1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Einfo
; use Einfo
;
29 with Errout
; use Errout
;
30 with Exp_Dbug
; use Exp_Dbug
;
31 with Exp_Util
; use Exp_Util
;
32 with Layout
; use Layout
;
33 with Namet
; use Namet
;
34 with Nlists
; use Nlists
;
35 with Nmake
; use Nmake
;
37 with Rtsfind
; use Rtsfind
;
39 with Sem_Aux
; use Sem_Aux
;
40 with Sem_Ch3
; use Sem_Ch3
;
41 with Sem_Ch8
; use Sem_Ch8
;
42 with Sem_Ch13
; use Sem_Ch13
;
43 with Sem_Eval
; use Sem_Eval
;
44 with Sem_Res
; use Sem_Res
;
45 with Sem_Util
; use Sem_Util
;
46 with Sinfo
; use Sinfo
;
47 with Snames
; use Snames
;
48 with Stand
; use Stand
;
49 with Targparm
; use Targparm
;
50 with Tbuild
; use Tbuild
;
51 with Ttypes
; use Ttypes
;
52 with Uintp
; use Uintp
;
54 package body Exp_Pakd
is
56 ---------------------------
57 -- Endian Considerations --
58 ---------------------------
60 -- As described in the specification, bit numbering in a packed array
61 -- is consistent with bit numbering in a record representation clause,
62 -- and hence dependent on the endianness of the machine:
64 -- For little-endian machines, element zero is at the right hand end
65 -- (low order end) of a bit field.
67 -- For big-endian machines, element zero is at the left hand end
68 -- (high order end) of a bit field.
70 -- The shifts that are used to right justify a field therefore differ in
71 -- the two cases. For the little-endian case, we can simply use the bit
72 -- number (i.e. the element number * element size) as the count for a right
73 -- shift. For the big-endian case, we have to subtract the shift count from
74 -- an appropriate constant to use in the right shift. We use rotates
75 -- instead of shifts (which is necessary in the store case to preserve
76 -- other fields), and we expect that the backend will be able to change the
77 -- right rotate into a left rotate, avoiding the subtract, if the machine
78 -- architecture provides such an instruction.
80 ----------------------------------------------
81 -- Entity Tables for Packed Access Routines --
82 ----------------------------------------------
84 -- For the cases of component size = 3,5-7,9-15,17-31,33-63 we call library
85 -- routines. This table provides the entity for the proper routine.
87 type E_Array
is array (Int
range 01 .. 63) of RE_Id
;
89 -- Array of Bits_nn entities. Note that we do not use library routines
90 -- for the 8-bit and 16-bit cases, but we still fill in the table, using
91 -- entries from System.Unsigned, because we also use this table for
92 -- certain special unchecked conversions in the big-endian case.
94 Bits_Id
: constant E_Array
:=
110 16 => RE_Unsigned_16
,
126 32 => RE_Unsigned_32
,
159 -- Array of Get routine entities. These are used to obtain an element from
160 -- a packed array. The N'th entry is used to obtain elements from a packed
161 -- array whose component size is N. RE_Null is used as a null entry, for
162 -- the cases where a library routine is not used.
164 Get_Id
: constant E_Array
:=
229 -- Array of Get routine entities to be used in the case where the packed
230 -- array is itself a component of a packed structure, and therefore may not
231 -- be fully aligned. This only affects the even sizes, since for the odd
232 -- sizes, we do not get any fixed alignment in any case.
234 GetU_Id
: constant E_Array
:=
299 -- Array of Set routine entities. These are used to assign an element of a
300 -- packed array. The N'th entry is used to assign elements for a packed
301 -- array whose component size is N. RE_Null is used as a null entry, for
302 -- the cases where a library routine is not used.
304 Set_Id
: constant E_Array
:=
369 -- Array of Set routine entities to be used in the case where the packed
370 -- array is itself a component of a packed structure, and therefore may not
371 -- be fully aligned. This only affects the even sizes, since for the odd
372 -- sizes, we do not get any fixed alignment in any case.
374 SetU_Id
: constant E_Array
:=
439 -----------------------
440 -- Local Subprograms --
441 -----------------------
443 procedure Compute_Linear_Subscript
446 Subscr
: out Node_Id
);
447 -- Given a constrained array type Atyp, and an indexed component node N
448 -- referencing an array object of this type, build an expression of type
449 -- Standard.Integer representing the zero-based linear subscript value.
450 -- This expression includes any required range checks.
452 procedure Convert_To_PAT_Type
(Aexp
: Node_Id
);
453 -- Given an expression of a packed array type, builds a corresponding
454 -- expression whose type is the implementation type used to represent
455 -- the packed array. Aexp is analyzed and resolved on entry and on exit.
457 procedure Get_Base_And_Bit_Offset
460 Offset
: out Node_Id
);
461 -- Given a node N for a name which involves a packed array reference,
462 -- return the base object of the reference and build an expression of
463 -- type Standard.Integer representing the zero-based offset in bits
464 -- from Base'Address to the first bit of the reference.
466 function Known_Aligned_Enough
(Obj
: Node_Id
; Csiz
: Nat
) return Boolean;
467 -- There are two versions of the Set routines, the ones used when the
468 -- object is known to be sufficiently well aligned given the number of
469 -- bits, and the ones used when the object is not known to be aligned.
470 -- This routine is used to determine which set to use. Obj is a reference
471 -- to the object, and Csiz is the component size of the packed array.
472 -- True is returned if the alignment of object is known to be sufficient,
473 -- defined as 1 for odd bit sizes, 4 for bit sizes divisible by 4, and
476 function Make_Shift_Left
(N
: Node_Id
; S
: Node_Id
) return Node_Id
;
477 -- Build a left shift node, checking for the case of a shift count of zero
479 function Make_Shift_Right
(N
: Node_Id
; S
: Node_Id
) return Node_Id
;
480 -- Build a right shift node, checking for the case of a shift count of zero
482 function RJ_Unchecked_Convert_To
484 Expr
: Node_Id
) return Node_Id
;
485 -- The packed array code does unchecked conversions which in some cases
486 -- may involve non-discrete types with differing sizes. The semantics of
487 -- such conversions is potentially endianness dependent, and the effect
488 -- we want here for such a conversion is to do the conversion in size as
489 -- though numeric items are involved, and we extend or truncate on the
490 -- left side. This happens naturally in the little-endian case, but in
491 -- the big endian case we can get left justification, when what we want
492 -- is right justification. This routine does the unchecked conversion in
493 -- a stepwise manner to ensure that it gives the expected result. Hence
494 -- the name (RJ = Right justified). The parameters Typ and Expr are as
495 -- for the case of a normal Unchecked_Convert_To call.
497 procedure Setup_Enumeration_Packed_Array_Reference
(N
: Node_Id
);
498 -- This routine is called in the Get and Set case for arrays that are
499 -- packed but not bit-packed, meaning that they have at least one
500 -- subscript that is of an enumeration type with a non-standard
501 -- representation. This routine modifies the given node to properly
502 -- reference the corresponding packed array type.
504 procedure Setup_Inline_Packed_Array_Reference
507 Obj
: in out Node_Id
;
509 Shift
: out Node_Id
);
510 -- This procedure performs common processing on the N_Indexed_Component
511 -- parameter given as N, whose prefix is a reference to a packed array.
512 -- This is used for the get and set when the component size is 1, 2, 4,
513 -- or for other component sizes when the packed array type is a modular
514 -- type (i.e. the cases that are handled with inline code).
518 -- N is the N_Indexed_Component node for the packed array reference
520 -- Atyp is the constrained array type (the actual subtype has been
521 -- computed if necessary to obtain the constraints, but this is still
522 -- the original array type, not the Packed_Array_Impl_Type value).
524 -- Obj is the object which is to be indexed. It is always of type Atyp.
528 -- Obj is the object containing the desired bit field. It is of type
529 -- Unsigned, Long_Unsigned, or Long_Long_Unsigned, and is either the
530 -- entire value, for the small static case, or the proper selected byte
531 -- from the array in the large or dynamic case. This node is analyzed
532 -- and resolved on return.
534 -- Shift is a node representing the shift count to be used in the
535 -- rotate right instruction that positions the field for access.
536 -- This node is analyzed and resolved on return.
538 -- Cmask is a mask corresponding to the width of the component field.
539 -- Its value is 2 ** Csize - 1 (e.g. 2#1111# for component size of 4).
541 -- Note: in some cases the call to this routine may generate actions
542 -- (for handling multi-use references and the generation of the packed
543 -- array type on the fly). Such actions are inserted into the tree
544 -- directly using Insert_Action.
546 function Revert_Storage_Order
(N
: Node_Id
) return Node_Id
;
547 -- Perform appropriate justification and byte ordering adjustments for N,
548 -- an element of a packed array type, when both the component type and
549 -- the enclosing packed array type have reverse scalar storage order.
550 -- On little-endian targets, the value is left justified before byte
551 -- swapping. The Etype of the returned expression is an integer type of
552 -- an appropriate power-of-2 size.
554 --------------------------
555 -- Revert_Storage_Order --
556 --------------------------
558 function Revert_Storage_Order
(N
: Node_Id
) return Node_Id
is
559 Loc
: constant Source_Ptr
:= Sloc
(N
);
560 T
: constant Entity_Id
:= Etype
(N
);
561 T_Size
: constant Uint
:= RM_Size
(T
);
575 -- Array component size is less than a byte: no swapping needed
578 Swap_T
:= RTE
(RE_Unsigned_8
);
581 -- Select byte swapping function depending on array component size
584 Swap_RE
:= RE_Bswap_16
;
586 elsif T_Size
<= 32 then
587 Swap_RE
:= RE_Bswap_32
;
589 else pragma Assert
(T_Size
<= 64);
590 Swap_RE
:= RE_Bswap_64
;
593 Swap_F
:= RTE
(Swap_RE
);
594 Swap_T
:= Etype
(Swap_F
);
598 Shift
:= Esize
(Swap_T
) - T_Size
;
600 Arg
:= RJ_Unchecked_Convert_To
(Swap_T
, N
);
602 if not Bytes_Big_Endian
and then Shift
> Uint_0
then
604 Make_Op_Shift_Left
(Loc
,
606 Right_Opnd
=> Make_Integer_Literal
(Loc
, Shift
));
609 if Present
(Swap_F
) then
611 Make_Function_Call
(Loc
,
612 Name
=> New_Occurrence_Of
(Swap_F
, Loc
),
613 Parameter_Associations
=> New_List
(Arg
));
618 Set_Etype
(Adjusted
, Swap_T
);
620 end Revert_Storage_Order
;
622 ------------------------------
623 -- Compute_Linear_Subscript --
624 ------------------------------
626 procedure Compute_Linear_Subscript
629 Subscr
: out Node_Id
)
631 Loc
: constant Source_Ptr
:= Sloc
(N
);
640 -- Loop through dimensions
642 Indx
:= First_Index
(Atyp
);
643 Oldsub
:= First
(Expressions
(N
));
645 while Present
(Indx
) loop
646 Styp
:= Etype
(Indx
);
647 Newsub
:= Relocate_Node
(Oldsub
);
649 -- Get expression for the subscript value. First, if Do_Range_Check
650 -- is set on a subscript, then we must do a range check against the
651 -- original bounds (not the bounds of the packed array type). We do
652 -- this by introducing a subtype conversion.
654 if Do_Range_Check
(Newsub
)
655 and then Etype
(Newsub
) /= Styp
657 Newsub
:= Convert_To
(Styp
, Newsub
);
660 -- Now evolve the expression for the subscript. First convert
661 -- the subscript to be zero based and of an integer type.
663 -- Case of integer type, where we just subtract to get lower bound
665 if Is_Integer_Type
(Styp
) then
667 -- If length of integer type is smaller than standard integer,
668 -- then we convert to integer first, then do the subtract
670 -- Integer (subscript) - Integer (Styp'First)
672 if Esize
(Styp
) < Esize
(Standard_Integer
) then
674 Make_Op_Subtract
(Loc
,
675 Left_Opnd
=> Convert_To
(Standard_Integer
, Newsub
),
677 Convert_To
(Standard_Integer
,
678 Make_Attribute_Reference
(Loc
,
679 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
680 Attribute_Name
=> Name_First
)));
682 -- For larger integer types, subtract first, then convert to
683 -- integer, this deals with strange long long integer bounds.
685 -- Integer (subscript - Styp'First)
689 Convert_To
(Standard_Integer
,
690 Make_Op_Subtract
(Loc
,
693 Make_Attribute_Reference
(Loc
,
694 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
695 Attribute_Name
=> Name_First
)));
698 -- For the enumeration case, we have to use 'Pos to get the value
699 -- to work with before subtracting the lower bound.
701 -- Integer (Styp'Pos (subscr)) - Integer (Styp'Pos (Styp'First));
703 -- This is not quite right for bizarre cases where the size of the
704 -- enumeration type is > Integer'Size bits due to rep clause ???
707 pragma Assert
(Is_Enumeration_Type
(Styp
));
710 Make_Op_Subtract
(Loc
,
711 Left_Opnd
=> Convert_To
(Standard_Integer
,
712 Make_Attribute_Reference
(Loc
,
713 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
714 Attribute_Name
=> Name_Pos
,
715 Expressions
=> New_List
(Newsub
))),
718 Convert_To
(Standard_Integer
,
719 Make_Attribute_Reference
(Loc
,
720 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
721 Attribute_Name
=> Name_Pos
,
722 Expressions
=> New_List
(
723 Make_Attribute_Reference
(Loc
,
724 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
725 Attribute_Name
=> Name_First
)))));
728 Set_Paren_Count
(Newsub
, 1);
730 -- For the first subscript, we just copy that subscript value
735 -- Otherwise, we must multiply what we already have by the current
736 -- stride and then add in the new value to the evolving subscript.
742 Make_Op_Multiply
(Loc
,
745 Make_Attribute_Reference
(Loc
,
746 Attribute_Name
=> Name_Range_Length
,
747 Prefix
=> New_Occurrence_Of
(Styp
, Loc
))),
748 Right_Opnd
=> Newsub
);
751 -- Move to next subscript
756 end Compute_Linear_Subscript
;
758 -------------------------
759 -- Convert_To_PAT_Type --
760 -------------------------
762 -- The PAT is always obtained from the actual subtype
764 procedure Convert_To_PAT_Type
(Aexp
: Node_Id
) is
768 Convert_To_Actual_Subtype
(Aexp
);
769 Act_ST
:= Underlying_Type
(Etype
(Aexp
));
770 Create_Packed_Array_Impl_Type
(Act_ST
);
772 -- Just replace the etype with the packed array type. This works because
773 -- the expression will not be further analyzed, and Gigi considers the
774 -- two types equivalent in any case.
776 -- This is not strictly the case ??? If the reference is an actual in
777 -- call, the expansion of the prefix is delayed, and must be reanalyzed,
778 -- see Reset_Packed_Prefix. On the other hand, if the prefix is a simple
779 -- array reference, reanalysis can produce spurious type errors when the
780 -- PAT type is replaced again with the original type of the array. Same
781 -- for the case of a dereference. Ditto for function calls: expansion
782 -- may introduce additional actuals which will trigger errors if call is
783 -- reanalyzed. The following is correct and minimal, but the handling of
784 -- more complex packed expressions in actuals is confused. Probably the
785 -- problem only remains for actuals in calls.
787 Set_Etype
(Aexp
, Packed_Array_Impl_Type
(Act_ST
));
789 if Is_Entity_Name
(Aexp
)
791 (Nkind
(Aexp
) = N_Indexed_Component
792 and then Is_Entity_Name
(Prefix
(Aexp
)))
793 or else Nkind_In
(Aexp
, N_Explicit_Dereference
, N_Function_Call
)
797 end Convert_To_PAT_Type
;
799 -----------------------------------
800 -- Create_Packed_Array_Impl_Type --
801 -----------------------------------
803 procedure Create_Packed_Array_Impl_Type
(Typ
: Entity_Id
) is
804 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
805 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
806 Csize
: constant Uint
:= Component_Size
(Typ
);
821 procedure Install_PAT
;
822 -- This procedure is called with Decl set to the declaration for the
823 -- packed array type. It creates the type and installs it as required.
825 procedure Set_PB_Type
;
826 -- Sets PB_Type to Packed_Bytes{1,2,4} as required by the alignment
827 -- requirements (see documentation in the spec of this package).
833 procedure Install_PAT
is
834 Pushed_Scope
: Boolean := False;
837 -- We do not want to put the declaration we have created in the tree
838 -- since it is often hard, and sometimes impossible to find a proper
839 -- place for it (the impossible case arises for a packed array type
840 -- with bounds depending on the discriminant, a declaration cannot
841 -- be put inside the record, and the reference to the discriminant
842 -- cannot be outside the record).
844 -- The solution is to analyze the declaration while temporarily
845 -- attached to the tree at an appropriate point, and then we install
846 -- the resulting type as an Itype in the packed array type field of
847 -- the original type, so that no explicit declaration is required.
849 -- Note: the packed type is created in the scope of its parent type.
850 -- There are at least some cases where the current scope is deeper,
851 -- and so when this is the case, we temporarily reset the scope
852 -- for the definition. This is clearly safe, since the first use
853 -- of the packed array type will be the implicit reference from
854 -- the corresponding unpacked type when it is elaborated.
856 if Is_Itype
(Typ
) then
857 Set_Parent
(Decl
, Associated_Node_For_Itype
(Typ
));
859 Set_Parent
(Decl
, Declaration_Node
(Typ
));
862 if Scope
(Typ
) /= Current_Scope
then
863 Push_Scope
(Scope
(Typ
));
864 Pushed_Scope
:= True;
867 Set_Is_Itype
(PAT
, True);
868 Set_Packed_Array_Impl_Type
(Typ
, PAT
);
869 Analyze
(Decl
, Suppress
=> All_Checks
);
875 -- Set Esize and RM_Size to the actual size of the packed object
876 -- Do not reset RM_Size if already set, as happens in the case of
879 if Unknown_Esize
(PAT
) then
880 Set_Esize
(PAT
, PASize
);
883 if Unknown_RM_Size
(PAT
) then
884 Set_RM_Size
(PAT
, PASize
);
887 Adjust_Esize_Alignment
(PAT
);
889 -- Set remaining fields of packed array type
891 Init_Alignment
(PAT
);
892 Set_Parent
(PAT
, Empty
);
893 Set_Associated_Node_For_Itype
(PAT
, Typ
);
894 Set_Is_Packed_Array_Impl_Type
(PAT
, True);
895 Set_Original_Array_Type
(PAT
, Typ
);
897 -- For a non-bit-packed array, propagate reverse storage order
898 -- flag from original base type to packed array base type.
900 if not Is_Bit_Packed_Array
(Typ
) then
901 Set_Reverse_Storage_Order
902 (Etype
(PAT
), Reverse_Storage_Order
(Base_Type
(Typ
)));
905 -- We definitely do not want to delay freezing for packed array
906 -- types. This is of particular importance for the itypes that are
907 -- generated for record components depending on discriminants where
908 -- there is no place to put the freeze node.
910 Set_Has_Delayed_Freeze
(PAT
, False);
911 Set_Has_Delayed_Freeze
(Etype
(PAT
), False);
913 -- If we did allocate a freeze node, then clear out the reference
914 -- since it is obsolete (should we delete the freeze node???)
916 Set_Freeze_Node
(PAT
, Empty
);
917 Set_Freeze_Node
(Etype
(PAT
), Empty
);
924 procedure Set_PB_Type
is
926 -- If the user has specified an explicit alignment for the
927 -- type or component, take it into account.
929 if Csize
<= 2 or else Csize
= 4 or else Csize
mod 2 /= 0
930 or else Alignment
(Typ
) = 1
931 or else Component_Alignment
(Typ
) = Calign_Storage_Unit
933 PB_Type
:= RTE
(RE_Packed_Bytes1
);
935 elsif Csize
mod 4 /= 0
936 or else Alignment
(Typ
) = 2
938 PB_Type
:= RTE
(RE_Packed_Bytes2
);
941 PB_Type
:= RTE
(RE_Packed_Bytes4
);
945 -- Start of processing for Create_Packed_Array_Impl_Type
948 -- If we already have a packed array type, nothing to do
950 if Present
(Packed_Array_Impl_Type
(Typ
)) then
954 -- If our immediate ancestor subtype is constrained, and it already
955 -- has a packed array type, then just share the same type, since the
956 -- bounds must be the same. If the ancestor is not an array type but
957 -- a private type, as can happen with multiple instantiations, create
958 -- a new packed type, to avoid privacy issues.
960 if Ekind
(Typ
) = E_Array_Subtype
then
961 Ancest
:= Ancestor_Subtype
(Typ
);
964 and then Is_Array_Type
(Ancest
)
965 and then Is_Constrained
(Ancest
)
966 and then Present
(Packed_Array_Impl_Type
(Ancest
))
968 Set_Packed_Array_Impl_Type
(Typ
, Packed_Array_Impl_Type
(Ancest
));
973 -- We preset the result type size from the size of the original array
974 -- type, since this size clearly belongs to the packed array type. The
975 -- size of the conceptual unpacked type is always set to unknown.
977 PASize
:= RM_Size
(Typ
);
979 -- Case of an array where at least one index is of an enumeration
980 -- type with a non-standard representation, but the component size
981 -- is not appropriate for bit packing. This is the case where we
982 -- have Is_Packed set (we would never be in this unit otherwise),
983 -- but Is_Bit_Packed_Array is false.
985 -- Note that if the component size is appropriate for bit packing,
986 -- then the circuit for the computation of the subscript properly
987 -- deals with the non-standard enumeration type case by taking the
990 if not Is_Bit_Packed_Array
(Typ
) then
992 -- Here we build a declaration:
994 -- type tttP is array (index1, index2, ...) of component_type
996 -- where index1, index2, are the index types. These are the same
997 -- as the index types of the original array, except for the non-
998 -- standard representation enumeration type case, where we have
1001 -- For the unconstrained array case, we use
1005 -- For the constrained case, we use
1007 -- Natural range Enum_Type'Pos (Enum_Type'First) ..
1008 -- Enum_Type'Pos (Enum_Type'Last);
1010 -- Note that tttP is created even if no index subtype is a non
1011 -- standard enumeration, because we still need to remove padding
1012 -- normally inserted for component alignment.
1015 Make_Defining_Identifier
(Loc
,
1016 Chars
=> New_External_Name
(Chars
(Typ
), 'P'));
1018 Set_Packed_Array_Impl_Type
(Typ
, PAT
);
1021 Indexes
: constant List_Id
:= New_List
;
1023 Indx_Typ
: Entity_Id
;
1024 Enum_Case
: Boolean;
1028 Indx
:= First_Index
(Typ
);
1030 while Present
(Indx
) loop
1031 Indx_Typ
:= Etype
(Indx
);
1033 Enum_Case
:= Is_Enumeration_Type
(Indx_Typ
)
1034 and then Has_Non_Standard_Rep
(Indx_Typ
);
1036 -- Unconstrained case
1038 if not Is_Constrained
(Typ
) then
1040 Indx_Typ
:= Standard_Natural
;
1043 Append_To
(Indexes
, New_Occurrence_Of
(Indx_Typ
, Loc
));
1048 if not Enum_Case
then
1049 Append_To
(Indexes
, New_Occurrence_Of
(Indx_Typ
, Loc
));
1053 Make_Subtype_Indication
(Loc
,
1055 New_Occurrence_Of
(Standard_Natural
, Loc
),
1057 Make_Range_Constraint
(Loc
,
1061 Make_Attribute_Reference
(Loc
,
1063 New_Occurrence_Of
(Indx_Typ
, Loc
),
1064 Attribute_Name
=> Name_Pos
,
1065 Expressions
=> New_List
(
1066 Make_Attribute_Reference
(Loc
,
1068 New_Occurrence_Of
(Indx_Typ
, Loc
),
1069 Attribute_Name
=> Name_First
))),
1072 Make_Attribute_Reference
(Loc
,
1074 New_Occurrence_Of
(Indx_Typ
, Loc
),
1075 Attribute_Name
=> Name_Pos
,
1076 Expressions
=> New_List
(
1077 Make_Attribute_Reference
(Loc
,
1079 New_Occurrence_Of
(Indx_Typ
, Loc
),
1080 Attribute_Name
=> Name_Last
)))))));
1088 if not Is_Constrained
(Typ
) then
1090 Make_Unconstrained_Array_Definition
(Loc
,
1091 Subtype_Marks
=> Indexes
,
1092 Component_Definition
=>
1093 Make_Component_Definition
(Loc
,
1094 Aliased_Present
=> False,
1095 Subtype_Indication
=>
1096 New_Occurrence_Of
(Ctyp
, Loc
)));
1100 Make_Constrained_Array_Definition
(Loc
,
1101 Discrete_Subtype_Definitions
=> Indexes
,
1102 Component_Definition
=>
1103 Make_Component_Definition
(Loc
,
1104 Aliased_Present
=> False,
1105 Subtype_Indication
=>
1106 New_Occurrence_Of
(Ctyp
, Loc
)));
1110 Make_Full_Type_Declaration
(Loc
,
1111 Defining_Identifier
=> PAT
,
1112 Type_Definition
=> Typedef
);
1115 -- Set type as packed array type and install it
1117 Set_Is_Packed_Array_Impl_Type
(PAT
);
1121 -- Case of bit-packing required for unconstrained array. We create
1122 -- a subtype that is equivalent to use Packed_Bytes{1,2,4} as needed.
1124 elsif not Is_Constrained
(Typ
) then
1126 Make_Defining_Identifier
(Loc
,
1127 Chars
=> Make_Packed_Array_Impl_Type_Name
(Typ
, Csize
));
1129 Set_Packed_Array_Impl_Type
(Typ
, PAT
);
1133 Make_Subtype_Declaration
(Loc
,
1134 Defining_Identifier
=> PAT
,
1135 Subtype_Indication
=> New_Occurrence_Of
(PB_Type
, Loc
));
1139 -- Remaining code is for the case of bit-packing for constrained array
1141 -- The name of the packed array subtype is
1145 -- where sss is the component size in bits and ttt is the name of
1146 -- the parent packed type.
1150 Make_Defining_Identifier
(Loc
,
1151 Chars
=> Make_Packed_Array_Impl_Type_Name
(Typ
, Csize
));
1153 Set_Packed_Array_Impl_Type
(Typ
, PAT
);
1155 -- Build an expression for the length of the array in bits.
1156 -- This is the product of the length of each of the dimensions
1162 Len_Expr
:= Empty
; -- suppress junk warning
1166 Make_Attribute_Reference
(Loc
,
1167 Attribute_Name
=> Name_Length
,
1168 Prefix
=> New_Occurrence_Of
(Typ
, Loc
),
1169 Expressions
=> New_List
(
1170 Make_Integer_Literal
(Loc
, J
)));
1173 Len_Expr
:= Len_Dim
;
1177 Make_Op_Multiply
(Loc
,
1178 Left_Opnd
=> Len_Expr
,
1179 Right_Opnd
=> Len_Dim
);
1183 exit when J
> Number_Dimensions
(Typ
);
1187 -- Temporarily attach the length expression to the tree and analyze
1188 -- and resolve it, so that we can test its value. We assume that the
1189 -- total length fits in type Integer. This expression may involve
1190 -- discriminants, so we treat it as a default/per-object expression.
1192 Set_Parent
(Len_Expr
, Typ
);
1193 Preanalyze_Spec_Expression
(Len_Expr
, Standard_Long_Long_Integer
);
1195 -- Use a modular type if possible. We can do this if we have
1196 -- static bounds, and the length is small enough, and the length
1197 -- is not zero. We exclude the zero length case because the size
1198 -- of things is always at least one, and the zero length object
1199 -- would have an anomalous size.
1201 if Compile_Time_Known_Value
(Len_Expr
) then
1202 Len_Bits
:= Expr_Value
(Len_Expr
) * Csize
;
1204 -- Check for size known to be too large
1207 Uint_2
** (Standard_Integer_Size
- 1) * System_Storage_Unit
1209 if System_Storage_Unit
= 8 then
1211 ("packed array size cannot exceed " &
1212 "Integer''Last bytes", Typ
);
1215 ("packed array size cannot exceed " &
1216 "Integer''Last storage units", Typ
);
1219 -- Reset length to arbitrary not too high value to continue
1221 Len_Expr
:= Make_Integer_Literal
(Loc
, 65535);
1222 Analyze_And_Resolve
(Len_Expr
, Standard_Long_Long_Integer
);
1225 -- We normally consider small enough to mean no larger than the
1226 -- value of System_Max_Binary_Modulus_Power, checking that in the
1227 -- case of values longer than word size, we have long shifts.
1231 (Len_Bits
<= System_Word_Size
1232 or else (Len_Bits
<= System_Max_Binary_Modulus_Power
1233 and then Support_Long_Shifts_On_Target
))
1235 -- We can use the modular type, it has the form:
1237 -- subtype tttPn is btyp
1238 -- range 0 .. 2 ** ((Typ'Length (1)
1239 -- * ... * Typ'Length (n)) * Csize) - 1;
1241 -- The bounds are statically known, and btyp is one of the
1242 -- unsigned types, depending on the length.
1244 if Len_Bits
<= Standard_Short_Short_Integer_Size
then
1245 Btyp
:= RTE
(RE_Short_Short_Unsigned
);
1247 elsif Len_Bits
<= Standard_Short_Integer_Size
then
1248 Btyp
:= RTE
(RE_Short_Unsigned
);
1250 elsif Len_Bits
<= Standard_Integer_Size
then
1251 Btyp
:= RTE
(RE_Unsigned
);
1253 elsif Len_Bits
<= Standard_Long_Integer_Size
then
1254 Btyp
:= RTE
(RE_Long_Unsigned
);
1257 Btyp
:= RTE
(RE_Long_Long_Unsigned
);
1260 Lit
:= Make_Integer_Literal
(Loc
, 2 ** Len_Bits
- 1);
1261 Set_Print_In_Hex
(Lit
);
1264 Make_Subtype_Declaration
(Loc
,
1265 Defining_Identifier
=> PAT
,
1266 Subtype_Indication
=>
1267 Make_Subtype_Indication
(Loc
,
1268 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
1271 Make_Range_Constraint
(Loc
,
1275 Make_Integer_Literal
(Loc
, 0),
1276 High_Bound
=> Lit
))));
1278 if PASize
= Uint_0
then
1284 -- Propagate a given alignment to the modular type. This can
1285 -- cause it to be under-aligned, but that's OK.
1287 if Present
(Alignment_Clause
(Typ
)) then
1288 Set_Alignment
(PAT
, Alignment
(Typ
));
1295 -- Could not use a modular type, for all other cases, we build
1296 -- a packed array subtype:
1299 -- System.Packed_Bytes{1,2,4} (0 .. (Bits + 7) / 8 - 1);
1301 -- Bits is the length of the array in bits
1308 Make_Op_Multiply
(Loc
,
1310 Make_Integer_Literal
(Loc
, Csize
),
1311 Right_Opnd
=> Len_Expr
),
1314 Make_Integer_Literal
(Loc
, 7));
1316 Set_Paren_Count
(Bits_U1
, 1);
1319 Make_Op_Subtract
(Loc
,
1321 Make_Op_Divide
(Loc
,
1322 Left_Opnd
=> Bits_U1
,
1323 Right_Opnd
=> Make_Integer_Literal
(Loc
, 8)),
1324 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1));
1327 Make_Subtype_Declaration
(Loc
,
1328 Defining_Identifier
=> PAT
,
1329 Subtype_Indication
=>
1330 Make_Subtype_Indication
(Loc
,
1331 Subtype_Mark
=> New_Occurrence_Of
(PB_Type
, Loc
),
1333 Make_Index_Or_Discriminant_Constraint
(Loc
,
1334 Constraints
=> New_List
(
1337 Make_Integer_Literal
(Loc
, 0),
1339 Convert_To
(Standard_Integer
, PAT_High
))))));
1343 -- Currently the code in this unit requires that packed arrays
1344 -- represented by non-modular arrays of bytes be on a byte
1345 -- boundary for bit sizes handled by System.Pack_nn units.
1346 -- That's because these units assume the array being accessed
1347 -- starts on a byte boundary.
1349 if Get_Id
(UI_To_Int
(Csize
)) /= RE_Null
then
1350 Set_Must_Be_On_Byte_Boundary
(Typ
);
1353 end Create_Packed_Array_Impl_Type
;
1355 -----------------------------------
1356 -- Expand_Bit_Packed_Element_Set --
1357 -----------------------------------
1359 procedure Expand_Bit_Packed_Element_Set
(N
: Node_Id
) is
1360 Loc
: constant Source_Ptr
:= Sloc
(N
);
1361 Lhs
: constant Node_Id
:= Name
(N
);
1363 Ass_OK
: constant Boolean := Assignment_OK
(Lhs
);
1364 -- Used to preserve assignment OK status when assignment is rewritten
1366 Rhs
: Node_Id
:= Expression
(N
);
1367 -- Initially Rhs is the right hand side value, it will be replaced
1368 -- later by an appropriate unchecked conversion for the assignment.
1378 -- The expression for the shift value that is required
1380 Shift_Used
: Boolean := False;
1381 -- Set True if Shift has been used in the generated code at least once,
1382 -- so that it must be duplicated if used again.
1387 Rhs_Val_Known
: Boolean;
1389 -- If the value of the right hand side as an integer constant is
1390 -- known at compile time, Rhs_Val_Known is set True, and Rhs_Val
1391 -- contains the value. Otherwise Rhs_Val_Known is set False, and
1392 -- the Rhs_Val is undefined.
1394 function Get_Shift
return Node_Id
;
1395 -- Function used to get the value of Shift, making sure that it
1396 -- gets duplicated if the function is called more than once.
1402 function Get_Shift
return Node_Id
is
1404 -- If we used the shift value already, then duplicate it. We
1405 -- set a temporary parent in case actions have to be inserted.
1408 Set_Parent
(Shift
, N
);
1409 return Duplicate_Subexpr_No_Checks
(Shift
);
1411 -- If first time, use Shift unchanged, and set flag for first use
1419 -- Start of processing for Expand_Bit_Packed_Element_Set
1422 pragma Assert
(Is_Bit_Packed_Array
(Etype
(Prefix
(Lhs
))));
1424 Obj
:= Relocate_Node
(Prefix
(Lhs
));
1425 Convert_To_Actual_Subtype
(Obj
);
1426 Atyp
:= Etype
(Obj
);
1427 PAT
:= Packed_Array_Impl_Type
(Atyp
);
1428 Ctyp
:= Component_Type
(Atyp
);
1429 Csiz
:= UI_To_Int
(Component_Size
(Atyp
));
1431 -- We remove side effects, in case the rhs modifies the lhs, because we
1432 -- are about to transform the rhs into an expression that first READS
1433 -- the lhs, so we can do the necessary shifting and masking. Example:
1434 -- "X(2) := F(...);" where F modifies X(3). Otherwise, the side effect
1437 Remove_Side_Effects
(Rhs
);
1439 -- We convert the right hand side to the proper subtype to ensure
1440 -- that an appropriate range check is made (since the normal range
1441 -- check from assignment will be lost in the transformations). This
1442 -- conversion is analyzed immediately so that subsequent processing
1443 -- can work with an analyzed Rhs (and e.g. look at its Etype)
1445 -- If the right-hand side is a string literal, create a temporary for
1446 -- it, constant-folding is not ready to wrap the bit representation
1447 -- of a string literal.
1449 if Nkind
(Rhs
) = N_String_Literal
then
1454 Make_Object_Declaration
(Loc
,
1455 Defining_Identifier
=> Make_Temporary
(Loc
, 'T', Rhs
),
1456 Object_Definition
=> New_Occurrence_Of
(Ctyp
, Loc
),
1457 Expression
=> New_Copy_Tree
(Rhs
));
1459 Insert_Actions
(N
, New_List
(Decl
));
1460 Rhs
:= New_Occurrence_Of
(Defining_Identifier
(Decl
), Loc
);
1464 Rhs
:= Convert_To
(Ctyp
, Rhs
);
1465 Set_Parent
(Rhs
, N
);
1467 -- If we are building the initialization procedure for a packed array,
1468 -- and Initialize_Scalars is enabled, each component assignment is an
1469 -- out-of-range value by design. Compile this value without checks,
1470 -- because a call to the array init_proc must not raise an exception.
1472 -- Condition is not consistent with description above, Within_Init_Proc
1473 -- is True also when we are building the IP for a record or protected
1474 -- type that has a packed array component???
1477 and then Initialize_Scalars
1479 Analyze_And_Resolve
(Rhs
, Ctyp
, Suppress
=> All_Checks
);
1481 Analyze_And_Resolve
(Rhs
, Ctyp
);
1484 -- For the AAMP target, indexing of certain packed array is passed
1485 -- through to the back end without expansion, because the expansion
1486 -- results in very inefficient code on that target. This allows the
1487 -- GNAAMP back end to generate specialized macros that support more
1488 -- efficient indexing of packed arrays with components having sizes
1489 -- that are small powers of two.
1492 and then (Csiz
= 1 or else Csiz
= 2 or else Csiz
= 4)
1497 -- Case of component size 1,2,4 or any component size for the modular
1498 -- case. These are the cases for which we can inline the code.
1500 if Csiz
= 1 or else Csiz
= 2 or else Csiz
= 4
1501 or else (Present
(PAT
) and then Is_Modular_Integer_Type
(PAT
))
1503 Setup_Inline_Packed_Array_Reference
(Lhs
, Atyp
, Obj
, Cmask
, Shift
);
1505 -- The statement to be generated is:
1507 -- Obj := atyp!((Obj and Mask1) or (shift_left (rhs, Shift)))
1509 -- or in the case of a freestanding Reverse_Storage_Order object,
1511 -- Obj := Swap (atyp!((Swap (Obj) and Mask1)
1512 -- or (shift_left (rhs, Shift))))
1514 -- where Mask1 is obtained by shifting Cmask left Shift bits
1515 -- and then complementing the result.
1517 -- the "and Mask1" is omitted if rhs is constant and all 1 bits
1519 -- the "or ..." is omitted if rhs is constant and all 0 bits
1521 -- rhs is converted to the appropriate type
1523 -- The result is converted back to the array type, since
1524 -- otherwise we lose knowledge of the packed nature.
1526 -- Determine if right side is all 0 bits or all 1 bits
1528 if Compile_Time_Known_Value
(Rhs
) then
1529 Rhs_Val
:= Expr_Rep_Value
(Rhs
);
1530 Rhs_Val_Known
:= True;
1532 -- The following test catches the case of an unchecked conversion of
1533 -- an integer literal. This results from optimizing aggregates of
1536 elsif Nkind
(Rhs
) = N_Unchecked_Type_Conversion
1537 and then Compile_Time_Known_Value
(Expression
(Rhs
))
1539 Rhs_Val
:= Expr_Rep_Value
(Expression
(Rhs
));
1540 Rhs_Val_Known
:= True;
1544 Rhs_Val_Known
:= False;
1547 -- Some special checks for the case where the right hand value is
1548 -- known at compile time. Basically we have to take care of the
1549 -- implicit conversion to the subtype of the component object.
1551 if Rhs_Val_Known
then
1553 -- If we have a biased component type then we must manually do the
1554 -- biasing, since we are taking responsibility in this case for
1555 -- constructing the exact bit pattern to be used.
1557 if Has_Biased_Representation
(Ctyp
) then
1558 Rhs_Val
:= Rhs_Val
- Expr_Rep_Value
(Type_Low_Bound
(Ctyp
));
1561 -- For a negative value, we manually convert the two's complement
1562 -- value to a corresponding unsigned value, so that the proper
1563 -- field width is maintained. If we did not do this, we would
1564 -- get too many leading sign bits later on.
1567 Rhs_Val
:= 2 ** UI_From_Int
(Csiz
) + Rhs_Val
;
1571 -- Now create copies removing side effects. Note that in some complex
1572 -- cases, this may cause the fact that we have already set a packed
1573 -- array type on Obj to get lost. So we save the type of Obj, and
1574 -- make sure it is reset properly.
1576 New_Lhs
:= Duplicate_Subexpr
(Obj
, Name_Req
=> True);
1577 New_Rhs
:= Duplicate_Subexpr_No_Checks
(Obj
);
1579 -- First we deal with the "and"
1581 if not Rhs_Val_Known
or else Rhs_Val
/= Cmask
then
1587 if Compile_Time_Known_Value
(Shift
) then
1589 Make_Integer_Literal
(Loc
,
1590 Modulus
(Etype
(Obj
)) - 1 -
1591 (Cmask
* (2 ** Expr_Value
(Get_Shift
))));
1592 Set_Print_In_Hex
(Mask1
);
1595 Lit
:= Make_Integer_Literal
(Loc
, Cmask
);
1596 Set_Print_In_Hex
(Lit
);
1599 Right_Opnd
=> Make_Shift_Left
(Lit
, Get_Shift
));
1604 Left_Opnd
=> New_Rhs
,
1605 Right_Opnd
=> Mask1
);
1609 -- Then deal with the "or"
1611 if not Rhs_Val_Known
or else Rhs_Val
/= 0 then
1615 procedure Fixup_Rhs
;
1616 -- Adjust Rhs by bias if biased representation for components
1617 -- or remove extraneous high order sign bits if signed.
1619 procedure Fixup_Rhs
is
1620 Etyp
: constant Entity_Id
:= Etype
(Rhs
);
1623 -- For biased case, do the required biasing by simply
1624 -- converting to the biased subtype (the conversion
1625 -- will generate the required bias).
1627 if Has_Biased_Representation
(Ctyp
) then
1628 Rhs
:= Convert_To
(Ctyp
, Rhs
);
1630 -- For a signed integer type that is not biased, generate
1631 -- a conversion to unsigned to strip high order sign bits.
1633 elsif Is_Signed_Integer_Type
(Ctyp
) then
1634 Rhs
:= Unchecked_Convert_To
(RTE
(Bits_Id
(Csiz
)), Rhs
);
1637 -- Set Etype, since it can be referenced before the node is
1638 -- completely analyzed.
1640 Set_Etype
(Rhs
, Etyp
);
1642 -- We now need to do an unchecked conversion of the
1643 -- result to the target type, but it is important that
1644 -- this conversion be a right justified conversion and
1645 -- not a left justified conversion.
1647 Rhs
:= RJ_Unchecked_Convert_To
(Etype
(Obj
), Rhs
);
1652 and then Compile_Time_Known_Value
(Get_Shift
)
1655 Make_Integer_Literal
(Loc
,
1656 Rhs_Val
* (2 ** Expr_Value
(Get_Shift
)));
1657 Set_Print_In_Hex
(Or_Rhs
);
1660 -- We have to convert the right hand side to Etype (Obj).
1661 -- A special case arises if what we have now is a Val
1662 -- attribute reference whose expression type is Etype (Obj).
1663 -- This happens for assignments of fields from the same
1664 -- array. In this case we get the required right hand side
1665 -- by simply removing the inner attribute reference.
1667 if Nkind
(Rhs
) = N_Attribute_Reference
1668 and then Attribute_Name
(Rhs
) = Name_Val
1669 and then Etype
(First
(Expressions
(Rhs
))) = Etype
(Obj
)
1671 Rhs
:= Relocate_Node
(First
(Expressions
(Rhs
)));
1674 -- If the value of the right hand side is a known integer
1675 -- value, then just replace it by an untyped constant,
1676 -- which will be properly retyped when we analyze and
1677 -- resolve the expression.
1679 elsif Rhs_Val_Known
then
1681 -- Note that Rhs_Val has already been normalized to
1682 -- be an unsigned value with the proper number of bits.
1684 Rhs
:= Make_Integer_Literal
(Loc
, Rhs_Val
);
1686 -- Otherwise we need an unchecked conversion
1692 Or_Rhs
:= Make_Shift_Left
(Rhs
, Get_Shift
);
1695 if Nkind
(New_Rhs
) = N_Op_And
then
1696 Set_Paren_Count
(New_Rhs
, 1);
1697 Set_Etype
(New_Rhs
, Etype
(Left_Opnd
(New_Rhs
)));
1702 Left_Opnd
=> New_Rhs
,
1703 Right_Opnd
=> Or_Rhs
);
1707 -- Now do the rewrite
1710 Make_Assignment_Statement
(Loc
,
1713 Unchecked_Convert_To
(Etype
(New_Lhs
), New_Rhs
)));
1714 Set_Assignment_OK
(Name
(N
), Ass_OK
);
1716 -- All other component sizes for non-modular case
1721 -- Set_nn (Arr'address, Subscr, Bits_nn!(Rhs))
1723 -- where Subscr is the computed linear subscript
1726 Bits_nn
: constant Entity_Id
:= RTE
(Bits_Id
(Csiz
));
1733 if No
(Bits_nn
) then
1735 -- Error, most likely High_Integrity_Mode restriction
1740 -- Acquire proper Set entity. We use the aligned or unaligned
1741 -- case as appropriate.
1743 if Known_Aligned_Enough
(Obj
, Csiz
) then
1744 Set_nn
:= RTE
(Set_Id
(Csiz
));
1746 Set_nn
:= RTE
(SetU_Id
(Csiz
));
1749 -- Now generate the set reference
1751 Obj
:= Relocate_Node
(Prefix
(Lhs
));
1752 Convert_To_Actual_Subtype
(Obj
);
1753 Atyp
:= Etype
(Obj
);
1754 Compute_Linear_Subscript
(Atyp
, Lhs
, Subscr
);
1756 -- Set indication of whether the packed array has reverse SSO
1760 (Boolean_Literals
(Reverse_Storage_Order
(Atyp
)), Loc
);
1762 -- Below we must make the assumption that Obj is
1763 -- at least byte aligned, since otherwise its address
1764 -- cannot be taken. The assumption holds since the
1765 -- only arrays that can be misaligned are small packed
1766 -- arrays which are implemented as a modular type, and
1767 -- that is not the case here.
1770 Make_Procedure_Call_Statement
(Loc
,
1771 Name
=> New_Occurrence_Of
(Set_nn
, Loc
),
1772 Parameter_Associations
=> New_List
(
1773 Make_Attribute_Reference
(Loc
,
1775 Attribute_Name
=> Name_Address
),
1777 Unchecked_Convert_To
(Bits_nn
, Convert_To
(Ctyp
, Rhs
)),
1783 Analyze
(N
, Suppress
=> All_Checks
);
1784 end Expand_Bit_Packed_Element_Set
;
1786 -------------------------------------
1787 -- Expand_Packed_Address_Reference --
1788 -------------------------------------
1790 procedure Expand_Packed_Address_Reference
(N
: Node_Id
) is
1791 Loc
: constant Source_Ptr
:= Sloc
(N
);
1796 -- We build an expression that has the form
1798 -- outer_object'Address
1799 -- + (linear-subscript * component_size for each array reference
1800 -- + field'Bit_Position for each record field
1802 -- + ...) / Storage_Unit;
1804 Get_Base_And_Bit_Offset
(Prefix
(N
), Base
, Offset
);
1807 Unchecked_Convert_To
(RTE
(RE_Address
),
1810 Unchecked_Convert_To
(RTE
(RE_Integer_Address
),
1811 Make_Attribute_Reference
(Loc
,
1813 Attribute_Name
=> Name_Address
)),
1816 Unchecked_Convert_To
(RTE
(RE_Integer_Address
),
1817 Make_Op_Divide
(Loc
,
1818 Left_Opnd
=> Offset
,
1820 Make_Integer_Literal
(Loc
, System_Storage_Unit
))))));
1822 Analyze_And_Resolve
(N
, RTE
(RE_Address
));
1823 end Expand_Packed_Address_Reference
;
1825 ---------------------------------
1826 -- Expand_Packed_Bit_Reference --
1827 ---------------------------------
1829 procedure Expand_Packed_Bit_Reference
(N
: Node_Id
) is
1830 Loc
: constant Source_Ptr
:= Sloc
(N
);
1835 -- We build an expression that has the form
1837 -- (linear-subscript * component_size for each array reference
1838 -- + field'Bit_Position for each record field
1840 -- + ...) mod Storage_Unit;
1842 Get_Base_And_Bit_Offset
(Prefix
(N
), Base
, Offset
);
1845 Unchecked_Convert_To
(Universal_Integer
,
1847 Left_Opnd
=> Offset
,
1848 Right_Opnd
=> Make_Integer_Literal
(Loc
, System_Storage_Unit
))));
1850 Analyze_And_Resolve
(N
, Universal_Integer
);
1851 end Expand_Packed_Bit_Reference
;
1853 ------------------------------------
1854 -- Expand_Packed_Boolean_Operator --
1855 ------------------------------------
1857 -- This routine expands "a op b" for the packed cases
1859 procedure Expand_Packed_Boolean_Operator
(N
: Node_Id
) is
1860 Loc
: constant Source_Ptr
:= Sloc
(N
);
1861 Typ
: constant Entity_Id
:= Etype
(N
);
1862 L
: constant Node_Id
:= Relocate_Node
(Left_Opnd
(N
));
1863 R
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
1870 Convert_To_Actual_Subtype
(L
);
1871 Convert_To_Actual_Subtype
(R
);
1873 Ensure_Defined
(Etype
(L
), N
);
1874 Ensure_Defined
(Etype
(R
), N
);
1876 Apply_Length_Check
(R
, Etype
(L
));
1881 -- Deal with silly case of XOR where the subcomponent has a range
1882 -- True .. True where an exception must be raised.
1884 if Nkind
(N
) = N_Op_Xor
then
1885 Silly_Boolean_Array_Xor_Test
(N
, Rtyp
);
1888 -- Now that that silliness is taken care of, get packed array type
1890 Convert_To_PAT_Type
(L
);
1891 Convert_To_PAT_Type
(R
);
1895 -- For the modular case, we expand a op b into
1897 -- rtyp!(pat!(a) op pat!(b))
1899 -- where rtyp is the Etype of the left operand. Note that we do not
1900 -- convert to the base type, since this would be unconstrained, and
1901 -- hence not have a corresponding packed array type set.
1903 -- Note that both operands must be modular for this code to be used
1905 if Is_Modular_Integer_Type
(PAT
)
1907 Is_Modular_Integer_Type
(Etype
(R
))
1913 if Nkind
(N
) = N_Op_And
then
1914 P
:= Make_Op_And
(Loc
, L
, R
);
1916 elsif Nkind
(N
) = N_Op_Or
then
1917 P
:= Make_Op_Or
(Loc
, L
, R
);
1919 else -- Nkind (N) = N_Op_Xor
1920 P
:= Make_Op_Xor
(Loc
, L
, R
);
1923 Rewrite
(N
, Unchecked_Convert_To
(Ltyp
, P
));
1926 -- For the array case, we insert the actions
1930 -- System.Bit_Ops.Bit_And/Or/Xor
1932 -- Ltype'Length * Ltype'Component_Size;
1934 -- Rtype'Length * Rtype'Component_Size
1937 -- where Left and Right are the Packed_Bytes{1,2,4} operands and
1938 -- the second argument and fourth arguments are the lengths of the
1939 -- operands in bits. Then we replace the expression by a reference
1942 -- Note that if we are mixing a modular and array operand, everything
1943 -- works fine, since we ensure that the modular representation has the
1944 -- same physical layout as the array representation (that's what the
1945 -- left justified modular stuff in the big-endian case is about).
1949 Result_Ent
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
1953 if Nkind
(N
) = N_Op_And
then
1956 elsif Nkind
(N
) = N_Op_Or
then
1959 else -- Nkind (N) = N_Op_Xor
1963 Insert_Actions
(N
, New_List
(
1965 Make_Object_Declaration
(Loc
,
1966 Defining_Identifier
=> Result_Ent
,
1967 Object_Definition
=> New_Occurrence_Of
(Ltyp
, Loc
)),
1969 Make_Procedure_Call_Statement
(Loc
,
1970 Name
=> New_Occurrence_Of
(RTE
(E_Id
), Loc
),
1971 Parameter_Associations
=> New_List
(
1973 Make_Byte_Aligned_Attribute_Reference
(Loc
,
1975 Attribute_Name
=> Name_Address
),
1977 Make_Op_Multiply
(Loc
,
1979 Make_Attribute_Reference
(Loc
,
1982 (Etype
(First_Index
(Ltyp
)), Loc
),
1983 Attribute_Name
=> Name_Range_Length
),
1986 Make_Integer_Literal
(Loc
, Component_Size
(Ltyp
))),
1988 Make_Byte_Aligned_Attribute_Reference
(Loc
,
1990 Attribute_Name
=> Name_Address
),
1992 Make_Op_Multiply
(Loc
,
1994 Make_Attribute_Reference
(Loc
,
1997 (Etype
(First_Index
(Rtyp
)), Loc
),
1998 Attribute_Name
=> Name_Range_Length
),
2001 Make_Integer_Literal
(Loc
, Component_Size
(Rtyp
))),
2003 Make_Byte_Aligned_Attribute_Reference
(Loc
,
2004 Prefix
=> New_Occurrence_Of
(Result_Ent
, Loc
),
2005 Attribute_Name
=> Name_Address
)))));
2008 New_Occurrence_Of
(Result_Ent
, Loc
));
2012 Analyze_And_Resolve
(N
, Typ
, Suppress
=> All_Checks
);
2013 end Expand_Packed_Boolean_Operator
;
2015 -------------------------------------
2016 -- Expand_Packed_Element_Reference --
2017 -------------------------------------
2019 procedure Expand_Packed_Element_Reference
(N
: Node_Id
) is
2020 Loc
: constant Source_Ptr
:= Sloc
(N
);
2032 -- If the node is an actual in a call, the prefix has not been fully
2033 -- expanded, to account for the additional expansion for in-out actuals
2034 -- (see expand_actuals for details). If the prefix itself is a packed
2035 -- reference as well, we have to recurse to complete the transformation
2038 if Nkind
(Prefix
(N
)) = N_Indexed_Component
2039 and then not Analyzed
(Prefix
(N
))
2040 and then Is_Bit_Packed_Array
(Etype
(Prefix
(Prefix
(N
))))
2042 Expand_Packed_Element_Reference
(Prefix
(N
));
2045 -- If not bit packed, we have the enumeration case, which is easily
2046 -- dealt with (just adjust the subscripts of the indexed component)
2048 -- Note: this leaves the result as an indexed component, which is
2049 -- still a variable, so can be used in the assignment case, as is
2050 -- required in the enumeration case.
2052 if not Is_Bit_Packed_Array
(Etype
(Prefix
(N
))) then
2053 Setup_Enumeration_Packed_Array_Reference
(N
);
2057 -- Remaining processing is for the bit-packed case
2059 Obj
:= Relocate_Node
(Prefix
(N
));
2060 Convert_To_Actual_Subtype
(Obj
);
2061 Atyp
:= Etype
(Obj
);
2062 PAT
:= Packed_Array_Impl_Type
(Atyp
);
2063 Ctyp
:= Component_Type
(Atyp
);
2064 Csiz
:= UI_To_Int
(Component_Size
(Atyp
));
2066 -- For the AAMP target, indexing of certain packed array is passed
2067 -- through to the back end without expansion, because the expansion
2068 -- results in very inefficient code on that target. This allows the
2069 -- GNAAMP back end to generate specialized macros that support more
2070 -- efficient indexing of packed arrays with components having sizes
2071 -- that are small powers of two.
2074 and then (Csiz
= 1 or else Csiz
= 2 or else Csiz
= 4)
2079 -- Case of component size 1,2,4 or any component size for the modular
2080 -- case. These are the cases for which we can inline the code.
2082 if Csiz
= 1 or else Csiz
= 2 or else Csiz
= 4
2083 or else (Present
(PAT
) and then Is_Modular_Integer_Type
(PAT
))
2085 Setup_Inline_Packed_Array_Reference
(N
, Atyp
, Obj
, Cmask
, Shift
);
2086 Lit
:= Make_Integer_Literal
(Loc
, Cmask
);
2087 Set_Print_In_Hex
(Lit
);
2089 -- We generate a shift right to position the field, followed by a
2090 -- masking operation to extract the bit field, and we finally do an
2091 -- unchecked conversion to convert the result to the required target.
2093 -- Note that the unchecked conversion automatically deals with the
2094 -- bias if we are dealing with a biased representation. What will
2095 -- happen is that we temporarily generate the biased representation,
2096 -- but almost immediately that will be converted to the original
2097 -- unbiased component type, and the bias will disappear.
2101 Left_Opnd
=> Make_Shift_Right
(Obj
, Shift
),
2103 Set_Etype
(Arg
, Ctyp
);
2105 -- Component extraction is performed on a native endianness scalar
2106 -- value: if Atyp has reverse storage order, then it has been byte
2107 -- swapped, and if the component being extracted is itself of a
2108 -- composite type with reverse storage order, then we need to swap
2109 -- it back to its expected endianness after extraction.
2111 if Reverse_Storage_Order
(Atyp
)
2112 and then (Is_Record_Type
(Ctyp
) or else Is_Array_Type
(Ctyp
))
2113 and then Reverse_Storage_Order
(Ctyp
)
2115 Arg
:= Revert_Storage_Order
(Arg
);
2118 -- We needed to analyze this before we do the unchecked convert
2119 -- below, but we need it temporarily attached to the tree for
2120 -- this analysis (hence the temporary Set_Parent call).
2122 Set_Parent
(Arg
, Parent
(N
));
2123 Analyze_And_Resolve
(Arg
);
2125 Rewrite
(N
, RJ_Unchecked_Convert_To
(Ctyp
, Arg
));
2127 -- All other component sizes for non-modular case
2132 -- Component_Type!(Get_nn (Arr'address, Subscr))
2134 -- where Subscr is the computed linear subscript
2139 Rev_SSO
: constant Node_Id
:=
2141 (Boolean_Literals
(Reverse_Storage_Order
(Atyp
)), Loc
);
2144 -- Acquire proper Get entity. We use the aligned or unaligned
2145 -- case as appropriate.
2147 if Known_Aligned_Enough
(Obj
, Csiz
) then
2148 Get_nn
:= RTE
(Get_Id
(Csiz
));
2150 Get_nn
:= RTE
(GetU_Id
(Csiz
));
2153 -- Now generate the get reference
2155 Compute_Linear_Subscript
(Atyp
, N
, Subscr
);
2157 -- Below we make the assumption that Obj is at least byte
2158 -- aligned, since otherwise its address cannot be taken.
2159 -- The assumption holds since the only arrays that can be
2160 -- misaligned are small packed arrays which are implemented
2161 -- as a modular type, and that is not the case here.
2164 Unchecked_Convert_To
(Ctyp
,
2165 Make_Function_Call
(Loc
,
2166 Name
=> New_Occurrence_Of
(Get_nn
, Loc
),
2167 Parameter_Associations
=> New_List
(
2168 Make_Attribute_Reference
(Loc
,
2170 Attribute_Name
=> Name_Address
),
2176 Analyze_And_Resolve
(N
, Ctyp
, Suppress
=> All_Checks
);
2177 end Expand_Packed_Element_Reference
;
2179 ----------------------
2180 -- Expand_Packed_Eq --
2181 ----------------------
2183 -- Handles expansion of "=" on packed array types
2185 procedure Expand_Packed_Eq
(N
: Node_Id
) is
2186 Loc
: constant Source_Ptr
:= Sloc
(N
);
2187 L
: constant Node_Id
:= Relocate_Node
(Left_Opnd
(N
));
2188 R
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
2198 Convert_To_Actual_Subtype
(L
);
2199 Convert_To_Actual_Subtype
(R
);
2200 Ltyp
:= Underlying_Type
(Etype
(L
));
2201 Rtyp
:= Underlying_Type
(Etype
(R
));
2203 Convert_To_PAT_Type
(L
);
2204 Convert_To_PAT_Type
(R
);
2208 Make_Op_Multiply
(Loc
,
2210 Make_Attribute_Reference
(Loc
,
2211 Prefix
=> New_Occurrence_Of
(Ltyp
, Loc
),
2212 Attribute_Name
=> Name_Length
),
2214 Make_Integer_Literal
(Loc
, Component_Size
(Ltyp
)));
2217 Make_Op_Multiply
(Loc
,
2219 Make_Attribute_Reference
(Loc
,
2220 Prefix
=> New_Occurrence_Of
(Rtyp
, Loc
),
2221 Attribute_Name
=> Name_Length
),
2223 Make_Integer_Literal
(Loc
, Component_Size
(Rtyp
)));
2225 -- For the modular case, we transform the comparison to:
2227 -- Ltyp'Length = Rtyp'Length and then PAT!(L) = PAT!(R)
2229 -- where PAT is the packed array type. This works fine, since in the
2230 -- modular case we guarantee that the unused bits are always zeroes.
2231 -- We do have to compare the lengths because we could be comparing
2232 -- two different subtypes of the same base type.
2234 if Is_Modular_Integer_Type
(PAT
) then
2239 Left_Opnd
=> LLexpr
,
2240 Right_Opnd
=> RLexpr
),
2247 -- For the non-modular case, we call a runtime routine
2249 -- System.Bit_Ops.Bit_Eq
2250 -- (L'Address, L_Length, R'Address, R_Length)
2252 -- where PAT is the packed array type, and the lengths are the lengths
2253 -- in bits of the original packed arrays. This routine takes care of
2254 -- not comparing the unused bits in the last byte.
2258 Make_Function_Call
(Loc
,
2259 Name
=> New_Occurrence_Of
(RTE
(RE_Bit_Eq
), Loc
),
2260 Parameter_Associations
=> New_List
(
2261 Make_Byte_Aligned_Attribute_Reference
(Loc
,
2263 Attribute_Name
=> Name_Address
),
2267 Make_Byte_Aligned_Attribute_Reference
(Loc
,
2269 Attribute_Name
=> Name_Address
),
2274 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
2275 end Expand_Packed_Eq
;
2277 -----------------------
2278 -- Expand_Packed_Not --
2279 -----------------------
2281 -- Handles expansion of "not" on packed array types
2283 procedure Expand_Packed_Not
(N
: Node_Id
) is
2284 Loc
: constant Source_Ptr
:= Sloc
(N
);
2285 Typ
: constant Entity_Id
:= Etype
(N
);
2286 Opnd
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
2293 Convert_To_Actual_Subtype
(Opnd
);
2294 Rtyp
:= Etype
(Opnd
);
2296 -- Deal with silly False..False and True..True subtype case
2298 Silly_Boolean_Array_Not_Test
(N
, Rtyp
);
2300 -- Now that the silliness is taken care of, get packed array type
2302 Convert_To_PAT_Type
(Opnd
);
2303 PAT
:= Etype
(Opnd
);
2305 -- For the case where the packed array type is a modular type, "not A"
2306 -- expands simply into:
2308 -- Rtyp!(PAT!(A) xor Mask)
2310 -- where PAT is the packed array type, Mask is a mask of all 1 bits of
2311 -- length equal to the size of this packed type, and Rtyp is the actual
2312 -- actual subtype of the operand.
2314 Lit
:= Make_Integer_Literal
(Loc
, 2 ** RM_Size
(PAT
) - 1);
2315 Set_Print_In_Hex
(Lit
);
2317 if not Is_Array_Type
(PAT
) then
2319 Unchecked_Convert_To
(Rtyp
,
2322 Right_Opnd
=> Lit
)));
2324 -- For the array case, we insert the actions
2328 -- System.Bit_Ops.Bit_Not
2330 -- Typ'Length * Typ'Component_Size,
2333 -- where Opnd is the Packed_Bytes{1,2,4} operand and the second argument
2334 -- is the length of the operand in bits. We then replace the expression
2335 -- with a reference to Result.
2339 Result_Ent
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
2342 Insert_Actions
(N
, New_List
(
2343 Make_Object_Declaration
(Loc
,
2344 Defining_Identifier
=> Result_Ent
,
2345 Object_Definition
=> New_Occurrence_Of
(Rtyp
, Loc
)),
2347 Make_Procedure_Call_Statement
(Loc
,
2348 Name
=> New_Occurrence_Of
(RTE
(RE_Bit_Not
), Loc
),
2349 Parameter_Associations
=> New_List
(
2350 Make_Byte_Aligned_Attribute_Reference
(Loc
,
2352 Attribute_Name
=> Name_Address
),
2354 Make_Op_Multiply
(Loc
,
2356 Make_Attribute_Reference
(Loc
,
2359 (Etype
(First_Index
(Rtyp
)), Loc
),
2360 Attribute_Name
=> Name_Range_Length
),
2363 Make_Integer_Literal
(Loc
, Component_Size
(Rtyp
))),
2365 Make_Byte_Aligned_Attribute_Reference
(Loc
,
2366 Prefix
=> New_Occurrence_Of
(Result_Ent
, Loc
),
2367 Attribute_Name
=> Name_Address
)))));
2369 Rewrite
(N
, New_Occurrence_Of
(Result_Ent
, Loc
));
2373 Analyze_And_Resolve
(N
, Typ
, Suppress
=> All_Checks
);
2374 end Expand_Packed_Not
;
2376 -----------------------------
2377 -- Get_Base_And_Bit_Offset --
2378 -----------------------------
2380 procedure Get_Base_And_Bit_Offset
2383 Offset
: out Node_Id
)
2394 -- We build up an expression serially that has the form
2396 -- linear-subscript * component_size for each array reference
2397 -- + field'Bit_Position for each record field
2403 if Nkind
(Base
) = N_Indexed_Component
then
2404 Convert_To_Actual_Subtype
(Prefix
(Base
));
2405 Atyp
:= Etype
(Prefix
(Base
));
2406 Compute_Linear_Subscript
(Atyp
, Base
, Subscr
);
2409 Make_Op_Multiply
(Loc
,
2410 Left_Opnd
=> Subscr
,
2412 Make_Attribute_Reference
(Loc
,
2413 Prefix
=> New_Occurrence_Of
(Atyp
, Loc
),
2414 Attribute_Name
=> Name_Component_Size
));
2416 elsif Nkind
(Base
) = N_Selected_Component
then
2418 Make_Attribute_Reference
(Loc
,
2419 Prefix
=> Selector_Name
(Base
),
2420 Attribute_Name
=> Name_Bit_Position
);
2432 Left_Opnd
=> Offset
,
2433 Right_Opnd
=> Term
);
2436 Base
:= Prefix
(Base
);
2438 end Get_Base_And_Bit_Offset
;
2440 -------------------------------------
2441 -- Involves_Packed_Array_Reference --
2442 -------------------------------------
2444 function Involves_Packed_Array_Reference
(N
: Node_Id
) return Boolean is
2446 if Nkind
(N
) = N_Indexed_Component
2447 and then Is_Bit_Packed_Array
(Etype
(Prefix
(N
)))
2451 elsif Nkind
(N
) = N_Selected_Component
then
2452 return Involves_Packed_Array_Reference
(Prefix
(N
));
2457 end Involves_Packed_Array_Reference
;
2459 --------------------------
2460 -- Known_Aligned_Enough --
2461 --------------------------
2463 function Known_Aligned_Enough
(Obj
: Node_Id
; Csiz
: Nat
) return Boolean is
2464 Typ
: constant Entity_Id
:= Etype
(Obj
);
2466 function In_Partially_Packed_Record
(Comp
: Entity_Id
) return Boolean;
2467 -- If the component is in a record that contains previous packed
2468 -- components, consider it unaligned because the back-end might
2469 -- choose to pack the rest of the record. Lead to less efficient code,
2470 -- but safer vis-a-vis of back-end choices.
2472 --------------------------------
2473 -- In_Partially_Packed_Record --
2474 --------------------------------
2476 function In_Partially_Packed_Record
(Comp
: Entity_Id
) return Boolean is
2477 Rec_Type
: constant Entity_Id
:= Scope
(Comp
);
2478 Prev_Comp
: Entity_Id
;
2481 Prev_Comp
:= First_Entity
(Rec_Type
);
2482 while Present
(Prev_Comp
) loop
2483 if Is_Packed
(Etype
(Prev_Comp
)) then
2486 elsif Prev_Comp
= Comp
then
2490 Next_Entity
(Prev_Comp
);
2494 end In_Partially_Packed_Record
;
2496 -- Start of processing for Known_Aligned_Enough
2499 -- Odd bit sizes don't need alignment anyway
2501 if Csiz
mod 2 = 1 then
2504 -- If we have a specified alignment, see if it is sufficient, if not
2505 -- then we can't possibly be aligned enough in any case.
2507 elsif Known_Alignment
(Etype
(Obj
)) then
2508 -- Alignment required is 4 if size is a multiple of 4, and
2509 -- 2 otherwise (e.g. 12 bits requires 4, 10 bits requires 2)
2511 if Alignment
(Etype
(Obj
)) < 4 - (Csiz
mod 4) then
2516 -- OK, alignment should be sufficient, if object is aligned
2518 -- If object is strictly aligned, then it is definitely aligned
2520 if Strict_Alignment
(Typ
) then
2523 -- Case of subscripted array reference
2525 elsif Nkind
(Obj
) = N_Indexed_Component
then
2527 -- If we have a pointer to an array, then this is definitely
2528 -- aligned, because pointers always point to aligned versions.
2530 if Is_Access_Type
(Etype
(Prefix
(Obj
))) then
2533 -- Otherwise, go look at the prefix
2536 return Known_Aligned_Enough
(Prefix
(Obj
), Csiz
);
2539 -- Case of record field
2541 elsif Nkind
(Obj
) = N_Selected_Component
then
2543 -- What is significant here is whether the record type is packed
2545 if Is_Record_Type
(Etype
(Prefix
(Obj
)))
2546 and then Is_Packed
(Etype
(Prefix
(Obj
)))
2550 -- Or the component has a component clause which might cause
2551 -- the component to become unaligned (we can't tell if the
2552 -- backend is doing alignment computations).
2554 elsif Present
(Component_Clause
(Entity
(Selector_Name
(Obj
)))) then
2557 elsif In_Partially_Packed_Record
(Entity
(Selector_Name
(Obj
))) then
2560 -- In all other cases, go look at prefix
2563 return Known_Aligned_Enough
(Prefix
(Obj
), Csiz
);
2566 elsif Nkind
(Obj
) = N_Type_Conversion
then
2567 return Known_Aligned_Enough
(Expression
(Obj
), Csiz
);
2569 -- For a formal parameter, it is safer to assume that it is not
2570 -- aligned, because the formal may be unconstrained while the actual
2571 -- is constrained. In this situation, a small constrained packed
2572 -- array, represented in modular form, may be unaligned.
2574 elsif Is_Entity_Name
(Obj
) then
2575 return not Is_Formal
(Entity
(Obj
));
2578 -- If none of the above, must be aligned
2581 end Known_Aligned_Enough
;
2583 ---------------------
2584 -- Make_Shift_Left --
2585 ---------------------
2587 function Make_Shift_Left
(N
: Node_Id
; S
: Node_Id
) return Node_Id
is
2591 if Compile_Time_Known_Value
(S
) and then Expr_Value
(S
) = 0 then
2595 Make_Op_Shift_Left
(Sloc
(N
),
2598 Set_Shift_Count_OK
(Nod
, True);
2601 end Make_Shift_Left
;
2603 ----------------------
2604 -- Make_Shift_Right --
2605 ----------------------
2607 function Make_Shift_Right
(N
: Node_Id
; S
: Node_Id
) return Node_Id
is
2611 if Compile_Time_Known_Value
(S
) and then Expr_Value
(S
) = 0 then
2615 Make_Op_Shift_Right
(Sloc
(N
),
2618 Set_Shift_Count_OK
(Nod
, True);
2621 end Make_Shift_Right
;
2623 -----------------------------
2624 -- RJ_Unchecked_Convert_To --
2625 -----------------------------
2627 function RJ_Unchecked_Convert_To
2629 Expr
: Node_Id
) return Node_Id
2631 Source_Typ
: constant Entity_Id
:= Etype
(Expr
);
2632 Target_Typ
: constant Entity_Id
:= Typ
;
2634 Src
: Node_Id
:= Expr
;
2640 Source_Siz
:= UI_To_Int
(RM_Size
(Source_Typ
));
2641 Target_Siz
:= UI_To_Int
(RM_Size
(Target_Typ
));
2643 -- For a little-endian target type stored byte-swapped on a
2644 -- big-endian machine, do not mask to Target_Siz bits.
2647 and then (Is_Record_Type
(Target_Typ
)
2649 Is_Array_Type
(Target_Typ
))
2650 and then Reverse_Storage_Order
(Target_Typ
)
2652 Source_Siz
:= Target_Siz
;
2655 -- First step, if the source type is not a discrete type, then we first
2656 -- convert to a modular type of the source length, since otherwise, on
2657 -- a big-endian machine, we get left-justification. We do it for little-
2658 -- endian machines as well, because there might be junk bits that are
2659 -- not cleared if the type is not numeric.
2661 if Source_Siz
/= Target_Siz
2662 and then not Is_Discrete_Type
(Source_Typ
)
2664 Src
:= Unchecked_Convert_To
(RTE
(Bits_Id
(Source_Siz
)), Src
);
2667 -- In the big endian case, if the lengths of the two types differ, then
2668 -- we must worry about possible left justification in the conversion,
2669 -- and avoiding that is what this is all about.
2671 if Bytes_Big_Endian
and then Source_Siz
/= Target_Siz
then
2673 -- Next step. If the target is not a discrete type, then we first
2674 -- convert to a modular type of the target length, since otherwise,
2675 -- on a big-endian machine, we get left-justification.
2677 if not Is_Discrete_Type
(Target_Typ
) then
2678 Src
:= Unchecked_Convert_To
(RTE
(Bits_Id
(Target_Siz
)), Src
);
2682 -- And now we can do the final conversion to the target type
2684 return Unchecked_Convert_To
(Target_Typ
, Src
);
2685 end RJ_Unchecked_Convert_To
;
2687 ----------------------------------------------
2688 -- Setup_Enumeration_Packed_Array_Reference --
2689 ----------------------------------------------
2691 -- All we have to do here is to find the subscripts that correspond to the
2692 -- index positions that have non-standard enumeration types and insert a
2693 -- Pos attribute to get the proper subscript value.
2695 -- Finally the prefix must be uncheck-converted to the corresponding packed
2698 -- Note that the component type is unchanged, so we do not need to fiddle
2699 -- with the types (Gigi always automatically takes the packed array type if
2700 -- it is set, as it will be in this case).
2702 procedure Setup_Enumeration_Packed_Array_Reference
(N
: Node_Id
) is
2703 Pfx
: constant Node_Id
:= Prefix
(N
);
2704 Typ
: constant Entity_Id
:= Etype
(N
);
2705 Exprs
: constant List_Id
:= Expressions
(N
);
2709 -- If the array is unconstrained, then we replace the array reference
2710 -- with its actual subtype. This actual subtype will have a packed array
2711 -- type with appropriate bounds.
2713 if not Is_Constrained
(Packed_Array_Impl_Type
(Etype
(Pfx
))) then
2714 Convert_To_Actual_Subtype
(Pfx
);
2717 Expr
:= First
(Exprs
);
2718 while Present
(Expr
) loop
2720 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
2721 Expr_Typ
: constant Entity_Id
:= Etype
(Expr
);
2724 if Is_Enumeration_Type
(Expr_Typ
)
2725 and then Has_Non_Standard_Rep
(Expr_Typ
)
2728 Make_Attribute_Reference
(Loc
,
2729 Prefix
=> New_Occurrence_Of
(Expr_Typ
, Loc
),
2730 Attribute_Name
=> Name_Pos
,
2731 Expressions
=> New_List
(Relocate_Node
(Expr
))));
2732 Analyze_And_Resolve
(Expr
, Standard_Natural
);
2740 Make_Indexed_Component
(Sloc
(N
),
2742 Unchecked_Convert_To
(Packed_Array_Impl_Type
(Etype
(Pfx
)), Pfx
),
2743 Expressions
=> Exprs
));
2745 Analyze_And_Resolve
(N
, Typ
);
2746 end Setup_Enumeration_Packed_Array_Reference
;
2748 -----------------------------------------
2749 -- Setup_Inline_Packed_Array_Reference --
2750 -----------------------------------------
2752 procedure Setup_Inline_Packed_Array_Reference
2755 Obj
: in out Node_Id
;
2757 Shift
: out Node_Id
)
2759 Loc
: constant Source_Ptr
:= Sloc
(N
);
2766 Csiz
:= Component_Size
(Atyp
);
2768 Convert_To_PAT_Type
(Obj
);
2771 Cmask
:= 2 ** Csiz
- 1;
2773 if Is_Array_Type
(PAT
) then
2774 Otyp
:= Component_Type
(PAT
);
2775 Osiz
:= Component_Size
(PAT
);
2780 -- In the case where the PAT is a modular type, we want the actual
2781 -- size in bits of the modular value we use. This is neither the
2782 -- Object_Size nor the Value_Size, either of which may have been
2783 -- reset to strange values, but rather the minimum size. Note that
2784 -- since this is a modular type with full range, the issue of
2785 -- biased representation does not arise.
2787 Osiz
:= UI_From_Int
(Minimum_Size
(Otyp
));
2790 Compute_Linear_Subscript
(Atyp
, N
, Shift
);
2792 -- If the component size is not 1, then the subscript must be multiplied
2793 -- by the component size to get the shift count.
2797 Make_Op_Multiply
(Loc
,
2798 Left_Opnd
=> Make_Integer_Literal
(Loc
, Csiz
),
2799 Right_Opnd
=> Shift
);
2802 -- If we have the array case, then this shift count must be broken down
2803 -- into a byte subscript, and a shift within the byte.
2805 if Is_Array_Type
(PAT
) then
2808 New_Shift
: Node_Id
;
2811 -- We must analyze shift, since we will duplicate it
2813 Set_Parent
(Shift
, N
);
2815 (Shift
, Standard_Integer
, Suppress
=> All_Checks
);
2817 -- The shift count within the word is
2822 Left_Opnd
=> Duplicate_Subexpr
(Shift
),
2823 Right_Opnd
=> Make_Integer_Literal
(Loc
, Osiz
));
2825 -- The subscript to be used on the PAT array is
2829 Make_Indexed_Component
(Loc
,
2831 Expressions
=> New_List
(
2832 Make_Op_Divide
(Loc
,
2833 Left_Opnd
=> Duplicate_Subexpr
(Shift
),
2834 Right_Opnd
=> Make_Integer_Literal
(Loc
, Osiz
))));
2839 -- For the modular integer case, the object to be manipulated is the
2840 -- entire array, so Obj is unchanged. Note that we will reset its type
2841 -- to PAT before returning to the caller.
2847 -- The one remaining step is to modify the shift count for the
2848 -- big-endian case. Consider the following example in a byte:
2850 -- xxxxxxxx bits of byte
2851 -- vvvvvvvv bits of value
2852 -- 33221100 little-endian numbering
2853 -- 00112233 big-endian numbering
2855 -- Here we have the case of 2-bit fields
2857 -- For the little-endian case, we already have the proper shift count
2858 -- set, e.g. for element 2, the shift count is 2*2 = 4.
2860 -- For the big endian case, we have to adjust the shift count, computing
2861 -- it as (N - F) - Shift, where N is the number of bits in an element of
2862 -- the array used to implement the packed array, F is the number of bits
2863 -- in a source array element, and Shift is the count so far computed.
2865 -- We also have to adjust if the storage order is reversed
2867 if Bytes_Big_Endian
xor Reverse_Storage_Order
(Base_Type
(Atyp
)) then
2869 Make_Op_Subtract
(Loc
,
2870 Left_Opnd
=> Make_Integer_Literal
(Loc
, Osiz
- Csiz
),
2871 Right_Opnd
=> Shift
);
2874 Set_Parent
(Shift
, N
);
2875 Set_Parent
(Obj
, N
);
2876 Analyze_And_Resolve
(Obj
, Otyp
, Suppress
=> All_Checks
);
2877 Analyze_And_Resolve
(Shift
, Standard_Integer
, Suppress
=> All_Checks
);
2879 -- Make sure final type of object is the appropriate packed type
2881 Set_Etype
(Obj
, Otyp
);
2883 end Setup_Inline_Packed_Array_Reference
;