var-tracking.c (vt_add_function_parameter): Adjust for VEC changes.
[official-gcc.git] / libgo / go / math / sqrt.go
blobb5f297c84b6a3b7d9f35147740aef8d95f6793ce
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 package math
7 // Sqrt returns the square root of x.
8 //
9 // Special cases are:
10 // Sqrt(+Inf) = +Inf
11 // Sqrt(±0) = ±0
12 // Sqrt(x < 0) = NaN
13 // Sqrt(NaN) = NaN
15 //extern sqrt
16 func libc_sqrt(float64) float64
18 func Sqrt(x float64) float64 {
19 return libc_sqrt(x)
22 // The original C code and the long comment below are
23 // from FreeBSD's /usr/src/lib/msun/src/e_sqrt.c and
24 // came with this notice. The go code is a simplified
25 // version of the original C.
27 // ====================================================
28 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
30 // Developed at SunPro, a Sun Microsystems, Inc. business.
31 // Permission to use, copy, modify, and distribute this
32 // software is freely granted, provided that this notice
33 // is preserved.
34 // ====================================================
36 // __ieee754_sqrt(x)
37 // Return correctly rounded sqrt.
38 // -----------------------------------------
39 // | Use the hardware sqrt if you have one |
40 // -----------------------------------------
41 // Method:
42 // Bit by bit method using integer arithmetic. (Slow, but portable)
43 // 1. Normalization
44 // Scale x to y in [1,4) with even powers of 2:
45 // find an integer k such that 1 <= (y=x*2**(2k)) < 4, then
46 // sqrt(x) = 2**k * sqrt(y)
47 // 2. Bit by bit computation
48 // Let q = sqrt(y) truncated to i bit after binary point (q = 1),
49 // i 0
50 // i+1 2
51 // s = 2*q , and y = 2 * ( y - q ). (1)
52 // i i i i
54 // To compute q from q , one checks whether
55 // i+1 i
57 // -(i+1) 2
58 // (q + 2 ) <= y. (2)
59 // i
60 // -(i+1)
61 // If (2) is false, then q = q ; otherwise q = q + 2 .
62 // i+1 i i+1 i
64 // With some algebraic manipulation, it is not difficult to see
65 // that (2) is equivalent to
66 // -(i+1)
67 // s + 2 <= y (3)
68 // i i
70 // The advantage of (3) is that s and y can be computed by
71 // i i
72 // the following recurrence formula:
73 // if (3) is false
75 // s = s , y = y ; (4)
76 // i+1 i i+1 i
78 // otherwise,
79 // -i -(i+1)
80 // s = s + 2 , y = y - s - 2 (5)
81 // i+1 i i+1 i i
83 // One may easily use induction to prove (4) and (5).
84 // Note. Since the left hand side of (3) contain only i+2 bits,
85 // it does not necessary to do a full (53-bit) comparison
86 // in (3).
87 // 3. Final rounding
88 // After generating the 53 bits result, we compute one more bit.
89 // Together with the remainder, we can decide whether the
90 // result is exact, bigger than 1/2ulp, or less than 1/2ulp
91 // (it will never equal to 1/2ulp).
92 // The rounding mode can be detected by checking whether
93 // huge + tiny is equal to huge, and whether huge - tiny is
94 // equal to huge for some floating point number "huge" and "tiny".
97 // Notes: Rounding mode detection omitted. The constants "mask", "shift",
98 // and "bias" are found in src/pkg/math/bits.go
100 // Sqrt returns the square root of x.
102 // Special cases are:
103 // Sqrt(+Inf) = +Inf
104 // Sqrt(±0) = ±0
105 // Sqrt(x < 0) = NaN
106 // Sqrt(NaN) = NaN
107 func sqrt(x float64) float64 {
108 // special cases
109 switch {
110 case x == 0 || IsNaN(x) || IsInf(x, 1):
111 return x
112 case x < 0:
113 return NaN()
115 ix := Float64bits(x)
116 // normalize x
117 exp := int((ix >> shift) & mask)
118 if exp == 0 { // subnormal x
119 for ix&1<<shift == 0 {
120 ix <<= 1
121 exp--
123 exp++
125 exp -= bias // unbias exponent
126 ix &^= mask << shift
127 ix |= 1 << shift
128 if exp&1 == 1 { // odd exp, double x to make it even
129 ix <<= 1
131 exp >>= 1 // exp = exp/2, exponent of square root
132 // generate sqrt(x) bit by bit
133 ix <<= 1
134 var q, s uint64 // q = sqrt(x)
135 r := uint64(1 << (shift + 1)) // r = moving bit from MSB to LSB
136 for r != 0 {
137 t := s + r
138 if t <= ix {
139 s = t + r
140 ix -= t
141 q += r
143 ix <<= 1
144 r >>= 1
146 // final rounding
147 if ix != 0 { // remainder, result not exact
148 q += q & 1 // round according to extra bit
150 ix = q>>1 + uint64(exp-1+bias)<<shift // significand + biased exponent
151 return Float64frombits(ix)
154 func sqrtC(f float64, r *float64) {
155 *r = sqrt(f)