* Make-lang.in (GFORTRAN_TARGET_INSTALL_NAME): Define.
[official-gcc.git] / gcc / cp / init.c
blob44cfc440628afdaf9260cd4643ebec792b9cfd9b
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
23 /* High-level class interface. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "target.h"
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int);
43 static void expand_default_init (tree, tree, tree, tree, int);
44 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45 static void perform_member_init (tree, tree);
46 static tree build_builtin_delete_call (tree);
47 static int member_init_ok_or_else (tree, tree, tree);
48 static void expand_virtual_init (tree, tree);
49 static tree sort_mem_initializers (tree, tree);
50 static tree initializing_context (tree);
51 static void expand_cleanup_for_base (tree, tree);
52 static tree get_temp_regvar (tree, tree);
53 static tree dfs_initialize_vtbl_ptrs (tree, void *);
54 static tree build_default_init (tree, tree);
55 static tree build_new_1 (tree);
56 static tree build_dtor_call (tree, special_function_kind, int);
57 static tree build_field_list (tree, tree, int *);
58 static tree build_vtbl_address (tree);
60 /* We are about to generate some complex initialization code.
61 Conceptually, it is all a single expression. However, we may want
62 to include conditionals, loops, and other such statement-level
63 constructs. Therefore, we build the initialization code inside a
64 statement-expression. This function starts such an expression.
65 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
66 pass them back to finish_init_stmts when the expression is
67 complete. */
69 static bool
70 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
72 bool is_global = !building_stmt_tree ();
74 *stmt_expr_p = begin_stmt_expr ();
75 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
77 return is_global;
80 /* Finish out the statement-expression begun by the previous call to
81 begin_init_stmts. Returns the statement-expression itself. */
83 static tree
84 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
86 finish_compound_stmt (compound_stmt);
88 stmt_expr = finish_stmt_expr (stmt_expr, true);
90 gcc_assert (!building_stmt_tree () == is_global);
92 return stmt_expr;
95 /* Constructors */
97 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
98 which we want to initialize the vtable pointer for, DATA is
99 TREE_LIST whose TREE_VALUE is the this ptr expression. */
101 static tree
102 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
104 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
105 return dfs_skip_bases;
107 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
109 tree base_ptr = TREE_VALUE ((tree) data);
111 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
113 expand_virtual_init (binfo, base_ptr);
116 return NULL_TREE;
119 /* Initialize all the vtable pointers in the object pointed to by
120 ADDR. */
122 void
123 initialize_vtbl_ptrs (tree addr)
125 tree list;
126 tree type;
128 type = TREE_TYPE (TREE_TYPE (addr));
129 list = build_tree_list (type, addr);
131 /* Walk through the hierarchy, initializing the vptr in each base
132 class. We do these in pre-order because we can't find the virtual
133 bases for a class until we've initialized the vtbl for that
134 class. */
135 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
138 /* Return an expression for the zero-initialization of an object with
139 type T. This expression will either be a constant (in the case
140 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
141 aggregate). In either case, the value can be used as DECL_INITIAL
142 for a decl of the indicated TYPE; it is a valid static initializer.
143 If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS is the
144 number of elements in the array. If STATIC_STORAGE_P is TRUE,
145 initializers are only generated for entities for which
146 zero-initialization does not simply mean filling the storage with
147 zero bytes. */
149 tree
150 build_zero_init (tree type, tree nelts, bool static_storage_p)
152 tree init = NULL_TREE;
154 /* [dcl.init]
156 To zero-initialization storage for an object of type T means:
158 -- if T is a scalar type, the storage is set to the value of zero
159 converted to T.
161 -- if T is a non-union class type, the storage for each nonstatic
162 data member and each base-class subobject is zero-initialized.
164 -- if T is a union type, the storage for its first data member is
165 zero-initialized.
167 -- if T is an array type, the storage for each element is
168 zero-initialized.
170 -- if T is a reference type, no initialization is performed. */
172 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
174 if (type == error_mark_node)
176 else if (static_storage_p && zero_init_p (type))
177 /* In order to save space, we do not explicitly build initializers
178 for items that do not need them. GCC's semantics are that
179 items with static storage duration that are not otherwise
180 initialized are initialized to zero. */
182 else if (SCALAR_TYPE_P (type))
183 init = convert (type, integer_zero_node);
184 else if (CLASS_TYPE_P (type))
186 tree field;
187 VEC(constructor_elt,gc) *v = NULL;
189 /* Iterate over the fields, building initializations. */
190 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
192 if (TREE_CODE (field) != FIELD_DECL)
193 continue;
195 /* Note that for class types there will be FIELD_DECLs
196 corresponding to base classes as well. Thus, iterating
197 over TYPE_FIELDs will result in correct initialization of
198 all of the subobjects. */
199 if (static_storage_p && !zero_init_p (TREE_TYPE (field)))
201 tree value = build_zero_init (TREE_TYPE (field),
202 /*nelts=*/NULL_TREE,
203 static_storage_p);
204 CONSTRUCTOR_APPEND_ELT(v, field, value);
207 /* For unions, only the first field is initialized. */
208 if (TREE_CODE (type) == UNION_TYPE)
209 break;
212 /* Build a constructor to contain the initializations. */
213 init = build_constructor (type, v);
215 else if (TREE_CODE (type) == ARRAY_TYPE)
217 tree max_index;
218 VEC(constructor_elt,gc) *v = NULL;
220 /* Iterate over the array elements, building initializations. */
221 if (nelts)
222 max_index = fold_build2 (MINUS_EXPR, TREE_TYPE (nelts),
223 nelts, integer_one_node);
224 else
225 max_index = array_type_nelts (type);
226 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
228 /* A zero-sized array, which is accepted as an extension, will
229 have an upper bound of -1. */
230 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
232 constructor_elt *ce;
234 v = VEC_alloc (constructor_elt, gc, 1);
235 ce = VEC_quick_push (constructor_elt, v, NULL);
237 /* If this is a one element array, we just use a regular init. */
238 if (tree_int_cst_equal (size_zero_node, max_index))
239 ce->index = size_zero_node;
240 else
241 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
242 max_index);
244 ce->value = build_zero_init (TREE_TYPE (type),
245 /*nelts=*/NULL_TREE,
246 static_storage_p);
249 /* Build a constructor to contain the initializations. */
250 init = build_constructor (type, v);
252 else
253 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
255 /* In all cases, the initializer is a constant. */
256 if (init)
258 TREE_CONSTANT (init) = 1;
259 TREE_INVARIANT (init) = 1;
262 return init;
265 /* Build an expression for the default-initialization of an object of
266 the indicated TYPE. If NELTS is non-NULL, and TYPE is an
267 ARRAY_TYPE, NELTS is the number of elements in the array. If
268 initialization of TYPE requires calling constructors, this function
269 returns NULL_TREE; the caller is responsible for arranging for the
270 constructors to be called. */
272 static tree
273 build_default_init (tree type, tree nelts)
275 /* [dcl.init]:
277 To default-initialize an object of type T means:
279 --if T is a non-POD class type (clause _class_), the default construc-
280 tor for T is called (and the initialization is ill-formed if T has
281 no accessible default constructor);
283 --if T is an array type, each element is default-initialized;
285 --otherwise, the storage for the object is zero-initialized.
287 A program that calls for default-initialization of an entity of refer-
288 ence type is ill-formed. */
290 /* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
291 performing the initialization. This is confusing in that some
292 non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
293 a class with a pointer-to-data member as a non-static data member
294 does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
295 passing non-PODs to build_zero_init below, which is contrary to
296 the semantics quoted above from [dcl.init].
298 It happens, however, that the behavior of the constructor the
299 standard says we should have generated would be precisely the
300 same as that obtained by calling build_zero_init below, so things
301 work out OK. */
302 if (TYPE_NEEDS_CONSTRUCTING (type)
303 || (nelts && TREE_CODE (nelts) != INTEGER_CST))
304 return NULL_TREE;
306 /* At this point, TYPE is either a POD class type, an array of POD
307 classes, or something even more innocuous. */
308 return build_zero_init (type, nelts, /*static_storage_p=*/false);
311 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
312 arguments. If TREE_LIST is void_type_node, an empty initializer
313 list was given; if NULL_TREE no initializer was given. */
315 static void
316 perform_member_init (tree member, tree init)
318 tree decl;
319 tree type = TREE_TYPE (member);
320 bool explicit;
322 explicit = (init != NULL_TREE);
324 /* Effective C++ rule 12 requires that all data members be
325 initialized. */
326 if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
327 warning (0, "%J%qD should be initialized in the member initialization "
328 "list", current_function_decl, member);
330 if (init == void_type_node)
331 init = NULL_TREE;
333 /* Get an lvalue for the data member. */
334 decl = build_class_member_access_expr (current_class_ref, member,
335 /*access_path=*/NULL_TREE,
336 /*preserve_reference=*/true);
337 if (decl == error_mark_node)
338 return;
340 /* Deal with this here, as we will get confused if we try to call the
341 assignment op for an anonymous union. This can happen in a
342 synthesized copy constructor. */
343 if (ANON_AGGR_TYPE_P (type))
345 if (init)
347 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
348 finish_expr_stmt (init);
351 else if (TYPE_NEEDS_CONSTRUCTING (type))
353 if (explicit
354 && TREE_CODE (type) == ARRAY_TYPE
355 && init != NULL_TREE
356 && TREE_CHAIN (init) == NULL_TREE
357 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
359 /* Initialization of one array from another. */
360 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
361 /*explicit_default_init_p=*/false,
362 /* from_array=*/1));
364 else
365 finish_expr_stmt (build_aggr_init (decl, init, 0));
367 else
369 if (init == NULL_TREE)
371 if (explicit)
373 init = build_default_init (type, /*nelts=*/NULL_TREE);
374 if (TREE_CODE (type) == REFERENCE_TYPE)
375 warning (0, "%Jdefault-initialization of %q#D, "
376 "which has reference type",
377 current_function_decl, member);
379 /* member traversal: note it leaves init NULL */
380 else if (TREE_CODE (type) == REFERENCE_TYPE)
381 pedwarn ("%Juninitialized reference member %qD",
382 current_function_decl, member);
383 else if (CP_TYPE_CONST_P (type))
384 pedwarn ("%Juninitialized member %qD with %<const%> type %qT",
385 current_function_decl, member, type);
387 else if (TREE_CODE (init) == TREE_LIST)
388 /* There was an explicit member initialization. Do some work
389 in that case. */
390 init = build_x_compound_expr_from_list (init, "member initializer");
392 if (init)
393 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
396 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
398 tree expr;
400 expr = build_class_member_access_expr (current_class_ref, member,
401 /*access_path=*/NULL_TREE,
402 /*preserve_reference=*/false);
403 expr = build_delete (type, expr, sfk_complete_destructor,
404 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
406 if (expr != error_mark_node)
407 finish_eh_cleanup (expr);
411 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
412 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
414 static tree
415 build_field_list (tree t, tree list, int *uses_unions_p)
417 tree fields;
419 *uses_unions_p = 0;
421 /* Note whether or not T is a union. */
422 if (TREE_CODE (t) == UNION_TYPE)
423 *uses_unions_p = 1;
425 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
427 /* Skip CONST_DECLs for enumeration constants and so forth. */
428 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
429 continue;
431 /* Keep track of whether or not any fields are unions. */
432 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
433 *uses_unions_p = 1;
435 /* For an anonymous struct or union, we must recursively
436 consider the fields of the anonymous type. They can be
437 directly initialized from the constructor. */
438 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
440 /* Add this field itself. Synthesized copy constructors
441 initialize the entire aggregate. */
442 list = tree_cons (fields, NULL_TREE, list);
443 /* And now add the fields in the anonymous aggregate. */
444 list = build_field_list (TREE_TYPE (fields), list,
445 uses_unions_p);
447 /* Add this field. */
448 else if (DECL_NAME (fields))
449 list = tree_cons (fields, NULL_TREE, list);
452 return list;
455 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
456 a FIELD_DECL or BINFO in T that needs initialization. The
457 TREE_VALUE gives the initializer, or list of initializer arguments.
459 Return a TREE_LIST containing all of the initializations required
460 for T, in the order in which they should be performed. The output
461 list has the same format as the input. */
463 static tree
464 sort_mem_initializers (tree t, tree mem_inits)
466 tree init;
467 tree base, binfo, base_binfo;
468 tree sorted_inits;
469 tree next_subobject;
470 VEC(tree,gc) *vbases;
471 int i;
472 int uses_unions_p;
474 /* Build up a list of initializations. The TREE_PURPOSE of entry
475 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
476 TREE_VALUE will be the constructor arguments, or NULL if no
477 explicit initialization was provided. */
478 sorted_inits = NULL_TREE;
480 /* Process the virtual bases. */
481 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
482 VEC_iterate (tree, vbases, i, base); i++)
483 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
485 /* Process the direct bases. */
486 for (binfo = TYPE_BINFO (t), i = 0;
487 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
488 if (!BINFO_VIRTUAL_P (base_binfo))
489 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
491 /* Process the non-static data members. */
492 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
493 /* Reverse the entire list of initializations, so that they are in
494 the order that they will actually be performed. */
495 sorted_inits = nreverse (sorted_inits);
497 /* If the user presented the initializers in an order different from
498 that in which they will actually occur, we issue a warning. Keep
499 track of the next subobject which can be explicitly initialized
500 without issuing a warning. */
501 next_subobject = sorted_inits;
503 /* Go through the explicit initializers, filling in TREE_PURPOSE in
504 the SORTED_INITS. */
505 for (init = mem_inits; init; init = TREE_CHAIN (init))
507 tree subobject;
508 tree subobject_init;
510 subobject = TREE_PURPOSE (init);
512 /* If the explicit initializers are in sorted order, then
513 SUBOBJECT will be NEXT_SUBOBJECT, or something following
514 it. */
515 for (subobject_init = next_subobject;
516 subobject_init;
517 subobject_init = TREE_CHAIN (subobject_init))
518 if (TREE_PURPOSE (subobject_init) == subobject)
519 break;
521 /* Issue a warning if the explicit initializer order does not
522 match that which will actually occur.
523 ??? Are all these on the correct lines? */
524 if (warn_reorder && !subobject_init)
526 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
527 warning (0, "%q+D will be initialized after",
528 TREE_PURPOSE (next_subobject));
529 else
530 warning (0, "base %qT will be initialized after",
531 TREE_PURPOSE (next_subobject));
532 if (TREE_CODE (subobject) == FIELD_DECL)
533 warning (0, " %q+#D", subobject);
534 else
535 warning (0, " base %qT", subobject);
536 warning (0, "%J when initialized here", current_function_decl);
539 /* Look again, from the beginning of the list. */
540 if (!subobject_init)
542 subobject_init = sorted_inits;
543 while (TREE_PURPOSE (subobject_init) != subobject)
544 subobject_init = TREE_CHAIN (subobject_init);
547 /* It is invalid to initialize the same subobject more than
548 once. */
549 if (TREE_VALUE (subobject_init))
551 if (TREE_CODE (subobject) == FIELD_DECL)
552 error ("%Jmultiple initializations given for %qD",
553 current_function_decl, subobject);
554 else
555 error ("%Jmultiple initializations given for base %qT",
556 current_function_decl, subobject);
559 /* Record the initialization. */
560 TREE_VALUE (subobject_init) = TREE_VALUE (init);
561 next_subobject = subobject_init;
564 /* [class.base.init]
566 If a ctor-initializer specifies more than one mem-initializer for
567 multiple members of the same union (including members of
568 anonymous unions), the ctor-initializer is ill-formed. */
569 if (uses_unions_p)
571 tree last_field = NULL_TREE;
572 for (init = sorted_inits; init; init = TREE_CHAIN (init))
574 tree field;
575 tree field_type;
576 int done;
578 /* Skip uninitialized members and base classes. */
579 if (!TREE_VALUE (init)
580 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
581 continue;
582 /* See if this field is a member of a union, or a member of a
583 structure contained in a union, etc. */
584 field = TREE_PURPOSE (init);
585 for (field_type = DECL_CONTEXT (field);
586 !same_type_p (field_type, t);
587 field_type = TYPE_CONTEXT (field_type))
588 if (TREE_CODE (field_type) == UNION_TYPE)
589 break;
590 /* If this field is not a member of a union, skip it. */
591 if (TREE_CODE (field_type) != UNION_TYPE)
592 continue;
594 /* It's only an error if we have two initializers for the same
595 union type. */
596 if (!last_field)
598 last_field = field;
599 continue;
602 /* See if LAST_FIELD and the field initialized by INIT are
603 members of the same union. If so, there's a problem,
604 unless they're actually members of the same structure
605 which is itself a member of a union. For example, given:
607 union { struct { int i; int j; }; };
609 initializing both `i' and `j' makes sense. */
610 field_type = DECL_CONTEXT (field);
611 done = 0;
614 tree last_field_type;
616 last_field_type = DECL_CONTEXT (last_field);
617 while (1)
619 if (same_type_p (last_field_type, field_type))
621 if (TREE_CODE (field_type) == UNION_TYPE)
622 error ("%Jinitializations for multiple members of %qT",
623 current_function_decl, last_field_type);
624 done = 1;
625 break;
628 if (same_type_p (last_field_type, t))
629 break;
631 last_field_type = TYPE_CONTEXT (last_field_type);
634 /* If we've reached the outermost class, then we're
635 done. */
636 if (same_type_p (field_type, t))
637 break;
639 field_type = TYPE_CONTEXT (field_type);
641 while (!done);
643 last_field = field;
647 return sorted_inits;
650 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
651 is a TREE_LIST giving the explicit mem-initializer-list for the
652 constructor. The TREE_PURPOSE of each entry is a subobject (a
653 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
654 is a TREE_LIST giving the arguments to the constructor or
655 void_type_node for an empty list of arguments. */
657 void
658 emit_mem_initializers (tree mem_inits)
660 /* We will already have issued an error message about the fact that
661 the type is incomplete. */
662 if (!COMPLETE_TYPE_P (current_class_type))
663 return;
665 /* Sort the mem-initializers into the order in which the
666 initializations should be performed. */
667 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
669 in_base_initializer = 1;
671 /* Initialize base classes. */
672 while (mem_inits
673 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
675 tree subobject = TREE_PURPOSE (mem_inits);
676 tree arguments = TREE_VALUE (mem_inits);
678 /* If these initializations are taking place in a copy
679 constructor, the base class should probably be explicitly
680 initialized. */
681 if (extra_warnings && !arguments
682 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
683 && TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
684 warning (0, "%Jbase class %q#T should be explicitly initialized in the "
685 "copy constructor",
686 current_function_decl, BINFO_TYPE (subobject));
688 /* If an explicit -- but empty -- initializer list was present,
689 treat it just like default initialization at this point. */
690 if (arguments == void_type_node)
691 arguments = NULL_TREE;
693 /* Initialize the base. */
694 if (BINFO_VIRTUAL_P (subobject))
695 construct_virtual_base (subobject, arguments);
696 else
698 tree base_addr;
700 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
701 subobject, 1);
702 expand_aggr_init_1 (subobject, NULL_TREE,
703 build_indirect_ref (base_addr, NULL),
704 arguments,
705 LOOKUP_NORMAL);
706 expand_cleanup_for_base (subobject, NULL_TREE);
709 mem_inits = TREE_CHAIN (mem_inits);
711 in_base_initializer = 0;
713 /* Initialize the vptrs. */
714 initialize_vtbl_ptrs (current_class_ptr);
716 /* Initialize the data members. */
717 while (mem_inits)
719 perform_member_init (TREE_PURPOSE (mem_inits),
720 TREE_VALUE (mem_inits));
721 mem_inits = TREE_CHAIN (mem_inits);
725 /* Returns the address of the vtable (i.e., the value that should be
726 assigned to the vptr) for BINFO. */
728 static tree
729 build_vtbl_address (tree binfo)
731 tree binfo_for = binfo;
732 tree vtbl;
734 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
735 /* If this is a virtual primary base, then the vtable we want to store
736 is that for the base this is being used as the primary base of. We
737 can't simply skip the initialization, because we may be expanding the
738 inits of a subobject constructor where the virtual base layout
739 can be different. */
740 while (BINFO_PRIMARY_P (binfo_for))
741 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
743 /* Figure out what vtable BINFO's vtable is based on, and mark it as
744 used. */
745 vtbl = get_vtbl_decl_for_binfo (binfo_for);
746 assemble_external (vtbl);
747 TREE_USED (vtbl) = 1;
749 /* Now compute the address to use when initializing the vptr. */
750 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
751 if (TREE_CODE (vtbl) == VAR_DECL)
752 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
754 return vtbl;
757 /* This code sets up the virtual function tables appropriate for
758 the pointer DECL. It is a one-ply initialization.
760 BINFO is the exact type that DECL is supposed to be. In
761 multiple inheritance, this might mean "C's A" if C : A, B. */
763 static void
764 expand_virtual_init (tree binfo, tree decl)
766 tree vtbl, vtbl_ptr;
767 tree vtt_index;
769 /* Compute the initializer for vptr. */
770 vtbl = build_vtbl_address (binfo);
772 /* We may get this vptr from a VTT, if this is a subobject
773 constructor or subobject destructor. */
774 vtt_index = BINFO_VPTR_INDEX (binfo);
775 if (vtt_index)
777 tree vtbl2;
778 tree vtt_parm;
780 /* Compute the value to use, when there's a VTT. */
781 vtt_parm = current_vtt_parm;
782 vtbl2 = build2 (PLUS_EXPR,
783 TREE_TYPE (vtt_parm),
784 vtt_parm,
785 vtt_index);
786 vtbl2 = build_indirect_ref (vtbl2, NULL);
787 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
789 /* The actual initializer is the VTT value only in the subobject
790 constructor. In maybe_clone_body we'll substitute NULL for
791 the vtt_parm in the case of the non-subobject constructor. */
792 vtbl = build3 (COND_EXPR,
793 TREE_TYPE (vtbl),
794 build2 (EQ_EXPR, boolean_type_node,
795 current_in_charge_parm, integer_zero_node),
796 vtbl2,
797 vtbl);
800 /* Compute the location of the vtpr. */
801 vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
802 TREE_TYPE (binfo));
803 gcc_assert (vtbl_ptr != error_mark_node);
805 /* Assign the vtable to the vptr. */
806 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
807 finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
810 /* If an exception is thrown in a constructor, those base classes already
811 constructed must be destroyed. This function creates the cleanup
812 for BINFO, which has just been constructed. If FLAG is non-NULL,
813 it is a DECL which is nonzero when this base needs to be
814 destroyed. */
816 static void
817 expand_cleanup_for_base (tree binfo, tree flag)
819 tree expr;
821 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
822 return;
824 /* Call the destructor. */
825 expr = build_special_member_call (current_class_ref,
826 base_dtor_identifier,
827 NULL_TREE,
828 binfo,
829 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
830 if (flag)
831 expr = fold_build3 (COND_EXPR, void_type_node,
832 c_common_truthvalue_conversion (flag),
833 expr, integer_zero_node);
835 finish_eh_cleanup (expr);
838 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
839 constructor. */
841 static void
842 construct_virtual_base (tree vbase, tree arguments)
844 tree inner_if_stmt;
845 tree exp;
846 tree flag;
848 /* If there are virtual base classes with destructors, we need to
849 emit cleanups to destroy them if an exception is thrown during
850 the construction process. These exception regions (i.e., the
851 period during which the cleanups must occur) begin from the time
852 the construction is complete to the end of the function. If we
853 create a conditional block in which to initialize the
854 base-classes, then the cleanup region for the virtual base begins
855 inside a block, and ends outside of that block. This situation
856 confuses the sjlj exception-handling code. Therefore, we do not
857 create a single conditional block, but one for each
858 initialization. (That way the cleanup regions always begin
859 in the outer block.) We trust the back-end to figure out
860 that the FLAG will not change across initializations, and
861 avoid doing multiple tests. */
862 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
863 inner_if_stmt = begin_if_stmt ();
864 finish_if_stmt_cond (flag, inner_if_stmt);
866 /* Compute the location of the virtual base. If we're
867 constructing virtual bases, then we must be the most derived
868 class. Therefore, we don't have to look up the virtual base;
869 we already know where it is. */
870 exp = convert_to_base_statically (current_class_ref, vbase);
872 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
873 LOOKUP_COMPLAIN);
874 finish_then_clause (inner_if_stmt);
875 finish_if_stmt (inner_if_stmt);
877 expand_cleanup_for_base (vbase, flag);
880 /* Find the context in which this FIELD can be initialized. */
882 static tree
883 initializing_context (tree field)
885 tree t = DECL_CONTEXT (field);
887 /* Anonymous union members can be initialized in the first enclosing
888 non-anonymous union context. */
889 while (t && ANON_AGGR_TYPE_P (t))
890 t = TYPE_CONTEXT (t);
891 return t;
894 /* Function to give error message if member initialization specification
895 is erroneous. FIELD is the member we decided to initialize.
896 TYPE is the type for which the initialization is being performed.
897 FIELD must be a member of TYPE.
899 MEMBER_NAME is the name of the member. */
901 static int
902 member_init_ok_or_else (tree field, tree type, tree member_name)
904 if (field == error_mark_node)
905 return 0;
906 if (!field)
908 error ("class %qT does not have any field named %qD", type,
909 member_name);
910 return 0;
912 if (TREE_CODE (field) == VAR_DECL)
914 error ("%q#D is a static data member; it can only be "
915 "initialized at its definition",
916 field);
917 return 0;
919 if (TREE_CODE (field) != FIELD_DECL)
921 error ("%q#D is not a non-static data member of %qT",
922 field, type);
923 return 0;
925 if (initializing_context (field) != type)
927 error ("class %qT does not have any field named %qD", type,
928 member_name);
929 return 0;
932 return 1;
935 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
936 is a _TYPE node or TYPE_DECL which names a base for that type.
937 Check the validity of NAME, and return either the base _TYPE, base
938 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
939 NULL_TREE and issue a diagnostic.
941 An old style unnamed direct single base construction is permitted,
942 where NAME is NULL. */
944 tree
945 expand_member_init (tree name)
947 tree basetype;
948 tree field;
950 if (!current_class_ref)
951 return NULL_TREE;
953 if (!name)
955 /* This is an obsolete unnamed base class initializer. The
956 parser will already have warned about its use. */
957 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
959 case 0:
960 error ("unnamed initializer for %qT, which has no base classes",
961 current_class_type);
962 return NULL_TREE;
963 case 1:
964 basetype = BINFO_TYPE
965 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
966 break;
967 default:
968 error ("unnamed initializer for %qT, which uses multiple inheritance",
969 current_class_type);
970 return NULL_TREE;
973 else if (TYPE_P (name))
975 basetype = TYPE_MAIN_VARIANT (name);
976 name = TYPE_NAME (name);
978 else if (TREE_CODE (name) == TYPE_DECL)
979 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
980 else
981 basetype = NULL_TREE;
983 if (basetype)
985 tree class_binfo;
986 tree direct_binfo;
987 tree virtual_binfo;
988 int i;
990 if (current_template_parms)
991 return basetype;
993 class_binfo = TYPE_BINFO (current_class_type);
994 direct_binfo = NULL_TREE;
995 virtual_binfo = NULL_TREE;
997 /* Look for a direct base. */
998 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
999 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1000 break;
1002 /* Look for a virtual base -- unless the direct base is itself
1003 virtual. */
1004 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1005 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1007 /* [class.base.init]
1009 If a mem-initializer-id is ambiguous because it designates
1010 both a direct non-virtual base class and an inherited virtual
1011 base class, the mem-initializer is ill-formed. */
1012 if (direct_binfo && virtual_binfo)
1014 error ("%qD is both a direct base and an indirect virtual base",
1015 basetype);
1016 return NULL_TREE;
1019 if (!direct_binfo && !virtual_binfo)
1021 if (CLASSTYPE_VBASECLASSES (current_class_type))
1022 error ("type %qD is not a direct or virtual base of %qT",
1023 name, current_class_type);
1024 else
1025 error ("type %qD is not a direct base of %qT",
1026 name, current_class_type);
1027 return NULL_TREE;
1030 return direct_binfo ? direct_binfo : virtual_binfo;
1032 else
1034 if (TREE_CODE (name) == IDENTIFIER_NODE)
1035 field = lookup_field (current_class_type, name, 1, false);
1036 else
1037 field = name;
1039 if (member_init_ok_or_else (field, current_class_type, name))
1040 return field;
1043 return NULL_TREE;
1046 /* This is like `expand_member_init', only it stores one aggregate
1047 value into another.
1049 INIT comes in two flavors: it is either a value which
1050 is to be stored in EXP, or it is a parameter list
1051 to go to a constructor, which will operate on EXP.
1052 If INIT is not a parameter list for a constructor, then set
1053 LOOKUP_ONLYCONVERTING.
1054 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1055 the initializer, if FLAGS is 0, then it is the (init) form.
1056 If `init' is a CONSTRUCTOR, then we emit a warning message,
1057 explaining that such initializations are invalid.
1059 If INIT resolves to a CALL_EXPR which happens to return
1060 something of the type we are looking for, then we know
1061 that we can safely use that call to perform the
1062 initialization.
1064 The virtual function table pointer cannot be set up here, because
1065 we do not really know its type.
1067 This never calls operator=().
1069 When initializing, nothing is CONST.
1071 A default copy constructor may have to be used to perform the
1072 initialization.
1074 A constructor or a conversion operator may have to be used to
1075 perform the initialization, but not both, as it would be ambiguous. */
1077 tree
1078 build_aggr_init (tree exp, tree init, int flags)
1080 tree stmt_expr;
1081 tree compound_stmt;
1082 int destroy_temps;
1083 tree type = TREE_TYPE (exp);
1084 int was_const = TREE_READONLY (exp);
1085 int was_volatile = TREE_THIS_VOLATILE (exp);
1086 int is_global;
1088 if (init == error_mark_node)
1089 return error_mark_node;
1091 TREE_READONLY (exp) = 0;
1092 TREE_THIS_VOLATILE (exp) = 0;
1094 if (init && TREE_CODE (init) != TREE_LIST)
1095 flags |= LOOKUP_ONLYCONVERTING;
1097 if (TREE_CODE (type) == ARRAY_TYPE)
1099 tree itype;
1101 /* An array may not be initialized use the parenthesized
1102 initialization form -- unless the initializer is "()". */
1103 if (init && TREE_CODE (init) == TREE_LIST)
1105 error ("bad array initializer");
1106 return error_mark_node;
1108 /* Must arrange to initialize each element of EXP
1109 from elements of INIT. */
1110 itype = init ? TREE_TYPE (init) : NULL_TREE;
1111 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1112 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1113 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1114 itype = TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1115 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1116 /*explicit_default_init_p=*/false,
1117 itype && same_type_p (itype,
1118 TREE_TYPE (exp)));
1119 TREE_READONLY (exp) = was_const;
1120 TREE_THIS_VOLATILE (exp) = was_volatile;
1121 TREE_TYPE (exp) = type;
1122 if (init)
1123 TREE_TYPE (init) = itype;
1124 return stmt_expr;
1127 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1128 /* Just know that we've seen something for this node. */
1129 TREE_USED (exp) = 1;
1131 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1132 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1133 destroy_temps = stmts_are_full_exprs_p ();
1134 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1135 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1136 init, LOOKUP_NORMAL|flags);
1137 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1138 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1139 TREE_TYPE (exp) = type;
1140 TREE_READONLY (exp) = was_const;
1141 TREE_THIS_VOLATILE (exp) = was_volatile;
1143 return stmt_expr;
1146 /* Like build_aggr_init, but not just for aggregates. */
1148 tree
1149 build_init (tree decl, tree init, int flags)
1151 tree expr;
1153 if (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
1154 expr = build_aggr_init (decl, init, flags);
1155 else if (CLASS_TYPE_P (TREE_TYPE (decl)))
1156 expr = build_special_member_call (decl, complete_ctor_identifier,
1157 build_tree_list (NULL_TREE, init),
1158 TREE_TYPE (decl),
1159 LOOKUP_NORMAL|flags);
1160 else
1161 expr = build2 (INIT_EXPR, TREE_TYPE (decl), decl, init);
1163 return expr;
1166 static void
1167 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags)
1169 tree type = TREE_TYPE (exp);
1170 tree ctor_name;
1172 /* It fails because there may not be a constructor which takes
1173 its own type as the first (or only parameter), but which does
1174 take other types via a conversion. So, if the thing initializing
1175 the expression is a unit element of type X, first try X(X&),
1176 followed by initialization by X. If neither of these work
1177 out, then look hard. */
1178 tree rval;
1179 tree parms;
1181 if (init && TREE_CODE (init) != TREE_LIST
1182 && (flags & LOOKUP_ONLYCONVERTING))
1184 /* Base subobjects should only get direct-initialization. */
1185 gcc_assert (true_exp == exp);
1187 if (flags & DIRECT_BIND)
1188 /* Do nothing. We hit this in two cases: Reference initialization,
1189 where we aren't initializing a real variable, so we don't want
1190 to run a new constructor; and catching an exception, where we
1191 have already built up the constructor call so we could wrap it
1192 in an exception region. */;
1193 else if (BRACE_ENCLOSED_INITIALIZER_P (init))
1195 /* A brace-enclosed initializer for an aggregate. */
1196 gcc_assert (CP_AGGREGATE_TYPE_P (type));
1197 init = digest_init (type, init);
1199 else
1200 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1202 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1203 /* We need to protect the initialization of a catch parm with a
1204 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1205 around the TARGET_EXPR for the copy constructor. See
1206 initialize_handler_parm. */
1208 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1209 TREE_OPERAND (init, 0));
1210 TREE_TYPE (init) = void_type_node;
1212 else
1213 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1214 TREE_SIDE_EFFECTS (init) = 1;
1215 finish_expr_stmt (init);
1216 return;
1219 if (init == NULL_TREE
1220 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1222 parms = init;
1223 if (parms)
1224 init = TREE_VALUE (parms);
1226 else
1227 parms = build_tree_list (NULL_TREE, init);
1229 if (true_exp == exp)
1230 ctor_name = complete_ctor_identifier;
1231 else
1232 ctor_name = base_ctor_identifier;
1234 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
1235 if (TREE_SIDE_EFFECTS (rval))
1236 finish_expr_stmt (convert_to_void (rval, NULL));
1239 /* This function is responsible for initializing EXP with INIT
1240 (if any).
1242 BINFO is the binfo of the type for who we are performing the
1243 initialization. For example, if W is a virtual base class of A and B,
1244 and C : A, B.
1245 If we are initializing B, then W must contain B's W vtable, whereas
1246 were we initializing C, W must contain C's W vtable.
1248 TRUE_EXP is nonzero if it is the true expression being initialized.
1249 In this case, it may be EXP, or may just contain EXP. The reason we
1250 need this is because if EXP is a base element of TRUE_EXP, we
1251 don't necessarily know by looking at EXP where its virtual
1252 baseclass fields should really be pointing. But we do know
1253 from TRUE_EXP. In constructors, we don't know anything about
1254 the value being initialized.
1256 FLAGS is just passed to `build_new_method_call'. See that function
1257 for its description. */
1259 static void
1260 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags)
1262 tree type = TREE_TYPE (exp);
1264 gcc_assert (init != error_mark_node && type != error_mark_node);
1265 gcc_assert (building_stmt_tree ());
1267 /* Use a function returning the desired type to initialize EXP for us.
1268 If the function is a constructor, and its first argument is
1269 NULL_TREE, know that it was meant for us--just slide exp on
1270 in and expand the constructor. Constructors now come
1271 as TARGET_EXPRs. */
1273 if (init && TREE_CODE (exp) == VAR_DECL
1274 && TREE_CODE (init) == CONSTRUCTOR
1275 && TREE_HAS_CONSTRUCTOR (init))
1277 /* If store_init_value returns NULL_TREE, the INIT has been
1278 record in the DECL_INITIAL for EXP. That means there's
1279 nothing more we have to do. */
1280 init = store_init_value (exp, init);
1281 if (init)
1282 finish_expr_stmt (init);
1283 return;
1286 /* We know that expand_default_init can handle everything we want
1287 at this point. */
1288 expand_default_init (binfo, true_exp, exp, init, flags);
1291 /* Report an error if TYPE is not a user-defined, aggregate type. If
1292 OR_ELSE is nonzero, give an error message. */
1295 is_aggr_type (tree type, int or_else)
1297 if (type == error_mark_node)
1298 return 0;
1300 if (! IS_AGGR_TYPE (type)
1301 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1302 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1304 if (or_else)
1305 error ("%qT is not an aggregate type", type);
1306 return 0;
1308 return 1;
1311 tree
1312 get_type_value (tree name)
1314 if (name == error_mark_node)
1315 return NULL_TREE;
1317 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1318 return IDENTIFIER_TYPE_VALUE (name);
1319 else
1320 return NULL_TREE;
1323 /* Build a reference to a member of an aggregate. This is not a C++
1324 `&', but really something which can have its address taken, and
1325 then act as a pointer to member, for example TYPE :: FIELD can have
1326 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1327 this expression is the operand of "&".
1329 @@ Prints out lousy diagnostics for operator <typename>
1330 @@ fields.
1332 @@ This function should be rewritten and placed in search.c. */
1334 tree
1335 build_offset_ref (tree type, tree name, bool address_p)
1337 tree decl;
1338 tree member;
1339 tree basebinfo = NULL_TREE;
1340 tree orig_name = name;
1342 /* class templates can come in as TEMPLATE_DECLs here. */
1343 if (TREE_CODE (name) == TEMPLATE_DECL)
1344 return name;
1346 if (dependent_type_p (type) || type_dependent_expression_p (name))
1347 return build_qualified_name (NULL_TREE, type, name,
1348 /*template_p=*/false);
1350 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
1352 /* If the NAME is a TEMPLATE_ID_EXPR, we are looking at
1353 something like `a.template f<int>' or the like. For the most
1354 part, we treat this just like a.f. We do remember, however,
1355 the template-id that was used. */
1356 name = TREE_OPERAND (orig_name, 0);
1358 if (DECL_P (name))
1359 name = DECL_NAME (name);
1360 else
1362 if (TREE_CODE (name) == COMPONENT_REF)
1363 name = TREE_OPERAND (name, 1);
1364 if (TREE_CODE (name) == OVERLOAD)
1365 name = DECL_NAME (OVL_CURRENT (name));
1368 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
1371 if (type == NULL_TREE)
1372 return error_mark_node;
1374 /* Handle namespace names fully here. */
1375 if (TREE_CODE (type) == NAMESPACE_DECL)
1377 tree t = lookup_namespace_name (type, name);
1378 if (t == error_mark_node)
1379 return t;
1380 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1381 /* Reconstruct the TEMPLATE_ID_EXPR. */
1382 t = build2 (TEMPLATE_ID_EXPR, TREE_TYPE (t),
1383 t, TREE_OPERAND (orig_name, 1));
1384 if (! type_unknown_p (t))
1386 mark_used (t);
1387 t = convert_from_reference (t);
1389 return t;
1392 if (! is_aggr_type (type, 1))
1393 return error_mark_node;
1395 if (TREE_CODE (name) == BIT_NOT_EXPR)
1397 if (! check_dtor_name (type, name))
1398 error ("qualified type %qT does not match destructor name %<~%T%>",
1399 type, TREE_OPERAND (name, 0));
1400 name = dtor_identifier;
1403 if (!COMPLETE_TYPE_P (complete_type (type))
1404 && !TYPE_BEING_DEFINED (type))
1406 error ("incomplete type %qT does not have member %qD", type, name);
1407 return error_mark_node;
1410 /* Set up BASEBINFO for member lookup. */
1411 decl = maybe_dummy_object (type, &basebinfo);
1413 if (BASELINK_P (name) || DECL_P (name))
1414 member = name;
1415 else
1417 member = lookup_member (basebinfo, name, 1, 0);
1419 if (member == error_mark_node)
1420 return error_mark_node;
1423 if (!member)
1425 error ("%qD is not a member of type %qT", name, type);
1426 return error_mark_node;
1429 if (TREE_CODE (member) == TYPE_DECL)
1431 TREE_USED (member) = 1;
1432 return member;
1434 /* static class members and class-specific enum
1435 values can be returned without further ado. */
1436 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1438 mark_used (member);
1439 return convert_from_reference (member);
1442 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1444 error ("invalid pointer to bit-field %qD", member);
1445 return error_mark_node;
1448 /* A lot of this logic is now handled in lookup_member. */
1449 if (BASELINK_P (member))
1451 /* Go from the TREE_BASELINK to the member function info. */
1452 tree fnfields = member;
1453 tree t = BASELINK_FUNCTIONS (fnfields);
1455 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1457 /* The FNFIELDS are going to contain functions that aren't
1458 necessarily templates, and templates that don't
1459 necessarily match the explicit template parameters. We
1460 save all the functions, and the explicit parameters, and
1461 then figure out exactly what to instantiate with what
1462 arguments in instantiate_type. */
1464 if (TREE_CODE (t) != OVERLOAD)
1465 /* The code in instantiate_type which will process this
1466 expects to encounter OVERLOADs, not raw functions. */
1467 t = ovl_cons (t, NULL_TREE);
1469 t = build2 (TEMPLATE_ID_EXPR, TREE_TYPE (t), t,
1470 TREE_OPERAND (orig_name, 1));
1471 t = build2 (OFFSET_REF, unknown_type_node, decl, t);
1473 PTRMEM_OK_P (t) = 1;
1475 return t;
1478 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1480 /* Get rid of a potential OVERLOAD around it. */
1481 t = OVL_CURRENT (t);
1483 /* Unique functions are handled easily. */
1485 /* For non-static member of base class, we need a special rule
1486 for access checking [class.protected]:
1488 If the access is to form a pointer to member, the
1489 nested-name-specifier shall name the derived class
1490 (or any class derived from that class). */
1491 if (address_p && DECL_P (t)
1492 && DECL_NONSTATIC_MEMBER_P (t))
1493 perform_or_defer_access_check (TYPE_BINFO (type), t);
1494 else
1495 perform_or_defer_access_check (basebinfo, t);
1497 mark_used (t);
1498 if (DECL_STATIC_FUNCTION_P (t))
1499 return t;
1500 member = t;
1502 else
1504 TREE_TYPE (fnfields) = unknown_type_node;
1505 member = fnfields;
1508 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1509 /* We need additional test besides the one in
1510 check_accessibility_of_qualified_id in case it is
1511 a pointer to non-static member. */
1512 perform_or_defer_access_check (TYPE_BINFO (type), member);
1514 if (!address_p)
1516 /* If MEMBER is non-static, then the program has fallen afoul of
1517 [expr.prim]:
1519 An id-expression that denotes a nonstatic data member or
1520 nonstatic member function of a class can only be used:
1522 -- as part of a class member access (_expr.ref_) in which the
1523 object-expression refers to the member's class or a class
1524 derived from that class, or
1526 -- to form a pointer to member (_expr.unary.op_), or
1528 -- in the body of a nonstatic member function of that class or
1529 of a class derived from that class (_class.mfct.nonstatic_), or
1531 -- in a mem-initializer for a constructor for that class or for
1532 a class derived from that class (_class.base.init_). */
1533 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1535 /* Build a representation of a the qualified name suitable
1536 for use as the operand to "&" -- even though the "&" is
1537 not actually present. */
1538 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1539 /* In Microsoft mode, treat a non-static member function as if
1540 it were a pointer-to-member. */
1541 if (flag_ms_extensions)
1543 PTRMEM_OK_P (member) = 1;
1544 return build_unary_op (ADDR_EXPR, member, 0);
1546 error ("invalid use of non-static member function %qD",
1547 TREE_OPERAND (member, 1));
1548 return member;
1550 else if (TREE_CODE (member) == FIELD_DECL)
1552 error ("invalid use of non-static data member %qD", member);
1553 return error_mark_node;
1555 return member;
1558 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1559 PTRMEM_OK_P (member) = 1;
1560 return member;
1563 /* If DECL is a scalar enumeration constant or variable with a
1564 constant initializer, return the initializer (or, its initializers,
1565 recursively); otherwise, return DECL. If INTEGRAL_P, the
1566 initializer is only returned if DECL is an integral
1567 constant-expression. */
1569 static tree
1570 constant_value_1 (tree decl, bool integral_p)
1572 while (TREE_CODE (decl) == CONST_DECL
1573 || (integral_p
1574 ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
1575 : (TREE_CODE (decl) == VAR_DECL
1576 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1578 tree init;
1579 /* Static data members in template classes may have
1580 non-dependent initializers. References to such non-static
1581 data members are no value-dependent, so we must retrieve the
1582 initializer here. The DECL_INITIAL will have the right type,
1583 but will not have been folded because that would prevent us
1584 from performing all appropriate semantic checks at
1585 instantiation time. */
1586 if (DECL_CLASS_SCOPE_P (decl)
1587 && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
1588 && uses_template_parms (CLASSTYPE_TI_ARGS
1589 (DECL_CONTEXT (decl))))
1590 init = fold_non_dependent_expr (DECL_INITIAL (decl));
1591 else
1593 /* If DECL is a static data member in a template
1594 specialization, we must instantiate it here. The
1595 initializer for the static data member is not processed
1596 until needed; we need it now. */
1597 mark_used (decl);
1598 init = DECL_INITIAL (decl);
1600 if (!(init || init == error_mark_node)
1601 || !TREE_TYPE (init)
1602 || (integral_p
1603 ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
1604 : (!TREE_CONSTANT (init)
1605 /* Do not return an aggregate constant (of which
1606 string literals are a special case), as we do not
1607 want to make inadvertant copies of such entities,
1608 and we must be sure that their addresses are the
1609 same everywhere. */
1610 || TREE_CODE (init) == CONSTRUCTOR
1611 || TREE_CODE (init) == STRING_CST)))
1612 break;
1613 decl = init;
1615 return decl;
1618 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1619 constant of integral or enumeration type, then return that value.
1620 These are those variables permitted in constant expressions by
1621 [5.19/1]. */
1623 tree
1624 integral_constant_value (tree decl)
1626 return constant_value_1 (decl, /*integral_p=*/true);
1629 /* A more relaxed version of integral_constant_value, used by the
1630 common C/C++ code and by the C++ front-end for optimization
1631 purposes. */
1633 tree
1634 decl_constant_value (tree decl)
1636 return constant_value_1 (decl,
1637 /*integral_p=*/processing_template_decl);
1640 /* Common subroutines of build_new and build_vec_delete. */
1642 /* Call the global __builtin_delete to delete ADDR. */
1644 static tree
1645 build_builtin_delete_call (tree addr)
1647 mark_used (global_delete_fndecl);
1648 return build_call (global_delete_fndecl, build_tree_list (NULL_TREE, addr));
1651 /* Generate a representation for a C++ "new" expression. PLACEMENT is
1652 a TREE_LIST of placement-new arguments (or NULL_TREE if none). If
1653 NELTS is NULL, TYPE is the type of the storage to be allocated. If
1654 NELTS is not NULL, then this is an array-new allocation; TYPE is
1655 the type of the elements in the array and NELTS is the number of
1656 elements in the array. INIT, if non-NULL, is the initializer for
1657 the new object. If USE_GLOBAL_NEW is true, then the user
1658 explicitly wrote "::new" rather than just "new". */
1660 tree
1661 build_new (tree placement, tree type, tree nelts, tree init,
1662 int use_global_new)
1664 tree rval;
1666 if (type == error_mark_node)
1667 return error_mark_node;
1669 if (processing_template_decl)
1671 rval = build_min (NEW_EXPR, build_pointer_type (type),
1672 placement, type, nelts, init);
1673 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
1674 TREE_SIDE_EFFECTS (rval) = 1;
1675 return rval;
1678 if (nelts)
1680 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
1681 pedwarn ("size in array new must have integral type");
1682 nelts = save_expr (cp_convert (sizetype, nelts));
1683 if (nelts == integer_zero_node)
1684 warning (0, "zero size array reserves no space");
1687 /* ``A reference cannot be created by the new operator. A reference
1688 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
1689 returned by new.'' ARM 5.3.3 */
1690 if (TREE_CODE (type) == REFERENCE_TYPE)
1692 error ("new cannot be applied to a reference type");
1693 type = TREE_TYPE (type);
1696 if (TREE_CODE (type) == FUNCTION_TYPE)
1698 error ("new cannot be applied to a function type");
1699 return error_mark_node;
1702 rval = build4 (NEW_EXPR, build_pointer_type (type), placement, type,
1703 nelts, init);
1704 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
1705 TREE_SIDE_EFFECTS (rval) = 1;
1706 rval = build_new_1 (rval);
1707 if (rval == error_mark_node)
1708 return error_mark_node;
1710 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
1711 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
1712 TREE_NO_WARNING (rval) = 1;
1714 return rval;
1717 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
1719 tree
1720 build_java_class_ref (tree type)
1722 tree name = NULL_TREE, class_decl;
1723 static tree CL_suffix = NULL_TREE;
1724 if (CL_suffix == NULL_TREE)
1725 CL_suffix = get_identifier("class$");
1726 if (jclass_node == NULL_TREE)
1728 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
1729 if (jclass_node == NULL_TREE)
1730 fatal_error ("call to Java constructor, while %<jclass%> undefined");
1732 jclass_node = TREE_TYPE (jclass_node);
1735 /* Mangle the class$ field. */
1737 tree field;
1738 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1739 if (DECL_NAME (field) == CL_suffix)
1741 mangle_decl (field);
1742 name = DECL_ASSEMBLER_NAME (field);
1743 break;
1745 if (!field)
1746 internal_error ("can't find class$");
1749 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
1750 if (class_decl == NULL_TREE)
1752 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
1753 TREE_STATIC (class_decl) = 1;
1754 DECL_EXTERNAL (class_decl) = 1;
1755 TREE_PUBLIC (class_decl) = 1;
1756 DECL_ARTIFICIAL (class_decl) = 1;
1757 DECL_IGNORED_P (class_decl) = 1;
1758 pushdecl_top_level (class_decl);
1759 make_decl_rtl (class_decl);
1761 return class_decl;
1765 /* Called from cplus_expand_expr when expanding a NEW_EXPR. The return
1766 value is immediately handed to expand_expr. */
1768 static tree
1769 build_new_1 (tree exp)
1771 tree placement, init;
1772 tree size, rval;
1773 /* True iff this is a call to "operator new[]" instead of just
1774 "operator new". */
1775 bool array_p = false;
1776 /* True iff ARRAY_P is true and the bound of the array type is
1777 not necessarily a compile time constant. For example, VLA_P is
1778 true for "new int[f()]". */
1779 bool vla_p = false;
1780 /* The type being allocated. If ARRAY_P is true, this will be an
1781 ARRAY_TYPE. */
1782 tree full_type;
1783 /* If ARRAY_P is true, the element type of the array. This is an
1784 never ARRAY_TYPE; for something like "new int[3][4]", the
1785 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1786 FULL_TYPE. */
1787 tree elt_type;
1788 /* The type of the new-expression. (This type is always a pointer
1789 type.) */
1790 tree pointer_type;
1791 /* The type pointed to by POINTER_TYPE. This type may be different
1792 from ELT_TYPE for a multi-dimensional array; ELT_TYPE is never an
1793 ARRAY_TYPE, but TYPE may be an ARRAY_TYPE. */
1794 tree type;
1795 /* A pointer type pointing to the FULL_TYPE. */
1796 tree full_pointer_type;
1797 tree outer_nelts = NULL_TREE;
1798 tree nelts = NULL_TREE;
1799 tree alloc_call, alloc_expr;
1800 /* The address returned by the call to "operator new". This node is
1801 a VAR_DECL and is therefore reusable. */
1802 tree alloc_node;
1803 tree alloc_fn;
1804 tree cookie_expr, init_expr;
1805 int nothrow, check_new;
1806 /* Nonzero if the user wrote `::new' rather than just `new'. */
1807 int globally_qualified_p;
1808 int use_java_new = 0;
1809 /* If non-NULL, the number of extra bytes to allocate at the
1810 beginning of the storage allocated for an array-new expression in
1811 order to store the number of elements. */
1812 tree cookie_size = NULL_TREE;
1813 /* True if the function we are calling is a placement allocation
1814 function. */
1815 bool placement_allocation_fn_p;
1816 tree args = NULL_TREE;
1817 /* True if the storage must be initialized, either by a constructor
1818 or due to an explicit new-initializer. */
1819 bool is_initialized;
1820 /* The address of the thing allocated, not including any cookie. In
1821 particular, if an array cookie is in use, DATA_ADDR is the
1822 address of the first array element. This node is a VAR_DECL, and
1823 is therefore reusable. */
1824 tree data_addr;
1825 tree init_preeval_expr = NULL_TREE;
1827 placement = TREE_OPERAND (exp, 0);
1828 type = TREE_OPERAND (exp, 1);
1829 nelts = TREE_OPERAND (exp, 2);
1830 init = TREE_OPERAND (exp, 3);
1831 globally_qualified_p = NEW_EXPR_USE_GLOBAL (exp);
1833 if (nelts)
1835 tree index;
1837 outer_nelts = nelts;
1838 array_p = true;
1840 /* ??? The middle-end will error on us for building a VLA outside a
1841 function context. Methinks that's not it's purvey. So we'll do
1842 our own VLA layout later. */
1843 vla_p = true;
1844 full_type = build_cplus_array_type (type, NULL_TREE);
1845 index = convert (sizetype, nelts);
1846 index = size_binop (MINUS_EXPR, index, size_one_node);
1847 TYPE_DOMAIN (full_type) = build_index_type (index);
1849 else
1851 full_type = type;
1852 if (TREE_CODE (type) == ARRAY_TYPE)
1854 array_p = true;
1855 nelts = array_type_nelts_top (type);
1856 outer_nelts = nelts;
1857 type = TREE_TYPE (type);
1861 if (!complete_type_or_else (type, exp))
1862 return error_mark_node;
1864 /* If our base type is an array, then make sure we know how many elements
1865 it has. */
1866 for (elt_type = type;
1867 TREE_CODE (elt_type) == ARRAY_TYPE;
1868 elt_type = TREE_TYPE (elt_type))
1869 nelts = cp_build_binary_op (MULT_EXPR, nelts,
1870 array_type_nelts_top (elt_type));
1872 if (TREE_CODE (elt_type) == VOID_TYPE)
1874 error ("invalid type %<void%> for new");
1875 return error_mark_node;
1878 if (abstract_virtuals_error (NULL_TREE, elt_type))
1879 return error_mark_node;
1881 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || init);
1882 if (CP_TYPE_CONST_P (elt_type) && !is_initialized)
1884 error ("uninitialized const in %<new%> of %q#T", elt_type);
1885 return error_mark_node;
1888 size = size_in_bytes (elt_type);
1889 if (array_p)
1891 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1892 if (vla_p)
1894 tree n, bitsize;
1896 /* Do our own VLA layout. Setting TYPE_SIZE/_UNIT is
1897 necessary in order for the <INIT_EXPR <*foo> <CONSTRUCTOR
1898 ...>> to be valid. */
1899 TYPE_SIZE_UNIT (full_type) = size;
1900 n = convert (bitsizetype, nelts);
1901 bitsize = size_binop (MULT_EXPR, TYPE_SIZE (elt_type), n);
1902 TYPE_SIZE (full_type) = bitsize;
1906 /* Allocate the object. */
1907 if (! placement && TYPE_FOR_JAVA (elt_type))
1909 tree class_addr, alloc_decl;
1910 tree class_decl = build_java_class_ref (elt_type);
1911 static const char alloc_name[] = "_Jv_AllocObject";
1913 use_java_new = 1;
1914 alloc_decl = NULL;
1915 if (!get_global_value_if_present (get_identifier (alloc_name),
1916 &alloc_decl))
1918 error ("call to Java constructor with %qs undefined", alloc_name);
1919 return error_mark_node;
1921 else if (really_overloaded_fn (alloc_decl))
1923 error ("%qD should never be overloaded", alloc_decl);
1924 return error_mark_node;
1926 alloc_decl = OVL_CURRENT (alloc_decl);
1927 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
1928 alloc_call = (build_function_call
1929 (alloc_decl,
1930 build_tree_list (NULL_TREE, class_addr)));
1932 else
1934 tree fnname;
1935 tree fns;
1937 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
1939 if (!globally_qualified_p
1940 && CLASS_TYPE_P (elt_type)
1941 && (array_p
1942 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
1943 : TYPE_HAS_NEW_OPERATOR (elt_type)))
1945 /* Use a class-specific operator new. */
1946 /* If a cookie is required, add some extra space. */
1947 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1949 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1950 size = size_binop (PLUS_EXPR, size, cookie_size);
1952 /* Create the argument list. */
1953 args = tree_cons (NULL_TREE, size, placement);
1954 /* Do name-lookup to find the appropriate operator. */
1955 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
1956 if (fns == NULL_TREE)
1958 error ("no suitable %qD found in class %qT", fnname, elt_type);
1959 return error_mark_node;
1961 if (TREE_CODE (fns) == TREE_LIST)
1963 error ("request for member %qD is ambiguous", fnname);
1964 print_candidates (fns);
1965 return error_mark_node;
1967 alloc_call = build_new_method_call (build_dummy_object (elt_type),
1968 fns, args,
1969 /*conversion_path=*/NULL_TREE,
1970 LOOKUP_NORMAL);
1972 else
1974 /* Use a global operator new. */
1975 /* See if a cookie might be required. */
1976 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1977 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1978 else
1979 cookie_size = NULL_TREE;
1981 alloc_call = build_operator_new_call (fnname, placement,
1982 &size, &cookie_size);
1986 if (alloc_call == error_mark_node)
1987 return error_mark_node;
1989 /* In the simple case, we can stop now. */
1990 pointer_type = build_pointer_type (type);
1991 if (!cookie_size && !is_initialized)
1992 return build_nop (pointer_type, alloc_call);
1994 /* While we're working, use a pointer to the type we've actually
1995 allocated. Store the result of the call in a variable so that we
1996 can use it more than once. */
1997 full_pointer_type = build_pointer_type (full_type);
1998 alloc_expr = get_target_expr (build_nop (full_pointer_type, alloc_call));
1999 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2001 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2002 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2003 alloc_call = TREE_OPERAND (alloc_call, 1);
2004 alloc_fn = get_callee_fndecl (alloc_call);
2005 gcc_assert (alloc_fn != NULL_TREE);
2007 /* Now, check to see if this function is actually a placement
2008 allocation function. This can happen even when PLACEMENT is NULL
2009 because we might have something like:
2011 struct S { void* operator new (size_t, int i = 0); };
2013 A call to `new S' will get this allocation function, even though
2014 there is no explicit placement argument. If there is more than
2015 one argument, or there are variable arguments, then this is a
2016 placement allocation function. */
2017 placement_allocation_fn_p
2018 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2019 || varargs_function_p (alloc_fn));
2021 /* Preevaluate the placement args so that we don't reevaluate them for a
2022 placement delete. */
2023 if (placement_allocation_fn_p)
2025 tree inits;
2026 stabilize_call (alloc_call, &inits);
2027 if (inits)
2028 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2029 alloc_expr);
2032 /* unless an allocation function is declared with an empty excep-
2033 tion-specification (_except.spec_), throw(), it indicates failure to
2034 allocate storage by throwing a bad_alloc exception (clause _except_,
2035 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2036 cation function is declared with an empty exception-specification,
2037 throw(), it returns null to indicate failure to allocate storage and a
2038 non-null pointer otherwise.
2040 So check for a null exception spec on the op new we just called. */
2042 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2043 check_new = (flag_check_new || nothrow) && ! use_java_new;
2045 if (cookie_size)
2047 tree cookie;
2048 tree cookie_ptr;
2050 /* Adjust so we're pointing to the start of the object. */
2051 data_addr = get_target_expr (build2 (PLUS_EXPR, full_pointer_type,
2052 alloc_node, cookie_size));
2054 /* Store the number of bytes allocated so that we can know how
2055 many elements to destroy later. We use the last sizeof
2056 (size_t) bytes to store the number of elements. */
2057 cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
2058 data_addr, size_in_bytes (sizetype));
2059 cookie = build_indirect_ref (cookie_ptr, NULL);
2061 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2063 if (targetm.cxx.cookie_has_size ())
2065 /* Also store the element size. */
2066 cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
2067 cookie_ptr, size_in_bytes (sizetype));
2068 cookie = build_indirect_ref (cookie_ptr, NULL);
2069 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2070 size_in_bytes(elt_type));
2071 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2072 cookie, cookie_expr);
2074 data_addr = TARGET_EXPR_SLOT (data_addr);
2076 else
2078 cookie_expr = NULL_TREE;
2079 data_addr = alloc_node;
2082 /* Now initialize the allocated object. Note that we preevaluate the
2083 initialization expression, apart from the actual constructor call or
2084 assignment--we do this because we want to delay the allocation as long
2085 as possible in order to minimize the size of the exception region for
2086 placement delete. */
2087 if (is_initialized)
2089 bool stable;
2091 init_expr = build_indirect_ref (data_addr, NULL);
2093 if (array_p)
2095 bool explicit_default_init_p = false;
2097 if (init == void_zero_node)
2099 init = NULL_TREE;
2100 explicit_default_init_p = true;
2102 else if (init)
2103 pedwarn ("ISO C++ forbids initialization in array new");
2105 init_expr
2106 = build_vec_init (init_expr,
2107 cp_build_binary_op (MINUS_EXPR, outer_nelts,
2108 integer_one_node),
2109 init,
2110 explicit_default_init_p,
2111 /*from_array=*/0);
2113 /* An array initialization is stable because the initialization
2114 of each element is a full-expression, so the temporaries don't
2115 leak out. */
2116 stable = true;
2118 else
2120 if (init == void_zero_node)
2121 init = build_default_init (full_type, nelts);
2123 if (TYPE_NEEDS_CONSTRUCTING (type))
2125 init_expr = build_special_member_call (init_expr,
2126 complete_ctor_identifier,
2127 init, elt_type,
2128 LOOKUP_NORMAL);
2129 stable = stabilize_init (init_expr, &init_preeval_expr);
2131 else
2133 /* We are processing something like `new int (10)', which
2134 means allocate an int, and initialize it with 10. */
2136 if (TREE_CODE (init) == TREE_LIST)
2137 init = build_x_compound_expr_from_list (init,
2138 "new initializer");
2139 else
2140 gcc_assert (TREE_CODE (init) != CONSTRUCTOR
2141 || TREE_TYPE (init) != NULL_TREE);
2143 init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
2144 stable = stabilize_init (init_expr, &init_preeval_expr);
2148 if (init_expr == error_mark_node)
2149 return error_mark_node;
2151 /* If any part of the object initialization terminates by throwing an
2152 exception and a suitable deallocation function can be found, the
2153 deallocation function is called to free the memory in which the
2154 object was being constructed, after which the exception continues
2155 to propagate in the context of the new-expression. If no
2156 unambiguous matching deallocation function can be found,
2157 propagating the exception does not cause the object's memory to be
2158 freed. */
2159 if (flag_exceptions && ! use_java_new)
2161 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2162 tree cleanup;
2164 /* The Standard is unclear here, but the right thing to do
2165 is to use the same method for finding deallocation
2166 functions that we use for finding allocation functions. */
2167 cleanup = build_op_delete_call (dcode, alloc_node, size,
2168 globally_qualified_p,
2169 (placement_allocation_fn_p
2170 ? alloc_call : NULL_TREE));
2172 if (!cleanup)
2173 /* We're done. */;
2174 else if (stable)
2175 /* This is much simpler if we were able to preevaluate all of
2176 the arguments to the constructor call. */
2177 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2178 init_expr, cleanup);
2179 else
2180 /* Ack! First we allocate the memory. Then we set our sentry
2181 variable to true, and expand a cleanup that deletes the
2182 memory if sentry is true. Then we run the constructor, and
2183 finally clear the sentry.
2185 We need to do this because we allocate the space first, so
2186 if there are any temporaries with cleanups in the
2187 constructor args and we weren't able to preevaluate them, we
2188 need this EH region to extend until end of full-expression
2189 to preserve nesting. */
2191 tree end, sentry, begin;
2193 begin = get_target_expr (boolean_true_node);
2194 CLEANUP_EH_ONLY (begin) = 1;
2196 sentry = TARGET_EXPR_SLOT (begin);
2198 TARGET_EXPR_CLEANUP (begin)
2199 = build3 (COND_EXPR, void_type_node, sentry,
2200 cleanup, void_zero_node);
2202 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2203 sentry, boolean_false_node);
2205 init_expr
2206 = build2 (COMPOUND_EXPR, void_type_node, begin,
2207 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2208 end));
2213 else
2214 init_expr = NULL_TREE;
2216 /* Now build up the return value in reverse order. */
2218 rval = data_addr;
2220 if (init_expr)
2221 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2222 if (cookie_expr)
2223 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2225 if (rval == alloc_node)
2226 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2227 and return the call (which doesn't need to be adjusted). */
2228 rval = TARGET_EXPR_INITIAL (alloc_expr);
2229 else
2231 if (check_new)
2233 tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
2234 integer_zero_node);
2235 rval = build_conditional_expr (ifexp, rval, alloc_node);
2238 /* Perform the allocation before anything else, so that ALLOC_NODE
2239 has been initialized before we start using it. */
2240 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2243 if (init_preeval_expr)
2244 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2246 /* Convert to the final type. */
2247 rval = build_nop (pointer_type, rval);
2249 /* A new-expression is never an lvalue. */
2250 rval = rvalue (rval);
2252 return rval;
2255 static tree
2256 build_vec_delete_1 (tree base, tree maxindex, tree type,
2257 special_function_kind auto_delete_vec, int use_global_delete)
2259 tree virtual_size;
2260 tree ptype = build_pointer_type (type = complete_type (type));
2261 tree size_exp = size_in_bytes (type);
2263 /* Temporary variables used by the loop. */
2264 tree tbase, tbase_init;
2266 /* This is the body of the loop that implements the deletion of a
2267 single element, and moves temp variables to next elements. */
2268 tree body;
2270 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2271 tree loop = 0;
2273 /* This is the thing that governs what to do after the loop has run. */
2274 tree deallocate_expr = 0;
2276 /* This is the BIND_EXPR which holds the outermost iterator of the
2277 loop. It is convenient to set this variable up and test it before
2278 executing any other code in the loop.
2279 This is also the containing expression returned by this function. */
2280 tree controller = NULL_TREE;
2282 /* We should only have 1-D arrays here. */
2283 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2285 if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2286 goto no_destructor;
2288 /* The below is short by the cookie size. */
2289 virtual_size = size_binop (MULT_EXPR, size_exp,
2290 convert (sizetype, maxindex));
2292 tbase = create_temporary_var (ptype);
2293 tbase_init = build_modify_expr (tbase, NOP_EXPR,
2294 fold_build2 (PLUS_EXPR, ptype,
2295 base,
2296 virtual_size));
2297 DECL_REGISTER (tbase) = 1;
2298 controller = build3 (BIND_EXPR, void_type_node, tbase,
2299 NULL_TREE, NULL_TREE);
2300 TREE_SIDE_EFFECTS (controller) = 1;
2302 body = build1 (EXIT_EXPR, void_type_node,
2303 build2 (EQ_EXPR, boolean_type_node, base, tbase));
2304 body = build_compound_expr
2305 (body, build_modify_expr (tbase, NOP_EXPR,
2306 build2 (MINUS_EXPR, ptype, tbase, size_exp)));
2307 body = build_compound_expr
2308 (body, build_delete (ptype, tbase, sfk_complete_destructor,
2309 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2311 loop = build1 (LOOP_EXPR, void_type_node, body);
2312 loop = build_compound_expr (tbase_init, loop);
2314 no_destructor:
2315 /* If the delete flag is one, or anything else with the low bit set,
2316 delete the storage. */
2317 if (auto_delete_vec != sfk_base_destructor)
2319 tree base_tbd;
2321 /* The below is short by the cookie size. */
2322 virtual_size = size_binop (MULT_EXPR, size_exp,
2323 convert (sizetype, maxindex));
2325 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2326 /* no header */
2327 base_tbd = base;
2328 else
2330 tree cookie_size;
2332 cookie_size = targetm.cxx.get_cookie_size (type);
2333 base_tbd
2334 = cp_convert (ptype,
2335 cp_build_binary_op (MINUS_EXPR,
2336 cp_convert (string_type_node,
2337 base),
2338 cookie_size));
2339 /* True size with header. */
2340 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2343 if (auto_delete_vec == sfk_deleting_destructor)
2344 deallocate_expr = build_x_delete (base_tbd,
2345 2 | use_global_delete,
2346 virtual_size);
2349 body = loop;
2350 if (!deallocate_expr)
2352 else if (!body)
2353 body = deallocate_expr;
2354 else
2355 body = build_compound_expr (body, deallocate_expr);
2357 if (!body)
2358 body = integer_zero_node;
2360 /* Outermost wrapper: If pointer is null, punt. */
2361 body = fold_build3 (COND_EXPR, void_type_node,
2362 fold_build2 (NE_EXPR, boolean_type_node, base,
2363 convert (TREE_TYPE (base),
2364 integer_zero_node)),
2365 body, integer_zero_node);
2366 body = build1 (NOP_EXPR, void_type_node, body);
2368 if (controller)
2370 TREE_OPERAND (controller, 1) = body;
2371 body = controller;
2374 if (TREE_CODE (base) == SAVE_EXPR)
2375 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2376 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2378 return convert_to_void (body, /*implicit=*/NULL);
2381 /* Create an unnamed variable of the indicated TYPE. */
2383 tree
2384 create_temporary_var (tree type)
2386 tree decl;
2388 decl = build_decl (VAR_DECL, NULL_TREE, type);
2389 TREE_USED (decl) = 1;
2390 DECL_ARTIFICIAL (decl) = 1;
2391 DECL_IGNORED_P (decl) = 1;
2392 DECL_SOURCE_LOCATION (decl) = input_location;
2393 DECL_CONTEXT (decl) = current_function_decl;
2395 return decl;
2398 /* Create a new temporary variable of the indicated TYPE, initialized
2399 to INIT.
2401 It is not entered into current_binding_level, because that breaks
2402 things when it comes time to do final cleanups (which take place
2403 "outside" the binding contour of the function). */
2405 static tree
2406 get_temp_regvar (tree type, tree init)
2408 tree decl;
2410 decl = create_temporary_var (type);
2411 add_decl_expr (decl);
2413 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
2415 return decl;
2418 /* `build_vec_init' returns tree structure that performs
2419 initialization of a vector of aggregate types.
2421 BASE is a reference to the vector, of ARRAY_TYPE.
2422 MAXINDEX is the maximum index of the array (one less than the
2423 number of elements). It is only used if
2424 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2426 INIT is the (possibly NULL) initializer.
2428 If EXPLICIT_DEFAULT_INIT_P is true, then INIT must be NULL. All
2429 elements in the array are default-initialized.
2431 FROM_ARRAY is 0 if we should init everything with INIT
2432 (i.e., every element initialized from INIT).
2433 FROM_ARRAY is 1 if we should index into INIT in parallel
2434 with initialization of DECL.
2435 FROM_ARRAY is 2 if we should index into INIT in parallel,
2436 but use assignment instead of initialization. */
2438 tree
2439 build_vec_init (tree base, tree maxindex, tree init,
2440 bool explicit_default_init_p,
2441 int from_array)
2443 tree rval;
2444 tree base2 = NULL_TREE;
2445 tree size;
2446 tree itype = NULL_TREE;
2447 tree iterator;
2448 /* The type of the array. */
2449 tree atype = TREE_TYPE (base);
2450 /* The type of an element in the array. */
2451 tree type = TREE_TYPE (atype);
2452 /* The element type reached after removing all outer array
2453 types. */
2454 tree inner_elt_type;
2455 /* The type of a pointer to an element in the array. */
2456 tree ptype;
2457 tree stmt_expr;
2458 tree compound_stmt;
2459 int destroy_temps;
2460 tree try_block = NULL_TREE;
2461 int num_initialized_elts = 0;
2462 bool is_global;
2464 if (TYPE_DOMAIN (atype))
2465 maxindex = array_type_nelts (atype);
2467 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2468 return error_mark_node;
2470 if (explicit_default_init_p)
2471 gcc_assert (!init);
2473 inner_elt_type = strip_array_types (atype);
2474 if (init
2475 && (from_array == 2
2476 ? (!CLASS_TYPE_P (inner_elt_type)
2477 || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
2478 : !TYPE_NEEDS_CONSTRUCTING (type))
2479 && ((TREE_CODE (init) == CONSTRUCTOR
2480 /* Don't do this if the CONSTRUCTOR might contain something
2481 that might throw and require us to clean up. */
2482 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2483 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2484 || from_array))
2486 /* Do non-default initialization of POD arrays resulting from
2487 brace-enclosed initializers. In this case, digest_init and
2488 store_constructor will handle the semantics for us. */
2490 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2491 return stmt_expr;
2494 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2495 ptype = build_pointer_type (type);
2496 size = size_in_bytes (type);
2497 if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2498 base = cp_convert (ptype, decay_conversion (base));
2500 /* The code we are generating looks like:
2502 T* t1 = (T*) base;
2503 T* rval = t1;
2504 ptrdiff_t iterator = maxindex;
2505 try {
2506 for (; iterator != -1; --iterator) {
2507 ... initialize *t1 ...
2508 ++t1;
2510 } catch (...) {
2511 ... destroy elements that were constructed ...
2513 rval;
2516 We can omit the try and catch blocks if we know that the
2517 initialization will never throw an exception, or if the array
2518 elements do not have destructors. We can omit the loop completely if
2519 the elements of the array do not have constructors.
2521 We actually wrap the entire body of the above in a STMT_EXPR, for
2522 tidiness.
2524 When copying from array to another, when the array elements have
2525 only trivial copy constructors, we should use __builtin_memcpy
2526 rather than generating a loop. That way, we could take advantage
2527 of whatever cleverness the back-end has for dealing with copies
2528 of blocks of memory. */
2530 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2531 destroy_temps = stmts_are_full_exprs_p ();
2532 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2533 rval = get_temp_regvar (ptype, base);
2534 base = get_temp_regvar (ptype, rval);
2535 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2537 /* Protect the entire array initialization so that we can destroy
2538 the partially constructed array if an exception is thrown.
2539 But don't do this if we're assigning. */
2540 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2541 && from_array != 2)
2543 try_block = begin_try_block ();
2546 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2548 /* Do non-default initialization of non-POD arrays resulting from
2549 brace-enclosed initializers. */
2550 unsigned HOST_WIDE_INT idx;
2551 tree elt;
2552 from_array = 0;
2554 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
2556 tree baseref = build1 (INDIRECT_REF, type, base);
2558 num_initialized_elts++;
2560 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2561 if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
2562 finish_expr_stmt (build_aggr_init (baseref, elt, 0));
2563 else
2564 finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
2565 elt));
2566 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2568 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2569 finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
2572 /* Clear out INIT so that we don't get confused below. */
2573 init = NULL_TREE;
2575 else if (from_array)
2577 /* If initializing one array from another, initialize element by
2578 element. We rely upon the below calls the do argument
2579 checking. */
2580 if (init)
2582 base2 = decay_conversion (init);
2583 itype = TREE_TYPE (base2);
2584 base2 = get_temp_regvar (itype, base2);
2585 itype = TREE_TYPE (itype);
2587 else if (TYPE_LANG_SPECIFIC (type)
2588 && TYPE_NEEDS_CONSTRUCTING (type)
2589 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2591 error ("initializer ends prematurely");
2592 return error_mark_node;
2596 /* Now, default-initialize any remaining elements. We don't need to
2597 do that if a) the type does not need constructing, or b) we've
2598 already initialized all the elements.
2600 We do need to keep going if we're copying an array. */
2602 if (from_array
2603 || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_default_init_p)
2604 && ! (host_integerp (maxindex, 0)
2605 && (num_initialized_elts
2606 == tree_low_cst (maxindex, 0) + 1))))
2608 /* If the ITERATOR is equal to -1, then we don't have to loop;
2609 we've already initialized all the elements. */
2610 tree for_stmt;
2611 tree elt_init;
2612 tree to;
2614 for_stmt = begin_for_stmt ();
2615 finish_for_init_stmt (for_stmt);
2616 finish_for_cond (build2 (NE_EXPR, boolean_type_node,
2617 iterator, integer_minus_one_node),
2618 for_stmt);
2619 finish_for_expr (build_unary_op (PREDECREMENT_EXPR, iterator, 0),
2620 for_stmt);
2622 to = build1 (INDIRECT_REF, type, base);
2624 if (from_array)
2626 tree from;
2628 if (base2)
2629 from = build1 (INDIRECT_REF, itype, base2);
2630 else
2631 from = NULL_TREE;
2633 if (from_array == 2)
2634 elt_init = build_modify_expr (to, NOP_EXPR, from);
2635 else if (TYPE_NEEDS_CONSTRUCTING (type))
2636 elt_init = build_aggr_init (to, from, 0);
2637 else if (from)
2638 elt_init = build_modify_expr (to, NOP_EXPR, from);
2639 else
2640 gcc_unreachable ();
2642 else if (TREE_CODE (type) == ARRAY_TYPE)
2644 if (init != 0)
2645 sorry
2646 ("cannot initialize multi-dimensional array with initializer");
2647 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2648 0, 0,
2649 /*explicit_default_init_p=*/false,
2652 else if (!TYPE_NEEDS_CONSTRUCTING (type))
2653 elt_init = (build_modify_expr
2654 (to, INIT_EXPR,
2655 build_zero_init (type, size_one_node,
2656 /*static_storage_p=*/false)));
2657 else
2658 elt_init = build_aggr_init (to, init, 0);
2660 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2661 finish_expr_stmt (elt_init);
2662 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2664 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2665 if (base2)
2666 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
2668 finish_for_stmt (for_stmt);
2671 /* Make sure to cleanup any partially constructed elements. */
2672 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2673 && from_array != 2)
2675 tree e;
2676 tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
2678 /* Flatten multi-dimensional array since build_vec_delete only
2679 expects one-dimensional array. */
2680 if (TREE_CODE (type) == ARRAY_TYPE)
2681 m = cp_build_binary_op (MULT_EXPR, m,
2682 array_type_nelts_total (type));
2684 finish_cleanup_try_block (try_block);
2685 e = build_vec_delete_1 (rval, m,
2686 inner_elt_type, sfk_base_destructor,
2687 /*use_global_delete=*/0);
2688 finish_cleanup (e, try_block);
2691 /* The value of the array initialization is the array itself, RVAL
2692 is a pointer to the first element. */
2693 finish_stmt_expr_expr (rval, stmt_expr);
2695 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2697 /* Now convert make the result have the correct type. */
2698 atype = build_pointer_type (atype);
2699 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
2700 stmt_expr = build_indirect_ref (stmt_expr, NULL);
2702 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2703 return stmt_expr;
2706 /* Free up storage of type TYPE, at address ADDR.
2708 TYPE is a POINTER_TYPE and can be ptr_type_node for no special type
2709 of pointer.
2711 VIRTUAL_SIZE is the amount of storage that was allocated, and is
2712 used as the second argument to operator delete. It can include
2713 things like padding and magic size cookies. It has virtual in it,
2714 because if you have a base pointer and you delete through a virtual
2715 destructor, it should be the size of the dynamic object, not the
2716 static object, see Free Store 12.5 ISO C++.
2718 This does not call any destructors. */
2720 tree
2721 build_x_delete (tree addr, int which_delete, tree virtual_size)
2723 int use_global_delete = which_delete & 1;
2724 int use_vec_delete = !!(which_delete & 2);
2725 enum tree_code code = use_vec_delete ? VEC_DELETE_EXPR : DELETE_EXPR;
2727 return build_op_delete_call (code, addr, virtual_size, use_global_delete,
2728 NULL_TREE);
2731 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
2732 build_delete. */
2734 static tree
2735 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
2737 tree name;
2738 tree fn;
2739 switch (dtor_kind)
2741 case sfk_complete_destructor:
2742 name = complete_dtor_identifier;
2743 break;
2745 case sfk_base_destructor:
2746 name = base_dtor_identifier;
2747 break;
2749 case sfk_deleting_destructor:
2750 name = deleting_dtor_identifier;
2751 break;
2753 default:
2754 gcc_unreachable ();
2756 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
2757 return build_new_method_call (exp, fn,
2758 /*args=*/NULL_TREE,
2759 /*conversion_path=*/NULL_TREE,
2760 flags);
2763 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
2764 ADDR is an expression which yields the store to be destroyed.
2765 AUTO_DELETE is the name of the destructor to call, i.e., either
2766 sfk_complete_destructor, sfk_base_destructor, or
2767 sfk_deleting_destructor.
2769 FLAGS is the logical disjunction of zero or more LOOKUP_
2770 flags. See cp-tree.h for more info. */
2772 tree
2773 build_delete (tree type, tree addr, special_function_kind auto_delete,
2774 int flags, int use_global_delete)
2776 tree expr;
2778 if (addr == error_mark_node)
2779 return error_mark_node;
2781 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
2782 set to `error_mark_node' before it gets properly cleaned up. */
2783 if (type == error_mark_node)
2784 return error_mark_node;
2786 type = TYPE_MAIN_VARIANT (type);
2788 if (TREE_CODE (type) == POINTER_TYPE)
2790 bool complete_p = true;
2792 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
2793 if (TREE_CODE (type) == ARRAY_TYPE)
2794 goto handle_array;
2796 /* We don't want to warn about delete of void*, only other
2797 incomplete types. Deleting other incomplete types
2798 invokes undefined behavior, but it is not ill-formed, so
2799 compile to something that would even do The Right Thing
2800 (TM) should the type have a trivial dtor and no delete
2801 operator. */
2802 if (!VOID_TYPE_P (type))
2804 complete_type (type);
2805 if (!COMPLETE_TYPE_P (type))
2807 warning (0, "possible problem detected in invocation of "
2808 "delete operator:");
2809 cxx_incomplete_type_diagnostic (addr, type, 1);
2810 inform ("neither the destructor nor the class-specific "
2811 "operator delete will be called, even if they are "
2812 "declared when the class is defined.");
2813 complete_p = false;
2816 if (VOID_TYPE_P (type) || !complete_p || !IS_AGGR_TYPE (type))
2817 /* Call the builtin operator delete. */
2818 return build_builtin_delete_call (addr);
2819 if (TREE_SIDE_EFFECTS (addr))
2820 addr = save_expr (addr);
2822 /* Throw away const and volatile on target type of addr. */
2823 addr = convert_force (build_pointer_type (type), addr, 0);
2825 else if (TREE_CODE (type) == ARRAY_TYPE)
2827 handle_array:
2829 if (TYPE_DOMAIN (type) == NULL_TREE)
2831 error ("unknown array size in delete");
2832 return error_mark_node;
2834 return build_vec_delete (addr, array_type_nelts (type),
2835 auto_delete, use_global_delete);
2837 else
2839 /* Don't check PROTECT here; leave that decision to the
2840 destructor. If the destructor is accessible, call it,
2841 else report error. */
2842 addr = build_unary_op (ADDR_EXPR, addr, 0);
2843 if (TREE_SIDE_EFFECTS (addr))
2844 addr = save_expr (addr);
2846 addr = convert_force (build_pointer_type (type), addr, 0);
2849 gcc_assert (IS_AGGR_TYPE (type));
2851 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2853 if (auto_delete != sfk_deleting_destructor)
2854 return void_zero_node;
2856 return build_op_delete_call
2857 (DELETE_EXPR, addr, cxx_sizeof_nowarn (type), use_global_delete,
2858 NULL_TREE);
2860 else
2862 tree do_delete = NULL_TREE;
2863 tree ifexp;
2865 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
2866 lazily_declare_fn (sfk_destructor, type);
2868 /* For `::delete x', we must not use the deleting destructor
2869 since then we would not be sure to get the global `operator
2870 delete'. */
2871 if (use_global_delete && auto_delete == sfk_deleting_destructor)
2873 /* We will use ADDR multiple times so we must save it. */
2874 addr = save_expr (addr);
2875 /* Delete the object. */
2876 do_delete = build_builtin_delete_call (addr);
2877 /* Otherwise, treat this like a complete object destructor
2878 call. */
2879 auto_delete = sfk_complete_destructor;
2881 /* If the destructor is non-virtual, there is no deleting
2882 variant. Instead, we must explicitly call the appropriate
2883 `operator delete' here. */
2884 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
2885 && auto_delete == sfk_deleting_destructor)
2887 /* We will use ADDR multiple times so we must save it. */
2888 addr = save_expr (addr);
2889 /* Build the call. */
2890 do_delete = build_op_delete_call (DELETE_EXPR,
2891 addr,
2892 cxx_sizeof_nowarn (type),
2893 /*global_p=*/false,
2894 NULL_TREE);
2895 /* Call the complete object destructor. */
2896 auto_delete = sfk_complete_destructor;
2898 else if (auto_delete == sfk_deleting_destructor
2899 && TYPE_GETS_REG_DELETE (type))
2901 /* Make sure we have access to the member op delete, even though
2902 we'll actually be calling it from the destructor. */
2903 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
2904 /*global_p=*/false, NULL_TREE);
2907 expr = build_dtor_call (build_indirect_ref (addr, NULL),
2908 auto_delete, flags);
2909 if (do_delete)
2910 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
2912 if (flags & LOOKUP_DESTRUCTOR)
2913 /* Explicit destructor call; don't check for null pointer. */
2914 ifexp = integer_one_node;
2915 else
2916 /* Handle deleting a null pointer. */
2917 ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
2919 if (ifexp != integer_one_node)
2920 expr = build3 (COND_EXPR, void_type_node,
2921 ifexp, expr, void_zero_node);
2923 return expr;
2927 /* At the beginning of a destructor, push cleanups that will call the
2928 destructors for our base classes and members.
2930 Called from begin_destructor_body. */
2932 void
2933 push_base_cleanups (void)
2935 tree binfo, base_binfo;
2936 int i;
2937 tree member;
2938 tree expr;
2939 VEC(tree,gc) *vbases;
2941 /* Run destructors for all virtual baseclasses. */
2942 if (CLASSTYPE_VBASECLASSES (current_class_type))
2944 tree cond = (condition_conversion
2945 (build2 (BIT_AND_EXPR, integer_type_node,
2946 current_in_charge_parm,
2947 integer_two_node)));
2949 /* The CLASSTYPE_VBASECLASSES vector is in initialization
2950 order, which is also the right order for pushing cleanups. */
2951 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
2952 VEC_iterate (tree, vbases, i, base_binfo); i++)
2954 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
2956 expr = build_special_member_call (current_class_ref,
2957 base_dtor_identifier,
2958 NULL_TREE,
2959 base_binfo,
2960 (LOOKUP_NORMAL
2961 | LOOKUP_NONVIRTUAL));
2962 expr = build3 (COND_EXPR, void_type_node, cond,
2963 expr, void_zero_node);
2964 finish_decl_cleanup (NULL_TREE, expr);
2969 /* Take care of the remaining baseclasses. */
2970 for (binfo = TYPE_BINFO (current_class_type), i = 0;
2971 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2973 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
2974 || BINFO_VIRTUAL_P (base_binfo))
2975 continue;
2977 expr = build_special_member_call (current_class_ref,
2978 base_dtor_identifier,
2979 NULL_TREE, base_binfo,
2980 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
2981 finish_decl_cleanup (NULL_TREE, expr);
2984 for (member = TYPE_FIELDS (current_class_type); member;
2985 member = TREE_CHAIN (member))
2987 if (TREE_CODE (member) != FIELD_DECL || DECL_ARTIFICIAL (member))
2988 continue;
2989 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
2991 tree this_member = (build_class_member_access_expr
2992 (current_class_ref, member,
2993 /*access_path=*/NULL_TREE,
2994 /*preserve_reference=*/false));
2995 tree this_type = TREE_TYPE (member);
2996 expr = build_delete (this_type, this_member,
2997 sfk_complete_destructor,
2998 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3000 finish_decl_cleanup (NULL_TREE, expr);
3005 /* Build a C++ vector delete expression.
3006 MAXINDEX is the number of elements to be deleted.
3007 ELT_SIZE is the nominal size of each element in the vector.
3008 BASE is the expression that should yield the store to be deleted.
3009 This function expands (or synthesizes) these calls itself.
3010 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3012 This also calls delete for virtual baseclasses of elements of the vector.
3014 Update: MAXINDEX is no longer needed. The size can be extracted from the
3015 start of the vector for pointers, and from the type for arrays. We still
3016 use MAXINDEX for arrays because it happens to already have one of the
3017 values we'd have to extract. (We could use MAXINDEX with pointers to
3018 confirm the size, and trap if the numbers differ; not clear that it'd
3019 be worth bothering.) */
3021 tree
3022 build_vec_delete (tree base, tree maxindex,
3023 special_function_kind auto_delete_vec, int use_global_delete)
3025 tree type;
3026 tree rval;
3027 tree base_init = NULL_TREE;
3029 type = TREE_TYPE (base);
3031 if (TREE_CODE (type) == POINTER_TYPE)
3033 /* Step back one from start of vector, and read dimension. */
3034 tree cookie_addr;
3036 if (TREE_SIDE_EFFECTS (base))
3038 base_init = get_target_expr (base);
3039 base = TARGET_EXPR_SLOT (base_init);
3041 type = strip_array_types (TREE_TYPE (type));
3042 cookie_addr = build2 (MINUS_EXPR,
3043 build_pointer_type (sizetype),
3044 base,
3045 TYPE_SIZE_UNIT (sizetype));
3046 maxindex = build_indirect_ref (cookie_addr, NULL);
3048 else if (TREE_CODE (type) == ARRAY_TYPE)
3050 /* Get the total number of things in the array, maxindex is a
3051 bad name. */
3052 maxindex = array_type_nelts_total (type);
3053 type = strip_array_types (type);
3054 base = build_unary_op (ADDR_EXPR, base, 1);
3055 if (TREE_SIDE_EFFECTS (base))
3057 base_init = get_target_expr (base);
3058 base = TARGET_EXPR_SLOT (base_init);
3061 else
3063 if (base != error_mark_node)
3064 error ("type to vector delete is neither pointer or array type");
3065 return error_mark_node;
3068 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3069 use_global_delete);
3070 if (base_init)
3071 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3073 return rval;