1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
27 #include "hard-reg-set.h"
31 #include "splay-tree.h"
33 /* The alias sets assigned to MEMs assist the back-end in determining
34 which MEMs can alias which other MEMs. In general, two MEMs in
35 different alias sets to not alias each other. There is one
36 exception, however. Consider something like:
38 struct S {int i; double d; };
40 a store to an `S' can alias something of either type `int' or type
41 `double'. (However, a store to an `int' cannot alias a `double'
42 and vice versa.) We indicate this via a tree structure that looks
50 (The arrows are directed and point downwards.) If, when comparing
51 two alias sets, we can hold one set fixed, and trace the other set
52 downwards, and at some point find the first set, the two MEMs can
53 alias one another. In this situation we say the alias set for
54 `struct S' is the `superset' and that those for `int' and `double'
57 Alias set zero is implicitly a superset of all other alias sets.
58 However, this is no actual entry for alias set zero. It is an
59 error to attempt to explicitly construct a subset of zero. */
61 typedef struct alias_set_entry
{
62 /* The alias set number, as stored in MEM_ALIAS_SET. */
65 /* The children of the alias set. These are not just the immediate
66 children, but, in fact, all children. So, if we have:
68 struct T { struct S s; float f; }
70 continuing our example above, the children here will be all of
71 `int', `double', `float', and `struct S'. */
75 static rtx canon_rtx
PROTO((rtx
));
76 static int rtx_equal_for_memref_p
PROTO((rtx
, rtx
));
77 static rtx find_symbolic_term
PROTO((rtx
));
78 static int memrefs_conflict_p
PROTO((int, rtx
, int, rtx
,
80 static void record_set
PROTO((rtx
, rtx
));
81 static rtx find_base_term
PROTO((rtx
));
82 static int base_alias_check
PROTO((rtx
, rtx
, enum machine_mode
,
84 static rtx find_base_value
PROTO((rtx
));
85 static int mems_in_disjoint_alias_sets_p
PROTO((rtx
, rtx
));
86 static int insert_subset_children
PROTO((splay_tree_node
,
88 static alias_set_entry get_alias_set_entry
PROTO((int));
89 static rtx fixed_scalar_and_varying_struct_p
PROTO((rtx
, rtx
, int (*)(rtx
)));
90 static int aliases_everything_p
PROTO((rtx
));
91 static int write_dependence_p
PROTO((rtx
, rtx
, int));
93 /* Set up all info needed to perform alias analysis on memory references. */
95 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
97 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
98 different alias sets. We ignore alias sets in functions making use
99 of variable arguments because the va_arg macros on some systems are
101 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
102 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
104 /* Cap the number of passes we make over the insns propagating alias
105 information through set chains.
107 10 is a completely arbitrary choice. */
108 #define MAX_ALIAS_LOOP_PASSES 10
110 /* reg_base_value[N] gives an address to which register N is related.
111 If all sets after the first add or subtract to the current value
112 or otherwise modify it so it does not point to a different top level
113 object, reg_base_value[N] is equal to the address part of the source
116 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
117 expressions represent certain special values: function arguments and
118 the stack, frame, and argument pointers. The contents of an address
119 expression are not used (but they are descriptive for debugging);
120 only the address and mode matter. Pointer equality, not rtx_equal_p,
121 determines whether two ADDRESS expressions refer to the same base
122 address. The mode determines whether it is a function argument or
123 other special value. */
126 rtx
*new_reg_base_value
;
127 unsigned int reg_base_value_size
; /* size of reg_base_value array */
128 #define REG_BASE_VALUE(X) \
129 ((unsigned) REGNO (X) < reg_base_value_size ? reg_base_value[REGNO (X)] : 0)
131 /* Vector of known invariant relationships between registers. Set in
132 loop unrolling. Indexed by register number, if nonzero the value
133 is an expression describing this register in terms of another.
135 The length of this array is REG_BASE_VALUE_SIZE.
137 Because this array contains only pseudo registers it has no effect
139 static rtx
*alias_invariant
;
141 /* Vector indexed by N giving the initial (unchanging) value known
142 for pseudo-register N. */
143 rtx
*reg_known_value
;
145 /* Indicates number of valid entries in reg_known_value. */
146 static int reg_known_value_size
;
148 /* Vector recording for each reg_known_value whether it is due to a
149 REG_EQUIV note. Future passes (viz., reload) may replace the
150 pseudo with the equivalent expression and so we account for the
151 dependences that would be introduced if that happens. */
152 /* ??? This is a problem only on the Convex. The REG_EQUIV notes created in
153 assign_parms mention the arg pointer, and there are explicit insns in the
154 RTL that modify the arg pointer. Thus we must ensure that such insns don't
155 get scheduled across each other because that would invalidate the REG_EQUIV
156 notes. One could argue that the REG_EQUIV notes are wrong, but solving
157 the problem in the scheduler will likely give better code, so we do it
159 char *reg_known_equiv_p
;
161 /* True when scanning insns from the start of the rtl to the
162 NOTE_INSN_FUNCTION_BEG note. */
164 static int copying_arguments
;
166 /* The splay-tree used to store the various alias set entries. */
168 static splay_tree alias_sets
;
170 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
171 such an entry, or NULL otherwise. */
173 static alias_set_entry
174 get_alias_set_entry (alias_set
)
178 splay_tree_lookup (alias_sets
, (splay_tree_key
) alias_set
);
180 return sn
? ((alias_set_entry
) sn
->value
) : ((alias_set_entry
) 0);
183 /* Returns nonzero value if the alias sets for MEM1 and MEM2 are such
184 that the two MEMs cannot alias each other. */
187 mems_in_disjoint_alias_sets_p (mem1
, mem2
)
193 #ifdef ENABLE_CHECKING
194 /* Perform a basic sanity check. Namely, that there are no alias sets
195 if we're not using strict aliasing. This helps to catch bugs
196 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
197 where a MEM is allocated in some way other than by the use of
198 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
199 use alias sets to indicate that spilled registers cannot alias each
200 other, we might need to remove this check. */
201 if (!flag_strict_aliasing
&&
202 (MEM_ALIAS_SET (mem1
) || MEM_ALIAS_SET (mem2
)))
206 /* The code used in varargs macros are often not conforming ANSI C,
207 which can trick the compiler into making incorrect aliasing
208 assumptions in these functions. So, we don't use alias sets in
209 such a function. FIXME: This should be moved into the front-end;
210 it is a language-dependent notion, and there's no reason not to
211 still use these checks to handle globals. */
212 if (current_function_stdarg
|| current_function_varargs
)
215 if (!MEM_ALIAS_SET (mem1
) || !MEM_ALIAS_SET (mem2
))
216 /* We have no alias set information for one of the MEMs, so we
217 have to assume it can alias anything. */
220 if (MEM_ALIAS_SET (mem1
) == MEM_ALIAS_SET (mem2
))
221 /* The two alias sets are the same, so they may alias. */
224 /* Iterate through each of the children of the first alias set,
225 comparing it with the second alias set. */
226 ase
= get_alias_set_entry (MEM_ALIAS_SET (mem1
));
227 if (ase
&& splay_tree_lookup (ase
->children
,
228 (splay_tree_key
) MEM_ALIAS_SET (mem2
)))
231 /* Now do the same, but with the alias sets reversed. */
232 ase
= get_alias_set_entry (MEM_ALIAS_SET (mem2
));
233 if (ase
&& splay_tree_lookup (ase
->children
,
234 (splay_tree_key
) MEM_ALIAS_SET (mem1
)))
237 /* The two MEMs are in distinct alias sets, and neither one is the
238 child of the other. Therefore, they cannot alias. */
242 /* Insert the NODE into the splay tree given by DATA. Used by
243 record_alias_subset via splay_tree_foreach. */
246 insert_subset_children (node
, data
)
247 splay_tree_node node
;
250 splay_tree_insert ((splay_tree
) data
,
257 /* Indicate that things in SUBSET can alias things in SUPERSET, but
258 not vice versa. For example, in C, a store to an `int' can alias a
259 structure containing an `int', but not vice versa. Here, the
260 structure would be the SUPERSET and `int' the SUBSET. This
261 function should be called only once per SUPERSET/SUBSET pair. At
262 present any given alias set may only be a subset of one superset.
264 It is illegal for SUPERSET to be zero; everything is implicitly a
265 subset of alias set zero. */
268 record_alias_subset (superset
, subset
)
272 alias_set_entry superset_entry
;
273 alias_set_entry subset_entry
;
278 superset_entry
= get_alias_set_entry (superset
);
281 /* Create an entry for the SUPERSET, so that we have a place to
282 attach the SUBSET. */
284 (alias_set_entry
) xmalloc (sizeof (struct alias_set_entry
));
285 superset_entry
->alias_set
= superset
;
286 superset_entry
->children
287 = splay_tree_new (splay_tree_compare_ints
, 0, 0);
288 splay_tree_insert (alias_sets
,
289 (splay_tree_key
) superset
,
290 (splay_tree_value
) superset_entry
);
294 subset_entry
= get_alias_set_entry (subset
);
296 /* There is an entry for the subset. Enter all of its children
297 (if they are not already present) as children of the SUPERSET. */
298 splay_tree_foreach (subset_entry
->children
,
299 insert_subset_children
,
300 superset_entry
->children
);
302 /* Enter the SUBSET itself as a child of the SUPERSET. */
303 splay_tree_insert (superset_entry
->children
,
304 (splay_tree_key
) subset
,
308 /* Inside SRC, the source of a SET, find a base address. */
311 find_base_value (src
)
314 switch (GET_CODE (src
))
321 /* At the start of a function argument registers have known base
322 values which may be lost later. Returning an ADDRESS
323 expression here allows optimization based on argument values
324 even when the argument registers are used for other purposes. */
325 if (REGNO (src
) < FIRST_PSEUDO_REGISTER
&& copying_arguments
)
326 return new_reg_base_value
[REGNO (src
)];
328 /* If a pseudo has a known base value, return it. Do not do this
329 for hard regs since it can result in a circular dependency
330 chain for registers which have values at function entry.
332 The test above is not sufficient because the scheduler may move
333 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
334 if (REGNO (src
) >= FIRST_PSEUDO_REGISTER
335 && (unsigned) REGNO (src
) < reg_base_value_size
336 && reg_base_value
[REGNO (src
)])
337 return reg_base_value
[REGNO (src
)];
342 /* Check for an argument passed in memory. Only record in the
343 copying-arguments block; it is too hard to track changes
345 if (copying_arguments
346 && (XEXP (src
, 0) == arg_pointer_rtx
347 || (GET_CODE (XEXP (src
, 0)) == PLUS
348 && XEXP (XEXP (src
, 0), 0) == arg_pointer_rtx
)))
349 return gen_rtx_ADDRESS (VOIDmode
, src
);
354 if (GET_CODE (src
) != PLUS
&& GET_CODE (src
) != MINUS
)
361 rtx temp
, src_0
= XEXP (src
, 0), src_1
= XEXP (src
, 1);
363 /* If either operand is a REG, then see if we already have
364 a known value for it. */
365 if (GET_CODE (src_0
) == REG
)
367 temp
= find_base_value (src_0
);
372 if (GET_CODE (src_1
) == REG
)
374 temp
= find_base_value (src_1
);
379 /* Guess which operand is the base address.
381 If either operand is a symbol, then it is the base. If
382 either operand is a CONST_INT, then the other is the base. */
384 if (GET_CODE (src_1
) == CONST_INT
385 || GET_CODE (src_0
) == SYMBOL_REF
386 || GET_CODE (src_0
) == LABEL_REF
387 || GET_CODE (src_0
) == CONST
)
388 return find_base_value (src_0
);
390 if (GET_CODE (src_0
) == CONST_INT
391 || GET_CODE (src_1
) == SYMBOL_REF
392 || GET_CODE (src_1
) == LABEL_REF
393 || GET_CODE (src_1
) == CONST
)
394 return find_base_value (src_1
);
396 /* This might not be necessary anymore.
398 If either operand is a REG that is a known pointer, then it
400 if (GET_CODE (src_0
) == REG
&& REGNO_POINTER_FLAG (REGNO (src_0
)))
401 return find_base_value (src_0
);
403 if (GET_CODE (src_1
) == REG
&& REGNO_POINTER_FLAG (REGNO (src_1
)))
404 return find_base_value (src_1
);
410 /* The standard form is (lo_sum reg sym) so look only at the
412 return find_base_value (XEXP (src
, 1));
415 /* If the second operand is constant set the base
416 address to the first operand. */
417 if (GET_CODE (XEXP (src
, 1)) == CONST_INT
&& INTVAL (XEXP (src
, 1)) != 0)
418 return find_base_value (XEXP (src
, 0));
422 case SIGN_EXTEND
: /* used for NT/Alpha pointers */
424 return find_base_value (XEXP (src
, 0));
433 /* Called from init_alias_analysis indirectly through note_stores. */
435 /* while scanning insns to find base values, reg_seen[N] is nonzero if
436 register N has been set in this function. */
437 static char *reg_seen
;
439 /* Addresses which are known not to alias anything else are identified
440 by a unique integer. */
441 static int unique_id
;
444 record_set (dest
, set
)
450 if (GET_CODE (dest
) != REG
)
453 regno
= REGNO (dest
);
457 /* A CLOBBER wipes out any old value but does not prevent a previously
458 unset register from acquiring a base address (i.e. reg_seen is not
460 if (GET_CODE (set
) == CLOBBER
)
462 new_reg_base_value
[regno
] = 0;
471 new_reg_base_value
[regno
] = 0;
475 new_reg_base_value
[regno
] = gen_rtx_ADDRESS (Pmode
,
476 GEN_INT (unique_id
++));
480 /* This is not the first set. If the new value is not related to the
481 old value, forget the base value. Note that the following code is
483 extern int x, y; int *p = &x; p += (&y-&x);
484 ANSI C does not allow computing the difference of addresses
485 of distinct top level objects. */
486 if (new_reg_base_value
[regno
])
487 switch (GET_CODE (src
))
492 if (XEXP (src
, 0) != dest
&& XEXP (src
, 1) != dest
)
493 new_reg_base_value
[regno
] = 0;
496 if (XEXP (src
, 0) != dest
|| GET_CODE (XEXP (src
, 1)) != CONST_INT
)
497 new_reg_base_value
[regno
] = 0;
500 new_reg_base_value
[regno
] = 0;
503 /* If this is the first set of a register, record the value. */
504 else if ((regno
>= FIRST_PSEUDO_REGISTER
|| ! fixed_regs
[regno
])
505 && ! reg_seen
[regno
] && new_reg_base_value
[regno
] == 0)
506 new_reg_base_value
[regno
] = find_base_value (src
);
511 /* Called from loop optimization when a new pseudo-register is created. */
513 record_base_value (regno
, val
, invariant
)
518 if ((unsigned) regno
>= reg_base_value_size
)
521 /* If INVARIANT is true then this value also describes an invariant
522 relationship which can be used to deduce that two registers with
523 unknown values are different. */
524 if (invariant
&& alias_invariant
)
525 alias_invariant
[regno
] = val
;
527 if (GET_CODE (val
) == REG
)
529 if ((unsigned) REGNO (val
) < reg_base_value_size
)
531 reg_base_value
[regno
] = reg_base_value
[REGNO (val
)];
535 reg_base_value
[regno
] = find_base_value (val
);
542 /* Recursively look for equivalences. */
543 if (GET_CODE (x
) == REG
&& REGNO (x
) >= FIRST_PSEUDO_REGISTER
544 && REGNO (x
) < reg_known_value_size
)
545 return reg_known_value
[REGNO (x
)] == x
546 ? x
: canon_rtx (reg_known_value
[REGNO (x
)]);
547 else if (GET_CODE (x
) == PLUS
)
549 rtx x0
= canon_rtx (XEXP (x
, 0));
550 rtx x1
= canon_rtx (XEXP (x
, 1));
552 if (x0
!= XEXP (x
, 0) || x1
!= XEXP (x
, 1))
554 /* We can tolerate LO_SUMs being offset here; these
555 rtl are used for nothing other than comparisons. */
556 if (GET_CODE (x0
) == CONST_INT
)
557 return plus_constant_for_output (x1
, INTVAL (x0
));
558 else if (GET_CODE (x1
) == CONST_INT
)
559 return plus_constant_for_output (x0
, INTVAL (x1
));
560 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
563 /* This gives us much better alias analysis when called from
564 the loop optimizer. Note we want to leave the original
565 MEM alone, but need to return the canonicalized MEM with
566 all the flags with their original values. */
567 else if (GET_CODE (x
) == MEM
)
569 rtx addr
= canon_rtx (XEXP (x
, 0));
570 if (addr
!= XEXP (x
, 0))
572 rtx
new = gen_rtx_MEM (GET_MODE (x
), addr
);
573 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x
);
574 MEM_COPY_ATTRIBUTES (new, x
);
575 MEM_ALIAS_SET (new) = MEM_ALIAS_SET (x
);
582 /* Return 1 if X and Y are identical-looking rtx's.
584 We use the data in reg_known_value above to see if two registers with
585 different numbers are, in fact, equivalent. */
588 rtx_equal_for_memref_p (x
, y
)
593 register enum rtx_code code
;
596 if (x
== 0 && y
== 0)
598 if (x
== 0 || y
== 0)
607 /* Rtx's of different codes cannot be equal. */
608 if (code
!= GET_CODE (y
))
611 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
612 (REG:SI x) and (REG:HI x) are NOT equivalent. */
614 if (GET_MODE (x
) != GET_MODE (y
))
617 /* REG, LABEL_REF, and SYMBOL_REF can be compared nonrecursively. */
620 return REGNO (x
) == REGNO (y
);
621 if (code
== LABEL_REF
)
622 return XEXP (x
, 0) == XEXP (y
, 0);
623 if (code
== SYMBOL_REF
)
624 return XSTR (x
, 0) == XSTR (y
, 0);
625 if (code
== CONST_INT
)
626 return INTVAL (x
) == INTVAL (y
);
627 if (code
== ADDRESSOF
)
628 return REGNO (XEXP (x
, 0)) == REGNO (XEXP (y
, 0)) && XINT (x
, 1) == XINT (y
, 1);
630 /* For commutative operations, the RTX match if the operand match in any
631 order. Also handle the simple binary and unary cases without a loop. */
632 if (code
== EQ
|| code
== NE
|| GET_RTX_CLASS (code
) == 'c')
633 return ((rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
634 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)))
635 || (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 1))
636 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 0))));
637 else if (GET_RTX_CLASS (code
) == '<' || GET_RTX_CLASS (code
) == '2')
638 return (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
639 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)));
640 else if (GET_RTX_CLASS (code
) == '1')
641 return rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0));
643 /* Compare the elements. If any pair of corresponding elements
644 fail to match, return 0 for the whole things.
646 Limit cases to types which actually appear in addresses. */
648 fmt
= GET_RTX_FORMAT (code
);
649 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
654 if (XINT (x
, i
) != XINT (y
, i
))
659 /* Two vectors must have the same length. */
660 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
663 /* And the corresponding elements must match. */
664 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
665 if (rtx_equal_for_memref_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
)) == 0)
670 if (rtx_equal_for_memref_p (XEXP (x
, i
), XEXP (y
, i
)) == 0)
674 /* This can happen for an asm which clobbers memory. */
678 /* It is believed that rtx's at this level will never
679 contain anything but integers and other rtx's,
680 except for within LABEL_REFs and SYMBOL_REFs. */
688 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
689 X and return it, or return 0 if none found. */
692 find_symbolic_term (x
)
696 register enum rtx_code code
;
700 if (code
== SYMBOL_REF
|| code
== LABEL_REF
)
702 if (GET_RTX_CLASS (code
) == 'o')
705 fmt
= GET_RTX_FORMAT (code
);
706 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
712 t
= find_symbolic_term (XEXP (x
, i
));
716 else if (fmt
[i
] == 'E')
726 switch (GET_CODE (x
))
729 return REG_BASE_VALUE (x
);
732 case SIGN_EXTEND
: /* Used for Alpha/NT pointers */
738 return find_base_term (XEXP (x
, 0));
742 if (GET_CODE (x
) != PLUS
&& GET_CODE (x
) != MINUS
)
749 rtx tmp1
= XEXP (x
, 0);
750 rtx tmp2
= XEXP (x
, 1);
752 /* This is a litle bit tricky since we have to determine which of
753 the two operands represents the real base address. Otherwise this
754 routine may return the index register instead of the base register.
756 That may cause us to believe no aliasing was possible, when in
757 fact aliasing is possible.
759 We use a few simple tests to guess the base register. Additional
760 tests can certainly be added. For example, if one of the operands
761 is a shift or multiply, then it must be the index register and the
762 other operand is the base register. */
764 /* If either operand is known to be a pointer, then use it
765 to determine the base term. */
766 if (REG_P (tmp1
) && REGNO_POINTER_FLAG (REGNO (tmp1
)))
767 return find_base_term (tmp1
);
769 if (REG_P (tmp2
) && REGNO_POINTER_FLAG (REGNO (tmp2
)))
770 return find_base_term (tmp2
);
772 /* Neither operand was known to be a pointer. Go ahead and find the
773 base term for both operands. */
774 tmp1
= find_base_term (tmp1
);
775 tmp2
= find_base_term (tmp2
);
777 /* If either base term is named object or a special address
778 (like an argument or stack reference), then use it for the
781 && (GET_CODE (tmp1
) == SYMBOL_REF
782 || GET_CODE (tmp1
) == LABEL_REF
783 || (GET_CODE (tmp1
) == ADDRESS
784 && GET_MODE (tmp1
) != VOIDmode
)))
788 && (GET_CODE (tmp2
) == SYMBOL_REF
789 || GET_CODE (tmp2
) == LABEL_REF
790 || (GET_CODE (tmp2
) == ADDRESS
791 && GET_MODE (tmp2
) != VOIDmode
)))
794 /* We could not determine which of the two operands was the
795 base register and which was the index. So we can determine
796 nothing from the base alias check. */
801 if (GET_CODE (XEXP (x
, 0)) == REG
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
802 return REG_BASE_VALUE (XEXP (x
, 0));
814 /* Return 0 if the addresses X and Y are known to point to different
815 objects, 1 if they might be pointers to the same object. */
818 base_alias_check (x
, y
, x_mode
, y_mode
)
820 enum machine_mode x_mode
, y_mode
;
822 rtx x_base
= find_base_term (x
);
823 rtx y_base
= find_base_term (y
);
825 /* If the address itself has no known base see if a known equivalent
826 value has one. If either address still has no known base, nothing
827 is known about aliasing. */
831 if (! flag_expensive_optimizations
|| (x_c
= canon_rtx (x
)) == x
)
833 x_base
= find_base_term (x_c
);
841 if (! flag_expensive_optimizations
|| (y_c
= canon_rtx (y
)) == y
)
843 y_base
= find_base_term (y_c
);
848 /* If the base addresses are equal nothing is known about aliasing. */
849 if (rtx_equal_p (x_base
, y_base
))
852 /* The base addresses of the read and write are different expressions.
853 If they are both symbols and they are not accessed via AND, there is
854 no conflict. We can bring knowledge of object alignment into play
855 here. For example, on alpha, "char a, b;" can alias one another,
856 though "char a; long b;" cannot. */
857 if (GET_CODE (x_base
) != ADDRESS
&& GET_CODE (y_base
) != ADDRESS
)
859 if (GET_CODE (x
) == AND
&& GET_CODE (y
) == AND
)
861 if (GET_CODE (x
) == AND
862 && (GET_CODE (XEXP (x
, 1)) != CONST_INT
863 || GET_MODE_UNIT_SIZE (y_mode
) < -INTVAL (XEXP (x
, 1))))
865 if (GET_CODE (y
) == AND
866 && (GET_CODE (XEXP (y
, 1)) != CONST_INT
867 || GET_MODE_UNIT_SIZE (x_mode
) < -INTVAL (XEXP (y
, 1))))
869 /* Differing symbols never alias. */
873 /* If one address is a stack reference there can be no alias:
874 stack references using different base registers do not alias,
875 a stack reference can not alias a parameter, and a stack reference
876 can not alias a global. */
877 if ((GET_CODE (x_base
) == ADDRESS
&& GET_MODE (x_base
) == Pmode
)
878 || (GET_CODE (y_base
) == ADDRESS
&& GET_MODE (y_base
) == Pmode
))
881 if (! flag_argument_noalias
)
884 if (flag_argument_noalias
> 1)
887 /* Weak noalias assertion (arguments are distinct, but may match globals). */
888 return ! (GET_MODE (x_base
) == VOIDmode
&& GET_MODE (y_base
) == VOIDmode
);
891 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
892 where SIZE is the size in bytes of the memory reference. If ADDR
893 is not modified by the memory reference then ADDR is returned. */
896 addr_side_effect_eval (addr
, size
, n_refs
)
903 switch (GET_CODE (addr
))
906 offset
= (n_refs
+ 1) * size
;
909 offset
= -(n_refs
+ 1) * size
;
912 offset
= n_refs
* size
;
915 offset
= -n_refs
* size
;
923 addr
= gen_rtx_PLUS (GET_MODE (addr
), XEXP (addr
, 0), GEN_INT (offset
));
925 addr
= XEXP (addr
, 0);
930 /* Return nonzero if X and Y (memory addresses) could reference the
931 same location in memory. C is an offset accumulator. When
932 C is nonzero, we are testing aliases between X and Y + C.
933 XSIZE is the size in bytes of the X reference,
934 similarly YSIZE is the size in bytes for Y.
936 If XSIZE or YSIZE is zero, we do not know the amount of memory being
937 referenced (the reference was BLKmode), so make the most pessimistic
940 If XSIZE or YSIZE is negative, we may access memory outside the object
941 being referenced as a side effect. This can happen when using AND to
942 align memory references, as is done on the Alpha.
944 Nice to notice that varying addresses cannot conflict with fp if no
945 local variables had their addresses taken, but that's too hard now. */
949 memrefs_conflict_p (xsize
, x
, ysize
, y
, c
)
954 if (GET_CODE (x
) == HIGH
)
956 else if (GET_CODE (x
) == LO_SUM
)
959 x
= canon_rtx (addr_side_effect_eval (x
, xsize
, 0));
960 if (GET_CODE (y
) == HIGH
)
962 else if (GET_CODE (y
) == LO_SUM
)
965 y
= canon_rtx (addr_side_effect_eval (y
, ysize
, 0));
967 if (rtx_equal_for_memref_p (x
, y
))
969 if (xsize
<= 0 || ysize
<= 0)
971 if (c
>= 0 && xsize
> c
)
973 if (c
< 0 && ysize
+c
> 0)
978 /* This code used to check for conflicts involving stack references and
979 globals but the base address alias code now handles these cases. */
981 if (GET_CODE (x
) == PLUS
)
983 /* The fact that X is canonicalized means that this
984 PLUS rtx is canonicalized. */
985 rtx x0
= XEXP (x
, 0);
986 rtx x1
= XEXP (x
, 1);
988 if (GET_CODE (y
) == PLUS
)
990 /* The fact that Y is canonicalized means that this
991 PLUS rtx is canonicalized. */
992 rtx y0
= XEXP (y
, 0);
993 rtx y1
= XEXP (y
, 1);
995 if (rtx_equal_for_memref_p (x1
, y1
))
996 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
997 if (rtx_equal_for_memref_p (x0
, y0
))
998 return memrefs_conflict_p (xsize
, x1
, ysize
, y1
, c
);
999 if (GET_CODE (x1
) == CONST_INT
)
1001 if (GET_CODE (y1
) == CONST_INT
)
1002 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
,
1003 c
- INTVAL (x1
) + INTVAL (y1
));
1005 return memrefs_conflict_p (xsize
, x0
, ysize
, y
,
1008 else if (GET_CODE (y1
) == CONST_INT
)
1009 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1013 else if (GET_CODE (x1
) == CONST_INT
)
1014 return memrefs_conflict_p (xsize
, x0
, ysize
, y
, c
- INTVAL (x1
));
1016 else if (GET_CODE (y
) == PLUS
)
1018 /* The fact that Y is canonicalized means that this
1019 PLUS rtx is canonicalized. */
1020 rtx y0
= XEXP (y
, 0);
1021 rtx y1
= XEXP (y
, 1);
1023 if (GET_CODE (y1
) == CONST_INT
)
1024 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1029 if (GET_CODE (x
) == GET_CODE (y
))
1030 switch (GET_CODE (x
))
1034 /* Handle cases where we expect the second operands to be the
1035 same, and check only whether the first operand would conflict
1038 rtx x1
= canon_rtx (XEXP (x
, 1));
1039 rtx y1
= canon_rtx (XEXP (y
, 1));
1040 if (! rtx_equal_for_memref_p (x1
, y1
))
1042 x0
= canon_rtx (XEXP (x
, 0));
1043 y0
= canon_rtx (XEXP (y
, 0));
1044 if (rtx_equal_for_memref_p (x0
, y0
))
1045 return (xsize
== 0 || ysize
== 0
1046 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1048 /* Can't properly adjust our sizes. */
1049 if (GET_CODE (x1
) != CONST_INT
)
1051 xsize
/= INTVAL (x1
);
1052 ysize
/= INTVAL (x1
);
1054 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1058 /* Are these registers known not to be equal? */
1059 if (alias_invariant
)
1061 unsigned int r_x
= REGNO (x
), r_y
= REGNO (y
);
1062 rtx i_x
, i_y
; /* invariant relationships of X and Y */
1064 i_x
= r_x
>= reg_base_value_size
? 0 : alias_invariant
[r_x
];
1065 i_y
= r_y
>= reg_base_value_size
? 0 : alias_invariant
[r_y
];
1067 if (i_x
== 0 && i_y
== 0)
1070 if (! memrefs_conflict_p (xsize
, i_x
? i_x
: x
,
1071 ysize
, i_y
? i_y
: y
, c
))
1080 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1081 as an access with indeterminate size. Assume that references
1082 besides AND are aligned, so if the size of the other reference is
1083 at least as large as the alignment, assume no other overlap. */
1084 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1086 if (GET_CODE (y
) == AND
|| ysize
< -INTVAL (XEXP (x
, 1)))
1088 return memrefs_conflict_p (xsize
, XEXP (x
, 0), ysize
, y
, c
);
1090 if (GET_CODE (y
) == AND
&& GET_CODE (XEXP (y
, 1)) == CONST_INT
)
1092 /* ??? If we are indexing far enough into the array/structure, we
1093 may yet be able to determine that we can not overlap. But we
1094 also need to that we are far enough from the end not to overlap
1095 a following reference, so we do nothing with that for now. */
1096 if (GET_CODE (x
) == AND
|| xsize
< -INTVAL (XEXP (y
, 1)))
1098 return memrefs_conflict_p (xsize
, x
, ysize
, XEXP (y
, 0), c
);
1103 if (GET_CODE (x
) == CONST_INT
&& GET_CODE (y
) == CONST_INT
)
1105 c
+= (INTVAL (y
) - INTVAL (x
));
1106 return (xsize
<= 0 || ysize
<= 0
1107 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1110 if (GET_CODE (x
) == CONST
)
1112 if (GET_CODE (y
) == CONST
)
1113 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1114 ysize
, canon_rtx (XEXP (y
, 0)), c
);
1116 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1119 if (GET_CODE (y
) == CONST
)
1120 return memrefs_conflict_p (xsize
, x
, ysize
,
1121 canon_rtx (XEXP (y
, 0)), c
);
1124 return (xsize
< 0 || ysize
< 0
1125 || (rtx_equal_for_memref_p (x
, y
)
1126 && (xsize
== 0 || ysize
== 0
1127 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0))));
1134 /* Functions to compute memory dependencies.
1136 Since we process the insns in execution order, we can build tables
1137 to keep track of what registers are fixed (and not aliased), what registers
1138 are varying in known ways, and what registers are varying in unknown
1141 If both memory references are volatile, then there must always be a
1142 dependence between the two references, since their order can not be
1143 changed. A volatile and non-volatile reference can be interchanged
1146 A MEM_IN_STRUCT reference at a non-QImode non-AND varying address can never
1147 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We must
1148 allow QImode aliasing because the ANSI C standard allows character
1149 pointers to alias anything. We are assuming that characters are
1150 always QImode here. We also must allow AND addresses, because they may
1151 generate accesses outside the object being referenced. This is used to
1152 generate aligned addresses from unaligned addresses, for instance, the
1153 alpha storeqi_unaligned pattern. */
1155 /* Read dependence: X is read after read in MEM takes place. There can
1156 only be a dependence here if both reads are volatile. */
1159 read_dependence (mem
, x
)
1163 return MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
);
1166 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1167 MEM2 is a reference to a structure at a varying address, or returns
1168 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1169 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1170 to decide whether or not an address may vary; it should return
1171 nozero whenever variation is possible. */
1174 fixed_scalar_and_varying_struct_p (mem1
, mem2
, varies_p
)
1177 int (*varies_p
) PROTO((rtx
));
1179 rtx mem1_addr
= XEXP (mem1
, 0);
1180 rtx mem2_addr
= XEXP (mem2
, 0);
1182 if (MEM_SCALAR_P (mem1
) && MEM_IN_STRUCT_P (mem2
)
1183 && !varies_p (mem1_addr
) && varies_p (mem2_addr
))
1184 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1188 if (MEM_IN_STRUCT_P (mem1
) && MEM_SCALAR_P (mem2
)
1189 && varies_p (mem1_addr
) && !varies_p (mem2_addr
))
1190 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1197 /* Returns nonzero if something about the mode or address format MEM1
1198 indicates that it might well alias *anything*. */
1201 aliases_everything_p (mem
)
1204 if (GET_MODE (mem
) == QImode
)
1205 /* ANSI C says that a `char*' can point to anything. */
1208 if (GET_CODE (XEXP (mem
, 0)) == AND
)
1209 /* If the address is an AND, its very hard to know at what it is
1210 actually pointing. */
1216 /* True dependence: X is read after store in MEM takes place. */
1219 true_dependence (mem
, mem_mode
, x
, varies
)
1221 enum machine_mode mem_mode
;
1223 int (*varies
) PROTO((rtx
));
1225 register rtx x_addr
, mem_addr
;
1227 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
1230 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
1233 /* If X is an unchanging read, then it can't possibly conflict with any
1234 non-unchanging store. It may conflict with an unchanging write though,
1235 because there may be a single store to this address to initialize it.
1236 Just fall through to the code below to resolve the case where we have
1237 both an unchanging read and an unchanging write. This won't handle all
1238 cases optimally, but the possible performance loss should be
1240 if (RTX_UNCHANGING_P (x
) && ! RTX_UNCHANGING_P (mem
))
1243 if (mem_mode
== VOIDmode
)
1244 mem_mode
= GET_MODE (mem
);
1246 if (! base_alias_check (XEXP (x
, 0), XEXP (mem
, 0), GET_MODE (x
), mem_mode
))
1249 x_addr
= canon_rtx (XEXP (x
, 0));
1250 mem_addr
= canon_rtx (XEXP (mem
, 0));
1252 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
1253 SIZE_FOR_MODE (x
), x_addr
, 0))
1256 if (aliases_everything_p (x
))
1259 /* We cannot use aliases_everyting_p to test MEM, since we must look
1260 at MEM_MODE, rather than GET_MODE (MEM). */
1261 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
1264 /* In true_dependence we also allow BLKmode to alias anything. Why
1265 don't we do this in anti_dependence and output_dependence? */
1266 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
1269 return !fixed_scalar_and_varying_struct_p (mem
, x
, varies
);
1272 /* Returns non-zero if a write to X might alias a previous read from
1273 (or, if WRITEP is non-zero, a write to) MEM. */
1276 write_dependence_p (mem
, x
, writep
)
1281 rtx x_addr
, mem_addr
;
1284 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
1287 /* If MEM is an unchanging read, then it can't possibly conflict with
1288 the store to X, because there is at most one store to MEM, and it must
1289 have occurred somewhere before MEM. */
1290 if (!writep
&& RTX_UNCHANGING_P (mem
))
1293 if (! base_alias_check (XEXP (x
, 0), XEXP (mem
, 0), GET_MODE (x
),
1298 mem
= canon_rtx (mem
);
1300 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
1303 x_addr
= XEXP (x
, 0);
1304 mem_addr
= XEXP (mem
, 0);
1306 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem
), mem_addr
,
1307 SIZE_FOR_MODE (x
), x_addr
, 0))
1311 = fixed_scalar_and_varying_struct_p (mem
, x
, rtx_addr_varies_p
);
1313 return (!(fixed_scalar
== mem
&& !aliases_everything_p (x
))
1314 && !(fixed_scalar
== x
&& !aliases_everything_p (mem
)));
1317 /* Anti dependence: X is written after read in MEM takes place. */
1320 anti_dependence (mem
, x
)
1324 return write_dependence_p (mem
, x
, /*writep=*/0);
1327 /* Output dependence: X is written after store in MEM takes place. */
1330 output_dependence (mem
, x
)
1334 return write_dependence_p (mem
, x
, /*writep=*/1);
1338 static HARD_REG_SET argument_registers
;
1345 #ifndef OUTGOING_REGNO
1346 #define OUTGOING_REGNO(N) N
1348 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1349 /* Check whether this register can hold an incoming pointer
1350 argument. FUNCTION_ARG_REGNO_P tests outgoing register
1351 numbers, so translate if necessary due to register windows. */
1352 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i
))
1353 && HARD_REGNO_MODE_OK (i
, Pmode
))
1354 SET_HARD_REG_BIT (argument_registers
, i
);
1356 alias_sets
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1360 init_alias_analysis ()
1362 int maxreg
= max_reg_num ();
1365 register unsigned int ui
;
1368 reg_known_value_size
= maxreg
;
1371 = (rtx
*) oballoc ((maxreg
- FIRST_PSEUDO_REGISTER
) * sizeof (rtx
))
1372 - FIRST_PSEUDO_REGISTER
;
1374 oballoc (maxreg
- FIRST_PSEUDO_REGISTER
) - FIRST_PSEUDO_REGISTER
;
1375 bzero ((char *) (reg_known_value
+ FIRST_PSEUDO_REGISTER
),
1376 (maxreg
-FIRST_PSEUDO_REGISTER
) * sizeof (rtx
));
1377 bzero (reg_known_equiv_p
+ FIRST_PSEUDO_REGISTER
,
1378 (maxreg
- FIRST_PSEUDO_REGISTER
) * sizeof (char));
1380 /* Overallocate reg_base_value to allow some growth during loop
1381 optimization. Loop unrolling can create a large number of
1383 reg_base_value_size
= maxreg
* 2;
1384 reg_base_value
= (rtx
*)oballoc (reg_base_value_size
* sizeof (rtx
));
1385 new_reg_base_value
= (rtx
*)alloca (reg_base_value_size
* sizeof (rtx
));
1386 reg_seen
= (char *)alloca (reg_base_value_size
);
1387 bzero ((char *) reg_base_value
, reg_base_value_size
* sizeof (rtx
));
1388 if (! reload_completed
&& flag_unroll_loops
)
1390 alias_invariant
= (rtx
*)xrealloc (alias_invariant
,
1391 reg_base_value_size
* sizeof (rtx
));
1392 bzero ((char *)alias_invariant
, reg_base_value_size
* sizeof (rtx
));
1396 /* The basic idea is that each pass through this loop will use the
1397 "constant" information from the previous pass to propagate alias
1398 information through another level of assignments.
1400 This could get expensive if the assignment chains are long. Maybe
1401 we should throttle the number of iterations, possibly based on
1402 the optimization level or flag_expensive_optimizations.
1404 We could propagate more information in the first pass by making use
1405 of REG_N_SETS to determine immediately that the alias information
1406 for a pseudo is "constant".
1408 A program with an uninitialized variable can cause an infinite loop
1409 here. Instead of doing a full dataflow analysis to detect such problems
1410 we just cap the number of iterations for the loop.
1412 The state of the arrays for the set chain in question does not matter
1413 since the program has undefined behavior. */
1418 /* Assume nothing will change this iteration of the loop. */
1421 /* We want to assign the same IDs each iteration of this loop, so
1422 start counting from zero each iteration of the loop. */
1425 /* We're at the start of the funtion each iteration through the
1426 loop, so we're copying arguments. */
1427 copying_arguments
= 1;
1429 /* Wipe the potential alias information clean for this pass. */
1430 bzero ((char *) new_reg_base_value
, reg_base_value_size
* sizeof (rtx
));
1432 /* Wipe the reg_seen array clean. */
1433 bzero ((char *) reg_seen
, reg_base_value_size
);
1435 /* Mark all hard registers which may contain an address.
1436 The stack, frame and argument pointers may contain an address.
1437 An argument register which can hold a Pmode value may contain
1438 an address even if it is not in BASE_REGS.
1440 The address expression is VOIDmode for an argument and
1441 Pmode for other registers. */
1443 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1444 if (TEST_HARD_REG_BIT (argument_registers
, i
))
1445 new_reg_base_value
[i
] = gen_rtx_ADDRESS (VOIDmode
,
1446 gen_rtx_REG (Pmode
, i
));
1448 new_reg_base_value
[STACK_POINTER_REGNUM
]
1449 = gen_rtx_ADDRESS (Pmode
, stack_pointer_rtx
);
1450 new_reg_base_value
[ARG_POINTER_REGNUM
]
1451 = gen_rtx_ADDRESS (Pmode
, arg_pointer_rtx
);
1452 new_reg_base_value
[FRAME_POINTER_REGNUM
]
1453 = gen_rtx_ADDRESS (Pmode
, frame_pointer_rtx
);
1454 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1455 new_reg_base_value
[HARD_FRAME_POINTER_REGNUM
]
1456 = gen_rtx_ADDRESS (Pmode
, hard_frame_pointer_rtx
);
1458 if (struct_value_incoming_rtx
1459 && GET_CODE (struct_value_incoming_rtx
) == REG
)
1460 new_reg_base_value
[REGNO (struct_value_incoming_rtx
)]
1461 = gen_rtx_ADDRESS (Pmode
, struct_value_incoming_rtx
);
1463 if (static_chain_rtx
1464 && GET_CODE (static_chain_rtx
) == REG
)
1465 new_reg_base_value
[REGNO (static_chain_rtx
)]
1466 = gen_rtx_ADDRESS (Pmode
, static_chain_rtx
);
1468 /* Walk the insns adding values to the new_reg_base_value array. */
1469 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1471 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i')
1474 /* If this insn has a noalias note, process it, Otherwise,
1475 scan for sets. A simple set will have no side effects
1476 which could change the base value of any other register. */
1478 if (GET_CODE (PATTERN (insn
)) == SET
1479 && (find_reg_note (insn
, REG_NOALIAS
, NULL_RTX
)))
1480 record_set (SET_DEST (PATTERN (insn
)), NULL_RTX
);
1482 note_stores (PATTERN (insn
), record_set
);
1484 set
= single_set (insn
);
1487 && GET_CODE (SET_DEST (set
)) == REG
1488 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
1489 && (((note
= find_reg_note (insn
, REG_EQUAL
, 0)) != 0
1490 && REG_N_SETS (REGNO (SET_DEST (set
))) == 1)
1491 || (note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) != 0)
1492 && GET_CODE (XEXP (note
, 0)) != EXPR_LIST
1493 && ! reg_overlap_mentioned_p (SET_DEST (set
), XEXP (note
, 0)))
1495 int regno
= REGNO (SET_DEST (set
));
1496 reg_known_value
[regno
] = XEXP (note
, 0);
1497 reg_known_equiv_p
[regno
] = REG_NOTE_KIND (note
) == REG_EQUIV
;
1500 else if (GET_CODE (insn
) == NOTE
1501 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_BEG
)
1502 copying_arguments
= 0;
1505 /* Now propagate values from new_reg_base_value to reg_base_value. */
1506 for (ui
= 0; ui
< reg_base_value_size
; ui
++)
1508 if (new_reg_base_value
[ui
]
1509 && new_reg_base_value
[ui
] != reg_base_value
[ui
]
1510 && ! rtx_equal_p (new_reg_base_value
[ui
], reg_base_value
[ui
]))
1512 reg_base_value
[ui
] = new_reg_base_value
[ui
];
1517 while (changed
&& ++pass
< MAX_ALIAS_LOOP_PASSES
);
1519 /* Fill in the remaining entries. */
1520 for (i
= FIRST_PSEUDO_REGISTER
; i
< maxreg
; i
++)
1521 if (reg_known_value
[i
] == 0)
1522 reg_known_value
[i
] = regno_reg_rtx
[i
];
1524 /* Simplify the reg_base_value array so that no register refers to
1525 another register, except to special registers indirectly through
1526 ADDRESS expressions.
1528 In theory this loop can take as long as O(registers^2), but unless
1529 there are very long dependency chains it will run in close to linear
1532 This loop may not be needed any longer now that the main loop does
1533 a better job at propagating alias information. */
1539 for (ui
= 0; ui
< reg_base_value_size
; ui
++)
1541 rtx base
= reg_base_value
[ui
];
1542 if (base
&& GET_CODE (base
) == REG
)
1544 unsigned int base_regno
= REGNO (base
);
1545 if (base_regno
== ui
) /* register set from itself */
1546 reg_base_value
[ui
] = 0;
1548 reg_base_value
[ui
] = reg_base_value
[base_regno
];
1553 while (changed
&& pass
< MAX_ALIAS_LOOP_PASSES
);
1555 new_reg_base_value
= 0;
1560 end_alias_analysis ()
1562 reg_known_value
= 0;
1564 reg_base_value_size
= 0;
1565 if (alias_invariant
)
1567 free ((char *)alias_invariant
);
1568 alias_invariant
= 0;