Merge from trunk:
[official-gcc.git] / main / gcc / config / rs6000 / rs6000.h
blobd8a68ba3d91d69f6ad0c0a8eefe705d4e816b79c
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 /* Note that some other tm.h files include this one and then override
27 many of the definitions. */
29 #ifndef RS6000_OPTS_H
30 #include "config/rs6000/rs6000-opts.h"
31 #endif
33 /* Definitions for the object file format. These are set at
34 compile-time. */
36 #define OBJECT_XCOFF 1
37 #define OBJECT_ELF 2
38 #define OBJECT_PEF 3
39 #define OBJECT_MACHO 4
41 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
42 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
43 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
44 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
46 #ifndef TARGET_AIX
47 #define TARGET_AIX 0
48 #endif
50 #ifndef TARGET_AIX_OS
51 #define TARGET_AIX_OS 0
52 #endif
54 /* Control whether function entry points use a "dot" symbol when
55 ABI_AIX. */
56 #define DOT_SYMBOLS 1
58 /* Default string to use for cpu if not specified. */
59 #ifndef TARGET_CPU_DEFAULT
60 #define TARGET_CPU_DEFAULT ((char *)0)
61 #endif
63 /* If configured for PPC405, support PPC405CR Erratum77. */
64 #ifdef CONFIG_PPC405CR
65 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
66 #else
67 #define PPC405_ERRATUM77 0
68 #endif
70 #ifndef TARGET_PAIRED_FLOAT
71 #define TARGET_PAIRED_FLOAT 0
72 #endif
74 #ifdef HAVE_AS_POPCNTB
75 #define ASM_CPU_POWER5_SPEC "-mpower5"
76 #else
77 #define ASM_CPU_POWER5_SPEC "-mpower4"
78 #endif
80 #ifdef HAVE_AS_DFP
81 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
82 #else
83 #define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
84 #endif
86 #ifdef HAVE_AS_POPCNTD
87 #define ASM_CPU_POWER7_SPEC "-mpower7"
88 #else
89 #define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
90 #endif
92 #ifdef HAVE_AS_POWER8
93 #define ASM_CPU_POWER8_SPEC "-mpower8"
94 #else
95 #define ASM_CPU_POWER8_SPEC ASM_CPU_POWER7_SPEC
96 #endif
98 #ifdef HAVE_AS_DCI
99 #define ASM_CPU_476_SPEC "-m476"
100 #else
101 #define ASM_CPU_476_SPEC "-mpower4"
102 #endif
104 /* Common ASM definitions used by ASM_SPEC among the various targets for
105 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
106 provide the default assembler options if the user uses -mcpu=native, so if
107 you make changes here, make them also there. */
108 #define ASM_CPU_SPEC \
109 "%{!mcpu*: \
110 %{mpowerpc64*: -mppc64} \
111 %{!mpowerpc64*: %(asm_default)}} \
112 %{mcpu=native: %(asm_cpu_native)} \
113 %{mcpu=cell: -mcell} \
114 %{mcpu=power3: -mppc64} \
115 %{mcpu=power4: -mpower4} \
116 %{mcpu=power5: %(asm_cpu_power5)} \
117 %{mcpu=power5+: %(asm_cpu_power5)} \
118 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
119 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
120 %{mcpu=power7: %(asm_cpu_power7)} \
121 %{mcpu=power8: %(asm_cpu_power8)} \
122 %{mcpu=a2: -ma2} \
123 %{mcpu=powerpc: -mppc} \
124 %{mcpu=rs64a: -mppc64} \
125 %{mcpu=401: -mppc} \
126 %{mcpu=403: -m403} \
127 %{mcpu=405: -m405} \
128 %{mcpu=405fp: -m405} \
129 %{mcpu=440: -m440} \
130 %{mcpu=440fp: -m440} \
131 %{mcpu=464: -m440} \
132 %{mcpu=464fp: -m440} \
133 %{mcpu=476: %(asm_cpu_476)} \
134 %{mcpu=476fp: %(asm_cpu_476)} \
135 %{mcpu=505: -mppc} \
136 %{mcpu=601: -m601} \
137 %{mcpu=602: -mppc} \
138 %{mcpu=603: -mppc} \
139 %{mcpu=603e: -mppc} \
140 %{mcpu=ec603e: -mppc} \
141 %{mcpu=604: -mppc} \
142 %{mcpu=604e: -mppc} \
143 %{mcpu=620: -mppc64} \
144 %{mcpu=630: -mppc64} \
145 %{mcpu=740: -mppc} \
146 %{mcpu=750: -mppc} \
147 %{mcpu=G3: -mppc} \
148 %{mcpu=7400: -mppc -maltivec} \
149 %{mcpu=7450: -mppc -maltivec} \
150 %{mcpu=G4: -mppc -maltivec} \
151 %{mcpu=801: -mppc} \
152 %{mcpu=821: -mppc} \
153 %{mcpu=823: -mppc} \
154 %{mcpu=860: -mppc} \
155 %{mcpu=970: -mpower4 -maltivec} \
156 %{mcpu=G5: -mpower4 -maltivec} \
157 %{mcpu=8540: -me500} \
158 %{mcpu=8548: -me500} \
159 %{mcpu=e300c2: -me300} \
160 %{mcpu=e300c3: -me300} \
161 %{mcpu=e500mc: -me500mc} \
162 %{mcpu=e500mc64: -me500mc64} \
163 %{mcpu=e5500: -me5500} \
164 %{mcpu=e6500: -me6500} \
165 %{maltivec: -maltivec} \
166 %{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
167 %{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
168 -many"
170 #define CPP_DEFAULT_SPEC ""
172 #define ASM_DEFAULT_SPEC ""
174 /* This macro defines names of additional specifications to put in the specs
175 that can be used in various specifications like CC1_SPEC. Its definition
176 is an initializer with a subgrouping for each command option.
178 Each subgrouping contains a string constant, that defines the
179 specification name, and a string constant that used by the GCC driver
180 program.
182 Do not define this macro if it does not need to do anything. */
184 #define SUBTARGET_EXTRA_SPECS
186 #define EXTRA_SPECS \
187 { "cpp_default", CPP_DEFAULT_SPEC }, \
188 { "asm_cpu", ASM_CPU_SPEC }, \
189 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
190 { "asm_default", ASM_DEFAULT_SPEC }, \
191 { "cc1_cpu", CC1_CPU_SPEC }, \
192 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
193 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
194 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
195 { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
196 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
197 SUBTARGET_EXTRA_SPECS
199 /* -mcpu=native handling only makes sense with compiler running on
200 an PowerPC chip. If changing this condition, also change
201 the condition in driver-rs6000.c. */
202 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
203 /* In driver-rs6000.c. */
204 extern const char *host_detect_local_cpu (int argc, const char **argv);
205 #define EXTRA_SPEC_FUNCTIONS \
206 { "local_cpu_detect", host_detect_local_cpu },
207 #define HAVE_LOCAL_CPU_DETECT
208 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
210 #else
211 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
212 #endif
214 #ifndef CC1_CPU_SPEC
215 #ifdef HAVE_LOCAL_CPU_DETECT
216 #define CC1_CPU_SPEC \
217 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
218 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
219 #else
220 #define CC1_CPU_SPEC ""
221 #endif
222 #endif
224 /* Architecture type. */
226 /* Define TARGET_MFCRF if the target assembler does not support the
227 optional field operand for mfcr. */
229 #ifndef HAVE_AS_MFCRF
230 #undef TARGET_MFCRF
231 #define TARGET_MFCRF 0
232 #endif
234 /* Define TARGET_POPCNTB if the target assembler does not support the
235 popcount byte instruction. */
237 #ifndef HAVE_AS_POPCNTB
238 #undef TARGET_POPCNTB
239 #define TARGET_POPCNTB 0
240 #endif
242 /* Define TARGET_FPRND if the target assembler does not support the
243 fp rounding instructions. */
245 #ifndef HAVE_AS_FPRND
246 #undef TARGET_FPRND
247 #define TARGET_FPRND 0
248 #endif
250 /* Define TARGET_CMPB if the target assembler does not support the
251 cmpb instruction. */
253 #ifndef HAVE_AS_CMPB
254 #undef TARGET_CMPB
255 #define TARGET_CMPB 0
256 #endif
258 /* Define TARGET_MFPGPR if the target assembler does not support the
259 mffpr and mftgpr instructions. */
261 #ifndef HAVE_AS_MFPGPR
262 #undef TARGET_MFPGPR
263 #define TARGET_MFPGPR 0
264 #endif
266 /* Define TARGET_DFP if the target assembler does not support decimal
267 floating point instructions. */
268 #ifndef HAVE_AS_DFP
269 #undef TARGET_DFP
270 #define TARGET_DFP 0
271 #endif
273 /* Define TARGET_POPCNTD if the target assembler does not support the
274 popcount word and double word instructions. */
276 #ifndef HAVE_AS_POPCNTD
277 #undef TARGET_POPCNTD
278 #define TARGET_POPCNTD 0
279 #endif
281 /* Define the ISA 2.07 flags as 0 if the target assembler does not support the
282 waitasecond instruction. Allow -mpower8-fusion, since it does not add new
283 instructions. */
285 #ifndef HAVE_AS_POWER8
286 #undef TARGET_DIRECT_MOVE
287 #undef TARGET_CRYPTO
288 #undef TARGET_HTM
289 #undef TARGET_P8_VECTOR
290 #define TARGET_DIRECT_MOVE 0
291 #define TARGET_CRYPTO 0
292 #define TARGET_HTM 0
293 #define TARGET_P8_VECTOR 0
294 #endif
296 /* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
297 not, generate the lwsync code as an integer constant. */
298 #ifdef HAVE_AS_LWSYNC
299 #define TARGET_LWSYNC_INSTRUCTION 1
300 #else
301 #define TARGET_LWSYNC_INSTRUCTION 0
302 #endif
304 /* Define TARGET_TLS_MARKERS if the target assembler does not support
305 arg markers for __tls_get_addr calls. */
306 #ifndef HAVE_AS_TLS_MARKERS
307 #undef TARGET_TLS_MARKERS
308 #define TARGET_TLS_MARKERS 0
309 #else
310 #define TARGET_TLS_MARKERS tls_markers
311 #endif
313 #ifndef TARGET_SECURE_PLT
314 #define TARGET_SECURE_PLT 0
315 #endif
317 #ifndef TARGET_CMODEL
318 #define TARGET_CMODEL CMODEL_SMALL
319 #endif
321 #define TARGET_32BIT (! TARGET_64BIT)
323 #ifndef HAVE_AS_TLS
324 #define HAVE_AS_TLS 0
325 #endif
327 #ifndef TARGET_LINK_STACK
328 #define TARGET_LINK_STACK 0
329 #endif
331 #ifndef SET_TARGET_LINK_STACK
332 #define SET_TARGET_LINK_STACK(X) do { } while (0)
333 #endif
335 /* Return 1 for a symbol ref for a thread-local storage symbol. */
336 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
337 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
339 #ifdef IN_LIBGCC2
340 /* For libgcc2 we make sure this is a compile time constant */
341 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
342 #undef TARGET_POWERPC64
343 #define TARGET_POWERPC64 1
344 #else
345 #undef TARGET_POWERPC64
346 #define TARGET_POWERPC64 0
347 #endif
348 #else
349 /* The option machinery will define this. */
350 #endif
352 #define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
354 /* FPU operations supported.
355 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
356 also test TARGET_HARD_FLOAT. */
357 #define TARGET_SINGLE_FLOAT 1
358 #define TARGET_DOUBLE_FLOAT 1
359 #define TARGET_SINGLE_FPU 0
360 #define TARGET_SIMPLE_FPU 0
361 #define TARGET_XILINX_FPU 0
363 /* Recast the processor type to the cpu attribute. */
364 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
366 /* Define generic processor types based upon current deployment. */
367 #define PROCESSOR_COMMON PROCESSOR_PPC601
368 #define PROCESSOR_POWERPC PROCESSOR_PPC604
369 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
371 /* Define the default processor. This is overridden by other tm.h files. */
372 #define PROCESSOR_DEFAULT PROCESSOR_PPC603
373 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
375 /* Specify the dialect of assembler to use. Only new mnemonics are supported
376 starting with GCC 4.8, i.e. just one dialect, but for backwards
377 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
378 defined. */
379 #define ASSEMBLER_DIALECT 1
381 /* Debug support */
382 #define MASK_DEBUG_STACK 0x01 /* debug stack applications */
383 #define MASK_DEBUG_ARG 0x02 /* debug argument handling */
384 #define MASK_DEBUG_REG 0x04 /* debug register handling */
385 #define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
386 #define MASK_DEBUG_COST 0x10 /* debug rtx codes */
387 #define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
388 #define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
389 #define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
390 | MASK_DEBUG_ARG \
391 | MASK_DEBUG_REG \
392 | MASK_DEBUG_ADDR \
393 | MASK_DEBUG_COST \
394 | MASK_DEBUG_TARGET \
395 | MASK_DEBUG_BUILTIN)
397 #define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
398 #define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
399 #define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
400 #define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
401 #define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
402 #define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
403 #define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
405 /* Describe the vector unit used for arithmetic operations. */
406 extern enum rs6000_vector rs6000_vector_unit[];
408 #define VECTOR_UNIT_NONE_P(MODE) \
409 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
411 #define VECTOR_UNIT_VSX_P(MODE) \
412 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
414 #define VECTOR_UNIT_P8_VECTOR_P(MODE) \
415 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
417 #define VECTOR_UNIT_ALTIVEC_P(MODE) \
418 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
420 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
421 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
422 (int)VECTOR_VSX, \
423 (int)VECTOR_P8_VECTOR))
425 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
426 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
427 compatible, so allow it as well, rather than changing all of the uses of the
428 macro. */
429 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
430 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
431 (int)VECTOR_ALTIVEC, \
432 (int)VECTOR_P8_VECTOR))
434 /* Describe whether to use VSX loads or Altivec loads. For now, just use the
435 same unit as the vector unit we are using, but we may want to migrate to
436 using VSX style loads even for types handled by altivec. */
437 extern enum rs6000_vector rs6000_vector_mem[];
439 #define VECTOR_MEM_NONE_P(MODE) \
440 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
442 #define VECTOR_MEM_VSX_P(MODE) \
443 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
445 #define VECTOR_MEM_P8_VECTOR_P(MODE) \
446 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
448 #define VECTOR_MEM_ALTIVEC_P(MODE) \
449 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
451 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
452 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
453 (int)VECTOR_VSX, \
454 (int)VECTOR_P8_VECTOR))
456 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
457 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
458 (int)VECTOR_ALTIVEC, \
459 (int)VECTOR_P8_VECTOR))
461 /* Return the alignment of a given vector type, which is set based on the
462 vector unit use. VSX for instance can load 32 or 64 bit aligned words
463 without problems, while Altivec requires 128-bit aligned vectors. */
464 extern int rs6000_vector_align[];
466 #define VECTOR_ALIGN(MODE) \
467 ((rs6000_vector_align[(MODE)] != 0) \
468 ? rs6000_vector_align[(MODE)] \
469 : (int)GET_MODE_BITSIZE ((MODE)))
471 /* Determine the element order to use for vector instructions. By
472 default we use big-endian element order when targeting big-endian,
473 and little-endian element order when targeting little-endian. For
474 programs being ported from BE Power to LE Power, it can sometimes
475 be useful to use big-endian element order when targeting little-endian.
476 This is set via -maltivec=be, for example. */
477 #define VECTOR_ELT_ORDER_BIG \
478 (BYTES_BIG_ENDIAN || (rs6000_altivec_element_order == 2))
480 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
481 with scalar instructions. */
482 #define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
484 /* Alignment options for fields in structures for sub-targets following
485 AIX-like ABI.
486 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
487 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
489 Override the macro definitions when compiling libobjc to avoid undefined
490 reference to rs6000_alignment_flags due to library's use of GCC alignment
491 macros which use the macros below. */
493 #ifndef IN_TARGET_LIBS
494 #define MASK_ALIGN_POWER 0x00000000
495 #define MASK_ALIGN_NATURAL 0x00000001
496 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
497 #else
498 #define TARGET_ALIGN_NATURAL 0
499 #endif
501 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
502 #define TARGET_IEEEQUAD rs6000_ieeequad
503 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
504 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
506 #define TARGET_SPE_ABI 0
507 #define TARGET_SPE 0
508 #define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
509 #define TARGET_FPRS 1
510 #define TARGET_E500_SINGLE 0
511 #define TARGET_E500_DOUBLE 0
512 #define CHECK_E500_OPTIONS do { } while (0)
514 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
515 Enable 32-bit fcfid's on any of the switches for newer ISA machines or
516 XILINX. */
517 #define TARGET_FCFID (TARGET_POWERPC64 \
518 || TARGET_PPC_GPOPT /* 970/power4 */ \
519 || TARGET_POPCNTB /* ISA 2.02 */ \
520 || TARGET_CMPB /* ISA 2.05 */ \
521 || TARGET_POPCNTD /* ISA 2.06 */ \
522 || TARGET_XILINX_FPU)
524 #define TARGET_FCTIDZ TARGET_FCFID
525 #define TARGET_STFIWX TARGET_PPC_GFXOPT
526 #define TARGET_LFIWAX TARGET_CMPB
527 #define TARGET_LFIWZX TARGET_POPCNTD
528 #define TARGET_FCFIDS TARGET_POPCNTD
529 #define TARGET_FCFIDU TARGET_POPCNTD
530 #define TARGET_FCFIDUS TARGET_POPCNTD
531 #define TARGET_FCTIDUZ TARGET_POPCNTD
532 #define TARGET_FCTIWUZ TARGET_POPCNTD
534 #define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
535 #define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
536 #define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
538 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
539 in power7, so conditionalize them on p8 features. TImode syncs need quad
540 memory support. */
541 #define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
542 || TARGET_QUAD_MEMORY_ATOMIC \
543 || TARGET_DIRECT_MOVE)
545 #define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
547 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
548 to allocate the SDmode stack slot to get the value into the proper location
549 in the register. */
550 #define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
552 /* In switching from using target_flags to using rs6000_isa_flags, the options
553 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
554 OPTION_MASK_<xxx> back into MASK_<xxx>. */
555 #define MASK_ALTIVEC OPTION_MASK_ALTIVEC
556 #define MASK_CMPB OPTION_MASK_CMPB
557 #define MASK_CRYPTO OPTION_MASK_CRYPTO
558 #define MASK_DFP OPTION_MASK_DFP
559 #define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
560 #define MASK_DLMZB OPTION_MASK_DLMZB
561 #define MASK_EABI OPTION_MASK_EABI
562 #define MASK_FPRND OPTION_MASK_FPRND
563 #define MASK_P8_FUSION OPTION_MASK_P8_FUSION
564 #define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
565 #define MASK_HTM OPTION_MASK_HTM
566 #define MASK_ISEL OPTION_MASK_ISEL
567 #define MASK_MFCRF OPTION_MASK_MFCRF
568 #define MASK_MFPGPR OPTION_MASK_MFPGPR
569 #define MASK_MULHW OPTION_MASK_MULHW
570 #define MASK_MULTIPLE OPTION_MASK_MULTIPLE
571 #define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
572 #define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
573 #define MASK_POPCNTB OPTION_MASK_POPCNTB
574 #define MASK_POPCNTD OPTION_MASK_POPCNTD
575 #define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
576 #define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
577 #define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
578 #define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
579 #define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
580 #define MASK_STRING OPTION_MASK_STRING
581 #define MASK_UPDATE OPTION_MASK_UPDATE
582 #define MASK_VSX OPTION_MASK_VSX
583 #define MASK_VSX_TIMODE OPTION_MASK_VSX_TIMODE
585 #ifndef IN_LIBGCC2
586 #define MASK_POWERPC64 OPTION_MASK_POWERPC64
587 #endif
589 #ifdef TARGET_64BIT
590 #define MASK_64BIT OPTION_MASK_64BIT
591 #endif
593 #ifdef TARGET_RELOCATABLE
594 #define MASK_RELOCATABLE OPTION_MASK_RELOCATABLE
595 #endif
597 #ifdef TARGET_LITTLE_ENDIAN
598 #define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
599 #endif
601 #ifdef TARGET_MINIMAL_TOC
602 #define MASK_MINIMAL_TOC OPTION_MASK_MINIMAL_TOC
603 #endif
605 #ifdef TARGET_REGNAMES
606 #define MASK_REGNAMES OPTION_MASK_REGNAMES
607 #endif
609 #ifdef TARGET_PROTOTYPE
610 #define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
611 #endif
613 /* For power systems, we want to enable Altivec and VSX builtins even if the
614 user did not use -maltivec or -mvsx to allow the builtins to be used inside
615 of #pragma GCC target or the target attribute to change the code level for a
616 given system. The SPE and Paired builtins are only enabled if you configure
617 the compiler for those builtins, and those machines don't support altivec or
618 VSX. */
620 #define TARGET_EXTRA_BUILTINS (!TARGET_SPE && !TARGET_PAIRED_FLOAT \
621 && ((TARGET_POWERPC64 \
622 || TARGET_PPC_GPOPT /* 970/power4 */ \
623 || TARGET_POPCNTB /* ISA 2.02 */ \
624 || TARGET_CMPB /* ISA 2.05 */ \
625 || TARGET_POPCNTD /* ISA 2.06 */ \
626 || TARGET_ALTIVEC \
627 || TARGET_VSX \
628 || TARGET_HARD_FLOAT)))
630 /* E500 cores only support plain "sync", not lwsync. */
631 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
632 || rs6000_cpu == PROCESSOR_PPC8548)
635 /* Whether SF/DF operations are supported on the E500. */
636 #define TARGET_SF_SPE (TARGET_HARD_FLOAT && TARGET_SINGLE_FLOAT \
637 && !TARGET_FPRS)
639 #define TARGET_DF_SPE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
640 && !TARGET_FPRS && TARGET_E500_DOUBLE)
642 /* Whether SF/DF operations are supported by by the normal floating point unit
643 (or the vector/scalar unit). */
644 #define TARGET_SF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
645 && TARGET_SINGLE_FLOAT)
647 #define TARGET_DF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
648 && TARGET_DOUBLE_FLOAT)
650 /* Whether SF/DF operations are supported by any hardware. */
651 #define TARGET_SF_INSN (TARGET_SF_FPR || TARGET_SF_SPE)
652 #define TARGET_DF_INSN (TARGET_DF_FPR || TARGET_DF_SPE)
654 /* Which machine supports the various reciprocal estimate instructions. */
655 #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
656 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
658 #define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_FPRS \
659 && TARGET_DOUBLE_FLOAT \
660 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
662 #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
663 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
665 #define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_FPRS \
666 && TARGET_DOUBLE_FLOAT \
667 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
669 /* Whether the various reciprocal divide/square root estimate instructions
670 exist, and whether we should automatically generate code for the instruction
671 by default. */
672 #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
673 #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
674 #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
675 #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
677 extern unsigned char rs6000_recip_bits[];
679 #define RS6000_RECIP_HAVE_RE_P(MODE) \
680 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
682 #define RS6000_RECIP_AUTO_RE_P(MODE) \
683 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
685 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
686 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
688 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
689 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
691 /* The default CPU for TARGET_OPTION_OVERRIDE. */
692 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
694 /* Target pragma. */
695 #define REGISTER_TARGET_PRAGMAS() do { \
696 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
697 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
698 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
699 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
700 } while (0)
702 /* Target #defines. */
703 #define TARGET_CPU_CPP_BUILTINS() \
704 rs6000_cpu_cpp_builtins (pfile)
706 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
707 we're compiling for. Some configurations may need to override it. */
708 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
709 do \
711 if (BYTES_BIG_ENDIAN) \
713 builtin_define ("__BIG_ENDIAN__"); \
714 builtin_define ("_BIG_ENDIAN"); \
715 builtin_assert ("machine=bigendian"); \
717 else \
719 builtin_define ("__LITTLE_ENDIAN__"); \
720 builtin_define ("_LITTLE_ENDIAN"); \
721 builtin_assert ("machine=littleendian"); \
724 while (0)
726 /* Target machine storage layout. */
728 /* Define this macro if it is advisable to hold scalars in registers
729 in a wider mode than that declared by the program. In such cases,
730 the value is constrained to be within the bounds of the declared
731 type, but kept valid in the wider mode. The signedness of the
732 extension may differ from that of the type. */
734 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
735 if (GET_MODE_CLASS (MODE) == MODE_INT \
736 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
737 (MODE) = TARGET_32BIT ? SImode : DImode;
739 /* Define this if most significant bit is lowest numbered
740 in instructions that operate on numbered bit-fields. */
741 /* That is true on RS/6000. */
742 #define BITS_BIG_ENDIAN 1
744 /* Define this if most significant byte of a word is the lowest numbered. */
745 /* That is true on RS/6000. */
746 #define BYTES_BIG_ENDIAN 1
748 /* Define this if most significant word of a multiword number is lowest
749 numbered.
751 For RS/6000 we can decide arbitrarily since there are no machine
752 instructions for them. Might as well be consistent with bits and bytes. */
753 #define WORDS_BIG_ENDIAN 1
755 /* This says that for the IBM long double the larger magnitude double
756 comes first. It's really a two element double array, and arrays
757 don't index differently between little- and big-endian. */
758 #define LONG_DOUBLE_LARGE_FIRST 1
760 #define MAX_BITS_PER_WORD 64
762 /* Width of a word, in units (bytes). */
763 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
764 #ifdef IN_LIBGCC2
765 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
766 #else
767 #define MIN_UNITS_PER_WORD 4
768 #endif
769 #define UNITS_PER_FP_WORD 8
770 #define UNITS_PER_ALTIVEC_WORD 16
771 #define UNITS_PER_VSX_WORD 16
772 #define UNITS_PER_SPE_WORD 8
773 #define UNITS_PER_PAIRED_WORD 8
775 /* Type used for ptrdiff_t, as a string used in a declaration. */
776 #define PTRDIFF_TYPE "int"
778 /* Type used for size_t, as a string used in a declaration. */
779 #define SIZE_TYPE "long unsigned int"
781 /* Type used for wchar_t, as a string used in a declaration. */
782 #define WCHAR_TYPE "short unsigned int"
784 /* Width of wchar_t in bits. */
785 #define WCHAR_TYPE_SIZE 16
787 /* A C expression for the size in bits of the type `short' on the
788 target machine. If you don't define this, the default is half a
789 word. (If this would be less than one storage unit, it is
790 rounded up to one unit.) */
791 #define SHORT_TYPE_SIZE 16
793 /* A C expression for the size in bits of the type `int' on the
794 target machine. If you don't define this, the default is one
795 word. */
796 #define INT_TYPE_SIZE 32
798 /* A C expression for the size in bits of the type `long' on the
799 target machine. If you don't define this, the default is one
800 word. */
801 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
803 /* A C expression for the size in bits of the type `long long' on the
804 target machine. If you don't define this, the default is two
805 words. */
806 #define LONG_LONG_TYPE_SIZE 64
808 /* A C expression for the size in bits of the type `float' on the
809 target machine. If you don't define this, the default is one
810 word. */
811 #define FLOAT_TYPE_SIZE 32
813 /* A C expression for the size in bits of the type `double' on the
814 target machine. If you don't define this, the default is two
815 words. */
816 #define DOUBLE_TYPE_SIZE 64
818 /* A C expression for the size in bits of the type `long double' on
819 the target machine. If you don't define this, the default is two
820 words. */
821 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
823 /* Define this to set long double type size to use in libgcc2.c, which can
824 not depend on target_flags. */
825 #ifdef __LONG_DOUBLE_128__
826 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
827 #else
828 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
829 #endif
831 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
832 #define WIDEST_HARDWARE_FP_SIZE 64
834 /* Width in bits of a pointer.
835 See also the macro `Pmode' defined below. */
836 extern unsigned rs6000_pointer_size;
837 #define POINTER_SIZE rs6000_pointer_size
839 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
840 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
842 /* Boundary (in *bits*) on which stack pointer should be aligned. */
843 #define STACK_BOUNDARY \
844 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
845 ? 64 : 128)
847 /* Allocation boundary (in *bits*) for the code of a function. */
848 #define FUNCTION_BOUNDARY 32
850 /* No data type wants to be aligned rounder than this. */
851 #define BIGGEST_ALIGNMENT 128
853 /* Alignment of field after `int : 0' in a structure. */
854 #define EMPTY_FIELD_BOUNDARY 32
856 /* Every structure's size must be a multiple of this. */
857 #define STRUCTURE_SIZE_BOUNDARY 8
859 /* A bit-field declared as `int' forces `int' alignment for the struct. */
860 #define PCC_BITFIELD_TYPE_MATTERS 1
862 enum data_align { align_abi, align_opt, align_both };
864 /* A C expression to compute the alignment for a variables in the
865 local store. TYPE is the data type, and ALIGN is the alignment
866 that the object would ordinarily have. */
867 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
868 rs6000_data_alignment (TYPE, ALIGN, align_both)
870 /* Make strings word-aligned so strcpy from constants will be faster. */
871 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
872 (TREE_CODE (EXP) == STRING_CST \
873 && (STRICT_ALIGNMENT || !optimize_size) \
874 && (ALIGN) < BITS_PER_WORD \
875 ? BITS_PER_WORD \
876 : (ALIGN))
878 /* Make arrays of chars word-aligned for the same reasons. */
879 #define DATA_ALIGNMENT(TYPE, ALIGN) \
880 rs6000_data_alignment (TYPE, ALIGN, align_opt)
882 /* Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
883 64 bits. */
884 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
885 rs6000_data_alignment (TYPE, ALIGN, align_abi)
887 /* Nonzero if move instructions will actually fail to work
888 when given unaligned data. */
889 #define STRICT_ALIGNMENT 0
891 /* Define this macro to be the value 1 if unaligned accesses have a cost
892 many times greater than aligned accesses, for example if they are
893 emulated in a trap handler. */
894 /* Altivec vector memory instructions simply ignore the low bits; SPE vector
895 memory instructions trap on unaligned accesses; VSX memory instructions are
896 aligned to 4 or 8 bytes. */
897 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
898 (STRICT_ALIGNMENT \
899 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
900 || (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode) \
901 && (ALIGN) < 32) \
902 || (VECTOR_MODE_P ((MODE)) && (((int)(ALIGN)) < VECTOR_ALIGN (MODE))))
905 /* Standard register usage. */
907 /* Number of actual hardware registers.
908 The hardware registers are assigned numbers for the compiler
909 from 0 to just below FIRST_PSEUDO_REGISTER.
910 All registers that the compiler knows about must be given numbers,
911 even those that are not normally considered general registers.
913 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
914 a count register, a link register, and 8 condition register fields,
915 which we view here as separate registers. AltiVec adds 32 vector
916 registers and a VRsave register.
918 In addition, the difference between the frame and argument pointers is
919 a function of the number of registers saved, so we need to have a
920 register for AP that will later be eliminated in favor of SP or FP.
921 This is a normal register, but it is fixed.
923 We also create a pseudo register for float/int conversions, that will
924 really represent the memory location used. It is represented here as
925 a register, in order to work around problems in allocating stack storage
926 in inline functions.
928 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
929 pointer, which is eventually eliminated in favor of SP or FP.
931 The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS. */
933 #define FIRST_PSEUDO_REGISTER 149
935 /* This must be included for pre gcc 3.0 glibc compatibility. */
936 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
938 /* True if register is an SPE High register. */
939 #define SPE_HIGH_REGNO_P(N) \
940 ((N) >= FIRST_SPE_HIGH_REGNO && (N) <= LAST_SPE_HIGH_REGNO)
942 /* SPE high registers added as hard regs.
943 The sfp register and 3 HTM registers
944 aren't included in DWARF_FRAME_REGISTERS. */
945 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 4)
947 /* The SPE has an additional 32 synthetic registers, with DWARF debug
948 info numbering for these registers starting at 1200. While eh_frame
949 register numbering need not be the same as the debug info numbering,
950 we choose to number these regs for eh_frame at 1200 too.
952 We must map them here to avoid huge unwinder tables mostly consisting
953 of unused space. */
954 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
955 ((r) >= 1200 ? ((r) - 1200 + (DWARF_FRAME_REGISTERS - 32)) : (r))
957 /* Use standard DWARF numbering for DWARF debugging information. */
958 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
960 /* Use gcc hard register numbering for eh_frame. */
961 #define DWARF_FRAME_REGNUM(REGNO) \
962 (SPE_HIGH_REGNO_P (REGNO) ? ((REGNO) - FIRST_SPE_HIGH_REGNO + 1200) : (REGNO))
964 /* Map register numbers held in the call frame info that gcc has
965 collected using DWARF_FRAME_REGNUM to those that should be output in
966 .debug_frame and .eh_frame. We continue to use gcc hard reg numbers
967 for .eh_frame, but use the numbers mandated by the various ABIs for
968 .debug_frame. rs6000_emit_prologue has translated any combination of
969 CR2, CR3, CR4 saves to a save of CR2. The actual code emitted saves
970 the whole of CR, so we map CR2_REGNO to the DWARF reg for CR. */
971 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
972 ((FOR_EH) ? (REGNO) \
973 : (REGNO) == CR2_REGNO ? 64 \
974 : DBX_REGISTER_NUMBER (REGNO))
976 /* 1 for registers that have pervasive standard uses
977 and are not available for the register allocator.
979 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
980 as a local register; for all other OS's r2 is the TOC pointer.
982 On System V implementations, r13 is fixed and not available for use. */
984 #define FIXED_REGISTERS \
985 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
986 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
987 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
988 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
989 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, \
990 /* AltiVec registers. */ \
991 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
992 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
993 1, 1 \
994 , 1, 1, 1, 1, 1, 1, \
995 /* SPE High registers. */ \
996 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
997 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1000 /* 1 for registers not available across function calls.
1001 These must include the FIXED_REGISTERS and also any
1002 registers that can be used without being saved.
1003 The latter must include the registers where values are returned
1004 and the register where structure-value addresses are passed.
1005 Aside from that, you can include as many other registers as you like. */
1007 #define CALL_USED_REGISTERS \
1008 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1009 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1010 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1011 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1012 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1013 /* AltiVec registers. */ \
1014 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1015 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1016 1, 1 \
1017 , 1, 1, 1, 1, 1, 1, \
1018 /* SPE High registers. */ \
1019 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1020 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1023 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
1024 the entire set of `FIXED_REGISTERS' be included.
1025 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
1026 This macro is optional. If not specified, it defaults to the value
1027 of `CALL_USED_REGISTERS'. */
1029 #define CALL_REALLY_USED_REGISTERS \
1030 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1031 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1032 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1033 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1034 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1035 /* AltiVec registers. */ \
1036 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1037 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1038 0, 0 \
1039 , 0, 0, 0, 0, 0, 0, \
1040 /* SPE High registers. */ \
1041 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1042 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
1045 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
1047 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
1048 #define FIRST_SAVED_FP_REGNO (14+32)
1049 #define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
1051 /* List the order in which to allocate registers. Each register must be
1052 listed once, even those in FIXED_REGISTERS.
1054 We allocate in the following order:
1055 fp0 (not saved or used for anything)
1056 fp13 - fp2 (not saved; incoming fp arg registers)
1057 fp1 (not saved; return value)
1058 fp31 - fp14 (saved; order given to save least number)
1059 cr7, cr5 (not saved or special)
1060 cr6 (not saved, but used for vector operations)
1061 cr1 (not saved, but used for FP operations)
1062 cr0 (not saved, but used for arithmetic operations)
1063 cr4, cr3, cr2 (saved)
1064 r9 (not saved; best for TImode)
1065 r10, r8-r4 (not saved; highest first for less conflict with params)
1066 r3 (not saved; return value register)
1067 r11 (not saved; later alloc to help shrink-wrap)
1068 r0 (not saved; cannot be base reg)
1069 r31 - r13 (saved; order given to save least number)
1070 r12 (not saved; if used for DImode or DFmode would use r13)
1071 ctr (not saved; when we have the choice ctr is better)
1072 lr (saved)
1073 r1, r2, ap, ca (fixed)
1074 v0 - v1 (not saved or used for anything)
1075 v13 - v3 (not saved; incoming vector arg registers)
1076 v2 (not saved; incoming vector arg reg; return value)
1077 v19 - v14 (not saved or used for anything)
1078 v31 - v20 (saved; order given to save least number)
1079 vrsave, vscr (fixed)
1080 spe_acc, spefscr (fixed)
1081 sfp (fixed)
1082 tfhar (fixed)
1083 tfiar (fixed)
1084 texasr (fixed)
1087 #if FIXED_R2 == 1
1088 #define MAYBE_R2_AVAILABLE
1089 #define MAYBE_R2_FIXED 2,
1090 #else
1091 #define MAYBE_R2_AVAILABLE 2,
1092 #define MAYBE_R2_FIXED
1093 #endif
1095 #if FIXED_R13 == 1
1096 #define EARLY_R12 12,
1097 #define LATE_R12
1098 #else
1099 #define EARLY_R12
1100 #define LATE_R12 12,
1101 #endif
1103 #define REG_ALLOC_ORDER \
1104 {32, \
1105 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
1106 /* not use fr14 which is a saved register. */ \
1107 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
1108 33, \
1109 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
1110 50, 49, 48, 47, 46, \
1111 75, 73, 74, 69, 68, 72, 71, 70, \
1112 MAYBE_R2_AVAILABLE \
1113 9, 10, 8, 7, 6, 5, 4, \
1114 3, EARLY_R12 11, 0, \
1115 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
1116 18, 17, 16, 15, 14, 13, LATE_R12 \
1117 66, 65, \
1118 1, MAYBE_R2_FIXED 67, 76, \
1119 /* AltiVec registers. */ \
1120 77, 78, \
1121 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
1122 79, \
1123 96, 95, 94, 93, 92, 91, \
1124 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
1125 109, 110, \
1126 111, 112, 113, 114, 115, 116, \
1127 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, \
1128 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, \
1129 141, 142, 143, 144, 145, 146, 147, 148 \
1132 /* True if register is floating-point. */
1133 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1135 /* True if register is a condition register. */
1136 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
1138 /* True if register is a condition register, but not cr0. */
1139 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
1141 /* True if register is an integer register. */
1142 #define INT_REGNO_P(N) \
1143 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
1145 /* SPE SIMD registers are just the GPRs. */
1146 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
1148 /* PAIRED SIMD registers are just the FPRs. */
1149 #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1151 /* True if register is the CA register. */
1152 #define CA_REGNO_P(N) ((N) == CA_REGNO)
1154 /* True if register is an AltiVec register. */
1155 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1157 /* True if register is a VSX register. */
1158 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1160 /* Alternate name for any vector register supporting floating point, no matter
1161 which instruction set(s) are available. */
1162 #define VFLOAT_REGNO_P(N) \
1163 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1165 /* Alternate name for any vector register supporting integer, no matter which
1166 instruction set(s) are available. */
1167 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1169 /* Alternate name for any vector register supporting logical operations, no
1170 matter which instruction set(s) are available. Allow GPRs as well as the
1171 vector registers. */
1172 #define VLOGICAL_REGNO_P(N) \
1173 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
1174 || (TARGET_VSX && FP_REGNO_P (N))) \
1176 /* Return number of consecutive hard regs needed starting at reg REGNO
1177 to hold something of mode MODE. */
1179 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
1181 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1182 enough space to account for vectors in FP regs. However, TFmode/TDmode
1183 should not use VSX instructions to do a caller save. */
1184 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1185 (TARGET_VSX \
1186 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
1187 && FP_REGNO_P (REGNO) \
1188 ? V2DFmode \
1189 : ((MODE) == TFmode && FP_REGNO_P (REGNO)) \
1190 ? DFmode \
1191 : ((MODE) == TDmode && FP_REGNO_P (REGNO)) \
1192 ? DImode \
1193 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1195 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1196 (((TARGET_32BIT && TARGET_POWERPC64 \
1197 && (GET_MODE_SIZE (MODE) > 4) \
1198 && INT_REGNO_P (REGNO)) ? 1 : 0) \
1199 || (TARGET_VSX && FP_REGNO_P (REGNO) \
1200 && GET_MODE_SIZE (MODE) > 8 && ((MODE) != TDmode) \
1201 && ((MODE) != TFmode)))
1203 #define VSX_VECTOR_MODE(MODE) \
1204 ((MODE) == V4SFmode \
1205 || (MODE) == V2DFmode) \
1207 #define ALTIVEC_VECTOR_MODE(MODE) \
1208 ((MODE) == V16QImode \
1209 || (MODE) == V8HImode \
1210 || (MODE) == V4SFmode \
1211 || (MODE) == V4SImode)
1213 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1214 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
1215 || (MODE) == V2DImode || (MODE) == V1TImode)
1217 #define SPE_VECTOR_MODE(MODE) \
1218 ((MODE) == V4HImode \
1219 || (MODE) == V2SFmode \
1220 || (MODE) == V1DImode \
1221 || (MODE) == V2SImode)
1223 #define PAIRED_VECTOR_MODE(MODE) \
1224 ((MODE) == V2SFmode)
1226 /* Value is TRUE if hard register REGNO can hold a value of
1227 machine-mode MODE. */
1228 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1229 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
1231 /* Value is 1 if it is a good idea to tie two pseudo registers
1232 when one has mode MODE1 and one has mode MODE2.
1233 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1234 for any hard reg, then this must be 0 for correct output.
1236 PTImode cannot tie with other modes because PTImode is restricted to even
1237 GPR registers, and TImode can go in any GPR as well as VSX registers (PR
1238 57744). */
1239 #define MODES_TIEABLE_P(MODE1, MODE2) \
1240 ((MODE1) == PTImode \
1241 ? (MODE2) == PTImode \
1242 : (MODE2) == PTImode \
1243 ? 0 \
1244 : SCALAR_FLOAT_MODE_P (MODE1) \
1245 ? SCALAR_FLOAT_MODE_P (MODE2) \
1246 : SCALAR_FLOAT_MODE_P (MODE2) \
1247 ? 0 \
1248 : GET_MODE_CLASS (MODE1) == MODE_CC \
1249 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1250 : GET_MODE_CLASS (MODE2) == MODE_CC \
1251 ? 0 \
1252 : SPE_VECTOR_MODE (MODE1) \
1253 ? SPE_VECTOR_MODE (MODE2) \
1254 : SPE_VECTOR_MODE (MODE2) \
1255 ? 0 \
1256 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
1257 ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1258 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1259 ? 0 \
1260 : 1)
1262 /* Post-reload, we can't use any new AltiVec registers, as we already
1263 emitted the vrsave mask. */
1265 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1266 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1268 /* Specify the cost of a branch insn; roughly the number of extra insns that
1269 should be added to avoid a branch.
1271 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1272 unscheduled conditional branch. */
1274 #define BRANCH_COST(speed_p, predictable_p) 3
1276 /* Override BRANCH_COST heuristic which empirically produces worse
1277 performance for removing short circuiting from the logical ops. */
1279 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1281 /* A fixed register used at epilogue generation to address SPE registers
1282 with negative offsets. The 64-bit load/store instructions on the SPE
1283 only take positive offsets (and small ones at that), so we need to
1284 reserve a register for consing up negative offsets. */
1286 #define FIXED_SCRATCH 0
1288 /* Specify the registers used for certain standard purposes.
1289 The values of these macros are register numbers. */
1291 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1292 /* #define PC_REGNUM */
1294 /* Register to use for pushing function arguments. */
1295 #define STACK_POINTER_REGNUM 1
1297 /* Base register for access to local variables of the function. */
1298 #define HARD_FRAME_POINTER_REGNUM 31
1300 /* Base register for access to local variables of the function. */
1301 #define FRAME_POINTER_REGNUM 113
1303 /* Base register for access to arguments of the function. */
1304 #define ARG_POINTER_REGNUM 67
1306 /* Place to put static chain when calling a function that requires it. */
1307 #define STATIC_CHAIN_REGNUM 11
1310 /* Define the classes of registers for register constraints in the
1311 machine description. Also define ranges of constants.
1313 One of the classes must always be named ALL_REGS and include all hard regs.
1314 If there is more than one class, another class must be named NO_REGS
1315 and contain no registers.
1317 The name GENERAL_REGS must be the name of a class (or an alias for
1318 another name such as ALL_REGS). This is the class of registers
1319 that is allowed by "g" or "r" in a register constraint.
1320 Also, registers outside this class are allocated only when
1321 instructions express preferences for them.
1323 The classes must be numbered in nondecreasing order; that is,
1324 a larger-numbered class must never be contained completely
1325 in a smaller-numbered class.
1327 For any two classes, it is very desirable that there be another
1328 class that represents their union. */
1330 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1331 condition registers, plus three special registers, CTR, and the link
1332 register. AltiVec adds a vector register class. VSX registers overlap the
1333 FPR registers and the Altivec registers.
1335 However, r0 is special in that it cannot be used as a base register.
1336 So make a class for registers valid as base registers.
1338 Also, cr0 is the only condition code register that can be used in
1339 arithmetic insns, so make a separate class for it. */
1341 enum reg_class
1343 NO_REGS,
1344 BASE_REGS,
1345 GENERAL_REGS,
1346 FLOAT_REGS,
1347 ALTIVEC_REGS,
1348 VSX_REGS,
1349 VRSAVE_REGS,
1350 VSCR_REGS,
1351 SPE_ACC_REGS,
1352 SPEFSCR_REGS,
1353 SPR_REGS,
1354 NON_SPECIAL_REGS,
1355 LINK_REGS,
1356 CTR_REGS,
1357 LINK_OR_CTR_REGS,
1358 SPECIAL_REGS,
1359 SPEC_OR_GEN_REGS,
1360 CR0_REGS,
1361 CR_REGS,
1362 NON_FLOAT_REGS,
1363 CA_REGS,
1364 SPE_HIGH_REGS,
1365 ALL_REGS,
1366 LIM_REG_CLASSES
1369 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1371 /* Give names of register classes as strings for dump file. */
1373 #define REG_CLASS_NAMES \
1375 "NO_REGS", \
1376 "BASE_REGS", \
1377 "GENERAL_REGS", \
1378 "FLOAT_REGS", \
1379 "ALTIVEC_REGS", \
1380 "VSX_REGS", \
1381 "VRSAVE_REGS", \
1382 "VSCR_REGS", \
1383 "SPE_ACC_REGS", \
1384 "SPEFSCR_REGS", \
1385 "SPR_REGS", \
1386 "NON_SPECIAL_REGS", \
1387 "LINK_REGS", \
1388 "CTR_REGS", \
1389 "LINK_OR_CTR_REGS", \
1390 "SPECIAL_REGS", \
1391 "SPEC_OR_GEN_REGS", \
1392 "CR0_REGS", \
1393 "CR_REGS", \
1394 "NON_FLOAT_REGS", \
1395 "CA_REGS", \
1396 "SPE_HIGH_REGS", \
1397 "ALL_REGS" \
1400 /* Define which registers fit in which classes.
1401 This is an initializer for a vector of HARD_REG_SET
1402 of length N_REG_CLASSES. */
1404 #define REG_CLASS_CONTENTS \
1406 /* NO_REGS. */ \
1407 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1408 /* BASE_REGS. */ \
1409 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000, 0x00000000 }, \
1410 /* GENERAL_REGS. */ \
1411 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000, 0x00000000 }, \
1412 /* FLOAT_REGS. */ \
1413 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, \
1414 /* ALTIVEC_REGS. */ \
1415 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff, 0x00000000 }, \
1416 /* VSX_REGS. */ \
1417 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff, 0x00000000 }, \
1418 /* VRSAVE_REGS. */ \
1419 { 0x00000000, 0x00000000, 0x00000000, 0x00002000, 0x00000000 }, \
1420 /* VSCR_REGS. */ \
1421 { 0x00000000, 0x00000000, 0x00000000, 0x00004000, 0x00000000 }, \
1422 /* SPE_ACC_REGS. */ \
1423 { 0x00000000, 0x00000000, 0x00000000, 0x00008000, 0x00000000 }, \
1424 /* SPEFSCR_REGS. */ \
1425 { 0x00000000, 0x00000000, 0x00000000, 0x00010000, 0x00000000 }, \
1426 /* SPR_REGS. */ \
1427 { 0x00000000, 0x00000000, 0x00000000, 0x00040000, 0x00000000 }, \
1428 /* NON_SPECIAL_REGS. */ \
1429 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000, 0x00000000 }, \
1430 /* LINK_REGS. */ \
1431 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000 }, \
1432 /* CTR_REGS. */ \
1433 { 0x00000000, 0x00000000, 0x00000004, 0x00000000, 0x00000000 }, \
1434 /* LINK_OR_CTR_REGS. */ \
1435 { 0x00000000, 0x00000000, 0x00000006, 0x00000000, 0x00000000 }, \
1436 /* SPECIAL_REGS. */ \
1437 { 0x00000000, 0x00000000, 0x00000006, 0x00002000, 0x00000000 }, \
1438 /* SPEC_OR_GEN_REGS. */ \
1439 { 0xffffffff, 0x00000000, 0x0000000e, 0x00022000, 0x00000000 }, \
1440 /* CR0_REGS. */ \
1441 { 0x00000000, 0x00000000, 0x00000010, 0x00000000, 0x00000000 }, \
1442 /* CR_REGS. */ \
1443 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000, 0x00000000 }, \
1444 /* NON_FLOAT_REGS. */ \
1445 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00020000, 0x00000000 }, \
1446 /* CA_REGS. */ \
1447 { 0x00000000, 0x00000000, 0x00001000, 0x00000000, 0x00000000 }, \
1448 /* SPE_HIGH_REGS. */ \
1449 { 0x00000000, 0x00000000, 0x00000000, 0xffe00000, 0x001fffff }, \
1450 /* ALL_REGS. */ \
1451 { 0xffffffff, 0xffffffff, 0xfffffffe, 0xffe7ffff, 0x001fffff } \
1454 /* The same information, inverted:
1455 Return the class number of the smallest class containing
1456 reg number REGNO. This could be a conditional expression
1457 or could index an array. */
1459 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1461 #if ENABLE_CHECKING
1462 #define REGNO_REG_CLASS(REGNO) \
1463 (gcc_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)), \
1464 rs6000_regno_regclass[(REGNO)])
1466 #else
1467 #define REGNO_REG_CLASS(REGNO) rs6000_regno_regclass[(REGNO)]
1468 #endif
1470 /* Register classes for various constraints that are based on the target
1471 switches. */
1472 enum r6000_reg_class_enum {
1473 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1474 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1475 RS6000_CONSTRAINT_v, /* Altivec registers */
1476 RS6000_CONSTRAINT_wa, /* Any VSX register */
1477 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
1478 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
1479 RS6000_CONSTRAINT_wg, /* FPR register for -mmfpgpr */
1480 RS6000_CONSTRAINT_wl, /* FPR register for LFIWAX */
1481 RS6000_CONSTRAINT_wm, /* VSX register for direct move */
1482 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
1483 RS6000_CONSTRAINT_ws, /* VSX register for DF */
1484 RS6000_CONSTRAINT_wt, /* VSX register for TImode */
1485 RS6000_CONSTRAINT_wu, /* Altivec register for float load/stores. */
1486 RS6000_CONSTRAINT_wv, /* Altivec register for double load/stores. */
1487 RS6000_CONSTRAINT_ww, /* FP or VSX register for vsx float ops. */
1488 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
1489 RS6000_CONSTRAINT_wy, /* VSX register for SF */
1490 RS6000_CONSTRAINT_wz, /* FPR register for LFIWZX */
1491 RS6000_CONSTRAINT_MAX
1494 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1496 /* The class value for index registers, and the one for base regs. */
1497 #define INDEX_REG_CLASS GENERAL_REGS
1498 #define BASE_REG_CLASS BASE_REGS
1500 /* Return whether a given register class can hold VSX objects. */
1501 #define VSX_REG_CLASS_P(CLASS) \
1502 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1504 /* Given an rtx X being reloaded into a reg required to be
1505 in class CLASS, return the class of reg to actually use.
1506 In general this is just CLASS; but on some machines
1507 in some cases it is preferable to use a more restrictive class.
1509 On the RS/6000, we have to return NO_REGS when we want to reload a
1510 floating-point CONST_DOUBLE to force it to be copied to memory.
1512 We also don't want to reload integer values into floating-point
1513 registers if we can at all help it. In fact, this can
1514 cause reload to die, if it tries to generate a reload of CTR
1515 into a FP register and discovers it doesn't have the memory location
1516 required.
1518 ??? Would it be a good idea to have reload do the converse, that is
1519 try to reload floating modes into FP registers if possible?
1522 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1523 rs6000_preferred_reload_class_ptr (X, CLASS)
1525 /* Return the register class of a scratch register needed to copy IN into
1526 or out of a register in CLASS in MODE. If it can be done directly,
1527 NO_REGS is returned. */
1529 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1530 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1532 /* If we are copying between FP or AltiVec registers and anything
1533 else, we need a memory location. The exception is when we are
1534 targeting ppc64 and the move to/from fpr to gpr instructions
1535 are available.*/
1537 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1538 rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
1540 /* For cpus that cannot load/store SDmode values from the 64-bit
1541 FP registers without using a full 64-bit load/store, we need
1542 to allocate a full 64-bit stack slot for them. */
1544 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1545 rs6000_secondary_memory_needed_rtx (MODE)
1547 /* Specify the mode to be used for memory when a secondary memory
1548 location is needed. For cpus that cannot load/store SDmode values
1549 from the 64-bit FP registers without using a full 64-bit
1550 load/store, we need a wider mode. */
1551 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1552 rs6000_secondary_memory_needed_mode (MODE)
1554 /* Return the maximum number of consecutive registers
1555 needed to represent mode MODE in a register of class CLASS.
1557 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1558 a single reg is enough for two words, unless we have VSX, where the FP
1559 registers can hold 128 bits. */
1560 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1562 /* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1564 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1565 rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
1567 /* Stack layout; function entry, exit and calling. */
1569 /* Define this if pushing a word on the stack
1570 makes the stack pointer a smaller address. */
1571 #define STACK_GROWS_DOWNWARD
1573 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1574 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1576 /* Define this to nonzero if the nominal address of the stack frame
1577 is at the high-address end of the local variables;
1578 that is, each additional local variable allocated
1579 goes at a more negative offset in the frame.
1581 On the RS/6000, we grow upwards, from the area after the outgoing
1582 arguments. */
1583 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1584 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1586 /* Size of the fixed area on the stack */
1587 #define RS6000_SAVE_AREA \
1588 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1589 << (TARGET_64BIT ? 1 : 0))
1591 /* Stack offset for toc save slot. */
1592 #define RS6000_TOC_SAVE_SLOT \
1593 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1595 /* Align an address */
1596 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1598 /* Offset within stack frame to start allocating local variables at.
1599 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1600 first local allocated. Otherwise, it is the offset to the BEGINNING
1601 of the first local allocated.
1603 On the RS/6000, the frame pointer is the same as the stack pointer,
1604 except for dynamic allocations. So we start after the fixed area and
1605 outgoing parameter area. */
1607 #define STARTING_FRAME_OFFSET \
1608 (FRAME_GROWS_DOWNWARD \
1609 ? 0 \
1610 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1611 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1612 + RS6000_SAVE_AREA))
1614 /* Offset from the stack pointer register to an item dynamically
1615 allocated on the stack, e.g., by `alloca'.
1617 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1618 length of the outgoing arguments. The default is correct for most
1619 machines. See `function.c' for details. */
1620 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1621 (RS6000_ALIGN (crtl->outgoing_args_size, \
1622 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1623 + (STACK_POINTER_OFFSET))
1625 /* If we generate an insn to push BYTES bytes,
1626 this says how many the stack pointer really advances by.
1627 On RS/6000, don't define this because there are no push insns. */
1628 /* #define PUSH_ROUNDING(BYTES) */
1630 /* Offset of first parameter from the argument pointer register value.
1631 On the RS/6000, we define the argument pointer to the start of the fixed
1632 area. */
1633 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1635 /* Offset from the argument pointer register value to the top of
1636 stack. This is different from FIRST_PARM_OFFSET because of the
1637 register save area. */
1638 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1640 /* Define this if stack space is still allocated for a parameter passed
1641 in a register. The value is the number of bytes allocated to this
1642 area. */
1643 #define REG_PARM_STACK_SPACE(FNDECL) \
1644 rs6000_reg_parm_stack_space ((FNDECL), false)
1646 /* Define this macro if space guaranteed when compiling a function body
1647 is different to space required when making a call, a situation that
1648 can arise with K&R style function definitions. */
1649 #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1650 rs6000_reg_parm_stack_space ((FNDECL), true)
1652 /* Define this if the above stack space is to be considered part of the
1653 space allocated by the caller. */
1654 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1656 /* This is the difference between the logical top of stack and the actual sp.
1658 For the RS/6000, sp points past the fixed area. */
1659 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1661 /* Define this if the maximum size of all the outgoing args is to be
1662 accumulated and pushed during the prologue. The amount can be
1663 found in the variable crtl->outgoing_args_size. */
1664 #define ACCUMULATE_OUTGOING_ARGS 1
1666 /* Define how to find the value returned by a library function
1667 assuming the value has mode MODE. */
1669 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1671 /* DRAFT_V4_STRUCT_RET defaults off. */
1672 #define DRAFT_V4_STRUCT_RET 0
1674 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1675 #define DEFAULT_PCC_STRUCT_RETURN 0
1677 /* Mode of stack savearea.
1678 FUNCTION is VOIDmode because calling convention maintains SP.
1679 BLOCK needs Pmode for SP.
1680 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1681 #define STACK_SAVEAREA_MODE(LEVEL) \
1682 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1683 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1685 /* Minimum and maximum general purpose registers used to hold arguments. */
1686 #define GP_ARG_MIN_REG 3
1687 #define GP_ARG_MAX_REG 10
1688 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1690 /* Minimum and maximum floating point registers used to hold arguments. */
1691 #define FP_ARG_MIN_REG 33
1692 #define FP_ARG_AIX_MAX_REG 45
1693 #define FP_ARG_V4_MAX_REG 40
1694 #define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1695 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1696 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1698 /* Minimum and maximum AltiVec registers used to hold arguments. */
1699 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1700 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1701 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1703 /* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1704 #define AGGR_ARG_NUM_REG 8
1706 /* Return registers */
1707 #define GP_ARG_RETURN GP_ARG_MIN_REG
1708 #define FP_ARG_RETURN FP_ARG_MIN_REG
1709 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1710 #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1711 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1712 #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? ALTIVEC_ARG_RETURN \
1713 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1715 /* Flags for the call/call_value rtl operations set up by function_arg */
1716 #define CALL_NORMAL 0x00000000 /* no special processing */
1717 /* Bits in 0x00000001 are unused. */
1718 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1719 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1720 #define CALL_LONG 0x00000008 /* always call indirect */
1721 #define CALL_LIBCALL 0x00000010 /* libcall */
1723 /* We don't have prologue and epilogue functions to save/restore
1724 everything for most ABIs. */
1725 #define WORLD_SAVE_P(INFO) 0
1727 /* 1 if N is a possible register number for a function value
1728 as seen by the caller.
1730 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1731 #define FUNCTION_VALUE_REGNO_P(N) \
1732 ((N) == GP_ARG_RETURN \
1733 || ((N) >= FP_ARG_RETURN && (N) <= FP_ARG_MAX_RETURN \
1734 && TARGET_HARD_FLOAT && TARGET_FPRS) \
1735 || ((N) >= ALTIVEC_ARG_RETURN && (N) <= ALTIVEC_ARG_MAX_RETURN \
1736 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1738 /* 1 if N is a possible register number for function argument passing.
1739 On RS/6000, these are r3-r10 and fp1-fp13.
1740 On AltiVec, v2 - v13 are used for passing vectors. */
1741 #define FUNCTION_ARG_REGNO_P(N) \
1742 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1743 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
1744 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1745 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1746 && TARGET_HARD_FLOAT && TARGET_FPRS))
1748 /* Define a data type for recording info about an argument list
1749 during the scan of that argument list. This data type should
1750 hold all necessary information about the function itself
1751 and about the args processed so far, enough to enable macros
1752 such as FUNCTION_ARG to determine where the next arg should go.
1754 On the RS/6000, this is a structure. The first element is the number of
1755 total argument words, the second is used to store the next
1756 floating-point register number, and the third says how many more args we
1757 have prototype types for.
1759 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1760 the next available GP register, `fregno' is the next available FP
1761 register, and `words' is the number of words used on the stack.
1763 The varargs/stdarg support requires that this structure's size
1764 be a multiple of sizeof(int). */
1766 typedef struct rs6000_args
1768 int words; /* # words used for passing GP registers */
1769 int fregno; /* next available FP register */
1770 int vregno; /* next available AltiVec register */
1771 int nargs_prototype; /* # args left in the current prototype */
1772 int prototype; /* Whether a prototype was defined */
1773 int stdarg; /* Whether function is a stdarg function. */
1774 int call_cookie; /* Do special things for this call */
1775 int sysv_gregno; /* next available GP register */
1776 int intoffset; /* running offset in struct (darwin64) */
1777 int use_stack; /* any part of struct on stack (darwin64) */
1778 int floats_in_gpr; /* count of SFmode floats taking up
1779 GPR space (darwin64) */
1780 int named; /* false for varargs params */
1781 int escapes; /* if function visible outside tu */
1782 } CUMULATIVE_ARGS;
1784 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1785 for a call to a function whose data type is FNTYPE.
1786 For a library call, FNTYPE is 0. */
1788 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1789 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1790 N_NAMED_ARGS, FNDECL, VOIDmode)
1792 /* Similar, but when scanning the definition of a procedure. We always
1793 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1795 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1796 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1797 1000, current_function_decl, VOIDmode)
1799 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1801 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1802 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1803 0, NULL_TREE, MODE)
1805 /* If defined, a C expression which determines whether, and in which
1806 direction, to pad out an argument with extra space. The value
1807 should be of type `enum direction': either `upward' to pad above
1808 the argument, `downward' to pad below, or `none' to inhibit
1809 padding. */
1811 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1813 #define PAD_VARARGS_DOWN \
1814 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1816 /* Output assembler code to FILE to increment profiler label # LABELNO
1817 for profiling a function entry. */
1819 #define FUNCTION_PROFILER(FILE, LABELNO) \
1820 output_function_profiler ((FILE), (LABELNO));
1822 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1823 the stack pointer does not matter. No definition is equivalent to
1824 always zero.
1826 On the RS/6000, this is nonzero because we can restore the stack from
1827 its backpointer, which we maintain. */
1828 #define EXIT_IGNORE_STACK 1
1830 /* Define this macro as a C expression that is nonzero for registers
1831 that are used by the epilogue or the return' pattern. The stack
1832 and frame pointer registers are already be assumed to be used as
1833 needed. */
1835 #define EPILOGUE_USES(REGNO) \
1836 ((reload_completed && (REGNO) == LR_REGNO) \
1837 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1838 || (crtl->calls_eh_return \
1839 && TARGET_AIX \
1840 && (REGNO) == 2))
1843 /* Length in units of the trampoline for entering a nested function. */
1845 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1847 /* Definitions for __builtin_return_address and __builtin_frame_address.
1848 __builtin_return_address (0) should give link register (65), enable
1849 this. */
1850 /* This should be uncommented, so that the link register is used, but
1851 currently this would result in unmatched insns and spilling fixed
1852 registers so we'll leave it for another day. When these problems are
1853 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1854 (mrs) */
1855 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1857 /* Number of bytes into the frame return addresses can be found. See
1858 rs6000_stack_info in rs6000.c for more information on how the different
1859 abi's store the return address. */
1860 #define RETURN_ADDRESS_OFFSET \
1861 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1863 /* The current return address is in link register (65). The return address
1864 of anything farther back is accessed normally at an offset of 8 from the
1865 frame pointer. */
1866 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1867 (rs6000_return_addr (COUNT, FRAME))
1870 /* Definitions for register eliminations.
1872 We have two registers that can be eliminated on the RS/6000. First, the
1873 frame pointer register can often be eliminated in favor of the stack
1874 pointer register. Secondly, the argument pointer register can always be
1875 eliminated; it is replaced with either the stack or frame pointer.
1877 In addition, we use the elimination mechanism to see if r30 is needed
1878 Initially we assume that it isn't. If it is, we spill it. This is done
1879 by making it an eliminable register. We replace it with itself so that
1880 if it isn't needed, then existing uses won't be modified. */
1882 /* This is an array of structures. Each structure initializes one pair
1883 of eliminable registers. The "from" register number is given first,
1884 followed by "to". Eliminations of the same "from" register are listed
1885 in order of preference. */
1886 #define ELIMINABLE_REGS \
1887 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1888 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1889 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1890 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1891 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1892 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1894 /* Define the offset between two registers, one to be eliminated, and the other
1895 its replacement, at the start of a routine. */
1896 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1897 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1899 /* Addressing modes, and classification of registers for them. */
1901 #define HAVE_PRE_DECREMENT 1
1902 #define HAVE_PRE_INCREMENT 1
1903 #define HAVE_PRE_MODIFY_DISP 1
1904 #define HAVE_PRE_MODIFY_REG 1
1906 /* Macros to check register numbers against specific register classes. */
1908 /* These assume that REGNO is a hard or pseudo reg number.
1909 They give nonzero only if REGNO is a hard reg of the suitable class
1910 or a pseudo reg currently allocated to a suitable hard reg.
1911 Since they use reg_renumber, they are safe only once reg_renumber
1912 has been allocated, which happens in reginfo.c during register
1913 allocation. */
1915 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1916 ((REGNO) < FIRST_PSEUDO_REGISTER \
1917 ? (REGNO) <= 31 || (REGNO) == 67 \
1918 || (REGNO) == FRAME_POINTER_REGNUM \
1919 : (reg_renumber[REGNO] >= 0 \
1920 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1921 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1923 #define REGNO_OK_FOR_BASE_P(REGNO) \
1924 ((REGNO) < FIRST_PSEUDO_REGISTER \
1925 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1926 || (REGNO) == FRAME_POINTER_REGNUM \
1927 : (reg_renumber[REGNO] > 0 \
1928 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1929 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1931 /* Nonzero if X is a hard reg that can be used as an index
1932 or if it is a pseudo reg in the non-strict case. */
1933 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1934 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1935 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1937 /* Nonzero if X is a hard reg that can be used as a base reg
1938 or if it is a pseudo reg in the non-strict case. */
1939 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1940 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1941 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1944 /* Maximum number of registers that can appear in a valid memory address. */
1946 #define MAX_REGS_PER_ADDRESS 2
1948 /* Recognize any constant value that is a valid address. */
1950 #define CONSTANT_ADDRESS_P(X) \
1951 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1952 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1953 || GET_CODE (X) == HIGH)
1955 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1956 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1957 && EASY_VECTOR_15((n) >> 1) \
1958 && ((n) & 1) == 0)
1960 #define EASY_VECTOR_MSB(n,mode) \
1961 (((unsigned HOST_WIDE_INT)n) == \
1962 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1965 /* Try a machine-dependent way of reloading an illegitimate address
1966 operand. If we find one, push the reload and jump to WIN. This
1967 macro is used in only one place: `find_reloads_address' in reload.c.
1969 Implemented on rs6000 by rs6000_legitimize_reload_address.
1970 Note that (X) is evaluated twice; this is safe in current usage. */
1972 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1973 do { \
1974 int win; \
1975 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
1976 (int)(TYPE), (IND_LEVELS), &win); \
1977 if ( win ) \
1978 goto WIN; \
1979 } while (0)
1981 #define FIND_BASE_TERM rs6000_find_base_term
1983 /* The register number of the register used to address a table of
1984 static data addresses in memory. In some cases this register is
1985 defined by a processor's "application binary interface" (ABI).
1986 When this macro is defined, RTL is generated for this register
1987 once, as with the stack pointer and frame pointer registers. If
1988 this macro is not defined, it is up to the machine-dependent files
1989 to allocate such a register (if necessary). */
1991 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1992 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
1994 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1996 /* Define this macro if the register defined by
1997 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1998 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
2000 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2002 /* A C expression that is nonzero if X is a legitimate immediate
2003 operand on the target machine when generating position independent
2004 code. You can assume that X satisfies `CONSTANT_P', so you need
2005 not check this. You can also assume FLAG_PIC is true, so you need
2006 not check it either. You need not define this macro if all
2007 constants (including `SYMBOL_REF') can be immediate operands when
2008 generating position independent code. */
2010 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
2012 /* Define this if some processing needs to be done immediately before
2013 emitting code for an insn. */
2015 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
2016 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
2018 /* Specify the machine mode that this machine uses
2019 for the index in the tablejump instruction. */
2020 #define CASE_VECTOR_MODE SImode
2022 /* Define as C expression which evaluates to nonzero if the tablejump
2023 instruction expects the table to contain offsets from the address of the
2024 table.
2025 Do not define this if the table should contain absolute addresses. */
2026 #define CASE_VECTOR_PC_RELATIVE 1
2028 /* Define this as 1 if `char' should by default be signed; else as 0. */
2029 #define DEFAULT_SIGNED_CHAR 0
2031 /* An integer expression for the size in bits of the largest integer machine
2032 mode that should actually be used. */
2034 /* Allow pairs of registers to be used, which is the intent of the default. */
2035 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
2037 /* Max number of bytes we can move from memory to memory
2038 in one reasonably fast instruction. */
2039 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2040 #define MAX_MOVE_MAX 8
2042 /* Nonzero if access to memory by bytes is no faster than for words.
2043 Also nonzero if doing byte operations (specifically shifts) in registers
2044 is undesirable. */
2045 #define SLOW_BYTE_ACCESS 1
2047 /* Define if operations between registers always perform the operation
2048 on the full register even if a narrower mode is specified. */
2049 #define WORD_REGISTER_OPERATIONS
2051 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2052 will either zero-extend or sign-extend. The value of this macro should
2053 be the code that says which one of the two operations is implicitly
2054 done, UNKNOWN if none. */
2055 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2057 /* Define if loading short immediate values into registers sign extends. */
2058 #define SHORT_IMMEDIATES_SIGN_EXTEND
2060 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2061 is done just by pretending it is already truncated. */
2062 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2064 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
2065 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2066 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
2068 /* The CTZ patterns return -1 for input of zero. */
2069 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
2071 /* Specify the machine mode that pointers have.
2072 After generation of rtl, the compiler makes no further distinction
2073 between pointers and any other objects of this machine mode. */
2074 extern unsigned rs6000_pmode;
2075 #define Pmode ((enum machine_mode)rs6000_pmode)
2077 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
2078 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2080 /* Mode of a function address in a call instruction (for indexing purposes).
2081 Doesn't matter on RS/6000. */
2082 #define FUNCTION_MODE SImode
2084 /* Define this if addresses of constant functions
2085 shouldn't be put through pseudo regs where they can be cse'd.
2086 Desirable on machines where ordinary constants are expensive
2087 but a CALL with constant address is cheap. */
2088 #define NO_FUNCTION_CSE
2090 /* Define this to be nonzero if shift instructions ignore all but the low-order
2091 few bits.
2093 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2094 have been dropped from the PowerPC architecture. */
2095 #define SHIFT_COUNT_TRUNCATED 0
2097 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2098 should be adjusted to reflect any required changes. This macro is used when
2099 there is some systematic length adjustment required that would be difficult
2100 to express in the length attribute. */
2102 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2104 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2105 COMPARE, return the mode to be used for the comparison. For
2106 floating-point, CCFPmode should be used. CCUNSmode should be used
2107 for unsigned comparisons. CCEQmode should be used when we are
2108 doing an inequality comparison on the result of a
2109 comparison. CCmode should be used in all other cases. */
2111 #define SELECT_CC_MODE(OP,X,Y) \
2112 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
2113 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2114 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
2115 ? CCEQmode : CCmode))
2117 /* Can the condition code MODE be safely reversed? This is safe in
2118 all cases on this port, because at present it doesn't use the
2119 trapping FP comparisons (fcmpo). */
2120 #define REVERSIBLE_CC_MODE(MODE) 1
2122 /* Given a condition code and a mode, return the inverse condition. */
2123 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2126 /* Control the assembler format that we output. */
2128 /* A C string constant describing how to begin a comment in the target
2129 assembler language. The compiler assumes that the comment will end at
2130 the end of the line. */
2131 #define ASM_COMMENT_START " #"
2133 /* Flag to say the TOC is initialized */
2134 extern int toc_initialized;
2136 /* Macro to output a special constant pool entry. Go to WIN if we output
2137 it. Otherwise, it is written the usual way.
2139 On the RS/6000, toc entries are handled this way. */
2141 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2142 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2144 output_toc (FILE, X, LABELNO, MODE); \
2145 goto WIN; \
2149 #ifdef HAVE_GAS_WEAK
2150 #define RS6000_WEAK 1
2151 #else
2152 #define RS6000_WEAK 0
2153 #endif
2155 #if RS6000_WEAK
2156 /* Used in lieu of ASM_WEAKEN_LABEL. */
2157 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2158 do \
2160 fputs ("\t.weak\t", (FILE)); \
2161 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2162 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2163 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2165 if (TARGET_XCOFF) \
2166 fputs ("[DS]", (FILE)); \
2167 fputs ("\n\t.weak\t.", (FILE)); \
2168 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2170 fputc ('\n', (FILE)); \
2171 if (VAL) \
2173 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2174 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2175 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2177 fputs ("\t.set\t.", (FILE)); \
2178 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2179 fputs (",.", (FILE)); \
2180 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
2181 fputc ('\n', (FILE)); \
2185 while (0)
2186 #endif
2188 #if HAVE_GAS_WEAKREF
2189 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2190 do \
2192 fputs ("\t.weakref\t", (FILE)); \
2193 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2194 fputs (", ", (FILE)); \
2195 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2196 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2197 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2199 fputs ("\n\t.weakref\t.", (FILE)); \
2200 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2201 fputs (", .", (FILE)); \
2202 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2204 fputc ('\n', (FILE)); \
2205 } while (0)
2206 #endif
2208 /* This implements the `alias' attribute. */
2209 #undef ASM_OUTPUT_DEF_FROM_DECLS
2210 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2211 do \
2213 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2214 const char *name = IDENTIFIER_POINTER (TARGET); \
2215 if (TREE_CODE (DECL) == FUNCTION_DECL \
2216 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2218 if (TREE_PUBLIC (DECL)) \
2220 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2222 fputs ("\t.globl\t.", FILE); \
2223 RS6000_OUTPUT_BASENAME (FILE, alias); \
2224 putc ('\n', FILE); \
2227 else if (TARGET_XCOFF) \
2229 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2231 fputs ("\t.lglobl\t.", FILE); \
2232 RS6000_OUTPUT_BASENAME (FILE, alias); \
2233 putc ('\n', FILE); \
2234 fputs ("\t.lglobl\t", FILE); \
2235 RS6000_OUTPUT_BASENAME (FILE, alias); \
2236 putc ('\n', FILE); \
2239 fputs ("\t.set\t.", FILE); \
2240 RS6000_OUTPUT_BASENAME (FILE, alias); \
2241 fputs (",.", FILE); \
2242 RS6000_OUTPUT_BASENAME (FILE, name); \
2243 fputc ('\n', FILE); \
2245 ASM_OUTPUT_DEF (FILE, alias, name); \
2247 while (0)
2249 #define TARGET_ASM_FILE_START rs6000_file_start
2251 /* Output to assembler file text saying following lines
2252 may contain character constants, extra white space, comments, etc. */
2254 #define ASM_APP_ON ""
2256 /* Output to assembler file text saying following lines
2257 no longer contain unusual constructs. */
2259 #define ASM_APP_OFF ""
2261 /* How to refer to registers in assembler output.
2262 This sequence is indexed by compiler's hard-register-number (see above). */
2264 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2266 #define REGISTER_NAMES \
2268 &rs6000_reg_names[ 0][0], /* r0 */ \
2269 &rs6000_reg_names[ 1][0], /* r1 */ \
2270 &rs6000_reg_names[ 2][0], /* r2 */ \
2271 &rs6000_reg_names[ 3][0], /* r3 */ \
2272 &rs6000_reg_names[ 4][0], /* r4 */ \
2273 &rs6000_reg_names[ 5][0], /* r5 */ \
2274 &rs6000_reg_names[ 6][0], /* r6 */ \
2275 &rs6000_reg_names[ 7][0], /* r7 */ \
2276 &rs6000_reg_names[ 8][0], /* r8 */ \
2277 &rs6000_reg_names[ 9][0], /* r9 */ \
2278 &rs6000_reg_names[10][0], /* r10 */ \
2279 &rs6000_reg_names[11][0], /* r11 */ \
2280 &rs6000_reg_names[12][0], /* r12 */ \
2281 &rs6000_reg_names[13][0], /* r13 */ \
2282 &rs6000_reg_names[14][0], /* r14 */ \
2283 &rs6000_reg_names[15][0], /* r15 */ \
2284 &rs6000_reg_names[16][0], /* r16 */ \
2285 &rs6000_reg_names[17][0], /* r17 */ \
2286 &rs6000_reg_names[18][0], /* r18 */ \
2287 &rs6000_reg_names[19][0], /* r19 */ \
2288 &rs6000_reg_names[20][0], /* r20 */ \
2289 &rs6000_reg_names[21][0], /* r21 */ \
2290 &rs6000_reg_names[22][0], /* r22 */ \
2291 &rs6000_reg_names[23][0], /* r23 */ \
2292 &rs6000_reg_names[24][0], /* r24 */ \
2293 &rs6000_reg_names[25][0], /* r25 */ \
2294 &rs6000_reg_names[26][0], /* r26 */ \
2295 &rs6000_reg_names[27][0], /* r27 */ \
2296 &rs6000_reg_names[28][0], /* r28 */ \
2297 &rs6000_reg_names[29][0], /* r29 */ \
2298 &rs6000_reg_names[30][0], /* r30 */ \
2299 &rs6000_reg_names[31][0], /* r31 */ \
2301 &rs6000_reg_names[32][0], /* fr0 */ \
2302 &rs6000_reg_names[33][0], /* fr1 */ \
2303 &rs6000_reg_names[34][0], /* fr2 */ \
2304 &rs6000_reg_names[35][0], /* fr3 */ \
2305 &rs6000_reg_names[36][0], /* fr4 */ \
2306 &rs6000_reg_names[37][0], /* fr5 */ \
2307 &rs6000_reg_names[38][0], /* fr6 */ \
2308 &rs6000_reg_names[39][0], /* fr7 */ \
2309 &rs6000_reg_names[40][0], /* fr8 */ \
2310 &rs6000_reg_names[41][0], /* fr9 */ \
2311 &rs6000_reg_names[42][0], /* fr10 */ \
2312 &rs6000_reg_names[43][0], /* fr11 */ \
2313 &rs6000_reg_names[44][0], /* fr12 */ \
2314 &rs6000_reg_names[45][0], /* fr13 */ \
2315 &rs6000_reg_names[46][0], /* fr14 */ \
2316 &rs6000_reg_names[47][0], /* fr15 */ \
2317 &rs6000_reg_names[48][0], /* fr16 */ \
2318 &rs6000_reg_names[49][0], /* fr17 */ \
2319 &rs6000_reg_names[50][0], /* fr18 */ \
2320 &rs6000_reg_names[51][0], /* fr19 */ \
2321 &rs6000_reg_names[52][0], /* fr20 */ \
2322 &rs6000_reg_names[53][0], /* fr21 */ \
2323 &rs6000_reg_names[54][0], /* fr22 */ \
2324 &rs6000_reg_names[55][0], /* fr23 */ \
2325 &rs6000_reg_names[56][0], /* fr24 */ \
2326 &rs6000_reg_names[57][0], /* fr25 */ \
2327 &rs6000_reg_names[58][0], /* fr26 */ \
2328 &rs6000_reg_names[59][0], /* fr27 */ \
2329 &rs6000_reg_names[60][0], /* fr28 */ \
2330 &rs6000_reg_names[61][0], /* fr29 */ \
2331 &rs6000_reg_names[62][0], /* fr30 */ \
2332 &rs6000_reg_names[63][0], /* fr31 */ \
2334 &rs6000_reg_names[64][0], /* was mq */ \
2335 &rs6000_reg_names[65][0], /* lr */ \
2336 &rs6000_reg_names[66][0], /* ctr */ \
2337 &rs6000_reg_names[67][0], /* ap */ \
2339 &rs6000_reg_names[68][0], /* cr0 */ \
2340 &rs6000_reg_names[69][0], /* cr1 */ \
2341 &rs6000_reg_names[70][0], /* cr2 */ \
2342 &rs6000_reg_names[71][0], /* cr3 */ \
2343 &rs6000_reg_names[72][0], /* cr4 */ \
2344 &rs6000_reg_names[73][0], /* cr5 */ \
2345 &rs6000_reg_names[74][0], /* cr6 */ \
2346 &rs6000_reg_names[75][0], /* cr7 */ \
2348 &rs6000_reg_names[76][0], /* ca */ \
2350 &rs6000_reg_names[77][0], /* v0 */ \
2351 &rs6000_reg_names[78][0], /* v1 */ \
2352 &rs6000_reg_names[79][0], /* v2 */ \
2353 &rs6000_reg_names[80][0], /* v3 */ \
2354 &rs6000_reg_names[81][0], /* v4 */ \
2355 &rs6000_reg_names[82][0], /* v5 */ \
2356 &rs6000_reg_names[83][0], /* v6 */ \
2357 &rs6000_reg_names[84][0], /* v7 */ \
2358 &rs6000_reg_names[85][0], /* v8 */ \
2359 &rs6000_reg_names[86][0], /* v9 */ \
2360 &rs6000_reg_names[87][0], /* v10 */ \
2361 &rs6000_reg_names[88][0], /* v11 */ \
2362 &rs6000_reg_names[89][0], /* v12 */ \
2363 &rs6000_reg_names[90][0], /* v13 */ \
2364 &rs6000_reg_names[91][0], /* v14 */ \
2365 &rs6000_reg_names[92][0], /* v15 */ \
2366 &rs6000_reg_names[93][0], /* v16 */ \
2367 &rs6000_reg_names[94][0], /* v17 */ \
2368 &rs6000_reg_names[95][0], /* v18 */ \
2369 &rs6000_reg_names[96][0], /* v19 */ \
2370 &rs6000_reg_names[97][0], /* v20 */ \
2371 &rs6000_reg_names[98][0], /* v21 */ \
2372 &rs6000_reg_names[99][0], /* v22 */ \
2373 &rs6000_reg_names[100][0], /* v23 */ \
2374 &rs6000_reg_names[101][0], /* v24 */ \
2375 &rs6000_reg_names[102][0], /* v25 */ \
2376 &rs6000_reg_names[103][0], /* v26 */ \
2377 &rs6000_reg_names[104][0], /* v27 */ \
2378 &rs6000_reg_names[105][0], /* v28 */ \
2379 &rs6000_reg_names[106][0], /* v29 */ \
2380 &rs6000_reg_names[107][0], /* v30 */ \
2381 &rs6000_reg_names[108][0], /* v31 */ \
2382 &rs6000_reg_names[109][0], /* vrsave */ \
2383 &rs6000_reg_names[110][0], /* vscr */ \
2384 &rs6000_reg_names[111][0], /* spe_acc */ \
2385 &rs6000_reg_names[112][0], /* spefscr */ \
2386 &rs6000_reg_names[113][0], /* sfp */ \
2387 &rs6000_reg_names[114][0], /* tfhar */ \
2388 &rs6000_reg_names[115][0], /* tfiar */ \
2389 &rs6000_reg_names[116][0], /* texasr */ \
2391 &rs6000_reg_names[117][0], /* SPE rh0. */ \
2392 &rs6000_reg_names[118][0], /* SPE rh1. */ \
2393 &rs6000_reg_names[119][0], /* SPE rh2. */ \
2394 &rs6000_reg_names[120][0], /* SPE rh3. */ \
2395 &rs6000_reg_names[121][0], /* SPE rh4. */ \
2396 &rs6000_reg_names[122][0], /* SPE rh5. */ \
2397 &rs6000_reg_names[123][0], /* SPE rh6. */ \
2398 &rs6000_reg_names[124][0], /* SPE rh7. */ \
2399 &rs6000_reg_names[125][0], /* SPE rh8. */ \
2400 &rs6000_reg_names[126][0], /* SPE rh9. */ \
2401 &rs6000_reg_names[127][0], /* SPE rh10. */ \
2402 &rs6000_reg_names[128][0], /* SPE rh11. */ \
2403 &rs6000_reg_names[129][0], /* SPE rh12. */ \
2404 &rs6000_reg_names[130][0], /* SPE rh13. */ \
2405 &rs6000_reg_names[131][0], /* SPE rh14. */ \
2406 &rs6000_reg_names[132][0], /* SPE rh15. */ \
2407 &rs6000_reg_names[133][0], /* SPE rh16. */ \
2408 &rs6000_reg_names[134][0], /* SPE rh17. */ \
2409 &rs6000_reg_names[135][0], /* SPE rh18. */ \
2410 &rs6000_reg_names[136][0], /* SPE rh19. */ \
2411 &rs6000_reg_names[137][0], /* SPE rh20. */ \
2412 &rs6000_reg_names[138][0], /* SPE rh21. */ \
2413 &rs6000_reg_names[139][0], /* SPE rh22. */ \
2414 &rs6000_reg_names[140][0], /* SPE rh22. */ \
2415 &rs6000_reg_names[141][0], /* SPE rh24. */ \
2416 &rs6000_reg_names[142][0], /* SPE rh25. */ \
2417 &rs6000_reg_names[143][0], /* SPE rh26. */ \
2418 &rs6000_reg_names[144][0], /* SPE rh27. */ \
2419 &rs6000_reg_names[145][0], /* SPE rh28. */ \
2420 &rs6000_reg_names[146][0], /* SPE rh29. */ \
2421 &rs6000_reg_names[147][0], /* SPE rh30. */ \
2422 &rs6000_reg_names[148][0], /* SPE rh31. */ \
2425 /* Table of additional register names to use in user input. */
2427 #define ADDITIONAL_REGISTER_NAMES \
2428 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2429 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2430 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2431 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2432 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2433 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2434 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2435 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2436 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2437 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2438 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2439 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2440 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2441 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2442 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2443 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2444 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2445 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2446 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2447 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2448 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2449 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2450 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2451 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2452 {"vrsave", 109}, {"vscr", 110}, \
2453 {"spe_acc", 111}, {"spefscr", 112}, \
2454 /* no additional names for: lr, ctr, ap */ \
2455 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2456 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2457 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
2458 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2459 {"xer", 76}, \
2460 /* VSX registers overlaid on top of FR, Altivec registers */ \
2461 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2462 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2463 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2464 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2465 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2466 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2467 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2468 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2469 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2470 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2471 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2472 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2473 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2474 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2475 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
2476 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108}, \
2477 /* Transactional Memory Facility (HTM) Registers. */ \
2478 {"tfhar", 114}, {"tfiar", 115}, {"texasr", 116}, \
2479 /* SPE high registers. */ \
2480 {"rh0", 117}, {"rh1", 118}, {"rh2", 119}, {"rh3", 120}, \
2481 {"rh4", 121}, {"rh5", 122}, {"rh6", 123}, {"rh7", 124}, \
2482 {"rh8", 125}, {"rh9", 126}, {"rh10", 127}, {"rh11", 128}, \
2483 {"rh12", 129}, {"rh13", 130}, {"rh14", 131}, {"rh15", 132}, \
2484 {"rh16", 133}, {"rh17", 134}, {"rh18", 135}, {"rh19", 136}, \
2485 {"rh20", 137}, {"rh21", 138}, {"rh22", 139}, {"rh23", 140}, \
2486 {"rh24", 141}, {"rh25", 142}, {"rh26", 143}, {"rh27", 144}, \
2487 {"rh28", 145}, {"rh29", 146}, {"rh30", 147}, {"rh31", 148}, \
2490 /* This is how to output an element of a case-vector that is relative. */
2492 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2493 do { char buf[100]; \
2494 fputs ("\t.long ", FILE); \
2495 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2496 assemble_name (FILE, buf); \
2497 putc ('-', FILE); \
2498 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2499 assemble_name (FILE, buf); \
2500 putc ('\n', FILE); \
2501 } while (0)
2503 /* This is how to output an assembler line
2504 that says to advance the location counter
2505 to a multiple of 2**LOG bytes. */
2507 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2508 if ((LOG) != 0) \
2509 fprintf (FILE, "\t.align %d\n", (LOG))
2511 /* How to align the given loop. */
2512 #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2514 /* Alignment guaranteed by __builtin_malloc. */
2515 /* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2516 However, specifying the stronger guarantee currently leads to
2517 a regression in SPEC CPU2006 437.leslie3d. The stronger
2518 guarantee should be implemented here once that's fixed. */
2519 #define MALLOC_ABI_ALIGNMENT (64)
2521 /* Pick up the return address upon entry to a procedure. Used for
2522 dwarf2 unwind information. This also enables the table driven
2523 mechanism. */
2525 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2526 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2528 /* Describe how we implement __builtin_eh_return. */
2529 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2530 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2532 /* Print operand X (an rtx) in assembler syntax to file FILE.
2533 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2534 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2536 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2538 /* Define which CODE values are valid. */
2540 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
2542 /* Print a memory address as an operand to reference that memory location. */
2544 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2546 /* For switching between functions with different target attributes. */
2547 #define SWITCHABLE_TARGET 1
2549 /* uncomment for disabling the corresponding default options */
2550 /* #define MACHINE_no_sched_interblock */
2551 /* #define MACHINE_no_sched_speculative */
2552 /* #define MACHINE_no_sched_speculative_load */
2554 /* General flags. */
2555 extern int frame_pointer_needed;
2557 /* Classification of the builtin functions as to which switches enable the
2558 builtin, and what attributes it should have. We used to use the target
2559 flags macros, but we've run out of bits, so we now map the options into new
2560 settings used here. */
2562 /* Builtin attributes. */
2563 #define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2564 #define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2565 #define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2566 #define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2567 #define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2568 #define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
2569 #define RS6000_BTC_EVSEL 0x00000006 /* SPE EVSEL function. */
2570 #define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2571 #define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2573 #define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
2574 #define RS6000_BTC_CONST 0x00000100 /* uses no global state. */
2575 #define RS6000_BTC_PURE 0x00000200 /* reads global state/mem. */
2576 #define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2577 #define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2579 /* Miscellaneous information. */
2580 #define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
2581 #define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
2582 #define RS6000_BTC_OVERLOADED 0x04000000 /* function is overloaded. */
2583 #define RS6000_BTC_32BIT 0x08000000 /* function references SPRs. */
2584 #define RS6000_BTC_64BIT 0x10000000 /* function references SPRs. */
2585 #define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
2587 /* Convenience macros to document the instruction type. */
2588 #define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2589 #define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2591 /* Builtin targets. For now, we reuse the masks for those options that are in
2592 target flags, and pick three random bits for SPE, paired and ldbl128 which
2593 aren't in target_flags. */
2594 #define RS6000_BTM_ALWAYS 0 /* Always enabled. */
2595 #define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
2596 #define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
2597 #define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
2598 #define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
2599 #define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
2600 #define RS6000_BTM_SPE MASK_STRING /* E500 */
2601 #define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
2602 #define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2603 #define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2604 #define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2605 #define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2606 #define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
2607 #define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
2608 #define RS6000_BTM_DFP MASK_DFP /* Decimal floating point. */
2609 #define RS6000_BTM_HARD_FLOAT MASK_SOFT_FLOAT /* Hardware floating point. */
2610 #define RS6000_BTM_LDBL128 MASK_MULTIPLE /* 128-bit long double. */
2612 #define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2613 | RS6000_BTM_VSX \
2614 | RS6000_BTM_P8_VECTOR \
2615 | RS6000_BTM_CRYPTO \
2616 | RS6000_BTM_FRE \
2617 | RS6000_BTM_FRES \
2618 | RS6000_BTM_FRSQRTE \
2619 | RS6000_BTM_FRSQRTES \
2620 | RS6000_BTM_HTM \
2621 | RS6000_BTM_POPCNTD \
2622 | RS6000_BTM_CELL \
2623 | RS6000_BTM_DFP \
2624 | RS6000_BTM_HARD_FLOAT \
2625 | RS6000_BTM_LDBL128)
2627 /* Define builtin enum index. */
2629 #undef RS6000_BUILTIN_1
2630 #undef RS6000_BUILTIN_2
2631 #undef RS6000_BUILTIN_3
2632 #undef RS6000_BUILTIN_A
2633 #undef RS6000_BUILTIN_D
2634 #undef RS6000_BUILTIN_E
2635 #undef RS6000_BUILTIN_H
2636 #undef RS6000_BUILTIN_P
2637 #undef RS6000_BUILTIN_Q
2638 #undef RS6000_BUILTIN_S
2639 #undef RS6000_BUILTIN_X
2641 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2642 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2643 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2644 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2645 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2646 #define RS6000_BUILTIN_E(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2647 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2648 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2649 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2650 #define RS6000_BUILTIN_S(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2651 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2653 enum rs6000_builtins
2655 #include "rs6000-builtin.def"
2657 RS6000_BUILTIN_COUNT
2660 #undef RS6000_BUILTIN_1
2661 #undef RS6000_BUILTIN_2
2662 #undef RS6000_BUILTIN_3
2663 #undef RS6000_BUILTIN_A
2664 #undef RS6000_BUILTIN_D
2665 #undef RS6000_BUILTIN_E
2666 #undef RS6000_BUILTIN_H
2667 #undef RS6000_BUILTIN_P
2668 #undef RS6000_BUILTIN_Q
2669 #undef RS6000_BUILTIN_S
2670 #undef RS6000_BUILTIN_X
2672 enum rs6000_builtin_type_index
2674 RS6000_BTI_NOT_OPAQUE,
2675 RS6000_BTI_opaque_V2SI,
2676 RS6000_BTI_opaque_V2SF,
2677 RS6000_BTI_opaque_p_V2SI,
2678 RS6000_BTI_opaque_V4SI,
2679 RS6000_BTI_V16QI,
2680 RS6000_BTI_V1TI,
2681 RS6000_BTI_V2SI,
2682 RS6000_BTI_V2SF,
2683 RS6000_BTI_V2DI,
2684 RS6000_BTI_V2DF,
2685 RS6000_BTI_V4HI,
2686 RS6000_BTI_V4SI,
2687 RS6000_BTI_V4SF,
2688 RS6000_BTI_V8HI,
2689 RS6000_BTI_unsigned_V16QI,
2690 RS6000_BTI_unsigned_V1TI,
2691 RS6000_BTI_unsigned_V8HI,
2692 RS6000_BTI_unsigned_V4SI,
2693 RS6000_BTI_unsigned_V2DI,
2694 RS6000_BTI_bool_char, /* __bool char */
2695 RS6000_BTI_bool_short, /* __bool short */
2696 RS6000_BTI_bool_int, /* __bool int */
2697 RS6000_BTI_bool_long, /* __bool long */
2698 RS6000_BTI_pixel, /* __pixel */
2699 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2700 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2701 RS6000_BTI_bool_V4SI, /* __vector __bool int */
2702 RS6000_BTI_bool_V2DI, /* __vector __bool long */
2703 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2704 RS6000_BTI_long, /* long_integer_type_node */
2705 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
2706 RS6000_BTI_long_long, /* long_long_integer_type_node */
2707 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2708 RS6000_BTI_INTQI, /* intQI_type_node */
2709 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2710 RS6000_BTI_INTHI, /* intHI_type_node */
2711 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2712 RS6000_BTI_INTSI, /* intSI_type_node */
2713 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
2714 RS6000_BTI_INTDI, /* intDI_type_node */
2715 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
2716 RS6000_BTI_INTTI, /* intTI_type_node */
2717 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
2718 RS6000_BTI_float, /* float_type_node */
2719 RS6000_BTI_double, /* double_type_node */
2720 RS6000_BTI_long_double, /* long_double_type_node */
2721 RS6000_BTI_dfloat64, /* dfloat64_type_node */
2722 RS6000_BTI_dfloat128, /* dfloat128_type_node */
2723 RS6000_BTI_void, /* void_type_node */
2724 RS6000_BTI_MAX
2728 #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2729 #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2730 #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2731 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2732 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
2733 #define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
2734 #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2735 #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
2736 #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2737 #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2738 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2739 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2740 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2741 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2742 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2743 #define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2744 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2745 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2746 #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2747 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2748 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2749 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
2750 #define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
2751 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2752 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2753 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2754 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2755 #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2756 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2758 #define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2759 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2760 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2761 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2762 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2763 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2764 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2765 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2766 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2767 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
2768 #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2769 #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
2770 #define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2771 #define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
2772 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
2773 #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
2774 #define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2775 #define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2776 #define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
2777 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
2779 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2780 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2782 #define TARGET_SUPPORTS_WIDE_INT 1