var-tracking.c (vt_add_function_parameter): Adjust for VEC changes.
[official-gcc.git] / gcc / tree-ssa-phiopt.c
blobc8ec5026659e4abf17960597bc5167106e572c00
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "langhooks.h"
33 #include "pointer-set.h"
34 #include "domwalk.h"
35 #include "cfgloop.h"
36 #include "tree-data-ref.h"
37 #include "gimple-pretty-print.h"
38 #include "insn-config.h"
39 #include "expr.h"
40 #include "optabs.h"
42 #ifndef HAVE_conditional_move
43 #define HAVE_conditional_move (0)
44 #endif
46 static unsigned int tree_ssa_phiopt (void);
47 static unsigned int tree_ssa_phiopt_worker (bool, bool);
48 static bool conditional_replacement (basic_block, basic_block,
49 edge, edge, gimple, tree, tree);
50 static int value_replacement (basic_block, basic_block,
51 edge, edge, gimple, tree, tree);
52 static bool minmax_replacement (basic_block, basic_block,
53 edge, edge, gimple, tree, tree);
54 static bool abs_replacement (basic_block, basic_block,
55 edge, edge, gimple, tree, tree);
56 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
57 struct pointer_set_t *);
58 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
59 static struct pointer_set_t * get_non_trapping (void);
60 static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
61 static void hoist_adjacent_loads (basic_block, basic_block,
62 basic_block, basic_block);
63 static bool gate_hoist_loads (void);
65 /* This pass tries to replaces an if-then-else block with an
66 assignment. We have four kinds of transformations. Some of these
67 transformations are also performed by the ifcvt RTL optimizer.
69 Conditional Replacement
70 -----------------------
72 This transformation, implemented in conditional_replacement,
73 replaces
75 bb0:
76 if (cond) goto bb2; else goto bb1;
77 bb1:
78 bb2:
79 x = PHI <0 (bb1), 1 (bb0), ...>;
81 with
83 bb0:
84 x' = cond;
85 goto bb2;
86 bb2:
87 x = PHI <x' (bb0), ...>;
89 We remove bb1 as it becomes unreachable. This occurs often due to
90 gimplification of conditionals.
92 Value Replacement
93 -----------------
95 This transformation, implemented in value_replacement, replaces
97 bb0:
98 if (a != b) goto bb2; else goto bb1;
99 bb1:
100 bb2:
101 x = PHI <a (bb1), b (bb0), ...>;
103 with
105 bb0:
106 bb2:
107 x = PHI <b (bb0), ...>;
109 This opportunity can sometimes occur as a result of other
110 optimizations.
112 ABS Replacement
113 ---------------
115 This transformation, implemented in abs_replacement, replaces
117 bb0:
118 if (a >= 0) goto bb2; else goto bb1;
119 bb1:
120 x = -a;
121 bb2:
122 x = PHI <x (bb1), a (bb0), ...>;
124 with
126 bb0:
127 x' = ABS_EXPR< a >;
128 bb2:
129 x = PHI <x' (bb0), ...>;
131 MIN/MAX Replacement
132 -------------------
134 This transformation, minmax_replacement replaces
136 bb0:
137 if (a <= b) goto bb2; else goto bb1;
138 bb1:
139 bb2:
140 x = PHI <b (bb1), a (bb0), ...>;
142 with
144 bb0:
145 x' = MIN_EXPR (a, b)
146 bb2:
147 x = PHI <x' (bb0), ...>;
149 A similar transformation is done for MAX_EXPR.
152 This pass also performs a fifth transformation of a slightly different
153 flavor.
155 Adjacent Load Hoisting
156 ----------------------
158 This transformation replaces
160 bb0:
161 if (...) goto bb2; else goto bb1;
162 bb1:
163 x1 = (<expr>).field1;
164 goto bb3;
165 bb2:
166 x2 = (<expr>).field2;
167 bb3:
168 # x = PHI <x1, x2>;
170 with
172 bb0:
173 x1 = (<expr>).field1;
174 x2 = (<expr>).field2;
175 if (...) goto bb2; else goto bb1;
176 bb1:
177 goto bb3;
178 bb2:
179 bb3:
180 # x = PHI <x1, x2>;
182 The purpose of this transformation is to enable generation of conditional
183 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
184 the loads is speculative, the transformation is restricted to very
185 specific cases to avoid introducing a page fault. We are looking for
186 the common idiom:
188 if (...)
189 x = y->left;
190 else
191 x = y->right;
193 where left and right are typically adjacent pointers in a tree structure. */
195 static unsigned int
196 tree_ssa_phiopt (void)
198 return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
201 /* This pass tries to transform conditional stores into unconditional
202 ones, enabling further simplifications with the simpler then and else
203 blocks. In particular it replaces this:
205 bb0:
206 if (cond) goto bb2; else goto bb1;
207 bb1:
208 *p = RHS;
209 bb2:
211 with
213 bb0:
214 if (cond) goto bb1; else goto bb2;
215 bb1:
216 condtmp' = *p;
217 bb2:
218 condtmp = PHI <RHS, condtmp'>
219 *p = condtmp;
221 This transformation can only be done under several constraints,
222 documented below. It also replaces:
224 bb0:
225 if (cond) goto bb2; else goto bb1;
226 bb1:
227 *p = RHS1;
228 goto bb3;
229 bb2:
230 *p = RHS2;
231 bb3:
233 with
235 bb0:
236 if (cond) goto bb3; else goto bb1;
237 bb1:
238 bb3:
239 condtmp = PHI <RHS1, RHS2>
240 *p = condtmp; */
242 static unsigned int
243 tree_ssa_cs_elim (void)
245 return tree_ssa_phiopt_worker (true, false);
248 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
250 static gimple
251 single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
253 gimple_stmt_iterator i;
254 gimple phi = NULL;
255 if (gimple_seq_singleton_p (seq))
256 return gsi_stmt (gsi_start (seq));
257 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
259 gimple p = gsi_stmt (i);
260 /* If the PHI arguments are equal then we can skip this PHI. */
261 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
262 gimple_phi_arg_def (p, e1->dest_idx)))
263 continue;
265 /* If we already have a PHI that has the two edge arguments are
266 different, then return it is not a singleton for these PHIs. */
267 if (phi)
268 return NULL;
270 phi = p;
272 return phi;
275 /* The core routine of conditional store replacement and normal
276 phi optimizations. Both share much of the infrastructure in how
277 to match applicable basic block patterns. DO_STORE_ELIM is true
278 when we want to do conditional store replacement, false otherwise.
279 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
280 of diamond control flow patterns, false otherwise. */
281 static unsigned int
282 tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads)
284 basic_block bb;
285 basic_block *bb_order;
286 unsigned n, i;
287 bool cfgchanged = false;
288 struct pointer_set_t *nontrap = 0;
290 if (do_store_elim)
291 /* Calculate the set of non-trapping memory accesses. */
292 nontrap = get_non_trapping ();
294 /* Search every basic block for COND_EXPR we may be able to optimize.
296 We walk the blocks in order that guarantees that a block with
297 a single predecessor is processed before the predecessor.
298 This ensures that we collapse inner ifs before visiting the
299 outer ones, and also that we do not try to visit a removed
300 block. */
301 bb_order = blocks_in_phiopt_order ();
302 n = n_basic_blocks - NUM_FIXED_BLOCKS;
304 for (i = 0; i < n; i++)
306 gimple cond_stmt, phi;
307 basic_block bb1, bb2;
308 edge e1, e2;
309 tree arg0, arg1;
311 bb = bb_order[i];
313 cond_stmt = last_stmt (bb);
314 /* Check to see if the last statement is a GIMPLE_COND. */
315 if (!cond_stmt
316 || gimple_code (cond_stmt) != GIMPLE_COND)
317 continue;
319 e1 = EDGE_SUCC (bb, 0);
320 bb1 = e1->dest;
321 e2 = EDGE_SUCC (bb, 1);
322 bb2 = e2->dest;
324 /* We cannot do the optimization on abnormal edges. */
325 if ((e1->flags & EDGE_ABNORMAL) != 0
326 || (e2->flags & EDGE_ABNORMAL) != 0)
327 continue;
329 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
330 if (EDGE_COUNT (bb1->succs) == 0
331 || bb2 == NULL
332 || EDGE_COUNT (bb2->succs) == 0)
333 continue;
335 /* Find the bb which is the fall through to the other. */
336 if (EDGE_SUCC (bb1, 0)->dest == bb2)
338 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
340 basic_block bb_tmp = bb1;
341 edge e_tmp = e1;
342 bb1 = bb2;
343 bb2 = bb_tmp;
344 e1 = e2;
345 e2 = e_tmp;
347 else if (do_store_elim
348 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
350 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
352 if (!single_succ_p (bb1)
353 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
354 || !single_succ_p (bb2)
355 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
356 || EDGE_COUNT (bb3->preds) != 2)
357 continue;
358 if (cond_if_else_store_replacement (bb1, bb2, bb3))
359 cfgchanged = true;
360 continue;
362 else if (do_hoist_loads
363 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
365 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
367 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
368 && single_succ_p (bb1)
369 && single_succ_p (bb2)
370 && single_pred_p (bb1)
371 && single_pred_p (bb2)
372 && EDGE_COUNT (bb->succs) == 2
373 && EDGE_COUNT (bb3->preds) == 2
374 /* If one edge or the other is dominant, a conditional move
375 is likely to perform worse than the well-predicted branch. */
376 && !predictable_edge_p (EDGE_SUCC (bb, 0))
377 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
378 hoist_adjacent_loads (bb, bb1, bb2, bb3);
379 continue;
381 else
382 continue;
384 e1 = EDGE_SUCC (bb1, 0);
386 /* Make sure that bb1 is just a fall through. */
387 if (!single_succ_p (bb1)
388 || (e1->flags & EDGE_FALLTHRU) == 0)
389 continue;
391 /* Also make sure that bb1 only have one predecessor and that it
392 is bb. */
393 if (!single_pred_p (bb1)
394 || single_pred (bb1) != bb)
395 continue;
397 if (do_store_elim)
399 /* bb1 is the middle block, bb2 the join block, bb the split block,
400 e1 the fallthrough edge from bb1 to bb2. We can't do the
401 optimization if the join block has more than two predecessors. */
402 if (EDGE_COUNT (bb2->preds) > 2)
403 continue;
404 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
405 cfgchanged = true;
407 else
409 gimple_seq phis = phi_nodes (bb2);
410 gimple_stmt_iterator gsi;
411 bool candorest = true;
413 /* Value replacement can work with more than one PHI
414 so try that first. */
415 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
417 phi = gsi_stmt (gsi);
418 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
419 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
420 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
422 candorest = false;
423 cfgchanged = true;
424 break;
428 if (!candorest)
429 continue;
431 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
432 if (!phi)
433 continue;
435 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
436 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
438 /* Something is wrong if we cannot find the arguments in the PHI
439 node. */
440 gcc_assert (arg0 != NULL && arg1 != NULL);
442 /* Do the replacement of conditional if it can be done. */
443 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
444 cfgchanged = true;
445 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
446 cfgchanged = true;
447 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
448 cfgchanged = true;
452 free (bb_order);
454 if (do_store_elim)
455 pointer_set_destroy (nontrap);
456 /* If the CFG has changed, we should cleanup the CFG. */
457 if (cfgchanged && do_store_elim)
459 /* In cond-store replacement we have added some loads on edges
460 and new VOPS (as we moved the store, and created a load). */
461 gsi_commit_edge_inserts ();
462 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
464 else if (cfgchanged)
465 return TODO_cleanup_cfg;
466 return 0;
469 /* Returns the list of basic blocks in the function in an order that guarantees
470 that if a block X has just a single predecessor Y, then Y is after X in the
471 ordering. */
473 basic_block *
474 blocks_in_phiopt_order (void)
476 basic_block x, y;
477 basic_block *order = XNEWVEC (basic_block, n_basic_blocks);
478 unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS;
479 unsigned np, i;
480 sbitmap visited = sbitmap_alloc (last_basic_block);
482 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
483 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
485 sbitmap_zero (visited);
487 MARK_VISITED (ENTRY_BLOCK_PTR);
488 FOR_EACH_BB (x)
490 if (VISITED_P (x))
491 continue;
493 /* Walk the predecessors of x as long as they have precisely one
494 predecessor and add them to the list, so that they get stored
495 after x. */
496 for (y = x, np = 1;
497 single_pred_p (y) && !VISITED_P (single_pred (y));
498 y = single_pred (y))
499 np++;
500 for (y = x, i = n - np;
501 single_pred_p (y) && !VISITED_P (single_pred (y));
502 y = single_pred (y), i++)
504 order[i] = y;
505 MARK_VISITED (y);
507 order[i] = y;
508 MARK_VISITED (y);
510 gcc_assert (i == n - 1);
511 n -= np;
514 sbitmap_free (visited);
515 gcc_assert (n == 0);
516 return order;
518 #undef MARK_VISITED
519 #undef VISITED_P
523 /* Return TRUE if block BB has no executable statements, otherwise return
524 FALSE. */
526 bool
527 empty_block_p (basic_block bb)
529 /* BB must have no executable statements. */
530 gimple_stmt_iterator gsi = gsi_after_labels (bb);
531 if (phi_nodes (bb))
532 return false;
533 if (gsi_end_p (gsi))
534 return true;
535 if (is_gimple_debug (gsi_stmt (gsi)))
536 gsi_next_nondebug (&gsi);
537 return gsi_end_p (gsi);
540 /* Replace PHI node element whose edge is E in block BB with variable NEW.
541 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
542 is known to have two edges, one of which must reach BB). */
544 static void
545 replace_phi_edge_with_variable (basic_block cond_block,
546 edge e, gimple phi, tree new_tree)
548 basic_block bb = gimple_bb (phi);
549 basic_block block_to_remove;
550 gimple_stmt_iterator gsi;
552 /* Change the PHI argument to new. */
553 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
555 /* Remove the empty basic block. */
556 if (EDGE_SUCC (cond_block, 0)->dest == bb)
558 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
559 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
560 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
561 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
563 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
565 else
567 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
568 EDGE_SUCC (cond_block, 1)->flags
569 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
570 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
571 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
573 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
575 delete_basic_block (block_to_remove);
577 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
578 gsi = gsi_last_bb (cond_block);
579 gsi_remove (&gsi, true);
581 if (dump_file && (dump_flags & TDF_DETAILS))
582 fprintf (dump_file,
583 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
584 cond_block->index,
585 bb->index);
588 /* The function conditional_replacement does the main work of doing the
589 conditional replacement. Return true if the replacement is done.
590 Otherwise return false.
591 BB is the basic block where the replacement is going to be done on. ARG0
592 is argument 0 from PHI. Likewise for ARG1. */
594 static bool
595 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
596 edge e0, edge e1, gimple phi,
597 tree arg0, tree arg1)
599 tree result;
600 gimple stmt, new_stmt;
601 tree cond;
602 gimple_stmt_iterator gsi;
603 edge true_edge, false_edge;
604 tree new_var, new_var2;
605 bool neg;
607 /* FIXME: Gimplification of complex type is too hard for now. */
608 /* We aren't prepared to handle vectors either (and it is a question
609 if it would be worthwhile anyway). */
610 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
611 || POINTER_TYPE_P (TREE_TYPE (arg0)))
612 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
613 || POINTER_TYPE_P (TREE_TYPE (arg1))))
614 return false;
616 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
617 convert it to the conditional. */
618 if ((integer_zerop (arg0) && integer_onep (arg1))
619 || (integer_zerop (arg1) && integer_onep (arg0)))
620 neg = false;
621 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
622 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
623 neg = true;
624 else
625 return false;
627 if (!empty_block_p (middle_bb))
628 return false;
630 /* At this point we know we have a GIMPLE_COND with two successors.
631 One successor is BB, the other successor is an empty block which
632 falls through into BB.
634 There is a single PHI node at the join point (BB) and its arguments
635 are constants (0, 1) or (0, -1).
637 So, given the condition COND, and the two PHI arguments, we can
638 rewrite this PHI into non-branching code:
640 dest = (COND) or dest = COND'
642 We use the condition as-is if the argument associated with the
643 true edge has the value one or the argument associated with the
644 false edge as the value zero. Note that those conditions are not
645 the same since only one of the outgoing edges from the GIMPLE_COND
646 will directly reach BB and thus be associated with an argument. */
648 stmt = last_stmt (cond_bb);
649 result = PHI_RESULT (phi);
651 /* To handle special cases like floating point comparison, it is easier and
652 less error-prone to build a tree and gimplify it on the fly though it is
653 less efficient. */
654 cond = fold_build2_loc (gimple_location (stmt),
655 gimple_cond_code (stmt), boolean_type_node,
656 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
658 /* We need to know which is the true edge and which is the false
659 edge so that we know when to invert the condition below. */
660 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
661 if ((e0 == true_edge && integer_zerop (arg0))
662 || (e0 == false_edge && !integer_zerop (arg0))
663 || (e1 == true_edge && integer_zerop (arg1))
664 || (e1 == false_edge && !integer_zerop (arg1)))
665 cond = fold_build1_loc (gimple_location (stmt),
666 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
668 if (neg)
670 cond = fold_convert_loc (gimple_location (stmt),
671 TREE_TYPE (result), cond);
672 cond = fold_build1_loc (gimple_location (stmt),
673 NEGATE_EXPR, TREE_TYPE (cond), cond);
676 /* Insert our new statements at the end of conditional block before the
677 COND_STMT. */
678 gsi = gsi_for_stmt (stmt);
679 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
680 GSI_SAME_STMT);
682 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
684 source_location locus_0, locus_1;
686 new_var2 = make_ssa_name (TREE_TYPE (result), NULL);
687 new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2,
688 new_var, NULL);
689 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
690 new_var = new_var2;
692 /* Set the locus to the first argument, unless is doesn't have one. */
693 locus_0 = gimple_phi_arg_location (phi, 0);
694 locus_1 = gimple_phi_arg_location (phi, 1);
695 if (locus_0 == UNKNOWN_LOCATION)
696 locus_0 = locus_1;
697 gimple_set_location (new_stmt, locus_0);
700 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
702 /* Note that we optimized this PHI. */
703 return true;
706 /* Update *ARG which is defined in STMT so that it contains the
707 computed value if that seems profitable. Return true if the
708 statement is made dead by that rewriting. */
710 static bool
711 jump_function_from_stmt (tree *arg, gimple stmt)
713 enum tree_code code = gimple_assign_rhs_code (stmt);
714 if (code == ADDR_EXPR)
716 /* For arg = &p->i transform it to p, if possible. */
717 tree rhs1 = gimple_assign_rhs1 (stmt);
718 HOST_WIDE_INT offset;
719 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
720 &offset);
721 if (tem
722 && TREE_CODE (tem) == MEM_REF
723 && (mem_ref_offset (tem) + double_int::from_shwi (offset)).is_zero ())
725 *arg = TREE_OPERAND (tem, 0);
726 return true;
729 /* TODO: Much like IPA-CP jump-functions we want to handle constant
730 additions symbolically here, and we'd need to update the comparison
731 code that compares the arg + cst tuples in our caller. For now the
732 code above exactly handles the VEC_BASE pattern from vec.h. */
733 return false;
736 /* The function value_replacement does the main work of doing the value
737 replacement. Return non-zero if the replacement is done. Otherwise return
738 0. If we remove the middle basic block, return 2.
739 BB is the basic block where the replacement is going to be done on. ARG0
740 is argument 0 from the PHI. Likewise for ARG1. */
742 static int
743 value_replacement (basic_block cond_bb, basic_block middle_bb,
744 edge e0, edge e1, gimple phi,
745 tree arg0, tree arg1)
747 gimple_stmt_iterator gsi;
748 gimple cond;
749 edge true_edge, false_edge;
750 enum tree_code code;
751 bool emtpy_or_with_defined_p = true;
753 /* If the type says honor signed zeros we cannot do this
754 optimization. */
755 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
756 return 0;
758 /* If there is a statement in MIDDLE_BB that defines one of the PHI
759 arguments, then adjust arg0 or arg1. */
760 gsi = gsi_after_labels (middle_bb);
761 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
762 gsi_next_nondebug (&gsi);
763 while (!gsi_end_p (gsi))
765 gimple stmt = gsi_stmt (gsi);
766 tree lhs;
767 gsi_next_nondebug (&gsi);
768 if (!is_gimple_assign (stmt))
770 emtpy_or_with_defined_p = false;
771 continue;
773 /* Now try to adjust arg0 or arg1 according to the computation
774 in the statement. */
775 lhs = gimple_assign_lhs (stmt);
776 if (!(lhs == arg0
777 && jump_function_from_stmt (&arg0, stmt))
778 || (lhs == arg1
779 && jump_function_from_stmt (&arg1, stmt)))
780 emtpy_or_with_defined_p = false;
783 cond = last_stmt (cond_bb);
784 code = gimple_cond_code (cond);
786 /* This transformation is only valid for equality comparisons. */
787 if (code != NE_EXPR && code != EQ_EXPR)
788 return 0;
790 /* We need to know which is the true edge and which is the false
791 edge so that we know if have abs or negative abs. */
792 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
794 /* At this point we know we have a COND_EXPR with two successors.
795 One successor is BB, the other successor is an empty block which
796 falls through into BB.
798 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
800 There is a single PHI node at the join point (BB) with two arguments.
802 We now need to verify that the two arguments in the PHI node match
803 the two arguments to the equality comparison. */
805 if ((operand_equal_for_phi_arg_p (arg0, gimple_cond_lhs (cond))
806 && operand_equal_for_phi_arg_p (arg1, gimple_cond_rhs (cond)))
807 || (operand_equal_for_phi_arg_p (arg1, gimple_cond_lhs (cond))
808 && operand_equal_for_phi_arg_p (arg0, gimple_cond_rhs (cond))))
810 edge e;
811 tree arg;
813 /* For NE_EXPR, we want to build an assignment result = arg where
814 arg is the PHI argument associated with the true edge. For
815 EQ_EXPR we want the PHI argument associated with the false edge. */
816 e = (code == NE_EXPR ? true_edge : false_edge);
818 /* Unfortunately, E may not reach BB (it may instead have gone to
819 OTHER_BLOCK). If that is the case, then we want the single outgoing
820 edge from OTHER_BLOCK which reaches BB and represents the desired
821 path from COND_BLOCK. */
822 if (e->dest == middle_bb)
823 e = single_succ_edge (e->dest);
825 /* Now we know the incoming edge to BB that has the argument for the
826 RHS of our new assignment statement. */
827 if (e0 == e)
828 arg = arg0;
829 else
830 arg = arg1;
832 /* If the middle basic block was empty or is defining the
833 PHI arguments and this is a single phi where the args are different
834 for the edges e0 and e1 then we can remove the middle basic block. */
835 if (emtpy_or_with_defined_p
836 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
837 e0, e1))
839 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
840 /* Note that we optimized this PHI. */
841 return 2;
843 else
845 /* Replace the PHI arguments with arg. */
846 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
847 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
848 if (dump_file && (dump_flags & TDF_DETAILS))
850 fprintf (dump_file, "PHI ");
851 print_generic_expr (dump_file, gimple_phi_result (phi), 0);
852 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
853 cond_bb->index);
854 print_generic_expr (dump_file, arg, 0);
855 fprintf (dump_file, ".\n");
857 return 1;
861 return 0;
864 /* The function minmax_replacement does the main work of doing the minmax
865 replacement. Return true if the replacement is done. Otherwise return
866 false.
867 BB is the basic block where the replacement is going to be done on. ARG0
868 is argument 0 from the PHI. Likewise for ARG1. */
870 static bool
871 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
872 edge e0, edge e1, gimple phi,
873 tree arg0, tree arg1)
875 tree result, type;
876 gimple cond, new_stmt;
877 edge true_edge, false_edge;
878 enum tree_code cmp, minmax, ass_code;
879 tree smaller, larger, arg_true, arg_false;
880 gimple_stmt_iterator gsi, gsi_from;
882 type = TREE_TYPE (PHI_RESULT (phi));
884 /* The optimization may be unsafe due to NaNs. */
885 if (HONOR_NANS (TYPE_MODE (type)))
886 return false;
888 cond = last_stmt (cond_bb);
889 cmp = gimple_cond_code (cond);
891 /* This transformation is only valid for order comparisons. Record which
892 operand is smaller/larger if the result of the comparison is true. */
893 if (cmp == LT_EXPR || cmp == LE_EXPR)
895 smaller = gimple_cond_lhs (cond);
896 larger = gimple_cond_rhs (cond);
898 else if (cmp == GT_EXPR || cmp == GE_EXPR)
900 smaller = gimple_cond_rhs (cond);
901 larger = gimple_cond_lhs (cond);
903 else
904 return false;
906 /* We need to know which is the true edge and which is the false
907 edge so that we know if have abs or negative abs. */
908 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
910 /* Forward the edges over the middle basic block. */
911 if (true_edge->dest == middle_bb)
912 true_edge = EDGE_SUCC (true_edge->dest, 0);
913 if (false_edge->dest == middle_bb)
914 false_edge = EDGE_SUCC (false_edge->dest, 0);
916 if (true_edge == e0)
918 gcc_assert (false_edge == e1);
919 arg_true = arg0;
920 arg_false = arg1;
922 else
924 gcc_assert (false_edge == e0);
925 gcc_assert (true_edge == e1);
926 arg_true = arg1;
927 arg_false = arg0;
930 if (empty_block_p (middle_bb))
932 if (operand_equal_for_phi_arg_p (arg_true, smaller)
933 && operand_equal_for_phi_arg_p (arg_false, larger))
935 /* Case
937 if (smaller < larger)
938 rslt = smaller;
939 else
940 rslt = larger; */
941 minmax = MIN_EXPR;
943 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
944 && operand_equal_for_phi_arg_p (arg_true, larger))
945 minmax = MAX_EXPR;
946 else
947 return false;
949 else
951 /* Recognize the following case, assuming d <= u:
953 if (a <= u)
954 b = MAX (a, d);
955 x = PHI <b, u>
957 This is equivalent to
959 b = MAX (a, d);
960 x = MIN (b, u); */
962 gimple assign = last_and_only_stmt (middle_bb);
963 tree lhs, op0, op1, bound;
965 if (!assign
966 || gimple_code (assign) != GIMPLE_ASSIGN)
967 return false;
969 lhs = gimple_assign_lhs (assign);
970 ass_code = gimple_assign_rhs_code (assign);
971 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
972 return false;
973 op0 = gimple_assign_rhs1 (assign);
974 op1 = gimple_assign_rhs2 (assign);
976 if (true_edge->src == middle_bb)
978 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
979 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
980 return false;
982 if (operand_equal_for_phi_arg_p (arg_false, larger))
984 /* Case
986 if (smaller < larger)
988 r' = MAX_EXPR (smaller, bound)
990 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
991 if (ass_code != MAX_EXPR)
992 return false;
994 minmax = MIN_EXPR;
995 if (operand_equal_for_phi_arg_p (op0, smaller))
996 bound = op1;
997 else if (operand_equal_for_phi_arg_p (op1, smaller))
998 bound = op0;
999 else
1000 return false;
1002 /* We need BOUND <= LARGER. */
1003 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1004 bound, larger)))
1005 return false;
1007 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
1009 /* Case
1011 if (smaller < larger)
1013 r' = MIN_EXPR (larger, bound)
1015 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1016 if (ass_code != MIN_EXPR)
1017 return false;
1019 minmax = MAX_EXPR;
1020 if (operand_equal_for_phi_arg_p (op0, larger))
1021 bound = op1;
1022 else if (operand_equal_for_phi_arg_p (op1, larger))
1023 bound = op0;
1024 else
1025 return false;
1027 /* We need BOUND >= SMALLER. */
1028 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1029 bound, smaller)))
1030 return false;
1032 else
1033 return false;
1035 else
1037 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1038 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1039 return false;
1041 if (operand_equal_for_phi_arg_p (arg_true, larger))
1043 /* Case
1045 if (smaller > larger)
1047 r' = MIN_EXPR (smaller, bound)
1049 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1050 if (ass_code != MIN_EXPR)
1051 return false;
1053 minmax = MAX_EXPR;
1054 if (operand_equal_for_phi_arg_p (op0, smaller))
1055 bound = op1;
1056 else if (operand_equal_for_phi_arg_p (op1, smaller))
1057 bound = op0;
1058 else
1059 return false;
1061 /* We need BOUND >= LARGER. */
1062 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1063 bound, larger)))
1064 return false;
1066 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
1068 /* Case
1070 if (smaller > larger)
1072 r' = MAX_EXPR (larger, bound)
1074 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1075 if (ass_code != MAX_EXPR)
1076 return false;
1078 minmax = MIN_EXPR;
1079 if (operand_equal_for_phi_arg_p (op0, larger))
1080 bound = op1;
1081 else if (operand_equal_for_phi_arg_p (op1, larger))
1082 bound = op0;
1083 else
1084 return false;
1086 /* We need BOUND <= SMALLER. */
1087 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1088 bound, smaller)))
1089 return false;
1091 else
1092 return false;
1095 /* Move the statement from the middle block. */
1096 gsi = gsi_last_bb (cond_bb);
1097 gsi_from = gsi_last_nondebug_bb (middle_bb);
1098 gsi_move_before (&gsi_from, &gsi);
1101 /* Emit the statement to compute min/max. */
1102 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
1103 new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1);
1104 gsi = gsi_last_bb (cond_bb);
1105 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1107 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1108 return true;
1111 /* The function absolute_replacement does the main work of doing the absolute
1112 replacement. Return true if the replacement is done. Otherwise return
1113 false.
1114 bb is the basic block where the replacement is going to be done on. arg0
1115 is argument 0 from the phi. Likewise for arg1. */
1117 static bool
1118 abs_replacement (basic_block cond_bb, basic_block middle_bb,
1119 edge e0 ATTRIBUTE_UNUSED, edge e1,
1120 gimple phi, tree arg0, tree arg1)
1122 tree result;
1123 gimple new_stmt, cond;
1124 gimple_stmt_iterator gsi;
1125 edge true_edge, false_edge;
1126 gimple assign;
1127 edge e;
1128 tree rhs, lhs;
1129 bool negate;
1130 enum tree_code cond_code;
1132 /* If the type says honor signed zeros we cannot do this
1133 optimization. */
1134 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
1135 return false;
1137 /* OTHER_BLOCK must have only one executable statement which must have the
1138 form arg0 = -arg1 or arg1 = -arg0. */
1140 assign = last_and_only_stmt (middle_bb);
1141 /* If we did not find the proper negation assignment, then we can not
1142 optimize. */
1143 if (assign == NULL)
1144 return false;
1146 /* If we got here, then we have found the only executable statement
1147 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1148 arg1 = -arg0, then we can not optimize. */
1149 if (gimple_code (assign) != GIMPLE_ASSIGN)
1150 return false;
1152 lhs = gimple_assign_lhs (assign);
1154 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1155 return false;
1157 rhs = gimple_assign_rhs1 (assign);
1159 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1160 if (!(lhs == arg0 && rhs == arg1)
1161 && !(lhs == arg1 && rhs == arg0))
1162 return false;
1164 cond = last_stmt (cond_bb);
1165 result = PHI_RESULT (phi);
1167 /* Only relationals comparing arg[01] against zero are interesting. */
1168 cond_code = gimple_cond_code (cond);
1169 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1170 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1171 return false;
1173 /* Make sure the conditional is arg[01] OP y. */
1174 if (gimple_cond_lhs (cond) != rhs)
1175 return false;
1177 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1178 ? real_zerop (gimple_cond_rhs (cond))
1179 : integer_zerop (gimple_cond_rhs (cond)))
1181 else
1182 return false;
1184 /* We need to know which is the true edge and which is the false
1185 edge so that we know if have abs or negative abs. */
1186 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1188 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1189 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1190 the false edge goes to OTHER_BLOCK. */
1191 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1192 e = true_edge;
1193 else
1194 e = false_edge;
1196 if (e->dest == middle_bb)
1197 negate = true;
1198 else
1199 negate = false;
1201 result = duplicate_ssa_name (result, NULL);
1203 if (negate)
1204 lhs = make_ssa_name (TREE_TYPE (result), NULL);
1205 else
1206 lhs = result;
1208 /* Build the modify expression with abs expression. */
1209 new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL);
1211 gsi = gsi_last_bb (cond_bb);
1212 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1214 if (negate)
1216 /* Get the right GSI. We want to insert after the recently
1217 added ABS_EXPR statement (which we know is the first statement
1218 in the block. */
1219 new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL);
1221 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1224 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1226 /* Note that we optimized this PHI. */
1227 return true;
1230 /* Auxiliary functions to determine the set of memory accesses which
1231 can't trap because they are preceded by accesses to the same memory
1232 portion. We do that for MEM_REFs, so we only need to track
1233 the SSA_NAME of the pointer indirectly referenced. The algorithm
1234 simply is a walk over all instructions in dominator order. When
1235 we see an MEM_REF we determine if we've already seen a same
1236 ref anywhere up to the root of the dominator tree. If we do the
1237 current access can't trap. If we don't see any dominating access
1238 the current access might trap, but might also make later accesses
1239 non-trapping, so we remember it. We need to be careful with loads
1240 or stores, for instance a load might not trap, while a store would,
1241 so if we see a dominating read access this doesn't mean that a later
1242 write access would not trap. Hence we also need to differentiate the
1243 type of access(es) seen.
1245 ??? We currently are very conservative and assume that a load might
1246 trap even if a store doesn't (write-only memory). This probably is
1247 overly conservative. */
1249 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1250 through it was seen, which would constitute a no-trap region for
1251 same accesses. */
1252 struct name_to_bb
1254 unsigned int ssa_name_ver;
1255 bool store;
1256 HOST_WIDE_INT offset, size;
1257 basic_block bb;
1260 /* The hash table for remembering what we've seen. */
1261 static htab_t seen_ssa_names;
1263 /* The set of MEM_REFs which can't trap. */
1264 static struct pointer_set_t *nontrap_set;
1266 /* The hash function. */
1267 static hashval_t
1268 name_to_bb_hash (const void *p)
1270 const struct name_to_bb *n = (const struct name_to_bb *) p;
1271 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1272 ^ (n->offset << 6) ^ (n->size << 3);
1275 /* The equality function of *P1 and *P2. */
1276 static int
1277 name_to_bb_eq (const void *p1, const void *p2)
1279 const struct name_to_bb *n1 = (const struct name_to_bb *)p1;
1280 const struct name_to_bb *n2 = (const struct name_to_bb *)p2;
1282 return n1->ssa_name_ver == n2->ssa_name_ver
1283 && n1->store == n2->store
1284 && n1->offset == n2->offset
1285 && n1->size == n2->size;
1288 /* We see the expression EXP in basic block BB. If it's an interesting
1289 expression (an MEM_REF through an SSA_NAME) possibly insert the
1290 expression into the set NONTRAP or the hash table of seen expressions.
1291 STORE is true if this expression is on the LHS, otherwise it's on
1292 the RHS. */
1293 static void
1294 add_or_mark_expr (basic_block bb, tree exp,
1295 struct pointer_set_t *nontrap, bool store)
1297 HOST_WIDE_INT size;
1299 if (TREE_CODE (exp) == MEM_REF
1300 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
1301 && host_integerp (TREE_OPERAND (exp, 1), 0)
1302 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
1304 tree name = TREE_OPERAND (exp, 0);
1305 struct name_to_bb map;
1306 void **slot;
1307 struct name_to_bb *n2bb;
1308 basic_block found_bb = 0;
1310 /* Try to find the last seen MEM_REF through the same
1311 SSA_NAME, which can trap. */
1312 map.ssa_name_ver = SSA_NAME_VERSION (name);
1313 map.bb = 0;
1314 map.store = store;
1315 map.offset = tree_low_cst (TREE_OPERAND (exp, 1), 0);
1316 map.size = size;
1318 slot = htab_find_slot (seen_ssa_names, &map, INSERT);
1319 n2bb = (struct name_to_bb *) *slot;
1320 if (n2bb)
1321 found_bb = n2bb->bb;
1323 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1324 (it's in a basic block on the path from us to the dominator root)
1325 then we can't trap. */
1326 if (found_bb && found_bb->aux == (void *)1)
1328 pointer_set_insert (nontrap, exp);
1330 else
1332 /* EXP might trap, so insert it into the hash table. */
1333 if (n2bb)
1335 n2bb->bb = bb;
1337 else
1339 n2bb = XNEW (struct name_to_bb);
1340 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
1341 n2bb->bb = bb;
1342 n2bb->store = store;
1343 n2bb->offset = map.offset;
1344 n2bb->size = size;
1345 *slot = n2bb;
1351 /* Called by walk_dominator_tree, when entering the block BB. */
1352 static void
1353 nt_init_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1355 gimple_stmt_iterator gsi;
1356 /* Mark this BB as being on the path to dominator root. */
1357 bb->aux = (void*)1;
1359 /* And walk the statements in order. */
1360 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1362 gimple stmt = gsi_stmt (gsi);
1364 if (gimple_assign_single_p (stmt))
1366 add_or_mark_expr (bb, gimple_assign_lhs (stmt), nontrap_set, true);
1367 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), nontrap_set, false);
1372 /* Called by walk_dominator_tree, when basic block BB is exited. */
1373 static void
1374 nt_fini_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1376 /* This BB isn't on the path to dominator root anymore. */
1377 bb->aux = NULL;
1380 /* This is the entry point of gathering non trapping memory accesses.
1381 It will do a dominator walk over the whole function, and it will
1382 make use of the bb->aux pointers. It returns a set of trees
1383 (the MEM_REFs itself) which can't trap. */
1384 static struct pointer_set_t *
1385 get_non_trapping (void)
1387 struct pointer_set_t *nontrap;
1388 struct dom_walk_data walk_data;
1390 nontrap = pointer_set_create ();
1391 seen_ssa_names = htab_create (128, name_to_bb_hash, name_to_bb_eq,
1392 free);
1393 /* We're going to do a dominator walk, so ensure that we have
1394 dominance information. */
1395 calculate_dominance_info (CDI_DOMINATORS);
1397 /* Setup callbacks for the generic dominator tree walker. */
1398 nontrap_set = nontrap;
1399 walk_data.dom_direction = CDI_DOMINATORS;
1400 walk_data.initialize_block_local_data = NULL;
1401 walk_data.before_dom_children = nt_init_block;
1402 walk_data.after_dom_children = nt_fini_block;
1403 walk_data.global_data = NULL;
1404 walk_data.block_local_data_size = 0;
1406 init_walk_dominator_tree (&walk_data);
1407 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1408 fini_walk_dominator_tree (&walk_data);
1409 htab_delete (seen_ssa_names);
1411 return nontrap;
1414 /* Do the main work of conditional store replacement. We already know
1415 that the recognized pattern looks like so:
1417 split:
1418 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1419 MIDDLE_BB:
1420 something
1421 fallthrough (edge E0)
1422 JOIN_BB:
1423 some more
1425 We check that MIDDLE_BB contains only one store, that that store
1426 doesn't trap (not via NOTRAP, but via checking if an access to the same
1427 memory location dominates us) and that the store has a "simple" RHS. */
1429 static bool
1430 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1431 edge e0, edge e1, struct pointer_set_t *nontrap)
1433 gimple assign = last_and_only_stmt (middle_bb);
1434 tree lhs, rhs, name, name2;
1435 gimple newphi, new_stmt;
1436 gimple_stmt_iterator gsi;
1437 source_location locus;
1439 /* Check if middle_bb contains of only one store. */
1440 if (!assign
1441 || !gimple_assign_single_p (assign))
1442 return false;
1444 locus = gimple_location (assign);
1445 lhs = gimple_assign_lhs (assign);
1446 rhs = gimple_assign_rhs1 (assign);
1447 if (TREE_CODE (lhs) != MEM_REF
1448 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
1449 || !is_gimple_reg_type (TREE_TYPE (lhs)))
1450 return false;
1452 /* Prove that we can move the store down. We could also check
1453 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1454 whose value is not available readily, which we want to avoid. */
1455 if (!pointer_set_contains (nontrap, lhs))
1456 return false;
1458 /* Now we've checked the constraints, so do the transformation:
1459 1) Remove the single store. */
1460 gsi = gsi_for_stmt (assign);
1461 unlink_stmt_vdef (assign);
1462 gsi_remove (&gsi, true);
1463 release_defs (assign);
1465 /* 2) Insert a load from the memory of the store to the temporary
1466 on the edge which did not contain the store. */
1467 lhs = unshare_expr (lhs);
1468 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1469 new_stmt = gimple_build_assign (name, lhs);
1470 gimple_set_location (new_stmt, locus);
1471 gsi_insert_on_edge (e1, new_stmt);
1473 /* 3) Create a PHI node at the join block, with one argument
1474 holding the old RHS, and the other holding the temporary
1475 where we stored the old memory contents. */
1476 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1477 newphi = create_phi_node (name2, join_bb);
1478 add_phi_arg (newphi, rhs, e0, locus);
1479 add_phi_arg (newphi, name, e1, locus);
1481 lhs = unshare_expr (lhs);
1482 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1484 /* 4) Insert that PHI node. */
1485 gsi = gsi_after_labels (join_bb);
1486 if (gsi_end_p (gsi))
1488 gsi = gsi_last_bb (join_bb);
1489 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1491 else
1492 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1494 return true;
1497 /* Do the main work of conditional store replacement. */
1499 static bool
1500 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
1501 basic_block join_bb, gimple then_assign,
1502 gimple else_assign)
1504 tree lhs_base, lhs, then_rhs, else_rhs, name;
1505 source_location then_locus, else_locus;
1506 gimple_stmt_iterator gsi;
1507 gimple newphi, new_stmt;
1509 if (then_assign == NULL
1510 || !gimple_assign_single_p (then_assign)
1511 || gimple_clobber_p (then_assign)
1512 || else_assign == NULL
1513 || !gimple_assign_single_p (else_assign)
1514 || gimple_clobber_p (else_assign))
1515 return false;
1517 lhs = gimple_assign_lhs (then_assign);
1518 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1519 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1520 return false;
1522 lhs_base = get_base_address (lhs);
1523 if (lhs_base == NULL_TREE
1524 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1525 return false;
1527 then_rhs = gimple_assign_rhs1 (then_assign);
1528 else_rhs = gimple_assign_rhs1 (else_assign);
1529 then_locus = gimple_location (then_assign);
1530 else_locus = gimple_location (else_assign);
1532 /* Now we've checked the constraints, so do the transformation:
1533 1) Remove the stores. */
1534 gsi = gsi_for_stmt (then_assign);
1535 unlink_stmt_vdef (then_assign);
1536 gsi_remove (&gsi, true);
1537 release_defs (then_assign);
1539 gsi = gsi_for_stmt (else_assign);
1540 unlink_stmt_vdef (else_assign);
1541 gsi_remove (&gsi, true);
1542 release_defs (else_assign);
1544 /* 2) Create a PHI node at the join block, with one argument
1545 holding the old RHS, and the other holding the temporary
1546 where we stored the old memory contents. */
1547 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1548 newphi = create_phi_node (name, join_bb);
1549 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1550 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
1552 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1554 /* 3) Insert that PHI node. */
1555 gsi = gsi_after_labels (join_bb);
1556 if (gsi_end_p (gsi))
1558 gsi = gsi_last_bb (join_bb);
1559 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1561 else
1562 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1564 return true;
1567 /* Conditional store replacement. We already know
1568 that the recognized pattern looks like so:
1570 split:
1571 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1572 THEN_BB:
1574 X = Y;
1576 goto JOIN_BB;
1577 ELSE_BB:
1579 X = Z;
1581 fallthrough (edge E0)
1582 JOIN_BB:
1583 some more
1585 We check that it is safe to sink the store to JOIN_BB by verifying that
1586 there are no read-after-write or write-after-write dependencies in
1587 THEN_BB and ELSE_BB. */
1589 static bool
1590 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1591 basic_block join_bb)
1593 gimple then_assign = last_and_only_stmt (then_bb);
1594 gimple else_assign = last_and_only_stmt (else_bb);
1595 VEC (data_reference_p, heap) *then_datarefs, *else_datarefs;
1596 VEC (ddr_p, heap) *then_ddrs, *else_ddrs;
1597 gimple then_store, else_store;
1598 bool found, ok = false, res;
1599 struct data_dependence_relation *ddr;
1600 data_reference_p then_dr, else_dr;
1601 int i, j;
1602 tree then_lhs, else_lhs;
1603 VEC (gimple, heap) *then_stores, *else_stores;
1604 basic_block blocks[3];
1606 if (MAX_STORES_TO_SINK == 0)
1607 return false;
1609 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1610 if (then_assign && else_assign)
1611 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1612 then_assign, else_assign);
1614 /* Find data references. */
1615 then_datarefs = VEC_alloc (data_reference_p, heap, 1);
1616 else_datarefs = VEC_alloc (data_reference_p, heap, 1);
1617 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
1618 == chrec_dont_know)
1619 || !VEC_length (data_reference_p, then_datarefs)
1620 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
1621 == chrec_dont_know)
1622 || !VEC_length (data_reference_p, else_datarefs))
1624 free_data_refs (then_datarefs);
1625 free_data_refs (else_datarefs);
1626 return false;
1629 /* Find pairs of stores with equal LHS. */
1630 then_stores = VEC_alloc (gimple, heap, 1);
1631 else_stores = VEC_alloc (gimple, heap, 1);
1632 FOR_EACH_VEC_ELT (data_reference_p, then_datarefs, i, then_dr)
1634 if (DR_IS_READ (then_dr))
1635 continue;
1637 then_store = DR_STMT (then_dr);
1638 then_lhs = gimple_get_lhs (then_store);
1639 found = false;
1641 FOR_EACH_VEC_ELT (data_reference_p, else_datarefs, j, else_dr)
1643 if (DR_IS_READ (else_dr))
1644 continue;
1646 else_store = DR_STMT (else_dr);
1647 else_lhs = gimple_get_lhs (else_store);
1649 if (operand_equal_p (then_lhs, else_lhs, 0))
1651 found = true;
1652 break;
1656 if (!found)
1657 continue;
1659 VEC_safe_push (gimple, heap, then_stores, then_store);
1660 VEC_safe_push (gimple, heap, else_stores, else_store);
1663 /* No pairs of stores found. */
1664 if (!VEC_length (gimple, then_stores)
1665 || VEC_length (gimple, then_stores) > (unsigned) MAX_STORES_TO_SINK)
1667 free_data_refs (then_datarefs);
1668 free_data_refs (else_datarefs);
1669 VEC_free (gimple, heap, then_stores);
1670 VEC_free (gimple, heap, else_stores);
1671 return false;
1674 /* Compute and check data dependencies in both basic blocks. */
1675 then_ddrs = VEC_alloc (ddr_p, heap, 1);
1676 else_ddrs = VEC_alloc (ddr_p, heap, 1);
1677 if (!compute_all_dependences (then_datarefs, &then_ddrs, NULL, false)
1678 || !compute_all_dependences (else_datarefs, &else_ddrs, NULL, false))
1680 free_dependence_relations (then_ddrs);
1681 free_dependence_relations (else_ddrs);
1682 free_data_refs (then_datarefs);
1683 free_data_refs (else_datarefs);
1684 VEC_free (gimple, heap, then_stores);
1685 VEC_free (gimple, heap, else_stores);
1686 return false;
1688 blocks[0] = then_bb;
1689 blocks[1] = else_bb;
1690 blocks[2] = join_bb;
1691 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
1693 /* Check that there are no read-after-write or write-after-write dependencies
1694 in THEN_BB. */
1695 FOR_EACH_VEC_ELT (ddr_p, then_ddrs, i, ddr)
1697 struct data_reference *dra = DDR_A (ddr);
1698 struct data_reference *drb = DDR_B (ddr);
1700 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1701 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1702 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1703 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1704 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1705 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1707 free_dependence_relations (then_ddrs);
1708 free_dependence_relations (else_ddrs);
1709 free_data_refs (then_datarefs);
1710 free_data_refs (else_datarefs);
1711 VEC_free (gimple, heap, then_stores);
1712 VEC_free (gimple, heap, else_stores);
1713 return false;
1717 /* Check that there are no read-after-write or write-after-write dependencies
1718 in ELSE_BB. */
1719 FOR_EACH_VEC_ELT (ddr_p, else_ddrs, i, ddr)
1721 struct data_reference *dra = DDR_A (ddr);
1722 struct data_reference *drb = DDR_B (ddr);
1724 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1725 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1726 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1727 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1728 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1729 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1731 free_dependence_relations (then_ddrs);
1732 free_dependence_relations (else_ddrs);
1733 free_data_refs (then_datarefs);
1734 free_data_refs (else_datarefs);
1735 VEC_free (gimple, heap, then_stores);
1736 VEC_free (gimple, heap, else_stores);
1737 return false;
1741 /* Sink stores with same LHS. */
1742 FOR_EACH_VEC_ELT (gimple, then_stores, i, then_store)
1744 else_store = VEC_index (gimple, else_stores, i);
1745 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1746 then_store, else_store);
1747 ok = ok || res;
1750 free_dependence_relations (then_ddrs);
1751 free_dependence_relations (else_ddrs);
1752 free_data_refs (then_datarefs);
1753 free_data_refs (else_datarefs);
1754 VEC_free (gimple, heap, then_stores);
1755 VEC_free (gimple, heap, else_stores);
1757 return ok;
1760 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
1762 static bool
1763 local_mem_dependence (gimple stmt, basic_block bb)
1765 tree vuse = gimple_vuse (stmt);
1766 gimple def;
1768 if (!vuse)
1769 return false;
1771 def = SSA_NAME_DEF_STMT (vuse);
1772 return (def && gimple_bb (def) == bb);
1775 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
1776 BB1 and BB2 are "then" and "else" blocks dependent on this test,
1777 and BB3 rejoins control flow following BB1 and BB2, look for
1778 opportunities to hoist loads as follows. If BB3 contains a PHI of
1779 two loads, one each occurring in BB1 and BB2, and the loads are
1780 provably of adjacent fields in the same structure, then move both
1781 loads into BB0. Of course this can only be done if there are no
1782 dependencies preventing such motion.
1784 One of the hoisted loads will always be speculative, so the
1785 transformation is currently conservative:
1787 - The fields must be strictly adjacent.
1788 - The two fields must occupy a single memory block that is
1789 guaranteed to not cross a page boundary.
1791 The last is difficult to prove, as such memory blocks should be
1792 aligned on the minimum of the stack alignment boundary and the
1793 alignment guaranteed by heap allocation interfaces. Thus we rely
1794 on a parameter for the alignment value.
1796 Provided a good value is used for the last case, the first
1797 restriction could possibly be relaxed. */
1799 static void
1800 hoist_adjacent_loads (basic_block bb0, basic_block bb1,
1801 basic_block bb2, basic_block bb3)
1803 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
1804 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
1805 gimple_stmt_iterator gsi;
1807 /* Walk the phis in bb3 looking for an opportunity. We are looking
1808 for phis of two SSA names, one each of which is defined in bb1 and
1809 bb2. */
1810 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
1812 gimple phi_stmt = gsi_stmt (gsi);
1813 gimple def1, def2, defswap;
1814 tree arg1, arg2, ref1, ref2, field1, field2, fieldswap;
1815 tree tree_offset1, tree_offset2, tree_size2, next;
1816 int offset1, offset2, size2;
1817 unsigned align1;
1818 gimple_stmt_iterator gsi2;
1819 basic_block bb_for_def1, bb_for_def2;
1821 if (gimple_phi_num_args (phi_stmt) != 2
1822 || virtual_operand_p (gimple_phi_result (phi_stmt)))
1823 continue;
1825 arg1 = gimple_phi_arg_def (phi_stmt, 0);
1826 arg2 = gimple_phi_arg_def (phi_stmt, 1);
1828 if (TREE_CODE (arg1) != SSA_NAME
1829 || TREE_CODE (arg2) != SSA_NAME
1830 || SSA_NAME_IS_DEFAULT_DEF (arg1)
1831 || SSA_NAME_IS_DEFAULT_DEF (arg2))
1832 continue;
1834 def1 = SSA_NAME_DEF_STMT (arg1);
1835 def2 = SSA_NAME_DEF_STMT (arg2);
1837 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
1838 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
1839 continue;
1841 /* Check the mode of the arguments to be sure a conditional move
1842 can be generated for it. */
1843 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
1844 == CODE_FOR_nothing)
1845 continue;
1847 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
1848 if (!gimple_assign_single_p (def1)
1849 || !gimple_assign_single_p (def2))
1850 continue;
1852 ref1 = gimple_assign_rhs1 (def1);
1853 ref2 = gimple_assign_rhs1 (def2);
1855 if (TREE_CODE (ref1) != COMPONENT_REF
1856 || TREE_CODE (ref2) != COMPONENT_REF)
1857 continue;
1859 /* The zeroth operand of the two component references must be
1860 identical. It is not sufficient to compare get_base_address of
1861 the two references, because this could allow for different
1862 elements of the same array in the two trees. It is not safe to
1863 assume that the existence of one array element implies the
1864 existence of a different one. */
1865 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
1866 continue;
1868 field1 = TREE_OPERAND (ref1, 1);
1869 field2 = TREE_OPERAND (ref2, 1);
1871 /* Check for field adjacency, and ensure field1 comes first. */
1872 for (next = DECL_CHAIN (field1);
1873 next && TREE_CODE (next) != FIELD_DECL;
1874 next = DECL_CHAIN (next))
1877 if (next != field2)
1879 for (next = DECL_CHAIN (field2);
1880 next && TREE_CODE (next) != FIELD_DECL;
1881 next = DECL_CHAIN (next))
1884 if (next != field1)
1885 continue;
1887 fieldswap = field1;
1888 field1 = field2;
1889 field2 = fieldswap;
1890 defswap = def1;
1891 def1 = def2;
1892 def2 = defswap;
1895 bb_for_def1 = gimple_bb (def1);
1896 bb_for_def2 = gimple_bb (def2);
1898 /* Check for proper alignment of the first field. */
1899 tree_offset1 = bit_position (field1);
1900 tree_offset2 = bit_position (field2);
1901 tree_size2 = DECL_SIZE (field2);
1903 if (!host_integerp (tree_offset1, 1)
1904 || !host_integerp (tree_offset2, 1)
1905 || !host_integerp (tree_size2, 1))
1906 continue;
1908 offset1 = TREE_INT_CST_LOW (tree_offset1);
1909 offset2 = TREE_INT_CST_LOW (tree_offset2);
1910 size2 = TREE_INT_CST_LOW (tree_size2);
1911 align1 = DECL_ALIGN (field1) % param_align_bits;
1913 if (offset1 % BITS_PER_UNIT != 0)
1914 continue;
1916 /* For profitability, the two field references should fit within
1917 a single cache line. */
1918 if (align1 + offset2 - offset1 + size2 > param_align_bits)
1919 continue;
1921 /* The two expressions cannot be dependent upon vdefs defined
1922 in bb1/bb2. */
1923 if (local_mem_dependence (def1, bb_for_def1)
1924 || local_mem_dependence (def2, bb_for_def2))
1925 continue;
1927 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
1928 bb0. We hoist the first one first so that a cache miss is handled
1929 efficiently regardless of hardware cache-fill policy. */
1930 gsi2 = gsi_for_stmt (def1);
1931 gsi_move_to_bb_end (&gsi2, bb0);
1932 gsi2 = gsi_for_stmt (def2);
1933 gsi_move_to_bb_end (&gsi2, bb0);
1935 if (dump_file && (dump_flags & TDF_DETAILS))
1937 fprintf (dump_file,
1938 "\nHoisting adjacent loads from %d and %d into %d: \n",
1939 bb_for_def1->index, bb_for_def2->index, bb0->index);
1940 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
1941 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
1946 /* Determine whether we should attempt to hoist adjacent loads out of
1947 diamond patterns in pass_phiopt. Always hoist loads if
1948 -fhoist-adjacent-loads is specified and the target machine has
1949 both a conditional move instruction and a defined cache line size. */
1951 static bool
1952 gate_hoist_loads (void)
1954 return (flag_hoist_adjacent_loads == 1
1955 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
1956 && HAVE_conditional_move);
1959 /* Always do these optimizations if we have SSA
1960 trees to work on. */
1961 static bool
1962 gate_phiopt (void)
1964 return 1;
1967 struct gimple_opt_pass pass_phiopt =
1970 GIMPLE_PASS,
1971 "phiopt", /* name */
1972 gate_phiopt, /* gate */
1973 tree_ssa_phiopt, /* execute */
1974 NULL, /* sub */
1975 NULL, /* next */
1976 0, /* static_pass_number */
1977 TV_TREE_PHIOPT, /* tv_id */
1978 PROP_cfg | PROP_ssa, /* properties_required */
1979 0, /* properties_provided */
1980 0, /* properties_destroyed */
1981 0, /* todo_flags_start */
1982 TODO_ggc_collect
1983 | TODO_verify_ssa
1984 | TODO_verify_flow
1985 | TODO_verify_stmts /* todo_flags_finish */
1989 static bool
1990 gate_cselim (void)
1992 return flag_tree_cselim;
1995 struct gimple_opt_pass pass_cselim =
1998 GIMPLE_PASS,
1999 "cselim", /* name */
2000 gate_cselim, /* gate */
2001 tree_ssa_cs_elim, /* execute */
2002 NULL, /* sub */
2003 NULL, /* next */
2004 0, /* static_pass_number */
2005 TV_TREE_PHIOPT, /* tv_id */
2006 PROP_cfg | PROP_ssa, /* properties_required */
2007 0, /* properties_provided */
2008 0, /* properties_destroyed */
2009 0, /* todo_flags_start */
2010 TODO_ggc_collect
2011 | TODO_verify_ssa
2012 | TODO_verify_flow
2013 | TODO_verify_stmts /* todo_flags_finish */