654 rtx tem;
655 bool collapsed;
656 int flags;
658 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
659 return NULL_RTX;
661 flags = 0;
662 if (REG_P (new_rtx)
663 || CONSTANT_P (new_rtx)
664 || (GET_CODE (new_rtx) == SUBREG
665 && REG_P (SUBREG_REG (new_rtx))
666 && (GET_MODE_SIZE (mode)
667 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx))))))
668 flags |= PR_CAN_APPEAR;
669 if (!varying_mem_p (new_rtx))
670 flags |= PR_HANDLE_MEM;
672 if (speed)
673 flags |= PR_OPTIMIZE_FOR_SPEED;
675 tem = x;
676 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
677 if (tem == x || !collapsed)
678 return NULL_RTX;
680 /* gen_lowpart_common will not be able to process VOIDmode entities other
681 than CONST_INTs. */
682 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
683 return NULL_RTX;
685 if (GET_MODE (tem) == VOIDmode)
686 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
687 else
688 gcc_assert (GET_MODE (tem) == mode);
690 return tem;
696 /* Return true if the register from reference REF is killed
697 between FROM to (but not including) TO. */
699 static bool
700 local_ref_killed_between_p (df_ref ref, rtx_insn *from, rtx_insn *to)
702 rtx_insn *insn;
704 for (insn = from; insn != to; insn = NEXT_INSN (insn))
706 df_ref def;
707 if (!INSN_P (insn))
708 continue;
710 FOR_EACH_INSN_DEF (def, insn)
711 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
712 return true;
714 return false;
718 /* Check if the given DEF is available in INSN. This would require full
719 computation of available expressions; we check only restricted conditions:
720 - if DEF is the sole definition of its register, go ahead;
721 - in the same basic block, we check for no definitions killing the
722 definition of DEF_INSN;
723 - if USE's basic block has DEF's basic block as the sole predecessor,
724 we check if the definition is killed after DEF_INSN or before
725 TARGET_INSN insn, in their respective basic blocks. */
726 static bool
727 use_killed_between (df_ref use, rtx_insn *def_insn, rtx_insn *target_insn)
729 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
730 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
731 int regno;
732 df_ref def;
734 /* We used to have a def reaching a use that is _before_ the def,
735 with the def not dominating the use even though the use and def
736 are in the same basic block, when a register may be used
737 uninitialized in a loop. This should not happen anymore since
738 we do not use reaching definitions, but still we test for such
739 cases and assume that DEF is not available. */
740 if (def_bb == target_bb
741 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
742 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
743 return true;
745 /* Check if the reg in USE has only one definition. We already
746 know that this definition reaches use, or we wouldn't be here.
747 However, this is invalid for hard registers because if they are
748 live at the beginning of the function it does not mean that we
749 have an uninitialized access. */
750 regno = DF_REF_REGNO (use);
751 def = DF_REG_DEF_CHAIN (regno);
752 if (def
753 && DF_REF_NEXT_REG (def) == NULL
754 && regno >= FIRST_PSEUDO_REGISTER)
755 return false;
757 /* Check locally if we are in the same basic block. */
758 if (def_bb == target_bb)
759 return local_ref_killed_between_p (use, def_insn, target_insn);
761 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
762 if (single_pred_p (target_bb)
763 && single_pred (target_bb) == def_bb)
765 df_ref x;
767 /* See if USE is killed between DEF_INSN and the last insn in the
768 basic block containing DEF_INSN. */
769 x = df_bb_regno_last_def_find (def_bb, regno);
770 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
771 return true;
773 /* See if USE is killed between TARGET_INSN and the first insn in the
774 basic block containing TARGET_INSN. */
775 x = df_bb_regno_first_def_find (target_bb, regno);
776 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
777 return true;
779 return false;
782 /* Otherwise assume the worst case. */
783 return true;
787 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
788 would require full computation of available expressions;
789 we check only restricted conditions, see use_killed_between. */
790 static bool
791 all_uses_available_at (rtx_insn *def_insn, rtx_insn *target_insn)
793 df_ref use;
794 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
795 rtx def_set = single_set (def_insn);
796 rtx_insn *next;
798 gcc_assert (def_set);
800 /* If target_insn comes right after def_insn, which is very common
801 for addresses, we can use a quicker test. Ignore debug insns
802 other than target insns for this. */
803 next = NEXT_INSN (def_insn);
804 while (next && next != target_insn && DEBUG_INSN_P (next))
805 next = NEXT_INSN (next);
806 if (next == target_insn && REG_P (SET_DEST (def_set)))
808 rtx def_reg = SET_DEST (def_set);
810 /* If the insn uses the reg that it defines, the substitution is
811 invalid. */
812 FOR_EACH_INSN_INFO_USE (use, insn_info)
813 if (rtx_equal_p (DF_REF_REG (use), def_reg))
814 return false;
815 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
816 if (rtx_equal_p (DF_REF_REG (use), def_reg))
817 return false;
819 else
821 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
823 /* Look at all the uses of DEF_INSN, and see if they are not
824 killed between DEF_INSN and TARGET_INSN. */
825 FOR_EACH_INSN_INFO_USE (use, insn_info)
827 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
828 return false;
829 if (use_killed_between (use, def_insn, target_insn))
830 return false;
832 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
834 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
835 return false;
836 if (use_killed_between (use, def_insn, target_insn))
837 return false;
841 return true;
845 static df_ref *active_defs;
846 #ifdef ENABLE_CHECKING
847 static sparseset active_defs_check;
848 #endif
850 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
851 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
852 too, for checking purposes. */
854 static void
855 register_active_defs (df_ref use)
857 for (; use; use = DF_REF_NEXT_LOC (use))
859 df_ref def = get_def_for_use (use);
860 int regno = DF_REF_REGNO (use);
862 #ifdef ENABLE_CHECKING
863 sparseset_set_bit (active_defs_check, regno);
864 #endif
865 active_defs[regno] = def;
870 /* Build the use->def links that we use to update the dataflow info
871 for new uses. Note that building the links is very cheap and if
872 it were done earlier, they could be used to rule out invalid
873 propagations (in addition to what is done in all_uses_available_at).
874 I'm not doing this yet, though. */
876 static void
877 update_df_init (rtx_insn *def_insn, rtx_insn *insn)
879 #ifdef ENABLE_CHECKING
880 sparseset_clear (active_defs_check);
881 #endif
882 register_active_defs (DF_INSN_USES (def_insn));
883 register_active_defs (DF_INSN_USES (insn));
884 register_active_defs (DF_INSN_EQ_USES (insn));
888 /* Update the USE_DEF_REF array for the given use, using the active definitions
889 in the ACTIVE_DEFS array to match pseudos to their def. */
891 static inline void
892 update_uses (df_ref use)
894 for (; use; use = DF_REF_NEXT_LOC (use))
896 int regno = DF_REF_REGNO (use);
898 /* Set up the use-def chain. */
899 if (DF_REF_ID (use) >= (int) use_def_ref.length ())
900 use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1);
902 #ifdef ENABLE_CHECKING
903 gcc_assert (sparseset_bit_p (active_defs_check, regno));
904 #endif
905 use_def_ref[DF_REF_ID (use)] = active_defs[regno];
910 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
911 uses if NOTES_ONLY is true. */
913 static void
914 update_df (rtx_insn *insn, rtx note)
916 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
918 if (note)
920 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
921 df_notes_rescan (insn);
923 else
925 df_uses_create (&PATTERN (insn), insn, 0);
926 df_insn_rescan (insn);
927 update_uses (DF_INSN_INFO_USES (insn_info));
930 update_uses (DF_INSN_INFO_EQ_USES (insn_info));
934 /* Try substituting NEW into LOC, which originated from forward propagation
935 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
936 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
937 new insn is not recognized. Return whether the substitution was
938 performed. */
940 static bool
941 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx_insn *def_insn,
942 bool set_reg_equal)
944 rtx_insn *insn = DF_REF_INSN (use);
945 rtx set = single_set (insn);
946 rtx note = NULL_RTX;
947 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
948 int old_cost = 0;
949 bool ok;
951 update_df_init (def_insn, insn);
953 /* forward_propagate_subreg may be operating on an instruction with
954 multiple sets. If so, assume the cost of the new instruction is
955 not greater than the old one. */
956 if (set)
957 old_cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
958 if (dump_file)
960 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
961 print_inline_rtx (dump_file, *loc, 2);
962 fprintf (dump_file, "\n with ");
963 print_inline_rtx (dump_file, new_rtx, 2);
964 fprintf (dump_file, "\n");
967 validate_unshare_change (insn, loc, new_rtx, true);
968 if (!verify_changes (0))
970 if (dump_file)
971 fprintf (dump_file, "Changes to insn %d not recognized\n",
972 INSN_UID (insn));
973 ok = false;
976 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
977 && set
978 && (set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed)
979 > old_cost))
981 if (dump_file)
982 fprintf (dump_file, "Changes to insn %d not profitable\n",
983 INSN_UID (insn));
984 ok = false;
987 else
989 if (dump_file)
990 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
991 ok = true;
994 if (ok)
996 confirm_change_group ();
997 num_changes++;
999 else
1001 cancel_changes (0);
1003 /* Can also record a simplified value in a REG_EQUAL note,
1004 making a new one if one does not already exist. */
1005 if (set_reg_equal)
1007 if (dump_file)
1008 fprintf (dump_file, " Setting REG_EQUAL note\n");
1010 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1014 if ((ok || note) && !CONSTANT_P (new_rtx))
1015 update_df (insn, note);
1017 return ok;
1020 /* For the given single_set INSN, containing SRC known to be a
1021 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1022 is redundant due to the register being set by a LOAD_EXTEND_OP
1023 load from memory. */
1025 static bool
1026 free_load_extend (rtx src, rtx_insn *insn)
1028 rtx reg;
1029 df_ref def, use;
1031 reg = XEXP (src, 0);
1032 #ifdef LOAD_EXTEND_OP
1033 if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1034 #endif
1035 return false;
1037 FOR_EACH_INSN_USE (use, insn)
1038 if (!DF_REF_IS_ARTIFICIAL (use)
1039 && DF_REF_TYPE (use) == DF_REF_REG_USE
1040 && DF_REF_REG (use) == reg)
1041 break;
1042 if (!use)
1043 return false;
1045 def = get_def_for_use (use);
1046 if (!def)
1047 return false;
1049 if (DF_REF_IS_ARTIFICIAL (def))
1050 return false;
1052 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1054 rtx patt = PATTERN (DF_REF_INSN (def));
1056 if (GET_CODE (patt) == SET
1057 && GET_CODE (SET_SRC (patt)) == MEM
1058 && rtx_equal_p (SET_DEST (patt), reg))
1059 return true;
1061 return false;
1064 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1066 static bool
1067 forward_propagate_subreg (df_ref use, rtx_insn *def_insn, rtx def_set)
1069 rtx use_reg = DF_REF_REG (use);
1070 rtx_insn *use_insn;
1071 rtx src;
1073 /* Only consider subregs... */
1074 machine_mode use_mode = GET_MODE (use_reg);
1075 if (GET_CODE (use_reg) != SUBREG
1076 || !REG_P (SET_DEST (def_set)))
1077 return false;
1079 /* If this is a paradoxical SUBREG... */
1080 if (GET_MODE_SIZE (use_mode)
1081 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1083 /* If this is a paradoxical SUBREG, we have no idea what value the
1084 extra bits would have. However, if the operand is equivalent to
1085 a SUBREG whose operand is the same as our mode, and all the modes
1086 are within a word, we can just use the inner operand because
1087 these SUBREGs just say how to treat the register. */
1088 use_insn = DF_REF_INSN (use);
1089 src = SET_SRC (def_set);
1090 if (GET_CODE (src) == SUBREG
1091 && REG_P (SUBREG_REG (src))
1092 && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1093 && GET_MODE (SUBREG_REG (src)) == use_mode
1094 && subreg_lowpart_p (src)
1095 && all_uses_available_at (def_insn, use_insn))
1096 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1097 def_insn, false);
1100 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1101 is the low part of the reg being extended then just use the inner
1102 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1103 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1104 or due to the operation being a no-op when applied to registers.
1105 For example, if we have:
1107 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1108 B: (... (subreg:SI (reg:DI X)) ...)
1110 and mode_rep_extended says that Y is already sign-extended,
1111 the backend will typically allow A to be combined with the
1112 definition of Y or, failing that, allow A to be deleted after
1113 reload through register tying. Introducing more uses of Y
1114 prevents both optimisations. */
1115 else if (subreg_lowpart_p (use_reg))
1117 use_insn = DF_REF_INSN (use);
1118 src = SET_SRC (def_set);
1119 if ((GET_CODE (src) == ZERO_EXTEND
1120 || GET_CODE (src) == SIGN_EXTEND)
1121 && REG_P (XEXP (src, 0))
1122 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1123 && GET_MODE (XEXP (src, 0)) == use_mode
1124 && !free_load_extend (src, def_insn)
1125 && (targetm.mode_rep_extended (use_mode, GET_MODE (src))
1126 != (int) GET_CODE (src))
1127 && all_uses_available_at (def_insn, use_insn))
1128 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1129 def_insn, false);
1132 return false;
1135 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1137 static bool
1138 forward_propagate_asm (df_ref use, rtx_insn *def_insn, rtx def_set, rtx reg)
1140 rtx_insn *use_insn = DF_REF_INSN (use);
1141 rtx src, use_pat, asm_operands, new_rtx, *loc;
1142 int speed_p, i;
1143 df_ref uses;
1145 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1147 src = SET_SRC (def_set);
1148 use_pat = PATTERN (use_insn);
1150 /* In __asm don't replace if src might need more registers than
1151 reg, as that could increase register pressure on the __asm. */
1152 uses = DF_INSN_USES (def_insn);
1153 if (uses && DF_REF_NEXT_LOC (uses))
1154 return false;
1156 update_df_init (def_insn, use_insn);
1157 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1158 asm_operands = NULL_RTX;
1159 switch (GET_CODE (use_pat))
1161 case ASM_OPERANDS:
1162 asm_operands = use_pat;
1163 break;
1164 case SET:
1165 if (MEM_P (SET_DEST (use_pat)))
1167 loc = &SET_DEST (use_pat);
1168 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1169 if (new_rtx)
1170 validate_unshare_change (use_insn, loc, new_rtx, true);
1172 asm_operands = SET_SRC (use_pat);
1173 break;
1174 case PARALLEL:
1175 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1176 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1178 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1180 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1181 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1182 src, speed_p);
1183 if (new_rtx)
1184 validate_unshare_change (use_insn, loc, new_rtx, true);
1186 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1188 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1189 asm_operands = XVECEXP (use_pat, 0, i);
1190 break;
1191 default:
1192 gcc_unreachable ();
1195 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1196 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1198 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1199 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1200 if (new_rtx)
1201 validate_unshare_change (use_insn, loc, new_rtx, true);
1204 if (num_changes_pending () == 0 || !apply_change_group ())
1205 return false;
1207 update_df (use_insn, NULL);
1208 num_changes++;
1209 return true;
1212 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1213 result. */
1215 static bool
1216 forward_propagate_and_simplify (df_ref use, rtx_insn *def_insn, rtx def_set)
1218 rtx_insn *use_insn = DF_REF_INSN (use);
1219 rtx use_set = single_set (use_insn);
1220 rtx src, reg, new_rtx, *loc;
1221 bool set_reg_equal;
1222 machine_mode mode;
1223 int asm_use = -1;
1225 if (INSN_CODE (use_insn) < 0)
1226 asm_use = asm_noperands (PATTERN (use_insn));
1228 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1229 return false;
1231 /* Do not propagate into PC, CC0, etc. */
1232 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1233 return false;
1235 /* If def and use are subreg, check if they match. */
1236 reg = DF_REF_REG (use);
1237 if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1239 if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg))
1240 return false;
1242 /* Check if the def had a subreg, but the use has the whole reg. */
1243 else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1244 return false;
1245 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1246 previous case, the optimization is possible and often useful indeed. */
1247 else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1248 reg = SUBREG_REG (reg);
1250 /* Make sure that we can treat REG as having the same mode as the
1251 source of DEF_SET. */
1252 if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1253 return false;
1255 /* Check if the substitution is valid (last, because it's the most
1256 expensive check!). */
1257 src = SET_SRC (def_set);
1258 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1259 return false;
1261 /* Check if the def is loading something from the constant pool; in this
1262 case we would undo optimization such as compress_float_constant.
1263 Still, we can set a REG_EQUAL note. */
1264 if (MEM_P (src) && MEM_READONLY_P (src))
1266 rtx x = avoid_constant_pool_reference (src);
1267 if (x != src && use_set)
1269 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1270 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1271 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1272 if (old_rtx != new_rtx)
1273 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1275 return false;
1278 if (asm_use >= 0)
1279 return forward_propagate_asm (use, def_insn, def_set, reg);
1281 /* Else try simplifying. */
1283 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1285 loc = &SET_DEST (use_set);
1286 set_reg_equal = false;
1288 else if (!use_set)
1290 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1291 set_reg_equal = false;
1293 else
1295 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1296 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1297 loc = &XEXP (note, 0);
1298 else
1299 loc = &SET_SRC (use_set);
1301 /* Do not replace an existing REG_EQUAL note if the insn is not
1302 recognized. Either we're already replacing in the note, or we'll
1303 separately try plugging the definition in the note and simplifying.
1304 And only install a REQ_EQUAL note when the destination is a REG
1305 that isn't mentioned in USE_SET, as the note would be invalid
1306 otherwise. We also don't want to install a note if we are merely
1307 propagating a pseudo since verifying that this pseudo isn't dead
1308 is a pain; moreover such a note won't help anything. */
1309 set_reg_equal = (note == NULL_RTX
1310 && REG_P (SET_DEST (use_set))
1311 && !REG_P (src)
1312 && !(GET_CODE (src) == SUBREG
1313 && REG_P (SUBREG_REG (src)))
1314 && !reg_mentioned_p (SET_DEST (use_set),
1315 SET_SRC (use_set)));
1318 if (GET_MODE (*loc) == VOIDmode)
1319 mode = GET_MODE (SET_DEST (use_set));
1320 else
1321 mode = GET_MODE (*loc);
1323 new_rtx = propagate_rtx (*loc, mode, reg, src,
1324 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1326 if (!new_rtx)
1327 return false;
1329 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1333 /* Given a use USE of an insn, if it has a single reaching
1334 definition, try to forward propagate it into that insn.
1335 Return true if cfg cleanup will be needed. */
1337 static bool
1338 forward_propagate_into (df_ref use)
1340 df_ref def;
1341 rtx_insn *def_insn, *use_insn;
1342 rtx def_set;
1343 rtx parent;
1345 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1346 return false;
1347 if (DF_REF_IS_ARTIFICIAL (use))
1348 return false;
1350 /* Only consider uses that have a single definition. */
1351 def = get_def_for_use (use);
1352 if (!def)
1353 return false;
1354 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1355 return false;
1356 if (DF_REF_IS_ARTIFICIAL (def))
1357 return false;
1359 /* Do not propagate loop invariant definitions inside the loop. */
1360 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1361 return false;
1363 /* Check if the use is still present in the insn! */
1364 use_insn = DF_REF_INSN (use);
1365 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1366 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1367 else
1368 parent = PATTERN (use_insn);
1370 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1371 return false;
1373 def_insn = DF_REF_INSN (def);
1374 if (multiple_sets (def_insn))
1375 return false;
1376 def_set = single_set (def_insn);
1377 if (!def_set)
1378 return false;
1380 /* Only try one kind of propagation. If two are possible, we'll
1381 do it on the following iterations. */
1382 if (forward_propagate_and_simplify (use, def_insn, def_set)
1383 || forward_propagate_subreg (use, def_insn, def_set))
1385 if (cfun->can_throw_non_call_exceptions
1386 && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1387 && purge_dead_edges (DF_REF_BB (use)))
1388 return true;
1390 return false;
1394 static void
1395 fwprop_init (void)
1397 num_changes = 0;
1398 calculate_dominance_info (CDI_DOMINATORS);
1400 /* We do not always want to propagate into loops, so we have to find
1401 loops and be careful about them. Avoid CFG modifications so that
1402 we don't have to update dominance information afterwards for
1403 build_single_def_use_links. */
1404 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
1406 build_single_def_use_links ();
1407 df_set_flags (DF_DEFER_INSN_RESCAN);
1409 active_defs = XNEWVEC (df_ref, max_reg_num ());
1410 #ifdef ENABLE_CHECKING
1411 active_defs_check = sparseset_alloc (max_reg_num ());
1412 #endif
1415 static void
1416 fwprop_done (void)
1418 loop_optimizer_finalize ();
1420 use_def_ref.release ();
1421 free (active_defs);
1422 #ifdef ENABLE_CHECKING
1423 sparseset_free (active_defs_check);
1424 #endif
1426 free_dominance_info (CDI_DOMINATORS);
1427 cleanup_cfg (0);
1428 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1430 if (dump_file)
1431 fprintf (dump_file,
1432 "\nNumber of successful forward propagations: %d\n\n",
1433 num_changes);
1437 /* Main entry point. */
1439 static bool
1440 gate_fwprop (void)
1442 return optimize > 0 && flag_forward_propagate;
1445 static unsigned int
1446 fwprop (void)
1448 unsigned i;
1449 bool need_cleanup = false;
1451 fwprop_init ();
1453 /* Go through all the uses. df_uses_create will create new ones at the
1454 end, and we'll go through them as well.
1456 Do not forward propagate addresses into loops until after unrolling.
1457 CSE did so because it was able to fix its own mess, but we are not. */
1459 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1461 df_ref use = DF_USES_GET (i);
1462 if (use)
1463 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1464 || DF_REF_BB (use)->loop_father == NULL
1465 /* The outer most loop is not really a loop. */
1466 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1467 need_cleanup |= forward_propagate_into (use);
1470 fwprop_done ();
1471 if (need_cleanup)
1472 cleanup_cfg (0);
1473 return 0;
1476 namespace {
1478 const pass_data pass_data_rtl_fwprop =
1480 RTL_PASS, /* type */
1481 "fwprop1", /* name */
1482 OPTGROUP_NONE, /* optinfo_flags */
1483 TV_FWPROP, /* tv_id */
1484 0, /* properties_required */
1485 0, /* properties_provided */
1486 0, /* properties_destroyed */
1487 0, /* todo_flags_start */
1488 TODO_df_finish, /* todo_flags_finish */
1491 class pass_rtl_fwprop : public rtl_opt_pass
1493 public:
1494 pass_rtl_fwprop (gcc::context *ctxt)
1495 : rtl_opt_pass (pass_data_rtl_fwprop, ctxt)
1498 /* opt_pass methods: */
1499 virtual bool gate (function *) { return gate_fwprop (); }
1500 virtual unsigned int execute (function *) { return fwprop (); }
1502 }; // class pass_rtl_fwprop
1504 } // anon namespace
1506 rtl_opt_pass *
1507 make_pass_rtl_fwprop (gcc::context *ctxt)
1509 return new pass_rtl_fwprop (ctxt);
1512 static unsigned int
1513 fwprop_addr (void)
1515 unsigned i;
1516 bool need_cleanup = false;
1518 fwprop_init ();
1520 /* Go through all the uses. df_uses_create will create new ones at the
1521 end, and we'll go through them as well. */
1522 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1524 df_ref use = DF_USES_GET (i);
1525 if (use)
1526 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1527 && DF_REF_BB (use)->loop_father != NULL
1528 /* The outer most loop is not really a loop. */
1529 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1530 need_cleanup |= forward_propagate_into (use);
1533 fwprop_done ();
1535 if (need_cleanup)
1536 cleanup_cfg (0);
1537 return 0;
1540 namespace {
1542 const pass_data pass_data_rtl_fwprop_addr =
1544 RTL_PASS, /* type */
1545 "fwprop2", /* name */
1546 OPTGROUP_NONE, /* optinfo_flags */
1547 TV_FWPROP, /* tv_id */
1548 0, /* properties_required */
1549 0, /* properties_provided */
1550 0, /* properties_destroyed */
1551 0, /* todo_flags_start */
1552 TODO_df_finish, /* todo_flags_finish */
1555 class pass_rtl_fwprop_addr : public rtl_opt_pass
1557 public:
1558 pass_rtl_fwprop_addr (gcc::context *ctxt)
1559 : rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt)
1562 /* opt_pass methods: */
1563 virtual bool gate (function *) { return gate_fwprop (); }
1564 virtual unsigned int execute (function *) { return fwprop_addr (); }
1566 }; // class pass_rtl_fwprop_addr
1568 } // anon namespace
1570 rtl_opt_pass *
1571 make_pass_rtl_fwprop_addr (gcc::context *ctxt)
1573 return new pass_rtl_fwprop_addr (ctxt);