Merge from trunk:
[official-gcc.git] / main / gcc / ada / sem_ch4.adb
blob6c260313c9c75e91ce8c5e0a45e1847ac759071c
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Util; use Exp_Util;
33 with Fname; use Fname;
34 with Itypes; use Itypes;
35 with Lib; use Lib;
36 with Lib.Xref; use Lib.Xref;
37 with Namet; use Namet;
38 with Namet.Sp; use Namet.Sp;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Output; use Output;
43 with Restrict; use Restrict;
44 with Rident; use Rident;
45 with Sem; use Sem;
46 with Sem_Aux; use Sem_Aux;
47 with Sem_Case; use Sem_Case;
48 with Sem_Cat; use Sem_Cat;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch6; use Sem_Ch6;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Dim; use Sem_Dim;
53 with Sem_Disp; use Sem_Disp;
54 with Sem_Dist; use Sem_Dist;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Res; use Sem_Res;
57 with Sem_Type; use Sem_Type;
58 with Sem_Util; use Sem_Util;
59 with Sem_Warn; use Sem_Warn;
60 with Stand; use Stand;
61 with Sinfo; use Sinfo;
62 with Snames; use Snames;
63 with Tbuild; use Tbuild;
64 with Uintp; use Uintp;
66 package body Sem_Ch4 is
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Analyze_Concatenation_Rest (N : Node_Id);
73 -- Does the "rest" of the work of Analyze_Concatenation, after the left
74 -- operand has been analyzed. See Analyze_Concatenation for details.
76 procedure Analyze_Expression (N : Node_Id);
77 -- For expressions that are not names, this is just a call to analyze. If
78 -- the expression is a name, it may be a call to a parameterless function,
79 -- and if so must be converted into an explicit call node and analyzed as
80 -- such. This deproceduring must be done during the first pass of overload
81 -- resolution, because otherwise a procedure call with overloaded actuals
82 -- may fail to resolve.
84 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
85 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call is an
86 -- operator name or an expanded name whose selector is an operator name,
87 -- and one possible interpretation is as a predefined operator.
89 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
90 -- If the prefix of a selected_component is overloaded, the proper
91 -- interpretation that yields a record type with the proper selector
92 -- name must be selected.
94 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
95 -- Procedure to analyze a user defined binary operator, which is resolved
96 -- like a function, but instead of a list of actuals it is presented
97 -- with the left and right operands of an operator node.
99 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
100 -- Procedure to analyze a user defined unary operator, which is resolved
101 -- like a function, but instead of a list of actuals, it is presented with
102 -- the operand of the operator node.
104 procedure Ambiguous_Operands (N : Node_Id);
105 -- For equality, membership, and comparison operators with overloaded
106 -- arguments, list possible interpretations.
108 procedure Analyze_One_Call
109 (N : Node_Id;
110 Nam : Entity_Id;
111 Report : Boolean;
112 Success : out Boolean;
113 Skip_First : Boolean := False);
114 -- Check one interpretation of an overloaded subprogram name for
115 -- compatibility with the types of the actuals in a call. If there is a
116 -- single interpretation which does not match, post error if Report is
117 -- set to True.
119 -- Nam is the entity that provides the formals against which the actuals
120 -- are checked. Nam is either the name of a subprogram, or the internal
121 -- subprogram type constructed for an access_to_subprogram. If the actuals
122 -- are compatible with Nam, then Nam is added to the list of candidate
123 -- interpretations for N, and Success is set to True.
125 -- The flag Skip_First is used when analyzing a call that was rewritten
126 -- from object notation. In this case the first actual may have to receive
127 -- an explicit dereference, depending on the first formal of the operation
128 -- being called. The caller will have verified that the object is legal
129 -- for the call. If the remaining parameters match, the first parameter
130 -- will rewritten as a dereference if needed, prior to completing analysis.
132 procedure Check_Misspelled_Selector
133 (Prefix : Entity_Id;
134 Sel : Node_Id);
135 -- Give possible misspelling message if Sel seems likely to be a mis-
136 -- spelling of one of the selectors of the Prefix. This is called by
137 -- Analyze_Selected_Component after producing an invalid selector error
138 -- message.
140 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
141 -- Verify that type T is declared in scope S. Used to find interpretations
142 -- for operators given by expanded names. This is abstracted as a separate
143 -- function to handle extensions to System, where S is System, but T is
144 -- declared in the extension.
146 procedure Find_Arithmetic_Types
147 (L, R : Node_Id;
148 Op_Id : Entity_Id;
149 N : Node_Id);
150 -- L and R are the operands of an arithmetic operator. Find consistent
151 -- pairs of interpretations for L and R that have a numeric type consistent
152 -- with the semantics of the operator.
154 procedure Find_Comparison_Types
155 (L, R : Node_Id;
156 Op_Id : Entity_Id;
157 N : Node_Id);
158 -- L and R are operands of a comparison operator. Find consistent pairs of
159 -- interpretations for L and R.
161 procedure Find_Concatenation_Types
162 (L, R : Node_Id;
163 Op_Id : Entity_Id;
164 N : Node_Id);
165 -- For the four varieties of concatenation
167 procedure Find_Equality_Types
168 (L, R : Node_Id;
169 Op_Id : Entity_Id;
170 N : Node_Id);
171 -- Ditto for equality operators
173 procedure Find_Boolean_Types
174 (L, R : Node_Id;
175 Op_Id : Entity_Id;
176 N : Node_Id);
177 -- Ditto for binary logical operations
179 procedure Find_Negation_Types
180 (R : Node_Id;
181 Op_Id : Entity_Id;
182 N : Node_Id);
183 -- Find consistent interpretation for operand of negation operator
185 procedure Find_Non_Universal_Interpretations
186 (N : Node_Id;
187 R : Node_Id;
188 Op_Id : Entity_Id;
189 T1 : Entity_Id);
190 -- For equality and comparison operators, the result is always boolean,
191 -- and the legality of the operation is determined from the visibility
192 -- of the operand types. If one of the operands has a universal interpre-
193 -- tation, the legality check uses some compatible non-universal
194 -- interpretation of the other operand. N can be an operator node, or
195 -- a function call whose name is an operator designator. Any_Access, which
196 -- is the initial type of the literal NULL, is a universal type for the
197 -- purpose of this routine.
199 function Find_Primitive_Operation (N : Node_Id) return Boolean;
200 -- Find candidate interpretations for the name Obj.Proc when it appears
201 -- in a subprogram renaming declaration.
203 procedure Find_Unary_Types
204 (R : Node_Id;
205 Op_Id : Entity_Id;
206 N : Node_Id);
207 -- Unary arithmetic types: plus, minus, abs
209 procedure Check_Arithmetic_Pair
210 (T1, T2 : Entity_Id;
211 Op_Id : Entity_Id;
212 N : Node_Id);
213 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
214 -- types for left and right operand. Determine whether they constitute
215 -- a valid pair for the given operator, and record the corresponding
216 -- interpretation of the operator node. The node N may be an operator
217 -- node (the usual case) or a function call whose prefix is an operator
218 -- designator. In both cases Op_Id is the operator name itself.
220 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
221 -- Give detailed information on overloaded call where none of the
222 -- interpretations match. N is the call node, Nam the designator for
223 -- the overloaded entity being called.
225 function Junk_Operand (N : Node_Id) return Boolean;
226 -- Test for an operand that is an inappropriate entity (e.g. a package
227 -- name or a label). If so, issue an error message and return True. If
228 -- the operand is not an inappropriate entity kind, return False.
230 procedure Operator_Check (N : Node_Id);
231 -- Verify that an operator has received some valid interpretation. If none
232 -- was found, determine whether a use clause would make the operation
233 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
234 -- every type compatible with the operator, even if the operator for the
235 -- type is not directly visible. The routine uses this type to emit a more
236 -- informative message.
238 function Process_Implicit_Dereference_Prefix
239 (E : Entity_Id;
240 P : Node_Id) return Entity_Id;
241 -- Called when P is the prefix of an implicit dereference, denoting an
242 -- object E. The function returns the designated type of the prefix, taking
243 -- into account that the designated type of an anonymous access type may be
244 -- a limited view, when the non-limited view is visible.
245 -- If in semantics only mode (-gnatc or generic), the function also records
246 -- that the prefix is a reference to E, if any. Normally, such a reference
247 -- is generated only when the implicit dereference is expanded into an
248 -- explicit one, but for consistency we must generate the reference when
249 -- expansion is disabled as well.
251 procedure Remove_Abstract_Operations (N : Node_Id);
252 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
253 -- operation is not a candidate interpretation.
255 function Try_Container_Indexing
256 (N : Node_Id;
257 Prefix : Node_Id;
258 Exprs : List_Id) return Boolean;
259 -- AI05-0139: Generalized indexing to support iterators over containers
261 function Try_Indexed_Call
262 (N : Node_Id;
263 Nam : Entity_Id;
264 Typ : Entity_Id;
265 Skip_First : Boolean) return Boolean;
266 -- If a function has defaults for all its actuals, a call to it may in fact
267 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
268 -- interpretation as an indexing, prior to analysis as a call. If both are
269 -- possible, the node is overloaded with both interpretations (same symbol
270 -- but two different types). If the call is written in prefix form, the
271 -- prefix becomes the first parameter in the call, and only the remaining
272 -- actuals must be checked for the presence of defaults.
274 function Try_Indirect_Call
275 (N : Node_Id;
276 Nam : Entity_Id;
277 Typ : Entity_Id) return Boolean;
278 -- Similarly, a function F that needs no actuals can return an access to a
279 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
280 -- the call may be overloaded with both interpretations.
282 function Try_Object_Operation
283 (N : Node_Id;
284 CW_Test_Only : Boolean := False) return Boolean;
285 -- Ada 2005 (AI-252): Support the object.operation notation. If node N
286 -- is a call in this notation, it is transformed into a normal subprogram
287 -- call where the prefix is a parameter, and True is returned. If node
288 -- N is not of this form, it is unchanged, and False is returned. if
289 -- CW_Test_Only is true then N is an N_Selected_Component node which
290 -- is part of a call to an entry or procedure of a tagged concurrent
291 -- type and this routine is invoked to search for class-wide subprograms
292 -- conflicting with the target entity.
294 procedure wpo (T : Entity_Id);
295 pragma Warnings (Off, wpo);
296 -- Used for debugging: obtain list of primitive operations even if
297 -- type is not frozen and dispatch table is not built yet.
299 ------------------------
300 -- Ambiguous_Operands --
301 ------------------------
303 procedure Ambiguous_Operands (N : Node_Id) is
304 procedure List_Operand_Interps (Opnd : Node_Id);
306 --------------------------
307 -- List_Operand_Interps --
308 --------------------------
310 procedure List_Operand_Interps (Opnd : Node_Id) is
311 Nam : Node_Id;
312 Err : Node_Id := N;
314 begin
315 if Is_Overloaded (Opnd) then
316 if Nkind (Opnd) in N_Op then
317 Nam := Opnd;
318 elsif Nkind (Opnd) = N_Function_Call then
319 Nam := Name (Opnd);
320 elsif Ada_Version >= Ada_2012 then
321 declare
322 It : Interp;
323 I : Interp_Index;
325 begin
326 Get_First_Interp (Opnd, I, It);
327 while Present (It.Nam) loop
328 if Has_Implicit_Dereference (It.Typ) then
329 Error_Msg_N
330 ("can be interpreted as implicit dereference", Opnd);
331 return;
332 end if;
334 Get_Next_Interp (I, It);
335 end loop;
336 end;
338 return;
339 end if;
341 else
342 return;
343 end if;
345 if Opnd = Left_Opnd (N) then
346 Error_Msg_N ("\left operand has the following interpretations", N);
347 else
348 Error_Msg_N
349 ("\right operand has the following interpretations", N);
350 Err := Opnd;
351 end if;
353 List_Interps (Nam, Err);
354 end List_Operand_Interps;
356 -- Start of processing for Ambiguous_Operands
358 begin
359 if Nkind (N) in N_Membership_Test then
360 Error_Msg_N ("ambiguous operands for membership", N);
362 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
363 Error_Msg_N ("ambiguous operands for equality", N);
365 else
366 Error_Msg_N ("ambiguous operands for comparison", N);
367 end if;
369 if All_Errors_Mode then
370 List_Operand_Interps (Left_Opnd (N));
371 List_Operand_Interps (Right_Opnd (N));
372 else
373 Error_Msg_N ("\use -gnatf switch for details", N);
374 end if;
375 end Ambiguous_Operands;
377 -----------------------
378 -- Analyze_Aggregate --
379 -----------------------
381 -- Most of the analysis of Aggregates requires that the type be known,
382 -- and is therefore put off until resolution.
384 procedure Analyze_Aggregate (N : Node_Id) is
385 begin
386 if No (Etype (N)) then
387 Set_Etype (N, Any_Composite);
388 end if;
389 end Analyze_Aggregate;
391 -----------------------
392 -- Analyze_Allocator --
393 -----------------------
395 procedure Analyze_Allocator (N : Node_Id) is
396 Loc : constant Source_Ptr := Sloc (N);
397 Sav_Errs : constant Nat := Serious_Errors_Detected;
398 E : Node_Id := Expression (N);
399 Acc_Type : Entity_Id;
400 Type_Id : Entity_Id;
401 P : Node_Id;
402 C : Node_Id;
403 Onode : Node_Id;
405 begin
406 Check_SPARK_05_Restriction ("allocator is not allowed", N);
408 -- Deal with allocator restrictions
410 -- In accordance with H.4(7), the No_Allocators restriction only applies
411 -- to user-written allocators. The same consideration applies to the
412 -- No_Standard_Allocators_Before_Elaboration restriction.
414 if Comes_From_Source (N) then
415 Check_Restriction (No_Allocators, N);
417 -- Processing for No_Standard_Allocators_After_Elaboration, loop to
418 -- look at enclosing context, checking task/main subprogram case.
420 C := N;
421 P := Parent (C);
422 while Present (P) loop
424 -- For the task case we need a handled sequence of statements,
425 -- where the occurrence of the allocator is within the statements
426 -- and the parent is a task body
428 if Nkind (P) = N_Handled_Sequence_Of_Statements
429 and then Is_List_Member (C)
430 and then List_Containing (C) = Statements (P)
431 then
432 Onode := Original_Node (Parent (P));
434 -- Check for allocator within task body, this is a definite
435 -- violation of No_Allocators_After_Elaboration we can detect
436 -- at compile time.
438 if Nkind (Onode) = N_Task_Body then
439 Check_Restriction
440 (No_Standard_Allocators_After_Elaboration, N);
441 exit;
442 end if;
443 end if;
445 -- The other case is appearance in a subprogram body. This is
446 -- a violation if this is a library level subprogram with no
447 -- parameters. Note that this is now a static error even if the
448 -- subprogram is not the main program (this is a change, in an
449 -- earlier version only the main program was affected, and the
450 -- check had to be done in the binder.
452 if Nkind (P) = N_Subprogram_Body
453 and then Nkind (Parent (P)) = N_Compilation_Unit
454 and then No (Parameter_Specifications (Specification (P)))
455 then
456 Check_Restriction
457 (No_Standard_Allocators_After_Elaboration, N);
458 end if;
460 C := P;
461 P := Parent (C);
462 end loop;
463 end if;
465 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
466 -- any. The expected type for the name is any type. A non-overloading
467 -- rule then requires it to be of a type descended from
468 -- System.Storage_Pools.Subpools.Subpool_Handle.
470 -- This isn't exactly what the AI says, but it seems to be the right
471 -- rule. The AI should be fixed.???
473 declare
474 Subpool : constant Node_Id := Subpool_Handle_Name (N);
476 begin
477 if Present (Subpool) then
478 Analyze (Subpool);
480 if Is_Overloaded (Subpool) then
481 Error_Msg_N ("ambiguous subpool handle", Subpool);
482 end if;
484 -- Check that Etype (Subpool) is descended from Subpool_Handle
486 Resolve (Subpool);
487 end if;
488 end;
490 -- Analyze the qualified expression or subtype indication
492 if Nkind (E) = N_Qualified_Expression then
493 Acc_Type := Create_Itype (E_Allocator_Type, N);
494 Set_Etype (Acc_Type, Acc_Type);
495 Find_Type (Subtype_Mark (E));
497 -- Analyze the qualified expression, and apply the name resolution
498 -- rule given in 4.7(3).
500 Analyze (E);
501 Type_Id := Etype (E);
502 Set_Directly_Designated_Type (Acc_Type, Type_Id);
504 -- Allocators generated by the build-in-place expansion mechanism
505 -- are explicitly marked as coming from source but do not need to be
506 -- checked for limited initialization. To exclude this case, ensure
507 -- that the parent of the allocator is a source node.
509 if Is_Limited_Type (Type_Id)
510 and then Comes_From_Source (N)
511 and then Comes_From_Source (Parent (N))
512 and then not In_Instance_Body
513 then
514 if not OK_For_Limited_Init (Type_Id, Expression (E)) then
515 Error_Msg_N ("initialization not allowed for limited types", N);
516 Explain_Limited_Type (Type_Id, N);
517 end if;
518 end if;
520 -- A qualified expression requires an exact match of the type,
521 -- class-wide matching is not allowed.
523 -- if Is_Class_Wide_Type (Type_Id)
524 -- and then Base_Type
525 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
526 -- then
527 -- Wrong_Type (Expression (E), Type_Id);
528 -- end if;
530 -- We don't analyze the qualified expression itself because it's
531 -- part of the allocator. It is fully analyzed and resolved when
532 -- the allocator is resolved with the context type.
534 Set_Etype (E, Type_Id);
536 -- Case where allocator has a subtype indication
538 else
539 declare
540 Def_Id : Entity_Id;
541 Base_Typ : Entity_Id;
543 begin
544 -- If the allocator includes a N_Subtype_Indication then a
545 -- constraint is present, otherwise the node is a subtype mark.
546 -- Introduce an explicit subtype declaration into the tree
547 -- defining some anonymous subtype and rewrite the allocator to
548 -- use this subtype rather than the subtype indication.
550 -- It is important to introduce the explicit subtype declaration
551 -- so that the bounds of the subtype indication are attached to
552 -- the tree in case the allocator is inside a generic unit.
554 if Nkind (E) = N_Subtype_Indication then
556 -- A constraint is only allowed for a composite type in Ada
557 -- 95. In Ada 83, a constraint is also allowed for an
558 -- access-to-composite type, but the constraint is ignored.
560 Find_Type (Subtype_Mark (E));
561 Base_Typ := Entity (Subtype_Mark (E));
563 if Is_Elementary_Type (Base_Typ) then
564 if not (Ada_Version = Ada_83
565 and then Is_Access_Type (Base_Typ))
566 then
567 Error_Msg_N ("constraint not allowed here", E);
569 if Nkind (Constraint (E)) =
570 N_Index_Or_Discriminant_Constraint
571 then
572 Error_Msg_N -- CODEFIX
573 ("\if qualified expression was meant, " &
574 "use apostrophe", Constraint (E));
575 end if;
576 end if;
578 -- Get rid of the bogus constraint:
580 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
581 Analyze_Allocator (N);
582 return;
583 end if;
585 if Expander_Active then
586 Def_Id := Make_Temporary (Loc, 'S');
588 Insert_Action (E,
589 Make_Subtype_Declaration (Loc,
590 Defining_Identifier => Def_Id,
591 Subtype_Indication => Relocate_Node (E)));
593 if Sav_Errs /= Serious_Errors_Detected
594 and then Nkind (Constraint (E)) =
595 N_Index_Or_Discriminant_Constraint
596 then
597 Error_Msg_N -- CODEFIX
598 ("if qualified expression was meant, "
599 & "use apostrophe!", Constraint (E));
600 end if;
602 E := New_Occurrence_Of (Def_Id, Loc);
603 Rewrite (Expression (N), E);
604 end if;
605 end if;
607 Type_Id := Process_Subtype (E, N);
608 Acc_Type := Create_Itype (E_Allocator_Type, N);
609 Set_Etype (Acc_Type, Acc_Type);
610 Set_Directly_Designated_Type (Acc_Type, Type_Id);
611 Check_Fully_Declared (Type_Id, N);
613 -- Ada 2005 (AI-231): If the designated type is itself an access
614 -- type that excludes null, its default initialization will
615 -- be a null object, and we can insert an unconditional raise
616 -- before the allocator.
618 -- Ada 2012 (AI-104): A not null indication here is altogether
619 -- illegal.
621 if Can_Never_Be_Null (Type_Id) then
622 declare
623 Not_Null_Check : constant Node_Id :=
624 Make_Raise_Constraint_Error (Sloc (E),
625 Reason => CE_Null_Not_Allowed);
627 begin
628 if Expander_Active then
629 Insert_Action (N, Not_Null_Check);
630 Analyze (Not_Null_Check);
632 elsif Warn_On_Ada_2012_Compatibility then
633 Error_Msg_N
634 ("null value not allowed here in Ada 2012?y?", E);
635 end if;
636 end;
637 end if;
639 -- Check for missing initialization. Skip this check if we already
640 -- had errors on analyzing the allocator, since in that case these
641 -- are probably cascaded errors.
643 if Is_Indefinite_Subtype (Type_Id)
644 and then Serious_Errors_Detected = Sav_Errs
645 then
646 -- The build-in-place machinery may produce an allocator when
647 -- the designated type is indefinite but the underlying type is
648 -- not. In this case the unknown discriminants are meaningless
649 -- and should not trigger error messages. Check the parent node
650 -- because the allocator is marked as coming from source.
652 if Present (Underlying_Type (Type_Id))
653 and then not Is_Indefinite_Subtype (Underlying_Type (Type_Id))
654 and then not Comes_From_Source (Parent (N))
655 then
656 null;
658 elsif Is_Class_Wide_Type (Type_Id) then
659 Error_Msg_N
660 ("initialization required in class-wide allocation", N);
662 else
663 if Ada_Version < Ada_2005
664 and then Is_Limited_Type (Type_Id)
665 then
666 Error_Msg_N ("unconstrained allocation not allowed", N);
668 if Is_Array_Type (Type_Id) then
669 Error_Msg_N
670 ("\constraint with array bounds required", N);
672 elsif Has_Unknown_Discriminants (Type_Id) then
673 null;
675 else pragma Assert (Has_Discriminants (Type_Id));
676 Error_Msg_N
677 ("\constraint with discriminant values required", N);
678 end if;
680 -- Limited Ada 2005 and general non-limited case
682 else
683 Error_Msg_N
684 ("uninitialized unconstrained allocation not allowed",
687 if Is_Array_Type (Type_Id) then
688 Error_Msg_N
689 ("\qualified expression or constraint with " &
690 "array bounds required", N);
692 elsif Has_Unknown_Discriminants (Type_Id) then
693 Error_Msg_N ("\qualified expression required", N);
695 else pragma Assert (Has_Discriminants (Type_Id));
696 Error_Msg_N
697 ("\qualified expression or constraint with " &
698 "discriminant values required", N);
699 end if;
700 end if;
701 end if;
702 end if;
703 end;
704 end if;
706 if Is_Abstract_Type (Type_Id) then
707 Error_Msg_N ("cannot allocate abstract object", E);
708 end if;
710 if Has_Task (Designated_Type (Acc_Type)) then
711 Check_Restriction (No_Tasking, N);
712 Check_Restriction (Max_Tasks, N);
713 Check_Restriction (No_Task_Allocators, N);
714 end if;
716 -- Check restriction against dynamically allocated protected objects
718 if Has_Protected (Designated_Type (Acc_Type)) then
719 Check_Restriction (No_Protected_Type_Allocators, N);
720 end if;
722 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
723 -- type is nested, and the designated type needs finalization. The rule
724 -- is conservative in that class-wide types need finalization.
726 if Needs_Finalization (Designated_Type (Acc_Type))
727 and then not Is_Library_Level_Entity (Acc_Type)
728 then
729 Check_Restriction (No_Nested_Finalization, N);
730 end if;
732 -- Check that an allocator of a nested access type doesn't create a
733 -- protected object when restriction No_Local_Protected_Objects applies.
735 if Has_Protected (Designated_Type (Acc_Type))
736 and then not Is_Library_Level_Entity (Acc_Type)
737 then
738 Check_Restriction (No_Local_Protected_Objects, N);
739 end if;
741 -- If the No_Streams restriction is set, check that the type of the
742 -- object is not, and does not contain, any subtype derived from
743 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
744 -- Has_Stream just for efficiency reasons. There is no point in
745 -- spending time on a Has_Stream check if the restriction is not set.
747 if Restriction_Check_Required (No_Streams) then
748 if Has_Stream (Designated_Type (Acc_Type)) then
749 Check_Restriction (No_Streams, N);
750 end if;
751 end if;
753 Set_Etype (N, Acc_Type);
755 if not Is_Library_Level_Entity (Acc_Type) then
756 Check_Restriction (No_Local_Allocators, N);
757 end if;
759 if Serious_Errors_Detected > Sav_Errs then
760 Set_Error_Posted (N);
761 Set_Etype (N, Any_Type);
762 end if;
763 end Analyze_Allocator;
765 ---------------------------
766 -- Analyze_Arithmetic_Op --
767 ---------------------------
769 procedure Analyze_Arithmetic_Op (N : Node_Id) is
770 L : constant Node_Id := Left_Opnd (N);
771 R : constant Node_Id := Right_Opnd (N);
772 Op_Id : Entity_Id;
774 begin
775 Candidate_Type := Empty;
776 Analyze_Expression (L);
777 Analyze_Expression (R);
779 -- If the entity is already set, the node is the instantiation of a
780 -- generic node with a non-local reference, or was manufactured by a
781 -- call to Make_Op_xxx. In either case the entity is known to be valid,
782 -- and we do not need to collect interpretations, instead we just get
783 -- the single possible interpretation.
785 Op_Id := Entity (N);
787 if Present (Op_Id) then
788 if Ekind (Op_Id) = E_Operator then
790 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
791 and then Treat_Fixed_As_Integer (N)
792 then
793 null;
794 else
795 Set_Etype (N, Any_Type);
796 Find_Arithmetic_Types (L, R, Op_Id, N);
797 end if;
799 else
800 Set_Etype (N, Any_Type);
801 Add_One_Interp (N, Op_Id, Etype (Op_Id));
802 end if;
804 -- Entity is not already set, so we do need to collect interpretations
806 else
807 Op_Id := Get_Name_Entity_Id (Chars (N));
808 Set_Etype (N, Any_Type);
810 while Present (Op_Id) loop
811 if Ekind (Op_Id) = E_Operator
812 and then Present (Next_Entity (First_Entity (Op_Id)))
813 then
814 Find_Arithmetic_Types (L, R, Op_Id, N);
816 -- The following may seem superfluous, because an operator cannot
817 -- be generic, but this ignores the cleverness of the author of
818 -- ACVC bc1013a.
820 elsif Is_Overloadable (Op_Id) then
821 Analyze_User_Defined_Binary_Op (N, Op_Id);
822 end if;
824 Op_Id := Homonym (Op_Id);
825 end loop;
826 end if;
828 Operator_Check (N);
829 end Analyze_Arithmetic_Op;
831 ------------------
832 -- Analyze_Call --
833 ------------------
835 -- Function, procedure, and entry calls are checked here. The Name in
836 -- the call may be overloaded. The actuals have been analyzed and may
837 -- themselves be overloaded. On exit from this procedure, the node N
838 -- may have zero, one or more interpretations. In the first case an
839 -- error message is produced. In the last case, the node is flagged
840 -- as overloaded and the interpretations are collected in All_Interp.
842 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
843 -- the type-checking is similar to that of other calls.
845 procedure Analyze_Call (N : Node_Id) is
846 Actuals : constant List_Id := Parameter_Associations (N);
847 Nam : Node_Id;
848 X : Interp_Index;
849 It : Interp;
850 Nam_Ent : Entity_Id;
851 Success : Boolean := False;
853 Deref : Boolean := False;
854 -- Flag indicates whether an interpretation of the prefix is a
855 -- parameterless call that returns an access_to_subprogram.
857 procedure Check_Ghost_Subprogram_Call;
858 -- Verify the legality of a call to a ghost subprogram. Such calls can
859 -- appear only in assertion expressions except subtype predicates or
860 -- from within another ghost subprogram.
862 procedure Check_Mixed_Parameter_And_Named_Associations;
863 -- Check that parameter and named associations are not mixed. This is
864 -- a restriction in SPARK mode.
866 function Name_Denotes_Function return Boolean;
867 -- If the type of the name is an access to subprogram, this may be the
868 -- type of a name, or the return type of the function being called. If
869 -- the name is not an entity then it can denote a protected function.
870 -- Until we distinguish Etype from Return_Type, we must use this routine
871 -- to resolve the meaning of the name in the call.
873 procedure No_Interpretation;
874 -- Output error message when no valid interpretation exists
876 ---------------------------------
877 -- Check_Ghost_Subprogram_Call --
878 ---------------------------------
880 procedure Check_Ghost_Subprogram_Call is
881 S : Entity_Id;
883 begin
884 -- Do not perform the check while preanalyzing the enclosing context
885 -- because the call is not in its final place. Premature attempts to
886 -- verify the placement lead to bogus errors.
888 if In_Spec_Expression then
889 return;
891 -- The ghost subprogram appears inside an assertion expression which
892 -- is one of the allowed cases.
894 elsif In_Assertion_Expression_Pragma (N) then
895 return;
897 -- Otherwise see if it inside another ghost subprogram
899 else
900 -- Loop to climb scopes
902 S := Current_Scope;
903 while Present (S) and then S /= Standard_Standard loop
905 -- The call appears inside another ghost subprogram
907 if Is_Ghost_Subprogram (S) then
908 return;
909 end if;
911 S := Scope (S);
912 end loop;
914 -- If we fall through the loop it was not within another
915 -- ghost subprogram, so we have bad placement.
917 Error_Msg_N
918 ("call to ghost subprogram must appear in assertion expression "
919 & "or another ghost subprogram", N);
920 end if;
921 end Check_Ghost_Subprogram_Call;
923 --------------------------------------------------
924 -- Check_Mixed_Parameter_And_Named_Associations --
925 --------------------------------------------------
927 procedure Check_Mixed_Parameter_And_Named_Associations is
928 Actual : Node_Id;
929 Named_Seen : Boolean;
931 begin
932 Named_Seen := False;
934 Actual := First (Actuals);
935 while Present (Actual) loop
936 case Nkind (Actual) is
937 when N_Parameter_Association =>
938 if Named_Seen then
939 Check_SPARK_05_Restriction
940 ("named association cannot follow positional one",
941 Actual);
942 exit;
943 end if;
944 when others =>
945 Named_Seen := True;
946 end case;
948 Next (Actual);
949 end loop;
950 end Check_Mixed_Parameter_And_Named_Associations;
952 ---------------------------
953 -- Name_Denotes_Function --
954 ---------------------------
956 function Name_Denotes_Function return Boolean is
957 begin
958 if Is_Entity_Name (Nam) then
959 return Ekind (Entity (Nam)) = E_Function;
961 elsif Nkind (Nam) = N_Selected_Component then
962 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
964 else
965 return False;
966 end if;
967 end Name_Denotes_Function;
969 -----------------------
970 -- No_Interpretation --
971 -----------------------
973 procedure No_Interpretation is
974 L : constant Boolean := Is_List_Member (N);
975 K : constant Node_Kind := Nkind (Parent (N));
977 begin
978 -- If the node is in a list whose parent is not an expression then it
979 -- must be an attempted procedure call.
981 if L and then K not in N_Subexpr then
982 if Ekind (Entity (Nam)) = E_Generic_Procedure then
983 Error_Msg_NE
984 ("must instantiate generic procedure& before call",
985 Nam, Entity (Nam));
986 else
987 Error_Msg_N
988 ("procedure or entry name expected", Nam);
989 end if;
991 -- Check for tasking cases where only an entry call will do
993 elsif not L
994 and then Nkind_In (K, N_Entry_Call_Alternative,
995 N_Triggering_Alternative)
996 then
997 Error_Msg_N ("entry name expected", Nam);
999 -- Otherwise give general error message
1001 else
1002 Error_Msg_N ("invalid prefix in call", Nam);
1003 end if;
1004 end No_Interpretation;
1006 -- Start of processing for Analyze_Call
1008 begin
1009 if Restriction_Check_Required (SPARK_05) then
1010 Check_Mixed_Parameter_And_Named_Associations;
1011 end if;
1013 -- Initialize the type of the result of the call to the error type,
1014 -- which will be reset if the type is successfully resolved.
1016 Set_Etype (N, Any_Type);
1018 Nam := Name (N);
1020 if not Is_Overloaded (Nam) then
1022 -- Only one interpretation to check
1024 if Ekind (Etype (Nam)) = E_Subprogram_Type then
1025 Nam_Ent := Etype (Nam);
1027 -- If the prefix is an access_to_subprogram, this may be an indirect
1028 -- call. This is the case if the name in the call is not an entity
1029 -- name, or if it is a function name in the context of a procedure
1030 -- call. In this latter case, we have a call to a parameterless
1031 -- function that returns a pointer_to_procedure which is the entity
1032 -- being called. Finally, F (X) may be a call to a parameterless
1033 -- function that returns a pointer to a function with parameters.
1034 -- Note that if F returns an access-to-subprogram whose designated
1035 -- type is an array, F (X) cannot be interpreted as an indirect call
1036 -- through the result of the call to F.
1038 elsif Is_Access_Type (Etype (Nam))
1039 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
1040 and then
1041 (not Name_Denotes_Function
1042 or else Nkind (N) = N_Procedure_Call_Statement
1043 or else
1044 (Nkind (Parent (N)) /= N_Explicit_Dereference
1045 and then Is_Entity_Name (Nam)
1046 and then No (First_Formal (Entity (Nam)))
1047 and then not
1048 Is_Array_Type (Etype (Designated_Type (Etype (Nam))))
1049 and then Present (Actuals)))
1050 then
1051 Nam_Ent := Designated_Type (Etype (Nam));
1052 Insert_Explicit_Dereference (Nam);
1054 -- Selected component case. Simple entry or protected operation,
1055 -- where the entry name is given by the selector name.
1057 elsif Nkind (Nam) = N_Selected_Component then
1058 Nam_Ent := Entity (Selector_Name (Nam));
1060 if not Ekind_In (Nam_Ent, E_Entry,
1061 E_Entry_Family,
1062 E_Function,
1063 E_Procedure)
1064 then
1065 Error_Msg_N ("name in call is not a callable entity", Nam);
1066 Set_Etype (N, Any_Type);
1067 return;
1068 end if;
1070 -- If the name is an Indexed component, it can be a call to a member
1071 -- of an entry family. The prefix must be a selected component whose
1072 -- selector is the entry. Analyze_Procedure_Call normalizes several
1073 -- kinds of call into this form.
1075 elsif Nkind (Nam) = N_Indexed_Component then
1076 if Nkind (Prefix (Nam)) = N_Selected_Component then
1077 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
1078 else
1079 Error_Msg_N ("name in call is not a callable entity", Nam);
1080 Set_Etype (N, Any_Type);
1081 return;
1082 end if;
1084 elsif not Is_Entity_Name (Nam) then
1085 Error_Msg_N ("name in call is not a callable entity", Nam);
1086 Set_Etype (N, Any_Type);
1087 return;
1089 else
1090 Nam_Ent := Entity (Nam);
1092 -- If not overloadable, this may be a generalized indexing
1093 -- operation with named associations. Rewrite again as an
1094 -- indexed component and analyze as container indexing.
1096 if not Is_Overloadable (Nam_Ent) then
1097 if Present
1098 (Find_Value_Of_Aspect
1099 (Etype (Nam_Ent), Aspect_Constant_Indexing))
1100 then
1101 Replace (N,
1102 Make_Indexed_Component (Sloc (N),
1103 Prefix => Nam,
1104 Expressions => Parameter_Associations (N)));
1106 if Try_Container_Indexing (N, Nam, Expressions (N)) then
1107 return;
1108 else
1109 No_Interpretation;
1110 end if;
1112 else
1113 No_Interpretation;
1114 end if;
1116 return;
1117 end if;
1118 end if;
1120 -- Operations generated for RACW stub types are called only through
1121 -- dispatching, and can never be the static interpretation of a call.
1123 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
1124 No_Interpretation;
1125 return;
1126 end if;
1128 Analyze_One_Call (N, Nam_Ent, True, Success);
1130 -- If this is an indirect call, the return type of the access_to
1131 -- subprogram may be an incomplete type. At the point of the call,
1132 -- use the full type if available, and at the same time update the
1133 -- return type of the access_to_subprogram.
1135 if Success
1136 and then Nkind (Nam) = N_Explicit_Dereference
1137 and then Ekind (Etype (N)) = E_Incomplete_Type
1138 and then Present (Full_View (Etype (N)))
1139 then
1140 Set_Etype (N, Full_View (Etype (N)));
1141 Set_Etype (Nam_Ent, Etype (N));
1142 end if;
1144 -- Overloaded call
1146 else
1147 -- An overloaded selected component must denote overloaded operations
1148 -- of a concurrent type. The interpretations are attached to the
1149 -- simple name of those operations.
1151 if Nkind (Nam) = N_Selected_Component then
1152 Nam := Selector_Name (Nam);
1153 end if;
1155 Get_First_Interp (Nam, X, It);
1157 while Present (It.Nam) loop
1158 Nam_Ent := It.Nam;
1159 Deref := False;
1161 -- Name may be call that returns an access to subprogram, or more
1162 -- generally an overloaded expression one of whose interpretations
1163 -- yields an access to subprogram. If the name is an entity, we do
1164 -- not dereference, because the node is a call that returns the
1165 -- access type: note difference between f(x), where the call may
1166 -- return an access subprogram type, and f(x)(y), where the type
1167 -- returned by the call to f is implicitly dereferenced to analyze
1168 -- the outer call.
1170 if Is_Access_Type (Nam_Ent) then
1171 Nam_Ent := Designated_Type (Nam_Ent);
1173 elsif Is_Access_Type (Etype (Nam_Ent))
1174 and then
1175 (not Is_Entity_Name (Nam)
1176 or else Nkind (N) = N_Procedure_Call_Statement)
1177 and then Ekind (Designated_Type (Etype (Nam_Ent)))
1178 = E_Subprogram_Type
1179 then
1180 Nam_Ent := Designated_Type (Etype (Nam_Ent));
1182 if Is_Entity_Name (Nam) then
1183 Deref := True;
1184 end if;
1185 end if;
1187 -- If the call has been rewritten from a prefixed call, the first
1188 -- parameter has been analyzed, but may need a subsequent
1189 -- dereference, so skip its analysis now.
1191 if N /= Original_Node (N)
1192 and then Nkind (Original_Node (N)) = Nkind (N)
1193 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
1194 and then Present (Parameter_Associations (N))
1195 and then Present (Etype (First (Parameter_Associations (N))))
1196 then
1197 Analyze_One_Call
1198 (N, Nam_Ent, False, Success, Skip_First => True);
1199 else
1200 Analyze_One_Call (N, Nam_Ent, False, Success);
1201 end if;
1203 -- If the interpretation succeeds, mark the proper type of the
1204 -- prefix (any valid candidate will do). If not, remove the
1205 -- candidate interpretation. This only needs to be done for
1206 -- overloaded protected operations, for other entities disambi-
1207 -- guation is done directly in Resolve.
1209 if Success then
1210 if Deref
1211 and then Nkind (Parent (N)) /= N_Explicit_Dereference
1212 then
1213 Set_Entity (Nam, It.Nam);
1214 Insert_Explicit_Dereference (Nam);
1215 Set_Etype (Nam, Nam_Ent);
1217 else
1218 Set_Etype (Nam, It.Typ);
1219 end if;
1221 elsif Nkind_In (Name (N), N_Selected_Component,
1222 N_Function_Call)
1223 then
1224 Remove_Interp (X);
1225 end if;
1227 Get_Next_Interp (X, It);
1228 end loop;
1230 -- If the name is the result of a function call, it can only be a
1231 -- call to a function returning an access to subprogram. Insert
1232 -- explicit dereference.
1234 if Nkind (Nam) = N_Function_Call then
1235 Insert_Explicit_Dereference (Nam);
1236 end if;
1238 if Etype (N) = Any_Type then
1240 -- None of the interpretations is compatible with the actuals
1242 Diagnose_Call (N, Nam);
1244 -- Special checks for uninstantiated put routines
1246 if Nkind (N) = N_Procedure_Call_Statement
1247 and then Is_Entity_Name (Nam)
1248 and then Chars (Nam) = Name_Put
1249 and then List_Length (Actuals) = 1
1250 then
1251 declare
1252 Arg : constant Node_Id := First (Actuals);
1253 Typ : Entity_Id;
1255 begin
1256 if Nkind (Arg) = N_Parameter_Association then
1257 Typ := Etype (Explicit_Actual_Parameter (Arg));
1258 else
1259 Typ := Etype (Arg);
1260 end if;
1262 if Is_Signed_Integer_Type (Typ) then
1263 Error_Msg_N
1264 ("possible missing instantiation of "
1265 & "'Text_'I'O.'Integer_'I'O!", Nam);
1267 elsif Is_Modular_Integer_Type (Typ) then
1268 Error_Msg_N
1269 ("possible missing instantiation of "
1270 & "'Text_'I'O.'Modular_'I'O!", Nam);
1272 elsif Is_Floating_Point_Type (Typ) then
1273 Error_Msg_N
1274 ("possible missing instantiation of "
1275 & "'Text_'I'O.'Float_'I'O!", Nam);
1277 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1278 Error_Msg_N
1279 ("possible missing instantiation of "
1280 & "'Text_'I'O.'Fixed_'I'O!", Nam);
1282 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1283 Error_Msg_N
1284 ("possible missing instantiation of "
1285 & "'Text_'I'O.'Decimal_'I'O!", Nam);
1287 elsif Is_Enumeration_Type (Typ) then
1288 Error_Msg_N
1289 ("possible missing instantiation of "
1290 & "'Text_'I'O.'Enumeration_'I'O!", Nam);
1291 end if;
1292 end;
1293 end if;
1295 elsif not Is_Overloaded (N)
1296 and then Is_Entity_Name (Nam)
1297 then
1298 -- Resolution yields a single interpretation. Verify that the
1299 -- reference has capitalization consistent with the declaration.
1301 Set_Entity_With_Checks (Nam, Entity (Nam));
1302 Generate_Reference (Entity (Nam), Nam);
1304 Set_Etype (Nam, Etype (Entity (Nam)));
1305 else
1306 Remove_Abstract_Operations (N);
1307 end if;
1309 End_Interp_List;
1310 end if;
1312 -- A call to a ghost subprogram is allowed only in assertion expressions
1313 -- excluding subtype predicates or from within another ghost subprogram.
1315 if Is_Ghost_Subprogram (Get_Subprogram_Entity (N)) then
1316 Check_Ghost_Subprogram_Call;
1317 end if;
1318 end Analyze_Call;
1320 -----------------------------
1321 -- Analyze_Case_Expression --
1322 -----------------------------
1324 procedure Analyze_Case_Expression (N : Node_Id) is
1325 procedure Non_Static_Choice_Error (Choice : Node_Id);
1326 -- Error routine invoked by the generic instantiation below when
1327 -- the case expression has a non static choice.
1329 package Case_Choices_Analysis is new
1330 Generic_Analyze_Choices
1331 (Process_Associated_Node => No_OP);
1332 use Case_Choices_Analysis;
1334 package Case_Choices_Checking is new
1335 Generic_Check_Choices
1336 (Process_Empty_Choice => No_OP,
1337 Process_Non_Static_Choice => Non_Static_Choice_Error,
1338 Process_Associated_Node => No_OP);
1339 use Case_Choices_Checking;
1341 -----------------------------
1342 -- Non_Static_Choice_Error --
1343 -----------------------------
1345 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1346 begin
1347 Flag_Non_Static_Expr
1348 ("choice given in case expression is not static!", Choice);
1349 end Non_Static_Choice_Error;
1351 -- Local variables
1353 Expr : constant Node_Id := Expression (N);
1354 Alt : Node_Id;
1355 Exp_Type : Entity_Id;
1356 Exp_Btype : Entity_Id;
1358 FirstX : Node_Id := Empty;
1359 -- First expression in the case for which there is some type information
1360 -- available, i.e. it is not Any_Type, which can happen because of some
1361 -- error, or from the use of e.g. raise Constraint_Error.
1363 Others_Present : Boolean;
1364 -- Indicates if Others was present
1366 Wrong_Alt : Node_Id;
1367 -- For error reporting
1369 -- Start of processing for Analyze_Case_Expression
1371 begin
1372 if Comes_From_Source (N) then
1373 Check_Compiler_Unit ("case expression", N);
1374 end if;
1376 Analyze_And_Resolve (Expr, Any_Discrete);
1377 Check_Unset_Reference (Expr);
1378 Exp_Type := Etype (Expr);
1379 Exp_Btype := Base_Type (Exp_Type);
1381 Alt := First (Alternatives (N));
1382 while Present (Alt) loop
1383 Analyze (Expression (Alt));
1385 if No (FirstX) and then Etype (Expression (Alt)) /= Any_Type then
1386 FirstX := Expression (Alt);
1387 end if;
1389 Next (Alt);
1390 end loop;
1392 -- Get our initial type from the first expression for which we got some
1393 -- useful type information from the expression.
1395 if not Is_Overloaded (FirstX) then
1396 Set_Etype (N, Etype (FirstX));
1398 else
1399 declare
1400 I : Interp_Index;
1401 It : Interp;
1403 begin
1404 Set_Etype (N, Any_Type);
1406 Get_First_Interp (FirstX, I, It);
1407 while Present (It.Nam) loop
1409 -- For each interpretation of the first expression, we only
1410 -- add the interpretation if every other expression in the
1411 -- case expression alternatives has a compatible type.
1413 Alt := Next (First (Alternatives (N)));
1414 while Present (Alt) loop
1415 exit when not Has_Compatible_Type (Expression (Alt), It.Typ);
1416 Next (Alt);
1417 end loop;
1419 if No (Alt) then
1420 Add_One_Interp (N, It.Typ, It.Typ);
1422 else
1423 Wrong_Alt := Alt;
1424 end if;
1426 Get_Next_Interp (I, It);
1427 end loop;
1428 end;
1429 end if;
1431 Exp_Btype := Base_Type (Exp_Type);
1433 -- The expression must be of a discrete type which must be determinable
1434 -- independently of the context in which the expression occurs, but
1435 -- using the fact that the expression must be of a discrete type.
1436 -- Moreover, the type this expression must not be a character literal
1437 -- (which is always ambiguous).
1439 -- If error already reported by Resolve, nothing more to do
1441 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1442 return;
1444 -- Special casee message for character literal
1446 elsif Exp_Btype = Any_Character then
1447 Error_Msg_N
1448 ("character literal as case expression is ambiguous", Expr);
1449 return;
1450 end if;
1452 if Etype (N) = Any_Type and then Present (Wrong_Alt) then
1453 Error_Msg_N
1454 ("type incompatible with that of previous alternatives",
1455 Expression (Wrong_Alt));
1456 return;
1457 end if;
1459 -- If the case expression is a formal object of mode in out, then
1460 -- treat it as having a nonstatic subtype by forcing use of the base
1461 -- type (which has to get passed to Check_Case_Choices below). Also
1462 -- use base type when the case expression is parenthesized.
1464 if Paren_Count (Expr) > 0
1465 or else (Is_Entity_Name (Expr)
1466 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1467 then
1468 Exp_Type := Exp_Btype;
1469 end if;
1471 -- The case expression alternatives cover the range of a static subtype
1472 -- subject to aspect Static_Predicate. Do not check the choices when the
1473 -- case expression has not been fully analyzed yet because this may lead
1474 -- to bogus errors.
1476 if Is_OK_Static_Subtype (Exp_Type)
1477 and then Has_Static_Predicate_Aspect (Exp_Type)
1478 and then In_Spec_Expression
1479 then
1480 null;
1482 -- Call Analyze_Choices and Check_Choices to do the rest of the work
1484 else
1485 Analyze_Choices (Alternatives (N), Exp_Type);
1486 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1487 end if;
1489 if Exp_Type = Universal_Integer and then not Others_Present then
1490 Error_Msg_N
1491 ("case on universal integer requires OTHERS choice", Expr);
1492 end if;
1493 end Analyze_Case_Expression;
1495 ---------------------------
1496 -- Analyze_Comparison_Op --
1497 ---------------------------
1499 procedure Analyze_Comparison_Op (N : Node_Id) is
1500 L : constant Node_Id := Left_Opnd (N);
1501 R : constant Node_Id := Right_Opnd (N);
1502 Op_Id : Entity_Id := Entity (N);
1504 begin
1505 Set_Etype (N, Any_Type);
1506 Candidate_Type := Empty;
1508 Analyze_Expression (L);
1509 Analyze_Expression (R);
1511 if Present (Op_Id) then
1512 if Ekind (Op_Id) = E_Operator then
1513 Find_Comparison_Types (L, R, Op_Id, N);
1514 else
1515 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1516 end if;
1518 if Is_Overloaded (L) then
1519 Set_Etype (L, Intersect_Types (L, R));
1520 end if;
1522 else
1523 Op_Id := Get_Name_Entity_Id (Chars (N));
1524 while Present (Op_Id) loop
1525 if Ekind (Op_Id) = E_Operator then
1526 Find_Comparison_Types (L, R, Op_Id, N);
1527 else
1528 Analyze_User_Defined_Binary_Op (N, Op_Id);
1529 end if;
1531 Op_Id := Homonym (Op_Id);
1532 end loop;
1533 end if;
1535 Operator_Check (N);
1536 end Analyze_Comparison_Op;
1538 ---------------------------
1539 -- Analyze_Concatenation --
1540 ---------------------------
1542 procedure Analyze_Concatenation (N : Node_Id) is
1544 -- We wish to avoid deep recursion, because concatenations are often
1545 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1546 -- operands nonrecursively until we find something that is not a
1547 -- concatenation (A in this case), or has already been analyzed. We
1548 -- analyze that, and then walk back up the tree following Parent
1549 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1550 -- work at each level. The Parent pointers allow us to avoid recursion,
1551 -- and thus avoid running out of memory.
1553 NN : Node_Id := N;
1554 L : Node_Id;
1556 begin
1557 Candidate_Type := Empty;
1559 -- The following code is equivalent to:
1561 -- Set_Etype (N, Any_Type);
1562 -- Analyze_Expression (Left_Opnd (N));
1563 -- Analyze_Concatenation_Rest (N);
1565 -- where the Analyze_Expression call recurses back here if the left
1566 -- operand is a concatenation.
1568 -- Walk down left operands
1570 loop
1571 Set_Etype (NN, Any_Type);
1572 L := Left_Opnd (NN);
1573 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1574 NN := L;
1575 end loop;
1577 -- Now (given the above example) NN is A&B and L is A
1579 -- First analyze L ...
1581 Analyze_Expression (L);
1583 -- ... then walk NN back up until we reach N (where we started), calling
1584 -- Analyze_Concatenation_Rest along the way.
1586 loop
1587 Analyze_Concatenation_Rest (NN);
1588 exit when NN = N;
1589 NN := Parent (NN);
1590 end loop;
1591 end Analyze_Concatenation;
1593 --------------------------------
1594 -- Analyze_Concatenation_Rest --
1595 --------------------------------
1597 -- If the only one-dimensional array type in scope is String,
1598 -- this is the resulting type of the operation. Otherwise there
1599 -- will be a concatenation operation defined for each user-defined
1600 -- one-dimensional array.
1602 procedure Analyze_Concatenation_Rest (N : Node_Id) is
1603 L : constant Node_Id := Left_Opnd (N);
1604 R : constant Node_Id := Right_Opnd (N);
1605 Op_Id : Entity_Id := Entity (N);
1606 LT : Entity_Id;
1607 RT : Entity_Id;
1609 begin
1610 Analyze_Expression (R);
1612 -- If the entity is present, the node appears in an instance, and
1613 -- denotes a predefined concatenation operation. The resulting type is
1614 -- obtained from the arguments when possible. If the arguments are
1615 -- aggregates, the array type and the concatenation type must be
1616 -- visible.
1618 if Present (Op_Id) then
1619 if Ekind (Op_Id) = E_Operator then
1620 LT := Base_Type (Etype (L));
1621 RT := Base_Type (Etype (R));
1623 if Is_Array_Type (LT)
1624 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1625 then
1626 Add_One_Interp (N, Op_Id, LT);
1628 elsif Is_Array_Type (RT)
1629 and then LT = Base_Type (Component_Type (RT))
1630 then
1631 Add_One_Interp (N, Op_Id, RT);
1633 -- If one operand is a string type or a user-defined array type,
1634 -- and the other is a literal, result is of the specific type.
1636 elsif
1637 (Root_Type (LT) = Standard_String
1638 or else Scope (LT) /= Standard_Standard)
1639 and then Etype (R) = Any_String
1640 then
1641 Add_One_Interp (N, Op_Id, LT);
1643 elsif
1644 (Root_Type (RT) = Standard_String
1645 or else Scope (RT) /= Standard_Standard)
1646 and then Etype (L) = Any_String
1647 then
1648 Add_One_Interp (N, Op_Id, RT);
1650 elsif not Is_Generic_Type (Etype (Op_Id)) then
1651 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1653 else
1654 -- Type and its operations must be visible
1656 Set_Entity (N, Empty);
1657 Analyze_Concatenation (N);
1658 end if;
1660 else
1661 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1662 end if;
1664 else
1665 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
1666 while Present (Op_Id) loop
1667 if Ekind (Op_Id) = E_Operator then
1669 -- Do not consider operators declared in dead code, they can
1670 -- not be part of the resolution.
1672 if Is_Eliminated (Op_Id) then
1673 null;
1674 else
1675 Find_Concatenation_Types (L, R, Op_Id, N);
1676 end if;
1678 else
1679 Analyze_User_Defined_Binary_Op (N, Op_Id);
1680 end if;
1682 Op_Id := Homonym (Op_Id);
1683 end loop;
1684 end if;
1686 Operator_Check (N);
1687 end Analyze_Concatenation_Rest;
1689 -------------------------
1690 -- Analyze_Equality_Op --
1691 -------------------------
1693 procedure Analyze_Equality_Op (N : Node_Id) is
1694 Loc : constant Source_Ptr := Sloc (N);
1695 L : constant Node_Id := Left_Opnd (N);
1696 R : constant Node_Id := Right_Opnd (N);
1697 Op_Id : Entity_Id;
1699 begin
1700 Set_Etype (N, Any_Type);
1701 Candidate_Type := Empty;
1703 Analyze_Expression (L);
1704 Analyze_Expression (R);
1706 -- If the entity is set, the node is a generic instance with a non-local
1707 -- reference to the predefined operator or to a user-defined function.
1708 -- It can also be an inequality that is expanded into the negation of a
1709 -- call to a user-defined equality operator.
1711 -- For the predefined case, the result is Boolean, regardless of the
1712 -- type of the operands. The operands may even be limited, if they are
1713 -- generic actuals. If they are overloaded, label the left argument with
1714 -- the common type that must be present, or with the type of the formal
1715 -- of the user-defined function.
1717 if Present (Entity (N)) then
1718 Op_Id := Entity (N);
1720 if Ekind (Op_Id) = E_Operator then
1721 Add_One_Interp (N, Op_Id, Standard_Boolean);
1722 else
1723 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1724 end if;
1726 if Is_Overloaded (L) then
1727 if Ekind (Op_Id) = E_Operator then
1728 Set_Etype (L, Intersect_Types (L, R));
1729 else
1730 Set_Etype (L, Etype (First_Formal (Op_Id)));
1731 end if;
1732 end if;
1734 else
1735 Op_Id := Get_Name_Entity_Id (Chars (N));
1736 while Present (Op_Id) loop
1737 if Ekind (Op_Id) = E_Operator then
1738 Find_Equality_Types (L, R, Op_Id, N);
1739 else
1740 Analyze_User_Defined_Binary_Op (N, Op_Id);
1741 end if;
1743 Op_Id := Homonym (Op_Id);
1744 end loop;
1745 end if;
1747 -- If there was no match, and the operator is inequality, this may
1748 -- be a case where inequality has not been made explicit, as for
1749 -- tagged types. Analyze the node as the negation of an equality
1750 -- operation. This cannot be done earlier, because before analysis
1751 -- we cannot rule out the presence of an explicit inequality.
1753 if Etype (N) = Any_Type
1754 and then Nkind (N) = N_Op_Ne
1755 then
1756 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
1757 while Present (Op_Id) loop
1758 if Ekind (Op_Id) = E_Operator then
1759 Find_Equality_Types (L, R, Op_Id, N);
1760 else
1761 Analyze_User_Defined_Binary_Op (N, Op_Id);
1762 end if;
1764 Op_Id := Homonym (Op_Id);
1765 end loop;
1767 if Etype (N) /= Any_Type then
1768 Op_Id := Entity (N);
1770 Rewrite (N,
1771 Make_Op_Not (Loc,
1772 Right_Opnd =>
1773 Make_Op_Eq (Loc,
1774 Left_Opnd => Left_Opnd (N),
1775 Right_Opnd => Right_Opnd (N))));
1777 Set_Entity (Right_Opnd (N), Op_Id);
1778 Analyze (N);
1779 end if;
1780 end if;
1782 Operator_Check (N);
1783 end Analyze_Equality_Op;
1785 ----------------------------------
1786 -- Analyze_Explicit_Dereference --
1787 ----------------------------------
1789 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1790 Loc : constant Source_Ptr := Sloc (N);
1791 P : constant Node_Id := Prefix (N);
1792 T : Entity_Id;
1793 I : Interp_Index;
1794 It : Interp;
1795 New_N : Node_Id;
1797 function Is_Function_Type return Boolean;
1798 -- Check whether node may be interpreted as an implicit function call
1800 ----------------------
1801 -- Is_Function_Type --
1802 ----------------------
1804 function Is_Function_Type return Boolean is
1805 I : Interp_Index;
1806 It : Interp;
1808 begin
1809 if not Is_Overloaded (N) then
1810 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1811 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1813 else
1814 Get_First_Interp (N, I, It);
1815 while Present (It.Nam) loop
1816 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1817 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1818 then
1819 return False;
1820 end if;
1822 Get_Next_Interp (I, It);
1823 end loop;
1825 return True;
1826 end if;
1827 end Is_Function_Type;
1829 -- Start of processing for Analyze_Explicit_Dereference
1831 begin
1832 -- If source node, check SPARK restriction. We guard this with the
1833 -- source node check, because ???
1835 if Comes_From_Source (N) then
1836 Check_SPARK_05_Restriction ("explicit dereference is not allowed", N);
1837 end if;
1839 -- In formal verification mode, keep track of all reads and writes
1840 -- through explicit dereferences.
1842 if GNATprove_Mode then
1843 SPARK_Specific.Generate_Dereference (N);
1844 end if;
1846 Analyze (P);
1847 Set_Etype (N, Any_Type);
1849 -- Test for remote access to subprogram type, and if so return
1850 -- after rewriting the original tree.
1852 if Remote_AST_E_Dereference (P) then
1853 return;
1854 end if;
1856 -- Normal processing for other than remote access to subprogram type
1858 if not Is_Overloaded (P) then
1859 if Is_Access_Type (Etype (P)) then
1861 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
1862 -- avoid other problems caused by the Private_Subtype and it is
1863 -- safe to go to the Base_Type because this is the same as
1864 -- converting the access value to its Base_Type.
1866 declare
1867 DT : Entity_Id := Designated_Type (Etype (P));
1869 begin
1870 if Ekind (DT) = E_Private_Subtype
1871 and then Is_For_Access_Subtype (DT)
1872 then
1873 DT := Base_Type (DT);
1874 end if;
1876 -- An explicit dereference is a legal occurrence of an
1877 -- incomplete type imported through a limited_with clause,
1878 -- if the full view is visible.
1880 if From_Limited_With (DT)
1881 and then not From_Limited_With (Scope (DT))
1882 and then
1883 (Is_Immediately_Visible (Scope (DT))
1884 or else
1885 (Is_Child_Unit (Scope (DT))
1886 and then Is_Visible_Lib_Unit (Scope (DT))))
1887 then
1888 Set_Etype (N, Available_View (DT));
1890 else
1891 Set_Etype (N, DT);
1892 end if;
1893 end;
1895 elsif Etype (P) /= Any_Type then
1896 Error_Msg_N ("prefix of dereference must be an access type", N);
1897 return;
1898 end if;
1900 else
1901 Get_First_Interp (P, I, It);
1902 while Present (It.Nam) loop
1903 T := It.Typ;
1905 if Is_Access_Type (T) then
1906 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1907 end if;
1909 Get_Next_Interp (I, It);
1910 end loop;
1912 -- Error if no interpretation of the prefix has an access type
1914 if Etype (N) = Any_Type then
1915 Error_Msg_N
1916 ("access type required in prefix of explicit dereference", P);
1917 Set_Etype (N, Any_Type);
1918 return;
1919 end if;
1920 end if;
1922 if Is_Function_Type
1923 and then Nkind (Parent (N)) /= N_Indexed_Component
1925 and then (Nkind (Parent (N)) /= N_Function_Call
1926 or else N /= Name (Parent (N)))
1928 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
1929 or else N /= Name (Parent (N)))
1931 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
1932 and then (Nkind (Parent (N)) /= N_Attribute_Reference
1933 or else
1934 (Attribute_Name (Parent (N)) /= Name_Address
1935 and then
1936 Attribute_Name (Parent (N)) /= Name_Access))
1937 then
1938 -- Name is a function call with no actuals, in a context that
1939 -- requires deproceduring (including as an actual in an enclosing
1940 -- function or procedure call). There are some pathological cases
1941 -- where the prefix might include functions that return access to
1942 -- subprograms and others that return a regular type. Disambiguation
1943 -- of those has to take place in Resolve.
1945 New_N :=
1946 Make_Function_Call (Loc,
1947 Name => Make_Explicit_Dereference (Loc, P),
1948 Parameter_Associations => New_List);
1950 -- If the prefix is overloaded, remove operations that have formals,
1951 -- we know that this is a parameterless call.
1953 if Is_Overloaded (P) then
1954 Get_First_Interp (P, I, It);
1955 while Present (It.Nam) loop
1956 T := It.Typ;
1958 if No (First_Formal (Base_Type (Designated_Type (T)))) then
1959 Set_Etype (P, T);
1960 else
1961 Remove_Interp (I);
1962 end if;
1964 Get_Next_Interp (I, It);
1965 end loop;
1966 end if;
1968 Rewrite (N, New_N);
1969 Analyze (N);
1971 elsif not Is_Function_Type
1972 and then Is_Overloaded (N)
1973 then
1974 -- The prefix may include access to subprograms and other access
1975 -- types. If the context selects the interpretation that is a
1976 -- function call (not a procedure call) we cannot rewrite the node
1977 -- yet, but we include the result of the call interpretation.
1979 Get_First_Interp (N, I, It);
1980 while Present (It.Nam) loop
1981 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
1982 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
1983 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
1984 then
1985 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
1986 end if;
1988 Get_Next_Interp (I, It);
1989 end loop;
1990 end if;
1992 -- A value of remote access-to-class-wide must not be dereferenced
1993 -- (RM E.2.2(16)).
1995 Validate_Remote_Access_To_Class_Wide_Type (N);
1996 end Analyze_Explicit_Dereference;
1998 ------------------------
1999 -- Analyze_Expression --
2000 ------------------------
2002 procedure Analyze_Expression (N : Node_Id) is
2003 begin
2005 -- If the expression is an indexed component that will be rewritten
2006 -- as a container indexing, it has already been analyzed.
2008 if Nkind (N) = N_Indexed_Component
2009 and then Present (Generalized_Indexing (N))
2010 then
2011 null;
2013 else
2014 Analyze (N);
2015 Check_Parameterless_Call (N);
2016 end if;
2017 end Analyze_Expression;
2019 -------------------------------------
2020 -- Analyze_Expression_With_Actions --
2021 -------------------------------------
2023 procedure Analyze_Expression_With_Actions (N : Node_Id) is
2024 A : Node_Id;
2026 begin
2027 A := First (Actions (N));
2028 while Present (A) loop
2029 Analyze (A);
2030 Next (A);
2031 end loop;
2033 Analyze_Expression (Expression (N));
2034 Set_Etype (N, Etype (Expression (N)));
2035 end Analyze_Expression_With_Actions;
2037 ---------------------------
2038 -- Analyze_If_Expression --
2039 ---------------------------
2041 procedure Analyze_If_Expression (N : Node_Id) is
2042 Condition : constant Node_Id := First (Expressions (N));
2043 Then_Expr : constant Node_Id := Next (Condition);
2044 Else_Expr : Node_Id;
2046 begin
2047 -- Defend against error of missing expressions from previous error
2049 if No (Then_Expr) then
2050 Check_Error_Detected;
2051 return;
2052 end if;
2054 if Comes_From_Source (N) then
2055 Check_SPARK_05_Restriction ("if expression is not allowed", N);
2056 end if;
2058 Else_Expr := Next (Then_Expr);
2060 if Comes_From_Source (N) then
2061 Check_Compiler_Unit ("if expression", N);
2062 end if;
2064 -- Analyze and resolve the condition. We need to resolve this now so
2065 -- that it gets folded to True/False if possible, before we analyze
2066 -- the THEN/ELSE branches, because when analyzing these branches, we
2067 -- may call Is_Statically_Unevaluated, which expects the condition of
2068 -- an enclosing IF to have been analyze/resolved/evaluated.
2070 Analyze_Expression (Condition);
2071 Resolve (Condition, Any_Boolean);
2073 -- Analyze THEN expression and (if present) ELSE expression. For those
2074 -- we delay resolution in the normal manner, because of overloading etc.
2076 Analyze_Expression (Then_Expr);
2078 if Present (Else_Expr) then
2079 Analyze_Expression (Else_Expr);
2080 end if;
2082 -- If then expression not overloaded, then that decides the type
2084 if not Is_Overloaded (Then_Expr) then
2085 Set_Etype (N, Etype (Then_Expr));
2087 -- Case where then expression is overloaded
2089 else
2090 declare
2091 I : Interp_Index;
2092 It : Interp;
2094 begin
2095 Set_Etype (N, Any_Type);
2097 -- Shouldn't the following statement be down in the ELSE of the
2098 -- following loop? ???
2100 Get_First_Interp (Then_Expr, I, It);
2102 -- if no Else_Expression the conditional must be boolean
2104 if No (Else_Expr) then
2105 Set_Etype (N, Standard_Boolean);
2107 -- Else_Expression Present. For each possible intepretation of
2108 -- the Then_Expression, add it only if the Else_Expression has
2109 -- a compatible type.
2111 else
2112 while Present (It.Nam) loop
2113 if Has_Compatible_Type (Else_Expr, It.Typ) then
2114 Add_One_Interp (N, It.Typ, It.Typ);
2115 end if;
2117 Get_Next_Interp (I, It);
2118 end loop;
2119 end if;
2120 end;
2121 end if;
2122 end Analyze_If_Expression;
2124 ------------------------------------
2125 -- Analyze_Indexed_Component_Form --
2126 ------------------------------------
2128 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
2129 P : constant Node_Id := Prefix (N);
2130 Exprs : constant List_Id := Expressions (N);
2131 Exp : Node_Id;
2132 P_T : Entity_Id;
2133 E : Node_Id;
2134 U_N : Entity_Id;
2136 procedure Process_Function_Call;
2137 -- Prefix in indexed component form is an overloadable entity,
2138 -- so the node is a function call. Reformat it as such.
2140 procedure Process_Indexed_Component;
2141 -- Prefix in indexed component form is actually an indexed component.
2142 -- This routine processes it, knowing that the prefix is already
2143 -- resolved.
2145 procedure Process_Indexed_Component_Or_Slice;
2146 -- An indexed component with a single index may designate a slice if
2147 -- the index is a subtype mark. This routine disambiguates these two
2148 -- cases by resolving the prefix to see if it is a subtype mark.
2150 procedure Process_Overloaded_Indexed_Component;
2151 -- If the prefix of an indexed component is overloaded, the proper
2152 -- interpretation is selected by the index types and the context.
2154 ---------------------------
2155 -- Process_Function_Call --
2156 ---------------------------
2158 procedure Process_Function_Call is
2159 Actual : Node_Id;
2161 begin
2162 Change_Node (N, N_Function_Call);
2163 Set_Name (N, P);
2164 Set_Parameter_Associations (N, Exprs);
2166 -- Analyze actuals prior to analyzing the call itself
2168 Actual := First (Parameter_Associations (N));
2169 while Present (Actual) loop
2170 Analyze (Actual);
2171 Check_Parameterless_Call (Actual);
2173 -- Move to next actual. Note that we use Next, not Next_Actual
2174 -- here. The reason for this is a bit subtle. If a function call
2175 -- includes named associations, the parser recognizes the node as
2176 -- a call, and it is analyzed as such. If all associations are
2177 -- positional, the parser builds an indexed_component node, and
2178 -- it is only after analysis of the prefix that the construct
2179 -- is recognized as a call, in which case Process_Function_Call
2180 -- rewrites the node and analyzes the actuals. If the list of
2181 -- actuals is malformed, the parser may leave the node as an
2182 -- indexed component (despite the presence of named associations).
2183 -- The iterator Next_Actual is equivalent to Next if the list is
2184 -- positional, but follows the normalized chain of actuals when
2185 -- named associations are present. In this case normalization has
2186 -- not taken place, and actuals remain unanalyzed, which leads to
2187 -- subsequent crashes or loops if there is an attempt to continue
2188 -- analysis of the program.
2190 Next (Actual);
2191 end loop;
2193 Analyze_Call (N);
2194 end Process_Function_Call;
2196 -------------------------------
2197 -- Process_Indexed_Component --
2198 -------------------------------
2200 procedure Process_Indexed_Component is
2201 Exp : Node_Id;
2202 Array_Type : Entity_Id;
2203 Index : Node_Id;
2204 Pent : Entity_Id := Empty;
2206 begin
2207 Exp := First (Exprs);
2209 if Is_Overloaded (P) then
2210 Process_Overloaded_Indexed_Component;
2212 else
2213 Array_Type := Etype (P);
2215 if Is_Entity_Name (P) then
2216 Pent := Entity (P);
2217 elsif Nkind (P) = N_Selected_Component
2218 and then Is_Entity_Name (Selector_Name (P))
2219 then
2220 Pent := Entity (Selector_Name (P));
2221 end if;
2223 -- Prefix must be appropriate for an array type, taking into
2224 -- account a possible implicit dereference.
2226 if Is_Access_Type (Array_Type) then
2227 Error_Msg_NW
2228 (Warn_On_Dereference, "?d?implicit dereference", N);
2229 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
2230 end if;
2232 if Is_Array_Type (Array_Type) then
2233 null;
2235 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
2236 Analyze (Exp);
2237 Set_Etype (N, Any_Type);
2239 if not Has_Compatible_Type
2240 (Exp, Entry_Index_Type (Pent))
2241 then
2242 Error_Msg_N ("invalid index type in entry name", N);
2244 elsif Present (Next (Exp)) then
2245 Error_Msg_N ("too many subscripts in entry reference", N);
2247 else
2248 Set_Etype (N, Etype (P));
2249 end if;
2251 return;
2253 elsif Is_Record_Type (Array_Type)
2254 and then Remote_AST_I_Dereference (P)
2255 then
2256 return;
2258 elsif Try_Container_Indexing (N, P, Exprs) then
2259 return;
2261 elsif Array_Type = Any_Type then
2262 Set_Etype (N, Any_Type);
2264 -- In most cases the analysis of the prefix will have emitted
2265 -- an error already, but if the prefix may be interpreted as a
2266 -- call in prefixed notation, the report is left to the caller.
2267 -- To prevent cascaded errors, report only if no previous ones.
2269 if Serious_Errors_Detected = 0 then
2270 Error_Msg_N ("invalid prefix in indexed component", P);
2272 if Nkind (P) = N_Expanded_Name then
2273 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
2274 end if;
2275 end if;
2277 return;
2279 -- Here we definitely have a bad indexing
2281 else
2282 if Nkind (Parent (N)) = N_Requeue_Statement
2283 and then Present (Pent) and then Ekind (Pent) = E_Entry
2284 then
2285 Error_Msg_N
2286 ("REQUEUE does not permit parameters", First (Exprs));
2288 elsif Is_Entity_Name (P)
2289 and then Etype (P) = Standard_Void_Type
2290 then
2291 Error_Msg_NE ("incorrect use of&", P, Entity (P));
2293 else
2294 Error_Msg_N ("array type required in indexed component", P);
2295 end if;
2297 Set_Etype (N, Any_Type);
2298 return;
2299 end if;
2301 Index := First_Index (Array_Type);
2302 while Present (Index) and then Present (Exp) loop
2303 if not Has_Compatible_Type (Exp, Etype (Index)) then
2304 Wrong_Type (Exp, Etype (Index));
2305 Set_Etype (N, Any_Type);
2306 return;
2307 end if;
2309 Next_Index (Index);
2310 Next (Exp);
2311 end loop;
2313 Set_Etype (N, Component_Type (Array_Type));
2314 Check_Implicit_Dereference (N, Etype (N));
2316 if Present (Index) then
2317 Error_Msg_N
2318 ("too few subscripts in array reference", First (Exprs));
2320 elsif Present (Exp) then
2321 Error_Msg_N ("too many subscripts in array reference", Exp);
2322 end if;
2323 end if;
2324 end Process_Indexed_Component;
2326 ----------------------------------------
2327 -- Process_Indexed_Component_Or_Slice --
2328 ----------------------------------------
2330 procedure Process_Indexed_Component_Or_Slice is
2331 begin
2332 Exp := First (Exprs);
2333 while Present (Exp) loop
2334 Analyze_Expression (Exp);
2335 Next (Exp);
2336 end loop;
2338 Exp := First (Exprs);
2340 -- If one index is present, and it is a subtype name, then the
2341 -- node denotes a slice (note that the case of an explicit range
2342 -- for a slice was already built as an N_Slice node in the first
2343 -- place, so that case is not handled here).
2345 -- We use a replace rather than a rewrite here because this is one
2346 -- of the cases in which the tree built by the parser is plain wrong.
2348 if No (Next (Exp))
2349 and then Is_Entity_Name (Exp)
2350 and then Is_Type (Entity (Exp))
2351 then
2352 Replace (N,
2353 Make_Slice (Sloc (N),
2354 Prefix => P,
2355 Discrete_Range => New_Copy (Exp)));
2356 Analyze (N);
2358 -- Otherwise (more than one index present, or single index is not
2359 -- a subtype name), then we have the indexed component case.
2361 else
2362 Process_Indexed_Component;
2363 end if;
2364 end Process_Indexed_Component_Or_Slice;
2366 ------------------------------------------
2367 -- Process_Overloaded_Indexed_Component --
2368 ------------------------------------------
2370 procedure Process_Overloaded_Indexed_Component is
2371 Exp : Node_Id;
2372 I : Interp_Index;
2373 It : Interp;
2374 Typ : Entity_Id;
2375 Index : Node_Id;
2376 Found : Boolean;
2378 begin
2379 Set_Etype (N, Any_Type);
2381 Get_First_Interp (P, I, It);
2382 while Present (It.Nam) loop
2383 Typ := It.Typ;
2385 if Is_Access_Type (Typ) then
2386 Typ := Designated_Type (Typ);
2387 Error_Msg_NW
2388 (Warn_On_Dereference, "?d?implicit dereference", N);
2389 end if;
2391 if Is_Array_Type (Typ) then
2393 -- Got a candidate: verify that index types are compatible
2395 Index := First_Index (Typ);
2396 Found := True;
2397 Exp := First (Exprs);
2398 while Present (Index) and then Present (Exp) loop
2399 if Has_Compatible_Type (Exp, Etype (Index)) then
2400 null;
2401 else
2402 Found := False;
2403 Remove_Interp (I);
2404 exit;
2405 end if;
2407 Next_Index (Index);
2408 Next (Exp);
2409 end loop;
2411 if Found and then No (Index) and then No (Exp) then
2412 declare
2413 CT : constant Entity_Id :=
2414 Base_Type (Component_Type (Typ));
2415 begin
2416 Add_One_Interp (N, CT, CT);
2417 Check_Implicit_Dereference (N, CT);
2418 end;
2419 end if;
2421 elsif Try_Container_Indexing (N, P, Exprs) then
2422 return;
2424 end if;
2426 Get_Next_Interp (I, It);
2427 end loop;
2429 if Etype (N) = Any_Type then
2430 Error_Msg_N ("no legal interpretation for indexed component", N);
2431 Set_Is_Overloaded (N, False);
2432 end if;
2434 End_Interp_List;
2435 end Process_Overloaded_Indexed_Component;
2437 -- Start of processing for Analyze_Indexed_Component_Form
2439 begin
2440 -- Get name of array, function or type
2442 Analyze (P);
2444 -- If P is an explicit dereference whose prefix is of a remote access-
2445 -- to-subprogram type, then N has already been rewritten as a subprogram
2446 -- call and analyzed.
2448 if Nkind (N) in N_Subprogram_Call then
2449 return;
2451 -- When the prefix is attribute 'Loop_Entry and the sole expression of
2452 -- the indexed component denotes a loop name, the indexed form is turned
2453 -- into an attribute reference.
2455 elsif Nkind (N) = N_Attribute_Reference
2456 and then Attribute_Name (N) = Name_Loop_Entry
2457 then
2458 return;
2459 end if;
2461 pragma Assert (Nkind (N) = N_Indexed_Component);
2463 P_T := Base_Type (Etype (P));
2465 if Is_Entity_Name (P) and then Present (Entity (P)) then
2466 U_N := Entity (P);
2468 if Is_Type (U_N) then
2470 -- Reformat node as a type conversion
2472 E := Remove_Head (Exprs);
2474 if Present (First (Exprs)) then
2475 Error_Msg_N
2476 ("argument of type conversion must be single expression", N);
2477 end if;
2479 Change_Node (N, N_Type_Conversion);
2480 Set_Subtype_Mark (N, P);
2481 Set_Etype (N, U_N);
2482 Set_Expression (N, E);
2484 -- After changing the node, call for the specific Analysis
2485 -- routine directly, to avoid a double call to the expander.
2487 Analyze_Type_Conversion (N);
2488 return;
2489 end if;
2491 if Is_Overloadable (U_N) then
2492 Process_Function_Call;
2494 elsif Ekind (Etype (P)) = E_Subprogram_Type
2495 or else (Is_Access_Type (Etype (P))
2496 and then
2497 Ekind (Designated_Type (Etype (P))) =
2498 E_Subprogram_Type)
2499 then
2500 -- Call to access_to-subprogram with possible implicit dereference
2502 Process_Function_Call;
2504 elsif Is_Generic_Subprogram (U_N) then
2506 -- A common beginner's (or C++ templates fan) error
2508 Error_Msg_N ("generic subprogram cannot be called", N);
2509 Set_Etype (N, Any_Type);
2510 return;
2512 else
2513 Process_Indexed_Component_Or_Slice;
2514 end if;
2516 -- If not an entity name, prefix is an expression that may denote
2517 -- an array or an access-to-subprogram.
2519 else
2520 if Ekind (P_T) = E_Subprogram_Type
2521 or else (Is_Access_Type (P_T)
2522 and then
2523 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
2524 then
2525 Process_Function_Call;
2527 elsif Nkind (P) = N_Selected_Component
2528 and then Present (Entity (Selector_Name (P)))
2529 and then Is_Overloadable (Entity (Selector_Name (P)))
2530 then
2531 Process_Function_Call;
2533 -- In ASIS mode within a generic, a prefixed call is analyzed and
2534 -- partially rewritten but the original indexed component has not
2535 -- yet been rewritten as a call. Perform the replacement now.
2537 elsif Nkind (P) = N_Selected_Component
2538 and then Nkind (Parent (P)) = N_Function_Call
2539 and then ASIS_Mode
2540 then
2541 Rewrite (N, Parent (P));
2542 Analyze (N);
2544 else
2545 -- Indexed component, slice, or a call to a member of a family
2546 -- entry, which will be converted to an entry call later.
2548 Process_Indexed_Component_Or_Slice;
2549 end if;
2550 end if;
2552 Analyze_Dimension (N);
2553 end Analyze_Indexed_Component_Form;
2555 ------------------------
2556 -- Analyze_Logical_Op --
2557 ------------------------
2559 procedure Analyze_Logical_Op (N : Node_Id) is
2560 L : constant Node_Id := Left_Opnd (N);
2561 R : constant Node_Id := Right_Opnd (N);
2562 Op_Id : Entity_Id := Entity (N);
2564 begin
2565 Set_Etype (N, Any_Type);
2566 Candidate_Type := Empty;
2568 Analyze_Expression (L);
2569 Analyze_Expression (R);
2571 if Present (Op_Id) then
2573 if Ekind (Op_Id) = E_Operator then
2574 Find_Boolean_Types (L, R, Op_Id, N);
2575 else
2576 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2577 end if;
2579 else
2580 Op_Id := Get_Name_Entity_Id (Chars (N));
2581 while Present (Op_Id) loop
2582 if Ekind (Op_Id) = E_Operator then
2583 Find_Boolean_Types (L, R, Op_Id, N);
2584 else
2585 Analyze_User_Defined_Binary_Op (N, Op_Id);
2586 end if;
2588 Op_Id := Homonym (Op_Id);
2589 end loop;
2590 end if;
2592 Operator_Check (N);
2593 end Analyze_Logical_Op;
2595 ---------------------------
2596 -- Analyze_Membership_Op --
2597 ---------------------------
2599 procedure Analyze_Membership_Op (N : Node_Id) is
2600 Loc : constant Source_Ptr := Sloc (N);
2601 L : constant Node_Id := Left_Opnd (N);
2602 R : constant Node_Id := Right_Opnd (N);
2604 Index : Interp_Index;
2605 It : Interp;
2606 Found : Boolean := False;
2607 I_F : Interp_Index;
2608 T_F : Entity_Id;
2610 procedure Try_One_Interp (T1 : Entity_Id);
2611 -- Routine to try one proposed interpretation. Note that the context
2612 -- of the operation plays no role in resolving the arguments, so that
2613 -- if there is more than one interpretation of the operands that is
2614 -- compatible with a membership test, the operation is ambiguous.
2616 --------------------
2617 -- Try_One_Interp --
2618 --------------------
2620 procedure Try_One_Interp (T1 : Entity_Id) is
2621 begin
2622 if Has_Compatible_Type (R, T1) then
2623 if Found
2624 and then Base_Type (T1) /= Base_Type (T_F)
2625 then
2626 It := Disambiguate (L, I_F, Index, Any_Type);
2628 if It = No_Interp then
2629 Ambiguous_Operands (N);
2630 Set_Etype (L, Any_Type);
2631 return;
2633 else
2634 T_F := It.Typ;
2635 end if;
2637 else
2638 Found := True;
2639 T_F := T1;
2640 I_F := Index;
2641 end if;
2643 Set_Etype (L, T_F);
2644 end if;
2645 end Try_One_Interp;
2647 procedure Analyze_Set_Membership;
2648 -- If a set of alternatives is present, analyze each and find the
2649 -- common type to which they must all resolve.
2651 ----------------------------
2652 -- Analyze_Set_Membership --
2653 ----------------------------
2655 procedure Analyze_Set_Membership is
2656 Alt : Node_Id;
2657 Index : Interp_Index;
2658 It : Interp;
2659 Candidate_Interps : Node_Id;
2660 Common_Type : Entity_Id := Empty;
2662 begin
2663 if Comes_From_Source (N) then
2664 Check_Compiler_Unit ("set membership", N);
2665 end if;
2667 Analyze (L);
2668 Candidate_Interps := L;
2670 if not Is_Overloaded (L) then
2671 Common_Type := Etype (L);
2673 Alt := First (Alternatives (N));
2674 while Present (Alt) loop
2675 Analyze (Alt);
2677 if not Has_Compatible_Type (Alt, Common_Type) then
2678 Wrong_Type (Alt, Common_Type);
2679 end if;
2681 Next (Alt);
2682 end loop;
2684 else
2685 Alt := First (Alternatives (N));
2686 while Present (Alt) loop
2687 Analyze (Alt);
2688 if not Is_Overloaded (Alt) then
2689 Common_Type := Etype (Alt);
2691 else
2692 Get_First_Interp (Alt, Index, It);
2693 while Present (It.Typ) loop
2694 if not
2695 Has_Compatible_Type (Candidate_Interps, It.Typ)
2696 then
2697 Remove_Interp (Index);
2698 end if;
2700 Get_Next_Interp (Index, It);
2701 end loop;
2703 Get_First_Interp (Alt, Index, It);
2705 if No (It.Typ) then
2706 Error_Msg_N ("alternative has no legal type", Alt);
2707 return;
2708 end if;
2710 -- If alternative is not overloaded, we have a unique type
2711 -- for all of them.
2713 Set_Etype (Alt, It.Typ);
2714 Get_Next_Interp (Index, It);
2716 if No (It.Typ) then
2717 Set_Is_Overloaded (Alt, False);
2718 Common_Type := Etype (Alt);
2719 end if;
2721 Candidate_Interps := Alt;
2722 end if;
2724 Next (Alt);
2725 end loop;
2726 end if;
2728 Set_Etype (N, Standard_Boolean);
2730 if Present (Common_Type) then
2731 Set_Etype (L, Common_Type);
2732 Set_Is_Overloaded (L, False);
2734 else
2735 Error_Msg_N ("cannot resolve membership operation", N);
2736 end if;
2737 end Analyze_Set_Membership;
2739 -- Start of processing for Analyze_Membership_Op
2741 begin
2742 Analyze_Expression (L);
2744 if No (R) and then Ada_Version >= Ada_2012 then
2745 Analyze_Set_Membership;
2746 return;
2747 end if;
2749 if Nkind (R) = N_Range
2750 or else (Nkind (R) = N_Attribute_Reference
2751 and then Attribute_Name (R) = Name_Range)
2752 then
2753 Analyze (R);
2755 if not Is_Overloaded (L) then
2756 Try_One_Interp (Etype (L));
2758 else
2759 Get_First_Interp (L, Index, It);
2760 while Present (It.Typ) loop
2761 Try_One_Interp (It.Typ);
2762 Get_Next_Interp (Index, It);
2763 end loop;
2764 end if;
2766 -- If not a range, it can be a subtype mark, or else it is a degenerate
2767 -- membership test with a singleton value, i.e. a test for equality,
2768 -- if the types are compatible.
2770 else
2771 Analyze (R);
2773 if Is_Entity_Name (R)
2774 and then Is_Type (Entity (R))
2775 then
2776 Find_Type (R);
2777 Check_Fully_Declared (Entity (R), R);
2779 elsif Ada_Version >= Ada_2012
2780 and then Has_Compatible_Type (R, Etype (L))
2781 then
2782 if Nkind (N) = N_In then
2783 Rewrite (N,
2784 Make_Op_Eq (Loc,
2785 Left_Opnd => L,
2786 Right_Opnd => R));
2787 else
2788 Rewrite (N,
2789 Make_Op_Ne (Loc,
2790 Left_Opnd => L,
2791 Right_Opnd => R));
2792 end if;
2794 Analyze (N);
2795 return;
2797 else
2798 -- In all versions of the language, if we reach this point there
2799 -- is a previous error that will be diagnosed below.
2801 Find_Type (R);
2802 end if;
2803 end if;
2805 -- Compatibility between expression and subtype mark or range is
2806 -- checked during resolution. The result of the operation is Boolean
2807 -- in any case.
2809 Set_Etype (N, Standard_Boolean);
2811 if Comes_From_Source (N)
2812 and then Present (Right_Opnd (N))
2813 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2814 then
2815 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2816 end if;
2817 end Analyze_Membership_Op;
2819 -----------------
2820 -- Analyze_Mod --
2821 -----------------
2823 procedure Analyze_Mod (N : Node_Id) is
2824 begin
2825 -- A special warning check, if we have an expression of the form:
2826 -- expr mod 2 * literal
2827 -- where literal is 64 or less, then probably what was meant was
2828 -- expr mod 2 ** literal
2829 -- so issue an appropriate warning.
2831 if Warn_On_Suspicious_Modulus_Value
2832 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
2833 and then Intval (Right_Opnd (N)) = Uint_2
2834 and then Nkind (Parent (N)) = N_Op_Multiply
2835 and then Nkind (Right_Opnd (Parent (N))) = N_Integer_Literal
2836 and then Intval (Right_Opnd (Parent (N))) <= Uint_64
2837 then
2838 Error_Msg_N
2839 ("suspicious MOD value, was '*'* intended'??M?", Parent (N));
2840 end if;
2842 -- Remaining processing is same as for other arithmetic operators
2844 Analyze_Arithmetic_Op (N);
2845 end Analyze_Mod;
2847 ----------------------
2848 -- Analyze_Negation --
2849 ----------------------
2851 procedure Analyze_Negation (N : Node_Id) is
2852 R : constant Node_Id := Right_Opnd (N);
2853 Op_Id : Entity_Id := Entity (N);
2855 begin
2856 Set_Etype (N, Any_Type);
2857 Candidate_Type := Empty;
2859 Analyze_Expression (R);
2861 if Present (Op_Id) then
2862 if Ekind (Op_Id) = E_Operator then
2863 Find_Negation_Types (R, Op_Id, N);
2864 else
2865 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2866 end if;
2868 else
2869 Op_Id := Get_Name_Entity_Id (Chars (N));
2870 while Present (Op_Id) loop
2871 if Ekind (Op_Id) = E_Operator then
2872 Find_Negation_Types (R, Op_Id, N);
2873 else
2874 Analyze_User_Defined_Unary_Op (N, Op_Id);
2875 end if;
2877 Op_Id := Homonym (Op_Id);
2878 end loop;
2879 end if;
2881 Operator_Check (N);
2882 end Analyze_Negation;
2884 ------------------
2885 -- Analyze_Null --
2886 ------------------
2888 procedure Analyze_Null (N : Node_Id) is
2889 begin
2890 Check_SPARK_05_Restriction ("null is not allowed", N);
2892 Set_Etype (N, Any_Access);
2893 end Analyze_Null;
2895 ----------------------
2896 -- Analyze_One_Call --
2897 ----------------------
2899 procedure Analyze_One_Call
2900 (N : Node_Id;
2901 Nam : Entity_Id;
2902 Report : Boolean;
2903 Success : out Boolean;
2904 Skip_First : Boolean := False)
2906 Actuals : constant List_Id := Parameter_Associations (N);
2907 Prev_T : constant Entity_Id := Etype (N);
2909 Must_Skip : constant Boolean := Skip_First
2910 or else Nkind (Original_Node (N)) = N_Selected_Component
2911 or else
2912 (Nkind (Original_Node (N)) = N_Indexed_Component
2913 and then Nkind (Prefix (Original_Node (N)))
2914 = N_Selected_Component);
2915 -- The first formal must be omitted from the match when trying to find
2916 -- a primitive operation that is a possible interpretation, and also
2917 -- after the call has been rewritten, because the corresponding actual
2918 -- is already known to be compatible, and because this may be an
2919 -- indexing of a call with default parameters.
2921 Formal : Entity_Id;
2922 Actual : Node_Id;
2923 Is_Indexed : Boolean := False;
2924 Is_Indirect : Boolean := False;
2925 Subp_Type : constant Entity_Id := Etype (Nam);
2926 Norm_OK : Boolean;
2928 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
2929 -- There may be a user-defined operator that hides the current
2930 -- interpretation. We must check for this independently of the
2931 -- analysis of the call with the user-defined operation, because
2932 -- the parameter names may be wrong and yet the hiding takes place.
2933 -- This fixes a problem with ACATS test B34014O.
2935 -- When the type Address is a visible integer type, and the DEC
2936 -- system extension is visible, the predefined operator may be
2937 -- hidden as well, by one of the address operations in auxdec.
2938 -- Finally, The abstract operations on address do not hide the
2939 -- predefined operator (this is the purpose of making them abstract).
2941 procedure Indicate_Name_And_Type;
2942 -- If candidate interpretation matches, indicate name and type of
2943 -- result on call node.
2945 ----------------------------
2946 -- Indicate_Name_And_Type --
2947 ----------------------------
2949 procedure Indicate_Name_And_Type is
2950 begin
2951 Add_One_Interp (N, Nam, Etype (Nam));
2952 Check_Implicit_Dereference (N, Etype (Nam));
2953 Success := True;
2955 -- If the prefix of the call is a name, indicate the entity
2956 -- being called. If it is not a name, it is an expression that
2957 -- denotes an access to subprogram or else an entry or family. In
2958 -- the latter case, the name is a selected component, and the entity
2959 -- being called is noted on the selector.
2961 if not Is_Type (Nam) then
2962 if Is_Entity_Name (Name (N)) then
2963 Set_Entity (Name (N), Nam);
2965 elsif Nkind (Name (N)) = N_Selected_Component then
2966 Set_Entity (Selector_Name (Name (N)), Nam);
2967 end if;
2968 end if;
2970 if Debug_Flag_E and not Report then
2971 Write_Str (" Overloaded call ");
2972 Write_Int (Int (N));
2973 Write_Str (" compatible with ");
2974 Write_Int (Int (Nam));
2975 Write_Eol;
2976 end if;
2977 end Indicate_Name_And_Type;
2979 ------------------------
2980 -- Operator_Hidden_By --
2981 ------------------------
2983 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
2984 Act1 : constant Node_Id := First_Actual (N);
2985 Act2 : constant Node_Id := Next_Actual (Act1);
2986 Form1 : constant Entity_Id := First_Formal (Fun);
2987 Form2 : constant Entity_Id := Next_Formal (Form1);
2989 begin
2990 if Ekind (Fun) /= E_Function or else Is_Abstract_Subprogram (Fun) then
2991 return False;
2993 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
2994 return False;
2996 elsif Present (Form2) then
2997 if No (Act2)
2998 or else not Has_Compatible_Type (Act2, Etype (Form2))
2999 then
3000 return False;
3001 end if;
3003 elsif Present (Act2) then
3004 return False;
3005 end if;
3007 -- Now we know that the arity of the operator matches the function,
3008 -- and the function call is a valid interpretation. The function
3009 -- hides the operator if it has the right signature, or if one of
3010 -- its operands is a non-abstract operation on Address when this is
3011 -- a visible integer type.
3013 return Hides_Op (Fun, Nam)
3014 or else Is_Descendent_Of_Address (Etype (Form1))
3015 or else
3016 (Present (Form2)
3017 and then Is_Descendent_Of_Address (Etype (Form2)));
3018 end Operator_Hidden_By;
3020 -- Start of processing for Analyze_One_Call
3022 begin
3023 Success := False;
3025 -- If the subprogram has no formals or if all the formals have defaults,
3026 -- and the return type is an array type, the node may denote an indexing
3027 -- of the result of a parameterless call. In Ada 2005, the subprogram
3028 -- may have one non-defaulted formal, and the call may have been written
3029 -- in prefix notation, so that the rebuilt parameter list has more than
3030 -- one actual.
3032 if not Is_Overloadable (Nam)
3033 and then Ekind (Nam) /= E_Subprogram_Type
3034 and then Ekind (Nam) /= E_Entry_Family
3035 then
3036 return;
3037 end if;
3039 -- An indexing requires at least one actual. The name of the call cannot
3040 -- be an implicit indirect call, so it cannot be a generated explicit
3041 -- dereference.
3043 if not Is_Empty_List (Actuals)
3044 and then
3045 (Needs_No_Actuals (Nam)
3046 or else
3047 (Needs_One_Actual (Nam)
3048 and then Present (Next_Actual (First (Actuals)))))
3049 then
3050 if Is_Array_Type (Subp_Type)
3051 and then
3052 (Nkind (Name (N)) /= N_Explicit_Dereference
3053 or else Comes_From_Source (Name (N)))
3054 then
3055 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
3057 elsif Is_Access_Type (Subp_Type)
3058 and then Is_Array_Type (Designated_Type (Subp_Type))
3059 then
3060 Is_Indexed :=
3061 Try_Indexed_Call
3062 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
3064 -- The prefix can also be a parameterless function that returns an
3065 -- access to subprogram, in which case this is an indirect call.
3066 -- If this succeeds, an explicit dereference is added later on,
3067 -- in Analyze_Call or Resolve_Call.
3069 elsif Is_Access_Type (Subp_Type)
3070 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
3071 then
3072 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
3073 end if;
3075 end if;
3077 -- If the call has been transformed into a slice, it is of the form
3078 -- F (Subtype) where F is parameterless. The node has been rewritten in
3079 -- Try_Indexed_Call and there is nothing else to do.
3081 if Is_Indexed
3082 and then Nkind (N) = N_Slice
3083 then
3084 return;
3085 end if;
3087 Normalize_Actuals
3088 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
3090 if not Norm_OK then
3092 -- If an indirect call is a possible interpretation, indicate
3093 -- success to the caller. This may be an indexing of an explicit
3094 -- dereference of a call that returns an access type (see above).
3096 if Is_Indirect
3097 or else (Is_Indexed
3098 and then Nkind (Name (N)) = N_Explicit_Dereference
3099 and then Comes_From_Source (Name (N)))
3100 then
3101 Success := True;
3102 return;
3104 -- Mismatch in number or names of parameters
3106 elsif Debug_Flag_E then
3107 Write_Str (" normalization fails in call ");
3108 Write_Int (Int (N));
3109 Write_Str (" with subprogram ");
3110 Write_Int (Int (Nam));
3111 Write_Eol;
3112 end if;
3114 -- If the context expects a function call, discard any interpretation
3115 -- that is a procedure. If the node is not overloaded, leave as is for
3116 -- better error reporting when type mismatch is found.
3118 elsif Nkind (N) = N_Function_Call
3119 and then Is_Overloaded (Name (N))
3120 and then Ekind (Nam) = E_Procedure
3121 then
3122 return;
3124 -- Ditto for function calls in a procedure context
3126 elsif Nkind (N) = N_Procedure_Call_Statement
3127 and then Is_Overloaded (Name (N))
3128 and then Etype (Nam) /= Standard_Void_Type
3129 then
3130 return;
3132 elsif No (Actuals) then
3134 -- If Normalize succeeds, then there are default parameters for
3135 -- all formals.
3137 Indicate_Name_And_Type;
3139 elsif Ekind (Nam) = E_Operator then
3140 if Nkind (N) = N_Procedure_Call_Statement then
3141 return;
3142 end if;
3144 -- This can occur when the prefix of the call is an operator
3145 -- name or an expanded name whose selector is an operator name.
3147 Analyze_Operator_Call (N, Nam);
3149 if Etype (N) /= Prev_T then
3151 -- Check that operator is not hidden by a function interpretation
3153 if Is_Overloaded (Name (N)) then
3154 declare
3155 I : Interp_Index;
3156 It : Interp;
3158 begin
3159 Get_First_Interp (Name (N), I, It);
3160 while Present (It.Nam) loop
3161 if Operator_Hidden_By (It.Nam) then
3162 Set_Etype (N, Prev_T);
3163 return;
3164 end if;
3166 Get_Next_Interp (I, It);
3167 end loop;
3168 end;
3169 end if;
3171 -- If operator matches formals, record its name on the call.
3172 -- If the operator is overloaded, Resolve will select the
3173 -- correct one from the list of interpretations. The call
3174 -- node itself carries the first candidate.
3176 Set_Entity (Name (N), Nam);
3177 Success := True;
3179 elsif Report and then Etype (N) = Any_Type then
3180 Error_Msg_N ("incompatible arguments for operator", N);
3181 end if;
3183 else
3184 -- Normalize_Actuals has chained the named associations in the
3185 -- correct order of the formals.
3187 Actual := First_Actual (N);
3188 Formal := First_Formal (Nam);
3190 -- If we are analyzing a call rewritten from object notation, skip
3191 -- first actual, which may be rewritten later as an explicit
3192 -- dereference.
3194 if Must_Skip then
3195 Next_Actual (Actual);
3196 Next_Formal (Formal);
3197 end if;
3199 while Present (Actual) and then Present (Formal) loop
3200 if Nkind (Parent (Actual)) /= N_Parameter_Association
3201 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
3202 then
3203 -- The actual can be compatible with the formal, but we must
3204 -- also check that the context is not an address type that is
3205 -- visibly an integer type. In this case the use of literals is
3206 -- illegal, except in the body of descendents of system, where
3207 -- arithmetic operations on address are of course used.
3209 if Has_Compatible_Type (Actual, Etype (Formal))
3210 and then
3211 (Etype (Actual) /= Universal_Integer
3212 or else not Is_Descendent_Of_Address (Etype (Formal))
3213 or else
3214 Is_Predefined_File_Name
3215 (Unit_File_Name (Get_Source_Unit (N))))
3216 then
3217 Next_Actual (Actual);
3218 Next_Formal (Formal);
3220 -- In Allow_Integer_Address mode, we allow an actual integer to
3221 -- match a formal address type and vice versa. We only do this
3222 -- if we are certain that an error will otherwise be issued
3224 elsif Address_Integer_Convert_OK
3225 (Etype (Actual), Etype (Formal))
3226 and then (Report and not Is_Indexed and not Is_Indirect)
3227 then
3228 -- Handle this case by introducing an unchecked conversion
3230 Rewrite (Actual,
3231 Unchecked_Convert_To (Etype (Formal),
3232 Relocate_Node (Actual)));
3233 Analyze_And_Resolve (Actual, Etype (Formal));
3234 Next_Actual (Actual);
3235 Next_Formal (Formal);
3237 else
3238 if Debug_Flag_E then
3239 Write_Str (" type checking fails in call ");
3240 Write_Int (Int (N));
3241 Write_Str (" with formal ");
3242 Write_Int (Int (Formal));
3243 Write_Str (" in subprogram ");
3244 Write_Int (Int (Nam));
3245 Write_Eol;
3246 end if;
3248 -- Comment needed on the following test???
3250 if Report and not Is_Indexed and not Is_Indirect then
3252 -- Ada 2005 (AI-251): Complete the error notification
3253 -- to help new Ada 2005 users.
3255 if Is_Class_Wide_Type (Etype (Formal))
3256 and then Is_Interface (Etype (Etype (Formal)))
3257 and then not Interface_Present_In_Ancestor
3258 (Typ => Etype (Actual),
3259 Iface => Etype (Etype (Formal)))
3260 then
3261 Error_Msg_NE
3262 ("(Ada 2005) does not implement interface }",
3263 Actual, Etype (Etype (Formal)));
3264 end if;
3266 Wrong_Type (Actual, Etype (Formal));
3268 if Nkind (Actual) = N_Op_Eq
3269 and then Nkind (Left_Opnd (Actual)) = N_Identifier
3270 then
3271 Formal := First_Formal (Nam);
3272 while Present (Formal) loop
3273 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
3274 Error_Msg_N -- CODEFIX
3275 ("possible misspelling of `='>`!", Actual);
3276 exit;
3277 end if;
3279 Next_Formal (Formal);
3280 end loop;
3281 end if;
3283 if All_Errors_Mode then
3284 Error_Msg_Sloc := Sloc (Nam);
3286 if Etype (Formal) = Any_Type then
3287 Error_Msg_N
3288 ("there is no legal actual parameter", Actual);
3289 end if;
3291 if Is_Overloadable (Nam)
3292 and then Present (Alias (Nam))
3293 and then not Comes_From_Source (Nam)
3294 then
3295 Error_Msg_NE
3296 ("\\ =='> in call to inherited operation & #!",
3297 Actual, Nam);
3299 elsif Ekind (Nam) = E_Subprogram_Type then
3300 declare
3301 Access_To_Subprogram_Typ :
3302 constant Entity_Id :=
3303 Defining_Identifier
3304 (Associated_Node_For_Itype (Nam));
3305 begin
3306 Error_Msg_NE
3307 ("\\ =='> in call to dereference of &#!",
3308 Actual, Access_To_Subprogram_Typ);
3309 end;
3311 else
3312 Error_Msg_NE
3313 ("\\ =='> in call to &#!", Actual, Nam);
3315 end if;
3316 end if;
3317 end if;
3319 return;
3320 end if;
3322 else
3323 -- Normalize_Actuals has verified that a default value exists
3324 -- for this formal. Current actual names a subsequent formal.
3326 Next_Formal (Formal);
3327 end if;
3328 end loop;
3330 -- On exit, all actuals match
3332 Indicate_Name_And_Type;
3333 end if;
3334 end Analyze_One_Call;
3336 ---------------------------
3337 -- Analyze_Operator_Call --
3338 ---------------------------
3340 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
3341 Op_Name : constant Name_Id := Chars (Op_Id);
3342 Act1 : constant Node_Id := First_Actual (N);
3343 Act2 : constant Node_Id := Next_Actual (Act1);
3345 begin
3346 -- Binary operator case
3348 if Present (Act2) then
3350 -- If more than two operands, then not binary operator after all
3352 if Present (Next_Actual (Act2)) then
3353 return;
3354 end if;
3356 -- Otherwise action depends on operator
3358 case Op_Name is
3359 when Name_Op_Add |
3360 Name_Op_Subtract |
3361 Name_Op_Multiply |
3362 Name_Op_Divide |
3363 Name_Op_Mod |
3364 Name_Op_Rem |
3365 Name_Op_Expon =>
3366 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
3368 when Name_Op_And |
3369 Name_Op_Or |
3370 Name_Op_Xor =>
3371 Find_Boolean_Types (Act1, Act2, Op_Id, N);
3373 when Name_Op_Lt |
3374 Name_Op_Le |
3375 Name_Op_Gt |
3376 Name_Op_Ge =>
3377 Find_Comparison_Types (Act1, Act2, Op_Id, N);
3379 when Name_Op_Eq |
3380 Name_Op_Ne =>
3381 Find_Equality_Types (Act1, Act2, Op_Id, N);
3383 when Name_Op_Concat =>
3384 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
3386 -- Is this when others, or should it be an abort???
3388 when others =>
3389 null;
3390 end case;
3392 -- Unary operator case
3394 else
3395 case Op_Name is
3396 when Name_Op_Subtract |
3397 Name_Op_Add |
3398 Name_Op_Abs =>
3399 Find_Unary_Types (Act1, Op_Id, N);
3401 when Name_Op_Not =>
3402 Find_Negation_Types (Act1, Op_Id, N);
3404 -- Is this when others correct, or should it be an abort???
3406 when others =>
3407 null;
3408 end case;
3409 end if;
3410 end Analyze_Operator_Call;
3412 -------------------------------------------
3413 -- Analyze_Overloaded_Selected_Component --
3414 -------------------------------------------
3416 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
3417 Nam : constant Node_Id := Prefix (N);
3418 Sel : constant Node_Id := Selector_Name (N);
3419 Comp : Entity_Id;
3420 I : Interp_Index;
3421 It : Interp;
3422 T : Entity_Id;
3424 begin
3425 Set_Etype (Sel, Any_Type);
3427 Get_First_Interp (Nam, I, It);
3428 while Present (It.Typ) loop
3429 if Is_Access_Type (It.Typ) then
3430 T := Designated_Type (It.Typ);
3431 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
3432 else
3433 T := It.Typ;
3434 end if;
3436 -- Locate the component. For a private prefix the selector can denote
3437 -- a discriminant.
3439 if Is_Record_Type (T) or else Is_Private_Type (T) then
3441 -- If the prefix is a class-wide type, the visible components are
3442 -- those of the base type.
3444 if Is_Class_Wide_Type (T) then
3445 T := Etype (T);
3446 end if;
3448 Comp := First_Entity (T);
3449 while Present (Comp) loop
3450 if Chars (Comp) = Chars (Sel)
3451 and then Is_Visible_Component (Comp)
3452 then
3454 -- AI05-105: if the context is an object renaming with
3455 -- an anonymous access type, the expected type of the
3456 -- object must be anonymous. This is a name resolution rule.
3458 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
3459 or else No (Access_Definition (Parent (N)))
3460 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
3461 or else
3462 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
3463 then
3464 Set_Entity (Sel, Comp);
3465 Set_Etype (Sel, Etype (Comp));
3466 Add_One_Interp (N, Etype (Comp), Etype (Comp));
3467 Check_Implicit_Dereference (N, Etype (Comp));
3469 -- This also specifies a candidate to resolve the name.
3470 -- Further overloading will be resolved from context.
3471 -- The selector name itself does not carry overloading
3472 -- information.
3474 Set_Etype (Nam, It.Typ);
3476 else
3477 -- Named access type in the context of a renaming
3478 -- declaration with an access definition. Remove
3479 -- inapplicable candidate.
3481 Remove_Interp (I);
3482 end if;
3483 end if;
3485 Next_Entity (Comp);
3486 end loop;
3488 elsif Is_Concurrent_Type (T) then
3489 Comp := First_Entity (T);
3490 while Present (Comp)
3491 and then Comp /= First_Private_Entity (T)
3492 loop
3493 if Chars (Comp) = Chars (Sel) then
3494 if Is_Overloadable (Comp) then
3495 Add_One_Interp (Sel, Comp, Etype (Comp));
3496 else
3497 Set_Entity_With_Checks (Sel, Comp);
3498 Generate_Reference (Comp, Sel);
3499 end if;
3501 Set_Etype (Sel, Etype (Comp));
3502 Set_Etype (N, Etype (Comp));
3503 Set_Etype (Nam, It.Typ);
3505 -- For access type case, introduce explicit dereference for
3506 -- more uniform treatment of entry calls. Do this only once
3507 -- if several interpretations yield an access type.
3509 if Is_Access_Type (Etype (Nam))
3510 and then Nkind (Nam) /= N_Explicit_Dereference
3511 then
3512 Insert_Explicit_Dereference (Nam);
3513 Error_Msg_NW
3514 (Warn_On_Dereference, "?d?implicit dereference", N);
3515 end if;
3516 end if;
3518 Next_Entity (Comp);
3519 end loop;
3521 Set_Is_Overloaded (N, Is_Overloaded (Sel));
3522 end if;
3524 Get_Next_Interp (I, It);
3525 end loop;
3527 if Etype (N) = Any_Type
3528 and then not Try_Object_Operation (N)
3529 then
3530 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
3531 Set_Entity (Sel, Any_Id);
3532 Set_Etype (Sel, Any_Type);
3533 end if;
3534 end Analyze_Overloaded_Selected_Component;
3536 ----------------------------------
3537 -- Analyze_Qualified_Expression --
3538 ----------------------------------
3540 procedure Analyze_Qualified_Expression (N : Node_Id) is
3541 Mark : constant Entity_Id := Subtype_Mark (N);
3542 Expr : constant Node_Id := Expression (N);
3543 I : Interp_Index;
3544 It : Interp;
3545 T : Entity_Id;
3547 begin
3548 Analyze_Expression (Expr);
3550 Set_Etype (N, Any_Type);
3551 Find_Type (Mark);
3552 T := Entity (Mark);
3553 Set_Etype (N, T);
3555 if T = Any_Type then
3556 return;
3557 end if;
3559 Check_Fully_Declared (T, N);
3561 -- If expected type is class-wide, check for exact match before
3562 -- expansion, because if the expression is a dispatching call it
3563 -- may be rewritten as explicit dereference with class-wide result.
3564 -- If expression is overloaded, retain only interpretations that
3565 -- will yield exact matches.
3567 if Is_Class_Wide_Type (T) then
3568 if not Is_Overloaded (Expr) then
3569 if Base_Type (Etype (Expr)) /= Base_Type (T) then
3570 if Nkind (Expr) = N_Aggregate then
3571 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
3572 else
3573 Wrong_Type (Expr, T);
3574 end if;
3575 end if;
3577 else
3578 Get_First_Interp (Expr, I, It);
3580 while Present (It.Nam) loop
3581 if Base_Type (It.Typ) /= Base_Type (T) then
3582 Remove_Interp (I);
3583 end if;
3585 Get_Next_Interp (I, It);
3586 end loop;
3587 end if;
3588 end if;
3590 Set_Etype (N, T);
3591 end Analyze_Qualified_Expression;
3593 -----------------------------------
3594 -- Analyze_Quantified_Expression --
3595 -----------------------------------
3597 procedure Analyze_Quantified_Expression (N : Node_Id) is
3598 function Is_Empty_Range (Typ : Entity_Id) return Boolean;
3599 -- If the iterator is part of a quantified expression, and the range is
3600 -- known to be statically empty, emit a warning and replace expression
3601 -- with its static value. Returns True if the replacement occurs.
3603 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean;
3604 -- Determine whether if expression If_Expr lacks an else part or if it
3605 -- has one, it evaluates to True.
3607 --------------------
3608 -- Is_Empty_Range --
3609 --------------------
3611 function Is_Empty_Range (Typ : Entity_Id) return Boolean is
3612 Loc : constant Source_Ptr := Sloc (N);
3614 begin
3615 if Is_Array_Type (Typ)
3616 and then Compile_Time_Known_Bounds (Typ)
3617 and then
3618 (Expr_Value (Type_Low_Bound (Etype (First_Index (Typ)))) >
3619 Expr_Value (Type_High_Bound (Etype (First_Index (Typ)))))
3620 then
3621 Preanalyze_And_Resolve (Condition (N), Standard_Boolean);
3623 if All_Present (N) then
3624 Error_Msg_N
3625 ("??quantified expression with ALL "
3626 & "over a null range has value True", N);
3627 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
3629 else
3630 Error_Msg_N
3631 ("??quantified expression with SOME "
3632 & "over a null range has value False", N);
3633 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
3634 end if;
3636 Analyze (N);
3637 return True;
3639 else
3640 return False;
3641 end if;
3642 end Is_Empty_Range;
3644 -----------------------------
3645 -- No_Else_Or_Trivial_True --
3646 -----------------------------
3648 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean is
3649 Else_Expr : constant Node_Id :=
3650 Next (Next (First (Expressions (If_Expr))));
3651 begin
3652 return
3653 No (Else_Expr)
3654 or else (Compile_Time_Known_Value (Else_Expr)
3655 and then Is_True (Expr_Value (Else_Expr)));
3656 end No_Else_Or_Trivial_True;
3658 -- Local variables
3660 Cond : constant Node_Id := Condition (N);
3661 Loop_Id : Entity_Id;
3662 QE_Scop : Entity_Id;
3664 -- Start of processing for Analyze_Quantified_Expression
3666 begin
3667 Check_SPARK_05_Restriction ("quantified expression is not allowed", N);
3669 -- Create a scope to emulate the loop-like behavior of the quantified
3670 -- expression. The scope is needed to provide proper visibility of the
3671 -- loop variable.
3673 QE_Scop := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
3674 Set_Etype (QE_Scop, Standard_Void_Type);
3675 Set_Scope (QE_Scop, Current_Scope);
3676 Set_Parent (QE_Scop, N);
3678 Push_Scope (QE_Scop);
3680 -- All constituents are preanalyzed and resolved to avoid untimely
3681 -- generation of various temporaries and types. Full analysis and
3682 -- expansion is carried out when the quantified expression is
3683 -- transformed into an expression with actions.
3685 if Present (Iterator_Specification (N)) then
3686 Preanalyze (Iterator_Specification (N));
3688 -- Do not proceed with the analysis when the range of iteration is
3689 -- empty. The appropriate error is issued by Is_Empty_Range.
3691 if Is_Entity_Name (Name (Iterator_Specification (N)))
3692 and then Is_Empty_Range (Etype (Name (Iterator_Specification (N))))
3693 then
3694 return;
3695 end if;
3697 else pragma Assert (Present (Loop_Parameter_Specification (N)));
3698 declare
3699 Loop_Par : constant Node_Id := Loop_Parameter_Specification (N);
3701 begin
3702 Preanalyze (Loop_Par);
3704 if Nkind (Discrete_Subtype_Definition (Loop_Par)) = N_Function_Call
3705 and then Parent (Loop_Par) /= N
3706 then
3707 -- The parser cannot distinguish between a loop specification
3708 -- and an iterator specification. If after pre-analysis the
3709 -- proper form has been recognized, rewrite the expression to
3710 -- reflect the right kind. This is needed for proper ASIS
3711 -- navigation. If expansion is enabled, the transformation is
3712 -- performed when the expression is rewritten as a loop.
3714 Set_Iterator_Specification (N,
3715 New_Copy_Tree (Iterator_Specification (Parent (Loop_Par))));
3717 Set_Defining_Identifier (Iterator_Specification (N),
3718 Relocate_Node (Defining_Identifier (Loop_Par)));
3719 Set_Name (Iterator_Specification (N),
3720 Relocate_Node (Discrete_Subtype_Definition (Loop_Par)));
3721 Set_Comes_From_Source (Iterator_Specification (N),
3722 Comes_From_Source (Loop_Parameter_Specification (N)));
3723 Set_Loop_Parameter_Specification (N, Empty);
3724 end if;
3725 end;
3726 end if;
3728 Preanalyze_And_Resolve (Cond, Standard_Boolean);
3730 End_Scope;
3731 Set_Etype (N, Standard_Boolean);
3733 -- Verify that the loop variable is used within the condition of the
3734 -- quantified expression.
3736 if Present (Iterator_Specification (N)) then
3737 Loop_Id := Defining_Identifier (Iterator_Specification (N));
3738 else
3739 Loop_Id := Defining_Identifier (Loop_Parameter_Specification (N));
3740 end if;
3742 if Warn_On_Suspicious_Contract
3743 and then not Referenced (Loop_Id, Cond)
3744 then
3745 Error_Msg_N ("?T?unused variable &", Loop_Id);
3746 end if;
3748 -- Diagnose a possible misuse of the SOME existential quantifier. When
3749 -- we have a quantified expression of the form:
3751 -- for some X => (if P then Q [else True])
3753 -- any value for X that makes P False results in the if expression being
3754 -- trivially True, and so also results in the the quantified expression
3755 -- being trivially True.
3757 if Warn_On_Suspicious_Contract
3758 and then not All_Present (N)
3759 and then Nkind (Cond) = N_If_Expression
3760 and then No_Else_Or_Trivial_True (Cond)
3761 then
3762 Error_Msg_N ("?T?suspicious expression", N);
3763 Error_Msg_N ("\\did you mean (for all X ='> (if P then Q))", N);
3764 Error_Msg_N ("\\or (for some X ='> P and then Q) instead'?", N);
3765 end if;
3766 end Analyze_Quantified_Expression;
3768 -------------------
3769 -- Analyze_Range --
3770 -------------------
3772 procedure Analyze_Range (N : Node_Id) is
3773 L : constant Node_Id := Low_Bound (N);
3774 H : constant Node_Id := High_Bound (N);
3775 I1, I2 : Interp_Index;
3776 It1, It2 : Interp;
3778 procedure Check_Common_Type (T1, T2 : Entity_Id);
3779 -- Verify the compatibility of two types, and choose the
3780 -- non universal one if the other is universal.
3782 procedure Check_High_Bound (T : Entity_Id);
3783 -- Test one interpretation of the low bound against all those
3784 -- of the high bound.
3786 procedure Check_Universal_Expression (N : Node_Id);
3787 -- In Ada 83, reject bounds of a universal range that are not literals
3788 -- or entity names.
3790 -----------------------
3791 -- Check_Common_Type --
3792 -----------------------
3794 procedure Check_Common_Type (T1, T2 : Entity_Id) is
3795 begin
3796 if Covers (T1 => T1, T2 => T2)
3797 or else
3798 Covers (T1 => T2, T2 => T1)
3799 then
3800 if T1 = Universal_Integer
3801 or else T1 = Universal_Real
3802 or else T1 = Any_Character
3803 then
3804 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
3806 elsif T1 = T2 then
3807 Add_One_Interp (N, T1, T1);
3809 else
3810 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
3811 end if;
3812 end if;
3813 end Check_Common_Type;
3815 ----------------------
3816 -- Check_High_Bound --
3817 ----------------------
3819 procedure Check_High_Bound (T : Entity_Id) is
3820 begin
3821 if not Is_Overloaded (H) then
3822 Check_Common_Type (T, Etype (H));
3823 else
3824 Get_First_Interp (H, I2, It2);
3825 while Present (It2.Typ) loop
3826 Check_Common_Type (T, It2.Typ);
3827 Get_Next_Interp (I2, It2);
3828 end loop;
3829 end if;
3830 end Check_High_Bound;
3832 -----------------------------
3833 -- Is_Universal_Expression --
3834 -----------------------------
3836 procedure Check_Universal_Expression (N : Node_Id) is
3837 begin
3838 if Etype (N) = Universal_Integer
3839 and then Nkind (N) /= N_Integer_Literal
3840 and then not Is_Entity_Name (N)
3841 and then Nkind (N) /= N_Attribute_Reference
3842 then
3843 Error_Msg_N ("illegal bound in discrete range", N);
3844 end if;
3845 end Check_Universal_Expression;
3847 -- Start of processing for Analyze_Range
3849 begin
3850 Set_Etype (N, Any_Type);
3851 Analyze_Expression (L);
3852 Analyze_Expression (H);
3854 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
3855 return;
3857 else
3858 if not Is_Overloaded (L) then
3859 Check_High_Bound (Etype (L));
3860 else
3861 Get_First_Interp (L, I1, It1);
3862 while Present (It1.Typ) loop
3863 Check_High_Bound (It1.Typ);
3864 Get_Next_Interp (I1, It1);
3865 end loop;
3866 end if;
3868 -- If result is Any_Type, then we did not find a compatible pair
3870 if Etype (N) = Any_Type then
3871 Error_Msg_N ("incompatible types in range ", N);
3872 end if;
3873 end if;
3875 if Ada_Version = Ada_83
3876 and then
3877 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
3878 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
3879 then
3880 Check_Universal_Expression (L);
3881 Check_Universal_Expression (H);
3882 end if;
3884 Check_Function_Writable_Actuals (N);
3885 end Analyze_Range;
3887 -----------------------
3888 -- Analyze_Reference --
3889 -----------------------
3891 procedure Analyze_Reference (N : Node_Id) is
3892 P : constant Node_Id := Prefix (N);
3893 E : Entity_Id;
3894 T : Entity_Id;
3895 Acc_Type : Entity_Id;
3897 begin
3898 Analyze (P);
3900 -- An interesting error check, if we take the 'Reference of an object
3901 -- for which a pragma Atomic or Volatile has been given, and the type
3902 -- of the object is not Atomic or Volatile, then we are in trouble. The
3903 -- problem is that no trace of the atomic/volatile status will remain
3904 -- for the backend to respect when it deals with the resulting pointer,
3905 -- since the pointer type will not be marked atomic (it is a pointer to
3906 -- the base type of the object).
3908 -- It is not clear if that can ever occur, but in case it does, we will
3909 -- generate an error message. Not clear if this message can ever be
3910 -- generated, and pretty clear that it represents a bug if it is, still
3911 -- seems worth checking, except in CodePeer mode where we do not really
3912 -- care and don't want to bother the user.
3914 T := Etype (P);
3916 if Is_Entity_Name (P)
3917 and then Is_Object_Reference (P)
3918 and then not CodePeer_Mode
3919 then
3920 E := Entity (P);
3921 T := Etype (P);
3923 if (Has_Atomic_Components (E)
3924 and then not Has_Atomic_Components (T))
3925 or else
3926 (Has_Volatile_Components (E)
3927 and then not Has_Volatile_Components (T))
3928 or else (Is_Atomic (E) and then not Is_Atomic (T))
3929 or else (Is_Volatile (E) and then not Is_Volatile (T))
3930 then
3931 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
3932 end if;
3933 end if;
3935 -- Carry on with normal processing
3937 Acc_Type := Create_Itype (E_Allocator_Type, N);
3938 Set_Etype (Acc_Type, Acc_Type);
3939 Set_Directly_Designated_Type (Acc_Type, Etype (P));
3940 Set_Etype (N, Acc_Type);
3941 end Analyze_Reference;
3943 --------------------------------
3944 -- Analyze_Selected_Component --
3945 --------------------------------
3947 -- Prefix is a record type or a task or protected type. In the latter case,
3948 -- the selector must denote a visible entry.
3950 procedure Analyze_Selected_Component (N : Node_Id) is
3951 Name : constant Node_Id := Prefix (N);
3952 Sel : constant Node_Id := Selector_Name (N);
3953 Act_Decl : Node_Id;
3954 Comp : Entity_Id;
3955 Has_Candidate : Boolean := False;
3956 In_Scope : Boolean;
3957 Parent_N : Node_Id;
3958 Pent : Entity_Id := Empty;
3959 Prefix_Type : Entity_Id;
3961 Type_To_Use : Entity_Id;
3962 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
3963 -- a class-wide type, we use its root type, whose components are
3964 -- present in the class-wide type.
3966 Is_Single_Concurrent_Object : Boolean;
3967 -- Set True if the prefix is a single task or a single protected object
3969 procedure Find_Component_In_Instance (Rec : Entity_Id);
3970 -- In an instance, a component of a private extension may not be visible
3971 -- while it was visible in the generic. Search candidate scope for a
3972 -- component with the proper identifier. This is only done if all other
3973 -- searches have failed. If a match is found, the Etype of both N and
3974 -- Sel are set from this component, and the entity of Sel is set to
3975 -- reference this component. If no match is found, Entity (Sel) remains
3976 -- unset.
3978 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
3979 -- It is known that the parent of N denotes a subprogram call. Comp
3980 -- is an overloadable component of the concurrent type of the prefix.
3981 -- Determine whether all formals of the parent of N and Comp are mode
3982 -- conformant. If the parent node is not analyzed yet it may be an
3983 -- indexed component rather than a function call.
3985 --------------------------------
3986 -- Find_Component_In_Instance --
3987 --------------------------------
3989 procedure Find_Component_In_Instance (Rec : Entity_Id) is
3990 Comp : Entity_Id;
3992 begin
3993 Comp := First_Component (Rec);
3994 while Present (Comp) loop
3995 if Chars (Comp) = Chars (Sel) then
3996 Set_Entity_With_Checks (Sel, Comp);
3997 Set_Etype (Sel, Etype (Comp));
3998 Set_Etype (N, Etype (Comp));
3999 return;
4000 end if;
4002 Next_Component (Comp);
4003 end loop;
4005 -- If we fall through, no match, so no changes made
4007 return;
4008 end Find_Component_In_Instance;
4010 ------------------------------
4011 -- Has_Mode_Conformant_Spec --
4012 ------------------------------
4014 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
4015 Comp_Param : Entity_Id;
4016 Param : Node_Id;
4017 Param_Typ : Entity_Id;
4019 begin
4020 Comp_Param := First_Formal (Comp);
4022 if Nkind (Parent (N)) = N_Indexed_Component then
4023 Param := First (Expressions (Parent (N)));
4024 else
4025 Param := First (Parameter_Associations (Parent (N)));
4026 end if;
4028 while Present (Comp_Param)
4029 and then Present (Param)
4030 loop
4031 Param_Typ := Find_Parameter_Type (Param);
4033 if Present (Param_Typ)
4034 and then
4035 not Conforming_Types
4036 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
4037 then
4038 return False;
4039 end if;
4041 Next_Formal (Comp_Param);
4042 Next (Param);
4043 end loop;
4045 -- One of the specs has additional formals; there is no match, unless
4046 -- this may be an indexing of a parameterless call.
4048 -- Note that when expansion is disabled, the corresponding record
4049 -- type of synchronized types is not constructed, so that there is
4050 -- no point is attempting an interpretation as a prefixed call, as
4051 -- this is bound to fail because the primitive operations will not
4052 -- be properly located.
4054 if Present (Comp_Param) or else Present (Param) then
4055 if Needs_No_Actuals (Comp)
4056 and then Is_Array_Type (Etype (Comp))
4057 and then not Expander_Active
4058 then
4059 return True;
4060 else
4061 return False;
4062 end if;
4063 end if;
4065 return True;
4066 end Has_Mode_Conformant_Spec;
4068 -- Start of processing for Analyze_Selected_Component
4070 begin
4071 Set_Etype (N, Any_Type);
4073 if Is_Overloaded (Name) then
4074 Analyze_Overloaded_Selected_Component (N);
4075 return;
4077 elsif Etype (Name) = Any_Type then
4078 Set_Entity (Sel, Any_Id);
4079 Set_Etype (Sel, Any_Type);
4080 return;
4082 else
4083 Prefix_Type := Etype (Name);
4084 end if;
4086 if Is_Access_Type (Prefix_Type) then
4088 -- A RACW object can never be used as prefix of a selected component
4089 -- since that means it is dereferenced without being a controlling
4090 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
4091 -- reporting an error, we must check whether this is actually a
4092 -- dispatching call in prefix form.
4094 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
4095 and then Comes_From_Source (N)
4096 then
4097 if Try_Object_Operation (N) then
4098 return;
4099 else
4100 Error_Msg_N
4101 ("invalid dereference of a remote access-to-class-wide value",
4103 end if;
4105 -- Normal case of selected component applied to access type
4107 else
4108 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4110 if Is_Entity_Name (Name) then
4111 Pent := Entity (Name);
4112 elsif Nkind (Name) = N_Selected_Component
4113 and then Is_Entity_Name (Selector_Name (Name))
4114 then
4115 Pent := Entity (Selector_Name (Name));
4116 end if;
4118 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
4119 end if;
4121 -- If we have an explicit dereference of a remote access-to-class-wide
4122 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
4123 -- have to check for the case of a prefix that is a controlling operand
4124 -- of a prefixed dispatching call, as the dereference is legal in that
4125 -- case. Normally this condition is checked in Validate_Remote_Access_
4126 -- To_Class_Wide_Type, but we have to defer the checking for selected
4127 -- component prefixes because of the prefixed dispatching call case.
4128 -- Note that implicit dereferences are checked for this just above.
4130 elsif Nkind (Name) = N_Explicit_Dereference
4131 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
4132 and then Comes_From_Source (N)
4133 then
4134 if Try_Object_Operation (N) then
4135 return;
4136 else
4137 Error_Msg_N
4138 ("invalid dereference of a remote access-to-class-wide value",
4140 end if;
4141 end if;
4143 -- (Ada 2005): if the prefix is the limited view of a type, and
4144 -- the context already includes the full view, use the full view
4145 -- in what follows, either to retrieve a component of to find
4146 -- a primitive operation. If the prefix is an explicit dereference,
4147 -- set the type of the prefix to reflect this transformation.
4148 -- If the non-limited view is itself an incomplete type, get the
4149 -- full view if available.
4151 if Is_Incomplete_Type (Prefix_Type)
4152 and then From_Limited_With (Prefix_Type)
4153 and then Present (Non_Limited_View (Prefix_Type))
4154 then
4155 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
4157 if Nkind (N) = N_Explicit_Dereference then
4158 Set_Etype (Prefix (N), Prefix_Type);
4159 end if;
4161 elsif Ekind (Prefix_Type) = E_Class_Wide_Type
4162 and then From_Limited_With (Prefix_Type)
4163 and then Present (Non_Limited_View (Etype (Prefix_Type)))
4164 then
4165 Prefix_Type :=
4166 Class_Wide_Type (Non_Limited_View (Etype (Prefix_Type)));
4168 if Nkind (N) = N_Explicit_Dereference then
4169 Set_Etype (Prefix (N), Prefix_Type);
4170 end if;
4171 end if;
4173 if Ekind (Prefix_Type) = E_Private_Subtype then
4174 Prefix_Type := Base_Type (Prefix_Type);
4175 end if;
4177 Type_To_Use := Prefix_Type;
4179 -- For class-wide types, use the entity list of the root type. This
4180 -- indirection is specially important for private extensions because
4181 -- only the root type get switched (not the class-wide type).
4183 if Is_Class_Wide_Type (Prefix_Type) then
4184 Type_To_Use := Root_Type (Prefix_Type);
4185 end if;
4187 -- If the prefix is a single concurrent object, use its name in error
4188 -- messages, rather than that of its anonymous type.
4190 Is_Single_Concurrent_Object :=
4191 Is_Concurrent_Type (Prefix_Type)
4192 and then Is_Internal_Name (Chars (Prefix_Type))
4193 and then not Is_Derived_Type (Prefix_Type)
4194 and then Is_Entity_Name (Name);
4196 Comp := First_Entity (Type_To_Use);
4198 -- If the selector has an original discriminant, the node appears in
4199 -- an instance. Replace the discriminant with the corresponding one
4200 -- in the current discriminated type. For nested generics, this must
4201 -- be done transitively, so note the new original discriminant.
4203 if Nkind (Sel) = N_Identifier
4204 and then In_Instance
4205 and then Present (Original_Discriminant (Sel))
4206 then
4207 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
4209 -- Mark entity before rewriting, for completeness and because
4210 -- subsequent semantic checks might examine the original node.
4212 Set_Entity (Sel, Comp);
4213 Rewrite (Selector_Name (N), New_Occurrence_Of (Comp, Sloc (N)));
4214 Set_Original_Discriminant (Selector_Name (N), Comp);
4215 Set_Etype (N, Etype (Comp));
4216 Check_Implicit_Dereference (N, Etype (Comp));
4218 if Is_Access_Type (Etype (Name)) then
4219 Insert_Explicit_Dereference (Name);
4220 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4221 end if;
4223 elsif Is_Record_Type (Prefix_Type) then
4225 -- Find component with given name. In an instance, if the node is
4226 -- known as a prefixed call, do not examine components whose
4227 -- visibility may be accidental.
4229 while Present (Comp) and then not Is_Prefixed_Call (N) loop
4230 if Chars (Comp) = Chars (Sel)
4231 and then Is_Visible_Component (Comp, N)
4232 then
4233 Set_Entity_With_Checks (Sel, Comp);
4234 Set_Etype (Sel, Etype (Comp));
4236 if Ekind (Comp) = E_Discriminant then
4237 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
4238 Error_Msg_N
4239 ("cannot reference discriminant of unchecked union",
4240 Sel);
4241 end if;
4243 if Is_Generic_Type (Prefix_Type)
4244 or else
4245 Is_Generic_Type (Root_Type (Prefix_Type))
4246 then
4247 Set_Original_Discriminant (Sel, Comp);
4248 end if;
4249 end if;
4251 -- Resolve the prefix early otherwise it is not possible to
4252 -- build the actual subtype of the component: it may need
4253 -- to duplicate this prefix and duplication is only allowed
4254 -- on fully resolved expressions.
4256 Resolve (Name);
4258 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
4259 -- subtypes in a package specification.
4260 -- Example:
4262 -- limited with Pkg;
4263 -- package Pkg is
4264 -- type Acc_Inc is access Pkg.T;
4265 -- X : Acc_Inc;
4266 -- N : Natural := X.all.Comp; -- ERROR, limited view
4267 -- end Pkg; -- Comp is not visible
4269 if Nkind (Name) = N_Explicit_Dereference
4270 and then From_Limited_With (Etype (Prefix (Name)))
4271 and then not Is_Potentially_Use_Visible (Etype (Name))
4272 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
4273 N_Package_Specification
4274 then
4275 Error_Msg_NE
4276 ("premature usage of incomplete}", Prefix (Name),
4277 Etype (Prefix (Name)));
4278 end if;
4280 -- We never need an actual subtype for the case of a selection
4281 -- for a indexed component of a non-packed array, since in
4282 -- this case gigi generates all the checks and can find the
4283 -- necessary bounds information.
4285 -- We also do not need an actual subtype for the case of a
4286 -- first, last, length, or range attribute applied to a
4287 -- non-packed array, since gigi can again get the bounds in
4288 -- these cases (gigi cannot handle the packed case, since it
4289 -- has the bounds of the packed array type, not the original
4290 -- bounds of the type). However, if the prefix is itself a
4291 -- selected component, as in a.b.c (i), gigi may regard a.b.c
4292 -- as a dynamic-sized temporary, so we do generate an actual
4293 -- subtype for this case.
4295 Parent_N := Parent (N);
4297 if not Is_Packed (Etype (Comp))
4298 and then
4299 ((Nkind (Parent_N) = N_Indexed_Component
4300 and then Nkind (Name) /= N_Selected_Component)
4301 or else
4302 (Nkind (Parent_N) = N_Attribute_Reference
4303 and then
4304 Nam_In (Attribute_Name (Parent_N), Name_First,
4305 Name_Last,
4306 Name_Length,
4307 Name_Range)))
4308 then
4309 Set_Etype (N, Etype (Comp));
4311 -- If full analysis is not enabled, we do not generate an
4312 -- actual subtype, because in the absence of expansion
4313 -- reference to a formal of a protected type, for example,
4314 -- will not be properly transformed, and will lead to
4315 -- out-of-scope references in gigi.
4317 -- In all other cases, we currently build an actual subtype.
4318 -- It seems likely that many of these cases can be avoided,
4319 -- but right now, the front end makes direct references to the
4320 -- bounds (e.g. in generating a length check), and if we do
4321 -- not make an actual subtype, we end up getting a direct
4322 -- reference to a discriminant, which will not do.
4324 elsif Full_Analysis then
4325 Act_Decl :=
4326 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
4327 Insert_Action (N, Act_Decl);
4329 if No (Act_Decl) then
4330 Set_Etype (N, Etype (Comp));
4332 else
4333 -- Component type depends on discriminants. Enter the
4334 -- main attributes of the subtype.
4336 declare
4337 Subt : constant Entity_Id :=
4338 Defining_Identifier (Act_Decl);
4340 begin
4341 Set_Etype (Subt, Base_Type (Etype (Comp)));
4342 Set_Ekind (Subt, Ekind (Etype (Comp)));
4343 Set_Etype (N, Subt);
4344 end;
4345 end if;
4347 -- If Full_Analysis not enabled, just set the Etype
4349 else
4350 Set_Etype (N, Etype (Comp));
4351 end if;
4353 Check_Implicit_Dereference (N, Etype (N));
4354 return;
4355 end if;
4357 -- If the prefix is a private extension, check only the visible
4358 -- components of the partial view. This must include the tag,
4359 -- which can appear in expanded code in a tag check.
4361 if Ekind (Type_To_Use) = E_Record_Type_With_Private
4362 and then Chars (Selector_Name (N)) /= Name_uTag
4363 then
4364 exit when Comp = Last_Entity (Type_To_Use);
4365 end if;
4367 Next_Entity (Comp);
4368 end loop;
4370 -- Ada 2005 (AI-252): The selected component can be interpreted as
4371 -- a prefixed view of a subprogram. Depending on the context, this is
4372 -- either a name that can appear in a renaming declaration, or part
4373 -- of an enclosing call given in prefix form.
4375 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
4376 -- selected component should resolve to a name.
4378 if Ada_Version >= Ada_2005
4379 and then Is_Tagged_Type (Prefix_Type)
4380 and then not Is_Concurrent_Type (Prefix_Type)
4381 then
4382 if Nkind (Parent (N)) = N_Generic_Association
4383 or else Nkind (Parent (N)) = N_Requeue_Statement
4384 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
4385 then
4386 if Find_Primitive_Operation (N) then
4387 return;
4388 end if;
4390 elsif Try_Object_Operation (N) then
4391 return;
4392 end if;
4394 -- If the transformation fails, it will be necessary to redo the
4395 -- analysis with all errors enabled, to indicate candidate
4396 -- interpretations and reasons for each failure ???
4398 end if;
4400 elsif Is_Private_Type (Prefix_Type) then
4402 -- Allow access only to discriminants of the type. If the type has
4403 -- no full view, gigi uses the parent type for the components, so we
4404 -- do the same here.
4406 if No (Full_View (Prefix_Type)) then
4407 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
4408 Comp := First_Entity (Type_To_Use);
4409 end if;
4411 while Present (Comp) loop
4412 if Chars (Comp) = Chars (Sel) then
4413 if Ekind (Comp) = E_Discriminant then
4414 Set_Entity_With_Checks (Sel, Comp);
4415 Generate_Reference (Comp, Sel);
4417 Set_Etype (Sel, Etype (Comp));
4418 Set_Etype (N, Etype (Comp));
4419 Check_Implicit_Dereference (N, Etype (N));
4421 if Is_Generic_Type (Prefix_Type)
4422 or else Is_Generic_Type (Root_Type (Prefix_Type))
4423 then
4424 Set_Original_Discriminant (Sel, Comp);
4425 end if;
4427 -- Before declaring an error, check whether this is tagged
4428 -- private type and a call to a primitive operation.
4430 elsif Ada_Version >= Ada_2005
4431 and then Is_Tagged_Type (Prefix_Type)
4432 and then Try_Object_Operation (N)
4433 then
4434 return;
4436 else
4437 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4438 Error_Msg_NE ("invisible selector& for }", N, Sel);
4439 Set_Entity (Sel, Any_Id);
4440 Set_Etype (N, Any_Type);
4441 end if;
4443 return;
4444 end if;
4446 Next_Entity (Comp);
4447 end loop;
4449 elsif Is_Concurrent_Type (Prefix_Type) then
4451 -- Find visible operation with given name. For a protected type,
4452 -- the possible candidates are discriminants, entries or protected
4453 -- procedures. For a task type, the set can only include entries or
4454 -- discriminants if the task type is not an enclosing scope. If it
4455 -- is an enclosing scope (e.g. in an inner task) then all entities
4456 -- are visible, but the prefix must denote the enclosing scope, i.e.
4457 -- can only be a direct name or an expanded name.
4459 Set_Etype (Sel, Any_Type);
4460 In_Scope := In_Open_Scopes (Prefix_Type);
4462 while Present (Comp) loop
4463 if Chars (Comp) = Chars (Sel) then
4464 if Is_Overloadable (Comp) then
4465 Add_One_Interp (Sel, Comp, Etype (Comp));
4467 -- If the prefix is tagged, the correct interpretation may
4468 -- lie in the primitive or class-wide operations of the
4469 -- type. Perform a simple conformance check to determine
4470 -- whether Try_Object_Operation should be invoked even if
4471 -- a visible entity is found.
4473 if Is_Tagged_Type (Prefix_Type)
4474 and then
4475 Nkind_In (Parent (N), N_Procedure_Call_Statement,
4476 N_Function_Call,
4477 N_Indexed_Component)
4478 and then Has_Mode_Conformant_Spec (Comp)
4479 then
4480 Has_Candidate := True;
4481 end if;
4483 -- Note: a selected component may not denote a component of a
4484 -- protected type (4.1.3(7)).
4486 elsif Ekind_In (Comp, E_Discriminant, E_Entry_Family)
4487 or else (In_Scope
4488 and then not Is_Protected_Type (Prefix_Type)
4489 and then Is_Entity_Name (Name))
4490 then
4491 Set_Entity_With_Checks (Sel, Comp);
4492 Generate_Reference (Comp, Sel);
4494 -- The selector is not overloadable, so we have a candidate
4495 -- interpretation.
4497 Has_Candidate := True;
4499 else
4500 goto Next_Comp;
4501 end if;
4503 Set_Etype (Sel, Etype (Comp));
4504 Set_Etype (N, Etype (Comp));
4506 if Ekind (Comp) = E_Discriminant then
4507 Set_Original_Discriminant (Sel, Comp);
4508 end if;
4510 -- For access type case, introduce explicit dereference for
4511 -- more uniform treatment of entry calls.
4513 if Is_Access_Type (Etype (Name)) then
4514 Insert_Explicit_Dereference (Name);
4515 Error_Msg_NW
4516 (Warn_On_Dereference, "?d?implicit dereference", N);
4517 end if;
4518 end if;
4520 <<Next_Comp>>
4521 Next_Entity (Comp);
4522 exit when not In_Scope
4523 and then
4524 Comp = First_Private_Entity (Base_Type (Prefix_Type));
4525 end loop;
4527 -- If there is no visible entity with the given name or none of the
4528 -- visible entities are plausible interpretations, check whether
4529 -- there is some other primitive operation with that name.
4531 if Ada_Version >= Ada_2005
4532 and then Is_Tagged_Type (Prefix_Type)
4533 then
4534 if (Etype (N) = Any_Type
4535 or else not Has_Candidate)
4536 and then Try_Object_Operation (N)
4537 then
4538 return;
4540 -- If the context is not syntactically a procedure call, it
4541 -- may be a call to a primitive function declared outside of
4542 -- the synchronized type.
4544 -- If the context is a procedure call, there might still be
4545 -- an overloading between an entry and a primitive procedure
4546 -- declared outside of the synchronized type, called in prefix
4547 -- notation. This is harder to disambiguate because in one case
4548 -- the controlling formal is implicit ???
4550 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
4551 and then Nkind (Parent (N)) /= N_Indexed_Component
4552 and then Try_Object_Operation (N)
4553 then
4554 return;
4555 end if;
4557 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
4558 -- entry or procedure of a tagged concurrent type we must check
4559 -- if there are class-wide subprograms covering the primitive. If
4560 -- true then Try_Object_Operation reports the error.
4562 if Has_Candidate
4563 and then Is_Concurrent_Type (Prefix_Type)
4564 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
4566 -- Duplicate the call. This is required to avoid problems with
4567 -- the tree transformations performed by Try_Object_Operation.
4568 -- Set properly the parent of the copied call, because it is
4569 -- about to be reanalyzed.
4571 then
4572 declare
4573 Par : constant Node_Id := New_Copy_Tree (Parent (N));
4575 begin
4576 Set_Parent (Par, Parent (Parent (N)));
4578 if Try_Object_Operation
4579 (Sinfo.Name (Par), CW_Test_Only => True)
4580 then
4581 return;
4582 end if;
4583 end;
4584 end if;
4585 end if;
4587 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
4589 -- Case of a prefix of a protected type: selector might denote
4590 -- an invisible private component.
4592 Comp := First_Private_Entity (Base_Type (Prefix_Type));
4593 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
4594 Next_Entity (Comp);
4595 end loop;
4597 if Present (Comp) then
4598 if Is_Single_Concurrent_Object then
4599 Error_Msg_Node_2 := Entity (Name);
4600 Error_Msg_NE ("invisible selector& for &", N, Sel);
4602 else
4603 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4604 Error_Msg_NE ("invisible selector& for }", N, Sel);
4605 end if;
4606 return;
4607 end if;
4608 end if;
4610 Set_Is_Overloaded (N, Is_Overloaded (Sel));
4612 else
4613 -- Invalid prefix
4615 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
4616 end if;
4618 -- If N still has no type, the component is not defined in the prefix
4620 if Etype (N) = Any_Type then
4622 if Is_Single_Concurrent_Object then
4623 Error_Msg_Node_2 := Entity (Name);
4624 Error_Msg_NE ("no selector& for&", N, Sel);
4626 Check_Misspelled_Selector (Type_To_Use, Sel);
4628 -- If this is a derived formal type, the parent may have different
4629 -- visibility at this point. Try for an inherited component before
4630 -- reporting an error.
4632 elsif Is_Generic_Type (Prefix_Type)
4633 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
4634 and then Prefix_Type /= Etype (Prefix_Type)
4635 and then Is_Record_Type (Etype (Prefix_Type))
4636 then
4637 Set_Etype (Prefix (N), Etype (Prefix_Type));
4638 Analyze_Selected_Component (N);
4639 return;
4641 -- Similarly, if this is the actual for a formal derived type, or
4642 -- a derived type thereof, the component inherited from the generic
4643 -- parent may not be visible in the actual, but the selected
4644 -- component is legal. Climb up the derivation chain of the generic
4645 -- parent type until we find the proper ancestor type.
4647 elsif In_Instance and then Is_Tagged_Type (Prefix_Type) then
4648 declare
4649 Par : Entity_Id := Prefix_Type;
4650 begin
4651 -- Climb up derivation chain to generic actual subtype
4653 while not Is_Generic_Actual_Type (Par) loop
4654 if Ekind (Par) = E_Record_Type then
4655 Par := Parent_Subtype (Par);
4656 exit when No (Par);
4657 else
4658 exit when Par = Etype (Par);
4659 Par := Etype (Par);
4660 end if;
4661 end loop;
4663 if Present (Par) and then Is_Generic_Actual_Type (Par) then
4665 -- Now look for component in ancestor types
4667 Par := Generic_Parent_Type (Declaration_Node (Par));
4668 loop
4669 Find_Component_In_Instance (Par);
4670 exit when Present (Entity (Sel))
4671 or else Par = Etype (Par);
4672 Par := Etype (Par);
4673 end loop;
4675 -- In ASIS mode the generic parent type may be absent. Examine
4676 -- the parent type directly for a component that may have been
4677 -- visible in a parent generic unit.
4679 elsif Is_Derived_Type (Prefix_Type) then
4680 Par := Etype (Prefix_Type);
4681 Find_Component_In_Instance (Par);
4682 end if;
4683 end;
4685 -- The search above must have eventually succeeded, since the
4686 -- selected component was legal in the generic.
4688 if No (Entity (Sel)) then
4689 raise Program_Error;
4690 end if;
4692 return;
4694 -- Component not found, specialize error message when appropriate
4696 else
4697 if Ekind (Prefix_Type) = E_Record_Subtype then
4699 -- Check whether this is a component of the base type which
4700 -- is absent from a statically constrained subtype. This will
4701 -- raise constraint error at run time, but is not a compile-
4702 -- time error. When the selector is illegal for base type as
4703 -- well fall through and generate a compilation error anyway.
4705 Comp := First_Component (Base_Type (Prefix_Type));
4706 while Present (Comp) loop
4707 if Chars (Comp) = Chars (Sel)
4708 and then Is_Visible_Component (Comp)
4709 then
4710 Set_Entity_With_Checks (Sel, Comp);
4711 Generate_Reference (Comp, Sel);
4712 Set_Etype (Sel, Etype (Comp));
4713 Set_Etype (N, Etype (Comp));
4715 -- Emit appropriate message. The node will be replaced
4716 -- by an appropriate raise statement.
4718 -- Note that in SPARK mode, as with all calls to apply a
4719 -- compile time constraint error, this will be made into
4720 -- an error to simplify the processing of the formal
4721 -- verification backend.
4723 Apply_Compile_Time_Constraint_Error
4724 (N, "component not present in }??",
4725 CE_Discriminant_Check_Failed,
4726 Ent => Prefix_Type, Rep => False);
4728 Set_Raises_Constraint_Error (N);
4729 return;
4730 end if;
4732 Next_Component (Comp);
4733 end loop;
4735 end if;
4737 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4738 Error_Msg_NE ("no selector& for}", N, Sel);
4740 -- Add information in the case of an incomplete prefix
4742 if Is_Incomplete_Type (Type_To_Use) then
4743 declare
4744 Inc : constant Entity_Id := First_Subtype (Type_To_Use);
4746 begin
4747 if From_Limited_With (Scope (Type_To_Use)) then
4748 Error_Msg_NE
4749 ("\limited view of& has no components", N, Inc);
4751 else
4752 Error_Msg_NE
4753 ("\premature usage of incomplete type&", N, Inc);
4755 if Nkind (Parent (Inc)) =
4756 N_Incomplete_Type_Declaration
4757 then
4758 -- Record location of premature use in entity so that
4759 -- a continuation message is generated when the
4760 -- completion is seen.
4762 Set_Premature_Use (Parent (Inc), N);
4763 end if;
4764 end if;
4765 end;
4766 end if;
4768 Check_Misspelled_Selector (Type_To_Use, Sel);
4769 end if;
4771 Set_Entity (Sel, Any_Id);
4772 Set_Etype (Sel, Any_Type);
4773 end if;
4774 end Analyze_Selected_Component;
4776 ---------------------------
4777 -- Analyze_Short_Circuit --
4778 ---------------------------
4780 procedure Analyze_Short_Circuit (N : Node_Id) is
4781 L : constant Node_Id := Left_Opnd (N);
4782 R : constant Node_Id := Right_Opnd (N);
4783 Ind : Interp_Index;
4784 It : Interp;
4786 begin
4787 Analyze_Expression (L);
4788 Analyze_Expression (R);
4789 Set_Etype (N, Any_Type);
4791 if not Is_Overloaded (L) then
4792 if Root_Type (Etype (L)) = Standard_Boolean
4793 and then Has_Compatible_Type (R, Etype (L))
4794 then
4795 Add_One_Interp (N, Etype (L), Etype (L));
4796 end if;
4798 else
4799 Get_First_Interp (L, Ind, It);
4800 while Present (It.Typ) loop
4801 if Root_Type (It.Typ) = Standard_Boolean
4802 and then Has_Compatible_Type (R, It.Typ)
4803 then
4804 Add_One_Interp (N, It.Typ, It.Typ);
4805 end if;
4807 Get_Next_Interp (Ind, It);
4808 end loop;
4809 end if;
4811 -- Here we have failed to find an interpretation. Clearly we know that
4812 -- it is not the case that both operands can have an interpretation of
4813 -- Boolean, but this is by far the most likely intended interpretation.
4814 -- So we simply resolve both operands as Booleans, and at least one of
4815 -- these resolutions will generate an error message, and we do not need
4816 -- to give another error message on the short circuit operation itself.
4818 if Etype (N) = Any_Type then
4819 Resolve (L, Standard_Boolean);
4820 Resolve (R, Standard_Boolean);
4821 Set_Etype (N, Standard_Boolean);
4822 end if;
4823 end Analyze_Short_Circuit;
4825 -------------------
4826 -- Analyze_Slice --
4827 -------------------
4829 procedure Analyze_Slice (N : Node_Id) is
4830 D : constant Node_Id := Discrete_Range (N);
4831 P : constant Node_Id := Prefix (N);
4832 Array_Type : Entity_Id;
4833 Index_Type : Entity_Id;
4835 procedure Analyze_Overloaded_Slice;
4836 -- If the prefix is overloaded, select those interpretations that
4837 -- yield a one-dimensional array type.
4839 ------------------------------
4840 -- Analyze_Overloaded_Slice --
4841 ------------------------------
4843 procedure Analyze_Overloaded_Slice is
4844 I : Interp_Index;
4845 It : Interp;
4846 Typ : Entity_Id;
4848 begin
4849 Set_Etype (N, Any_Type);
4851 Get_First_Interp (P, I, It);
4852 while Present (It.Nam) loop
4853 Typ := It.Typ;
4855 if Is_Access_Type (Typ) then
4856 Typ := Designated_Type (Typ);
4857 Error_Msg_NW
4858 (Warn_On_Dereference, "?d?implicit dereference", N);
4859 end if;
4861 if Is_Array_Type (Typ)
4862 and then Number_Dimensions (Typ) = 1
4863 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
4864 then
4865 Add_One_Interp (N, Typ, Typ);
4866 end if;
4868 Get_Next_Interp (I, It);
4869 end loop;
4871 if Etype (N) = Any_Type then
4872 Error_Msg_N ("expect array type in prefix of slice", N);
4873 end if;
4874 end Analyze_Overloaded_Slice;
4876 -- Start of processing for Analyze_Slice
4878 begin
4879 if Comes_From_Source (N) then
4880 Check_SPARK_05_Restriction ("slice is not allowed", N);
4881 end if;
4883 Analyze (P);
4884 Analyze (D);
4886 if Is_Overloaded (P) then
4887 Analyze_Overloaded_Slice;
4889 else
4890 Array_Type := Etype (P);
4891 Set_Etype (N, Any_Type);
4893 if Is_Access_Type (Array_Type) then
4894 Array_Type := Designated_Type (Array_Type);
4895 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4896 end if;
4898 if not Is_Array_Type (Array_Type) then
4899 Wrong_Type (P, Any_Array);
4901 elsif Number_Dimensions (Array_Type) > 1 then
4902 Error_Msg_N
4903 ("type is not one-dimensional array in slice prefix", N);
4905 else
4906 if Ekind (Array_Type) = E_String_Literal_Subtype then
4907 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
4908 else
4909 Index_Type := Etype (First_Index (Array_Type));
4910 end if;
4912 if not Has_Compatible_Type (D, Index_Type) then
4913 Wrong_Type (D, Index_Type);
4914 else
4915 Set_Etype (N, Array_Type);
4916 end if;
4917 end if;
4918 end if;
4919 end Analyze_Slice;
4921 -----------------------------
4922 -- Analyze_Type_Conversion --
4923 -----------------------------
4925 procedure Analyze_Type_Conversion (N : Node_Id) is
4926 Expr : constant Node_Id := Expression (N);
4927 T : Entity_Id;
4929 begin
4930 -- If Conversion_OK is set, then the Etype is already set, and the
4931 -- only processing required is to analyze the expression. This is
4932 -- used to construct certain "illegal" conversions which are not
4933 -- allowed by Ada semantics, but can be handled OK by Gigi, see
4934 -- Sinfo for further details.
4936 if Conversion_OK (N) then
4937 Analyze (Expr);
4938 return;
4939 end if;
4941 -- Otherwise full type analysis is required, as well as some semantic
4942 -- checks to make sure the argument of the conversion is appropriate.
4944 Find_Type (Subtype_Mark (N));
4945 T := Entity (Subtype_Mark (N));
4946 Set_Etype (N, T);
4947 Check_Fully_Declared (T, N);
4948 Analyze_Expression (Expr);
4949 Validate_Remote_Type_Type_Conversion (N);
4951 -- Only remaining step is validity checks on the argument. These
4952 -- are skipped if the conversion does not come from the source.
4954 if not Comes_From_Source (N) then
4955 return;
4957 -- If there was an error in a generic unit, no need to replicate the
4958 -- error message. Conversely, constant-folding in the generic may
4959 -- transform the argument of a conversion into a string literal, which
4960 -- is legal. Therefore the following tests are not performed in an
4961 -- instance. The same applies to an inlined body.
4963 elsif In_Instance or In_Inlined_Body then
4964 return;
4966 elsif Nkind (Expr) = N_Null then
4967 Error_Msg_N ("argument of conversion cannot be null", N);
4968 Error_Msg_N ("\use qualified expression instead", N);
4969 Set_Etype (N, Any_Type);
4971 elsif Nkind (Expr) = N_Aggregate then
4972 Error_Msg_N ("argument of conversion cannot be aggregate", N);
4973 Error_Msg_N ("\use qualified expression instead", N);
4975 elsif Nkind (Expr) = N_Allocator then
4976 Error_Msg_N ("argument of conversion cannot be an allocator", N);
4977 Error_Msg_N ("\use qualified expression instead", N);
4979 elsif Nkind (Expr) = N_String_Literal then
4980 Error_Msg_N ("argument of conversion cannot be string literal", N);
4981 Error_Msg_N ("\use qualified expression instead", N);
4983 elsif Nkind (Expr) = N_Character_Literal then
4984 if Ada_Version = Ada_83 then
4985 Resolve (Expr, T);
4986 else
4987 Error_Msg_N ("argument of conversion cannot be character literal",
4989 Error_Msg_N ("\use qualified expression instead", N);
4990 end if;
4992 elsif Nkind (Expr) = N_Attribute_Reference
4993 and then
4994 Nam_In (Attribute_Name (Expr), Name_Access,
4995 Name_Unchecked_Access,
4996 Name_Unrestricted_Access)
4997 then
4998 Error_Msg_N ("argument of conversion cannot be access", N);
4999 Error_Msg_N ("\use qualified expression instead", N);
5000 end if;
5001 end Analyze_Type_Conversion;
5003 ----------------------
5004 -- Analyze_Unary_Op --
5005 ----------------------
5007 procedure Analyze_Unary_Op (N : Node_Id) is
5008 R : constant Node_Id := Right_Opnd (N);
5009 Op_Id : Entity_Id := Entity (N);
5011 begin
5012 Set_Etype (N, Any_Type);
5013 Candidate_Type := Empty;
5015 Analyze_Expression (R);
5017 if Present (Op_Id) then
5018 if Ekind (Op_Id) = E_Operator then
5019 Find_Unary_Types (R, Op_Id, N);
5020 else
5021 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5022 end if;
5024 else
5025 Op_Id := Get_Name_Entity_Id (Chars (N));
5026 while Present (Op_Id) loop
5027 if Ekind (Op_Id) = E_Operator then
5028 if No (Next_Entity (First_Entity (Op_Id))) then
5029 Find_Unary_Types (R, Op_Id, N);
5030 end if;
5032 elsif Is_Overloadable (Op_Id) then
5033 Analyze_User_Defined_Unary_Op (N, Op_Id);
5034 end if;
5036 Op_Id := Homonym (Op_Id);
5037 end loop;
5038 end if;
5040 Operator_Check (N);
5041 end Analyze_Unary_Op;
5043 ----------------------------------
5044 -- Analyze_Unchecked_Expression --
5045 ----------------------------------
5047 procedure Analyze_Unchecked_Expression (N : Node_Id) is
5048 begin
5049 Analyze (Expression (N), Suppress => All_Checks);
5050 Set_Etype (N, Etype (Expression (N)));
5051 Save_Interps (Expression (N), N);
5052 end Analyze_Unchecked_Expression;
5054 ---------------------------------------
5055 -- Analyze_Unchecked_Type_Conversion --
5056 ---------------------------------------
5058 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
5059 begin
5060 Find_Type (Subtype_Mark (N));
5061 Analyze_Expression (Expression (N));
5062 Set_Etype (N, Entity (Subtype_Mark (N)));
5063 end Analyze_Unchecked_Type_Conversion;
5065 ------------------------------------
5066 -- Analyze_User_Defined_Binary_Op --
5067 ------------------------------------
5069 procedure Analyze_User_Defined_Binary_Op
5070 (N : Node_Id;
5071 Op_Id : Entity_Id)
5073 begin
5074 -- Only do analysis if the operator Comes_From_Source, since otherwise
5075 -- the operator was generated by the expander, and all such operators
5076 -- always refer to the operators in package Standard.
5078 if Comes_From_Source (N) then
5079 declare
5080 F1 : constant Entity_Id := First_Formal (Op_Id);
5081 F2 : constant Entity_Id := Next_Formal (F1);
5083 begin
5084 -- Verify that Op_Id is a visible binary function. Note that since
5085 -- we know Op_Id is overloaded, potentially use visible means use
5086 -- visible for sure (RM 9.4(11)).
5088 if Ekind (Op_Id) = E_Function
5089 and then Present (F2)
5090 and then (Is_Immediately_Visible (Op_Id)
5091 or else Is_Potentially_Use_Visible (Op_Id))
5092 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
5093 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
5094 then
5095 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5097 -- If the left operand is overloaded, indicate that the current
5098 -- type is a viable candidate. This is redundant in most cases,
5099 -- but for equality and comparison operators where the context
5100 -- does not impose a type on the operands, setting the proper
5101 -- type is necessary to avoid subsequent ambiguities during
5102 -- resolution, when both user-defined and predefined operators
5103 -- may be candidates.
5105 if Is_Overloaded (Left_Opnd (N)) then
5106 Set_Etype (Left_Opnd (N), Etype (F1));
5107 end if;
5109 if Debug_Flag_E then
5110 Write_Str ("user defined operator ");
5111 Write_Name (Chars (Op_Id));
5112 Write_Str (" on node ");
5113 Write_Int (Int (N));
5114 Write_Eol;
5115 end if;
5116 end if;
5117 end;
5118 end if;
5119 end Analyze_User_Defined_Binary_Op;
5121 -----------------------------------
5122 -- Analyze_User_Defined_Unary_Op --
5123 -----------------------------------
5125 procedure Analyze_User_Defined_Unary_Op
5126 (N : Node_Id;
5127 Op_Id : Entity_Id)
5129 begin
5130 -- Only do analysis if the operator Comes_From_Source, since otherwise
5131 -- the operator was generated by the expander, and all such operators
5132 -- always refer to the operators in package Standard.
5134 if Comes_From_Source (N) then
5135 declare
5136 F : constant Entity_Id := First_Formal (Op_Id);
5138 begin
5139 -- Verify that Op_Id is a visible unary function. Note that since
5140 -- we know Op_Id is overloaded, potentially use visible means use
5141 -- visible for sure (RM 9.4(11)).
5143 if Ekind (Op_Id) = E_Function
5144 and then No (Next_Formal (F))
5145 and then (Is_Immediately_Visible (Op_Id)
5146 or else Is_Potentially_Use_Visible (Op_Id))
5147 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
5148 then
5149 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5150 end if;
5151 end;
5152 end if;
5153 end Analyze_User_Defined_Unary_Op;
5155 ---------------------------
5156 -- Check_Arithmetic_Pair --
5157 ---------------------------
5159 procedure Check_Arithmetic_Pair
5160 (T1, T2 : Entity_Id;
5161 Op_Id : Entity_Id;
5162 N : Node_Id)
5164 Op_Name : constant Name_Id := Chars (Op_Id);
5166 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
5167 -- Check whether the fixed-point type Typ has a user-defined operator
5168 -- (multiplication or division) that should hide the corresponding
5169 -- predefined operator. Used to implement Ada 2005 AI-264, to make
5170 -- such operators more visible and therefore useful.
5172 -- If the name of the operation is an expanded name with prefix
5173 -- Standard, the predefined universal fixed operator is available,
5174 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
5176 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
5177 -- Get specific type (i.e. non-universal type if there is one)
5179 ------------------
5180 -- Has_Fixed_Op --
5181 ------------------
5183 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
5184 Bas : constant Entity_Id := Base_Type (Typ);
5185 Ent : Entity_Id;
5186 F1 : Entity_Id;
5187 F2 : Entity_Id;
5189 begin
5190 -- If the universal_fixed operation is given explicitly the rule
5191 -- concerning primitive operations of the type do not apply.
5193 if Nkind (N) = N_Function_Call
5194 and then Nkind (Name (N)) = N_Expanded_Name
5195 and then Entity (Prefix (Name (N))) = Standard_Standard
5196 then
5197 return False;
5198 end if;
5200 -- The operation is treated as primitive if it is declared in the
5201 -- same scope as the type, and therefore on the same entity chain.
5203 Ent := Next_Entity (Typ);
5204 while Present (Ent) loop
5205 if Chars (Ent) = Chars (Op) then
5206 F1 := First_Formal (Ent);
5207 F2 := Next_Formal (F1);
5209 -- The operation counts as primitive if either operand or
5210 -- result are of the given base type, and both operands are
5211 -- fixed point types.
5213 if (Base_Type (Etype (F1)) = Bas
5214 and then Is_Fixed_Point_Type (Etype (F2)))
5216 or else
5217 (Base_Type (Etype (F2)) = Bas
5218 and then Is_Fixed_Point_Type (Etype (F1)))
5220 or else
5221 (Base_Type (Etype (Ent)) = Bas
5222 and then Is_Fixed_Point_Type (Etype (F1))
5223 and then Is_Fixed_Point_Type (Etype (F2)))
5224 then
5225 return True;
5226 end if;
5227 end if;
5229 Next_Entity (Ent);
5230 end loop;
5232 return False;
5233 end Has_Fixed_Op;
5235 -------------------
5236 -- Specific_Type --
5237 -------------------
5239 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
5240 begin
5241 if T1 = Universal_Integer or else T1 = Universal_Real then
5242 return Base_Type (T2);
5243 else
5244 return Base_Type (T1);
5245 end if;
5246 end Specific_Type;
5248 -- Start of processing for Check_Arithmetic_Pair
5250 begin
5251 if Nam_In (Op_Name, Name_Op_Add, Name_Op_Subtract) then
5252 if Is_Numeric_Type (T1)
5253 and then Is_Numeric_Type (T2)
5254 and then (Covers (T1 => T1, T2 => T2)
5255 or else
5256 Covers (T1 => T2, T2 => T1))
5257 then
5258 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5259 end if;
5261 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide) then
5262 if Is_Fixed_Point_Type (T1)
5263 and then (Is_Fixed_Point_Type (T2) or else T2 = Universal_Real)
5264 then
5265 -- If Treat_Fixed_As_Integer is set then the Etype is already set
5266 -- and no further processing is required (this is the case of an
5267 -- operator constructed by Exp_Fixd for a fixed point operation)
5268 -- Otherwise add one interpretation with universal fixed result
5269 -- If the operator is given in functional notation, it comes
5270 -- from source and Fixed_As_Integer cannot apply.
5272 if (Nkind (N) not in N_Op
5273 or else not Treat_Fixed_As_Integer (N))
5274 and then
5275 (not Has_Fixed_Op (T1, Op_Id)
5276 or else Nkind (Parent (N)) = N_Type_Conversion)
5277 then
5278 Add_One_Interp (N, Op_Id, Universal_Fixed);
5279 end if;
5281 elsif Is_Fixed_Point_Type (T2)
5282 and then (Nkind (N) not in N_Op
5283 or else not Treat_Fixed_As_Integer (N))
5284 and then T1 = Universal_Real
5285 and then
5286 (not Has_Fixed_Op (T1, Op_Id)
5287 or else Nkind (Parent (N)) = N_Type_Conversion)
5288 then
5289 Add_One_Interp (N, Op_Id, Universal_Fixed);
5291 elsif Is_Numeric_Type (T1)
5292 and then Is_Numeric_Type (T2)
5293 and then (Covers (T1 => T1, T2 => T2)
5294 or else
5295 Covers (T1 => T2, T2 => T1))
5296 then
5297 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5299 elsif Is_Fixed_Point_Type (T1)
5300 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5301 or else T2 = Universal_Integer)
5302 then
5303 Add_One_Interp (N, Op_Id, T1);
5305 elsif T2 = Universal_Real
5306 and then Base_Type (T1) = Base_Type (Standard_Integer)
5307 and then Op_Name = Name_Op_Multiply
5308 then
5309 Add_One_Interp (N, Op_Id, Any_Fixed);
5311 elsif T1 = Universal_Real
5312 and then Base_Type (T2) = Base_Type (Standard_Integer)
5313 then
5314 Add_One_Interp (N, Op_Id, Any_Fixed);
5316 elsif Is_Fixed_Point_Type (T2)
5317 and then (Base_Type (T1) = Base_Type (Standard_Integer)
5318 or else T1 = Universal_Integer)
5319 and then Op_Name = Name_Op_Multiply
5320 then
5321 Add_One_Interp (N, Op_Id, T2);
5323 elsif T1 = Universal_Real and then T2 = Universal_Integer then
5324 Add_One_Interp (N, Op_Id, T1);
5326 elsif T2 = Universal_Real
5327 and then T1 = Universal_Integer
5328 and then Op_Name = Name_Op_Multiply
5329 then
5330 Add_One_Interp (N, Op_Id, T2);
5331 end if;
5333 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
5335 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
5336 -- set does not require any special processing, since the Etype is
5337 -- already set (case of operation constructed by Exp_Fixed).
5339 if Is_Integer_Type (T1)
5340 and then (Covers (T1 => T1, T2 => T2)
5341 or else
5342 Covers (T1 => T2, T2 => T1))
5343 then
5344 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5345 end if;
5347 elsif Op_Name = Name_Op_Expon then
5348 if Is_Numeric_Type (T1)
5349 and then not Is_Fixed_Point_Type (T1)
5350 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5351 or else T2 = Universal_Integer)
5352 then
5353 Add_One_Interp (N, Op_Id, Base_Type (T1));
5354 end if;
5356 else pragma Assert (Nkind (N) in N_Op_Shift);
5358 -- If not one of the predefined operators, the node may be one
5359 -- of the intrinsic functions. Its kind is always specific, and
5360 -- we can use it directly, rather than the name of the operation.
5362 if Is_Integer_Type (T1)
5363 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5364 or else T2 = Universal_Integer)
5365 then
5366 Add_One_Interp (N, Op_Id, Base_Type (T1));
5367 end if;
5368 end if;
5369 end Check_Arithmetic_Pair;
5371 -------------------------------
5372 -- Check_Misspelled_Selector --
5373 -------------------------------
5375 procedure Check_Misspelled_Selector
5376 (Prefix : Entity_Id;
5377 Sel : Node_Id)
5379 Max_Suggestions : constant := 2;
5380 Nr_Of_Suggestions : Natural := 0;
5382 Suggestion_1 : Entity_Id := Empty;
5383 Suggestion_2 : Entity_Id := Empty;
5385 Comp : Entity_Id;
5387 begin
5388 -- All the components of the prefix of selector Sel are matched against
5389 -- Sel and a count is maintained of possible misspellings. When at
5390 -- the end of the analysis there are one or two (not more) possible
5391 -- misspellings, these misspellings will be suggested as possible
5392 -- correction.
5394 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
5396 -- Concurrent types should be handled as well ???
5398 return;
5399 end if;
5401 Comp := First_Entity (Prefix);
5402 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
5403 if Is_Visible_Component (Comp) then
5404 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
5405 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
5407 case Nr_Of_Suggestions is
5408 when 1 => Suggestion_1 := Comp;
5409 when 2 => Suggestion_2 := Comp;
5410 when others => exit;
5411 end case;
5412 end if;
5413 end if;
5415 Comp := Next_Entity (Comp);
5416 end loop;
5418 -- Report at most two suggestions
5420 if Nr_Of_Suggestions = 1 then
5421 Error_Msg_NE -- CODEFIX
5422 ("\possible misspelling of&", Sel, Suggestion_1);
5424 elsif Nr_Of_Suggestions = 2 then
5425 Error_Msg_Node_2 := Suggestion_2;
5426 Error_Msg_NE -- CODEFIX
5427 ("\possible misspelling of& or&", Sel, Suggestion_1);
5428 end if;
5429 end Check_Misspelled_Selector;
5431 ----------------------
5432 -- Defined_In_Scope --
5433 ----------------------
5435 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
5437 S1 : constant Entity_Id := Scope (Base_Type (T));
5438 begin
5439 return S1 = S
5440 or else (S1 = System_Aux_Id and then S = Scope (S1));
5441 end Defined_In_Scope;
5443 -------------------
5444 -- Diagnose_Call --
5445 -------------------
5447 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
5448 Actual : Node_Id;
5449 X : Interp_Index;
5450 It : Interp;
5451 Err_Mode : Boolean;
5452 New_Nam : Node_Id;
5453 Void_Interp_Seen : Boolean := False;
5455 Success : Boolean;
5456 pragma Warnings (Off, Boolean);
5458 begin
5459 if Ada_Version >= Ada_2005 then
5460 Actual := First_Actual (N);
5461 while Present (Actual) loop
5463 -- Ada 2005 (AI-50217): Post an error in case of premature
5464 -- usage of an entity from the limited view.
5466 if not Analyzed (Etype (Actual))
5467 and then From_Limited_With (Etype (Actual))
5468 then
5469 Error_Msg_Qual_Level := 1;
5470 Error_Msg_NE
5471 ("missing with_clause for scope of imported type&",
5472 Actual, Etype (Actual));
5473 Error_Msg_Qual_Level := 0;
5474 end if;
5476 Next_Actual (Actual);
5477 end loop;
5478 end if;
5480 -- Analyze each candidate call again, with full error reporting
5481 -- for each.
5483 Error_Msg_N
5484 ("no candidate interpretations match the actuals:!", Nam);
5485 Err_Mode := All_Errors_Mode;
5486 All_Errors_Mode := True;
5488 -- If this is a call to an operation of a concurrent type,
5489 -- the failed interpretations have been removed from the
5490 -- name. Recover them to provide full diagnostics.
5492 if Nkind (Parent (Nam)) = N_Selected_Component then
5493 Set_Entity (Nam, Empty);
5494 New_Nam := New_Copy_Tree (Parent (Nam));
5495 Set_Is_Overloaded (New_Nam, False);
5496 Set_Is_Overloaded (Selector_Name (New_Nam), False);
5497 Set_Parent (New_Nam, Parent (Parent (Nam)));
5498 Analyze_Selected_Component (New_Nam);
5499 Get_First_Interp (Selector_Name (New_Nam), X, It);
5500 else
5501 Get_First_Interp (Nam, X, It);
5502 end if;
5504 while Present (It.Nam) loop
5505 if Etype (It.Nam) = Standard_Void_Type then
5506 Void_Interp_Seen := True;
5507 end if;
5509 Analyze_One_Call (N, It.Nam, True, Success);
5510 Get_Next_Interp (X, It);
5511 end loop;
5513 if Nkind (N) = N_Function_Call then
5514 Get_First_Interp (Nam, X, It);
5515 while Present (It.Nam) loop
5516 if Ekind_In (It.Nam, E_Function, E_Operator) then
5517 return;
5518 else
5519 Get_Next_Interp (X, It);
5520 end if;
5521 end loop;
5523 -- If all interpretations are procedures, this deserves a
5524 -- more precise message. Ditto if this appears as the prefix
5525 -- of a selected component, which may be a lexical error.
5527 Error_Msg_N
5528 ("\context requires function call, found procedure name", Nam);
5530 if Nkind (Parent (N)) = N_Selected_Component
5531 and then N = Prefix (Parent (N))
5532 then
5533 Error_Msg_N -- CODEFIX
5534 ("\period should probably be semicolon", Parent (N));
5535 end if;
5537 elsif Nkind (N) = N_Procedure_Call_Statement
5538 and then not Void_Interp_Seen
5539 then
5540 Error_Msg_N (
5541 "\function name found in procedure call", Nam);
5542 end if;
5544 All_Errors_Mode := Err_Mode;
5545 end Diagnose_Call;
5547 ---------------------------
5548 -- Find_Arithmetic_Types --
5549 ---------------------------
5551 procedure Find_Arithmetic_Types
5552 (L, R : Node_Id;
5553 Op_Id : Entity_Id;
5554 N : Node_Id)
5556 Index1 : Interp_Index;
5557 Index2 : Interp_Index;
5558 It1 : Interp;
5559 It2 : Interp;
5561 procedure Check_Right_Argument (T : Entity_Id);
5562 -- Check right operand of operator
5564 --------------------------
5565 -- Check_Right_Argument --
5566 --------------------------
5568 procedure Check_Right_Argument (T : Entity_Id) is
5569 begin
5570 if not Is_Overloaded (R) then
5571 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
5572 else
5573 Get_First_Interp (R, Index2, It2);
5574 while Present (It2.Typ) loop
5575 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
5576 Get_Next_Interp (Index2, It2);
5577 end loop;
5578 end if;
5579 end Check_Right_Argument;
5581 -- Start of processing for Find_Arithmetic_Types
5583 begin
5584 if not Is_Overloaded (L) then
5585 Check_Right_Argument (Etype (L));
5587 else
5588 Get_First_Interp (L, Index1, It1);
5589 while Present (It1.Typ) loop
5590 Check_Right_Argument (It1.Typ);
5591 Get_Next_Interp (Index1, It1);
5592 end loop;
5593 end if;
5595 end Find_Arithmetic_Types;
5597 ------------------------
5598 -- Find_Boolean_Types --
5599 ------------------------
5601 procedure Find_Boolean_Types
5602 (L, R : Node_Id;
5603 Op_Id : Entity_Id;
5604 N : Node_Id)
5606 Index : Interp_Index;
5607 It : Interp;
5609 procedure Check_Numeric_Argument (T : Entity_Id);
5610 -- Special case for logical operations one of whose operands is an
5611 -- integer literal. If both are literal the result is any modular type.
5613 ----------------------------
5614 -- Check_Numeric_Argument --
5615 ----------------------------
5617 procedure Check_Numeric_Argument (T : Entity_Id) is
5618 begin
5619 if T = Universal_Integer then
5620 Add_One_Interp (N, Op_Id, Any_Modular);
5622 elsif Is_Modular_Integer_Type (T) then
5623 Add_One_Interp (N, Op_Id, T);
5624 end if;
5625 end Check_Numeric_Argument;
5627 -- Start of processing for Find_Boolean_Types
5629 begin
5630 if not Is_Overloaded (L) then
5631 if Etype (L) = Universal_Integer
5632 or else Etype (L) = Any_Modular
5633 then
5634 if not Is_Overloaded (R) then
5635 Check_Numeric_Argument (Etype (R));
5637 else
5638 Get_First_Interp (R, Index, It);
5639 while Present (It.Typ) loop
5640 Check_Numeric_Argument (It.Typ);
5641 Get_Next_Interp (Index, It);
5642 end loop;
5643 end if;
5645 -- If operands are aggregates, we must assume that they may be
5646 -- boolean arrays, and leave disambiguation for the second pass.
5647 -- If only one is an aggregate, verify that the other one has an
5648 -- interpretation as a boolean array
5650 elsif Nkind (L) = N_Aggregate then
5651 if Nkind (R) = N_Aggregate then
5652 Add_One_Interp (N, Op_Id, Etype (L));
5654 elsif not Is_Overloaded (R) then
5655 if Valid_Boolean_Arg (Etype (R)) then
5656 Add_One_Interp (N, Op_Id, Etype (R));
5657 end if;
5659 else
5660 Get_First_Interp (R, Index, It);
5661 while Present (It.Typ) loop
5662 if Valid_Boolean_Arg (It.Typ) then
5663 Add_One_Interp (N, Op_Id, It.Typ);
5664 end if;
5666 Get_Next_Interp (Index, It);
5667 end loop;
5668 end if;
5670 elsif Valid_Boolean_Arg (Etype (L))
5671 and then Has_Compatible_Type (R, Etype (L))
5672 then
5673 Add_One_Interp (N, Op_Id, Etype (L));
5674 end if;
5676 else
5677 Get_First_Interp (L, Index, It);
5678 while Present (It.Typ) loop
5679 if Valid_Boolean_Arg (It.Typ)
5680 and then Has_Compatible_Type (R, It.Typ)
5681 then
5682 Add_One_Interp (N, Op_Id, It.Typ);
5683 end if;
5685 Get_Next_Interp (Index, It);
5686 end loop;
5687 end if;
5688 end Find_Boolean_Types;
5690 ---------------------------
5691 -- Find_Comparison_Types --
5692 ---------------------------
5694 procedure Find_Comparison_Types
5695 (L, R : Node_Id;
5696 Op_Id : Entity_Id;
5697 N : Node_Id)
5699 Index : Interp_Index;
5700 It : Interp;
5701 Found : Boolean := False;
5702 I_F : Interp_Index;
5703 T_F : Entity_Id;
5704 Scop : Entity_Id := Empty;
5706 procedure Try_One_Interp (T1 : Entity_Id);
5707 -- Routine to try one proposed interpretation. Note that the context
5708 -- of the operator plays no role in resolving the arguments, so that
5709 -- if there is more than one interpretation of the operands that is
5710 -- compatible with comparison, the operation is ambiguous.
5712 --------------------
5713 -- Try_One_Interp --
5714 --------------------
5716 procedure Try_One_Interp (T1 : Entity_Id) is
5717 begin
5719 -- If the operator is an expanded name, then the type of the operand
5720 -- must be defined in the corresponding scope. If the type is
5721 -- universal, the context will impose the correct type.
5723 if Present (Scop)
5724 and then not Defined_In_Scope (T1, Scop)
5725 and then T1 /= Universal_Integer
5726 and then T1 /= Universal_Real
5727 and then T1 /= Any_String
5728 and then T1 /= Any_Composite
5729 then
5730 return;
5731 end if;
5733 if Valid_Comparison_Arg (T1) and then Has_Compatible_Type (R, T1) then
5734 if Found and then Base_Type (T1) /= Base_Type (T_F) then
5735 It := Disambiguate (L, I_F, Index, Any_Type);
5737 if It = No_Interp then
5738 Ambiguous_Operands (N);
5739 Set_Etype (L, Any_Type);
5740 return;
5742 else
5743 T_F := It.Typ;
5744 end if;
5746 else
5747 Found := True;
5748 T_F := T1;
5749 I_F := Index;
5750 end if;
5752 Set_Etype (L, T_F);
5753 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5755 end if;
5756 end Try_One_Interp;
5758 -- Start of processing for Find_Comparison_Types
5760 begin
5761 -- If left operand is aggregate, the right operand has to
5762 -- provide a usable type for it.
5764 if Nkind (L) = N_Aggregate and then Nkind (R) /= N_Aggregate then
5765 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
5766 return;
5767 end if;
5769 if Nkind (N) = N_Function_Call
5770 and then Nkind (Name (N)) = N_Expanded_Name
5771 then
5772 Scop := Entity (Prefix (Name (N)));
5774 -- The prefix may be a package renaming, and the subsequent test
5775 -- requires the original package.
5777 if Ekind (Scop) = E_Package
5778 and then Present (Renamed_Entity (Scop))
5779 then
5780 Scop := Renamed_Entity (Scop);
5781 Set_Entity (Prefix (Name (N)), Scop);
5782 end if;
5783 end if;
5785 if not Is_Overloaded (L) then
5786 Try_One_Interp (Etype (L));
5788 else
5789 Get_First_Interp (L, Index, It);
5790 while Present (It.Typ) loop
5791 Try_One_Interp (It.Typ);
5792 Get_Next_Interp (Index, It);
5793 end loop;
5794 end if;
5795 end Find_Comparison_Types;
5797 ----------------------------------------
5798 -- Find_Non_Universal_Interpretations --
5799 ----------------------------------------
5801 procedure Find_Non_Universal_Interpretations
5802 (N : Node_Id;
5803 R : Node_Id;
5804 Op_Id : Entity_Id;
5805 T1 : Entity_Id)
5807 Index : Interp_Index;
5808 It : Interp;
5810 begin
5811 if T1 = Universal_Integer or else T1 = Universal_Real
5813 -- If the left operand of an equality operator is null, the visibility
5814 -- of the operator must be determined from the interpretation of the
5815 -- right operand. This processing must be done for Any_Access, which
5816 -- is the internal representation of the type of the literal null.
5818 or else T1 = Any_Access
5819 then
5820 if not Is_Overloaded (R) then
5821 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
5822 else
5823 Get_First_Interp (R, Index, It);
5824 while Present (It.Typ) loop
5825 if Covers (It.Typ, T1) then
5826 Add_One_Interp
5827 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
5828 end if;
5830 Get_Next_Interp (Index, It);
5831 end loop;
5832 end if;
5833 else
5834 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
5835 end if;
5836 end Find_Non_Universal_Interpretations;
5838 ------------------------------
5839 -- Find_Concatenation_Types --
5840 ------------------------------
5842 procedure Find_Concatenation_Types
5843 (L, R : Node_Id;
5844 Op_Id : Entity_Id;
5845 N : Node_Id)
5847 Op_Type : constant Entity_Id := Etype (Op_Id);
5849 begin
5850 if Is_Array_Type (Op_Type)
5851 and then not Is_Limited_Type (Op_Type)
5853 and then (Has_Compatible_Type (L, Op_Type)
5854 or else
5855 Has_Compatible_Type (L, Component_Type (Op_Type)))
5857 and then (Has_Compatible_Type (R, Op_Type)
5858 or else
5859 Has_Compatible_Type (R, Component_Type (Op_Type)))
5860 then
5861 Add_One_Interp (N, Op_Id, Op_Type);
5862 end if;
5863 end Find_Concatenation_Types;
5865 -------------------------
5866 -- Find_Equality_Types --
5867 -------------------------
5869 procedure Find_Equality_Types
5870 (L, R : Node_Id;
5871 Op_Id : Entity_Id;
5872 N : Node_Id)
5874 Index : Interp_Index;
5875 It : Interp;
5876 Found : Boolean := False;
5877 I_F : Interp_Index;
5878 T_F : Entity_Id;
5879 Scop : Entity_Id := Empty;
5881 procedure Try_One_Interp (T1 : Entity_Id);
5882 -- The context of the equality operator plays no role in resolving the
5883 -- arguments, so that if there is more than one interpretation of the
5884 -- operands that is compatible with equality, the construct is ambiguous
5885 -- and an error can be emitted now, after trying to disambiguate, i.e.
5886 -- applying preference rules.
5888 --------------------
5889 -- Try_One_Interp --
5890 --------------------
5892 procedure Try_One_Interp (T1 : Entity_Id) is
5893 Bas : constant Entity_Id := Base_Type (T1);
5895 begin
5896 -- If the operator is an expanded name, then the type of the operand
5897 -- must be defined in the corresponding scope. If the type is
5898 -- universal, the context will impose the correct type. An anonymous
5899 -- type for a 'Access reference is also universal in this sense, as
5900 -- the actual type is obtained from context.
5902 -- In Ada 2005, the equality operator for anonymous access types
5903 -- is declared in Standard, and preference rules apply to it.
5905 if Present (Scop) then
5906 if Defined_In_Scope (T1, Scop)
5907 or else T1 = Universal_Integer
5908 or else T1 = Universal_Real
5909 or else T1 = Any_Access
5910 or else T1 = Any_String
5911 or else T1 = Any_Composite
5912 or else (Ekind (T1) = E_Access_Subprogram_Type
5913 and then not Comes_From_Source (T1))
5914 then
5915 null;
5917 elsif Ekind (T1) = E_Anonymous_Access_Type
5918 and then Scop = Standard_Standard
5919 then
5920 null;
5922 else
5923 -- The scope does not contain an operator for the type
5925 return;
5926 end if;
5928 -- If we have infix notation, the operator must be usable. Within
5929 -- an instance, if the type is already established we know it is
5930 -- correct. If an operand is universal it is compatible with any
5931 -- numeric type.
5933 elsif In_Open_Scopes (Scope (Bas))
5934 or else Is_Potentially_Use_Visible (Bas)
5935 or else In_Use (Bas)
5936 or else (In_Use (Scope (Bas)) and then not Is_Hidden (Bas))
5938 -- In an instance, the type may have been immediately visible.
5939 -- Either the types are compatible, or one operand is universal
5940 -- (numeric or null).
5942 or else (In_Instance
5943 and then
5944 (First_Subtype (T1) = First_Subtype (Etype (R))
5945 or else Nkind (R) = N_Null
5946 or else
5947 (Is_Numeric_Type (T1)
5948 and then Is_Universal_Numeric_Type (Etype (R)))))
5950 -- In Ada 2005, the equality on anonymous access types is declared
5951 -- in Standard, and is always visible.
5953 or else Ekind (T1) = E_Anonymous_Access_Type
5954 then
5955 null;
5957 else
5958 -- Save candidate type for subsequent error message, if any
5960 if not Is_Limited_Type (T1) then
5961 Candidate_Type := T1;
5962 end if;
5964 return;
5965 end if;
5967 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
5968 -- Do not allow anonymous access types in equality operators.
5970 if Ada_Version < Ada_2005
5971 and then Ekind (T1) = E_Anonymous_Access_Type
5972 then
5973 return;
5974 end if;
5976 -- If the right operand has a type compatible with T1, check for an
5977 -- acceptable interpretation, unless T1 is limited (no predefined
5978 -- equality available), or this is use of a "/=" for a tagged type.
5979 -- In the latter case, possible interpretations of equality need
5980 -- to be considered, we don't want the default inequality declared
5981 -- in Standard to be chosen, and the "/=" will be rewritten as a
5982 -- negation of "=" (see the end of Analyze_Equality_Op). This ensures
5983 -- that that rewriting happens during analysis rather than being
5984 -- delayed until expansion (this is needed for ASIS, which only sees
5985 -- the unexpanded tree). Note that if the node is N_Op_Ne, but Op_Id
5986 -- is Name_Op_Eq then we still proceed with the interpretation,
5987 -- because that indicates the potential rewriting case where the
5988 -- interpretation to consider is actually "=" and the node may be
5989 -- about to be rewritten by Analyze_Equality_Op.
5991 if T1 /= Standard_Void_Type
5992 and then Has_Compatible_Type (R, T1)
5994 and then
5995 ((not Is_Limited_Type (T1)
5996 and then not Is_Limited_Composite (T1))
5998 or else
5999 (Is_Array_Type (T1)
6000 and then not Is_Limited_Type (Component_Type (T1))
6001 and then Available_Full_View_Of_Component (T1)))
6003 and then
6004 (Nkind (N) /= N_Op_Ne
6005 or else not Is_Tagged_Type (T1)
6006 or else Chars (Op_Id) = Name_Op_Eq)
6007 then
6008 if Found
6009 and then Base_Type (T1) /= Base_Type (T_F)
6010 then
6011 It := Disambiguate (L, I_F, Index, Any_Type);
6013 if It = No_Interp then
6014 Ambiguous_Operands (N);
6015 Set_Etype (L, Any_Type);
6016 return;
6018 else
6019 T_F := It.Typ;
6020 end if;
6022 else
6023 Found := True;
6024 T_F := T1;
6025 I_F := Index;
6026 end if;
6028 if not Analyzed (L) then
6029 Set_Etype (L, T_F);
6030 end if;
6032 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
6034 -- Case of operator was not visible, Etype still set to Any_Type
6036 if Etype (N) = Any_Type then
6037 Found := False;
6038 end if;
6040 elsif Scop = Standard_Standard
6041 and then Ekind (T1) = E_Anonymous_Access_Type
6042 then
6043 Found := True;
6044 end if;
6045 end Try_One_Interp;
6047 -- Start of processing for Find_Equality_Types
6049 begin
6050 -- If left operand is aggregate, the right operand has to
6051 -- provide a usable type for it.
6053 if Nkind (L) = N_Aggregate
6054 and then Nkind (R) /= N_Aggregate
6055 then
6056 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
6057 return;
6058 end if;
6060 if Nkind (N) = N_Function_Call
6061 and then Nkind (Name (N)) = N_Expanded_Name
6062 then
6063 Scop := Entity (Prefix (Name (N)));
6065 -- The prefix may be a package renaming, and the subsequent test
6066 -- requires the original package.
6068 if Ekind (Scop) = E_Package
6069 and then Present (Renamed_Entity (Scop))
6070 then
6071 Scop := Renamed_Entity (Scop);
6072 Set_Entity (Prefix (Name (N)), Scop);
6073 end if;
6074 end if;
6076 if not Is_Overloaded (L) then
6077 Try_One_Interp (Etype (L));
6079 else
6080 Get_First_Interp (L, Index, It);
6081 while Present (It.Typ) loop
6082 Try_One_Interp (It.Typ);
6083 Get_Next_Interp (Index, It);
6084 end loop;
6085 end if;
6086 end Find_Equality_Types;
6088 -------------------------
6089 -- Find_Negation_Types --
6090 -------------------------
6092 procedure Find_Negation_Types
6093 (R : Node_Id;
6094 Op_Id : Entity_Id;
6095 N : Node_Id)
6097 Index : Interp_Index;
6098 It : Interp;
6100 begin
6101 if not Is_Overloaded (R) then
6102 if Etype (R) = Universal_Integer then
6103 Add_One_Interp (N, Op_Id, Any_Modular);
6104 elsif Valid_Boolean_Arg (Etype (R)) then
6105 Add_One_Interp (N, Op_Id, Etype (R));
6106 end if;
6108 else
6109 Get_First_Interp (R, Index, It);
6110 while Present (It.Typ) loop
6111 if Valid_Boolean_Arg (It.Typ) then
6112 Add_One_Interp (N, Op_Id, It.Typ);
6113 end if;
6115 Get_Next_Interp (Index, It);
6116 end loop;
6117 end if;
6118 end Find_Negation_Types;
6120 ------------------------------
6121 -- Find_Primitive_Operation --
6122 ------------------------------
6124 function Find_Primitive_Operation (N : Node_Id) return Boolean is
6125 Obj : constant Node_Id := Prefix (N);
6126 Op : constant Node_Id := Selector_Name (N);
6128 Prim : Elmt_Id;
6129 Prims : Elist_Id;
6130 Typ : Entity_Id;
6132 begin
6133 Set_Etype (Op, Any_Type);
6135 if Is_Access_Type (Etype (Obj)) then
6136 Typ := Designated_Type (Etype (Obj));
6137 else
6138 Typ := Etype (Obj);
6139 end if;
6141 if Is_Class_Wide_Type (Typ) then
6142 Typ := Root_Type (Typ);
6143 end if;
6145 Prims := Primitive_Operations (Typ);
6147 Prim := First_Elmt (Prims);
6148 while Present (Prim) loop
6149 if Chars (Node (Prim)) = Chars (Op) then
6150 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
6151 Set_Etype (N, Etype (Node (Prim)));
6152 end if;
6154 Next_Elmt (Prim);
6155 end loop;
6157 -- Now look for class-wide operations of the type or any of its
6158 -- ancestors by iterating over the homonyms of the selector.
6160 declare
6161 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
6162 Hom : Entity_Id;
6164 begin
6165 Hom := Current_Entity (Op);
6166 while Present (Hom) loop
6167 if (Ekind (Hom) = E_Procedure
6168 or else
6169 Ekind (Hom) = E_Function)
6170 and then Scope (Hom) = Scope (Typ)
6171 and then Present (First_Formal (Hom))
6172 and then
6173 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
6174 or else
6175 (Is_Access_Type (Etype (First_Formal (Hom)))
6176 and then
6177 Ekind (Etype (First_Formal (Hom))) =
6178 E_Anonymous_Access_Type
6179 and then
6180 Base_Type
6181 (Designated_Type (Etype (First_Formal (Hom)))) =
6182 Cls_Type))
6183 then
6184 Add_One_Interp (Op, Hom, Etype (Hom));
6185 Set_Etype (N, Etype (Hom));
6186 end if;
6188 Hom := Homonym (Hom);
6189 end loop;
6190 end;
6192 return Etype (Op) /= Any_Type;
6193 end Find_Primitive_Operation;
6195 ----------------------
6196 -- Find_Unary_Types --
6197 ----------------------
6199 procedure Find_Unary_Types
6200 (R : Node_Id;
6201 Op_Id : Entity_Id;
6202 N : Node_Id)
6204 Index : Interp_Index;
6205 It : Interp;
6207 begin
6208 if not Is_Overloaded (R) then
6209 if Is_Numeric_Type (Etype (R)) then
6211 -- In an instance a generic actual may be a numeric type even if
6212 -- the formal in the generic unit was not. In that case, the
6213 -- predefined operator was not a possible interpretation in the
6214 -- generic, and cannot be one in the instance, unless the operator
6215 -- is an actual of an instance.
6217 if In_Instance
6218 and then
6219 not Is_Numeric_Type (Corresponding_Generic_Type (Etype (R)))
6220 then
6221 null;
6222 else
6223 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
6224 end if;
6225 end if;
6227 else
6228 Get_First_Interp (R, Index, It);
6229 while Present (It.Typ) loop
6230 if Is_Numeric_Type (It.Typ) then
6231 if In_Instance
6232 and then
6233 not Is_Numeric_Type
6234 (Corresponding_Generic_Type (Etype (It.Typ)))
6235 then
6236 null;
6238 else
6239 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
6240 end if;
6241 end if;
6243 Get_Next_Interp (Index, It);
6244 end loop;
6245 end if;
6246 end Find_Unary_Types;
6248 ------------------
6249 -- Junk_Operand --
6250 ------------------
6252 function Junk_Operand (N : Node_Id) return Boolean is
6253 Enode : Node_Id;
6255 begin
6256 if Error_Posted (N) then
6257 return False;
6258 end if;
6260 -- Get entity to be tested
6262 if Is_Entity_Name (N)
6263 and then Present (Entity (N))
6264 then
6265 Enode := N;
6267 -- An odd case, a procedure name gets converted to a very peculiar
6268 -- function call, and here is where we detect this happening.
6270 elsif Nkind (N) = N_Function_Call
6271 and then Is_Entity_Name (Name (N))
6272 and then Present (Entity (Name (N)))
6273 then
6274 Enode := Name (N);
6276 -- Another odd case, there are at least some cases of selected
6277 -- components where the selected component is not marked as having
6278 -- an entity, even though the selector does have an entity
6280 elsif Nkind (N) = N_Selected_Component
6281 and then Present (Entity (Selector_Name (N)))
6282 then
6283 Enode := Selector_Name (N);
6285 else
6286 return False;
6287 end if;
6289 -- Now test the entity we got to see if it is a bad case
6291 case Ekind (Entity (Enode)) is
6293 when E_Package =>
6294 Error_Msg_N
6295 ("package name cannot be used as operand", Enode);
6297 when Generic_Unit_Kind =>
6298 Error_Msg_N
6299 ("generic unit name cannot be used as operand", Enode);
6301 when Type_Kind =>
6302 Error_Msg_N
6303 ("subtype name cannot be used as operand", Enode);
6305 when Entry_Kind =>
6306 Error_Msg_N
6307 ("entry name cannot be used as operand", Enode);
6309 when E_Procedure =>
6310 Error_Msg_N
6311 ("procedure name cannot be used as operand", Enode);
6313 when E_Exception =>
6314 Error_Msg_N
6315 ("exception name cannot be used as operand", Enode);
6317 when E_Block | E_Label | E_Loop =>
6318 Error_Msg_N
6319 ("label name cannot be used as operand", Enode);
6321 when others =>
6322 return False;
6324 end case;
6326 return True;
6327 end Junk_Operand;
6329 --------------------
6330 -- Operator_Check --
6331 --------------------
6333 procedure Operator_Check (N : Node_Id) is
6334 begin
6335 Remove_Abstract_Operations (N);
6337 -- Test for case of no interpretation found for operator
6339 if Etype (N) = Any_Type then
6340 declare
6341 L : Node_Id;
6342 R : Node_Id;
6343 Op_Id : Entity_Id := Empty;
6345 begin
6346 R := Right_Opnd (N);
6348 if Nkind (N) in N_Binary_Op then
6349 L := Left_Opnd (N);
6350 else
6351 L := Empty;
6352 end if;
6354 -- If either operand has no type, then don't complain further,
6355 -- since this simply means that we have a propagated error.
6357 if R = Error
6358 or else Etype (R) = Any_Type
6359 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
6360 then
6361 -- For the rather unusual case where one of the operands is
6362 -- a Raise_Expression, whose initial type is Any_Type, use
6363 -- the type of the other operand.
6365 if Nkind (L) = N_Raise_Expression then
6366 Set_Etype (L, Etype (R));
6367 Set_Etype (N, Etype (R));
6369 elsif Nkind (R) = N_Raise_Expression then
6370 Set_Etype (R, Etype (L));
6371 Set_Etype (N, Etype (L));
6372 end if;
6374 return;
6376 -- We explicitly check for the case of concatenation of component
6377 -- with component to avoid reporting spurious matching array types
6378 -- that might happen to be lurking in distant packages (such as
6379 -- run-time packages). This also prevents inconsistencies in the
6380 -- messages for certain ACVC B tests, which can vary depending on
6381 -- types declared in run-time interfaces. Another improvement when
6382 -- aggregates are present is to look for a well-typed operand.
6384 elsif Present (Candidate_Type)
6385 and then (Nkind (N) /= N_Op_Concat
6386 or else Is_Array_Type (Etype (L))
6387 or else Is_Array_Type (Etype (R)))
6388 then
6389 if Nkind (N) = N_Op_Concat then
6390 if Etype (L) /= Any_Composite
6391 and then Is_Array_Type (Etype (L))
6392 then
6393 Candidate_Type := Etype (L);
6395 elsif Etype (R) /= Any_Composite
6396 and then Is_Array_Type (Etype (R))
6397 then
6398 Candidate_Type := Etype (R);
6399 end if;
6400 end if;
6402 Error_Msg_NE -- CODEFIX
6403 ("operator for} is not directly visible!",
6404 N, First_Subtype (Candidate_Type));
6406 declare
6407 U : constant Node_Id :=
6408 Cunit (Get_Source_Unit (Candidate_Type));
6409 begin
6410 if Unit_Is_Visible (U) then
6411 Error_Msg_N -- CODEFIX
6412 ("use clause would make operation legal!", N);
6413 else
6414 Error_Msg_NE -- CODEFIX
6415 ("add with_clause and use_clause for&!",
6416 N, Defining_Entity (Unit (U)));
6417 end if;
6418 end;
6419 return;
6421 -- If either operand is a junk operand (e.g. package name), then
6422 -- post appropriate error messages, but do not complain further.
6424 -- Note that the use of OR in this test instead of OR ELSE is
6425 -- quite deliberate, we may as well check both operands in the
6426 -- binary operator case.
6428 elsif Junk_Operand (R)
6429 or -- really mean OR here and not OR ELSE, see above
6430 (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
6431 then
6432 return;
6434 -- If we have a logical operator, one of whose operands is
6435 -- Boolean, then we know that the other operand cannot resolve to
6436 -- Boolean (since we got no interpretations), but in that case we
6437 -- pretty much know that the other operand should be Boolean, so
6438 -- resolve it that way (generating an error)
6440 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
6441 if Etype (L) = Standard_Boolean then
6442 Resolve (R, Standard_Boolean);
6443 return;
6444 elsif Etype (R) = Standard_Boolean then
6445 Resolve (L, Standard_Boolean);
6446 return;
6447 end if;
6449 -- For an arithmetic operator or comparison operator, if one
6450 -- of the operands is numeric, then we know the other operand
6451 -- is not the same numeric type. If it is a non-numeric type,
6452 -- then probably it is intended to match the other operand.
6454 elsif Nkind_In (N, N_Op_Add,
6455 N_Op_Divide,
6456 N_Op_Ge,
6457 N_Op_Gt,
6458 N_Op_Le)
6459 or else
6460 Nkind_In (N, N_Op_Lt,
6461 N_Op_Mod,
6462 N_Op_Multiply,
6463 N_Op_Rem,
6464 N_Op_Subtract)
6465 then
6466 -- If Allow_Integer_Address is active, check whether the
6467 -- operation becomes legal after converting an operand.
6469 if Is_Numeric_Type (Etype (L))
6470 and then not Is_Numeric_Type (Etype (R))
6471 then
6472 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
6473 Rewrite (R,
6474 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
6476 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6477 Analyze_Comparison_Op (N);
6478 else
6479 Analyze_Arithmetic_Op (N);
6480 end if;
6481 else
6482 Resolve (R, Etype (L));
6483 end if;
6485 return;
6487 elsif Is_Numeric_Type (Etype (R))
6488 and then not Is_Numeric_Type (Etype (L))
6489 then
6490 if Address_Integer_Convert_OK (Etype (L), Etype (R)) then
6491 Rewrite (L,
6492 Unchecked_Convert_To (Etype (R), Relocate_Node (L)));
6494 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6495 Analyze_Comparison_Op (N);
6496 else
6497 Analyze_Arithmetic_Op (N);
6498 end if;
6500 return;
6502 else
6503 Resolve (L, Etype (R));
6504 end if;
6506 return;
6508 elsif Allow_Integer_Address
6509 and then Is_Descendent_Of_Address (Etype (L))
6510 and then Is_Descendent_Of_Address (Etype (R))
6511 and then not Error_Posted (N)
6512 then
6513 declare
6514 Addr_Type : constant Entity_Id := Etype (L);
6516 begin
6517 Rewrite (L,
6518 Unchecked_Convert_To (
6519 Standard_Integer, Relocate_Node (L)));
6520 Rewrite (R,
6521 Unchecked_Convert_To (
6522 Standard_Integer, Relocate_Node (R)));
6524 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6525 Analyze_Comparison_Op (N);
6526 else
6527 Analyze_Arithmetic_Op (N);
6528 end if;
6530 -- If this is an operand in an enclosing arithmetic
6531 -- operation, Convert the result as an address so that
6532 -- arithmetic folding of address can continue.
6534 if Nkind (Parent (N)) in N_Op then
6535 Rewrite (N,
6536 Unchecked_Convert_To (Addr_Type, Relocate_Node (N)));
6537 end if;
6539 return;
6540 end;
6541 end if;
6543 -- Comparisons on A'Access are common enough to deserve a
6544 -- special message.
6546 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
6547 and then Ekind (Etype (L)) = E_Access_Attribute_Type
6548 and then Ekind (Etype (R)) = E_Access_Attribute_Type
6549 then
6550 Error_Msg_N
6551 ("two access attributes cannot be compared directly", N);
6552 Error_Msg_N
6553 ("\use qualified expression for one of the operands",
6555 return;
6557 -- Another one for C programmers
6559 elsif Nkind (N) = N_Op_Concat
6560 and then Valid_Boolean_Arg (Etype (L))
6561 and then Valid_Boolean_Arg (Etype (R))
6562 then
6563 Error_Msg_N ("invalid operands for concatenation", N);
6564 Error_Msg_N -- CODEFIX
6565 ("\maybe AND was meant", N);
6566 return;
6568 -- A special case for comparison of access parameter with null
6570 elsif Nkind (N) = N_Op_Eq
6571 and then Is_Entity_Name (L)
6572 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
6573 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
6574 N_Access_Definition
6575 and then Nkind (R) = N_Null
6576 then
6577 Error_Msg_N ("access parameter is not allowed to be null", L);
6578 Error_Msg_N ("\(call would raise Constraint_Error)", L);
6579 return;
6581 -- Another special case for exponentiation, where the right
6582 -- operand must be Natural, independently of the base.
6584 elsif Nkind (N) = N_Op_Expon
6585 and then Is_Numeric_Type (Etype (L))
6586 and then not Is_Overloaded (R)
6587 and then
6588 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
6589 and then Base_Type (Etype (R)) /= Universal_Integer
6590 then
6591 if Ada_Version >= Ada_2012
6592 and then Has_Dimension_System (Etype (L))
6593 then
6594 Error_Msg_NE
6595 ("exponent for dimensioned type must be a rational" &
6596 ", found}", R, Etype (R));
6597 else
6598 Error_Msg_NE
6599 ("exponent must be of type Natural, found}", R, Etype (R));
6600 end if;
6602 return;
6604 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
6605 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
6606 Rewrite (R,
6607 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
6608 Analyze_Equality_Op (N);
6609 return;
6610 end if;
6611 end if;
6613 -- If we fall through then just give general message. Note that in
6614 -- the following messages, if the operand is overloaded we choose
6615 -- an arbitrary type to complain about, but that is probably more
6616 -- useful than not giving a type at all.
6618 if Nkind (N) in N_Unary_Op then
6619 Error_Msg_Node_2 := Etype (R);
6620 Error_Msg_N ("operator& not defined for}", N);
6621 return;
6623 else
6624 if Nkind (N) in N_Binary_Op then
6625 if not Is_Overloaded (L)
6626 and then not Is_Overloaded (R)
6627 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
6628 then
6629 Error_Msg_Node_2 := First_Subtype (Etype (R));
6630 Error_Msg_N ("there is no applicable operator& for}", N);
6632 else
6633 -- Another attempt to find a fix: one of the candidate
6634 -- interpretations may not be use-visible. This has
6635 -- already been checked for predefined operators, so
6636 -- we examine only user-defined functions.
6638 Op_Id := Get_Name_Entity_Id (Chars (N));
6640 while Present (Op_Id) loop
6641 if Ekind (Op_Id) /= E_Operator
6642 and then Is_Overloadable (Op_Id)
6643 then
6644 if not Is_Immediately_Visible (Op_Id)
6645 and then not In_Use (Scope (Op_Id))
6646 and then not Is_Abstract_Subprogram (Op_Id)
6647 and then not Is_Hidden (Op_Id)
6648 and then Ekind (Scope (Op_Id)) = E_Package
6649 and then
6650 Has_Compatible_Type
6651 (L, Etype (First_Formal (Op_Id)))
6652 and then Present
6653 (Next_Formal (First_Formal (Op_Id)))
6654 and then
6655 Has_Compatible_Type
6657 Etype (Next_Formal (First_Formal (Op_Id))))
6658 then
6659 Error_Msg_N
6660 ("No legal interpretation for operator&", N);
6661 Error_Msg_NE
6662 ("\use clause on& would make operation legal",
6663 N, Scope (Op_Id));
6664 exit;
6665 end if;
6666 end if;
6668 Op_Id := Homonym (Op_Id);
6669 end loop;
6671 if No (Op_Id) then
6672 Error_Msg_N ("invalid operand types for operator&", N);
6674 if Nkind (N) /= N_Op_Concat then
6675 Error_Msg_NE ("\left operand has}!", N, Etype (L));
6676 Error_Msg_NE ("\right operand has}!", N, Etype (R));
6678 -- For concatenation operators it is more difficult to
6679 -- determine which is the wrong operand. It is worth
6680 -- flagging explicitly an access type, for those who
6681 -- might think that a dereference happens here.
6683 elsif Is_Access_Type (Etype (L)) then
6684 Error_Msg_N ("\left operand is access type", N);
6686 elsif Is_Access_Type (Etype (R)) then
6687 Error_Msg_N ("\right operand is access type", N);
6688 end if;
6689 end if;
6690 end if;
6691 end if;
6692 end if;
6693 end;
6694 end if;
6695 end Operator_Check;
6697 -----------------------------------------
6698 -- Process_Implicit_Dereference_Prefix --
6699 -----------------------------------------
6701 function Process_Implicit_Dereference_Prefix
6702 (E : Entity_Id;
6703 P : Entity_Id) return Entity_Id
6705 Ref : Node_Id;
6706 Typ : constant Entity_Id := Designated_Type (Etype (P));
6708 begin
6709 if Present (E)
6710 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
6711 then
6712 -- We create a dummy reference to E to ensure that the reference is
6713 -- not considered as part of an assignment (an implicit dereference
6714 -- can never assign to its prefix). The Comes_From_Source attribute
6715 -- needs to be propagated for accurate warnings.
6717 Ref := New_Occurrence_Of (E, Sloc (P));
6718 Set_Comes_From_Source (Ref, Comes_From_Source (P));
6719 Generate_Reference (E, Ref);
6720 end if;
6722 -- An implicit dereference is a legal occurrence of an incomplete type
6723 -- imported through a limited_with clause, if the full view is visible.
6725 if From_Limited_With (Typ)
6726 and then not From_Limited_With (Scope (Typ))
6727 and then
6728 (Is_Immediately_Visible (Scope (Typ))
6729 or else
6730 (Is_Child_Unit (Scope (Typ))
6731 and then Is_Visible_Lib_Unit (Scope (Typ))))
6732 then
6733 return Available_View (Typ);
6734 else
6735 return Typ;
6736 end if;
6737 end Process_Implicit_Dereference_Prefix;
6739 --------------------------------
6740 -- Remove_Abstract_Operations --
6741 --------------------------------
6743 procedure Remove_Abstract_Operations (N : Node_Id) is
6744 Abstract_Op : Entity_Id := Empty;
6745 Address_Descendent : Boolean := False;
6746 I : Interp_Index;
6747 It : Interp;
6749 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
6750 -- activate this if either extensions are enabled, or if the abstract
6751 -- operation in question comes from a predefined file. This latter test
6752 -- allows us to use abstract to make operations invisible to users. In
6753 -- particular, if type Address is non-private and abstract subprograms
6754 -- are used to hide its operators, they will be truly hidden.
6756 type Operand_Position is (First_Op, Second_Op);
6757 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
6759 procedure Remove_Address_Interpretations (Op : Operand_Position);
6760 -- Ambiguities may arise when the operands are literal and the address
6761 -- operations in s-auxdec are visible. In that case, remove the
6762 -- interpretation of a literal as Address, to retain the semantics
6763 -- of Address as a private type.
6765 ------------------------------------
6766 -- Remove_Address_Interpretations --
6767 ------------------------------------
6769 procedure Remove_Address_Interpretations (Op : Operand_Position) is
6770 Formal : Entity_Id;
6772 begin
6773 if Is_Overloaded (N) then
6774 Get_First_Interp (N, I, It);
6775 while Present (It.Nam) loop
6776 Formal := First_Entity (It.Nam);
6778 if Op = Second_Op then
6779 Formal := Next_Entity (Formal);
6780 end if;
6782 if Is_Descendent_Of_Address (Etype (Formal)) then
6783 Address_Descendent := True;
6784 Remove_Interp (I);
6785 end if;
6787 Get_Next_Interp (I, It);
6788 end loop;
6789 end if;
6790 end Remove_Address_Interpretations;
6792 -- Start of processing for Remove_Abstract_Operations
6794 begin
6795 if Is_Overloaded (N) then
6796 if Debug_Flag_V then
6797 Write_Str ("Remove_Abstract_Operations: ");
6798 Write_Overloads (N);
6799 end if;
6801 Get_First_Interp (N, I, It);
6803 while Present (It.Nam) loop
6804 if Is_Overloadable (It.Nam)
6805 and then Is_Abstract_Subprogram (It.Nam)
6806 and then not Is_Dispatching_Operation (It.Nam)
6807 then
6808 Abstract_Op := It.Nam;
6810 if Is_Descendent_Of_Address (It.Typ) then
6811 Address_Descendent := True;
6812 Remove_Interp (I);
6813 exit;
6815 -- In Ada 2005, this operation does not participate in overload
6816 -- resolution. If the operation is defined in a predefined
6817 -- unit, it is one of the operations declared abstract in some
6818 -- variants of System, and it must be removed as well.
6820 elsif Ada_Version >= Ada_2005
6821 or else Is_Predefined_File_Name
6822 (Unit_File_Name (Get_Source_Unit (It.Nam)))
6823 then
6824 Remove_Interp (I);
6825 exit;
6826 end if;
6827 end if;
6829 Get_Next_Interp (I, It);
6830 end loop;
6832 if No (Abstract_Op) then
6834 -- If some interpretation yields an integer type, it is still
6835 -- possible that there are address interpretations. Remove them
6836 -- if one operand is a literal, to avoid spurious ambiguities
6837 -- on systems where Address is a visible integer type.
6839 if Is_Overloaded (N)
6840 and then Nkind (N) in N_Op
6841 and then Is_Integer_Type (Etype (N))
6842 then
6843 if Nkind (N) in N_Binary_Op then
6844 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
6845 Remove_Address_Interpretations (Second_Op);
6847 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
6848 Remove_Address_Interpretations (First_Op);
6849 end if;
6850 end if;
6851 end if;
6853 elsif Nkind (N) in N_Op then
6855 -- Remove interpretations that treat literals as addresses. This
6856 -- is never appropriate, even when Address is defined as a visible
6857 -- Integer type. The reason is that we would really prefer Address
6858 -- to behave as a private type, even in this case. If Address is a
6859 -- visible integer type, we get lots of overload ambiguities.
6861 if Nkind (N) in N_Binary_Op then
6862 declare
6863 U1 : constant Boolean :=
6864 Present (Universal_Interpretation (Right_Opnd (N)));
6865 U2 : constant Boolean :=
6866 Present (Universal_Interpretation (Left_Opnd (N)));
6868 begin
6869 if U1 then
6870 Remove_Address_Interpretations (Second_Op);
6871 end if;
6873 if U2 then
6874 Remove_Address_Interpretations (First_Op);
6875 end if;
6877 if not (U1 and U2) then
6879 -- Remove corresponding predefined operator, which is
6880 -- always added to the overload set.
6882 Get_First_Interp (N, I, It);
6883 while Present (It.Nam) loop
6884 if Scope (It.Nam) = Standard_Standard
6885 and then Base_Type (It.Typ) =
6886 Base_Type (Etype (Abstract_Op))
6887 then
6888 Remove_Interp (I);
6889 end if;
6891 Get_Next_Interp (I, It);
6892 end loop;
6894 elsif Is_Overloaded (N)
6895 and then Present (Univ_Type)
6896 then
6897 -- If both operands have a universal interpretation,
6898 -- it is still necessary to remove interpretations that
6899 -- yield Address. Any remaining ambiguities will be
6900 -- removed in Disambiguate.
6902 Get_First_Interp (N, I, It);
6903 while Present (It.Nam) loop
6904 if Is_Descendent_Of_Address (It.Typ) then
6905 Remove_Interp (I);
6907 elsif not Is_Type (It.Nam) then
6908 Set_Entity (N, It.Nam);
6909 end if;
6911 Get_Next_Interp (I, It);
6912 end loop;
6913 end if;
6914 end;
6915 end if;
6917 elsif Nkind (N) = N_Function_Call
6918 and then
6919 (Nkind (Name (N)) = N_Operator_Symbol
6920 or else
6921 (Nkind (Name (N)) = N_Expanded_Name
6922 and then
6923 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
6924 then
6926 declare
6927 Arg1 : constant Node_Id := First (Parameter_Associations (N));
6928 U1 : constant Boolean :=
6929 Present (Universal_Interpretation (Arg1));
6930 U2 : constant Boolean :=
6931 Present (Next (Arg1)) and then
6932 Present (Universal_Interpretation (Next (Arg1)));
6934 begin
6935 if U1 then
6936 Remove_Address_Interpretations (First_Op);
6937 end if;
6939 if U2 then
6940 Remove_Address_Interpretations (Second_Op);
6941 end if;
6943 if not (U1 and U2) then
6944 Get_First_Interp (N, I, It);
6945 while Present (It.Nam) loop
6946 if Scope (It.Nam) = Standard_Standard
6947 and then It.Typ = Base_Type (Etype (Abstract_Op))
6948 then
6949 Remove_Interp (I);
6950 end if;
6952 Get_Next_Interp (I, It);
6953 end loop;
6954 end if;
6955 end;
6956 end if;
6958 -- If the removal has left no valid interpretations, emit an error
6959 -- message now and label node as illegal.
6961 if Present (Abstract_Op) then
6962 Get_First_Interp (N, I, It);
6964 if No (It.Nam) then
6966 -- Removal of abstract operation left no viable candidate
6968 Set_Etype (N, Any_Type);
6969 Error_Msg_Sloc := Sloc (Abstract_Op);
6970 Error_Msg_NE
6971 ("cannot call abstract operation& declared#", N, Abstract_Op);
6973 -- In Ada 2005, an abstract operation may disable predefined
6974 -- operators. Since the context is not yet known, we mark the
6975 -- predefined operators as potentially hidden. Do not include
6976 -- predefined operators when addresses are involved since this
6977 -- case is handled separately.
6979 elsif Ada_Version >= Ada_2005 and then not Address_Descendent then
6980 while Present (It.Nam) loop
6981 if Is_Numeric_Type (It.Typ)
6982 and then Scope (It.Typ) = Standard_Standard
6983 then
6984 Set_Abstract_Op (I, Abstract_Op);
6985 end if;
6987 Get_Next_Interp (I, It);
6988 end loop;
6989 end if;
6990 end if;
6992 if Debug_Flag_V then
6993 Write_Str ("Remove_Abstract_Operations done: ");
6994 Write_Overloads (N);
6995 end if;
6996 end if;
6997 end Remove_Abstract_Operations;
6999 ----------------------------
7000 -- Try_Container_Indexing --
7001 ----------------------------
7003 function Try_Container_Indexing
7004 (N : Node_Id;
7005 Prefix : Node_Id;
7006 Exprs : List_Id) return Boolean
7008 Loc : constant Source_Ptr := Sloc (N);
7009 C_Type : Entity_Id;
7010 Assoc : List_Id;
7011 Disc : Entity_Id;
7012 Func : Entity_Id;
7013 Func_Name : Node_Id;
7014 Indexing : Node_Id;
7016 begin
7017 C_Type := Etype (Prefix);
7019 -- If indexing a class-wide container, obtain indexing primitive
7020 -- from specific type.
7022 if Is_Class_Wide_Type (C_Type) then
7023 C_Type := Etype (Base_Type (C_Type));
7024 end if;
7026 -- Check whether type has a specified indexing aspect
7028 Func_Name := Empty;
7030 if Is_Variable (Prefix) then
7031 Func_Name :=
7032 Find_Value_Of_Aspect (Etype (Prefix), Aspect_Variable_Indexing);
7033 end if;
7035 if No (Func_Name) then
7036 Func_Name :=
7037 Find_Value_Of_Aspect (Etype (Prefix), Aspect_Constant_Indexing);
7038 end if;
7040 -- If aspect does not exist the expression is illegal. Error is
7041 -- diagnosed in caller.
7043 if No (Func_Name) then
7045 -- The prefix itself may be an indexing of a container: rewrite
7046 -- as such and re-analyze.
7048 if Has_Implicit_Dereference (Etype (Prefix)) then
7049 Build_Explicit_Dereference
7050 (Prefix, First_Discriminant (Etype (Prefix)));
7051 return Try_Container_Indexing (N, Prefix, Exprs);
7053 else
7054 return False;
7055 end if;
7057 -- If the container type is derived from another container type, the
7058 -- value of the inherited aspect is the Reference operation declared
7059 -- for the parent type.
7061 -- However, Reference is also a primitive operation of the type, and
7062 -- the inherited operation has a different signature. We retrieve the
7063 -- right one from the list of primitive operations of the derived type.
7065 -- Note that predefined containers are typically all derived from one
7066 -- of the Controlled types. The code below is motivated by containers
7067 -- that are derived from other types with a Reference aspect.
7069 -- Additional machinery may be needed for types that have several user-
7070 -- defined Reference operations with different signatures ???
7072 elsif Is_Derived_Type (C_Type)
7073 and then Etype (First_Formal (Entity (Func_Name))) /= Etype (Prefix)
7074 then
7075 Func := Find_Prim_Op (C_Type, Chars (Func_Name));
7076 Func_Name := New_Occurrence_Of (Func, Loc);
7077 end if;
7079 Assoc := New_List (Relocate_Node (Prefix));
7081 -- A generalized indexing may have nore than one index expression, so
7082 -- transfer all of them to the argument list to be used in the call.
7083 -- Note that there may be named associations, in which case the node
7084 -- was rewritten earlier as a call, and has been transformed back into
7085 -- an indexed expression to share the following processing.
7087 -- The generalized indexing node is the one on which analysis and
7088 -- resolution take place. Before expansion the original node is replaced
7089 -- with the generalized indexing node, which is a call, possibly with
7090 -- a dereference operation.
7092 if Comes_From_Source (N) then
7093 Check_Compiler_Unit ("generalized indexing", N);
7094 end if;
7096 declare
7097 Arg : Node_Id;
7098 begin
7099 Arg := First (Exprs);
7100 while Present (Arg) loop
7101 Append (Relocate_Node (Arg), Assoc);
7102 Next (Arg);
7103 end loop;
7104 end;
7106 if not Is_Overloaded (Func_Name) then
7107 Func := Entity (Func_Name);
7108 Indexing :=
7109 Make_Function_Call (Loc,
7110 Name => New_Occurrence_Of (Func, Loc),
7111 Parameter_Associations => Assoc);
7112 Set_Parent (Indexing, Parent (N));
7113 Set_Generalized_Indexing (N, Indexing);
7114 Analyze (Indexing);
7115 Set_Etype (N, Etype (Indexing));
7117 -- If the return type of the indexing function is a reference type,
7118 -- add the dereference as a possible interpretation. Note that the
7119 -- indexing aspect may be a function that returns the element type
7120 -- with no intervening implicit dereference, and that the reference
7121 -- discriminant is not the first discriminant.
7123 if Has_Discriminants (Etype (Func)) then
7124 Disc := First_Discriminant (Etype (Func));
7125 while Present (Disc) loop
7126 declare
7127 Elmt_Type : Entity_Id;
7128 begin
7129 if Has_Implicit_Dereference (Disc) then
7130 Elmt_Type := Designated_Type (Etype (Disc));
7131 Add_One_Interp (Indexing, Disc, Elmt_Type);
7132 Add_One_Interp (N, Disc, Elmt_Type);
7133 exit;
7134 end if;
7135 end;
7137 Next_Discriminant (Disc);
7138 end loop;
7139 end if;
7141 else
7142 Indexing :=
7143 Make_Function_Call (Loc,
7144 Name => Make_Identifier (Loc, Chars (Func_Name)),
7145 Parameter_Associations => Assoc);
7147 Set_Parent (Indexing, Parent (N));
7148 Set_Generalized_Indexing (N, Indexing);
7150 declare
7151 I : Interp_Index;
7152 It : Interp;
7153 Success : Boolean;
7155 begin
7156 Get_First_Interp (Func_Name, I, It);
7157 Set_Etype (Indexing, Any_Type);
7158 while Present (It.Nam) loop
7159 Analyze_One_Call (Indexing, It.Nam, False, Success);
7161 if Success then
7162 Set_Etype (Name (Indexing), It.Typ);
7163 Set_Entity (Name (Indexing), It.Nam);
7164 Set_Etype (N, Etype (Indexing));
7166 -- Add implicit dereference interpretation
7168 if Has_Discriminants (Etype (It.Nam)) then
7169 Disc := First_Discriminant (Etype (It.Nam));
7170 while Present (Disc) loop
7171 if Has_Implicit_Dereference (Disc) then
7172 Add_One_Interp
7173 (Indexing, Disc, Designated_Type (Etype (Disc)));
7174 Add_One_Interp
7175 (N, Disc, Designated_Type (Etype (Disc)));
7176 exit;
7177 end if;
7179 Next_Discriminant (Disc);
7180 end loop;
7181 end if;
7183 exit;
7184 end if;
7186 Get_Next_Interp (I, It);
7187 end loop;
7188 end;
7189 end if;
7191 if Etype (Indexing) = Any_Type then
7192 Error_Msg_NE
7193 ("container cannot be indexed with&", N, Etype (First (Exprs)));
7194 Rewrite (N, New_Occurrence_Of (Any_Id, Loc));
7195 end if;
7197 return True;
7198 end Try_Container_Indexing;
7200 -----------------------
7201 -- Try_Indirect_Call --
7202 -----------------------
7204 function Try_Indirect_Call
7205 (N : Node_Id;
7206 Nam : Entity_Id;
7207 Typ : Entity_Id) return Boolean
7209 Actual : Node_Id;
7210 Formal : Entity_Id;
7212 Call_OK : Boolean;
7213 pragma Warnings (Off, Call_OK);
7215 begin
7216 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
7218 Actual := First_Actual (N);
7219 Formal := First_Formal (Designated_Type (Typ));
7220 while Present (Actual) and then Present (Formal) loop
7221 if not Has_Compatible_Type (Actual, Etype (Formal)) then
7222 return False;
7223 end if;
7225 Next (Actual);
7226 Next_Formal (Formal);
7227 end loop;
7229 if No (Actual) and then No (Formal) then
7230 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
7232 -- Nam is a candidate interpretation for the name in the call,
7233 -- if it is not an indirect call.
7235 if not Is_Type (Nam)
7236 and then Is_Entity_Name (Name (N))
7237 then
7238 Set_Entity (Name (N), Nam);
7239 end if;
7241 return True;
7243 else
7244 return False;
7245 end if;
7246 end Try_Indirect_Call;
7248 ----------------------
7249 -- Try_Indexed_Call --
7250 ----------------------
7252 function Try_Indexed_Call
7253 (N : Node_Id;
7254 Nam : Entity_Id;
7255 Typ : Entity_Id;
7256 Skip_First : Boolean) return Boolean
7258 Loc : constant Source_Ptr := Sloc (N);
7259 Actuals : constant List_Id := Parameter_Associations (N);
7260 Actual : Node_Id;
7261 Index : Entity_Id;
7263 begin
7264 Actual := First (Actuals);
7266 -- If the call was originally written in prefix form, skip the first
7267 -- actual, which is obviously not defaulted.
7269 if Skip_First then
7270 Next (Actual);
7271 end if;
7273 Index := First_Index (Typ);
7274 while Present (Actual) and then Present (Index) loop
7276 -- If the parameter list has a named association, the expression
7277 -- is definitely a call and not an indexed component.
7279 if Nkind (Actual) = N_Parameter_Association then
7280 return False;
7281 end if;
7283 if Is_Entity_Name (Actual)
7284 and then Is_Type (Entity (Actual))
7285 and then No (Next (Actual))
7286 then
7287 -- A single actual that is a type name indicates a slice if the
7288 -- type is discrete, and an error otherwise.
7290 if Is_Discrete_Type (Entity (Actual)) then
7291 Rewrite (N,
7292 Make_Slice (Loc,
7293 Prefix =>
7294 Make_Function_Call (Loc,
7295 Name => Relocate_Node (Name (N))),
7296 Discrete_Range =>
7297 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
7299 Analyze (N);
7301 else
7302 Error_Msg_N ("invalid use of type in expression", Actual);
7303 Set_Etype (N, Any_Type);
7304 end if;
7306 return True;
7308 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
7309 return False;
7310 end if;
7312 Next (Actual);
7313 Next_Index (Index);
7314 end loop;
7316 if No (Actual) and then No (Index) then
7317 Add_One_Interp (N, Nam, Component_Type (Typ));
7319 -- Nam is a candidate interpretation for the name in the call,
7320 -- if it is not an indirect call.
7322 if not Is_Type (Nam)
7323 and then Is_Entity_Name (Name (N))
7324 then
7325 Set_Entity (Name (N), Nam);
7326 end if;
7328 return True;
7329 else
7330 return False;
7331 end if;
7332 end Try_Indexed_Call;
7334 --------------------------
7335 -- Try_Object_Operation --
7336 --------------------------
7338 function Try_Object_Operation
7339 (N : Node_Id; CW_Test_Only : Boolean := False) return Boolean
7341 K : constant Node_Kind := Nkind (Parent (N));
7342 Is_Subprg_Call : constant Boolean := K in N_Subprogram_Call;
7343 Loc : constant Source_Ptr := Sloc (N);
7344 Obj : constant Node_Id := Prefix (N);
7346 Subprog : constant Node_Id :=
7347 Make_Identifier (Sloc (Selector_Name (N)),
7348 Chars => Chars (Selector_Name (N)));
7349 -- Identifier on which possible interpretations will be collected
7351 Report_Error : Boolean := False;
7352 -- If no candidate interpretation matches the context, redo analysis
7353 -- with Report_Error True to provide additional information.
7355 Actual : Node_Id;
7356 Candidate : Entity_Id := Empty;
7357 New_Call_Node : Node_Id := Empty;
7358 Node_To_Replace : Node_Id;
7359 Obj_Type : Entity_Id := Etype (Obj);
7360 Success : Boolean := False;
7362 function Valid_Candidate
7363 (Success : Boolean;
7364 Call : Node_Id;
7365 Subp : Entity_Id) return Entity_Id;
7366 -- If the subprogram is a valid interpretation, record it, and add
7367 -- to the list of interpretations of Subprog. Otherwise return Empty.
7369 procedure Complete_Object_Operation
7370 (Call_Node : Node_Id;
7371 Node_To_Replace : Node_Id);
7372 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
7373 -- Call_Node, insert the object (or its dereference) as the first actual
7374 -- in the call, and complete the analysis of the call.
7376 procedure Report_Ambiguity (Op : Entity_Id);
7377 -- If a prefixed procedure call is ambiguous, indicate whether the
7378 -- call includes an implicit dereference or an implicit 'Access.
7380 procedure Transform_Object_Operation
7381 (Call_Node : out Node_Id;
7382 Node_To_Replace : out Node_Id);
7383 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
7384 -- Call_Node is the resulting subprogram call, Node_To_Replace is
7385 -- either N or the parent of N, and Subprog is a reference to the
7386 -- subprogram we are trying to match.
7388 function Try_Class_Wide_Operation
7389 (Call_Node : Node_Id;
7390 Node_To_Replace : Node_Id) return Boolean;
7391 -- Traverse all ancestor types looking for a class-wide subprogram
7392 -- for which the current operation is a valid non-dispatching call.
7394 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
7395 -- If prefix is overloaded, its interpretation may include different
7396 -- tagged types, and we must examine the primitive operations and
7397 -- the class-wide operations of each in order to find candidate
7398 -- interpretations for the call as a whole.
7400 function Try_Primitive_Operation
7401 (Call_Node : Node_Id;
7402 Node_To_Replace : Node_Id) return Boolean;
7403 -- Traverse the list of primitive subprograms looking for a dispatching
7404 -- operation for which the current node is a valid call .
7406 ---------------------
7407 -- Valid_Candidate --
7408 ---------------------
7410 function Valid_Candidate
7411 (Success : Boolean;
7412 Call : Node_Id;
7413 Subp : Entity_Id) return Entity_Id
7415 Arr_Type : Entity_Id;
7416 Comp_Type : Entity_Id;
7418 begin
7419 -- If the subprogram is a valid interpretation, record it in global
7420 -- variable Subprog, to collect all possible overloadings.
7422 if Success then
7423 if Subp /= Entity (Subprog) then
7424 Add_One_Interp (Subprog, Subp, Etype (Subp));
7425 end if;
7426 end if;
7428 -- If the call may be an indexed call, retrieve component type of
7429 -- resulting expression, and add possible interpretation.
7431 Arr_Type := Empty;
7432 Comp_Type := Empty;
7434 if Nkind (Call) = N_Function_Call
7435 and then Nkind (Parent (N)) = N_Indexed_Component
7436 and then Needs_One_Actual (Subp)
7437 then
7438 if Is_Array_Type (Etype (Subp)) then
7439 Arr_Type := Etype (Subp);
7441 elsif Is_Access_Type (Etype (Subp))
7442 and then Is_Array_Type (Designated_Type (Etype (Subp)))
7443 then
7444 Arr_Type := Designated_Type (Etype (Subp));
7445 end if;
7446 end if;
7448 if Present (Arr_Type) then
7450 -- Verify that the actuals (excluding the object) match the types
7451 -- of the indexes.
7453 declare
7454 Actual : Node_Id;
7455 Index : Node_Id;
7457 begin
7458 Actual := Next (First_Actual (Call));
7459 Index := First_Index (Arr_Type);
7460 while Present (Actual) and then Present (Index) loop
7461 if not Has_Compatible_Type (Actual, Etype (Index)) then
7462 Arr_Type := Empty;
7463 exit;
7464 end if;
7466 Next_Actual (Actual);
7467 Next_Index (Index);
7468 end loop;
7470 if No (Actual)
7471 and then No (Index)
7472 and then Present (Arr_Type)
7473 then
7474 Comp_Type := Component_Type (Arr_Type);
7475 end if;
7476 end;
7478 if Present (Comp_Type)
7479 and then Etype (Subprog) /= Comp_Type
7480 then
7481 Add_One_Interp (Subprog, Subp, Comp_Type);
7482 end if;
7483 end if;
7485 if Etype (Call) /= Any_Type then
7486 return Subp;
7487 else
7488 return Empty;
7489 end if;
7490 end Valid_Candidate;
7492 -------------------------------
7493 -- Complete_Object_Operation --
7494 -------------------------------
7496 procedure Complete_Object_Operation
7497 (Call_Node : Node_Id;
7498 Node_To_Replace : Node_Id)
7500 Control : constant Entity_Id := First_Formal (Entity (Subprog));
7501 Formal_Type : constant Entity_Id := Etype (Control);
7502 First_Actual : Node_Id;
7504 begin
7505 -- Place the name of the operation, with its interpretations,
7506 -- on the rewritten call.
7508 Set_Name (Call_Node, Subprog);
7510 First_Actual := First (Parameter_Associations (Call_Node));
7512 -- For cross-reference purposes, treat the new node as being in the
7513 -- source if the original one is. Set entity and type, even though
7514 -- they may be overwritten during resolution if overloaded.
7516 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
7517 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
7519 if Nkind (N) = N_Selected_Component
7520 and then not Inside_A_Generic
7521 then
7522 Set_Entity (Selector_Name (N), Entity (Subprog));
7523 Set_Etype (Selector_Name (N), Etype (Entity (Subprog)));
7524 end if;
7526 -- If need be, rewrite first actual as an explicit dereference. If
7527 -- the call is overloaded, the rewriting can only be done once the
7528 -- primitive operation is identified.
7530 if Is_Overloaded (Subprog) then
7532 -- The prefix itself may be overloaded, and its interpretations
7533 -- must be propagated to the new actual in the call.
7535 if Is_Overloaded (Obj) then
7536 Save_Interps (Obj, First_Actual);
7537 end if;
7539 Rewrite (First_Actual, Obj);
7541 elsif not Is_Access_Type (Formal_Type)
7542 and then Is_Access_Type (Etype (Obj))
7543 then
7544 Rewrite (First_Actual,
7545 Make_Explicit_Dereference (Sloc (Obj), Obj));
7546 Analyze (First_Actual);
7548 -- If we need to introduce an explicit dereference, verify that
7549 -- the resulting actual is compatible with the mode of the formal.
7551 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
7552 and then Is_Access_Constant (Etype (Obj))
7553 then
7554 Error_Msg_NE
7555 ("expect variable in call to&", Prefix (N), Entity (Subprog));
7556 end if;
7558 -- Conversely, if the formal is an access parameter and the object
7559 -- is not, replace the actual with a 'Access reference. Its analysis
7560 -- will check that the object is aliased.
7562 elsif Is_Access_Type (Formal_Type)
7563 and then not Is_Access_Type (Etype (Obj))
7564 then
7565 -- A special case: A.all'access is illegal if A is an access to a
7566 -- constant and the context requires an access to a variable.
7568 if not Is_Access_Constant (Formal_Type) then
7569 if (Nkind (Obj) = N_Explicit_Dereference
7570 and then Is_Access_Constant (Etype (Prefix (Obj))))
7571 or else not Is_Variable (Obj)
7572 then
7573 Error_Msg_NE
7574 ("actual for& must be a variable", Obj, Control);
7575 end if;
7576 end if;
7578 Rewrite (First_Actual,
7579 Make_Attribute_Reference (Loc,
7580 Attribute_Name => Name_Access,
7581 Prefix => Relocate_Node (Obj)));
7583 if not Is_Aliased_View (Obj) then
7584 Error_Msg_NE
7585 ("object in prefixed call to& must be aliased"
7586 & " (RM-2005 4.3.1 (13))",
7587 Prefix (First_Actual), Subprog);
7588 end if;
7590 Analyze (First_Actual);
7592 else
7593 if Is_Overloaded (Obj) then
7594 Save_Interps (Obj, First_Actual);
7595 end if;
7597 Rewrite (First_Actual, Obj);
7598 end if;
7600 Rewrite (Node_To_Replace, Call_Node);
7602 -- Propagate the interpretations collected in subprog to the new
7603 -- function call node, to be resolved from context.
7605 if Is_Overloaded (Subprog) then
7606 Save_Interps (Subprog, Node_To_Replace);
7608 else
7609 -- The type of the subprogram may be a limited view obtained
7610 -- transitively from another unit. If full view is available,
7611 -- use it to analyze call.
7613 declare
7614 T : constant Entity_Id := Etype (Subprog);
7615 begin
7616 if From_Limited_With (T) then
7617 Set_Etype (Entity (Subprog), Available_View (T));
7618 end if;
7619 end;
7621 Analyze (Node_To_Replace);
7623 -- If the operation has been rewritten into a call, which may get
7624 -- subsequently an explicit dereference, preserve the type on the
7625 -- original node (selected component or indexed component) for
7626 -- subsequent legality tests, e.g. Is_Variable. which examines
7627 -- the original node.
7629 if Nkind (Node_To_Replace) = N_Function_Call then
7630 Set_Etype
7631 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
7632 end if;
7633 end if;
7634 end Complete_Object_Operation;
7636 ----------------------
7637 -- Report_Ambiguity --
7638 ----------------------
7640 procedure Report_Ambiguity (Op : Entity_Id) is
7641 Access_Actual : constant Boolean :=
7642 Is_Access_Type (Etype (Prefix (N)));
7643 Access_Formal : Boolean := False;
7645 begin
7646 Error_Msg_Sloc := Sloc (Op);
7648 if Present (First_Formal (Op)) then
7649 Access_Formal := Is_Access_Type (Etype (First_Formal (Op)));
7650 end if;
7652 if Access_Formal and then not Access_Actual then
7653 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
7654 Error_Msg_N
7655 ("\possible interpretation "
7656 & "(inherited, with implicit 'Access) #", N);
7657 else
7658 Error_Msg_N
7659 ("\possible interpretation (with implicit 'Access) #", N);
7660 end if;
7662 elsif not Access_Formal and then Access_Actual then
7663 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
7664 Error_Msg_N
7665 ("\possible interpretation "
7666 & "(inherited, with implicit dereference) #", N);
7667 else
7668 Error_Msg_N
7669 ("\possible interpretation (with implicit dereference) #", N);
7670 end if;
7672 else
7673 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
7674 Error_Msg_N ("\possible interpretation (inherited)#", N);
7675 else
7676 Error_Msg_N -- CODEFIX
7677 ("\possible interpretation#", N);
7678 end if;
7679 end if;
7680 end Report_Ambiguity;
7682 --------------------------------
7683 -- Transform_Object_Operation --
7684 --------------------------------
7686 procedure Transform_Object_Operation
7687 (Call_Node : out Node_Id;
7688 Node_To_Replace : out Node_Id)
7690 Dummy : constant Node_Id := New_Copy (Obj);
7691 -- Placeholder used as a first parameter in the call, replaced
7692 -- eventually by the proper object.
7694 Parent_Node : constant Node_Id := Parent (N);
7696 Actual : Node_Id;
7697 Actuals : List_Id;
7699 begin
7700 -- Common case covering 1) Call to a procedure and 2) Call to a
7701 -- function that has some additional actuals.
7703 if Nkind (Parent_Node) in N_Subprogram_Call
7705 -- N is a selected component node containing the name of the
7706 -- subprogram. If N is not the name of the parent node we must
7707 -- not replace the parent node by the new construct. This case
7708 -- occurs when N is a parameterless call to a subprogram that
7709 -- is an actual parameter of a call to another subprogram. For
7710 -- example:
7711 -- Some_Subprogram (..., Obj.Operation, ...)
7713 and then Name (Parent_Node) = N
7714 then
7715 Node_To_Replace := Parent_Node;
7717 Actuals := Parameter_Associations (Parent_Node);
7719 if Present (Actuals) then
7720 Prepend (Dummy, Actuals);
7721 else
7722 Actuals := New_List (Dummy);
7723 end if;
7725 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
7726 Call_Node :=
7727 Make_Procedure_Call_Statement (Loc,
7728 Name => New_Copy (Subprog),
7729 Parameter_Associations => Actuals);
7731 else
7732 Call_Node :=
7733 Make_Function_Call (Loc,
7734 Name => New_Copy (Subprog),
7735 Parameter_Associations => Actuals);
7736 end if;
7738 -- Before analysis, a function call appears as an indexed component
7739 -- if there are no named associations.
7741 elsif Nkind (Parent_Node) = N_Indexed_Component
7742 and then N = Prefix (Parent_Node)
7743 then
7744 Node_To_Replace := Parent_Node;
7745 Actuals := Expressions (Parent_Node);
7747 Actual := First (Actuals);
7748 while Present (Actual) loop
7749 Analyze (Actual);
7750 Next (Actual);
7751 end loop;
7753 Prepend (Dummy, Actuals);
7755 Call_Node :=
7756 Make_Function_Call (Loc,
7757 Name => New_Copy (Subprog),
7758 Parameter_Associations => Actuals);
7760 -- Parameterless call: Obj.F is rewritten as F (Obj)
7762 else
7763 Node_To_Replace := N;
7765 Call_Node :=
7766 Make_Function_Call (Loc,
7767 Name => New_Copy (Subprog),
7768 Parameter_Associations => New_List (Dummy));
7769 end if;
7770 end Transform_Object_Operation;
7772 ------------------------------
7773 -- Try_Class_Wide_Operation --
7774 ------------------------------
7776 function Try_Class_Wide_Operation
7777 (Call_Node : Node_Id;
7778 Node_To_Replace : Node_Id) return Boolean
7780 Anc_Type : Entity_Id;
7781 Matching_Op : Entity_Id := Empty;
7782 Error : Boolean;
7784 procedure Traverse_Homonyms
7785 (Anc_Type : Entity_Id;
7786 Error : out Boolean);
7787 -- Traverse the homonym chain of the subprogram searching for those
7788 -- homonyms whose first formal has the Anc_Type's class-wide type,
7789 -- or an anonymous access type designating the class-wide type. If
7790 -- an ambiguity is detected, then Error is set to True.
7792 procedure Traverse_Interfaces
7793 (Anc_Type : Entity_Id;
7794 Error : out Boolean);
7795 -- Traverse the list of interfaces, if any, associated with Anc_Type
7796 -- and search for acceptable class-wide homonyms associated with each
7797 -- interface. If an ambiguity is detected, then Error is set to True.
7799 -----------------------
7800 -- Traverse_Homonyms --
7801 -----------------------
7803 procedure Traverse_Homonyms
7804 (Anc_Type : Entity_Id;
7805 Error : out Boolean)
7807 Cls_Type : Entity_Id;
7808 Hom : Entity_Id;
7809 Hom_Ref : Node_Id;
7810 Success : Boolean;
7812 begin
7813 Error := False;
7815 Cls_Type := Class_Wide_Type (Anc_Type);
7817 Hom := Current_Entity (Subprog);
7819 -- Find a non-hidden operation whose first parameter is of the
7820 -- class-wide type, a subtype thereof, or an anonymous access
7821 -- to same. If in an instance, the operation can be considered
7822 -- even if hidden (it may be hidden because the instantiation
7823 -- is expanded after the containing package has been analyzed).
7825 while Present (Hom) loop
7826 if Ekind_In (Hom, E_Procedure, E_Function)
7827 and then (not Is_Hidden (Hom) or else In_Instance)
7828 and then Scope (Hom) = Scope (Anc_Type)
7829 and then Present (First_Formal (Hom))
7830 and then
7831 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
7832 or else
7833 (Is_Access_Type (Etype (First_Formal (Hom)))
7834 and then
7835 Ekind (Etype (First_Formal (Hom))) =
7836 E_Anonymous_Access_Type
7837 and then
7838 Base_Type
7839 (Designated_Type (Etype (First_Formal (Hom)))) =
7840 Cls_Type))
7841 then
7842 -- If the context is a procedure call, ignore functions
7843 -- in the name of the call.
7845 if Ekind (Hom) = E_Function
7846 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
7847 and then N = Name (Parent (N))
7848 then
7849 goto Next_Hom;
7851 -- If the context is a function call, ignore procedures
7852 -- in the name of the call.
7854 elsif Ekind (Hom) = E_Procedure
7855 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
7856 then
7857 goto Next_Hom;
7858 end if;
7860 Set_Etype (Call_Node, Any_Type);
7861 Set_Is_Overloaded (Call_Node, False);
7862 Success := False;
7864 if No (Matching_Op) then
7865 Hom_Ref := New_Occurrence_Of (Hom, Sloc (Subprog));
7866 Set_Etype (Call_Node, Any_Type);
7867 Set_Parent (Call_Node, Parent (Node_To_Replace));
7869 Set_Name (Call_Node, Hom_Ref);
7871 Analyze_One_Call
7872 (N => Call_Node,
7873 Nam => Hom,
7874 Report => Report_Error,
7875 Success => Success,
7876 Skip_First => True);
7878 Matching_Op :=
7879 Valid_Candidate (Success, Call_Node, Hom);
7881 else
7882 Analyze_One_Call
7883 (N => Call_Node,
7884 Nam => Hom,
7885 Report => Report_Error,
7886 Success => Success,
7887 Skip_First => True);
7889 if Present (Valid_Candidate (Success, Call_Node, Hom))
7890 and then Nkind (Call_Node) /= N_Function_Call
7891 then
7892 Error_Msg_NE ("ambiguous call to&", N, Hom);
7893 Report_Ambiguity (Matching_Op);
7894 Report_Ambiguity (Hom);
7895 Error := True;
7896 return;
7897 end if;
7898 end if;
7899 end if;
7901 <<Next_Hom>>
7902 Hom := Homonym (Hom);
7903 end loop;
7904 end Traverse_Homonyms;
7906 -------------------------
7907 -- Traverse_Interfaces --
7908 -------------------------
7910 procedure Traverse_Interfaces
7911 (Anc_Type : Entity_Id;
7912 Error : out Boolean)
7914 Intface_List : constant List_Id :=
7915 Abstract_Interface_List (Anc_Type);
7916 Intface : Node_Id;
7918 begin
7919 Error := False;
7921 if Is_Non_Empty_List (Intface_List) then
7922 Intface := First (Intface_List);
7923 while Present (Intface) loop
7925 -- Look for acceptable class-wide homonyms associated with
7926 -- the interface.
7928 Traverse_Homonyms (Etype (Intface), Error);
7930 if Error then
7931 return;
7932 end if;
7934 -- Continue the search by looking at each of the interface's
7935 -- associated interface ancestors.
7937 Traverse_Interfaces (Etype (Intface), Error);
7939 if Error then
7940 return;
7941 end if;
7943 Next (Intface);
7944 end loop;
7945 end if;
7946 end Traverse_Interfaces;
7948 -- Start of processing for Try_Class_Wide_Operation
7950 begin
7951 -- If we are searching only for conflicting class-wide subprograms
7952 -- then initialize directly Matching_Op with the target entity.
7954 if CW_Test_Only then
7955 Matching_Op := Entity (Selector_Name (N));
7956 end if;
7958 -- Loop through ancestor types (including interfaces), traversing
7959 -- the homonym chain of the subprogram, trying out those homonyms
7960 -- whose first formal has the class-wide type of the ancestor, or
7961 -- an anonymous access type designating the class-wide type.
7963 Anc_Type := Obj_Type;
7964 loop
7965 -- Look for a match among homonyms associated with the ancestor
7967 Traverse_Homonyms (Anc_Type, Error);
7969 if Error then
7970 return True;
7971 end if;
7973 -- Continue the search for matches among homonyms associated with
7974 -- any interfaces implemented by the ancestor.
7976 Traverse_Interfaces (Anc_Type, Error);
7978 if Error then
7979 return True;
7980 end if;
7982 exit when Etype (Anc_Type) = Anc_Type;
7983 Anc_Type := Etype (Anc_Type);
7984 end loop;
7986 if Present (Matching_Op) then
7987 Set_Etype (Call_Node, Etype (Matching_Op));
7988 end if;
7990 return Present (Matching_Op);
7991 end Try_Class_Wide_Operation;
7993 -----------------------------------
7994 -- Try_One_Prefix_Interpretation --
7995 -----------------------------------
7997 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
7998 begin
7999 Obj_Type := T;
8001 if Is_Access_Type (Obj_Type) then
8002 Obj_Type := Designated_Type (Obj_Type);
8003 end if;
8005 if Ekind (Obj_Type) = E_Private_Subtype then
8006 Obj_Type := Base_Type (Obj_Type);
8007 end if;
8009 if Is_Class_Wide_Type (Obj_Type) then
8010 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
8011 end if;
8013 -- The type may have be obtained through a limited_with clause,
8014 -- in which case the primitive operations are available on its
8015 -- non-limited view. If still incomplete, retrieve full view.
8017 if Ekind (Obj_Type) = E_Incomplete_Type
8018 and then From_Limited_With (Obj_Type)
8019 then
8020 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
8021 end if;
8023 -- If the object is not tagged, or the type is still an incomplete
8024 -- type, this is not a prefixed call.
8026 if not Is_Tagged_Type (Obj_Type)
8027 or else Is_Incomplete_Type (Obj_Type)
8028 then
8029 return;
8030 end if;
8032 declare
8033 Dup_Call_Node : constant Node_Id := New_Copy (New_Call_Node);
8034 CW_Result : Boolean;
8035 Prim_Result : Boolean;
8036 pragma Unreferenced (CW_Result);
8038 begin
8039 if not CW_Test_Only then
8040 Prim_Result :=
8041 Try_Primitive_Operation
8042 (Call_Node => New_Call_Node,
8043 Node_To_Replace => Node_To_Replace);
8044 end if;
8046 -- Check if there is a class-wide subprogram covering the
8047 -- primitive. This check must be done even if a candidate
8048 -- was found in order to report ambiguous calls.
8050 if not (Prim_Result) then
8051 CW_Result :=
8052 Try_Class_Wide_Operation
8053 (Call_Node => New_Call_Node,
8054 Node_To_Replace => Node_To_Replace);
8056 -- If we found a primitive we search for class-wide subprograms
8057 -- using a duplicate of the call node (done to avoid missing its
8058 -- decoration if there is no ambiguity).
8060 else
8061 CW_Result :=
8062 Try_Class_Wide_Operation
8063 (Call_Node => Dup_Call_Node,
8064 Node_To_Replace => Node_To_Replace);
8065 end if;
8066 end;
8067 end Try_One_Prefix_Interpretation;
8069 -----------------------------
8070 -- Try_Primitive_Operation --
8071 -----------------------------
8073 function Try_Primitive_Operation
8074 (Call_Node : Node_Id;
8075 Node_To_Replace : Node_Id) return Boolean
8077 Elmt : Elmt_Id;
8078 Prim_Op : Entity_Id;
8079 Matching_Op : Entity_Id := Empty;
8080 Prim_Op_Ref : Node_Id := Empty;
8082 Corr_Type : Entity_Id := Empty;
8083 -- If the prefix is a synchronized type, the controlling type of
8084 -- the primitive operation is the corresponding record type, else
8085 -- this is the object type itself.
8087 Success : Boolean := False;
8089 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
8090 -- For tagged types the candidate interpretations are found in
8091 -- the list of primitive operations of the type and its ancestors.
8092 -- For formal tagged types we have to find the operations declared
8093 -- in the same scope as the type (including in the generic formal
8094 -- part) because the type itself carries no primitive operations,
8095 -- except for formal derived types that inherit the operations of
8096 -- the parent and progenitors.
8098 -- If the context is a generic subprogram body, the generic formals
8099 -- are visible by name, but are not in the entity list of the
8100 -- subprogram because that list starts with the subprogram formals.
8101 -- We retrieve the candidate operations from the generic declaration.
8103 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
8104 -- An operation that overrides an inherited operation in the private
8105 -- part of its package may be hidden, but if the inherited operation
8106 -- is visible a direct call to it will dispatch to the private one,
8107 -- which is therefore a valid candidate.
8109 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
8110 -- Verify that the prefix, dereferenced if need be, is a valid
8111 -- controlling argument in a call to Op. The remaining actuals
8112 -- are checked in the subsequent call to Analyze_One_Call.
8114 ------------------------------
8115 -- Collect_Generic_Type_Ops --
8116 ------------------------------
8118 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
8119 Bas : constant Entity_Id := Base_Type (T);
8120 Candidates : constant Elist_Id := New_Elmt_List;
8121 Subp : Entity_Id;
8122 Formal : Entity_Id;
8124 procedure Check_Candidate;
8125 -- The operation is a candidate if its first parameter is a
8126 -- controlling operand of the desired type.
8128 -----------------------
8129 -- Check_Candidate; --
8130 -----------------------
8132 procedure Check_Candidate is
8133 begin
8134 Formal := First_Formal (Subp);
8136 if Present (Formal)
8137 and then Is_Controlling_Formal (Formal)
8138 and then
8139 (Base_Type (Etype (Formal)) = Bas
8140 or else
8141 (Is_Access_Type (Etype (Formal))
8142 and then Designated_Type (Etype (Formal)) = Bas))
8143 then
8144 Append_Elmt (Subp, Candidates);
8145 end if;
8146 end Check_Candidate;
8148 -- Start of processing for Collect_Generic_Type_Ops
8150 begin
8151 if Is_Derived_Type (T) then
8152 return Primitive_Operations (T);
8154 elsif Ekind_In (Scope (T), E_Procedure, E_Function) then
8156 -- Scan the list of generic formals to find subprograms
8157 -- that may have a first controlling formal of the type.
8159 if Nkind (Unit_Declaration_Node (Scope (T))) =
8160 N_Generic_Subprogram_Declaration
8161 then
8162 declare
8163 Decl : Node_Id;
8165 begin
8166 Decl :=
8167 First (Generic_Formal_Declarations
8168 (Unit_Declaration_Node (Scope (T))));
8169 while Present (Decl) loop
8170 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
8171 Subp := Defining_Entity (Decl);
8172 Check_Candidate;
8173 end if;
8175 Next (Decl);
8176 end loop;
8177 end;
8178 end if;
8179 return Candidates;
8181 else
8182 -- Scan the list of entities declared in the same scope as
8183 -- the type. In general this will be an open scope, given that
8184 -- the call we are analyzing can only appear within a generic
8185 -- declaration or body (either the one that declares T, or a
8186 -- child unit).
8188 -- For a subtype representing a generic actual type, go to the
8189 -- base type.
8191 if Is_Generic_Actual_Type (T) then
8192 Subp := First_Entity (Scope (Base_Type (T)));
8193 else
8194 Subp := First_Entity (Scope (T));
8195 end if;
8197 while Present (Subp) loop
8198 if Is_Overloadable (Subp) then
8199 Check_Candidate;
8200 end if;
8202 Next_Entity (Subp);
8203 end loop;
8205 return Candidates;
8206 end if;
8207 end Collect_Generic_Type_Ops;
8209 ---------------------------
8210 -- Is_Private_Overriding --
8211 ---------------------------
8213 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
8214 Visible_Op : constant Entity_Id := Homonym (Op);
8216 begin
8217 return Present (Visible_Op)
8218 and then Scope (Op) = Scope (Visible_Op)
8219 and then not Comes_From_Source (Visible_Op)
8220 and then Alias (Visible_Op) = Op
8221 and then not Is_Hidden (Visible_Op);
8222 end Is_Private_Overriding;
8224 -----------------------------
8225 -- Valid_First_Argument_Of --
8226 -----------------------------
8228 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
8229 Typ : Entity_Id := Etype (First_Formal (Op));
8231 begin
8232 if Is_Concurrent_Type (Typ)
8233 and then Present (Corresponding_Record_Type (Typ))
8234 then
8235 Typ := Corresponding_Record_Type (Typ);
8236 end if;
8238 -- Simple case. Object may be a subtype of the tagged type or
8239 -- may be the corresponding record of a synchronized type.
8241 return Obj_Type = Typ
8242 or else Base_Type (Obj_Type) = Typ
8243 or else Corr_Type = Typ
8245 -- Prefix can be dereferenced
8247 or else
8248 (Is_Access_Type (Corr_Type)
8249 and then Designated_Type (Corr_Type) = Typ)
8251 -- Formal is an access parameter, for which the object
8252 -- can provide an access.
8254 or else
8255 (Ekind (Typ) = E_Anonymous_Access_Type
8256 and then
8257 Base_Type (Designated_Type (Typ)) = Base_Type (Corr_Type));
8258 end Valid_First_Argument_Of;
8260 -- Start of processing for Try_Primitive_Operation
8262 begin
8263 -- Look for subprograms in the list of primitive operations. The name
8264 -- must be identical, and the kind of call indicates the expected
8265 -- kind of operation (function or procedure). If the type is a
8266 -- (tagged) synchronized type, the primitive ops are attached to the
8267 -- corresponding record (base) type.
8269 if Is_Concurrent_Type (Obj_Type) then
8270 if Present (Corresponding_Record_Type (Obj_Type)) then
8271 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
8272 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
8273 else
8274 Corr_Type := Obj_Type;
8275 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
8276 end if;
8278 elsif not Is_Generic_Type (Obj_Type) then
8279 Corr_Type := Obj_Type;
8280 Elmt := First_Elmt (Primitive_Operations (Obj_Type));
8282 else
8283 Corr_Type := Obj_Type;
8284 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
8285 end if;
8287 while Present (Elmt) loop
8288 Prim_Op := Node (Elmt);
8290 if Chars (Prim_Op) = Chars (Subprog)
8291 and then Present (First_Formal (Prim_Op))
8292 and then Valid_First_Argument_Of (Prim_Op)
8293 and then
8294 (Nkind (Call_Node) = N_Function_Call)
8296 (Ekind (Prim_Op) = E_Function)
8297 then
8298 -- Ada 2005 (AI-251): If this primitive operation corresponds
8299 -- to an immediate ancestor interface there is no need to add
8300 -- it to the list of interpretations; the corresponding aliased
8301 -- primitive is also in this list of primitive operations and
8302 -- will be used instead.
8304 if (Present (Interface_Alias (Prim_Op))
8305 and then Is_Ancestor (Find_Dispatching_Type
8306 (Alias (Prim_Op)), Corr_Type))
8308 -- Do not consider hidden primitives unless the type is in an
8309 -- open scope or we are within an instance, where visibility
8310 -- is known to be correct, or else if this is an overriding
8311 -- operation in the private part for an inherited operation.
8313 or else (Is_Hidden (Prim_Op)
8314 and then not Is_Immediately_Visible (Obj_Type)
8315 and then not In_Instance
8316 and then not Is_Private_Overriding (Prim_Op))
8317 then
8318 goto Continue;
8319 end if;
8321 Set_Etype (Call_Node, Any_Type);
8322 Set_Is_Overloaded (Call_Node, False);
8324 if No (Matching_Op) then
8325 Prim_Op_Ref := New_Occurrence_Of (Prim_Op, Sloc (Subprog));
8326 Candidate := Prim_Op;
8328 Set_Parent (Call_Node, Parent (Node_To_Replace));
8330 Set_Name (Call_Node, Prim_Op_Ref);
8331 Success := False;
8333 Analyze_One_Call
8334 (N => Call_Node,
8335 Nam => Prim_Op,
8336 Report => Report_Error,
8337 Success => Success,
8338 Skip_First => True);
8340 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
8342 -- More than one interpretation, collect for subsequent
8343 -- disambiguation. If this is a procedure call and there
8344 -- is another match, report ambiguity now.
8346 else
8347 Analyze_One_Call
8348 (N => Call_Node,
8349 Nam => Prim_Op,
8350 Report => Report_Error,
8351 Success => Success,
8352 Skip_First => True);
8354 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
8355 and then Nkind (Call_Node) /= N_Function_Call
8356 then
8357 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
8358 Report_Ambiguity (Matching_Op);
8359 Report_Ambiguity (Prim_Op);
8360 return True;
8361 end if;
8362 end if;
8363 end if;
8365 <<Continue>>
8366 Next_Elmt (Elmt);
8367 end loop;
8369 if Present (Matching_Op) then
8370 Set_Etype (Call_Node, Etype (Matching_Op));
8371 end if;
8373 return Present (Matching_Op);
8374 end Try_Primitive_Operation;
8376 -- Start of processing for Try_Object_Operation
8378 begin
8379 Analyze_Expression (Obj);
8381 -- Analyze the actuals if node is known to be a subprogram call
8383 if Is_Subprg_Call and then N = Name (Parent (N)) then
8384 Actual := First (Parameter_Associations (Parent (N)));
8385 while Present (Actual) loop
8386 Analyze_Expression (Actual);
8387 Next (Actual);
8388 end loop;
8389 end if;
8391 -- Build a subprogram call node, using a copy of Obj as its first
8392 -- actual. This is a placeholder, to be replaced by an explicit
8393 -- dereference when needed.
8395 Transform_Object_Operation
8396 (Call_Node => New_Call_Node,
8397 Node_To_Replace => Node_To_Replace);
8399 Set_Etype (New_Call_Node, Any_Type);
8400 Set_Etype (Subprog, Any_Type);
8401 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
8403 if not Is_Overloaded (Obj) then
8404 Try_One_Prefix_Interpretation (Obj_Type);
8406 else
8407 declare
8408 I : Interp_Index;
8409 It : Interp;
8410 begin
8411 Get_First_Interp (Obj, I, It);
8412 while Present (It.Nam) loop
8413 Try_One_Prefix_Interpretation (It.Typ);
8414 Get_Next_Interp (I, It);
8415 end loop;
8416 end;
8417 end if;
8419 if Etype (New_Call_Node) /= Any_Type then
8421 -- No need to complete the tree transformations if we are only
8422 -- searching for conflicting class-wide subprograms
8424 if CW_Test_Only then
8425 return False;
8426 else
8427 Complete_Object_Operation
8428 (Call_Node => New_Call_Node,
8429 Node_To_Replace => Node_To_Replace);
8430 return True;
8431 end if;
8433 elsif Present (Candidate) then
8435 -- The argument list is not type correct. Re-analyze with error
8436 -- reporting enabled, and use one of the possible candidates.
8437 -- In All_Errors_Mode, re-analyze all failed interpretations.
8439 if All_Errors_Mode then
8440 Report_Error := True;
8441 if Try_Primitive_Operation
8442 (Call_Node => New_Call_Node,
8443 Node_To_Replace => Node_To_Replace)
8445 or else
8446 Try_Class_Wide_Operation
8447 (Call_Node => New_Call_Node,
8448 Node_To_Replace => Node_To_Replace)
8449 then
8450 null;
8451 end if;
8453 else
8454 Analyze_One_Call
8455 (N => New_Call_Node,
8456 Nam => Candidate,
8457 Report => True,
8458 Success => Success,
8459 Skip_First => True);
8460 end if;
8462 -- No need for further errors
8464 return True;
8466 else
8467 -- There was no candidate operation, so report it as an error
8468 -- in the caller: Analyze_Selected_Component.
8470 return False;
8471 end if;
8472 end Try_Object_Operation;
8474 ---------
8475 -- wpo --
8476 ---------
8478 procedure wpo (T : Entity_Id) is
8479 Op : Entity_Id;
8480 E : Elmt_Id;
8482 begin
8483 if not Is_Tagged_Type (T) then
8484 return;
8485 end if;
8487 E := First_Elmt (Primitive_Operations (Base_Type (T)));
8488 while Present (E) loop
8489 Op := Node (E);
8490 Write_Int (Int (Op));
8491 Write_Str (" === ");
8492 Write_Name (Chars (Op));
8493 Write_Str (" in ");
8494 Write_Name (Chars (Scope (Op)));
8495 Next_Elmt (E);
8496 Write_Eol;
8497 end loop;
8498 end wpo;
8500 end Sem_Ch4;