Daily bump.
[official-gcc.git] / gcc / regclass.c
blob4e162882bd865766b88d7fbafbb72a0e24294556
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 88, 91-98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file contains two passes of the compiler: reg_scan and reg_class.
23 It also defines some tables of information about the hardware registers
24 and a function init_reg_sets to initialize the tables. */
26 #include "config.h"
27 #include "system.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "flags.h"
31 #include "basic-block.h"
32 #include "regs.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "reload.h"
36 #include "real.h"
37 #include "toplev.h"
38 #include "output.h"
40 #ifndef REGISTER_MOVE_COST
41 #define REGISTER_MOVE_COST(x, y) 2
42 #endif
44 static void init_reg_sets_1 PROTO((void));
45 static void init_reg_modes PROTO((void));
47 /* If we have auto-increment or auto-decrement and we can have secondary
48 reloads, we are not allowed to use classes requiring secondary
49 reloads for pseudos auto-incremented since reload can't handle it. */
51 #ifdef AUTO_INC_DEC
52 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
53 #define FORBIDDEN_INC_DEC_CLASSES
54 #endif
55 #endif
57 /* Register tables used by many passes. */
59 /* Indexed by hard register number, contains 1 for registers
60 that are fixed use (stack pointer, pc, frame pointer, etc.).
61 These are the registers that cannot be used to allocate
62 a pseudo reg for general use. */
64 char fixed_regs[FIRST_PSEUDO_REGISTER];
66 /* Same info as a HARD_REG_SET. */
68 HARD_REG_SET fixed_reg_set;
70 /* Data for initializing the above. */
72 static char initial_fixed_regs[] = FIXED_REGISTERS;
74 /* Indexed by hard register number, contains 1 for registers
75 that are fixed use or are clobbered by function calls.
76 These are the registers that cannot be used to allocate
77 a pseudo reg whose life crosses calls unless we are able
78 to save/restore them across the calls. */
80 char call_used_regs[FIRST_PSEUDO_REGISTER];
82 /* Same info as a HARD_REG_SET. */
84 HARD_REG_SET call_used_reg_set;
86 /* HARD_REG_SET of registers we want to avoid caller saving. */
87 HARD_REG_SET losing_caller_save_reg_set;
89 /* Data for initializing the above. */
91 static char initial_call_used_regs[] = CALL_USED_REGISTERS;
93 /* Indexed by hard register number, contains 1 for registers that are
94 fixed use or call used registers that cannot hold quantities across
95 calls even if we are willing to save and restore them. call fixed
96 registers are a subset of call used registers. */
98 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
100 /* The same info as a HARD_REG_SET. */
102 HARD_REG_SET call_fixed_reg_set;
104 /* Number of non-fixed registers. */
106 int n_non_fixed_regs;
108 /* Indexed by hard register number, contains 1 for registers
109 that are being used for global register decls.
110 These must be exempt from ordinary flow analysis
111 and are also considered fixed. */
113 char global_regs[FIRST_PSEUDO_REGISTER];
115 /* Table of register numbers in the order in which to try to use them. */
116 #ifdef REG_ALLOC_ORDER
117 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
118 #endif
120 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
122 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
124 /* The same information, but as an array of unsigned ints. We copy from
125 these unsigned ints to the table above. We do this so the tm.h files
126 do not have to be aware of the wordsize for machines with <= 64 regs. */
128 #define N_REG_INTS \
129 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
131 static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
132 = REG_CLASS_CONTENTS;
134 /* For each reg class, number of regs it contains. */
136 int reg_class_size[N_REG_CLASSES];
138 /* For each reg class, table listing all the containing classes. */
140 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
142 /* For each reg class, table listing all the classes contained in it. */
144 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
146 /* For each pair of reg classes,
147 a largest reg class contained in their union. */
149 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
151 /* For each pair of reg classes,
152 the smallest reg class containing their union. */
154 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
156 /* Array containing all of the register names */
158 char *reg_names[] = REGISTER_NAMES;
160 /* For each hard register, the widest mode object that it can contain.
161 This will be a MODE_INT mode if the register can hold integers. Otherwise
162 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
163 register. */
165 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
167 /* Maximum cost of moving from a register in one class to a register in
168 another class. Based on REGISTER_MOVE_COST. */
170 static int move_cost[N_REG_CLASSES][N_REG_CLASSES];
172 /* Similar, but here we don't have to move if the first index is a subset
173 of the second so in that case the cost is zero. */
175 static int may_move_cost[N_REG_CLASSES][N_REG_CLASSES];
177 #ifdef FORBIDDEN_INC_DEC_CLASSES
179 /* These are the classes that regs which are auto-incremented or decremented
180 cannot be put in. */
182 static int forbidden_inc_dec_class[N_REG_CLASSES];
184 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
185 context. */
187 static char *in_inc_dec;
189 #endif /* FORBIDDEN_INC_DEC_CLASSES */
191 #ifdef HAVE_SECONDARY_RELOADS
193 /* Sample MEM values for use by memory_move_secondary_cost. */
195 static rtx top_of_stack[MAX_MACHINE_MODE];
197 #endif /* HAVE_SECONDARY_RELOADS */
199 /* Linked list of reg_info structures allocated for reg_n_info array.
200 Grouping all of the allocated structures together in one lump
201 means only one call to bzero to clear them, rather than n smaller
202 calls. */
203 struct reg_info_data {
204 struct reg_info_data *next; /* next set of reg_info structures */
205 size_t min_index; /* minimum index # */
206 size_t max_index; /* maximum index # */
207 char used_p; /* non-zero if this has been used previously */
208 reg_info data[1]; /* beginning of the reg_info data */
211 static struct reg_info_data *reg_info_head;
214 /* Function called only once to initialize the above data on reg usage.
215 Once this is done, various switches may override. */
217 void
218 init_reg_sets ()
220 register int i, j;
222 /* First copy the register information from the initial int form into
223 the regsets. */
225 for (i = 0; i < N_REG_CLASSES; i++)
227 CLEAR_HARD_REG_SET (reg_class_contents[i]);
229 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
230 if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
231 & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
232 SET_HARD_REG_BIT (reg_class_contents[i], j);
235 bcopy (initial_fixed_regs, fixed_regs, sizeof fixed_regs);
236 bcopy (initial_call_used_regs, call_used_regs, sizeof call_used_regs);
237 bzero (global_regs, sizeof global_regs);
239 /* Do any additional initialization regsets may need */
240 INIT_ONCE_REG_SET ();
243 /* After switches have been processed, which perhaps alter
244 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
246 static void
247 init_reg_sets_1 ()
249 register unsigned int i, j;
251 /* This macro allows the fixed or call-used registers
252 and the register classes to depend on target flags. */
254 #ifdef CONDITIONAL_REGISTER_USAGE
255 CONDITIONAL_REGISTER_USAGE;
256 #endif
258 /* Compute number of hard regs in each class. */
260 bzero ((char *) reg_class_size, sizeof reg_class_size);
261 for (i = 0; i < N_REG_CLASSES; i++)
262 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
263 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
264 reg_class_size[i]++;
266 /* Initialize the table of subunions.
267 reg_class_subunion[I][J] gets the largest-numbered reg-class
268 that is contained in the union of classes I and J. */
270 for (i = 0; i < N_REG_CLASSES; i++)
272 for (j = 0; j < N_REG_CLASSES; j++)
274 #ifdef HARD_REG_SET
275 register /* Declare it register if it's a scalar. */
276 #endif
277 HARD_REG_SET c;
278 register int k;
280 COPY_HARD_REG_SET (c, reg_class_contents[i]);
281 IOR_HARD_REG_SET (c, reg_class_contents[j]);
282 for (k = 0; k < N_REG_CLASSES; k++)
284 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
285 subclass1);
286 continue;
288 subclass1:
289 /* keep the largest subclass */ /* SPEE 900308 */
290 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
291 reg_class_contents[(int) reg_class_subunion[i][j]],
292 subclass2);
293 reg_class_subunion[i][j] = (enum reg_class) k;
294 subclass2:
300 /* Initialize the table of superunions.
301 reg_class_superunion[I][J] gets the smallest-numbered reg-class
302 containing the union of classes I and J. */
304 for (i = 0; i < N_REG_CLASSES; i++)
306 for (j = 0; j < N_REG_CLASSES; j++)
308 #ifdef HARD_REG_SET
309 register /* Declare it register if it's a scalar. */
310 #endif
311 HARD_REG_SET c;
312 register int k;
314 COPY_HARD_REG_SET (c, reg_class_contents[i]);
315 IOR_HARD_REG_SET (c, reg_class_contents[j]);
316 for (k = 0; k < N_REG_CLASSES; k++)
317 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
319 superclass:
320 reg_class_superunion[i][j] = (enum reg_class) k;
324 /* Initialize the tables of subclasses and superclasses of each reg class.
325 First clear the whole table, then add the elements as they are found. */
327 for (i = 0; i < N_REG_CLASSES; i++)
329 for (j = 0; j < N_REG_CLASSES; j++)
331 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
332 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
336 for (i = 0; i < N_REG_CLASSES; i++)
338 if (i == (int) NO_REGS)
339 continue;
341 for (j = i + 1; j < N_REG_CLASSES; j++)
343 enum reg_class *p;
345 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
346 subclass);
347 continue;
348 subclass:
349 /* Reg class I is a subclass of J.
350 Add J to the table of superclasses of I. */
351 p = &reg_class_superclasses[i][0];
352 while (*p != LIM_REG_CLASSES) p++;
353 *p = (enum reg_class) j;
354 /* Add I to the table of superclasses of J. */
355 p = &reg_class_subclasses[j][0];
356 while (*p != LIM_REG_CLASSES) p++;
357 *p = (enum reg_class) i;
361 /* Initialize "constant" tables. */
363 CLEAR_HARD_REG_SET (fixed_reg_set);
364 CLEAR_HARD_REG_SET (call_used_reg_set);
365 CLEAR_HARD_REG_SET (call_fixed_reg_set);
367 bcopy (fixed_regs, call_fixed_regs, sizeof call_fixed_regs);
369 n_non_fixed_regs = 0;
371 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
373 if (fixed_regs[i])
374 SET_HARD_REG_BIT (fixed_reg_set, i);
375 else
376 n_non_fixed_regs++;
378 if (call_used_regs[i])
379 SET_HARD_REG_BIT (call_used_reg_set, i);
380 if (call_fixed_regs[i])
381 SET_HARD_REG_BIT (call_fixed_reg_set, i);
382 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
383 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
386 /* Initialize the move cost table. Find every subset of each class
387 and take the maximum cost of moving any subset to any other. */
389 for (i = 0; i < N_REG_CLASSES; i++)
390 for (j = 0; j < N_REG_CLASSES; j++)
392 int cost = i == j ? 2 : REGISTER_MOVE_COST (i, j);
393 enum reg_class *p1, *p2;
395 for (p2 = &reg_class_subclasses[j][0]; *p2 != LIM_REG_CLASSES; p2++)
396 if (*p2 != i)
397 cost = MAX (cost, REGISTER_MOVE_COST (i, *p2));
399 for (p1 = &reg_class_subclasses[i][0]; *p1 != LIM_REG_CLASSES; p1++)
401 if (*p1 != j)
402 cost = MAX (cost, REGISTER_MOVE_COST (*p1, j));
404 for (p2 = &reg_class_subclasses[j][0];
405 *p2 != LIM_REG_CLASSES; p2++)
406 if (*p1 != *p2)
407 cost = MAX (cost, REGISTER_MOVE_COST (*p1, *p2));
410 move_cost[i][j] = cost;
412 if (reg_class_subset_p (i, j))
413 cost = 0;
415 may_move_cost[i][j] = cost;
419 /* Compute the table of register modes.
420 These values are used to record death information for individual registers
421 (as opposed to a multi-register mode). */
423 static void
424 init_reg_modes ()
426 register int i;
428 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
430 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
432 /* If we couldn't find a valid mode, just use the previous mode.
433 ??? One situation in which we need to do this is on the mips where
434 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
435 to use DF mode for the even registers and VOIDmode for the odd
436 (for the cpu models where the odd ones are inaccessible). */
437 if (reg_raw_mode[i] == VOIDmode)
438 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
442 /* Finish initializing the register sets and
443 initialize the register modes. */
445 void
446 init_regs ()
448 /* This finishes what was started by init_reg_sets, but couldn't be done
449 until after register usage was specified. */
450 init_reg_sets_1 ();
452 init_reg_modes ();
454 #ifdef HAVE_SECONDARY_RELOADS
456 /* Make some fake stack-frame MEM references for use in
457 memory_move_secondary_cost. */
458 int i;
459 for (i = 0; i < MAX_MACHINE_MODE; i++)
460 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
462 #endif
465 #ifdef HAVE_SECONDARY_RELOADS
467 /* Compute extra cost of moving registers to/from memory due to reloads.
468 Only needed if secondary reloads are required for memory moves. */
471 memory_move_secondary_cost (mode, class, in)
472 enum machine_mode mode;
473 enum reg_class class;
474 int in;
476 enum reg_class altclass;
477 int partial_cost = 0;
478 /* We need a memory reference to feed to SECONDARY... macros. */
479 rtx mem = top_of_stack[(int) mode];
481 if (in)
483 #ifdef SECONDARY_INPUT_RELOAD_CLASS
484 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
485 #else
486 altclass = NO_REGS;
487 #endif
489 else
491 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
492 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
493 #else
494 altclass = NO_REGS;
495 #endif
498 if (altclass == NO_REGS)
499 return 0;
501 if (in)
502 partial_cost = REGISTER_MOVE_COST (altclass, class);
503 else
504 partial_cost = REGISTER_MOVE_COST (class, altclass);
506 if (class == altclass)
507 /* This isn't simply a copy-to-temporary situation. Can't guess
508 what it is, so MEMORY_MOVE_COST really ought not to be calling
509 here in that case.
511 I'm tempted to put in an abort here, but returning this will
512 probably only give poor estimates, which is what we would've
513 had before this code anyways. */
514 return partial_cost;
516 /* Check if the secondary reload register will also need a
517 secondary reload. */
518 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
520 #endif
522 /* Return a machine mode that is legitimate for hard reg REGNO and large
523 enough to save nregs. If we can't find one, return VOIDmode. */
525 enum machine_mode
526 choose_hard_reg_mode (regno, nregs)
527 int regno;
528 int nregs;
530 enum machine_mode found_mode = VOIDmode, mode;
532 /* We first look for the largest integer mode that can be validly
533 held in REGNO. If none, we look for the largest floating-point mode.
534 If we still didn't find a valid mode, try CCmode. */
536 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
537 mode != VOIDmode;
538 mode = GET_MODE_WIDER_MODE (mode))
539 if (HARD_REGNO_NREGS (regno, mode) == nregs
540 && HARD_REGNO_MODE_OK (regno, mode))
541 found_mode = mode;
543 if (found_mode != VOIDmode)
544 return found_mode;
546 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
547 mode != VOIDmode;
548 mode = GET_MODE_WIDER_MODE (mode))
549 if (HARD_REGNO_NREGS (regno, mode) == nregs
550 && HARD_REGNO_MODE_OK (regno, mode))
551 found_mode = mode;
553 if (found_mode != VOIDmode)
554 return found_mode;
556 if (HARD_REGNO_NREGS (regno, CCmode) == nregs
557 && HARD_REGNO_MODE_OK (regno, CCmode))
558 return CCmode;
560 /* We can't find a mode valid for this register. */
561 return VOIDmode;
564 /* Specify the usage characteristics of the register named NAME.
565 It should be a fixed register if FIXED and a
566 call-used register if CALL_USED. */
568 void
569 fix_register (name, fixed, call_used)
570 char *name;
571 int fixed, call_used;
573 int i;
575 /* Decode the name and update the primary form of
576 the register info. */
578 if ((i = decode_reg_name (name)) >= 0)
580 if ((i == STACK_POINTER_REGNUM
581 #ifdef HARD_FRAME_POINTER_REGNUM
582 || i == HARD_FRAME_POINTER_REGNUM
583 #else
584 || i == FRAME_POINTER_REGNUM
585 #endif
587 && (fixed == 0 || call_used == 0))
589 static char* what_option[2][2] = {
590 { "call-saved", "call-used" },
591 { "no-such-option", "fixed" }};
593 error ("can't use '%s' as a %s register", name,
594 what_option[fixed][call_used]);
596 else
598 fixed_regs[i] = fixed;
599 call_used_regs[i] = call_used;
602 else
604 warning ("unknown register name: %s", name);
608 /* Mark register number I as global. */
610 void
611 globalize_reg (i)
612 int i;
614 if (global_regs[i])
616 warning ("register used for two global register variables");
617 return;
620 if (call_used_regs[i] && ! fixed_regs[i])
621 warning ("call-clobbered register used for global register variable");
623 global_regs[i] = 1;
625 /* If already fixed, nothing else to do. */
626 if (fixed_regs[i])
627 return;
629 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
630 n_non_fixed_regs--;
632 SET_HARD_REG_BIT (fixed_reg_set, i);
633 SET_HARD_REG_BIT (call_used_reg_set, i);
634 SET_HARD_REG_BIT (call_fixed_reg_set, i);
637 /* Now the data and code for the `regclass' pass, which happens
638 just before local-alloc. */
640 /* The `costs' struct records the cost of using a hard register of each class
641 and of using memory for each pseudo. We use this data to set up
642 register class preferences. */
644 struct costs
646 int cost[N_REG_CLASSES];
647 int mem_cost;
650 /* Record the cost of each class for each pseudo. */
652 static struct costs *costs;
654 /* Initialized once, and used to initialize cost values for each insn. */
656 static struct costs init_cost;
658 /* Record the same data by operand number, accumulated for each alternative
659 in an insn. The contribution to a pseudo is that of the minimum-cost
660 alternative. */
662 static struct costs op_costs[MAX_RECOG_OPERANDS];
664 /* (enum reg_class) prefclass[R] is the preferred class for pseudo number R.
665 This is available after `regclass' is run. */
667 static char *prefclass;
669 /* altclass[R] is a register class that we should use for allocating
670 pseudo number R if no register in the preferred class is available.
671 If no register in this class is available, memory is preferred.
673 It might appear to be more general to have a bitmask of classes here,
674 but since it is recommended that there be a class corresponding to the
675 union of most major pair of classes, that generality is not required.
677 This is available after `regclass' is run. */
679 static char *altclass;
681 /* Allocated buffers for prefclass and altclass. */
682 static char *prefclass_buffer;
683 static char *altclass_buffer;
685 /* Record the depth of loops that we are in. */
687 static int loop_depth;
689 /* Account for the fact that insns within a loop are executed very commonly,
690 but don't keep doing this as loops go too deep. */
692 static int loop_cost;
694 static rtx scan_one_insn PROTO((rtx, int));
695 static void record_reg_classes PROTO((int, int, rtx *, enum machine_mode *,
696 char *, const char **, rtx));
697 static int copy_cost PROTO((rtx, enum machine_mode,
698 enum reg_class, int));
699 static void record_address_regs PROTO((rtx, enum reg_class, int));
700 #ifdef FORBIDDEN_INC_DEC_CLASSES
701 static int auto_inc_dec_reg_p PROTO((rtx, enum machine_mode));
702 #endif
703 static void reg_scan_mark_refs PROTO((rtx, rtx, int, int));
705 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
706 This function is sometimes called before the info has been computed.
707 When that happens, just return GENERAL_REGS, which is innocuous. */
709 enum reg_class
710 reg_preferred_class (regno)
711 int regno;
713 if (prefclass == 0)
714 return GENERAL_REGS;
715 return (enum reg_class) prefclass[regno];
718 enum reg_class
719 reg_alternate_class (regno)
720 int regno;
722 if (prefclass == 0)
723 return ALL_REGS;
725 return (enum reg_class) altclass[regno];
728 /* Initialize some global data for this pass. */
730 void
731 regclass_init ()
733 int i;
735 init_cost.mem_cost = 10000;
736 for (i = 0; i < N_REG_CLASSES; i++)
737 init_cost.cost[i] = 10000;
739 /* This prevents dump_flow_info from losing if called
740 before regclass is run. */
741 prefclass = 0;
744 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
745 time it would save code to put a certain register in a certain class.
746 PASS, when nonzero, inhibits some optimizations which need only be done
747 once.
748 Return the last insn processed, so that the scan can be continued from
749 there. */
751 static rtx
752 scan_one_insn (insn, pass)
753 rtx insn;
754 int pass;
756 enum rtx_code code = GET_CODE (insn);
757 enum rtx_code pat_code;
758 const char *constraints[MAX_RECOG_OPERANDS];
759 enum machine_mode modes[MAX_RECOG_OPERANDS];
760 char subreg_changes_size[MAX_RECOG_OPERANDS];
761 rtx set, note;
762 int i, j;
764 /* Show that an insn inside a loop is likely to be executed three
765 times more than insns outside a loop. This is much more aggressive
766 than the assumptions made elsewhere and is being tried as an
767 experiment. */
769 if (code == NOTE)
771 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
772 loop_depth++, loop_cost = 1 << (2 * MIN (loop_depth, 5));
773 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
774 loop_depth--, loop_cost = 1 << (2 * MIN (loop_depth, 5));
776 return insn;
779 if (GET_RTX_CLASS (code) != 'i')
780 return insn;
782 pat_code = GET_CODE (PATTERN (insn));
783 if (pat_code == USE
784 || pat_code == CLOBBER
785 || pat_code == ASM_INPUT
786 || pat_code == ADDR_VEC
787 || pat_code == ADDR_DIFF_VEC)
788 return insn;
790 set = single_set (insn);
791 extract_insn (insn);
793 for (i = 0; i < recog_n_operands; i++)
795 constraints[i] = recog_constraints[i];
796 modes[i] = recog_operand_mode[i];
798 memset (subreg_changes_size, 0, sizeof (subreg_changes_size));
800 /* If this insn loads a parameter from its stack slot, then
801 it represents a savings, rather than a cost, if the
802 parameter is stored in memory. Record this fact. */
804 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
805 && GET_CODE (SET_SRC (set)) == MEM
806 && (note = find_reg_note (insn, REG_EQUIV,
807 NULL_RTX)) != 0
808 && GET_CODE (XEXP (note, 0)) == MEM)
810 costs[REGNO (SET_DEST (set))].mem_cost
811 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
812 GENERAL_REGS, 1)
813 * loop_cost);
814 record_address_regs (XEXP (SET_SRC (set), 0),
815 BASE_REG_CLASS, loop_cost * 2);
816 return insn;
819 /* Improve handling of two-address insns such as
820 (set X (ashift CONST Y)) where CONST must be made to
821 match X. Change it into two insns: (set X CONST)
822 (set X (ashift X Y)). If we left this for reloading, it
823 would probably get three insns because X and Y might go
824 in the same place. This prevents X and Y from receiving
825 the same hard reg.
827 We can only do this if the modes of operands 0 and 1
828 (which might not be the same) are tieable and we only need
829 do this during our first pass. */
831 if (pass == 0 && optimize
832 && recog_n_operands >= 3
833 && recog_constraints[1][0] == '0'
834 && recog_constraints[1][1] == 0
835 && CONSTANT_P (recog_operand[1])
836 && ! rtx_equal_p (recog_operand[0], recog_operand[1])
837 && ! rtx_equal_p (recog_operand[0], recog_operand[2])
838 && GET_CODE (recog_operand[0]) == REG
839 && MODES_TIEABLE_P (GET_MODE (recog_operand[0]),
840 recog_operand_mode[1]))
842 rtx previnsn = prev_real_insn (insn);
843 rtx dest
844 = gen_lowpart (recog_operand_mode[1],
845 recog_operand[0]);
846 rtx newinsn
847 = emit_insn_before (gen_move_insn (dest,
848 recog_operand[1]),
849 insn);
851 /* If this insn was the start of a basic block,
852 include the new insn in that block.
853 We need not check for code_label here;
854 while a basic block can start with a code_label,
855 INSN could not be at the beginning of that block. */
856 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
858 int b;
859 for (b = 0; b < n_basic_blocks; b++)
860 if (insn == BLOCK_HEAD (b))
861 BLOCK_HEAD (b) = newinsn;
864 /* This makes one more setting of new insns's dest. */
865 REG_N_SETS (REGNO (recog_operand[0]))++;
867 *recog_operand_loc[1] = recog_operand[0];
868 for (i = recog_n_dups - 1; i >= 0; i--)
869 if (recog_dup_num[i] == 1)
870 *recog_dup_loc[i] = recog_operand[0];
872 return PREV_INSN (newinsn);
875 /* If we get here, we are set up to record the costs of all the
876 operands for this insn. Start by initializing the costs.
877 Then handle any address registers. Finally record the desired
878 classes for any pseudos, doing it twice if some pair of
879 operands are commutative. */
881 for (i = 0; i < recog_n_operands; i++)
883 op_costs[i] = init_cost;
885 if (GET_CODE (recog_operand[i]) == SUBREG)
887 rtx inner = SUBREG_REG (recog_operand[i]);
888 if (GET_MODE_SIZE (modes[i]) != GET_MODE_SIZE (GET_MODE (inner)))
889 subreg_changes_size[i] = 1;
890 recog_operand[i] = inner;
893 if (GET_CODE (recog_operand[i]) == MEM)
894 record_address_regs (XEXP (recog_operand[i], 0),
895 BASE_REG_CLASS, loop_cost * 2);
896 else if (constraints[i][0] == 'p')
897 record_address_regs (recog_operand[i],
898 BASE_REG_CLASS, loop_cost * 2);
901 /* Check for commutative in a separate loop so everything will
902 have been initialized. We must do this even if one operand
903 is a constant--see addsi3 in m68k.md. */
905 for (i = 0; i < recog_n_operands - 1; i++)
906 if (constraints[i][0] == '%')
908 const char *xconstraints[MAX_RECOG_OPERANDS];
909 int j;
911 /* Handle commutative operands by swapping the constraints.
912 We assume the modes are the same. */
914 for (j = 0; j < recog_n_operands; j++)
915 xconstraints[j] = constraints[j];
917 xconstraints[i] = constraints[i+1];
918 xconstraints[i+1] = constraints[i];
919 record_reg_classes (recog_n_alternatives, recog_n_operands,
920 recog_operand, modes, subreg_changes_size,
921 xconstraints, insn);
924 record_reg_classes (recog_n_alternatives, recog_n_operands, recog_operand,
925 modes, subreg_changes_size, constraints, insn);
927 /* Now add the cost for each operand to the total costs for
928 its register. */
930 for (i = 0; i < recog_n_operands; i++)
931 if (GET_CODE (recog_operand[i]) == REG
932 && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
934 int regno = REGNO (recog_operand[i]);
935 struct costs *p = &costs[regno], *q = &op_costs[i];
937 p->mem_cost += q->mem_cost * loop_cost;
938 for (j = 0; j < N_REG_CLASSES; j++)
939 p->cost[j] += q->cost[j] * loop_cost;
942 return insn;
945 /* This is a pass of the compiler that scans all instructions
946 and calculates the preferred class for each pseudo-register.
947 This information can be accessed later by calling `reg_preferred_class'.
948 This pass comes just before local register allocation. */
950 void
951 regclass (f, nregs)
952 rtx f;
953 int nregs;
955 #ifdef REGISTER_CONSTRAINTS
956 register rtx insn;
957 register int i;
958 int pass;
960 init_recog ();
962 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
964 #ifdef FORBIDDEN_INC_DEC_CLASSES
966 in_inc_dec = (char *) alloca (nregs);
968 /* Initialize information about which register classes can be used for
969 pseudos that are auto-incremented or auto-decremented. It would
970 seem better to put this in init_reg_sets, but we need to be able
971 to allocate rtx, which we can't do that early. */
973 for (i = 0; i < N_REG_CLASSES; i++)
975 rtx r = gen_rtx_REG (VOIDmode, 0);
976 enum machine_mode m;
977 register int j;
979 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
980 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
982 REGNO (r) = j;
984 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
985 m = (enum machine_mode) ((int) m + 1))
986 if (HARD_REGNO_MODE_OK (j, m))
988 PUT_MODE (r, m);
990 /* If a register is not directly suitable for an
991 auto-increment or decrement addressing mode and
992 requires secondary reloads, disallow its class from
993 being used in such addresses. */
995 if ((0
996 #ifdef SECONDARY_RELOAD_CLASS
997 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
998 != NO_REGS)
999 #else
1000 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1001 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1002 != NO_REGS)
1003 #endif
1004 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1005 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1006 != NO_REGS)
1007 #endif
1008 #endif
1010 && ! auto_inc_dec_reg_p (r, m))
1011 forbidden_inc_dec_class[i] = 1;
1015 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1017 /* Normally we scan the insns once and determine the best class to use for
1018 each register. However, if -fexpensive_optimizations are on, we do so
1019 twice, the second time using the tentative best classes to guide the
1020 selection. */
1022 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1024 /* Zero out our accumulation of the cost of each class for each reg. */
1026 bzero ((char *) costs, nregs * sizeof (struct costs));
1028 #ifdef FORBIDDEN_INC_DEC_CLASSES
1029 bzero (in_inc_dec, nregs);
1030 #endif
1032 loop_depth = 0, loop_cost = 1;
1034 /* Scan the instructions and record each time it would
1035 save code to put a certain register in a certain class. */
1037 for (insn = f; insn; insn = NEXT_INSN (insn))
1039 insn = scan_one_insn (insn, pass);
1042 /* Now for each register look at how desirable each class is
1043 and find which class is preferred. Store that in
1044 `prefclass[REGNO]'. Record in `altclass[REGNO]' the largest register
1045 class any of whose registers is better than memory. */
1047 if (pass == 0)
1049 prefclass = prefclass_buffer;
1050 altclass = altclass_buffer;
1053 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1055 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1056 enum reg_class best = ALL_REGS, alt = NO_REGS;
1057 /* This is an enum reg_class, but we call it an int
1058 to save lots of casts. */
1059 register int class;
1060 register struct costs *p = &costs[i];
1062 for (class = (int) ALL_REGS - 1; class > 0; class--)
1064 /* Ignore classes that are too small for this operand or
1065 invalid for a operand that was auto-incremented. */
1066 if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i))
1067 > reg_class_size[class]
1068 #ifdef FORBIDDEN_INC_DEC_CLASSES
1069 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1070 #endif
1073 else if (p->cost[class] < best_cost)
1075 best_cost = p->cost[class];
1076 best = (enum reg_class) class;
1078 else if (p->cost[class] == best_cost)
1079 best = reg_class_subunion[(int)best][class];
1082 /* Record the alternate register class; i.e., a class for which
1083 every register in it is better than using memory. If adding a
1084 class would make a smaller class (i.e., no union of just those
1085 classes exists), skip that class. The major unions of classes
1086 should be provided as a register class. Don't do this if we
1087 will be doing it again later. */
1089 if (pass == 1 || ! flag_expensive_optimizations)
1090 for (class = 0; class < N_REG_CLASSES; class++)
1091 if (p->cost[class] < p->mem_cost
1092 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1093 > reg_class_size[(int) alt])
1094 #ifdef FORBIDDEN_INC_DEC_CLASSES
1095 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1096 #endif
1098 alt = reg_class_subunion[(int) alt][class];
1100 /* If we don't add any classes, nothing to try. */
1101 if (alt == best)
1102 alt = NO_REGS;
1104 /* We cast to (int) because (char) hits bugs in some compilers. */
1105 prefclass[i] = (int) best;
1106 altclass[i] = (int) alt;
1109 #endif /* REGISTER_CONSTRAINTS */
1111 free (costs);
1114 #ifdef REGISTER_CONSTRAINTS
1116 /* Record the cost of using memory or registers of various classes for
1117 the operands in INSN.
1119 N_ALTS is the number of alternatives.
1121 N_OPS is the number of operands.
1123 OPS is an array of the operands.
1125 MODES are the modes of the operands, in case any are VOIDmode.
1127 CONSTRAINTS are the constraints to use for the operands. This array
1128 is modified by this procedure.
1130 This procedure works alternative by alternative. For each alternative
1131 we assume that we will be able to allocate all pseudos to their ideal
1132 register class and calculate the cost of using that alternative. Then
1133 we compute for each operand that is a pseudo-register, the cost of
1134 having the pseudo allocated to each register class and using it in that
1135 alternative. To this cost is added the cost of the alternative.
1137 The cost of each class for this insn is its lowest cost among all the
1138 alternatives. */
1140 static void
1141 record_reg_classes (n_alts, n_ops, ops, modes, subreg_changes_size,
1142 constraints, insn)
1143 int n_alts;
1144 int n_ops;
1145 rtx *ops;
1146 enum machine_mode *modes;
1147 char *subreg_changes_size;
1148 const char **constraints;
1149 rtx insn;
1151 int alt;
1152 int i, j;
1153 rtx set;
1155 /* Process each alternative, each time minimizing an operand's cost with
1156 the cost for each operand in that alternative. */
1158 for (alt = 0; alt < n_alts; alt++)
1160 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1161 int alt_fail = 0;
1162 int alt_cost = 0;
1163 enum reg_class classes[MAX_RECOG_OPERANDS];
1164 int class;
1166 for (i = 0; i < n_ops; i++)
1168 const char *p = constraints[i];
1169 rtx op = ops[i];
1170 enum machine_mode mode = modes[i];
1171 int allows_addr = 0;
1172 int allows_mem = 0;
1173 int win = 0;
1174 unsigned char c;
1176 /* Initially show we know nothing about the register class. */
1177 classes[i] = NO_REGS;
1179 /* If this operand has no constraints at all, we can conclude
1180 nothing about it since anything is valid. */
1182 if (*p == 0)
1184 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1185 bzero ((char *) &this_op_costs[i], sizeof this_op_costs[i]);
1187 continue;
1190 /* If this alternative is only relevant when this operand
1191 matches a previous operand, we do different things depending
1192 on whether this operand is a pseudo-reg or not. We must process
1193 any modifiers for the operand before we can make this test. */
1195 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1196 p++;
1198 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1200 j = p[0] - '0';
1201 classes[i] = classes[j];
1203 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1205 /* If this matches the other operand, we have no added
1206 cost and we win. */
1207 if (rtx_equal_p (ops[j], op))
1208 win = 1;
1210 /* If we can put the other operand into a register, add to
1211 the cost of this alternative the cost to copy this
1212 operand to the register used for the other operand. */
1214 else if (classes[j] != NO_REGS)
1215 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1217 else if (GET_CODE (ops[j]) != REG
1218 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1220 /* This op is a pseudo but the one it matches is not. */
1222 /* If we can't put the other operand into a register, this
1223 alternative can't be used. */
1225 if (classes[j] == NO_REGS)
1226 alt_fail = 1;
1228 /* Otherwise, add to the cost of this alternative the cost
1229 to copy the other operand to the register used for this
1230 operand. */
1232 else
1233 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1235 else
1237 /* The costs of this operand are the same as that of the
1238 other operand. However, if we cannot tie them, this
1239 alternative needs to do a copy, which is one
1240 instruction. */
1242 this_op_costs[i] = this_op_costs[j];
1243 if (REGNO (ops[i]) != REGNO (ops[j])
1244 && ! find_reg_note (insn, REG_DEAD, op))
1245 alt_cost += 2;
1247 /* This is in place of ordinary cost computation
1248 for this operand, so skip to the end of the
1249 alternative (should be just one character). */
1250 while (*p && *p++ != ',')
1253 constraints[i] = p;
1254 continue;
1258 /* Scan all the constraint letters. See if the operand matches
1259 any of the constraints. Collect the valid register classes
1260 and see if this operand accepts memory. */
1262 while (*p && (c = *p++) != ',')
1263 switch (c)
1265 case '*':
1266 /* Ignore the next letter for this pass. */
1267 p++;
1268 break;
1270 case '?':
1271 alt_cost += 2;
1272 case '!': case '#': case '&':
1273 case '0': case '1': case '2': case '3': case '4':
1274 case '5': case '6': case '7': case '8': case '9':
1275 break;
1277 case 'p':
1278 allows_addr = 1;
1279 win = address_operand (op, GET_MODE (op));
1280 /* We know this operand is an address, so we want it to be
1281 allocated to a register that can be the base of an
1282 address, ie BASE_REG_CLASS. */
1283 classes[i]
1284 = reg_class_subunion[(int) classes[i]]
1285 [(int) BASE_REG_CLASS];
1286 break;
1288 case 'm': case 'o': case 'V':
1289 /* It doesn't seem worth distinguishing between offsettable
1290 and non-offsettable addresses here. */
1291 allows_mem = 1;
1292 if (GET_CODE (op) == MEM)
1293 win = 1;
1294 break;
1296 case '<':
1297 if (GET_CODE (op) == MEM
1298 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1299 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1300 win = 1;
1301 break;
1303 case '>':
1304 if (GET_CODE (op) == MEM
1305 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1306 || GET_CODE (XEXP (op, 0)) == POST_INC))
1307 win = 1;
1308 break;
1310 case 'E':
1311 #ifndef REAL_ARITHMETIC
1312 /* Match any floating double constant, but only if
1313 we can examine the bits of it reliably. */
1314 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1315 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1316 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1317 break;
1318 #endif
1319 if (GET_CODE (op) == CONST_DOUBLE)
1320 win = 1;
1321 break;
1323 case 'F':
1324 if (GET_CODE (op) == CONST_DOUBLE)
1325 win = 1;
1326 break;
1328 case 'G':
1329 case 'H':
1330 if (GET_CODE (op) == CONST_DOUBLE
1331 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1332 win = 1;
1333 break;
1335 case 's':
1336 if (GET_CODE (op) == CONST_INT
1337 || (GET_CODE (op) == CONST_DOUBLE
1338 && GET_MODE (op) == VOIDmode))
1339 break;
1340 case 'i':
1341 if (CONSTANT_P (op)
1342 #ifdef LEGITIMATE_PIC_OPERAND_P
1343 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1344 #endif
1346 win = 1;
1347 break;
1349 case 'n':
1350 if (GET_CODE (op) == CONST_INT
1351 || (GET_CODE (op) == CONST_DOUBLE
1352 && GET_MODE (op) == VOIDmode))
1353 win = 1;
1354 break;
1356 case 'I':
1357 case 'J':
1358 case 'K':
1359 case 'L':
1360 case 'M':
1361 case 'N':
1362 case 'O':
1363 case 'P':
1364 if (GET_CODE (op) == CONST_INT
1365 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1366 win = 1;
1367 break;
1369 case 'X':
1370 win = 1;
1371 break;
1373 #ifdef EXTRA_CONSTRAINT
1374 case 'Q':
1375 case 'R':
1376 case 'S':
1377 case 'T':
1378 case 'U':
1379 if (EXTRA_CONSTRAINT (op, c))
1380 win = 1;
1381 break;
1382 #endif
1384 case 'g':
1385 if (GET_CODE (op) == MEM
1386 || (CONSTANT_P (op)
1387 #ifdef LEGITIMATE_PIC_OPERAND_P
1388 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1389 #endif
1391 win = 1;
1392 allows_mem = 1;
1393 case 'r':
1394 classes[i]
1395 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1396 break;
1398 default:
1399 classes[i]
1400 = reg_class_subunion[(int) classes[i]]
1401 [(int) REG_CLASS_FROM_LETTER (c)];
1404 constraints[i] = p;
1406 #ifdef CLASS_CANNOT_CHANGE_SIZE
1407 /* If we noted a subreg earlier, and the selected class is a
1408 subclass of CLASS_CANNOT_CHANGE_SIZE, zap it. */
1409 if (subreg_changes_size[i]
1410 && (reg_class_subunion[(int) CLASS_CANNOT_CHANGE_SIZE]
1411 [(int) classes[i]]
1412 == CLASS_CANNOT_CHANGE_SIZE))
1413 classes[i] = NO_REGS;
1414 #endif
1416 /* How we account for this operand now depends on whether it is a
1417 pseudo register or not. If it is, we first check if any
1418 register classes are valid. If not, we ignore this alternative,
1419 since we want to assume that all pseudos get allocated for
1420 register preferencing. If some register class is valid, compute
1421 the costs of moving the pseudo into that class. */
1423 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1425 if (classes[i] == NO_REGS)
1427 /* We must always fail if the operand is a REG, but
1428 we did not find a suitable class.
1430 Otherwise we may perform an uninitialized read
1431 from this_op_costs after the `continue' statement
1432 below. */
1433 alt_fail = 1;
1435 else
1437 struct costs *pp = &this_op_costs[i];
1439 for (class = 0; class < N_REG_CLASSES; class++)
1440 pp->cost[class] = may_move_cost[class][(int) classes[i]];
1442 /* If the alternative actually allows memory, make things
1443 a bit cheaper since we won't need an extra insn to
1444 load it. */
1446 pp->mem_cost = (MEMORY_MOVE_COST (mode, classes[i], 1)
1447 - allows_mem);
1449 /* If we have assigned a class to this register in our
1450 first pass, add a cost to this alternative corresponding
1451 to what we would add if this register were not in the
1452 appropriate class. */
1454 if (prefclass)
1455 alt_cost
1456 += may_move_cost[(unsigned char)prefclass[REGNO (op)]][(int) classes[i]];
1460 /* Otherwise, if this alternative wins, either because we
1461 have already determined that or if we have a hard register of
1462 the proper class, there is no cost for this alternative. */
1464 else if (win
1465 || (GET_CODE (op) == REG
1466 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1469 /* If registers are valid, the cost of this alternative includes
1470 copying the object to and/or from a register. */
1472 else if (classes[i] != NO_REGS)
1474 if (recog_op_type[i] != OP_OUT)
1475 alt_cost += copy_cost (op, mode, classes[i], 1);
1477 if (recog_op_type[i] != OP_IN)
1478 alt_cost += copy_cost (op, mode, classes[i], 0);
1481 /* The only other way this alternative can be used is if this is a
1482 constant that could be placed into memory. */
1484 else if (CONSTANT_P (op) && (allows_addr || allows_mem))
1485 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1486 else
1487 alt_fail = 1;
1490 if (alt_fail)
1491 continue;
1493 /* Finally, update the costs with the information we've calculated
1494 about this alternative. */
1496 for (i = 0; i < n_ops; i++)
1497 if (GET_CODE (ops[i]) == REG
1498 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1500 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1501 int scale = 1 + (recog_op_type[i] == OP_INOUT);
1503 pp->mem_cost = MIN (pp->mem_cost,
1504 (qq->mem_cost + alt_cost) * scale);
1506 for (class = 0; class < N_REG_CLASSES; class++)
1507 pp->cost[class] = MIN (pp->cost[class],
1508 (qq->cost[class] + alt_cost) * scale);
1512 /* If this insn is a single set copying operand 1 to operand 0
1513 and one is a pseudo with the other a hard reg that is in its
1514 own register class, set the cost of that register class to -1. */
1516 if ((set = single_set (insn)) != 0
1517 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1518 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG)
1519 for (i = 0; i <= 1; i++)
1520 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1522 int regno = REGNO (ops[!i]);
1523 enum machine_mode mode = GET_MODE (ops[!i]);
1524 int class;
1525 int nr;
1527 if (regno >= FIRST_PSEUDO_REGISTER && prefclass != 0
1528 && (reg_class_size[(unsigned char)prefclass[regno]]
1529 == CLASS_MAX_NREGS (prefclass[regno], mode)))
1530 op_costs[i].cost[(unsigned char)prefclass[regno]] = -1;
1531 else if (regno < FIRST_PSEUDO_REGISTER)
1532 for (class = 0; class < N_REG_CLASSES; class++)
1533 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1534 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1536 if (reg_class_size[class] == 1)
1537 op_costs[i].cost[class] = -1;
1538 else
1540 for (nr = 0; nr < HARD_REGNO_NREGS(regno, mode); nr++)
1542 if (!TEST_HARD_REG_BIT (reg_class_contents[class], regno + nr))
1543 break;
1546 if (nr == HARD_REGNO_NREGS(regno,mode))
1547 op_costs[i].cost[class] = -1;
1553 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1554 TO_P is zero) a register of class CLASS in mode MODE.
1556 X must not be a pseudo. */
1558 static int
1559 copy_cost (x, mode, class, to_p)
1560 rtx x;
1561 enum machine_mode mode;
1562 enum reg_class class;
1563 int to_p;
1565 #ifdef HAVE_SECONDARY_RELOADS
1566 enum reg_class secondary_class = NO_REGS;
1567 #endif
1569 /* If X is a SCRATCH, there is actually nothing to move since we are
1570 assuming optimal allocation. */
1572 if (GET_CODE (x) == SCRATCH)
1573 return 0;
1575 /* Get the class we will actually use for a reload. */
1576 class = PREFERRED_RELOAD_CLASS (x, class);
1578 #ifdef HAVE_SECONDARY_RELOADS
1579 /* If we need a secondary reload (we assume here that we are using
1580 the secondary reload as an intermediate, not a scratch register), the
1581 cost is that to load the input into the intermediate register, then
1582 to copy them. We use a special value of TO_P to avoid recursion. */
1584 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1585 if (to_p == 1)
1586 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1587 #endif
1589 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1590 if (! to_p)
1591 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1592 #endif
1594 if (secondary_class != NO_REGS)
1595 return (move_cost[(int) secondary_class][(int) class]
1596 + copy_cost (x, mode, secondary_class, 2));
1597 #endif /* HAVE_SECONDARY_RELOADS */
1599 /* For memory, use the memory move cost, for (hard) registers, use the
1600 cost to move between the register classes, and use 2 for everything
1601 else (constants). */
1603 if (GET_CODE (x) == MEM || class == NO_REGS)
1604 return MEMORY_MOVE_COST (mode, class, to_p);
1606 else if (GET_CODE (x) == REG)
1607 return move_cost[(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1609 else
1610 /* If this is a constant, we may eventually want to call rtx_cost here. */
1611 return 2;
1614 /* Record the pseudo registers we must reload into hard registers
1615 in a subexpression of a memory address, X.
1617 CLASS is the class that the register needs to be in and is either
1618 BASE_REG_CLASS or INDEX_REG_CLASS.
1620 SCALE is twice the amount to multiply the cost by (it is twice so we
1621 can represent half-cost adjustments). */
1623 static void
1624 record_address_regs (x, class, scale)
1625 rtx x;
1626 enum reg_class class;
1627 int scale;
1629 register enum rtx_code code = GET_CODE (x);
1631 switch (code)
1633 case CONST_INT:
1634 case CONST:
1635 case CC0:
1636 case PC:
1637 case SYMBOL_REF:
1638 case LABEL_REF:
1639 return;
1641 case PLUS:
1642 /* When we have an address that is a sum,
1643 we must determine whether registers are "base" or "index" regs.
1644 If there is a sum of two registers, we must choose one to be
1645 the "base". Luckily, we can use the REGNO_POINTER_FLAG
1646 to make a good choice most of the time. We only need to do this
1647 on machines that can have two registers in an address and where
1648 the base and index register classes are different.
1650 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1651 that seems bogus since it should only be set when we are sure
1652 the register is being used as a pointer. */
1655 rtx arg0 = XEXP (x, 0);
1656 rtx arg1 = XEXP (x, 1);
1657 register enum rtx_code code0 = GET_CODE (arg0);
1658 register enum rtx_code code1 = GET_CODE (arg1);
1660 /* Look inside subregs. */
1661 if (code0 == SUBREG)
1662 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1663 if (code1 == SUBREG)
1664 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1666 /* If this machine only allows one register per address, it must
1667 be in the first operand. */
1669 if (MAX_REGS_PER_ADDRESS == 1)
1670 record_address_regs (arg0, class, scale);
1672 /* If index and base registers are the same on this machine, just
1673 record registers in any non-constant operands. We assume here,
1674 as well as in the tests below, that all addresses are in
1675 canonical form. */
1677 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
1679 record_address_regs (arg0, class, scale);
1680 if (! CONSTANT_P (arg1))
1681 record_address_regs (arg1, class, scale);
1684 /* If the second operand is a constant integer, it doesn't change
1685 what class the first operand must be. */
1687 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1688 record_address_regs (arg0, class, scale);
1690 /* If the second operand is a symbolic constant, the first operand
1691 must be an index register. */
1693 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1694 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1696 /* If both operands are registers but one is already a hard register
1697 of index or base class, give the other the class that the hard
1698 register is not. */
1700 #ifdef REG_OK_FOR_BASE_P
1701 else if (code0 == REG && code1 == REG
1702 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1703 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
1704 record_address_regs (arg1,
1705 REG_OK_FOR_BASE_P (arg0)
1706 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1707 scale);
1708 else if (code0 == REG && code1 == REG
1709 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1710 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
1711 record_address_regs (arg0,
1712 REG_OK_FOR_BASE_P (arg1)
1713 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1714 scale);
1715 #endif
1717 /* If one operand is known to be a pointer, it must be the base
1718 with the other operand the index. Likewise if the other operand
1719 is a MULT. */
1721 else if ((code0 == REG && REGNO_POINTER_FLAG (REGNO (arg0)))
1722 || code1 == MULT)
1724 record_address_regs (arg0, BASE_REG_CLASS, scale);
1725 record_address_regs (arg1, INDEX_REG_CLASS, scale);
1727 else if ((code1 == REG && REGNO_POINTER_FLAG (REGNO (arg1)))
1728 || code0 == MULT)
1730 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1731 record_address_regs (arg1, BASE_REG_CLASS, scale);
1734 /* Otherwise, count equal chances that each might be a base
1735 or index register. This case should be rare. */
1737 else
1739 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
1740 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
1741 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
1742 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
1745 break;
1747 case POST_INC:
1748 case PRE_INC:
1749 case POST_DEC:
1750 case PRE_DEC:
1751 /* Double the importance of a pseudo register that is incremented
1752 or decremented, since it would take two extra insns
1753 if it ends up in the wrong place. If the operand is a pseudo,
1754 show it is being used in an INC_DEC context. */
1756 #ifdef FORBIDDEN_INC_DEC_CLASSES
1757 if (GET_CODE (XEXP (x, 0)) == REG
1758 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
1759 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
1760 #endif
1762 record_address_regs (XEXP (x, 0), class, 2 * scale);
1763 break;
1765 case REG:
1767 register struct costs *pp = &costs[REGNO (x)];
1768 register int i;
1770 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
1772 for (i = 0; i < N_REG_CLASSES; i++)
1773 pp->cost[i] += (may_move_cost[i][(int) class] * scale) / 2;
1775 break;
1777 default:
1779 register char *fmt = GET_RTX_FORMAT (code);
1780 register int i;
1781 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1782 if (fmt[i] == 'e')
1783 record_address_regs (XEXP (x, i), class, scale);
1788 #ifdef FORBIDDEN_INC_DEC_CLASSES
1790 /* Return 1 if REG is valid as an auto-increment memory reference
1791 to an object of MODE. */
1793 static int
1794 auto_inc_dec_reg_p (reg, mode)
1795 rtx reg;
1796 enum machine_mode mode;
1798 if (HAVE_POST_INCREMENT
1799 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
1800 return 1;
1802 if (HAVE_POST_DECREMENT
1803 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
1804 return 1;
1806 if (HAVE_PRE_INCREMENT
1807 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
1808 return 1;
1810 if (HAVE_PRE_DECREMENT
1811 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
1812 return 1;
1814 return 0;
1816 #endif
1818 #endif /* REGISTER_CONSTRAINTS */
1820 static short *renumber = (short *)0;
1821 static size_t regno_allocated = 0;
1823 /* Allocate enough space to hold NUM_REGS registers for the tables used for
1824 reg_scan and flow_analysis that are indexed by the register number. If
1825 NEW_P is non zero, initialize all of the registers, otherwise only
1826 initialize the new registers allocated. The same table is kept from
1827 function to function, only reallocating it when we need more room. If
1828 RENUMBER_P is non zero, allocate the reg_renumber array also. */
1830 void
1831 allocate_reg_info (num_regs, new_p, renumber_p)
1832 size_t num_regs;
1833 int new_p;
1834 int renumber_p;
1836 size_t size_info;
1837 size_t size_renumber;
1838 size_t min = (new_p) ? 0 : reg_n_max;
1839 struct reg_info_data *reg_data;
1840 struct reg_info_data *reg_next;
1842 if (num_regs > regno_allocated)
1844 size_t old_allocated = regno_allocated;
1846 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
1847 size_renumber = regno_allocated * sizeof (short);
1849 if (!reg_n_info)
1851 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
1852 renumber = (short *) xmalloc (size_renumber);
1853 prefclass_buffer = (char *) xmalloc (regno_allocated);
1854 altclass_buffer = (char *) xmalloc (regno_allocated);
1857 else
1859 VARRAY_GROW (reg_n_info, regno_allocated);
1861 if (new_p) /* if we're zapping everything, no need to realloc */
1863 free ((char *)renumber);
1864 free ((char *)prefclass_buffer);
1865 free ((char *)altclass_buffer);
1866 renumber = (short *) xmalloc (size_renumber);
1867 prefclass_buffer = (char *) xmalloc (regno_allocated);
1868 altclass_buffer = (char *) xmalloc (regno_allocated);
1871 else
1873 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
1874 prefclass_buffer = (char *) xrealloc ((char *)prefclass_buffer,
1875 regno_allocated);
1877 altclass_buffer = (char *) xrealloc ((char *)altclass_buffer,
1878 regno_allocated);
1882 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
1883 + sizeof (struct reg_info_data) - sizeof (reg_info);
1884 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
1885 reg_data->min_index = old_allocated;
1886 reg_data->max_index = regno_allocated - 1;
1887 reg_data->next = reg_info_head;
1888 reg_info_head = reg_data;
1891 reg_n_max = num_regs;
1892 if (min < num_regs)
1894 /* Loop through each of the segments allocated for the actual
1895 reg_info pages, and set up the pointers, zero the pages, etc. */
1896 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
1898 size_t min_index = reg_data->min_index;
1899 size_t max_index = reg_data->max_index;
1901 reg_next = reg_data->next;
1902 if (min <= max_index)
1904 size_t max = max_index;
1905 size_t local_min = min - min_index;
1906 size_t i;
1908 if (min < min_index)
1909 local_min = 0;
1910 if (!reg_data->used_p) /* page just allocated with calloc */
1911 reg_data->used_p = 1; /* no need to zero */
1912 else
1913 bzero ((char *) &reg_data->data[local_min],
1914 sizeof (reg_info) * (max - min_index - local_min + 1));
1916 for (i = min_index+local_min; i <= max; i++)
1918 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
1919 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1920 renumber[i] = -1;
1921 prefclass_buffer[i] = (char) NO_REGS;
1922 altclass_buffer[i] = (char) NO_REGS;
1928 /* If {pref,alt}class have already been allocated, update the pointers to
1929 the newly realloced ones. */
1930 if (prefclass)
1932 prefclass = prefclass_buffer;
1933 altclass = altclass_buffer;
1936 if (renumber_p)
1937 reg_renumber = renumber;
1939 /* Tell the regset code about the new number of registers */
1940 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
1943 /* Free up the space allocated by allocate_reg_info. */
1944 void
1945 free_reg_info ()
1947 if (reg_n_info)
1949 struct reg_info_data *reg_data;
1950 struct reg_info_data *reg_next;
1952 VARRAY_FREE (reg_n_info);
1953 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
1955 reg_next = reg_data->next;
1956 free ((char *)reg_data);
1959 free (prefclass_buffer);
1960 free (altclass_buffer);
1961 prefclass_buffer = (char *)0;
1962 altclass_buffer = (char *)0;
1963 reg_info_head = (struct reg_info_data *)0;
1964 renumber = (short *)0;
1966 regno_allocated = 0;
1967 reg_n_max = 0;
1970 /* This is the `regscan' pass of the compiler, run just before cse
1971 and again just before loop.
1973 It finds the first and last use of each pseudo-register
1974 and records them in the vectors regno_first_uid, regno_last_uid
1975 and counts the number of sets in the vector reg_n_sets.
1977 REPEAT is nonzero the second time this is called. */
1979 /* Maximum number of parallel sets and clobbers in any insn in this fn.
1980 Always at least 3, since the combiner could put that many together
1981 and we want this to remain correct for all the remaining passes. */
1983 int max_parallel;
1985 void
1986 reg_scan (f, nregs, repeat)
1987 rtx f;
1988 int nregs;
1989 int repeat;
1991 register rtx insn;
1993 allocate_reg_info (nregs, TRUE, FALSE);
1994 max_parallel = 3;
1996 for (insn = f; insn; insn = NEXT_INSN (insn))
1997 if (GET_CODE (insn) == INSN
1998 || GET_CODE (insn) == CALL_INSN
1999 || GET_CODE (insn) == JUMP_INSN)
2001 if (GET_CODE (PATTERN (insn)) == PARALLEL
2002 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2003 max_parallel = XVECLEN (PATTERN (insn), 0);
2004 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2006 if (REG_NOTES (insn))
2007 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2011 /* Update 'regscan' information by looking at the insns
2012 from FIRST to LAST. Some new REGs have been created,
2013 and any REG with number greater than OLD_MAX_REGNO is
2014 such a REG. We only update information for those. */
2016 void
2017 reg_scan_update(first, last, old_max_regno)
2018 rtx first;
2019 rtx last;
2020 int old_max_regno;
2022 register rtx insn;
2024 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2026 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2027 if (GET_CODE (insn) == INSN
2028 || GET_CODE (insn) == CALL_INSN
2029 || GET_CODE (insn) == JUMP_INSN)
2031 if (GET_CODE (PATTERN (insn)) == PARALLEL
2032 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2033 max_parallel = XVECLEN (PATTERN (insn), 0);
2034 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2036 if (REG_NOTES (insn))
2037 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2041 /* X is the expression to scan. INSN is the insn it appears in.
2042 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2043 We should only record information for REGs with numbers
2044 greater than or equal to MIN_REGNO. */
2046 static void
2047 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2048 rtx x;
2049 rtx insn;
2050 int note_flag;
2051 int min_regno;
2053 register enum rtx_code code;
2054 register rtx dest;
2055 register rtx note;
2057 code = GET_CODE (x);
2058 switch (code)
2060 case CONST:
2061 case CONST_INT:
2062 case CONST_DOUBLE:
2063 case CC0:
2064 case PC:
2065 case SYMBOL_REF:
2066 case LABEL_REF:
2067 case ADDR_VEC:
2068 case ADDR_DIFF_VEC:
2069 return;
2071 case REG:
2073 register int regno = REGNO (x);
2075 if (regno >= min_regno)
2077 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2078 if (!note_flag)
2079 REGNO_LAST_UID (regno) = INSN_UID (insn);
2080 if (REGNO_FIRST_UID (regno) == 0)
2081 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2084 break;
2086 case EXPR_LIST:
2087 if (XEXP (x, 0))
2088 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2089 if (XEXP (x, 1))
2090 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2091 break;
2093 case INSN_LIST:
2094 if (XEXP (x, 1))
2095 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2096 break;
2098 case SET:
2099 /* Count a set of the destination if it is a register. */
2100 for (dest = SET_DEST (x);
2101 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2102 || GET_CODE (dest) == ZERO_EXTEND;
2103 dest = XEXP (dest, 0))
2106 if (GET_CODE (dest) == REG
2107 && REGNO (dest) >= min_regno)
2108 REG_N_SETS (REGNO (dest))++;
2110 /* If this is setting a pseudo from another pseudo or the sum of a
2111 pseudo and a constant integer and the other pseudo is known to be
2112 a pointer, set the destination to be a pointer as well.
2114 Likewise if it is setting the destination from an address or from a
2115 value equivalent to an address or to the sum of an address and
2116 something else.
2118 But don't do any of this if the pseudo corresponds to a user
2119 variable since it should have already been set as a pointer based
2120 on the type. */
2122 if (GET_CODE (SET_DEST (x)) == REG
2123 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2124 && REGNO (SET_DEST (x)) >= min_regno
2125 /* If the destination pseudo is set more than once, then other
2126 sets might not be to a pointer value (consider access to a
2127 union in two threads of control in the presense of global
2128 optimizations). So only set REGNO_POINTER_FLAG on the destination
2129 pseudo if this is the only set of that pseudo. */
2130 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2131 && ! REG_USERVAR_P (SET_DEST (x))
2132 && ! REGNO_POINTER_FLAG (REGNO (SET_DEST (x)))
2133 && ((GET_CODE (SET_SRC (x)) == REG
2134 && REGNO_POINTER_FLAG (REGNO (SET_SRC (x))))
2135 || ((GET_CODE (SET_SRC (x)) == PLUS
2136 || GET_CODE (SET_SRC (x)) == LO_SUM)
2137 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2138 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2139 && REGNO_POINTER_FLAG (REGNO (XEXP (SET_SRC (x), 0))))
2140 || GET_CODE (SET_SRC (x)) == CONST
2141 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2142 || GET_CODE (SET_SRC (x)) == LABEL_REF
2143 || (GET_CODE (SET_SRC (x)) == HIGH
2144 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2145 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2146 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2147 || ((GET_CODE (SET_SRC (x)) == PLUS
2148 || GET_CODE (SET_SRC (x)) == LO_SUM)
2149 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2150 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2151 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2152 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2153 && (GET_CODE (XEXP (note, 0)) == CONST
2154 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2155 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2156 REGNO_POINTER_FLAG (REGNO (SET_DEST (x))) = 1;
2158 /* ... fall through ... */
2160 default:
2162 register char *fmt = GET_RTX_FORMAT (code);
2163 register int i;
2164 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2166 if (fmt[i] == 'e')
2167 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2168 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2170 register int j;
2171 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2172 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2179 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2180 is also in C2. */
2183 reg_class_subset_p (c1, c2)
2184 register enum reg_class c1;
2185 register enum reg_class c2;
2187 if (c1 == c2) return 1;
2189 if (c2 == ALL_REGS)
2190 win:
2191 return 1;
2192 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2193 reg_class_contents[(int)c2],
2194 win);
2195 return 0;
2198 /* Return nonzero if there is a register that is in both C1 and C2. */
2201 reg_classes_intersect_p (c1, c2)
2202 register enum reg_class c1;
2203 register enum reg_class c2;
2205 #ifdef HARD_REG_SET
2206 register
2207 #endif
2208 HARD_REG_SET c;
2210 if (c1 == c2) return 1;
2212 if (c1 == ALL_REGS || c2 == ALL_REGS)
2213 return 1;
2215 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2216 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2218 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2219 return 1;
2221 lose:
2222 return 0;
2225 /* Release any memory allocated by register sets. */
2227 void
2228 regset_release_memory ()
2230 bitmap_release_memory ();