Daily bump.
[official-gcc.git] / gcc / alias.c
blob9d8aac7832a481d6becc13c7509f788e2c98c0c4
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "rtl.h"
25 #include "expr.h"
26 #include "regs.h"
27 #include "hard-reg-set.h"
28 #include "flags.h"
29 #include "output.h"
30 #include "toplev.h"
31 #include "splay-tree.h"
33 /* The alias sets assigned to MEMs assist the back-end in determining
34 which MEMs can alias which other MEMs. In general, two MEMs in
35 different alias sets to not alias each other. There is one
36 exception, however. Consider something like:
38 struct S {int i; double d; };
40 a store to an `S' can alias something of either type `int' or type
41 `double'. (However, a store to an `int' cannot alias a `double'
42 and vice versa.) We indicate this via a tree structure that looks
43 like:
44 struct S
45 / \
46 / \
47 |/_ _\|
48 int double
50 (The arrows are directed and point downwards.) If, when comparing
51 two alias sets, we can hold one set fixed, and trace the other set
52 downwards, and at some point find the first set, the two MEMs can
53 alias one another. In this situation we say the alias set for
54 `struct S' is the `superset' and that those for `int' and `double'
55 are `subsets'.
57 Alias set zero is implicitly a superset of all other alias sets.
58 However, this is no actual entry for alias set zero. It is an
59 error to attempt to explicitly construct a subset of zero. */
61 typedef struct alias_set_entry {
62 /* The alias set number, as stored in MEM_ALIAS_SET. */
63 int alias_set;
65 /* The children of the alias set. These are not just the immediate
66 children, but, in fact, all children. So, if we have:
68 struct T { struct S s; float f; }
70 continuing our example above, the children here will be all of
71 `int', `double', `float', and `struct S'. */
72 splay_tree children;
73 }* alias_set_entry;
75 static rtx canon_rtx PROTO((rtx));
76 static int rtx_equal_for_memref_p PROTO((rtx, rtx));
77 static rtx find_symbolic_term PROTO((rtx));
78 static int memrefs_conflict_p PROTO((int, rtx, int, rtx,
79 HOST_WIDE_INT));
80 static void record_set PROTO((rtx, rtx));
81 static rtx find_base_term PROTO((rtx));
82 static int base_alias_check PROTO((rtx, rtx, enum machine_mode,
83 enum machine_mode));
84 static rtx find_base_value PROTO((rtx));
85 static int mems_in_disjoint_alias_sets_p PROTO((rtx, rtx));
86 static int insert_subset_children PROTO((splay_tree_node,
87 void*));
88 static alias_set_entry get_alias_set_entry PROTO((int));
89 static rtx fixed_scalar_and_varying_struct_p PROTO((rtx, rtx, int (*)(rtx)));
90 static int aliases_everything_p PROTO((rtx));
91 static int write_dependence_p PROTO((rtx, rtx, int));
93 /* Set up all info needed to perform alias analysis on memory references. */
95 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
97 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
98 different alias sets. We ignore alias sets in functions making use
99 of variable arguments because the va_arg macros on some systems are
100 not legal ANSI C. */
101 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
102 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
104 /* Cap the number of passes we make over the insns propagating alias
105 information through set chains.
107 10 is a completely arbitrary choice. */
108 #define MAX_ALIAS_LOOP_PASSES 10
110 /* reg_base_value[N] gives an address to which register N is related.
111 If all sets after the first add or subtract to the current value
112 or otherwise modify it so it does not point to a different top level
113 object, reg_base_value[N] is equal to the address part of the source
114 of the first set.
116 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
117 expressions represent certain special values: function arguments and
118 the stack, frame, and argument pointers. The contents of an address
119 expression are not used (but they are descriptive for debugging);
120 only the address and mode matter. Pointer equality, not rtx_equal_p,
121 determines whether two ADDRESS expressions refer to the same base
122 address. The mode determines whether it is a function argument or
123 other special value. */
125 rtx *reg_base_value;
126 rtx *new_reg_base_value;
127 unsigned int reg_base_value_size; /* size of reg_base_value array */
128 #define REG_BASE_VALUE(X) \
129 ((unsigned) REGNO (X) < reg_base_value_size ? reg_base_value[REGNO (X)] : 0)
131 /* Vector of known invariant relationships between registers. Set in
132 loop unrolling. Indexed by register number, if nonzero the value
133 is an expression describing this register in terms of another.
135 The length of this array is REG_BASE_VALUE_SIZE.
137 Because this array contains only pseudo registers it has no effect
138 after reload. */
139 static rtx *alias_invariant;
141 /* Vector indexed by N giving the initial (unchanging) value known
142 for pseudo-register N. */
143 rtx *reg_known_value;
145 /* Indicates number of valid entries in reg_known_value. */
146 static int reg_known_value_size;
148 /* Vector recording for each reg_known_value whether it is due to a
149 REG_EQUIV note. Future passes (viz., reload) may replace the
150 pseudo with the equivalent expression and so we account for the
151 dependences that would be introduced if that happens. */
152 /* ??? This is a problem only on the Convex. The REG_EQUIV notes created in
153 assign_parms mention the arg pointer, and there are explicit insns in the
154 RTL that modify the arg pointer. Thus we must ensure that such insns don't
155 get scheduled across each other because that would invalidate the REG_EQUIV
156 notes. One could argue that the REG_EQUIV notes are wrong, but solving
157 the problem in the scheduler will likely give better code, so we do it
158 here. */
159 char *reg_known_equiv_p;
161 /* True when scanning insns from the start of the rtl to the
162 NOTE_INSN_FUNCTION_BEG note. */
164 static int copying_arguments;
166 /* The splay-tree used to store the various alias set entries. */
168 static splay_tree alias_sets;
170 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
171 such an entry, or NULL otherwise. */
173 static alias_set_entry
174 get_alias_set_entry (alias_set)
175 int alias_set;
177 splay_tree_node sn =
178 splay_tree_lookup (alias_sets, (splay_tree_key) alias_set);
180 return sn ? ((alias_set_entry) sn->value) : ((alias_set_entry) 0);
183 /* Returns nonzero value if the alias sets for MEM1 and MEM2 are such
184 that the two MEMs cannot alias each other. */
186 static int
187 mems_in_disjoint_alias_sets_p (mem1, mem2)
188 rtx mem1;
189 rtx mem2;
191 alias_set_entry ase;
193 #ifdef ENABLE_CHECKING
194 /* Perform a basic sanity check. Namely, that there are no alias sets
195 if we're not using strict aliasing. This helps to catch bugs
196 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
197 where a MEM is allocated in some way other than by the use of
198 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
199 use alias sets to indicate that spilled registers cannot alias each
200 other, we might need to remove this check. */
201 if (!flag_strict_aliasing &&
202 (MEM_ALIAS_SET (mem1) || MEM_ALIAS_SET (mem2)))
203 abort ();
204 #endif
206 /* The code used in varargs macros are often not conforming ANSI C,
207 which can trick the compiler into making incorrect aliasing
208 assumptions in these functions. So, we don't use alias sets in
209 such a function. FIXME: This should be moved into the front-end;
210 it is a language-dependent notion, and there's no reason not to
211 still use these checks to handle globals. */
212 if (current_function_stdarg || current_function_varargs)
213 return 0;
215 if (!MEM_ALIAS_SET (mem1) || !MEM_ALIAS_SET (mem2))
216 /* We have no alias set information for one of the MEMs, so we
217 have to assume it can alias anything. */
218 return 0;
220 if (MEM_ALIAS_SET (mem1) == MEM_ALIAS_SET (mem2))
221 /* The two alias sets are the same, so they may alias. */
222 return 0;
224 /* Iterate through each of the children of the first alias set,
225 comparing it with the second alias set. */
226 ase = get_alias_set_entry (MEM_ALIAS_SET (mem1));
227 if (ase && splay_tree_lookup (ase->children,
228 (splay_tree_key) MEM_ALIAS_SET (mem2)))
229 return 0;
231 /* Now do the same, but with the alias sets reversed. */
232 ase = get_alias_set_entry (MEM_ALIAS_SET (mem2));
233 if (ase && splay_tree_lookup (ase->children,
234 (splay_tree_key) MEM_ALIAS_SET (mem1)))
235 return 0;
237 /* The two MEMs are in distinct alias sets, and neither one is the
238 child of the other. Therefore, they cannot alias. */
239 return 1;
242 /* Insert the NODE into the splay tree given by DATA. Used by
243 record_alias_subset via splay_tree_foreach. */
245 static int
246 insert_subset_children (node, data)
247 splay_tree_node node;
248 void *data;
250 splay_tree_insert ((splay_tree) data,
251 node->key,
252 node->value);
254 return 0;
257 /* Indicate that things in SUBSET can alias things in SUPERSET, but
258 not vice versa. For example, in C, a store to an `int' can alias a
259 structure containing an `int', but not vice versa. Here, the
260 structure would be the SUPERSET and `int' the SUBSET. This
261 function should be called only once per SUPERSET/SUBSET pair. At
262 present any given alias set may only be a subset of one superset.
264 It is illegal for SUPERSET to be zero; everything is implicitly a
265 subset of alias set zero. */
267 void
268 record_alias_subset (superset, subset)
269 int superset;
270 int subset;
272 alias_set_entry superset_entry;
273 alias_set_entry subset_entry;
275 if (superset == 0)
276 abort ();
278 superset_entry = get_alias_set_entry (superset);
279 if (!superset_entry)
281 /* Create an entry for the SUPERSET, so that we have a place to
282 attach the SUBSET. */
283 superset_entry =
284 (alias_set_entry) xmalloc (sizeof (struct alias_set_entry));
285 superset_entry->alias_set = superset;
286 superset_entry->children
287 = splay_tree_new (splay_tree_compare_ints, 0, 0);
288 splay_tree_insert (alias_sets,
289 (splay_tree_key) superset,
290 (splay_tree_value) superset_entry);
294 subset_entry = get_alias_set_entry (subset);
295 if (subset_entry)
296 /* There is an entry for the subset. Enter all of its children
297 (if they are not already present) as children of the SUPERSET. */
298 splay_tree_foreach (subset_entry->children,
299 insert_subset_children,
300 superset_entry->children);
302 /* Enter the SUBSET itself as a child of the SUPERSET. */
303 splay_tree_insert (superset_entry->children,
304 (splay_tree_key) subset,
305 /*value=*/0);
308 /* Inside SRC, the source of a SET, find a base address. */
310 static rtx
311 find_base_value (src)
312 register rtx src;
314 switch (GET_CODE (src))
316 case SYMBOL_REF:
317 case LABEL_REF:
318 return src;
320 case REG:
321 /* At the start of a function argument registers have known base
322 values which may be lost later. Returning an ADDRESS
323 expression here allows optimization based on argument values
324 even when the argument registers are used for other purposes. */
325 if (REGNO (src) < FIRST_PSEUDO_REGISTER && copying_arguments)
326 return new_reg_base_value[REGNO (src)];
328 /* If a pseudo has a known base value, return it. Do not do this
329 for hard regs since it can result in a circular dependency
330 chain for registers which have values at function entry.
332 The test above is not sufficient because the scheduler may move
333 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
334 if (REGNO (src) >= FIRST_PSEUDO_REGISTER
335 && (unsigned) REGNO (src) < reg_base_value_size
336 && reg_base_value[REGNO (src)])
337 return reg_base_value[REGNO (src)];
339 return src;
341 case MEM:
342 /* Check for an argument passed in memory. Only record in the
343 copying-arguments block; it is too hard to track changes
344 otherwise. */
345 if (copying_arguments
346 && (XEXP (src, 0) == arg_pointer_rtx
347 || (GET_CODE (XEXP (src, 0)) == PLUS
348 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
349 return gen_rtx_ADDRESS (VOIDmode, src);
350 return 0;
352 case CONST:
353 src = XEXP (src, 0);
354 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
355 break;
356 /* fall through */
358 case PLUS:
359 case MINUS:
361 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
363 /* If either operand is a REG, then see if we already have
364 a known value for it. */
365 if (GET_CODE (src_0) == REG)
367 temp = find_base_value (src_0);
368 if (temp)
369 src_0 = temp;
372 if (GET_CODE (src_1) == REG)
374 temp = find_base_value (src_1);
375 if (temp)
376 src_1 = temp;
379 /* Guess which operand is the base address.
381 If either operand is a symbol, then it is the base. If
382 either operand is a CONST_INT, then the other is the base. */
384 if (GET_CODE (src_1) == CONST_INT
385 || GET_CODE (src_0) == SYMBOL_REF
386 || GET_CODE (src_0) == LABEL_REF
387 || GET_CODE (src_0) == CONST)
388 return find_base_value (src_0);
390 if (GET_CODE (src_0) == CONST_INT
391 || GET_CODE (src_1) == SYMBOL_REF
392 || GET_CODE (src_1) == LABEL_REF
393 || GET_CODE (src_1) == CONST)
394 return find_base_value (src_1);
396 /* This might not be necessary anymore.
398 If either operand is a REG that is a known pointer, then it
399 is the base. */
400 if (GET_CODE (src_0) == REG && REGNO_POINTER_FLAG (REGNO (src_0)))
401 return find_base_value (src_0);
403 if (GET_CODE (src_1) == REG && REGNO_POINTER_FLAG (REGNO (src_1)))
404 return find_base_value (src_1);
406 return 0;
409 case LO_SUM:
410 /* The standard form is (lo_sum reg sym) so look only at the
411 second operand. */
412 return find_base_value (XEXP (src, 1));
414 case AND:
415 /* If the second operand is constant set the base
416 address to the first operand. */
417 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
418 return find_base_value (XEXP (src, 0));
419 return 0;
421 case ZERO_EXTEND:
422 case SIGN_EXTEND: /* used for NT/Alpha pointers */
423 case HIGH:
424 return find_base_value (XEXP (src, 0));
426 default:
427 break;
430 return 0;
433 /* Called from init_alias_analysis indirectly through note_stores. */
435 /* while scanning insns to find base values, reg_seen[N] is nonzero if
436 register N has been set in this function. */
437 static char *reg_seen;
439 /* Addresses which are known not to alias anything else are identified
440 by a unique integer. */
441 static int unique_id;
443 static void
444 record_set (dest, set)
445 rtx dest, set;
447 register int regno;
448 rtx src;
450 if (GET_CODE (dest) != REG)
451 return;
453 regno = REGNO (dest);
455 if (set)
457 /* A CLOBBER wipes out any old value but does not prevent a previously
458 unset register from acquiring a base address (i.e. reg_seen is not
459 set). */
460 if (GET_CODE (set) == CLOBBER)
462 new_reg_base_value[regno] = 0;
463 return;
465 src = SET_SRC (set);
467 else
469 if (reg_seen[regno])
471 new_reg_base_value[regno] = 0;
472 return;
474 reg_seen[regno] = 1;
475 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
476 GEN_INT (unique_id++));
477 return;
480 /* This is not the first set. If the new value is not related to the
481 old value, forget the base value. Note that the following code is
482 not detected:
483 extern int x, y; int *p = &x; p += (&y-&x);
484 ANSI C does not allow computing the difference of addresses
485 of distinct top level objects. */
486 if (new_reg_base_value[regno])
487 switch (GET_CODE (src))
489 case LO_SUM:
490 case PLUS:
491 case MINUS:
492 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
493 new_reg_base_value[regno] = 0;
494 break;
495 case AND:
496 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
497 new_reg_base_value[regno] = 0;
498 break;
499 default:
500 new_reg_base_value[regno] = 0;
501 break;
503 /* If this is the first set of a register, record the value. */
504 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
505 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
506 new_reg_base_value[regno] = find_base_value (src);
508 reg_seen[regno] = 1;
511 /* Called from loop optimization when a new pseudo-register is created. */
512 void
513 record_base_value (regno, val, invariant)
514 int regno;
515 rtx val;
516 int invariant;
518 if ((unsigned) regno >= reg_base_value_size)
519 return;
521 /* If INVARIANT is true then this value also describes an invariant
522 relationship which can be used to deduce that two registers with
523 unknown values are different. */
524 if (invariant && alias_invariant)
525 alias_invariant[regno] = val;
527 if (GET_CODE (val) == REG)
529 if ((unsigned) REGNO (val) < reg_base_value_size)
531 reg_base_value[regno] = reg_base_value[REGNO (val)];
533 return;
535 reg_base_value[regno] = find_base_value (val);
538 static rtx
539 canon_rtx (x)
540 rtx x;
542 /* Recursively look for equivalences. */
543 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
544 && REGNO (x) < reg_known_value_size)
545 return reg_known_value[REGNO (x)] == x
546 ? x : canon_rtx (reg_known_value[REGNO (x)]);
547 else if (GET_CODE (x) == PLUS)
549 rtx x0 = canon_rtx (XEXP (x, 0));
550 rtx x1 = canon_rtx (XEXP (x, 1));
552 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
554 /* We can tolerate LO_SUMs being offset here; these
555 rtl are used for nothing other than comparisons. */
556 if (GET_CODE (x0) == CONST_INT)
557 return plus_constant_for_output (x1, INTVAL (x0));
558 else if (GET_CODE (x1) == CONST_INT)
559 return plus_constant_for_output (x0, INTVAL (x1));
560 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
563 /* This gives us much better alias analysis when called from
564 the loop optimizer. Note we want to leave the original
565 MEM alone, but need to return the canonicalized MEM with
566 all the flags with their original values. */
567 else if (GET_CODE (x) == MEM)
569 rtx addr = canon_rtx (XEXP (x, 0));
570 if (addr != XEXP (x, 0))
572 rtx new = gen_rtx_MEM (GET_MODE (x), addr);
573 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
574 MEM_COPY_ATTRIBUTES (new, x);
575 MEM_ALIAS_SET (new) = MEM_ALIAS_SET (x);
576 x = new;
579 return x;
582 /* Return 1 if X and Y are identical-looking rtx's.
584 We use the data in reg_known_value above to see if two registers with
585 different numbers are, in fact, equivalent. */
587 static int
588 rtx_equal_for_memref_p (x, y)
589 rtx x, y;
591 register int i;
592 register int j;
593 register enum rtx_code code;
594 register char *fmt;
596 if (x == 0 && y == 0)
597 return 1;
598 if (x == 0 || y == 0)
599 return 0;
600 x = canon_rtx (x);
601 y = canon_rtx (y);
603 if (x == y)
604 return 1;
606 code = GET_CODE (x);
607 /* Rtx's of different codes cannot be equal. */
608 if (code != GET_CODE (y))
609 return 0;
611 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
612 (REG:SI x) and (REG:HI x) are NOT equivalent. */
614 if (GET_MODE (x) != GET_MODE (y))
615 return 0;
617 /* REG, LABEL_REF, and SYMBOL_REF can be compared nonrecursively. */
619 if (code == REG)
620 return REGNO (x) == REGNO (y);
621 if (code == LABEL_REF)
622 return XEXP (x, 0) == XEXP (y, 0);
623 if (code == SYMBOL_REF)
624 return XSTR (x, 0) == XSTR (y, 0);
625 if (code == CONST_INT)
626 return INTVAL (x) == INTVAL (y);
627 if (code == ADDRESSOF)
628 return REGNO (XEXP (x, 0)) == REGNO (XEXP (y, 0)) && XINT (x, 1) == XINT (y, 1);
630 /* For commutative operations, the RTX match if the operand match in any
631 order. Also handle the simple binary and unary cases without a loop. */
632 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
633 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
634 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
635 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
636 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
637 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
638 return (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
639 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)));
640 else if (GET_RTX_CLASS (code) == '1')
641 return rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0));
643 /* Compare the elements. If any pair of corresponding elements
644 fail to match, return 0 for the whole things.
646 Limit cases to types which actually appear in addresses. */
648 fmt = GET_RTX_FORMAT (code);
649 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
651 switch (fmt[i])
653 case 'i':
654 if (XINT (x, i) != XINT (y, i))
655 return 0;
656 break;
658 case 'E':
659 /* Two vectors must have the same length. */
660 if (XVECLEN (x, i) != XVECLEN (y, i))
661 return 0;
663 /* And the corresponding elements must match. */
664 for (j = 0; j < XVECLEN (x, i); j++)
665 if (rtx_equal_for_memref_p (XVECEXP (x, i, j), XVECEXP (y, i, j)) == 0)
666 return 0;
667 break;
669 case 'e':
670 if (rtx_equal_for_memref_p (XEXP (x, i), XEXP (y, i)) == 0)
671 return 0;
672 break;
674 /* This can happen for an asm which clobbers memory. */
675 case '0':
676 break;
678 /* It is believed that rtx's at this level will never
679 contain anything but integers and other rtx's,
680 except for within LABEL_REFs and SYMBOL_REFs. */
681 default:
682 abort ();
685 return 1;
688 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
689 X and return it, or return 0 if none found. */
691 static rtx
692 find_symbolic_term (x)
693 rtx x;
695 register int i;
696 register enum rtx_code code;
697 register char *fmt;
699 code = GET_CODE (x);
700 if (code == SYMBOL_REF || code == LABEL_REF)
701 return x;
702 if (GET_RTX_CLASS (code) == 'o')
703 return 0;
705 fmt = GET_RTX_FORMAT (code);
706 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
708 rtx t;
710 if (fmt[i] == 'e')
712 t = find_symbolic_term (XEXP (x, i));
713 if (t != 0)
714 return t;
716 else if (fmt[i] == 'E')
717 break;
719 return 0;
722 static rtx
723 find_base_term (x)
724 register rtx x;
726 switch (GET_CODE (x))
728 case REG:
729 return REG_BASE_VALUE (x);
731 case ZERO_EXTEND:
732 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
733 case HIGH:
734 case PRE_INC:
735 case PRE_DEC:
736 case POST_INC:
737 case POST_DEC:
738 return find_base_term (XEXP (x, 0));
740 case CONST:
741 x = XEXP (x, 0);
742 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
743 return 0;
744 /* fall through */
745 case LO_SUM:
746 case PLUS:
747 case MINUS:
749 rtx tmp1 = XEXP (x, 0);
750 rtx tmp2 = XEXP (x, 1);
752 /* This is a litle bit tricky since we have to determine which of
753 the two operands represents the real base address. Otherwise this
754 routine may return the index register instead of the base register.
756 That may cause us to believe no aliasing was possible, when in
757 fact aliasing is possible.
759 We use a few simple tests to guess the base register. Additional
760 tests can certainly be added. For example, if one of the operands
761 is a shift or multiply, then it must be the index register and the
762 other operand is the base register. */
764 /* If either operand is known to be a pointer, then use it
765 to determine the base term. */
766 if (REG_P (tmp1) && REGNO_POINTER_FLAG (REGNO (tmp1)))
767 return find_base_term (tmp1);
769 if (REG_P (tmp2) && REGNO_POINTER_FLAG (REGNO (tmp2)))
770 return find_base_term (tmp2);
772 /* Neither operand was known to be a pointer. Go ahead and find the
773 base term for both operands. */
774 tmp1 = find_base_term (tmp1);
775 tmp2 = find_base_term (tmp2);
777 /* If either base term is named object or a special address
778 (like an argument or stack reference), then use it for the
779 base term. */
780 if (tmp1
781 && (GET_CODE (tmp1) == SYMBOL_REF
782 || GET_CODE (tmp1) == LABEL_REF
783 || (GET_CODE (tmp1) == ADDRESS
784 && GET_MODE (tmp1) != VOIDmode)))
785 return tmp1;
787 if (tmp2
788 && (GET_CODE (tmp2) == SYMBOL_REF
789 || GET_CODE (tmp2) == LABEL_REF
790 || (GET_CODE (tmp2) == ADDRESS
791 && GET_MODE (tmp2) != VOIDmode)))
792 return tmp2;
794 /* We could not determine which of the two operands was the
795 base register and which was the index. So we can determine
796 nothing from the base alias check. */
797 return 0;
800 case AND:
801 if (GET_CODE (XEXP (x, 0)) == REG && GET_CODE (XEXP (x, 1)) == CONST_INT)
802 return REG_BASE_VALUE (XEXP (x, 0));
803 return 0;
805 case SYMBOL_REF:
806 case LABEL_REF:
807 return x;
809 default:
810 return 0;
814 /* Return 0 if the addresses X and Y are known to point to different
815 objects, 1 if they might be pointers to the same object. */
817 static int
818 base_alias_check (x, y, x_mode, y_mode)
819 rtx x, y;
820 enum machine_mode x_mode, y_mode;
822 rtx x_base = find_base_term (x);
823 rtx y_base = find_base_term (y);
825 /* If the address itself has no known base see if a known equivalent
826 value has one. If either address still has no known base, nothing
827 is known about aliasing. */
828 if (x_base == 0)
830 rtx x_c;
831 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
832 return 1;
833 x_base = find_base_term (x_c);
834 if (x_base == 0)
835 return 1;
838 if (y_base == 0)
840 rtx y_c;
841 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
842 return 1;
843 y_base = find_base_term (y_c);
844 if (y_base == 0)
845 return 1;
848 /* If the base addresses are equal nothing is known about aliasing. */
849 if (rtx_equal_p (x_base, y_base))
850 return 1;
852 /* The base addresses of the read and write are different expressions.
853 If they are both symbols and they are not accessed via AND, there is
854 no conflict. We can bring knowledge of object alignment into play
855 here. For example, on alpha, "char a, b;" can alias one another,
856 though "char a; long b;" cannot. */
857 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
859 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
860 return 1;
861 if (GET_CODE (x) == AND
862 && (GET_CODE (XEXP (x, 1)) != CONST_INT
863 || GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
864 return 1;
865 if (GET_CODE (y) == AND
866 && (GET_CODE (XEXP (y, 1)) != CONST_INT
867 || GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
868 return 1;
869 /* Differing symbols never alias. */
870 return 0;
873 /* If one address is a stack reference there can be no alias:
874 stack references using different base registers do not alias,
875 a stack reference can not alias a parameter, and a stack reference
876 can not alias a global. */
877 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
878 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
879 return 0;
881 if (! flag_argument_noalias)
882 return 1;
884 if (flag_argument_noalias > 1)
885 return 0;
887 /* Weak noalias assertion (arguments are distinct, but may match globals). */
888 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
891 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
892 where SIZE is the size in bytes of the memory reference. If ADDR
893 is not modified by the memory reference then ADDR is returned. */
896 addr_side_effect_eval (addr, size, n_refs)
897 rtx addr;
898 int size;
899 int n_refs;
901 int offset = 0;
903 switch (GET_CODE (addr))
905 case PRE_INC:
906 offset = (n_refs + 1) * size;
907 break;
908 case PRE_DEC:
909 offset = -(n_refs + 1) * size;
910 break;
911 case POST_INC:
912 offset = n_refs * size;
913 break;
914 case POST_DEC:
915 offset = -n_refs * size;
916 break;
918 default:
919 return addr;
922 if (offset)
923 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0), GEN_INT (offset));
924 else
925 addr = XEXP (addr, 0);
927 return addr;
930 /* Return nonzero if X and Y (memory addresses) could reference the
931 same location in memory. C is an offset accumulator. When
932 C is nonzero, we are testing aliases between X and Y + C.
933 XSIZE is the size in bytes of the X reference,
934 similarly YSIZE is the size in bytes for Y.
936 If XSIZE or YSIZE is zero, we do not know the amount of memory being
937 referenced (the reference was BLKmode), so make the most pessimistic
938 assumptions.
940 If XSIZE or YSIZE is negative, we may access memory outside the object
941 being referenced as a side effect. This can happen when using AND to
942 align memory references, as is done on the Alpha.
944 Nice to notice that varying addresses cannot conflict with fp if no
945 local variables had their addresses taken, but that's too hard now. */
948 static int
949 memrefs_conflict_p (xsize, x, ysize, y, c)
950 register rtx x, y;
951 int xsize, ysize;
952 HOST_WIDE_INT c;
954 if (GET_CODE (x) == HIGH)
955 x = XEXP (x, 0);
956 else if (GET_CODE (x) == LO_SUM)
957 x = XEXP (x, 1);
958 else
959 x = canon_rtx (addr_side_effect_eval (x, xsize, 0));
960 if (GET_CODE (y) == HIGH)
961 y = XEXP (y, 0);
962 else if (GET_CODE (y) == LO_SUM)
963 y = XEXP (y, 1);
964 else
965 y = canon_rtx (addr_side_effect_eval (y, ysize, 0));
967 if (rtx_equal_for_memref_p (x, y))
969 if (xsize <= 0 || ysize <= 0)
970 return 1;
971 if (c >= 0 && xsize > c)
972 return 1;
973 if (c < 0 && ysize+c > 0)
974 return 1;
975 return 0;
978 /* This code used to check for conflicts involving stack references and
979 globals but the base address alias code now handles these cases. */
981 if (GET_CODE (x) == PLUS)
983 /* The fact that X is canonicalized means that this
984 PLUS rtx is canonicalized. */
985 rtx x0 = XEXP (x, 0);
986 rtx x1 = XEXP (x, 1);
988 if (GET_CODE (y) == PLUS)
990 /* The fact that Y is canonicalized means that this
991 PLUS rtx is canonicalized. */
992 rtx y0 = XEXP (y, 0);
993 rtx y1 = XEXP (y, 1);
995 if (rtx_equal_for_memref_p (x1, y1))
996 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
997 if (rtx_equal_for_memref_p (x0, y0))
998 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
999 if (GET_CODE (x1) == CONST_INT)
1001 if (GET_CODE (y1) == CONST_INT)
1002 return memrefs_conflict_p (xsize, x0, ysize, y0,
1003 c - INTVAL (x1) + INTVAL (y1));
1004 else
1005 return memrefs_conflict_p (xsize, x0, ysize, y,
1006 c - INTVAL (x1));
1008 else if (GET_CODE (y1) == CONST_INT)
1009 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1011 return 1;
1013 else if (GET_CODE (x1) == CONST_INT)
1014 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1016 else if (GET_CODE (y) == PLUS)
1018 /* The fact that Y is canonicalized means that this
1019 PLUS rtx is canonicalized. */
1020 rtx y0 = XEXP (y, 0);
1021 rtx y1 = XEXP (y, 1);
1023 if (GET_CODE (y1) == CONST_INT)
1024 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1025 else
1026 return 1;
1029 if (GET_CODE (x) == GET_CODE (y))
1030 switch (GET_CODE (x))
1032 case MULT:
1034 /* Handle cases where we expect the second operands to be the
1035 same, and check only whether the first operand would conflict
1036 or not. */
1037 rtx x0, y0;
1038 rtx x1 = canon_rtx (XEXP (x, 1));
1039 rtx y1 = canon_rtx (XEXP (y, 1));
1040 if (! rtx_equal_for_memref_p (x1, y1))
1041 return 1;
1042 x0 = canon_rtx (XEXP (x, 0));
1043 y0 = canon_rtx (XEXP (y, 0));
1044 if (rtx_equal_for_memref_p (x0, y0))
1045 return (xsize == 0 || ysize == 0
1046 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1048 /* Can't properly adjust our sizes. */
1049 if (GET_CODE (x1) != CONST_INT)
1050 return 1;
1051 xsize /= INTVAL (x1);
1052 ysize /= INTVAL (x1);
1053 c /= INTVAL (x1);
1054 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1057 case REG:
1058 /* Are these registers known not to be equal? */
1059 if (alias_invariant)
1061 unsigned int r_x = REGNO (x), r_y = REGNO (y);
1062 rtx i_x, i_y; /* invariant relationships of X and Y */
1064 i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
1065 i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
1067 if (i_x == 0 && i_y == 0)
1068 break;
1070 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1071 ysize, i_y ? i_y : y, c))
1072 return 0;
1074 break;
1076 default:
1077 break;
1080 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1081 as an access with indeterminate size. Assume that references
1082 besides AND are aligned, so if the size of the other reference is
1083 at least as large as the alignment, assume no other overlap. */
1084 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1086 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1087 xsize = -1;
1088 return memrefs_conflict_p (xsize, XEXP (x, 0), ysize, y, c);
1090 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1092 /* ??? If we are indexing far enough into the array/structure, we
1093 may yet be able to determine that we can not overlap. But we
1094 also need to that we are far enough from the end not to overlap
1095 a following reference, so we do nothing with that for now. */
1096 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1097 ysize = -1;
1098 return memrefs_conflict_p (xsize, x, ysize, XEXP (y, 0), c);
1101 if (CONSTANT_P (x))
1103 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1105 c += (INTVAL (y) - INTVAL (x));
1106 return (xsize <= 0 || ysize <= 0
1107 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1110 if (GET_CODE (x) == CONST)
1112 if (GET_CODE (y) == CONST)
1113 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1114 ysize, canon_rtx (XEXP (y, 0)), c);
1115 else
1116 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1117 ysize, y, c);
1119 if (GET_CODE (y) == CONST)
1120 return memrefs_conflict_p (xsize, x, ysize,
1121 canon_rtx (XEXP (y, 0)), c);
1123 if (CONSTANT_P (y))
1124 return (xsize < 0 || ysize < 0
1125 || (rtx_equal_for_memref_p (x, y)
1126 && (xsize == 0 || ysize == 0
1127 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1129 return 1;
1131 return 1;
1134 /* Functions to compute memory dependencies.
1136 Since we process the insns in execution order, we can build tables
1137 to keep track of what registers are fixed (and not aliased), what registers
1138 are varying in known ways, and what registers are varying in unknown
1139 ways.
1141 If both memory references are volatile, then there must always be a
1142 dependence between the two references, since their order can not be
1143 changed. A volatile and non-volatile reference can be interchanged
1144 though.
1146 A MEM_IN_STRUCT reference at a non-QImode non-AND varying address can never
1147 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We must
1148 allow QImode aliasing because the ANSI C standard allows character
1149 pointers to alias anything. We are assuming that characters are
1150 always QImode here. We also must allow AND addresses, because they may
1151 generate accesses outside the object being referenced. This is used to
1152 generate aligned addresses from unaligned addresses, for instance, the
1153 alpha storeqi_unaligned pattern. */
1155 /* Read dependence: X is read after read in MEM takes place. There can
1156 only be a dependence here if both reads are volatile. */
1159 read_dependence (mem, x)
1160 rtx mem;
1161 rtx x;
1163 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1166 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1167 MEM2 is a reference to a structure at a varying address, or returns
1168 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1169 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1170 to decide whether or not an address may vary; it should return
1171 nozero whenever variation is possible. */
1173 static rtx
1174 fixed_scalar_and_varying_struct_p (mem1, mem2, varies_p)
1175 rtx mem1;
1176 rtx mem2;
1177 int (*varies_p) PROTO((rtx));
1179 rtx mem1_addr = XEXP (mem1, 0);
1180 rtx mem2_addr = XEXP (mem2, 0);
1182 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1183 && !varies_p (mem1_addr) && varies_p (mem2_addr))
1184 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1185 varying address. */
1186 return mem1;
1188 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1189 && varies_p (mem1_addr) && !varies_p (mem2_addr))
1190 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1191 varying address. */
1192 return mem2;
1194 return NULL_RTX;
1197 /* Returns nonzero if something about the mode or address format MEM1
1198 indicates that it might well alias *anything*. */
1200 static int
1201 aliases_everything_p (mem)
1202 rtx mem;
1204 if (GET_MODE (mem) == QImode)
1205 /* ANSI C says that a `char*' can point to anything. */
1206 return 1;
1208 if (GET_CODE (XEXP (mem, 0)) == AND)
1209 /* If the address is an AND, its very hard to know at what it is
1210 actually pointing. */
1211 return 1;
1213 return 0;
1216 /* True dependence: X is read after store in MEM takes place. */
1219 true_dependence (mem, mem_mode, x, varies)
1220 rtx mem;
1221 enum machine_mode mem_mode;
1222 rtx x;
1223 int (*varies) PROTO((rtx));
1225 register rtx x_addr, mem_addr;
1227 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
1228 return 1;
1230 if (DIFFERENT_ALIAS_SETS_P (x, mem))
1231 return 0;
1233 /* If X is an unchanging read, then it can't possibly conflict with any
1234 non-unchanging store. It may conflict with an unchanging write though,
1235 because there may be a single store to this address to initialize it.
1236 Just fall through to the code below to resolve the case where we have
1237 both an unchanging read and an unchanging write. This won't handle all
1238 cases optimally, but the possible performance loss should be
1239 negligible. */
1240 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
1241 return 0;
1243 if (mem_mode == VOIDmode)
1244 mem_mode = GET_MODE (mem);
1246 if (! base_alias_check (XEXP (x, 0), XEXP (mem, 0), GET_MODE (x), mem_mode))
1247 return 0;
1249 x_addr = canon_rtx (XEXP (x, 0));
1250 mem_addr = canon_rtx (XEXP (mem, 0));
1252 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
1253 SIZE_FOR_MODE (x), x_addr, 0))
1254 return 0;
1256 if (aliases_everything_p (x))
1257 return 1;
1259 /* We cannot use aliases_everyting_p to test MEM, since we must look
1260 at MEM_MODE, rather than GET_MODE (MEM). */
1261 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
1262 return 1;
1264 /* In true_dependence we also allow BLKmode to alias anything. Why
1265 don't we do this in anti_dependence and output_dependence? */
1266 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
1267 return 1;
1269 return !fixed_scalar_and_varying_struct_p (mem, x, varies);
1272 /* Returns non-zero if a write to X might alias a previous read from
1273 (or, if WRITEP is non-zero, a write to) MEM. */
1275 static int
1276 write_dependence_p (mem, x, writep)
1277 rtx mem;
1278 rtx x;
1279 int writep;
1281 rtx x_addr, mem_addr;
1282 rtx fixed_scalar;
1284 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
1285 return 1;
1287 /* If MEM is an unchanging read, then it can't possibly conflict with
1288 the store to X, because there is at most one store to MEM, and it must
1289 have occurred somewhere before MEM. */
1290 if (!writep && RTX_UNCHANGING_P (mem))
1291 return 0;
1293 if (! base_alias_check (XEXP (x, 0), XEXP (mem, 0), GET_MODE (x),
1294 GET_MODE (mem)))
1295 return 0;
1297 x = canon_rtx (x);
1298 mem = canon_rtx (mem);
1300 if (DIFFERENT_ALIAS_SETS_P (x, mem))
1301 return 0;
1303 x_addr = XEXP (x, 0);
1304 mem_addr = XEXP (mem, 0);
1306 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
1307 SIZE_FOR_MODE (x), x_addr, 0))
1308 return 0;
1310 fixed_scalar
1311 = fixed_scalar_and_varying_struct_p (mem, x, rtx_addr_varies_p);
1313 return (!(fixed_scalar == mem && !aliases_everything_p (x))
1314 && !(fixed_scalar == x && !aliases_everything_p (mem)));
1317 /* Anti dependence: X is written after read in MEM takes place. */
1320 anti_dependence (mem, x)
1321 rtx mem;
1322 rtx x;
1324 return write_dependence_p (mem, x, /*writep=*/0);
1327 /* Output dependence: X is written after store in MEM takes place. */
1330 output_dependence (mem, x)
1331 register rtx mem;
1332 register rtx x;
1334 return write_dependence_p (mem, x, /*writep=*/1);
1338 static HARD_REG_SET argument_registers;
1340 void
1341 init_alias_once ()
1343 register int i;
1345 #ifndef OUTGOING_REGNO
1346 #define OUTGOING_REGNO(N) N
1347 #endif
1348 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1349 /* Check whether this register can hold an incoming pointer
1350 argument. FUNCTION_ARG_REGNO_P tests outgoing register
1351 numbers, so translate if necessary due to register windows. */
1352 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
1353 && HARD_REGNO_MODE_OK (i, Pmode))
1354 SET_HARD_REG_BIT (argument_registers, i);
1356 alias_sets = splay_tree_new (splay_tree_compare_ints, 0, 0);
1359 void
1360 init_alias_analysis ()
1362 int maxreg = max_reg_num ();
1363 int changed, pass;
1364 register int i;
1365 register unsigned int ui;
1366 register rtx insn;
1368 reg_known_value_size = maxreg;
1370 reg_known_value
1371 = (rtx *) oballoc ((maxreg - FIRST_PSEUDO_REGISTER) * sizeof (rtx))
1372 - FIRST_PSEUDO_REGISTER;
1373 reg_known_equiv_p =
1374 oballoc (maxreg - FIRST_PSEUDO_REGISTER) - FIRST_PSEUDO_REGISTER;
1375 bzero ((char *) (reg_known_value + FIRST_PSEUDO_REGISTER),
1376 (maxreg-FIRST_PSEUDO_REGISTER) * sizeof (rtx));
1377 bzero (reg_known_equiv_p + FIRST_PSEUDO_REGISTER,
1378 (maxreg - FIRST_PSEUDO_REGISTER) * sizeof (char));
1380 /* Overallocate reg_base_value to allow some growth during loop
1381 optimization. Loop unrolling can create a large number of
1382 registers. */
1383 reg_base_value_size = maxreg * 2;
1384 reg_base_value = (rtx *)oballoc (reg_base_value_size * sizeof (rtx));
1385 new_reg_base_value = (rtx *)alloca (reg_base_value_size * sizeof (rtx));
1386 reg_seen = (char *)alloca (reg_base_value_size);
1387 bzero ((char *) reg_base_value, reg_base_value_size * sizeof (rtx));
1388 if (! reload_completed && flag_unroll_loops)
1390 alias_invariant = (rtx *)xrealloc (alias_invariant,
1391 reg_base_value_size * sizeof (rtx));
1392 bzero ((char *)alias_invariant, reg_base_value_size * sizeof (rtx));
1396 /* The basic idea is that each pass through this loop will use the
1397 "constant" information from the previous pass to propagate alias
1398 information through another level of assignments.
1400 This could get expensive if the assignment chains are long. Maybe
1401 we should throttle the number of iterations, possibly based on
1402 the optimization level or flag_expensive_optimizations.
1404 We could propagate more information in the first pass by making use
1405 of REG_N_SETS to determine immediately that the alias information
1406 for a pseudo is "constant".
1408 A program with an uninitialized variable can cause an infinite loop
1409 here. Instead of doing a full dataflow analysis to detect such problems
1410 we just cap the number of iterations for the loop.
1412 The state of the arrays for the set chain in question does not matter
1413 since the program has undefined behavior. */
1415 pass = 0;
1418 /* Assume nothing will change this iteration of the loop. */
1419 changed = 0;
1421 /* We want to assign the same IDs each iteration of this loop, so
1422 start counting from zero each iteration of the loop. */
1423 unique_id = 0;
1425 /* We're at the start of the funtion each iteration through the
1426 loop, so we're copying arguments. */
1427 copying_arguments = 1;
1429 /* Wipe the potential alias information clean for this pass. */
1430 bzero ((char *) new_reg_base_value, reg_base_value_size * sizeof (rtx));
1432 /* Wipe the reg_seen array clean. */
1433 bzero ((char *) reg_seen, reg_base_value_size);
1435 /* Mark all hard registers which may contain an address.
1436 The stack, frame and argument pointers may contain an address.
1437 An argument register which can hold a Pmode value may contain
1438 an address even if it is not in BASE_REGS.
1440 The address expression is VOIDmode for an argument and
1441 Pmode for other registers. */
1443 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1444 if (TEST_HARD_REG_BIT (argument_registers, i))
1445 new_reg_base_value[i] = gen_rtx_ADDRESS (VOIDmode,
1446 gen_rtx_REG (Pmode, i));
1448 new_reg_base_value[STACK_POINTER_REGNUM]
1449 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
1450 new_reg_base_value[ARG_POINTER_REGNUM]
1451 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
1452 new_reg_base_value[FRAME_POINTER_REGNUM]
1453 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
1454 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1455 new_reg_base_value[HARD_FRAME_POINTER_REGNUM]
1456 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
1457 #endif
1458 if (struct_value_incoming_rtx
1459 && GET_CODE (struct_value_incoming_rtx) == REG)
1460 new_reg_base_value[REGNO (struct_value_incoming_rtx)]
1461 = gen_rtx_ADDRESS (Pmode, struct_value_incoming_rtx);
1463 if (static_chain_rtx
1464 && GET_CODE (static_chain_rtx) == REG)
1465 new_reg_base_value[REGNO (static_chain_rtx)]
1466 = gen_rtx_ADDRESS (Pmode, static_chain_rtx);
1468 /* Walk the insns adding values to the new_reg_base_value array. */
1469 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1471 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1473 rtx note, set;
1474 /* If this insn has a noalias note, process it, Otherwise,
1475 scan for sets. A simple set will have no side effects
1476 which could change the base value of any other register. */
1478 if (GET_CODE (PATTERN (insn)) == SET
1479 && (find_reg_note (insn, REG_NOALIAS, NULL_RTX)))
1480 record_set (SET_DEST (PATTERN (insn)), NULL_RTX);
1481 else
1482 note_stores (PATTERN (insn), record_set);
1484 set = single_set (insn);
1486 if (set != 0
1487 && GET_CODE (SET_DEST (set)) == REG
1488 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
1489 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
1490 && REG_N_SETS (REGNO (SET_DEST (set))) == 1)
1491 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
1492 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
1493 && ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
1495 int regno = REGNO (SET_DEST (set));
1496 reg_known_value[regno] = XEXP (note, 0);
1497 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
1500 else if (GET_CODE (insn) == NOTE
1501 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
1502 copying_arguments = 0;
1505 /* Now propagate values from new_reg_base_value to reg_base_value. */
1506 for (ui = 0; ui < reg_base_value_size; ui++)
1508 if (new_reg_base_value[ui]
1509 && new_reg_base_value[ui] != reg_base_value[ui]
1510 && ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
1512 reg_base_value[ui] = new_reg_base_value[ui];
1513 changed = 1;
1517 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
1519 /* Fill in the remaining entries. */
1520 for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
1521 if (reg_known_value[i] == 0)
1522 reg_known_value[i] = regno_reg_rtx[i];
1524 /* Simplify the reg_base_value array so that no register refers to
1525 another register, except to special registers indirectly through
1526 ADDRESS expressions.
1528 In theory this loop can take as long as O(registers^2), but unless
1529 there are very long dependency chains it will run in close to linear
1530 time.
1532 This loop may not be needed any longer now that the main loop does
1533 a better job at propagating alias information. */
1534 pass = 0;
1537 changed = 0;
1538 pass++;
1539 for (ui = 0; ui < reg_base_value_size; ui++)
1541 rtx base = reg_base_value[ui];
1542 if (base && GET_CODE (base) == REG)
1544 unsigned int base_regno = REGNO (base);
1545 if (base_regno == ui) /* register set from itself */
1546 reg_base_value[ui] = 0;
1547 else
1548 reg_base_value[ui] = reg_base_value[base_regno];
1549 changed = 1;
1553 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
1555 new_reg_base_value = 0;
1556 reg_seen = 0;
1559 void
1560 end_alias_analysis ()
1562 reg_known_value = 0;
1563 reg_base_value = 0;
1564 reg_base_value_size = 0;
1565 if (alias_invariant)
1567 free ((char *)alias_invariant);
1568 alias_invariant = 0;